

KAUNAS UNIVERSITY OF TECHNOLOGY

ELECTRICAL AND ELECTRONICS ENGINNERING FACULTY

SUBHASH PANDA SRINIVASAN

“INVESTIGATION OF MBED OPERATING SYSTEM WITH

TRUSTZONE AS SECURITY SOLUTION FOR CELLULAR IOT”

Master’s Degree Final Project

Supervisor

Prof. Dr. Zilvinas Nakutis

KAUNAS, 2017

KAUNAS UNIVERSITY OF TECHNOLOGY

ELECTRICAL AND ELECTRONICS ENGINEERING FACULTY

DEPARTMENT OF ELECTRONICS ENGINEERING

“INVESTIGATION OF MBED OPERATING SYSTEM WITH

TRUSTZONE AS SECURITY SOLUTION FOR CELLULAR IOT”

Master’s Degree Final Project

Electronics Engineering (621H61002)

Supervisor

(signature) Prof. Dr. Zilvinas Nakutis

(date)

Reviewer

(signature) Assoc. Prof. Dr. Marius Saunoris

(date)

Project made by

(signature) Subhash Panda Srinivasan

(date)

KAUNAS, 2017

KAUNAS UNIVERSITY OF TECHNOLOGY

Electrical and Electronics Engineering Faculty
(Faculty)

Subhash Panda Srinivasan
(Student's name, surname)

Electronics Engineering 621H61002
(Title and code of study programme)

"Embedded Operating Systems and Security Solution for a Wireless Cellular IoT System"

DECLARATION OF ACADEMIC INTEGRITY

 13 June 20 17

 Kaunas

I confirm that the final project of mine, Subhash Panda Srinivasan, on the subject

“Investigation of MBED Operating System with Trustzone as Security Solution for Cellular

IoT” is written completely by myself; all the provided data and research results are correct and have

been obtained honestly. None of the parts of this thesis have been plagiarized from any printed,

Internet-based or otherwise recorded sources. All direct and indirect quotations from external

resources are indicated in the list of references. No monetary funds (unless required by law) have

been paid to anyone for any contribution to this thesis.

I fully and completely understand that any discovery of any manifestations/case/facts of

dishonesty inevitably results in me incurring a penalty according to the procedure(s) effective at

Kaunas University of Technology.

(name and surname filled in by hand) (signature)

Panda Srinivasan Subhash. Investigation of MBED Operating System with Trustzone as

Security Solution for Cellular IoT. Final project of Electronics Engineering Master‘s degree /

supervisor Prof. Dr. Zilvinas Nakutis. Kaunas University of Technology, Faculty of Electrical and

Electronics Engineering, department of Electronics Engineering.

Research area and field: Electrical and Electronics Engineering, Technological Sciences

Key words: NB-IoT, MBED OS, Trustzone

Kaunas, 2017. 70 p.

SUMMARY

The master degree final project deals with Embedded Operating System blended with Security

Solution for a Wireless Cellular IoT System. In this thesis, the new cellular standards like Narrow

Band IoT and LTE Cat M which will replace the available GSM communication technology are

analysed. In the next decade, there are more number of devices which are connected through cellular

system. In this project, initially evaluate the MBED OS using MPS2+ prototyping board and measure

the performance analysis like memory, heap, stack. Also perform MBED with TrustZone operations

and system performance. On the security side trust zone is to be investigated to see if it is suitable to

be used in cellular IoT system. The outcome would be to understand how a cellular IoT system would

be affected in the relation to adding this trust zone features.

 Panda Srinivasan Subhash. Saugiems Cellular IoT taikymams skirtos operacinės sistemos

MBED su Trustzone posisteme tyrimas. Elektronikos inžinerijos in Magistro baigiamasis projektas /

vadovas Prof. Dr Zilvinas Nakutis. Kauno technologijos universitetas, fakultetas Elektros ir

elektronikos inžinerija, Elektronikos inžinerijos katedra.

Mokslo kryptis ir sritis: Elektros ir elektronikos inžinerija, Technologiniai mokslai

Reikšminiai žodžiai: NB-IoT, MBED OS, Trustzone

Kaunas, 2017. 70 p.

SANTRAUKA

Šis baigiamasis projektas magistro laipsniui apginti yra skirtas įterptinių operacijų sistemų

ir saugos sprendimų bevielėms korinio ryšio daiktų internet sistemoms tyrimui. Tezėse nagrinėjami

nauji standartai, tokie kaip siaurajuostis IoT (angl. Narrow Band IoT) ir LTE Cat M, kurie tikimasi

pakeis šiuo metu naudojamus GSM komunikacijų standartus. Prognozuojama, kad aseinenti

dešimtmetį vis daugės įrenginių prijungtų per korines sistemas. Šiame projekte, MBED operacijų

sistemos našumo analizė, apimanti atminties, dinaminės atminties (angl. Heap), dėklo (angl. stack)

dydziy priklausomybių nuo aparatinių ir programinių modulių panaudojimo, atlikta naudojant

MPS2+ prototipavimo plokštę. Taip pat atlikti MBED ir TrustZone operacijų sistemų našumo.

Saugos funkcijų realizavimo TrustZone posisteme yra analizuoja, siekiant nustatyti jos tinkamumą

korinio ryšio daiktų interneto sistemų kūrimui. Tuo siekiama nustatyti, kaip korinio ryšio daiktų

interneto sistema yra įtakojama TrustZone posistemės savybių.

