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INTRODUCTION

Relevance of the Work

Although the theory of nonlinear dynamical systems derives from work of
J.H. Poincaré (19th century), but it is still a subject of great interest and impor-
tance. Nonlinear dynamic systems are found in many fields of science: mathemat-
ics, physics, biology, economics, and even psychology. Most of the surrounding
real systems are complex, and their characterizing signals are multichannel. Ex-
amples of such signals are not only biomedical but also seismic, laser techniques
or other naturally generated signals. Analysis of individual signals is not sufficient
to describe the dynamics of a complex system. Therefore, evaluation of internal
signal complexity and mutual signal relations should be investigated.

Standard statistical methods such as correlation, cross-correlation, Granger
causality test, mutual information, etc. are commonly used to evaluate relations
between two signals. Statistics requires a relatively large amount of data, in ad-
dition, it is assumed that the assessed values are random. Naturally, in order to
monitor the dynamics of real-time signals, such methods are not suitable.

Since cardiovascular diseases is one of the most common causes of death,
and the most widely used non-invasive cardiology test is the electrocardiogram
recording, it is crucially important to be able to interpret electrocardiographic
changes. A decade ago, a methodology based on matrix analysis was proposed
by Lithuanian scientists to evaluate the dynamics of relations between two signals.
This methodology was developed and used to investigate the local changes of elec-
trocardiographic signal parameters. The importance of matrix-based methods has
been proven by a number of publications and projects. Therefore, a more profound
analysis of matrix theory-based characteristics is necessary. This study provides a
wider application analysis of previously developed matrix characteristics as well
as investigation of new structural matrix parameters. One of the objectives of this
research is to provide tools for physicians to evaluate how the complexity of dy-
namics between two signals is associated with physiological and pathological pro-
cesses.

Structuralmatrix analysis-based concept has also been used in iterativemaps.
The scalar variable was replaced with a second order matrix. An iterative map of
matrices shows new dynamical properties, and a modified class of iterative maps
was formed. It was noticed that if the matrix of the initial conditions is a nilpo-
tent matrix, then the system may experience divergence; however, if the matrix of
the initial conditions is an idempotent matrix, then such an effect is not possible.
Iterative maps of matrices may have applications in steganography.

Even though relevance is largely determined by practical applications, the
basis for this work is a specific structural decomposition of the second order matrix.
Special matrix decomposition-based tools were applied in athletes’ physical fitness
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assessment and clinical research. On the other hand, special decomposition of
second order matrices introduced new dynamical effects on the iterative maps of
matrices which can be observed neither in scalar iterative maps nor in coupled map
lattices. These statements determine the relevance of this dissertation in terms of
theoretical value and real-life application capacity.

The object of the research is the sequence of second order matrices gener-
ated by iterative maps of matrices as well as the sequence obtained from electro-
cardiographic data.

The aim of the work is to investigate special decomposition of second order
matrices, to analyze iterative maps of matrices and to observe estimates in order to
describe the structure of second order matrices.

The main tasks of this research are as follows:

Theoretical
• to develop the scheme to generate the system of idempotents and nilpotents;
to introduce parametric expressions of generated idempotents and nilpotents.

• to construct special decomposition of second order matrices and observe the
main properties of this decomposition.

• to derive the necessary and sufficient conditions for divergence of the itera-
tive map of matrices.

Application
• to continue and develop the previously investigated (in cooperation with sci-
entists from KTU Biomedical Engineering, LSMU Institute of Cardiology,
Institute of Sports and LSU) estimates describing the structure of the second
order matrix; to expand and apply the range of estimates so that to analyze
the relations between two electrocardiographic parameters.

Methods, software, and experimental tools:

• Matrix structural theory is used in the research. MATLABmathematical and
statistical packages were used for comparative analysis.

• Nonlinear dynamical systems models and analysis methods were used to in-
vestigate the iterative maps of matrices.

• Structural analysis was applied to investigate the dynamics of relations be-
tween two electrocardiographic parameters.

To be defended:

• Special decomposition of second order matrices based on idempotents and
nilpotents.

• Modified class of iterativemaps ofmatricesX(n+1) = f(X(n))whereX(n) ∈
R2×2 and f is an analytical function. The necessary and sufficient conditions
were derived for the divergence of such iterative maps.
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• Novel estimates based on structural matrix analysis were introduced for the
evaluation of the coherence of two signals. These estimates enable to de-
tect electrocardiographic signal changes in comparison with classical ECG
analysis methods.

Scientific novelty and significance

• Special second order square matrix decomposition based on idempotents and
nilpotents was introduced during the doctoral research.

• The class of modified iterative maps of matrices X(n+1) = f(X(n)) was
constructed, where X(n) is a second order matrix and f analytic function.
Such iterative maps of matrices show effects that cannot be produced by
scalar iterative maps or coupled map lattices.

• Novel estimates were proposed for the evaluation of relations between two
synchronous electrocardiographic signals. The proposed estimates reveal
new quality information about signal changes. This methodology is applied
in healthcare monitoring and evaluation.

Approval of the results

The major results of the dissertation were presented in 12 publications, 5 of
which were published in the list of the Institute for Scientific Information (ISI) as
the main list of publications with citing indexes. The topics covered in the doctoral
dissertation were presented in 7 international conferences. The structural matrix
theory-based methodology for ECG analysis was used in five international projects
and three patents were taken out for the novel approach in ECG signal processing.

Scope and structure of the dissertation

This doctoral dissertation consists of an introduction, 4 major sections, con-
clusions, practical implications, references and a list of the author’s publications.
Its total volume is 118 pages. There are 40 figures in the thesis, and the list of cited
sources within the main part of the dissertation includes 208 positions.

1. LITERATURE REVIEW

Idempotents and nilpotents as square matrices. The definitions of idempo-
tent and nilpotent are related to Peirce (1881). Peirce described these elements in
algebra: an idempotent is an element which, when multiplied by itself, yields it-
self and a nilpotent is an element that loses its power and when multiplied by itself
yields zero.

The variety of linear combinations of idempotents as square matrices and
their properties discussed in the literature emphasizes their high topicality. Proper-
ties of rank, trace, eigenvalues and determinants of idempotent and nilpotent com-
binations are a subject of scholarly discussion. Construction of decomposition of
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a square matrix is also one of the idempotent and nilpotent-related problems. In
this study, one of such problems is covered. The special decomposition of the
square matrix of order 2 is constructed. This decomposition is based on the Cayley-
Hamilton theorem (Bernstein, 2009).

Cayley-Hamilton theorem. If p(λ) = det(λI − X) is the characteristic
polynomial of matrix X ∈ Cn×n, then matrix X also satisfies p (X) = Θ.

Chaotic iterative maps. Many real world systems displaying chaotic be-
haviour are accurately described with mathematical models. In continuous time,
systems are often modelled by differential equations, which is not always conve-
nient for analytical study. Therefore, many studies were devoted to discrete-time
dynamical systems (maps).

The logistic map is a paradigmatic model often used to demonstrate the onset
of chaos and to illustrate how complex behaviour can arise from very simple non-
linear dynamical equations (May, 1976):

x(n+1) = ax(n)
(
1− x(n)

)
; (1)

where n is the iteration number; n = 0, 1, 2, . . .; a ∈ R (often investigated 0 ≤
a ≤ 4) is the parameter of the logistic map and x(0) is the initial condition (the
initial population at year 0). The dynamics of a logistic iterative map depends
on parameter a. One stable fixed point x when 0 ≤ a ≤ 1. One stable fixed
point x = 1 − 1

a when 1 < a ≤ 3. The first period doubling cascade is when
a = 3, and fixed point x = 1 − 1

a becomes unstable. For 3 < a ≤ 3.44949 x(n)

converges to a permanent oscillation between two values that depend on a. As a
grows larger oscillations between 4 values, then 8, 16, 32, etc. appear. Period-
doubling culminates at a ≈ 3.56995, from where more complex regimes appear.

The circle map is a paradigmatic model used to illustrate the effect of phase
locking and to study the dynamical behaviour of a beating heart:

x(n+1) = x(n) + Ω− K

2π
sin
(
2πx(n)

)
; (2)

where n is the iteration number; model parameterK is the coupling strength and Ω
is the driving phase; initial condition x(0) is a normalized polar angle in the interval
[0, 1]. The circle map exhibits certain regions of parameters K and Ω where the
driving frequency is locked. This phenomenon is called phase locking, and the
regions are called Arnold tongues.

A list of chaotic iterative maps is very long. Scalar iterative maps may be
connected into coupled map lattices and describe complex high-dimensional dy-
namics for the entire network. There are also many extensions for scalar iterative
maps as well as higher-dimensional iterative maps proposed in scholarly literature.

Relation between two signals. Many real world systems are complex, and
their produced signals are multivariate. Therefore, inner system relations should
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be evaluated. Literature offers many methods to evaluate the relationship between
simultaneously recorded signals (Pereda et al., 2005).

Correlation function is one of the oldest classical approaches to measure
the relation between two variables. Pearson, Spearman’s and Kendal correlation
coefficients are the most popular. Spearman’s rank-order correlation coefficient
does not require any special data distribution and assesses monotonic relationships
(whether linear or not):

rS = 1−
6
∑n

i=1 d
2
i

n (n2 − 1)
; (3)

where di = rank (xi) − rank (yi) – is the difference between the two ranks of i
observation, and n is the number of observations.

Granger causality test is a statistical concept of causality based on predic-
tion. Granger causality test uses autoregressive model in order to evaluate whether
prognosis ofX becomes better if the information about Y is included in the model:

x (t) =

p∑
k=1

axykx (t− k) +

p∑
k=1

bxyky (t− k) + εxy (t) . (4)

If the variance of εxy is reduced by the inclusion of the Y , then it is said that Y
Granger causes X (Y→X). Granger causality X→Y is described analogously.

Other methods used to evaluate the relation between two signals are cross-
correlation functions, nonlinear correlation coefficient, information-theory based
methods, and the concept of phase synchronisation.

Matrix analysis based methodology. In addition to the existing nonlinear
methods, matrix analysis-based methodology was proposed. This methodology
was based on phenomenological human as a complex system model proposed by
Vainoras (1996). The model implies that periphery (P), regulatory (R) and sup-
plying (S) systems are interconnected (see Fig. 1). Respiratory system (B) may be
also added. Relations may be evaluated with certain parameters and measured by
using noninvasive procedures: S – systolic arterial blood pressure, D – diastolic
systolic arterial blood pressure, RR – time interval between two heartbeats, JT –

Figure 1. Phenomenological human as a complex system model
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the time interval from joint point J to the end of T wave. Ve – volume of inhaled
air per minute, O2 – volume of used oxygen per minute, AR – R wave amplitude,
Δ means the change of a certain parameter.