CONTENT

INTRODUCTION ... 10

Research Objective .. 11

Thesis Structure ... 12

1 RELATED WORK REVIEWS .. 13

1.1 Cellular IoT .. 13

1.2 Survey of Embedded Operating Systems for the IoT Environment .. 14

1.2.1 Contiki OS ... 15

1.2.2 Apache Mynewt OS .. 15

1.2.3 RIOT OS ... 15

1.3 Internet of Things Security .. 16

1.3.1 Embedded Security for IoT ... 16

1.3.2 Security threats against IoT embedded devices and systems .. 16

1.3.3 IoT security impacts on mobile networks ... 16

1.3.4 Trusted computing blocks for embedded Linux-based ARM Trustzone Platforms 17

1.3.5 ARM TrustZone Devices in Restricted Spaces ... 17

1.4 Problem Analysis in Existing Methods ... 17

1.5 Proposed System .. 18

2 METHODOLOGIAL INVESTIGATION OF MBED OS LINKED WITH TRUSTZONE FOR

SECURITY SOLUTIONS .. 19

2.1 Hardware Description – V2M MPS2+ board .. 20

2.2 Introduction to MBED OS ... 20

2.2.1 OS Platform requirements ... 21

2.2.2 MBED OS Core .. 22

2.3 Cortex Microcontroller Software Interface Standard (CMSIS) ... 23

2.3.1 Overview of CMSIS RTOS v2.. 24

2.4 Functions defined within CMSIS RTOS v2 .. 25

2.4.1 CMSIS RTOS Thread ... 26

2.4.2 CMSIS RTOS Semaphore ... 26

2.4.3 CMSIS RTOS Mutex .. 27

2.5 Introduction to Trustzone ... 27

2.5.1 Programmer’s Model for ARM v8 M ... 28

2.5.2 Registers .. 29

2.5.3 Memory Map ... 30

2.5.4 RTOS Thread Context Management ... 32

2.5.5 Trustzone Security Requirements ... 32

2.6 Security for IoT Devices .. 33

3 RESULTS AND DISCUSSIONS .. 35

3.1 Comparison of ARM v7 M and ARM v8 M Architecture .. 35

3.1.1 Cortex M Processors ... 36

3.2 Memory Management on MBED Operating System .. 36

3.3 Simulation Results ... 38

3.3.1 Thread Analysis on Cortex M4 and Cortex M33 .. 39

3.3.2 Experimental results on Cortex M4 and Cortex M33 ... 42

3.3.3 Stack Management on Cortex M33 ... 45

3.3.4 Performance Analysis ... 46

3.3.5 Trustzone Results .. 47

CONCLUSIONS AND SUGGESTIONS ... 53

INFORMATION SOURCE LIST ... 55

APPENDIXES ... 57

APPENDIX 1 Testing Results ... 57

APPENDIX 2 Main Programs ... 61

List of Figures

Figure 1 Billion global connections, 2015 – 2025 .. 11

Figure 2 Trustzone without operating system ... 17

Figure 3 Embedded Operating System with TrustZone .. 18

Figure 4 MBED OS Stack .. 21

Figure 5 MBED OS platform for internet of things ... 22

Figure 6 MBED OS core layers .. 22

Figure 7 CMSIS Structure .. 23

Figure 8 CMSIS RTOS API Structure ... 25

Figure 9 Thread State and State Transition .. 26

Figure 10 CMSIS-RTOS Semaphore .. 27

Figure 11 CMSIS-RTOS Mutex ... 27

Figure 12 ARM Trustzone security concept.. 28

Figure 13 Secure Memory Map .. 28

Figure 14 Non-secure Memory Map .. 29

Figure 15 Register in ARM v8 M ... 29

Figure 16 Memory map model ... 30

Figure 17 RTOS Thread Context Management for ARMv8-M TrustZone 32

Figure 18 Trustzone Security address ... 33

Figure 19 Trustzone for IoT Devices .. 33

Figure 20 ARM v8 M structure ... 35

Figure 21 Comparison between Cortex M processors... 36

Figure 22 Memory Organization in MBED OS .. 37

Figure 23 Thread Analysis on Cortex M4 ... 39

Figure 24 Thread Analysis on Cortex M33 ... 41

Figure 25 Experimental results on Cortex M4 .. 43

Figure 26 Experimental results on Cortex M33 .. 44

Figure 27 Stack consuming using Semaphore and Mutex Functions .. 45

Figure 28 Kernel Information of semaphore and mutex ... 46

Figure 29 Trustzone Secure and Non-Secure Functions ... 48

Figure 30 Thread Values ... 49

Figure 31 Security Transition States ... 49

Figure 32 Start of Non-secure mode.. 51

Figure 33 Non-secure to secure state ... 51

Figure 34 Secure to non-secure state ... 52

List of Tables

Table 1 Comparison of Cellular IoT Systems .. 14

Table 2 ARM v8 M Default Memory Map .. 31

Table 3 Memory Model of MBED OS .. 38

Table 4 Stack size of the threads ... 38

Table 5 Thread Execution timings... 46

Table 6 Memory Management in Trustzone ... 47

Table 7 Registers Address Point Corresponding Regions ... 50

10

INTRODUCTION

The mobile ecosystem is the developing technology in Internet of Things field. The cellular

systems are driven by the internet of things. The world leading organization CISCO that estimates

nearly 30 billion devices should be connected by cellular IoT in 2025. The technologies used in

cellular systems are 2G, 3G, and 4G for the internet of things. These are not specifically for IoT and

also for Low Power Wide Area Network. The cellular IoT that provides many services, including

utility meters, medical, machines, and automotive fields. Long Term Evolutions required enhanced

services to enable the device in the network with more lifetime, improving coverage area, the large

number of supported devices and low deployment cost. The network needs very simple and less

number of devices to work. Rural area networks that required extended coverage in transmission and

the higher layer protocols which help to consume less power by achieving long life over a decade to

the device.

Today LTE supports internet of thing with so-called Cat 1 device, for utilizing coverage and

massive devices should be connected to the technologies. The enhanced Machine Type

Communication referred as NB-IoT and LTE-M. The data rates should be scalable for all the systems.

The solutions can be increased in spectrum together with LTE. The bandwidth in GSM carrier as

narrow for NB-IoT. Remaining networks are legacy cellular networks. The networks are updated with

software to get a long life of the device, more coverage and low cost along with spectrum benefits.

The internet of things device is interconnected to exchange data between them. The system will bring

huge improvements in user experience and efficiency. The total IoT domain that estimates a large

number of devices are connected to the network. The most usage connections are fixed and short-

range communications. It will significantly for all connections expected through cellular IoT.

The ARM develops NB-IoT system by using Core-Link SSE 200 IoT subsystem. It is the

fastest way to create secure IoT chips, which integrates the core components of your system. Security

in embedded systems with all components should take a large amount of time and effort. But Core-

Link SSE 200 IoT subsystem makes the processor become easier. It contains two core structures and

features for IoT chips. Thus, it consists of two Cortex M33 ARM v8 processors and trust zone with

crypto security for implementing a secure solution. The internet of things devices needs an operating

system to perform the task scheduled in it. So, that it makes the system more efficient. The embedded

system devices support a lot of operating systems, particularly internet of things devices demands

high configured and exact platform operating systems.

11

The devices that are connected to the networks need to secure the internet of things systems.

ARM trust zone technology is a system on chip and system-wide approach to security. Hardware-

based security that provides secure end points and trusted device root. The secure and non-secure

methods are done by Trustzone on a system on chip. Trust zone in cellular IoT comes with trust

opportunity. It built into the number of connected devices in LPWAN, we ensure that the data is

secure and scalable. This operating system and security in an IoT device make the system very

effective. Thus, the NB IoT using core link SSE 200 subsystem along with ARM CORDIO Radio

core IP obtains best cellular IoT network with security solutions in the wireless system. Core link

SSE 200 subsystem is the developing system in an internet of things field. By comparing with other

devices, it will become more professional and cost effective. Figure 1 shows billions of devices are

connected through cellular IoT in the next decade. It describes the fixed and short-range

communications will be increase gradually.

Figure 1 Billion global connections, 2015 – 2025 [1]

Research Objective

The main objectives of this thesis are,

A. To investigate/evaluate/research/study of MBED operating system.

B. To evaluate Trustzone security solution along with MBED OS for a wireless cellular system.

In this project, the wireless cellular IoT system considered as a target.

The tasks to be carried out for this thesis includes:

1. Investigating MBED OS as RTOS and to research the possibilities of enabling MBED OS on

ARMv8 Cortex-M architecture, which is on the latest available processor like Cortex M33.

Cortex M33 has properties for trust zone, where both MBED OS and trust zone will be

implemented on same cortex M33. To estimate the properties like performance, memory

consumption and stack usage will be investigated to get an understanding of new RTOS in

cellular IoT system.

12

2. On the security side, trust zone will be implemented on ARM cortex M33 and analysed to see

if it is suitable for cellular IoT system. Properties like hardware impact, software impact,

performance on security related parts will be investigated.

The main goal of this thesis is to evaluate MBED OS with trust zone for security solution in the

cellular IoT system.

Thesis Structure

This thesis structure contains five chapters, all the chapters will describe the project in detail.

To target the above-mentioned goal, the following chapters must be achieved.

Initially, an introduction of cellular it is discussed which includes the goal and the structure of the

thesis. This gives an overview representation of embedded OS and trust zone technology.

Chapter 1 mainly discusses related work reviews which may include the existing system developed

in the early days and the mythological investigation for the security solutions with standard IoT

protocols application in cellular IoT.

Chapter 2 gives a brief description of MBED OS and the trust zone security solution which is

including structure and replacement of current Cellular IoT system. In addition, this chapter describes

Trustzone for a cellular network.

Chapter 3 discusses various methods, and testing of different operating system with trust zone. This

chapter concludes the impact of trust zone on MBED operating system.

Finally, giving a brief note on the conclusion and suggestions for implementation of MBED OS linked

with trust zone as security solution that satisfies the requirements of the Narrow Band IoT system.

13

1 RELATED WORK REVIEWS

In this literature survey, the basic process involved in cellular IoT and the trust zone security

have been outlined. The basic ideas of embedded operating system and security solution for internet

of things have been discussed. In conclusion of this section, the reasons for MBED OS and security

solution of trust zone and comparison of their results have been discussed.

1.1 Cellular IoT

Popularity of IoT devices has guide to the rise of low-power wide-area network (LPWAN)

options such as 6LowPAN and LoRa. Traditional cellular networks consume more energy. It can able

to transmit small of data occasionally.

LTE Machine Type Communication (CAT 0, CAT 1, CAT M1)

From 3GPP Release 8, several categories of user equipment are available. The lowest

performance is called CAT 1 which is LTE category, that means it gives both duplex methods. It is

fully commercial and used in many internet of things deployments. In 3GPP Release 12, user

equipment of CAT 0 is specified to reduce device complexity. It supports simplifications such as

operating device with one receiver chain, allowing half duplex and minimize peak rate. This category

is in limited commercial availability. In 3GPP Release 13, CAT M1 having three objectives. They

are reducing complexity from CAT 0 with increased coverage area and improved battery life. The

main thing of CAT M1 is the reduction in cost from CAT 0 with reduced bandwidth to six physical

resource blocks and referred to bandwidth limited. Due to this limitation, a new control channel and

frequency hopping mechanism were specified. However, legacy LTE signalling broadcast for system

information is sent in six physical resource blocks. These channels did not need to be re broadcast for

CAT M1 user equipment, thus it reduces signal overhead. CAT M1 allows an extended battery life

of more than decade for wide range of communications. Even with complexity reduction, CAT M1

still provide many features to LTE, such as connected mode mobility and hand offs, frequency packets

are in scheduled through semi persistent scheduling, and low latency packet while in connection.

These are all the features for CAT M1 equipment to voice in internet of things application in coverage

mode. Cat M1 targeting LPWA applications where small amount of data transfer is required. For

example, smart metering that communicates with small amount of data. It simply needs to upload

new software for the devices to operate within its LTE network.

NB-IoT/Cat-M2 NB-IoT is also known as CAT M2 which has similar goal to Cat-M, but it uses a

different technology. NB-IoT is potentially less expensive which eliminates the extra gateways, so it

is hyped. Main server connects sensor gateway for the communication purpose. This advantage makes

the networks efficiency, so that the bigger companies like Qualcomm, Ericsson are trying to achieve

commercialize NB-IoT [2].

14

EC-GSM it is an improved network, where the protocol in GSM network can be used by 80% of

smart phones universally [2]. It can be positioned in available GSM networks. Leading network

companies have completed trials of extended communication earlier, but still it doesn’t generate as

much buzz as NB-IoT

Table 1 Comparison of Cellular IoT Systems [1]

Parameters LTE Rel-8

Cat-1

LTE Rel-12

Cat-0

LTE Rel-13

Cat-M1

NB-IoT

Rel-13

EC-GSM-

IoT Rel-13

DL peak rate 10 Mbps 1 Mbps 1 Mbps ~0.2 Mbps ~0.5 Mbps

UL peak rate 5 Mbps 1 Mbps 1 Mbps ~0.2 Mbps ~0.5 Mbps

Duplex mode Full Half or Full Half or Full Half Half

UE bandwidth 20 MHz 20 MHz 1.4 MHz 0.18 MHz 0.2MHz

Max transmit

power

23 dBm 23 dBm 20 or 23 dBm 23 dbm 23 or 33 dBm

Relative modem

complexity

100% 50% 20-25% 10% Not evaluated

1.2 Survey of Embedded Operating Systems for the IoT Environment

Internet of things environment can be performed based on the operating system contain in IoT

devices. Therefore, the operating systems analyse each process that occurs in the systems. Operating

systems helps to run the services to other applications in the system. The programs provide

functionality that the user of the computer needs. The operating systems provide services to make

application faster, easier and sustainable. Most operating systems performs multi-tasking. The

scheduler in operating system that responsible for selecting program to run and execute by rapid

switching between the processor and kernel. The scheduler in real time operating system is designed

to provide excepted execution pattern. This assurance meet real time requirements can only be made

in the scheduler of operating system behaviour [3]. There are many existing embedded operating

systems are available. The operating system classifies and controls the hardware and it is that piece

of software that turns hardware into computing tool. The main task of operating systems defines the

functionality of process processor management which ensuring that each process and applications

receives enough of the processor function time, using maximum processor cycles for work and switch

between processes in multi threads. Memory management includes enough memory for each process

to execute and use different types of memory in the system. Device management manages all

hardware not on motherboard through driver programs. Driver provides applications for hardware

without having to know details of hardware.