As the next step, the methodology based on structural matrix analysis was
proposed by Navickas (Vainoras et al., 2008). Let two data sequences be given
y0, y1, y2, . . . and z0, z1, z2, . . .. Then, a sequence of matrices Xn are constructed:

Xn := Xn (Y,Z) =

[
yn yn−1 − zn−1

yn+1 − zn+1 zn

]
; (5)

where n = 1, 2, . . .; data sequences Y and Z represent different parameters. Char-
acteristics related to the matrix structure are calculated. One of such character-
istics is the matrix discriminant. For each matrix Xn discriminant is calculated
dskXn = (yn − zn)

2
+4 (yn−1 − zn−1) (yn+1 − zn+1). The dynamics of dskXn

(n = 1, 2, . . .) is analysed during various physical load tests or procedures in or-
der to evaluate the state of the entire organism, its ability to adapt to the changing
environment or to measure body fitness.

2. DECOMPOSITION OF SQUARE MATRIX OF ORDER 2

Several properties of square matrices of order 2 will be discussed in this
section. These properties are essential before continuing with the decomposition
of a matrix.

2.1. Basic definitions and notations of matrices

This section contains basic definitions, notations and statements often used
in the matrix theory (Bernstein, 2009).Let us consider a square matrix of order 2:

X :=

[
x11 x12

x21 x22

]
, (6)

x11, . . . , x22 ∈ C and its eigenvalues λ1, λ2 ∈ C:

λ1,2 =
1

2

(
TrX±

√
dskX

)
. (7)

where TrX := x11 + x22; dskX := (x11 − x22)
2
+ 4x12x21. If pX(z) = 0 is a

characteristic equation as its roots are exactly the eigenvalues of matrix X:

λ2 − (λ1 + λ2)λ+ λ1 · λ2 = 0. (8)

By the Cayley-Hamilton theorem, X obeys the same equation

X2 − (λ1 + λ2)X+ λ1 · λ2I = Θ; (9)

where Θ := [ 0 0
0 0 ], I := [ 1 0

0 1 ].
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2.2. Idempotents and nilpotents as 2× 2 matrices

Special matrices – idempotents and nilpotents – are presented in this sec-
tion. Basic properties of idempotents and nilpotents are discussed (Bernstein, 2009;
Horn et al., 2012). Proof of properties given in the section can be found in scholarly
literature related to matrix analysis.

2.2.1. Properties of idempotents and nilpotents of order 2

Definition 1. A square matrix D is an idempotent if satisfies the following:
(i) detD = 0, (10)
(ii) TrD = 1. (11)

Property 1. If matrix D is an idempotent, then equation D2 = D holds true.
Remark. There is a variety of definitions of idempotent. Often, the idempotent is
described as a matrix that satisfies equation D2 = D. In this study, the definition
differs from the classic one by the precondition that the matrices I andΘ cannot be
idempotents.
Property 2. Idempotents satisfy the following relations:
(i) TrD = rankD.
(ii) D eigenvalues are 0 and 1,
(iii) If D is an idempotent, then I− D is also an idempotent.
Definition 2. Idempotents D and D that satisfy equation D+ D = I are conjugate
idempotents.
Property 3. Let the eigenvalues of matrix X be not equal λ1 ̸= λ2. Then it is
possible to construct two conjugate idempotents Dk:

Dk :=
1

λk − λl
(X− λlI) ; (12)

where k, l = 1, 2 and k ̸= l. Moreover, matricesDk satisfyDk ·Dl = δklDk where
δkl :=

{
1, k=l;
0, k ̸=l.

Definition 3. Square matrix N is a nilpotent if satisfies the following:
(i) detN = 0, (13)
(ii) TrN = 0. (14)

Property 4. Let matrix N satisfy (13) and (14) then N holds true N2 = Θ.
Definition 4. Nilpotents N and cN where c ∈ C are similar nilpotents.
Remark.Matrices N and Θ are similar nilpotents.
Property 5. Let eigenvalues of matrix X coincide λ1 = λ2 = λ0. Then it is
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possible to construct nilpotent N:

N := X− λ0I. (15)

2.2.2. Sets of 2× 2 idempotents and nilpotents

Matrix D is an idempotent if it satisfies (10) ir (11). Therefore, it is straight-
forward to find the whole set of 2× 2 idempotents. Analogously, the set of nilpo-
tents is obtained.
Property 6. The set of idempotents can be expressed as:{

D =

[
α β

α(1−α)
β 1− α

]
, α, β ∈ C, β ̸= 0}. (16)

Remark. It can be noted that the following conditional limits exist and also provide
idempotents that cannot be obtained directly from Eq. (16):

lim
α→1
β→0(

α(1−α)
β →0

)
D =

[
1 0
0 0

]
; lim

α→0
β→0(

α(1−α)
β →0

)
D =

[
0 0
0 1

]
.

Property 7. The set of nilpotents can be expressed as:{
N =

[
α β

−α2

β −α

]
, α, β ∈ C, β ̸= 0

}
. (17)

Remark. It can be noted that the following conditional limit provides additional
nilpotents to set (17):

lim
α→0
β→0(

−α2

β →b
)
N = lim

α→0
β→0(

−α2

β →b

)

[
α β

−α2

β −α

]
=

[
0 0
b 0

]
;

where b ∈ C.

2.3. Special decomposition of matrix of order 2

This section contains the original scheme to construct the system of two
idempotents and two nilpotents. The method is based on splitting a matrix into
row matrices and column matrices (Bernstein, 2009). Moreover, the special three
component decomposition is provided in this section. Special matrix decomposi-
tion allows to simplify the calculation of the matrix power.
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2.3.1. The system of idempotents and nilpotents generated by matrix G

Let G := [ g11 g12
g21 g22 ] be a nonsingular C2×2 matrix. Then an invertible ma-

trix Y exists:

Y = G−1 =

[
g11 g12
g21 g22

]−1

=

[
y11 y12
y21 y22

]
. (18)

MatrixG can be divided into column matrices, and matrix Y can be divided
into row matrices (Bernstein, 2009):

G =
[
G1 G2

]
=

[[
g11
g21

] [
g12
g22

]]
, (19)

Y =

[
Y1

Y2

]
=

[[
y11 y12

][
y21 y22

]] . (20)

Then matrices Yk and Gl satisfy the following relations

YkGl =
[
yk1 yk2

] [g1l
g2l

]
= [σkl] =

{
0 if k ̸= l;
1 if k = l;

(21)

where k, l = 1, 2, Y = G−1 and Y ·G = G · Y = I.
It can be noted that product Gk · Yl yields four different matrices

Rkl = GkYl =

[
g1k
g2k

] [
yl1 yl2

]
; (22)

where k, l = 1, 2. Matrices R11 = D and R22 = D are conjugate idempotents,
and matrices R12 = N12 and R22 = N21 are nilpotents. Products of matrices D,
D, N12, N21, I, Θ are given in Table 1.

Table 1. Multiplication of matrices D,D,N12,N21, I,Θ

· I D D N12 N21 Θ
I I D D N12 N21 Θ
D D D Θ N12 Θ Θ
D D Θ D Θ N21 Θ
N12 N12 Θ N12 Θ D Θ
N21 N21 N21 Θ D Θ Θ
Θ Θ Θ Θ Θ Θ Θ

Definition 5. The system of idempotents and nilpotents generated by matrix G is
the set of matrices ⟨

G,G−1
⟩
⇒
{
D,D,N12,N21

}
= SG. (23)
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Any matrix X := [ x11 x12
x21 x22 ] may be expressed as the linear combination of

idempotents and nilpotens from system SG

XG := c11D+ c12N12 + c21N21 + c22D; (24)

where G is a nonsingular matrix.

2.3.2. Simple and compound idempotents and their parametric expressions

Two groups of different structure idempotents are discussed in this section.
Definition 6. Idempotent D̃ is compound idempotent if it can be expressed as linear
combination D̃ = D+cN21 where c ∈ C,D is an idempotent andN21 is a nilpotent
from the same system SG =

{
D,D,N12,N21

}
.

It can be noted that idempotents (16) are compound idempotents.
Definition 7. IdempotentsD andD that can be expressedwhile using one parameter
are simple idempotents.

The set of simple idempotents can be obtained fromEq. (16) if one parameter
is constant, e.g. α = const. For example, if α = 1

2 and 2β = β0, then the
idempotent is

D⟨β0⟩ =
1

2

[
1 β0
1
β0

1

]
. (25)

A question consequently arises: what is the relations between Eq. (16) and
Eq. (25)? It can be noted that linear combination of a simple idempotent and
nilpotent covers the whole set of idempotents:[

α β
α(1−α)

β 1− α

]
=

1

2

[
1 β0
1
β0

1

]
+ c · 1

2

[
1 β0

− 1
β0

−1

]
; (26)

where c = 2α−1, β0 = β
α . Equation (26) implies that for every idempotent exists

a nilpotent that does not change the rank of the idempotent if added.

2.3.3. Three component decomposition of matrix X

Four component decomposition of matrix X was discussed in the previous
section. Then arises the question whether it is possible to reduce the number of
components to three. The answer would be positive (Smidtaite et al., 2009; Smid-
taite et al., 2010; Navickas et al., 2011). Let X be a square matrix of order 2, then
the three component decomposition of matrix X is

X := c11D+ c21N21 + c22D; (27)

where D,D,N21 ∈ SG.
Matrix three component decomposition. Let matrixX := [ x11 x12

x21 x22
] be given.
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Theorem 1.Matrix X can be expressed as

X = c11 ·

[
α β

α(1−α)
β 1− α

]
+ c21 ·

[
α β

−α2

β −α

]
+ c22 ·

[
1− α −β
α(α−1)

β α

]
; (28)

where α ∈ C\ {0} and coefficients are calculated
(a) If matrix X elements are x12 ̸= 0 and x21 ̸= 0, then coefficients take the

following form:

c11 = 1
2

(
TrX+

√
dskX

)
= λ1, (29)

c21 =

(
x11 − x22 +

√
dskX

2α
−
√
dskX

)
= γ, (30)

c22 = 1
2

(
TrX−

√
dskX

)
= λ2, (31)

β =
− (x11 − x22) +

√
dskX

2x21
· α =

2x12√
dskX+ x11 − x22

· α. (32)

(b) If matrix X elements are x12 = 0 and x21 ̸= 0, then discriminant is dskX =
(x11 − x22)

2. The matrix has two decompositions if x11 ̸= x22:
1. If

√
dskX = − (x11 − x22), then the matrix decomposition has the

form of (28) and the coefficients are c11 = x22 = λ1, c22 = x11 = λ2,
c21 = −

√
dskX = x11 − x22, β = x22−x11

x21
· α where α ∈ C\ {0}.

2. If
√
dskX = x11 − x22, then β = 0 and the limit of (28) (as β → 0)

is calculated. The coefficients are obtained in a straightforward man-
ner: c11 = x11 = λ1, c22 = x22 = λ2, c21 = 1−α

α

√
dskX =

1−α
α (x11 − x22) where α ∈ C\ {0}.

(c) If matrix X elements x12 ̸= 0 and x21 = 0, then the discriminant is dskX =
(x11 − x22)

2. The matrix has two decompositions if x11 ̸= x22:
1. If

√
dskX = x11 − x22, then β = x12

x11−x22
· α and the matrix de-

composition has the form of (28). The coefficients are calculated in a
straightforward manner: c11 = x11 = λ1, c22 = x22 = λ2, c21 =
1−α
α (x11 − x22) where α ∈ C\ {0}.

2. If
√
dskX = − (x11 − x22), then β → ∞ and the limit of (28) is

calculated. Then the coefficients c11 = x22 = λ1, c22 = x11 = λ2,
c21 = −

√
dskX = x11 − x22 where α ∈ C\ {0}.

(d) If the matrix has the form X :=
[
x11 0
0 x22

]
where x11 ̸= x22, then it has two

decompositions:

X = lim
β→0

(
c11

[
α β

α(1−α)
β 1−α

]
+ c21

[
α β

−α2

β −α

]
+ c22

[
1−α −β

α(α−1)
β α

])
; (33)

X = lim
β→±∞

(
c11

[
α β

α(1−α)
β 1−α

]
+ c21

[
α β

−α2

β −α

]
+ c22

[
1−α −β

α(α−1)
β α

])
; (34)
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whereα ∈ C\ {0} and the coefficients are calculated c11 = λ1 = x11, c21 =(
x11−x22+

√
dskX

2α −
√
dskX

)
, c22 = λ2 = x22, dskX = (x11 − x22)

2.
(e) If the matrix has the form X := [ x 0

0 x ] (x11 = x22 = x), then it can be
decomposed as:

X = x · D+ x · D; (35)

where D and D are any two conjugate idempotents.
Remark.Matrix X has two decompositions when dskX ̸= 0 and has one decom-
position when dskX = 0.

Powers of matrix X. Let matrix X be decomposed into a linear combination
of two idempotents and a nilpotent. Then it is highly convenient to use the matrix
decomposition for the powers of the matrix.
Conclusion 1. Let matrix X := λ1D + λ2D + γN21 be decomposed. Then the
powers of matrix Xn (n = 0, 1, 2, . . .) can be expressed as:

Xn := λn
1D+ λn

2D+ γ
n−1∑
i=0

λn−1−i
1 λi

2N21; (36)

where D, D are idempotents and N21 is a nilpotent of matrix X.
Commuting matrices. The commutative property of matrix multiplication is

important in computing. Therefore, the conditions for two matrices to commute
should be noted.
Conclusion 2. Two matrices X1, X2 commute, X1 · X2 = X2 · X1, if and only if
matrices X1 and X2 have the same idempotents and a similar nilpotent.
Remark. The scalar matrix commutes with any other matrix.
Conclusion 3. Let idempotents of matrices X1 and X2 be the same and nilpotents
be similar. Then the idempotents of matrices X1 · X2 and X1 + X2 are the same
and the nilpotents are similar to the nilpotents of matrices X1, X2.

2.4. Types of square matrices of order 2

Three component decomposition was discussed in the previous section. Al-
though three component decomposition is universal, yet it is not always convenient.
If parameters α, β are chosen in a particular way, then the three component de-
composition is reduced to two component decomposition but some conditions are
added. Different parametrization of idempotents and the nilpotent allows to sort all
the second order square matrices into three groups: idempotent matrices, nilpotent
matrices and scalar matrices. This kind of classification is highly important while
investigating the iterative map of matrices (Navickas et al., 2011; Navickas et al.,
2012).
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2.4.1. Idempotent and nilpotent matrices

Let matrix X := [ x11 x12
x21 x22

] be given.
Definition 8.Matrix X is an idempotent matrix if it can be expressed as:

X = λ1D′ + λ2D′; (37)

where λ1, λ2 are eigenvalues of X and D′, D′ are conjugate idempotents of X.
Definition 9.Matrix X is a nilpotent matrix if it can be expressed as:

X = λ0I+ N; (38)

where λ1 = λ2 = λ0 and N is a nilpotent of X.
Conclusion 4. If λ1 ̸= λ2 (dskX ̸= 0) then matrix X is an idempotent matrix. If
λ1 = λ2 = λ0 (dskX = 0) and X− λ0I ̸= Θ matrix X is a nilpotent matrix.
Remark. Let us notice that a scalar matrix X = λ0I can be expressed in the form
λ0I = λ0

(
D′ + D′

)
= λ0D′ + λ0D′ where D′, D′ are conjugate idempotents.

Thus X = λ0 can be interpreted as a nilpotent matrix (λ0I = λ0I + Θ) or as an
idempotent matrix.
Definition 10. Equations (37) and (38) are the idempotent decomposition and nilpo-
tent decomposition of matrix X.

All square second order matrices X can be sorted into three types (Fig. 2):
Type I: idempotent matrices where dskX ̸= 0;
Type II: scalar matrices where dskX = 0 and X− λ0I = Θ;
Type III: nilpotent matrices where dskX = 0 and X− λ0I ̸= Θ.

Figure 2. The classification of square matrices of order 2

Conclusion 5. Let two conjugate idempotentsD′,D′ and two constants λ1, λ2 ∈ C
be given. Then λ1, λ2 are eigenvalues and D′, D′ are conjugate idempotents of
matrix X = λ1D′ + λ2D′.
Conclusion 6. Let nilpotent N and constant λ0 ∈ C be given. Then matrix X =
λ0I+ N has a single eigenvalue λ0 and its nilpotent is N.
Remark. Conclusion 2 implies the following:

X1 · X2 = X2 · X1 = λ11λ21D′ + λ12λ22D′; (39)
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where X1 = λ11D′ + λ12D′ and X2 = λ21D′ + λ22D′ are idempotent matrices
with the same idempotents and

X1 · X2 = X2 · X1 = λ10λ20I+ (λ10c+ λ20)N; (40)

where X1 and X2 are nilpotent matrices X1 = λ10I+ N and X2 = λ20I+ cN.
Remark. Let us notice that parametric expressions of idempotents and nilpotents
D′,D′,N used in (37) and (38) differ from parametric expressions ofD,D,N21 (27):

D′ =
1

2

[
1 + α̃ β̃
1−α̃2

β̃
1− α̃

]
, D′ =

1

2

[
1− α̃ −β̃

− 1−α̃2

β̃
1 + α̃

]
; (41)

where α̃ = 2α− 1, β̃ = 2β. The nilpotent of nilpotent matrix (38) is

N =
1

2

[
ᾰ β̆

− ᾰ2

β̆
−ᾰ

]
; (42)

where ᾰ = 2α, β̆ = 2β or simply N = γN21 where γ = 1
2 . The three compo-

nent decomposition can be drawn to either idempotent decomposition or nilpotent
decomposition of matrix X:

1. If λ1 ̸= λ2 then

X = λ1D+ λ2D+ γN21 = λ1D′ + λ2D′; (43)

whereD′ = D+ γ
λ1−λ2

N21,D′ = D− γ
λ1−λ2

N21 are compound idempotents
(Section 2.3).

2. If λ1 = λ2 = λ0 then

X = λ0D+ λ0D+ γN21 = λ0I+ γN21 = λ0I+ N; (44)

where N = γN21.

2.5. Conclusions

The matrix theory discussed in the second section is oriented to the decom-
position of the square matrices of order 2. The importance of the given definitions,
properties and theorems is emphasized in the next two sections. The decomposi-
tion of second order square matrices is used while investigating iterative maps of
matrices as well as analyzing the relations among various parameters of electro-
cardiogram.

18



3. ITERATIVE MAP OF MATRICES

The iterative map is extended by replacing the scalar variable by a square
matrix of variables (Navickas et al., 2011). Dynamical properties of such an iter-
ative map are explored in detail when the order of matrices is 2. It is shown that
the evolution of the logistic map depends not only on the control parameters but
also on the eigenvalues of the matrix of the initial conditions. Unfortunately, the
dynamics of the iterative map with a scalar discrete variable replaced by a square
matrix of order 2 already becomes prohibitively complicated. Nevertheless, such
variable replacement in the the map introduces specific dynamical effects when the
iterative process may diverge at certain eigenvalues of the matrix of the initial con-
ditions (Navickas et al., 2012). Thus, before making any generalizations regarding
the dimension of the square matrix of discrete variables, we aim to develop a theory
describing the nonlinear dynamics of a general iterative map with a scalar discrete
variable replaced by a square matrix of order 2.