15

Application program interfaces uses functions of computer and operating system without

having track of all details mainly CPU operation. Providing common user interface brings formal

structure to the interaction between user and the computer. Real Time computing operating system

should have features to support this critical requirement to reduce it. The RTOS should have certain

behaviour to unpredictable events. A good RTOS should bounded under all system load scenario.

1.2.1 Contiki OS

Contiki is open source operating system that connects microcontroller to the internet of things.

It makes application that should be efficient use of hardware platforms. Contiki is used in many

systems. It has some standards for internet and developments. It supports both internet protocol fully

along with wireless standards. It has rapid development in IDE simulator. The main features of

Contiki OS are memory allocation for tiny systems, IP networking with standard IP protocols such

as UDP, TCP and HTTP, module loading for loading and linking of modules at run time, protothreads

to save memory and provide flow control and build systems makes it easy compile for any available

Contiki platforms.

1.2.2 Apache Mynewt OS

Aache Mynewt is a real-time operating system that needs to perform for a long-time memory

and other constrictions to the IoT devices. It gives a complete system for prototyping, managing and

development. Microcontroller environments have number of characteristics that makes unique system.

It has low memory footprint in the system range, reduced code size from 64-128KB to 16-32MB.

Processing speeds of operating system is low and conserve maximum power usage. It will become

more complex when more number of devices are connected. To perform many functions, it should

have networking stacks, peripherals, and scheduled process. Benefits of using this operating system

helps developers from other application code being written. It provides features to create complete

operating system for controlled devices. Apache mynewt OS contains scheduler, time and tasks,

semaphore, mutex, memory pools and heap.

1.2.3 RIOT OS

RIOT OS helps at bridging the gap we observed for sensor networks and traditional fledged

running on host. It is based on objectives including efficiency, memory footprint, and API access, of

hardware. RIOT implements kernel that supports multi-threading. The main features of RIOT make

it robust against error in single components. It allows developers to create many threads and

distributed systems can be implemented by kernel API. The amount of threads is only limited by

memory and stack size for each thread. The requirements for real time process ensure RIOT constant

periods for kernel tasks like scheduler run and timing operations. The runtimes of OS are exclusive

use of static memory in kernel. RIOT switching context performs two cases [4].

16

From the above operating systems, they are all performed in all embedded devices without any

security. The embedded devices for NB-IoT needs operating system with security solution. So the

security and operating system will combine each other.

1.3 Internet of Things Security

A device that is connected to data communication networks needs security. Thus, the internet

of things security gives safeguard to all connected devices. IoT involves objects provided with unique

identifiers and ability to transfer data over a network.

1.3.1 Embedded Security for IoT

Internet of things imposes abnormal restrictions of computational power, connectivity, energy

and number of devices which makes difference from authorized policy of security in distributed

systems. To overcome the problem of security in internet domain that form ubiquity in IoT domain

which are vulnerable to security attacks. In this work, embedded security required solution to resist

different attacks and temper proofing of devices by concept of computing trusted platform. This issue

addresses problems in hardware platform. Our work also partially helps in addressing securing data

in transit [5].

1.3.2 Security threats against IoT embedded devices and systems

Security and privacy are two main challenges of the IoT, particularly due to the emerging

threats embedded devices face due to their unique limitations in terms of connectivity, computational

power and energy budget. Providing secure communications among M2M devices over cellular

networks are an emerging research area, with divergent approaches being adopted. On one hand,

efforts aim to secure the device itself and, on the other hand, network/provider-based architectures

that benefit from the existing authentication methods of a cellular telecom operator are being

proposed. In parallel, privacy is increasingly becoming one of the major concerns in these kinds of

systems, especially given the surge of applications handling critical information. This is a particularly

crucial area in certain IoT system categories, such as the case of network-enabled medical

environments [6].

1.3.3 IoT security impacts on mobile networks

From the security and privacy of IoT devices, the deployment of M2M wireless system on

mobile networks also having important security implication on the networks itself. The cellular

network has big challenge to provide resource allocation for embedded devices in mobile

infrastructures. Beyond the network operation challenge under such a large load of IoT traffic, M2M

traffic is considered as one of the main factors within the overall LTE network security framework.

Industry and standardization forums defining the main security threats and requirements for mobile

network security are indeed, highlighting the IoT and its potential impact [6].

17

1.3.4 Trusted computing blocks for embedded Linux-based ARM Trustzone Platforms

Embedded security is an emerging topic in the field of mobile. Mobile trusted modules with

trusted computing has outlined possible approach to mobile platform security. The TCG is a platform

independent approach to trusted computing explicitly allowing for a wide range of implementations.

Extending platforms to hardware with ARM support TrustZone security mechanism. ARM follows

different approach to platform security to build embedded trusted computing platform [33].

1.3.5 ARM TrustZone Devices in Restricted Spaces

Some devices equipped with wide range of peripheral can potentially be misused in various

environments. They can be used to get sensitive information from other sources. One way to prevent

these situations to regulate smart devices in restricted spaces. ARM Trustzone in restricted space

hosts use memory operations to analyse and regulate devices within the space. It shows that

TrustZone to obtain strong security for small trusted computing base to execute on guest device [34].

1.4 Problem Analysis in Existing Methods

Figure 2 Trustzone without operating system

From the above survey, OS for IoT environment are well equipped with major networks and

communication protocols, security features as well as optimized for efficient usage of computing

power in constraint environment. The operating system does not have any secure information. So,

embedded systems need security solution for Trustzone implementation. But in the embedded Linux

based on arm completes simple security on operating system. In ARM-FreeRTOS of IoT platform

they developed operating system between user and network without any security solutions. It

explained communication between two nodes/paths. Security and privacy on embedded system

explained about the emerging of connectivity and energy. This needs a crucial environment for

Trustzone in cellular networks. IoT impact realize that connectivity between any nodes should have

secure path to exchange data or communication. Overall cellular system requires better operating

region in embedded system with secure zone.

18

To get a better network we need to find performance based systems and memory allocation of the

embedded device. Trustzone is developed on hardware by ARM, that is built in system on chip

semiconductor which gives secure end points on the trusted root.

1.5 Proposed System

Figure 3 Embedded Operating System with TrustZone

Cellular IoT is an emerging technology that will have a huge impact on the world in many

aspects. In an older technology, cellular networks do not have any special requirements like coverage,

bandwidth, lower power consumption, cost and linear functionality. The newer outcome of NB-IoT

in cellular networks will overcome the disabilities. Thus, it supports on bandwidth, spectrum and

maximum data rates in the IoT network. LTE M that supports both frequency and time division duplex

modes. Therefore, problems in older methods are performance, bandwidth and duplex methods can

be reduced by enhanced machine type communication and narrowband internet of things.

ARM has software tool to make IoT deployment faster and easier, so called MBED IoT device

platform. It is primarily MBED operating system built open standards, that claims security and

standards based manageability in single tool. MBED OS that supports cortex M processor based

devices. It will support standards such as cellular technologies, thread, 6LowPAN and other protocols.

It acts as bridge between protocol and APIs for IoT devices. Improved efficiency and security are

available in MBED device server. MBED OS can be implemented on Cortex M33 by using CMSIS

RTX 5 kernel. The main reason for choosing MBED operating system is due to energy efficiency,

RAM requirements, memory footprint and security. These are explaining how it is suitable for narrow

band internet of things in Core Link SSE 200 IoT subsystem with Trustzone.

19

2 METHODOLOGIAL INVESTIGATION OF MBED OS LINKED WITH

TRUSTZONE FOR SECURITY SOLUTIONS

The latest cellular standard is Narrow Band IoT (NB-IoT) mainly for Long Term Evolution

(LTE). Long and wide range cellular systems are connected by Narrow Band IoT which has Low

Power Wide Area Network technology. It is mainly designed for the Internet of Things. Cellular IoT

technology is standardized by the 3rd Generation Partnership Project (3GPP). NB-IoT is specifically

designed for large number of connected devices, low power consumption and low cost. In this

proposed system, NB-IoT can be implemented in Core-Link SSE 200 IoT sub-system. IoT sub system

can be done with V2M-MPS2+ board. The board contains Cortex M prototyping system, which is

mainly designed for evaluation and prototyping of ARM v8 architecture. The MBED OS that only

supports on Cortex M series like M0, M0+, M3, M4, M7. Also, ARM develops cortex M23 and M33

for security purposes.

The focus of this project is to implement MBED OS on Cortex M Prototyping Board. The

board that initially build with Cortex M series in it, the MBED OS performance can be evaluated on

Cortex M33. The Cortex M33 is implemented on V2M-MPS2+ board utilizing FPGA configuration.

This makes that cortex M prototyping board will act with CM33 processor. ARM Keil provides the

software pack for CMSIS RTOS to build kernel in CM33. This includes software components to

development tools. Source modules, config files, user code templates and header are available in

software components. Using kernel, we can develop MBED OS with corresponding drivers,

peripherals, and secure connectivity.

The CMSIS defines generic tools interfaces and hardware abstraction layer for Cortex M

processors. The CMSIS is intended to establish the software combination from multiple vendors. It

supports ARMv8 architecture including trust-zone for hardware security extensions and CM23 and

CM33 processors. The CMSIS contains CMSIS core which provide standardized interface for cortex

M processor core and peripherals. CMSIS peripherals driver’s interfaces for supported devices. The

application peripheral interface in RTOS that connects the peripherals in microcontroller that

implements for system stack and user interfaces. DSP library available in CMSIS for all cortex M

cores, which implements all instruction sets available for M4, M7 and M33. Core implements the run

time system for Cortex M devices that gives access to the core and devices by the user.

ARM MBED OS is a popular open source embedded operating system, which is released

under Apache 2.0 license. It is designed mainly for things to be connected to internet or cloud. For

the MBED OS component, the OS is a lightweight, low-power kit OS structured to run on Cortex-M

processors. ARM for their part shapes necessary hardware features and even some common libraries,

with an aim on offering building blocks for developers looking to design scalable products.

20

2.1 Hardware Description – V2M MPS2+ board

It can be noted that both MBED operating system and Trustzone are implemented on ARM

Cortex M prototyping system (V2M MPS2+). It is mainly designed for Cortex M processors

prototyping and evaluation purposes. The system includes latest cortex M7 processor with cheap

motherboard. It provides useful peripherals with encrypted FPGA for all Cortex M processors. In this

system cortex M33 can be implemented using IoT kit image file. Thus, the prototyping system with

FPGA will act as cortex M33 processor. Using IoTkit_CM33_FP Keil pack we can configured

peripherals for the design. It is an ideal platform used for FPGA prototyping and evaluation of the

operating systems. Additionally, this hardware board has a functionality of going back to previous

ARM Cortex series especially ARM cortex M4 by basic booting process, thereby MPS2+ purely

provides great support for ARM Cortex M processors. MBED OS is performed by using CMSIS RTX

v5 kernel. RTX kernel having some functions in run time environment with kernel configuration that

describes running task, systick timer as kernel timer, clock and round robin switching methods. RTX

kernel functions that runs and execute main thread, it has some external function to initialize kernel

and suspend the kernel. Both initialize, running and suspend are performed under main function.

Thus, the threads are decelerated with some attributions, otherwise it will take as default value.

2.2 Introduction to MBED OS

The MBED OS is an operating system for the IoT devices. It is mainly designed for low cost

energy environment, connectivity, security, and device management that required by IoT devices. It

gives application framework for development and supports for all standard connectivity. The MBED

OS is an operating system mainly created for MBED enabled devices. It allows the application to

control the hardware of the boards by providing APIs. MBED OS intended specifically for controlled

devices, the hardware and networks which are limited resources that works automatically behind the

system.

The single thread, hardware abstract and OS efficiency that manages power and schedules

tasks, manages device, and securing communication by using MBED OS uvisor and MBED TLS

supports multiple networking options. The MBED OS core provides application portability through

kernel and hardware abstraction layer. MBED connectivity develops APIs to increase portability and

productivity of the device. This connectivity implements choice of low level communication stack.

For comprehensive lifecycle, device communication and security framework can be performed by

MBED security. The MBED tools manage configuration, built and testing.

21

Figure 4 MBED OS Stack [7]

2.2.1 OS Platform requirements

It requires mainly connectivity, security, and management for the embedded systems. IoT

products requires device management services which will become device essential components with

platform OS.

1. To accelerate the development of IoT devices that needs pre-integrated to all necessary

connectivity and software components which provide across many hardware solutions,

modern development methodologies, choice to microcontroller units and to improve

productivity. It provides operating system components and application peripherals across

many vendor solutions.

2. The deployment of IoT devices providing standard connectivity to difference transports

and manage cloud to open opportunities and minimize cost Solve the device management

problem to deployment of the IoT devices.

3. Ecosystem scale provide maximum gearing and pace in IoT platform. Open source to

remove barriers, collaboration with partners to provide maximum gearing of investment

for everyone.