3.1. Properties of the iterative map of matrices

The iterative map of matrices

X(n+1) := f
(
X(n)

)
; (45)

where n = 0, 1, 2, . . . and matrix X(n) =

[
x
(n)
11 x

(n)
12

x
(n)
21 x

(n)
22

]
, x(n)

kl ∈ R; k, l = 1, 2,

function f : R → R is a scalar analytical function.
Let us assume that function f(x) can be expanded into a series:

f(x) =
+∞∑
j=0

cj
xj

j!
; (46)

where cj ∈ R, j = 0, 1, . . . and x ∈ R.
Lemma 1. Let matrix X be an idempotent matrix of order 2 and f(x) can be ex-
pressed in the form (46). Then

f (X) := f (λ1)D′ + f (λ2)D′; (47)

where λ1, λ2 are eigenvalues of X (λ1 ̸= λ2) and D′, D′ are idempotents of X.
Lemma 2. Let X be a nilpotent matrix of order 2 and f(x) can be expressed in the
form (46). Then

f (X) = f (λ0) I+ f ′ (λ0)N; (48)

where λ0 is the recurrent eigenvalue (λ1 = λ2 = λ0) and N is the nilpotent of X,
f ′ (λ0) denotes the derivative of f with respect to x at λ0.
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Conclusion 7. Let the iterative map read X(n+1) := f
(
X(n)

)
=
∑∞

j=0 cj
(X(n))

j

j! ;
n = 0, 1, 2, . . . and the matrix of initial conditions be idempotent matrix X(0) =
λ1D′ + λ2D′. Then

X(n+1) = λ
(n+1)
1 D′ + λ

(n+1)
2 D′ = f

(
λ
(n)
1

)
D′ + f

(
λ
(n)
2

)
D′; (49)

where n = 0, 1, 2, . . ..
Remark. Conclusion 7 yields a straightforward iterative relationship describing
the evolution of eigenvalues of the idempotent matrix: λ

(n+1)
1 = f

(
λ
(n)
1

)
;

λ
(n+1)
2 = f

(
λ
(n)
2

)
;

(50)

where n = 0, 1, 2, . . .. In other words, matrices generated by the iterative map
preserve the same idempotents D′, D′ if the matrix of initial conditions is an idem-
potent matrix with idempotents D′ and D′.
Conclusion 8. Let the iterative map of matrices read X(n+1) := f

(
X(n)

)
=∑∞

j=0 cj
(X(n))

j

j! ; n = 0, 1, 2, . . . and the matrix is a nilpotent matrix X(0) =

λ
(0)
0 I+ µ

(0)
0 N. Then

X(n+1) = λ
(n+1)
0 I+ µ

(n+1)
0 N = f

(
λ
(n)
0

)
I+ f ′

(
λ
(n)
0

)
· µ(n)

0 N; (51)

where n = 0, 1, 2, . . . and µ(0)
0 = 1.

Let us notice that supplementary variable µ(0)
0 = 1 is added in the expres-

sion of nilpotent matrix X(0) in order to keep the same form of matrices of initial
conditions X(0) = λ

(0)
0 I+ µ

(0)
0 N and later n = 0, 1, 2, . . . iterations (51).

Remark. Conclusion 8 yields a straightforward iterative relationship describing
the evolution of the eigenvalue of the nilpotent matrix: λ

(n+1)
0 = f

(
λ
(n)
0

)
;

µ
(n+1)
0 = f ′

(
λ
(n)
0

)
· µ(n)

0 ;
(52)

where n = 0, 1, 2, . . . and µ(0)
0 = 1. In other words, the iterative map generates a

sequence of nilpotent matrices (if only the matrix of initial conditions is a nilpotent
matrix). The evolution of the supplementary variable µ(n+1)

0 can be rewritten in
the following form:

µ
(n+1)
0 =

n∏
k=0

f ′
(
λ
(k)
0

)
; (53)

where µ(0)
0 = 1 and n = 0, 1, 2, . . ..
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3.2. Logistic map of matrices

The scalar logistic map is well-known and thoroughly explored. A number
of extensions of the logistic map have been proposed in academic literature. There-
fore, the extension of the logistic iterative map was chosen to investigate first. Dis-
crete scalar variable x(n) in (1) is replaced with a square matrix of order 2; the n-th
iterate of that matrix is denoted as X(n) (Navickas et al., 2011; Navickas et al.,

2012). Let the matrix of initial conditions read: X(0) =

[
x
(0)
11 x

(0)
12

:x
(0)
21 x

(0)
22

]
; x(0)

kl ∈ R;

k, l = 1, 2. Then the iterated map represents a logistic map of square matrices of
order 2:

X(n+1) = aX(n)
(
I− X(n)

)
:=

[
x
(n+1)
11 x

(n+1)
12

x
(n+1)
21 x

(n+1)
22

]
. (54)

Even though such an extension of the classical logistic map seems to be triv-
ial, the apparent simplicity of the dynamical properties of such an iterative map
is misguiding. As an example let us select two different sets of initial conditions
and follow the evolution of a four time series (at fixed parameter value a = 3.7).
Initial conditionsX(0) = [ 0.2 0.3

0.4 0.7 ] yield 4 fluctuating processes (Fig. 3A – note that
some values of the iterated time series are lower than 0). However, initial condi-
tions X(0) = [ 0.2 0.3

0.4 0.9 ] yield a violent divergence of iterative processes; numerical
overflow is reached after 10 iterations only (Fig. 3B). The primary object of this
paper is to explain such dynamic behaviour of the logistic map of matrices when
the scalar discrete variable is replaced with a square matrix of order 2.

Computational experiments. First of all, it can be noted that the qualitative

Figure 3. The controversy of the logistic map of matrices: X(0) = [ 0.2 0.3
0.4 0.7 ] results into

4 stationary processes (A) while X(0) = [ 0.2 0.3
0.4 0.9 ] yields a violent divergence of iterative

processes (B); a = 3.7; stands for x(n)
11 ; stands for x(n)

12 ; stands for x(n)
21

and stands for x(n)
22
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behaviour of iterated matrices of order 2 is governed by Eq. (47) or Eq. (48)
(depending on the type of the matrix of initial conditions X(0)). Secondly, it is
important to stress that the evolution of the map differs substantially if X(0) is an
idempotent or a nilpotent matrix. IfX(0) has two distinct eigenvalues in [0, 1], it is
a sufficient condition that the elements of iterated matrices would be bounded for
0 ≤ a ≤ 4. But if X(0) has one recurrent eigenvalue in [0, 1], one can be sure that
the elements of iterated matrices would be bounded only for 0 ≤ a ≤ 1; a separate
investigation must be done for higher values of parameter a.

Asymptotic versus nonasymptotic convergence; 1 < a < 3. Let the matrix
of initial conditions be an idempotent matrix and the parameter of logistic map a
be bounded in the interval 1 < a < 3 (a scalar logistic map converges to a stable
fixed point 1 − a−1 then). But then, according to the system of equations (50),
both eigenvalues λ(n)

1 and λ
(n)
2 will converge to 1 − a−1 at an increasing n (if,

of course, λ(0)
1 and λ

(0)
2 are bounded in the interval [0, 1]). In other words, the

idempotent matrix of the initial conditions will eventually be transformed into a
scalar matrix at a sufficiently high n. However, such a transformation requires
additional explanations which are given below.

First of all, it can be noted that the convergence of a scalar logistic map to
a stable fixed point 1 − a−1 can be asymptotic or nonasymptotic. Let us assume
that the current state of the scalar logistic map is x(n). Then a backward iteration
from x(n) can be described with the following equality:

(
x(n−1)

)
1,2

=
1

2

(
1±

√
1− 4

a
x(n)

)
; (55)

where the necessary condition for the backward iteration is

a− 4x(n) ≥ 0. (56)

Such a backward iterative process generates a backward tree of points (some
branches of the tree are cut as requirement (56) may not always hold). There-
fore there exist such points which would yield the exact value of the stable fixed
point 1−a−1 in a finite number of forward iterations (nonasymptotic convergence)
(Ragulskis et al., 2011). All the other initial conditions (in the interval [0, 1]) con-
verge to the fixed point asymptotically.

Figure 4 illustrates asymptotic and nonasymptotic convergence of eigenval-
ues to a fixed point at a = 2.5. The idempotent matrix of initial conditions X(0) =
[ 0.2 0.3
0.4 0.7 ] is gradually transformed into a scalar matrix: lim

n→∞
X(n) = [ 0.6 0

0 0.6 ] (see
Fig. 4A), while its eigenvalues λ(0)

1 = 0.023 and λ
(0)
2 = 0.877 converge asymp-

totically to the fixed point 1− a−1 = 0.6 (Fig. 4B). Alternatively, the idempotent
matrix of initial conditions X(0) =

[
2 −0.6
3.6 −1

]
is transformed into a scalar matrix
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Figure 4. Asymptotic versus nonasymptotic convergence to a period-1 attractor: X(0) =

[ 0.2 0.3
0.4 0.7 ] results into asymptotic convergence (A showing the evolution of x(n)

11 ( ), x(n)
12

( ), x(n)
21 ( ), x(n)

22 ( ); B showing the evolution of eigenvalues λ(n)
1 ( ), λ(n)

2 )

( ); X(0) =
[

2 −0.6
3.6 −1

]
results into nonasymptotic convergence (C showing the evolu-

tion of elements of the matrix and D showing the evolution of its eigenvalues); a = 2.5 in
both experiments
in two steps: X(2) = [ 0.6 0

0 0.6 ] (Fig. 4C) while its eigenvalues λ(0)
1 = 0.2 and

λ
(0)
2 = 0.8 converge nonasymptotically to 0.6 (Fig. 4D): λ(1)

1 = 0.4; λ(1)
2 = 0.4;

λ
(2)
1 = 0.6; λ(2)

2 = 0.6.
It can be noted that only two backward iterations were used to construct

eigenvalues of X(0) in this computational example. Of course, more complex ex-
amples of nonasymptotic convergence could be used to illustrate the transition from
an idempotent matrix to a scalar matrix. In general, if the eigenvalues of matrix
X(n) are λ(n)

1 and λ(n)
2 a backward iteration reads:


(
λ
(n−1)
1

)
1,2

= 1
2

(
1±

√
1− 4

aλ
(n)
1

)
;(

λ
(n−1)
2

)
1,2

= 1
2

(
1±

√
1− 4

aλ
(n)
2

)
.

(57)

It can be noted that a backward iteration is possible only when a−4λ
(n)
1 ≥ 0
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and a− 4λ
(n)
2 ≥ 0. If X(n) is a nilpotent matrix, a backward iteration reads:

(
λ
(n−1)
0

)
1,2

= 1
2

(
1±

√
1− 4

aλ
(n)
0

)
;(

µ
(n−1)
0

)
1,2

= 1

a

(
1−2

(
λ
(n−1)
0

)
1,2

) (µ(n)
0

)
1,2

;
(58)

and the necessary conditions for a backward iteration are a − 4λ
(n)
0 ≥ 0 and 0 ≤(

λ
(n−1)
0

)
1,2

< 1.