22

Figure 5 MBED OS platform for internet of things [8]

2.2.2 MBED OS Core

MBED OS core enables application and component libraries to work unchanged across

microcontroller units. It provides portability for developers. Consistent boot and C/C++ runtime

across microcontroller units includes support over different toolchains and standard library

integrations. RTOS kernel is built on the established, widely used and open source CMSIS RTOS

RTX. Memory devices optimized small kernel. Common peripheral driver APIs for supported across

all MCUs. It is helpful to start up and initialization, memory maps and cross toolchain integration. In

MBED OS core defines that initially start up with boot CMSIS with corresponding runtime events to

the networking. In figure 6 the OS core layer defines the events, threads and CMSIS RTOS RTX of

the MBED OS.

Figure 6 MBED OS core layers [8]

23

2.3 Cortex Microcontroller Software Interface Standard (CMSIS)

Cortex M processor series are supported by hardware abstraction layer given by CMSIS Keil

pack which describes tool interfaces. It offers device affordability and software connection to the

peripherals, software reusability to the processors for effortless learning in microcontroller develops

and save time for latest devices. Figure 7 shows CMSIS structure, it describes the components as

follows. In this project, the latest version of CMSIS v5 which is suitable for ARM v8 M architecture

(Cortex M33) and Trustzone for ARMv8-M hardware security solutions, which is other main part of

the project. CMSIS is described with different silicon vendors and provides unique decision for

peripherals to connect RTOS and middleware components [9].

Figure 7 CMSIS Structure [9]

The CMSIS consists of main components as

CMSIS core – This is a main part of the structure that includes APT for Cortex M processor core and

its peripherals. It provides a standardized interface for Cortex M series as well as Single Input

Multiple Output function for all Cortex M series. In this project, the CMSIS core operates a runtime

system for Cortex M33 and Cortex M4 processor and allow accessibility to the core and the

peripherals of the device. CMSIS core describe how the security extensions which are available in

Cortex M33 processor. Thus, MBED OS will be implemented using kernel RTX 5 core.

24

CMSIS Driver – To enable connection between middleware peripheral driver for reusability through

the devices. The microcontroller with middleware interfaces allows communication stacks, structures

and file systems in RTOS API [9].

CMSIS DSP – The DSP library with different data type for single precision and fixed floating points

are defined by CMSIS DSP. The Cortex M processor access all library cores. It is stabilized for

performance single instruction multiple data instructions are handled by ARM v7 M and ARM v8 M

architectures [9].

CMSIS DAP – Standard firmware for debug unit that connects to access port. It is distributed as

package and will suitable for evaluation boards. Debug access port is provided as separate download.

CMSIS-RTOS v2 – CMSIS RTOS2 is an upgrade version of CMSIS RTOS with kernel based

operations in RTX. ARM v8 M suitable with dynamic object, binary enhanced interface between API

compilers and multi core accessibility for system [9].

2.3.1 Overview of CMSIS RTOS v2

The CMSIS RTOS2 is common API interface mainly for Cortex M processor devices. It

provides a standard API for software peripherals which needs functionality and provide dedicated

benefits to the users. The middleware components need CMSIS RTOS2 to refer undecided RTOS

and then will easy to adapt firmware structure. The source of microcontroller system handled by

CMSIS RTOS to perform parallel thread operation concurrently. CMSIS RTOS2 perform several

operations quickly and concurrently. Thread operations performs various task to reduce the program

structure. The system is ascendable and more threads are summed rapidly, it executes high priority

thread initially. The CMSIS RTOS2 gives several services in various application for periodical timer

function with triggering and memory consumption with applications.

The CMSIS-RTOS2 concentrates the following needs:

1. CMSIS RTOS v2 does not need memory buffers for dynamic objects. It is optional for CMSIS

RTOS

2. Secure and non-secure modes are implement in ARM V8 M architecture

3. Multi core systems allows to pass messages between two layers.

4. CMSIS RTOS fully based on C++ run time environments.

ARM Cortex Microcontroller Software Interface Standard (CMSIS) motivate to provide a

standardized API for software components. It enables standard project templates, stimulate

middleware development, and simplify the usage of CMSIS DSP library. It is used to simplifying

programming models of cortex M devices. It provides signal protocols and middleware industry with

standard RTOS APIs. Software ecosystem allows application sharing to the API design.

25

Figure 8 CMSIS RTOS API Structure [10]

The CMSIS-RTOS API v2 is a generic RTOS interface for Cortex-M devices. CMSIS-

RTOS2 provides features that are required in many applications. Middleware components that use

the CMSIS-RTOS API are RTOS agnostic. CMSIS-RTOS compliant middleware is easier to adapt.

API design consideration is suitable for small memory foot print, scalable functionality, and multi-

processor systems. CMSIS RTOS that requires pre-emptive context switching with multiple priorities.

It mainly required functionalities like mutex, semaphore, time management, queue, and event signal.

Particularly message queue and mailing queue that works with interrupt signals.

Features that allows generic wait function with support to time intervals. Zero mail queue is

used to support multi-processor systems. Priority inversion is done using deterministic context

switching and round robin context switching. CMSIS RTOS2 that preforms inter-process

communications to exchange data between two or more separate independent threads. Operating

system provide resources for inter process communication, such as message queues, semaphores,

memory map, and time management. Inter process communications are programmed in high level of

abstraction that gives application facilities to the distributed system.

2.4 Functions defined within CMSIS RTOS v2

MBED OS embedded operating system is implemented in cortex M prototyping system (V2M

MPS2+). MBED OS is performed by using CMSIS RTX v5 kernel. RTX kernel having some

functions in run time environment with kernel configuration that describes running task, systick timer

as kernel timer, clock and round robin switching methods. RTX kernel functions that runs and execute

main thread, it has some external function to initialize kernel and suspend the kernel. Both initialize,

running and suspend are performed under main function. Thus, the threads are decelerated with some

attributions, otherwise it will take as default value.

26

2.4.1 CMSIS RTOS Thread

The threads have scheduling unit, it performs under some priority functions too. Thread will

be generated by osThreadCreate() by defining with priority, instances, and stack size. Thread defines

an object leaves it as not schedulable. It has some states like running, ready, waiting and inactive to

perform declared function in that thread.

• Running state execute only one thread at that time.

• Running thread has terminated, the next thread in ready position with highest priority become

running thread.

• Waiting state that perform to wait event in thread functions.

• Thread are not created in Inactive state.

Thread priorities levels are osPriorityIdle, osPriorityLow, osPriorityBelowNormal, osPriorityNormal ,

osPriorityAboveNormal, osPriorityHigh, osPriorityRealTime.. The priority level is set when thread

object defined. The thread priority level change be changed by osThreadSetPriority and

osThreadGetPriority for new priority and return the current task priority. Thread states and transition

function are shown in figure 9.

Figure 9 Thread State and State Transition [11]

2.4.2 CMSIS RTOS Semaphore

Semaphore management function is used to protect and managed access to shared resources.