Periodic attractors at a = 3.5; X(0) is an idempotent matrix. A period-4
stable attractor exists in a scalar logistic map at a = 3.5 (the convergence to this
attractor again can be asymptotic or nonasymptotic). Then the following question
arises: will any idempotent matrix of the initial conditions evolve into a scalar

Figure 5. An idempotent matrix of the initial conditions can yield a sequence of scalar
matrices or a sequence of idempotent matrices: X(0) = [ 0.2 0.3

0.4 0.7 ] converges to a sequence
of scalar matrices (A showing the evolution of elements of the matrix and B showing the
evolution of its eigenvalues) – the phase difference between eigenvalues in the period-4
regime is equal to 0; X(0) =

[−1.1 0.6
−2.8 1.5

]
yields an infinite sequence of idempotent matrices

(C showing the evolution of elements of the matrix and D showing the evolution of its
eigenvalues) because eigenvalues converge to the period-4 regime with a phase difference;
a = 3.5 in both experiments
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matrix when eigenvalues will be gradually (or in a finite number of steps) attracted
to the period-4 attractor (of course, eigenvalues of X(0) are bounded in [0, 1])?

The answer is negative. Eigenvalues of X(0) will be attracted to the period-
4 attractor in any case, but a phase difference between iterated eigenvalues can
be not necessarily equal to zero. This phase difference is constant (and can be
equal to 0, 1, 2 or 3 iterates) when both eigenvalues are in the period-4 regime.
For example, an idempotent matrix X(0) = [ 0.2 0.3

0.4 0.7 ] is gradually transformed into
a sequence of scalar matrices (4 different scalar matrices in a period) (Fig. 5A)
while its eigenvalues asymptotically converge to the period-4 attractor without a
phase difference (Fig. 5B).

However, the idempotentmatrixX(0) = [ 2 3
4 7 ]·[ 0.1 0

0 0.3 ]·[ 2 3
4 7 ]

−1
=
[−1.1 0.6
−2.8 1.5

]
yields an infinite sequence of idempotent matrices because its eigenvalues con-
verge to the period-4 attractor with a constant phase difference not equal to 0
(Fig. 5C and Fig. 5D).

The evolution of the logistic map of matrices whenX(0) is a nilpotent matrix.
A nilpotent matrix of initial conditions X(0) defined by Eq. (38) will be consid-
ered in this section.The values of parameters λ(0)

0 = 0.3; ᾰ = 2 and β̆ = 8 yield
X(0) =

[
1.3 4

−0.25 −0.7

]
. Fig. 6A and Fig. 6B show strong fluctuations of four scalar

Figure 6. The evolution of the logistic map of matrices from X(0) =
[

1.3 4
−0.25 −0.7

]
at

a = 3.5 (A and C showing the evolution of x(n)
11 , x(n)

12 , x(n)
21 , x(n)

22 ; B and D showing the
evolution of the eigenvalue ( ) and the parameter µ(n)

0 ) defined by Eq. (53) ( ).
Evolutions in C and D are displayed in the interval 180 ≤ n ≤ 200 where n is the iteration
number
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time series x(n)
11 , x

(n)
12 , x

(n)
21 , x

(n)
22 and the appropriate eigenvalues in the interval

0 ≤ n ≤ 50, but the processes calm down at a higher n. Particularly, Fig. 6C
shows that iterated matrices become scalar matrices. Fig. 6D shows that eigen-
values λ(n)

0 oscillate in the interval between 0 and 1 which is a necessary (but not
a sufficient) condition of convergence of the product in (53). It is of interest to
note that variable µ(n)

0 tends to zero thus ensuring the boundedness of {x(n)
kl }+∞

n=0;
k, l = 1, 2. A different value of parameter a (a = 3.6) yields a violent divergence
of iterative processes (Fig. 7).

Figure 7. The evolution of the logistic map of matrices from X(0) =
[

1.3 4
−0.25 −0.7

]
at

a = 3.6 (A showing the evolution of x(n)
11 , x(n)

12 , x(n)
21 , x(n)

22 ; B showing the evolution of the
eigenvalue ( ) and the parameter µ(n)

0 ( ) defined by Eq. (53))

The sensitivity to the initial conditions at a = 3.7. It is well-known that a
scalar logistic map evolves to chaos after a cascade of period doubling bifurcations.

Figure 8. The illustration of the sensitivity to the initial conditions at a = 3.7; X(0) =
[ 0.2 0.3
0.4 0.7 ] yields chaotic sequences; X

(0) =
[
0.2+ε 0.3+ε
0.4+ε 0.7+ε

]
; ε = 10−6 also yields chaotic

sequences; A shows differences between the appropriate elements of matrices; B shows
differences between the appropriate eigenvalues
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At a = 3.7 the dynamics of a scalar logistic map is already chaotic. The sensitivity
to the initial conditions is one of the characteristic features of the deterministic
chaos (Strogatz, 2014). We will illustrate this feature by using the logistic map of
matrices.

The matrix of initial conditions X(0) = [ 0.2 0.3
0.4 0.7 ] and its eigenvalues yield

chaotic sequences at a = 3.7. We construct a perturbed matrix of initial conditions
X(0) =

[
0.2+ε 0.3+ε
0.4+ε 0.7+ε

]
; ε = 10−6 and follow the iterative processes. Differences

between the values of the iterated elements and the iterated eigenvalues of these
matrices are shown in Fig. 8A and Fig. 8B.

3.3. Self-induced resonance on the iterative map of matrices

The effect of self-induced resonance in generalized iterative maps of matri-
ces can be defined and described by using formal algebraic techniques (Navickas
et al., 2011). The effect of self-induced resonance can be observed in an iterative
map of square matrices of order 2 if and only if the matrix of the initial conditions is
a nilpotent matrix and the Lyapunov exponent of the corresponding scalar iterative
map is greater than zero. Computational experiments with the logistic map and the
circle map are used to illustrate the effect of self-induced resonance occurring in
iterative maps of matrices (Navickas et al., 2012).
Definition 11. Self-induced resonance occurs in the iterative map of matrices if

lim
n→+∞

n∏
k=0

∣∣∣f ′
(
λ
(k)
0

)∣∣∣ = +∞, (59)

and the eigenvalue of the iterative nilpotent matrix remains bounded
∣∣∣λ(n)

0

∣∣∣ ≤ M <

+∞;n = 0, 1, 2, . . ..
Remark. Definition 11 implies that the effect of self-resonance in the iterative map
of matrices cannot be observed if the matrix of the initial conditions is an idempo-
tent matrix.
Conclusion 9. Self-induced resonance occurs in an iterative map of matrices if the
matrix of the initial conditions is a nilpotent matrix and the Lyapunov exponent of
the corresponding scalar iterative map is greater than zero.

The Lyapunov exponent of a scalar map of matrices reads (Hilborn, 2000):

λ̃ =
1

n

n−1∑
j=0

ln
∣∣∣f ′
(
λ
(j)
0

)∣∣∣ ; (60)

where λ̃ is a numerical estimate of the Lyapunov exponent. Lyapunov exponents
are calculated for a sequence of iterative valuesλ(j)

0 when all the transient processes
have ceased down.
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Computational results. It has been shown in the previous section that the
effect of self-induced resonance occurs in the iterative map of matrices if the ma-
trix of the initial conditions is a nilpotent matrix and the Lyapunov exponent of the
corresponding scalar iterative map is greater than zero. We will perform compu-
tational experiments with the logistic map and the circle map in order to illustrate
these theoretical results.

Fig. 9 illustrates the evolution of the circle map of matrices when the matrix
of the initial conditions is an idempotent matrix. It is clear that the effect of reso-
nance cannot be observed in such a system; both eigenvalues of the iterative matrix
are locked in the 3:7 mode. The effect of self-resonance cannot be observed in the
evolution of the logistic map of matrices when the matrix of the initial conditions
is an idempotent matrix even though the dynamics of the corresponding scalar map
is chaotic (Fig. 10; the Lyapunov exponent of the scalar iterative map is equal to
0.4312).

Figure 9. The circlemap ofmatrices does not exhibit the effect of resonancewhen thematrix
of the initial conditions is an idempotent matrix (α = 2, β = 8, λ(0)

1 = 0.1, λ(0)
2 = 0.6);

parametersK = 0.96 and Ω = 0.428 result in 3:7 synchronization. A shows the evolution
of eigenvalues in the interval 0 ≤ n ≤ 100 (n is the iteration number); B is the zoomed
image of A in the interval 80 ≤ n ≤ 100. C shows the evolution of x(n)

11 , x(n)
12 , x(n)

21 , x(n)
22

whereas D shows the phases of each element of the iterative matrix after transient processes
have ceased down.
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Figure 10. The logistic map of matrices does not exhibit the effect of resonance when
the matrix of the initial conditions is an idempotent matrix (α = 2, β = 8, λ(0)

1 = 0.1,
λ
(0)
2 = 0.6); parameter a = 3.8. A shows the evolution of x(n)

11 , x(n)
12 , x(n)

21 , x(n)
22 ; B shows

the evolution of eigenvalues in the interval 0 ≤ n ≤ 100 (n is the iteration number)

Fig. 11 shows the evolution of the logistic map of matrices when the matrix
of the initial conditions is a nilpotent matrix. The initial tendency to resonate can be
observed until the transient processes have ceased down. The Lyapunov exponent
of the iterative map

λ
(n+1)
0 = aλ

(n)
0

(
1− λ

(n)
0

)
; (61)

is equal to −0.8723 < 0 (at a = 3.5). Thus, in the long run, the logistic map of
matrices quiets down.

Fig. 12 illustrates the effect of self-induced resonance in the logistic map
of matrices. Now, the Lyapuvov exponent of Eq. (61) is equal to 0.4312 > 0
(at a = 3.8), and the system experiences a violent divergence (computations are

Figure 11. The logistic map of matrices shows an initial tendency to resonate but quiets
down when the transient processes cease down. The matrix of the initial conditions is a
nilpotent matrix (α = 2, β = 8, λ(0)

0 = 0.1); a = 3.5. A shows the evolution of x(n)
11 , x(n)

12 ,
x
(n)
21 , x(n)

22 ; B shows the evolution of the eigenvalue ( ) and parameter µ(n)
0 ( )

29



Figure 12. The logistic map of matrices exhibits the effect of self-induced resonance. The
matrix of the initial conditions is a nilpotent matrix (α = 2, β = 8, λ(0)

0 = 0.1); a = 3.8.
A shows the evolution of x(n)

11 , x(n)
12 , x(n)

21 , x(n)
22 ; B shows the evolution of the eigenvalue

( ) and parameter µ(n)
0 ( )

Figure 13. The circle map of matrices shows an initial tendency to resonate but quiets
down when the transient processes have ceased down. The matrix of the initial conditions
is a nilpotent matrix (α = 2, β = 8, λ(0)

0 = 0.1); K = 4.4 and Ω = 0.428. A shows
the evolution of the eigenvalue ( ) and parameter µ(n)

0 ( ). B shows the evolution
of x(n)

11 , x(n)
12 , x(n)

21 , x(n)
22 . C and D illustrate the evolution of the system after the transient

processes have ceased down (elements of the iterative matrix are shown in C and the phases
of elements of the iterative matrix are shown in D)
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terminated due to the numerical overflow). Analogously, the quieting of the circle
map of matrices is illustrated in Fig. 13; the Lyapunov exponent of the iterative
map

λ
(n+1)
0 = λ

(n)
0 +Ω− K

2π
sin
(
2πλ

(n)
0

)
(62)

is equal to−0.0546 < 0 (atK = 4.4 and Ω = 0.428). On the other hand, the effect
of self-induced resonance is observed in the circle map of matrices atK = 4.6 and
Ω = 0.428 (Fig. 14); the Lyapunov exponent of the scalar iterative map Eq. (62)
is equal to 0.4208 > 0 in this case.

Figure 14. The circle map of matrices exhibits the effect of self-induced resonance. The
matrix of the initial conditions is a nilpotent matrix (α = 2, β = 8, λ(0)

0 = 0.1); K = 4.6

and Ω = 0.428. A shows the evolution of the eigenvalue ( ) and parameter µ(n)
0 ( );

B shows the evolution of x(n)
11 , x(n)

12 , x(n)
21 , x(n)

22

3.4. Concluding Remarks

The iterative maps of the matrices of order 2 are described in this section.
The main dynamical features of iterative maps of matrices are discussed and illus-
trated with numerical examples when the function of the iterative map is analytical.
The effect of self-induced resonance in generalized iterative maps of matrices is
described in this section. Necessary and sufficient conditions for the existence of
such resonance are derived and illustrated with computational experiments. So far,
we have investigated the maps of the square matrices of order 2 only; yet it must
be noted that order 2 matrices already allow interesting generalizations. Iterative
maps of a higher order and concrete applications where the effect of self-induced
resonance can be exploited, for example, as a factor ensuring the security of the
encoding scheme, are definite objects of interest for future research.
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4. ANALYSIS OF ELECTROCARDIOGRAPHIC PARAMETERS

Human body is a complex system. Thus there is no use in the analysis of
separate body system components as the complex system consists of many compo-
nents which interact with each other. Interdependencies between systems should
be analyzed instead.

The methodology to investigate the relations between two human body sys-
tems is analyzed in this study. This methodology is based on matrix special struc-
tural decomposition. The importance of such an investigation and the classification
of the second order matrices was introduced in Section 2.4. Section 3 emphasized
that the type of matrix of the initial conditions in a chaotic iterative map may result
in explicitly different processes (Navickas et al., 2011; Navickas et al., 2012).

Human body is a great example of nonlinear dynamical systems. Therefore,
the analysis of interrelations in human body is related to the analysis of the matrix
structure. The structure of a square matrix may be defined by using discriminants,
matrix trace, eigenvalues, etc. (Sec. 2.3.3). Thus one of the tasks of this study
is to introduce several matrix structure-related characteristics and demonstrate the
results on real medical data.

4.1. Analysis of relation dynamics between two synchronized signals

Most methods used to evaluate the relation between two signals require ex-
tensive data sets and the momentum information is lost. The proposed methodol-
ogy requires only three data points (past, present and future) to obtain a coefficient
related to the matrix structure at moment n and may be used as a real-time signal
analyzer.

Electrocardiographic data. The lead where the changes are most obvious
should be investigated for people with cardiac pathology, e.g. acute myocardial
infarction (Jeon et al., 2014). The choice of ECG parameters is based on the phe-
nomenological model where human is a complex system (Fig. 1). ECG parameters
used in this research are: RR (ms), DJT (ms), DQRS (ms), AR (µV), AT (µV).

Sequence of matrices. A matrix of order 2 was constructed in a particular
way. The special matrix form emphasizes the fact that human body is more sen-
sitive to the change of affect than to the absolute value (e.g. temperature, light
intensity change). Therefore, the matrix was constructed by using first order La-
grange differences. Matrix elements are constructed by using two synchronized
data sets. In order to construct nth matrix, three data points n− 1, n and n+1 are
required.

Let two data sequences be given Y = (y0, y1, y2, . . .) and Z = (z0, z1,
z2, . . .). Then the sequence of matrices Xn is constructed:

Xn := Xn (Y,Z) =

[
yn yn−1 − zn−1

yn+1 − zn+1 zn

]
; (63)
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where n = 1, 2, .... Data sequences Y and Z represent different ECG parameters
that may differ not only in scale but also in measure units. Therefore, the data is
normalized to interval [0, 1] (Etzkorn, 2012):

ŷn =
yn − ymin
ymax − ymin

; (64)

where n – cardiocycle number; yn – real parameter value in cardiocycle n; ymin
and ymax – physiological limits of the parameter.

Three component matrix decomposition for ECG analysis. The importance
of the matrix structure is discussed in Sections 2 and 3. Thus each matrix Xn

from (63) can be decomposed by using Eq. (28). If slightly different parametriza-
tion is chosen α = 1

2 , β = 2β0, then (28) takes the form:

X :=
x11 + x22

2
· I+

√
dskX
2

[
0 β0
1
β0

0

]
+

x11 − x22

2

[
1 β0

− 1
β0

−1

]
; (65)

where β0 = −(x11−x22)+
√
dskX

2x21
= 2x12√

dskX+(x11−x22)
, (
√
dskX has two values). Let

us note that the following relations hold true: λk = 1
2

(
TrX+

√
dskX

)
(k = 1, 2),

TrX = x11 + x22 = λ1 + λ2,
√
dskX
2 = λ1−λ2

2 .
Therefore, values dskX, λ1, λ2,β0,TrX contain information about the struc-

ture of matrix X and require further investigation.

4.2. Greco-Roman wrestlers’ data analysis

Every sportsman has to go through amedical examination regularly. Medical
examination includes not only blood or urine tests but also a variety of physical
tests where the physical capabilities are assessed. In this study, we used the data
obtained from one of such tests – the Ruffier test. Changes in the function of body
systems were investigated in this section (Smidtaite et al., 2009; Smidtaite et al.,
2010; Šmidtaitė et al., 2009).

Data of fourteen Lithuanian sportsmen was analysed. The sportsmen’s age
varied from 22 to 26 years, height 180 cm (±30cm), weight 90 kg (±10kg). Each
sportsman performed the Ruffier physical test which consists of 30 squats per 45
seconds. The ECG was recorded during the three test stages: before the physical
load (1 min), during the Ruffier test and finally, after 2 min of recovery (divided
into the beginning (1 min) and the end (1 min) of recovery) (Fig. 15).

Multivariate signal analysis offers many methods to evaluate the relation
between the two signals. One of the most classical and oldest methods is the cor-
relation function. Spearman’s correlation coefficient rS was chosen because no
certain data distribution is required. The main problem is that this method requires
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Figure 15. Duration of RR (solid line) and DJT (dashed line) in each cardiocycle is shown
for less than 5-year experienced wrestler in part A. Part B shows the data for a more than
5-year experienced sportsman

a rather big amount of data points, therefore, the result is very abstract. Spear-
man’s correlation coefficient rS is calculated in a sliding window of 20 points.
Figure 16 shows the sequence of Spearman’s correlation coefficients for the exam-
ined sportsmen. Spearman’s correlation coefficients vary during all the test stages,
and no obvious differences either between two sportsmen or among different test
stages can be seen.

Figure 16. Spearman’s correlation coefficients for RR and DJT parameters. The solid line
denotes the correlation coefficients for a more than 5-year experienced wrestler, the dashed
line denotes the correlation coefficients for a less than 5-year experienced wrestler

Granger causality for RR andDJT parameters was investigated in this study1.
The Granger causality test was performed for a sliding window of 20 observations
in order to investigate the dynamics of processes. Although the Granger causality
test requires a larger sample size but in practice, especially in econometric calcula-
tions, the nature of the data compels the researcher to work with a smaller sample
size. For each sliding window, the value of F -statistic is evaluated as well as the
critical value cF from the F -distribution (α = 0.05). If F > cF then the hy-
pothesis (that there is Granger cause between the two observed processes) is not
rejected.

The Granger causality test results for two wrestlers with different training
experience are shown in Fig. 17. The ordinate represents the difference F − cF

1Function granger_cause.m was used in this study. The code was developed by Dr. Chan-
dler Lutz (University of California Riverside, USA, 2009). Website https://se.mathworks.com/
matlabcentral/fileexchange/25467-granger-causality-test

34



Figure 17. The ordinate represents F − cF (if F − cF > 0 the Granger causality exists).
Part A shows a more than 5-year experienced wrestler’s data; Part B shows a less than 5-year
experienced wrestler’s data

(when F − cF > 0 the Granger causality exists). Figure 17A shows Granger
causality for a wrestler with more than 5-year training experience (data stationarity:
95.9% (RR) and 100% (DJT)). Granger causality (RR→DJT or DJT→RR) was
observed in 30% of the data. Figure 17B shows Granger causality test results for
a less experienced sportsman (data stationarity: 90.9% (RR) and 100% (DJT)).
The test showed that 29.3% of RR and DJT data for a less experienced wrestler
has Granger causality. Stationarity of processes were tested by using augmented
Dickey–Fuller test (used a MATLAB function adftest). The Granger’s causality
test results for both sportsmen (more than 5-year and less than 5-year experience)
seem to be rather random, without showing any tendencies at any different stages
of the test.

Structural matrix analysis based methodology observes the characteristics
related to the matrix structure. One of such characteristics is discriminant dskX.
The sequence of discriminants dskXn for parameters RR and DJT for the two
wrestlers with different training experience is shown in Fig. 18. Body systems
remain stable during the rest stage (minor fluctuations). The relation between the
systems decreases (the discriminant increases) when the physical load occurs. The
relation parameter is the reciprocal of the discriminant value. Discriminant values
decrease during the recovery stage. The most significant difference between the
discriminants for the two wrestlers occur when a physical load is applied.

Figure 18. The sequence of discriminants for parameters RR and DJT: the solid line de-
notes a more experienced wrestler’s data whereas the dashed line denotes a less experienced
wretsler’s data
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It can be noted that a more sudden increase in discriminant value during the
physical load stage occurs for a more experienced sportsman rather than for a less
experienced wrestlers (Fig. 18). The discriminants and bounded lines are shown
in Fig. 19.