It accesses to the group of identical peripherals which can be managed. Each time a semaphore token

is obtained with osSemaphoreWait the semaphore count is decreased. The no token can be acquired,

when the count is zero. Semaphores are released with osSemaphoreRelease functions which increase

the count [12].

27

Figure 10 CMSIS-RTOS Semaphore [12]

2.4.3 CMSIS RTOS Mutex

Figure 11 CMSIS-RTOS Mutex [13]

For resource management, the operating systems can be done using mutual exclusion.

Microcontroller devices having resources which may use often, but only one thread at time. Shared

resources protected by using mutex function. It is created and then passed between the threads. Like

semaphore mutex also contains token, it is special version of semaphore. Comparing to semaphore

mutex perform only one thread at the time. Mutex having thread ownership thus it has token is in

binary and bounded. When a thread acquires a mutex and becomes its owner, subsequent mutex

acquires from that thread will succeed immediately without any latency [13].

2.5 Introduction to Trustzone

Embedded system products require sensitive hardware, real time operation, less power and

security protection. To accelerate the system design, the modern applications need security. The

protection of assets requires device communication using crypto and authentication methods,

firmware against IP theft, secret data such as personal information and operation to maintain services.

Trustzone for ARM v8 M includes:

• Secure and non-secure domain conserves low interrupt latency

• The complexity of solution does not code overhead

• The secure domain has minimal call instructions.

28

The confidential and integral part of system is developed by Trustzone. The processors

application protects high value code of authentication and enterprise. On the application processor, it

is used to provide security boundary for global platform environment. This is depicted on figure 12,

where the processor family features contribute equal security approaches, but an entirely contrasting

operation. Trustzone system offers a foundation for system-broad security and the development of a

trusted platform.

Figure 12 ARM Trustzone security concept [15]

2.5.1 Programmer’s Model for ARM v8 M

In the secure state, it accesses all the peripherals and the memory. The memory alias that

mirrored all secure and non-secure peripherals in the system control and debug area. Secure code in

secure region that access memory in both regions. The secure peripherals are assessable during

program execution. The Security Attribution Unit configures non-secure memory, interrupt and

peripheral access. A memory protection unit and system control block and systick are also available

in secure state. The two interrupt vectors for secure and non-secure supports system execution. This

assignment is controlled during secure state execution through nested vector interrupt controller [14].

Figure 13 Secure Memory Map [14]

29

The memory view is same as cortex M memory map. It accesses to secure memory that

triggers security exception in handler state. Code that from non-secure is executes in non-secure and

only access memory in that region. The secure regions from non-secure code that is executed and

security state of the system in fault exception. CMSIS core defines additional file that is used in secure

attribution unit.

Figure 14 Non-secure Memory Map [14]

2.5.2 Registers

Figure 15 Register in ARM v8 M [14]

Above figure shows register view of ARM v8 M system, the general-purpose registers can be

accessed from any state, callable function use registers for parameter and return values. R13 stack

pointer register alias (PSP_NS, MSP_NS, PSP_S, MSP_S) accessed depends on state and mode of

thread. Each stack pointer having optional limit registers for stack overflows.

30

The system has independent CONTROL register for both state. The interrupt control registers

are banked between the states. The interrupt priority for the non-secure state can be lowered so that

secure interrupt has always higher priority. The core registers of the current state are accessed using

standard core registers functions. Registers are accessible in both secure and non-secure states [14].

Summary of Register

In figure 15 the general-purpose registers are shown. Registers that perform different

operations and functions in it. General-purpose registers for data operations can be done by using

Registers from R0-R12. Stack pointer is in register R13, it is used to indicate CONTROL registers

and having Main Stack Pointer (MSP) and Process Stack Pointer (PSP). For the security extension

can be implemented using MSP_NS for Non-secure and MSP_S for secure state. Similarly, for PSP

registers. Link Register is register R14 to stores return values form function calls. Register R15 is

used for Program Counter contains address of program. Program Status Register is the combination

of Application, Interrupt and Execution Registers. PRIMASK protect all exception with priority. For

the security extension both non-secure and secure states are implemented. If it is not need means,

CONTROL registers control in stack that used in Thread mode.

2.5.3 Memory Map

Figure 16 Memory map model [15]

31

Memory map of Trustzone boundaries is divided into 512MB. It adds security support by

aliasing each boundary at intermediate point. The lower part access to 256MB non-secure state and

the upper part provides secure state of 256MB. Each secure window and non-secure window are

accessible through control points. The user could use 28-bit address to define secure and non-secure

memory regions [15].

Table 2 ARM v8 M Default Memory Map [16]

Address Region Region Name Memory Type Description

0x00000000 -

0x1FFFFFFF

Code Normal Typically,

ROM/Flash

vector table that

is required for

boot up

0x20000000 -

0x3FFFFFFF

SRAM Normal On chip RAM

0x40000000 -

0x5FFFFFFF

Peripheral Device On chip

peripherals

0x60000000 -

0x9FFFFFFF

RAM Normal Supports code

0xA0000000 -

0xDFFFFFFF

Device Device Expansion

memory

0xE0000000 -

0xE003FFFF

PPB - NVIC, MPU and

SAU registers

0xE0040000 -

0xE004FFFF

Device Device ETM, MTB

configuration

registers

0xE0050000 -

0xE00EFFFF

PPB - Reserved

memory

0xE00F0000 -

0xE00FFFFF

Device Device MCU ROM

0xE0100000 -

0xFFFFFFFF

Vendor_SYS Device Core sight ROM

32

2.5.4 RTOS Thread Context Management

To contribute a stable RTOS thread context management for TrustZone system based on

ARMv8-M across the different RTOS, the CMSIS-CORE provides header file called as TZ_context.h

including API definitions, which is picturized in figure 17 . A non-secure application adopts an RTOS

and access library modules defined under secure mode needs an authority the secure stack area. It can

be noted that RTOS which operates in non-secure mode don’t have permissions for accessing

registers under Secure mode. Thus, Secure functions offers a consistent thread context switch.

As the non-secure and secure mode parts of an application are splitted, the API for governing

the secure stack area should be stabilized. If not the secure library modules automatically push an

application under non – secure mode to adopt an identical RTOS implementation. It should be noted

that to allocate the context memory for threads, an RTOS kernel that operates under non-secure mode

calls the interface functions prescribed by the header file TZ_context.h. The TZ_context functions

itself are sections of the application running under secure mode. A minimum implementation is

offered as part of RTOS2 and needs to manage the secure stack for execution of the thread. But, there

is also way to realise the context memory management system with supplementary features like

access control to protect state memory regions using an MPU.