Figure 19. Sequence of discriminants for RR and DJT parameters for all the 14 sportsmen

Phase portraits are an invaluable tool in studying dynamical systems. The
phase portrait is a highly convenient geometric representation of the trajectories of
a dynamical system. Phase portrait shows homogeneity of repolarization processes
of myocardium when the heart works intensively during the physical load (Alab-
dulgade et al., 2015; Venskaitytė et al., 2010). The results showed that a different
test stage forms a different attractor. When body systems go to a different stage,
bifurcations occur, and a new stable state is formed (Fig. 20).

Figure 20. The phase portrait of the discriminant for RR and DJT is shown. The abscissa
represents dskXn and the ordinate represents the derivative of discriminant. A shows the
discriminant’s phase portrait for a less experienced wrestler and B shows amore experienced
sportsman’s data

Different phase portraits were drawn due to the changes in the physical load
and different sportsmen’s training experience (Fig. 20). The discriminant for RR
and DJT parameters is more expressed for the sportsmen with more than 5 years
of experience. It is related to the increased activity of the sympathetic nervous
system that was caused by the increased metabolic activity. A more experienced
wrestler’s body regulatory and supplying systems are better adapted to the physical
load; therefore, regulatory processes and the following perturbations occur faster
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than in the less experienced sportsmen’s body. The recovery stage attractor con-
tains lower discriminant values than the beginning (Rest) stage attractor for the
more experienced sportsmen. It means that the body recovers completely after the
physical load and that no residual fatigue is detected. The attractors in the recovery
and rest stages do not coincide for a less experienced wrestler. Body systems are
not able to return (in the two minutes after the load is over) to the same state as it
was before the load because the residual fatigue occurs.

The dynamics of eigenvalues are different from that of discriminants. It
should be noted that eigenvalues classify wrestlers in two separate groups and that
no common area is seen (see Fig 21). Traces of matrices enables us to divide the
test into separate stages: trace decreases for both wrestler groups in the load stage,
the trace begins to increase after the physical load is over and in the 2nd minute of
the recovery converge to the initial trace values (that were during the rest stage) (see
Fig. 22). Traces form the two separate lines for two wrestler groups (although there
are some common areas).

Figure 21. Sequences of matrix eigenvalues for RR and DJT parameters for all the 14
sportsmen

Figure 22. Sequences of thematrix trace for RR andDJT parameters for all the 14 sportsmen

It should be noted that the Ruffier test is low activity if compared to tests
where the physical load is applied increasingly till the signs of fatigue occur. Al-
though the physical load is small in the Ruffier test but the structural matrix based
methodology was able to identify the sportsmen with better hemodynamics in the
heart muscles, which is related to better training abilities.

4.3. Coronary angioplasty data

Urgent treatment is necessary when sections of the heart (coronary) arteries
are narrowed. It is natural that the effect more or less is felt in the whole body sys-
tems. During such a procedure, it is important to observe how one system responds
to the functional changes in another system. RR and DQRS parameters were ana-
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lyzed in this study in order to observe the relations between the heart and human
body regulation. Figure 23A shows raw data of ECG parameters for a patient dur-
ing the coronary angioplasty procedure when a catheter was inserted into a blood
vessel in the groin. Electrocardiographic data observation consists of three stages:
before, during and after the procedure.

Figure 23. Raw data is shown in part A. The observation consists of three stages: before,
during and after the coronary angioplasty. Part B shows the discriminants for RR and DQRS

Human body encounters stress when the blood circulation is impaired. The
balance in cooperation of human body systems is disrupted (one system dominates
against another, etc.). When the blood flow is restored (the last stage of the pro-
cedure), the balance of human body systems recovers (the values of discriminants
decrease) (see Fig. 23B).

Most significant changes in the mean and slope of discriminant values de-
tected by MATLAB function findchangepts are shown (see Fig. 24). First signif-
icant change is observed slightly later (about 730th cardiocycle) than the invasive
procedure started (about 500th cardiocycle)) which is understandable. The end of
the procedure is determined exactly by MATLAB tools applied to the sequence of
discriminants. Spearman’s correlation coefficient was calculated for each twenty
sample sliding window. The sequence of Spearman’s correlation coefficients are
shown in Fig. 25. Correlation coefficients fluctuate during the whole period from
−1 to 1 and no obvious changes among stages can be detected.

Figure 24. Discriminant changes found with MATLAB function findchangepts

Invasive procedures are always difficult to predict. The time of coronary
revascularization, reaction to the procedure and complications (e.g. reperfusion
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arrhythmia) for each patient are different and unique, therefore, they require further
analysis.

Figure 25. Spearman’s correlation coefficient between parameters RR and DQRS with a
sliding window of 20 samples

4.4. Heart rate variability and Earth local magnetic field relation analysis

Earth’s magnetic field, also known as geomagnetic field, extends from
Earth’s interior out into space, where it meets the solar wind. The magnitude at
the Earth’s surface ranges from 25 to 65 microteslas. Thus it is not surprising that
a question “how do fluctuations of the Earth’s magnetic field affect a human be-
ing?” arise (Alabdulgade et al., 2015).

Heart-rate variability data from 17 female volunteers was collected during
a long-term project from April 1, 2012, to August 31, 2012. All the participants
were employees of the Prince Sultan Cardiac Center in Hofuf Saudi Arabia (7 nurs-
ing staff, 6 housekeeping and 4 from the research department). The average age
was 32±8 years, ranging from 24 to 49 years. Two participants experienced skin
irritation from ECG electrodes. Therefore, they dropped out of the study. The par-
ticipants signed the informed consent form before taking part in the study and were
free to withdraw from the experiment at any time.

All the participants underwent weekly 24–72 hour ambulatory HRV record-
ings with Firstbeat Bodyguard HRV recorders; the Bodyguard HRV recorder cal-
culates the RR interval from the ECG measured at 1000 samples per second. Par-
ticipant recordings were generally 72 hours in length and scheduled once a week
over a 5 month period between April and the end of August 2012. The mean RR
was calculated for every hour in the recording and the time was synchronized with
the local hourly mean magnetic field (B) measurements (Hofuf, Saudi Arabia).

Geomagnetic activity affects people in different ways. For some people it
may have no effect and for some the magnetic field may even cause serious health
disorders. The coherence between the RR intervals (ms) and the local magnetic
field (picoteslas, pT) was analysed in this study. The relations were observed with
the help of the discriminant value and, later, the sensitivity coefficient S was intro-
duced. Sensitivity coefficient S evaluates the relation between the local magnetic
field B̃ and discriminants dskXn(B̃,RR):

B̃ = S · dskXn(B̃,RR) + b. (66)
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Healthy human body is able to adapt to the changing magnetic field. One of
such cases is shown in Fig. 26. Figure 26C shows how the relations between the
Earth’s local magnetic field and heart rate variability change when the magnetic
field changes. Sensitivity coefficient S is positive when a human being does not
have serious health issues (see Fig. 27).

Figure 26. A shows the local Earth’s magnetic field (pT); B shows RR intervals (ms). C
illustrates discriminants between the magnetic field and RR intervals

Figure 27. Heart Rhythm sensitivity to Earth local magnetic field fluctuations in the de-
scending order for all the investigated persons

The ability to adapt to magnetic field fluctuations is not common for people
who have health issues. The ability to adapt to magnetic field fluctuations varies
from person to person, and it is normal because it is almost impossible to find a
completely healthy person. But sometimes the disability of an organism to adapt to
the changing environment is critical and may increase the already existing or cause
new health disorders. The described situation is shown in Figure 27 (participant
P06). According to case record, participant P06 has serious cardiac problemswhich
was also revealed by sensitivity coefficient S.

Adaptivity to the changing environment, including magnetic field fluctua-
tions, is an important health indicator, and when this organism ability decreases, it
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may cause serious health issues and outcome. When major magnetic fluctuations
occur, every organism encounters stress which may provoke elevation of blood
pressure or even myocardial infarction (Alabdulgade et al., 2015).

4.5. Conclusions

Complex system analysis emphasizes the great importance of interrelations
between system parts. Statistical methods require large amounts of data and are
not convenient when momentum information is needed. Therefore, methodology
based on structural matrix analysis reveals new possibilities. In this chapter, char-
acteristics related to the matrix structure are analyzed: discriminants, eigenvalues,
trace. The observation of the change in dynamics of these characteristics during
the physical load test helped to compare the physical fitness of different sportsmen
groups. Dynamics of discriminants during the different stages of the angioplasty
procedure revealed different levels of cooperation of human body systems in a
stress and health disorder situation. Discriminants allowed to identify the begin-
ning of the improved blood flow after the procedure. Finally, structural matrix
analysis based methodology was introduced in other than ECG signal analysis.
Observation of discriminants and sensitivity coefficients enabled to evaluate the
human sensitivity to the local geomagnetic field and identify participants with se-
rious health disorders.

CONCLUSIONS

1. Definitions of simple and compound idempotents and nilpotents were intro-
duced. The set of idempotents and nilpotents and their parametric expres-
sions were defined. A scheme was developed how to generate the system of
idempotents and nilpotents.

2. Special three component decomposition of second order matrices was intro-
duced. The formulas to calculate coefficients for decomposition were con-
structed. Special matrix decomposition enabled to simplify formula for ma-
trix n power Xn. The necessary and sufficient conditions were derived for
two matrices to commute.

3. Modified class of iterativemaps ofmatricesX(n+1) = f(X(n))whereX(n) ∈
R2×2 and f is an analytical function. The necessary and sufficient conditions
were derived for the divergence of such iterativemaps. Themodified class of
iterative maps exhibits effects that are typical neither to extensions of scalar
iterative maps nor to coupled map lattices.

4. Novel estimates based on structural matrix analysis were introduced for eval-
uation of two signal coherence. Proposed characteristics enabled to draw
tendencies in coherence dynamics for two groups of sportsmen with differ-
ent training experience. The observation of interrelations of RR and DQRS
parameters helped to identify the beginning of improvements in blood circu-
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lation during coronary angioplasty procedure. The investigation of discrim-
inants and sensitivity coefficients enabled to identify health disorders.

5. Coherence investigation tool based on structural matrix analysis was inte-
grated in the automatic ECG analysis system “Kaunas-Load”.

PRACTICAL IMPLICATIONS

1. 2008–2012 m. two EUREKA projects were performed: “A guardian angel
for the extended home environment” ITEA 2GUARANTEE 08018 and “As-
sessment system of distributed intelligence functional status for the elderly
and disabled” EUREKA E!4452 EDFAS.

2. Proposed ECG analysis methodology was used in project “Methods and sys-
tems for predicting of acute hypotensive episodes” (Nr. VP1-3.1-ŠMM-10-
V-02-003) (2013-2015).

3. 2014–2015 m. project was performed “Research on the relations between
Earth’s magnetic field, human’s and animal’s cardiovascular systems (GE-
OMAG)”.

4. 2014 m. applied for HORIZON 2020 – “Local geomagnetic field fluctua-
tions impact on human and animal health and their cardiovascular system
functional state” but the application was rejected.

5. Currently (beginning in 2014) international project “Global Coherence Ini-
tiative” (leader country USA, California, HeartMath Institute). Participants
from Lithuania: Lithuanian University of Health Sciences and Kaunas Uni-
versity of Technology.

6. The Original methodology developed during project “Methods and systems
for predicting of acute hypotensive episodes” (2013–2015) for ECG analysis
was used in three patents.
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ANTROS EILĖS MATRICŲ STRUKTŪRINIAI DĖSTINIAI NETIESINIŲ
SISTEMŲ TYRIMUOSE

Temos aktualumas
Nors netiesinių dinaminių sistemų tyrimų užuomazgos, siejamos su

J. H. Poincare darbais, siekia XIX a., tačiau tokios sistemos vis dar yra svarbus
ir didelio dėmesio sulaukiantis tyrimų objektas. Netiesinės dinaminės sistemos
sutinkamos daugelyje mokslo sričių: matematikoje, fizikoje, biologijoje, ekono-
mikoje ir netgi psichologijoje. Dauguma mus supančių realių sistemų yra sudėtin-
gos (kompleksinės), o jas apibūdinantys signalai – daugiakanaliai. Tokių signalų
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pavyzdžiai yra ne tik biomedicininiai, bet ir seismologiniai, lazerių ir kiti techni-
kos ar gamtoje generuojami signalai. Nagrinėjant kompleksines sistemas, pavienių
signalų tyrimas nėra pakankamas visos sistemos dinamikai aprašyti, tuomet reikia
vertinti signalų vidinius bei tarpusavio sąryšius.

Dviejų signalų tarpusavio ryšiui vertinti dažniausiai taikomi standartiniai
statistiniai metodai, tokie kaip koreliacija, kroskoreliacija, Grangerio priežastin-
gumo testas, abipusė informacija ir kt. Statistinių dydžių skaičiavimams reikia są-
lyginai daug duomenų, be to, daroma prielaida, kad vertinami dydžiai yra atsitikti-
niai. Natūralu, kad, siekiant stebėti realių neatsitiktinių signalų dinamiką realiuoju
laiku, tokie metodai nėra tinkami.

Kadangi širdies ir kraujagyslių ligos yra viena iš dažniausių mirties priežas-
čių, o kardiologijoje plačiausiai naudojamas neinvazinis tyrimas yra elektrokar-
diogramos registravimas, todėl labai svarbu mokėti laiku pastebėti menkiausius
elektrokardiografinius pokyčius. Beveik prieš dešimtį metų lietuvių mokslinin-
kai pasiūlė metodiką, skirtą signalų tarpusavio ryšio dinamikai nagrinėti. Pasiū-
lyta metodika, paremta matricų struktūrine analize, davė gerus rezultatus atliekant
elektrokardiografinių signalų parametrų tyrimus ir buvo aprobuota daugybėje pub-
likacijų ir projektų. Dėl minėtų priežasčių šiame darbe toliau plėtojama matri-
cine analize paremtos elektrokardiografinių signalų tyrimo metodikos koncepci-
ja. Ankstesniuose tyrimuose vertintos charakteristikos papildytos naujais matricos
struktūrą nusakančiais įverčiais. Taip siekiama nustatyti, kaip dviejų signalų tar-
pusavio ryšį nusakančios kreivės forma (morfologija) ir kompleksiškumas susiję
su fiziologiniais ir patologiniais procesais.

Struktūriniai matricų dėstiniai rado taikymo nišą ne tik kardiologijoje, bet
ir iteraciniuose modeliuose. Skaliariniame iteraciniame modelyje kintamasis buvo
pakeistas antros eilės kvadratine matrica. Taip buvo gauta modifikuota iteracinių
modelių klasė, pasižyminti efektais, kurie nebūdingi skaliariniams modeliams ar
jų plėtiniams. Buvo pastebėta, kad jeigu matricinio iteracinio modelio pradinių
sąlygų matrica yra nulpotentinė, tuomet sistemos sprendiniai gali diverguoti. Esant
idempotentineimatricai, toks elgesys neįmanomas. Matriciniai iteraciniai modeliai
gali būti pritaikomi koduojant informaciją.

Nors aktualumą daugiausia lemia praktiniai taikymai, tačiau šio darbo pag-
rindas yra specifinės antros eilės matricų struktūros nusakymas. Remiantis matri-
cų dėstiniais, buvo pasiūlyta signalų tarpusavio ryšius nagrinėjanti metodika, kuri
pasižymi geromis savybėmis vertinant sportininkų fizinį pasirengimą ir atliekant
klinikinius tyrimus. Matriciniai iteraciniai modeliai atskleidžia visiškai kitokias
sistemos savybes nei nagrinėjami kitokie to paties iteracinio modelio plėtiniai. Mi-
nėti teiginiai nulemia šio disertacinio darbo aktualumą tiek teorine, tiek taikomąja
prasme.

Tyrimų objektas – antros eilės matricų sekos, sugeneruotos matricinių ite-
racinių modelių bei matricų sekos, gautos sudarant jas iš elektrokardiogramos pa-
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rametrų duomenų.
Darbo tikslas – išnagrinėti antros eilės matricų dėstinius (trijų, keturių kom-

ponenčių), ištirti matricinius iteracinius modelius ir išplėsti reikšmingų matricos
struktūrą nusakančių įverčių aibę bei pritaikyti juos elektrokardiografinių signalų
dinamikos stebėsenai.

Suformuluotiems tikslams pasiekti darbe yra sprendžiami tokie užda-
viniai:

Teoriniai:
• Sudaryti idempotentų ir nulpotentų sistemos generavimo schemą. Įvesti
idempotentų ir nulpotentų parametrines išraiškas.

• Sukonstruoti antros eilės matricų struktūrinius dėstinius idempotentais
bei nulpotentais ir išnagrinėti dėstinių savybes.

• Išvesti būtinas ir pakankamas sąlygas matricų iteracinių modelių spren-
diniams diverguoti.

Praktiniai:
• Tęsti ir plėtoti ankstesnes (KTU biomedicinos inžinerijos, LSMU, Kar-
diologijos instituto, Sporto instituto bei LSU mokslininkų) metodikas,
paremtas antros eilėsmatricų struktūrine analize. Praplėsti matricos struk-
tūrą nusakančių reikšmingų įverčių aibę ir pritaikyti elektrokardiografi-
nių parametrų tarpusavio ryšio dinamikai tirti.

Tyrimų metodai ir programinės priemonės:
• Atliekant tyrimus plačiai naudojama matricų struktūrinės analizės teori-
ja. Lyginamajai analizei atlikti panaudoti MATLAB paketo matematinės
ir statistinės analizės metodai.

• Netiesinių dinaminių sistemų modeliai ir tyrimo metodai panaudoti ma-
tricų iteraciniams modeliams tirti.

• Matricų struktūrinė analizė pritaikyta elektrokardiografinių signalų sąsa-
jų tyrimui atlikti.

Darbo mokslinis naujumas ir praktinė svarba:
• Disertacinio tyrimo metu buvo sudaryti specialūs antros eilės matricų
dėstiniai iš nulpotentų ir idempotentų.

• Suformuota modifikuota matricinių iteracinių modelių klasė X(n+1) =
f(X(n)), čia X(n) yra antros eilės matrica, o funkcija f – analizinė funk-
cija. Tokia modelių klasė atskleidžia savybes, kurios nėra būdingos nei
vienmačiams iteraciniams modeliams ar jų plėtiniams, nei susietų itera-
cinių modelių tinkleliams.

• Dviejų elektrokardiografinių signalų tarpusavio ryšiui tirti pasiūlytos nau-
jos charakteristikos, kurios leidžia pastebėti ir įvertinti kokybiškai naujus
signalo pokyčius. Šios metodikos taikomos žmogaus sveikatos būklei
stebėti ir vertinti.
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Ginti pateikiama:
• Specialūs antros eilės matricų dėstiniai idempotentų bei nulpotentų tie-
siniu dariniu.

• Modifikuota matricinių iteracinių modelių klasė X(n+1) = f(X(n)), kai
X(n) ∈ R2×2, o f – analizinė funkcija. Suformuluotos būtinos ir pakan-
kamos sąlygos tokių iteracinių modelių sprendiniams diverguoti.

• Nauji įverčiai dviejų signalų tarpusavio ryšiui vertinti, paremti antros
eilės matricų struktūrine analize. Šie įverčiai įgalina vertinti kokybiš-
kai naujus elektrokardiografinio signalo pokyčius, palyginti su klasikine
EKG analizės metodika.

Darbo rezultatų aprobavimas:
Darbo tema pateikti 12 moksliniai straipsniai, iš jų 5 mokslinės informaci-

jos instituto duomenų bazės (ISI) leidiniuose, turinčiuose citavimo indeksą, dvi
publikacijos atspausdintos tarptautinėse ir 3 nacionalinėse leidyklose. Likusios 7
publikacijos pristatytos kitų tarptautinių duomenų bazių leidiniuose. Disertacijos
rezultatai buvo pristatyti 7 tarptautinėse konferencijose.

Darbo apimtis ir struktūra:
Daktaro disertaciją sudaro įvadas, 4 pagrindiniai skyriai, išvados, praktinė

svarba, literatūros sąrašas ir publikacijų sąrašas. Disertacijos apimtis – 118 pusla-
pių. Disertacijoje yra 40 paveikslų ir 208 šaltinių cituojamos literatūros aprašas.

UDK 512.643 + 517.938 + 530.182](043.3)
SL344. 2017-04-27, 3 leidyb. apsk.1. Tiražas 50 egz.
Išleido Kauno technologijos universitetas, K. Donelaičio g. 73, 44249 Kaunas, Lietuva
Spausdino leidyklos „Technologija“ spaustuvė, Studentų g. 54, 51424 Kaunas, Lietuva
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