Figure 17 RTOS Thread Context Management for ARMv8-M TrustZone

2.5.5 Trustzone Security Requirements

In embedded system security can mean many different things which are not limited which is shown

in figure 18. It requires the followings need,

1. Communication protection which means protection of data transfers from being visible to

unauthorized parties and other like cryptography.

2. The data protection prevents data from third parties and that is stored inside the devices.

3. firmware protection secures on chip from reverse engineering.

4. Operation protection secures operations from threats.

Non-Secure State

RTOS (Non-secure part)

- RTOS API functions

- Scheduler with

Systick handler

- Resource handling

for non-secure

objects

Secure State

TZ_context (secure part)

- Called only by

RTOS_NS

- Context switch to

handle secure state

registers

- Manages thread stack

(PSP_S)

33

5. Many security products are required protection mechanism of devise from being overridden.

6. Firmware in secure memories are preloaded to prevent attacks. Trustzone technology for can also

work with protection techniques.

7. Critical operations of software can be preloaded to permit access from secure state. Thus,

operations can be protected from non-secure state.

8. Secure boot enables platform and it will boot from secure state.

Figure 18 Trustzone Security address

2.6 Security for IoT Devices

Figure 19 Trustzone for IoT Devices

34

Figure 19 describes Trustzone technology also used for addition protection features in

microcontroller that targeting internet of things products. The Cortex M33 microcontroller is

developed for cellular IoT which include a long range of security features. The use of TrustZone can

ensure that all features only accessed using APIs with entry points. To use Trustzone for safe guard

security features user must prevent untrusted applications from directly accessing resources. Ensure

reprogramed flash image for checking and prevent being from reverse engineered.

35

3 RESULTS AND DISCUSSIONS

This chapter explains about the results which are taken from Cortex M33 and Cortex M4

processors using MBED OS. TrustZone with MBED OS On Cortex M33 performance can be

discussed.

3.1 Comparison of ARM v7 M and ARM v8 M Architecture

It is focused to bring security and productivity on embedded applications in an IoT field. The

architecture that reduces complexity and develops secure solutions that fits to SoCs. ARM v8 M is

the successor of ARM v6 M and ARM v7 M. It adds fast, low overhead security in hardware.

Breakpoints and watchpoints that enhance the trace flexibility. Product performance that improves

solutions in memory protection unit. It has two sub profiles such as ARM v8 M Baseline and ARM

v8 M Mainline. Baseline is used for power and area constrained devices. In addition, C11 atomic data

types instructions enhance the system support. Mainline that is used for featured and capable

applications. Trustzone for ARM v8 M optimised for affordable security, restriction to secure

memory and I/O paths. Removing code in virtualization solution. It introduces secure gateway SG

instructions where the domain call from the instruction.

Figure 20 ARM v8 M structure

ARM v8 M that supports Cortex M33 and ARM v7 M supports Cortex M4, where Cortex M33 is the

successors of Cortex M4. Core-Link SSE 200 is compactable with M33 processor. The results that

are compared between memory consumptions in both M4 and M33 processors by developing MBED

OS. M33 gives all security solution with Trustzone and it is improved real time operations. The same

process happened M4 without Trustzone isolation.

36

In Cortex M4 both operating systems are supported, but in Cortex M33 MBED OS supports easily.

Cortex M33 performs with ARM CLANG Compiler. But Cortex M4 compile using ARM CC. In this

project port file for M4 was developed by changing ARM CC to ARM CLANG compiler.

3.1.1 Cortex M Processors

Figure 21 Comparison between Cortex M processors [35]

Cortex M33 is an application of ARM v8 M, it uses same debugging interface for all Cortex

M processors. M33 offers wakeup interrupt controller and DSP/SMD instruction for low power

devices. M4 having same DSP instruction. Both M4 and M33 has floating point unit which adds more

instructions. AHB5 extend security and memory to the whole system. Using memory protection

specification can be setup in both regions. It should extend up to 480 interrupts. Embedded Trace

Macro cell fits to the design. It buffers as option to trace memory instead of trace-out. Co-processor

in M33 supports 8 co-processors. Hardware that check stack limit often. Trustzone gives secure

isolation for whole system. The specifications of architecture of processor from debug points having

instruction set, exception and program model, debug registers are defined by architecture

specifications. ARM v8 architectures as 32 bit which is highly compatible with existing ARM v6 M

and ARM v7 M to enable migration within Cortex M processor.

3.2 Memory Management on MBED Operating System

Memory management of an operating system manages primary memory and it process in main

memory during execution. It keeps tracks of location, that check how much it consumes during

process. It decides the process to get memory on time. MBED OS having memory allocation which

are based on defined memory model. Memory allocation contributes many cases like pool allocation,

heap allocation and extendable pools.

37

 In typical embedded system, there are four different kinds of memory like code, global data,

heap and stack. Consequently, heap and stack area coordinated to fill equal section of memory. In

MBED OS, we need two additional memory which are uvisor memory and free heap which are

normally located in ROM.

uVisor memory

On Cortex M3/M4, initially it occupies small part of memory in RAM and the protected features. The

uvisor protects space adoption in the microprocessor unit.

Stack

In the memory organization of MBED OS that contains stack at the bottom of memory. This address

is selected absolutely since it permits stack overflows to be found easily. In Cortex M3 or Cortex M4

memory management is regulated by uvisor which is initially permits by the stack handled by the

uvisor memory. In Cortex M0 and M0+ will regulate hardfault. This permits application to rescue

from stack overflows, normally via a reset.

Global data

Global Data is the conventional .bss and .data regions developed by the compiler. This size of this

section is highly dependent upon application without any configuration.

Heaps

Never free heap and standard heap are the types of MBED OS. The data can be used by never free

heap which is on the top of the address and memory pools are not to be freed. Sbrk function used

standard heap which is on the bottom of the address. The core util module developed by trivial

allocator for linear allocation and deallocation of memory. This memory allocations are lock free.

Figure 22 Memory Organization in MBED OS

38

Table 3 Memory Model of MBED OS [21]

3.3 Simulation Results

To implement MBED OS together with TrustZone for security solutions on NB-IoT, the

thread analysis and experimental results were experimented on ARM Cortex M4 and ARM Cortex

M33 processors. These experiments are mainly done to verify the memory consumption on MBED

OS to be linked with TrustZone, since memory plays major role on security reasons for NB-IoT. In

addition, memory consumption is verified on both the processors (Cortex M4 and M33) to verify the

stability of memory mainly on Cortex M33, since it has a property of TrustZone system rather than

on ARM Cortex M4.

Thread Analysis - It is conducted to verify whether thread supports for MBED OS, as thread is

important parameter for functioning different operations on RTX-5 kernel within CMSIS-RTOS2.

Experimental results – It is conducted mainly to check stability of MBED OS with respect to

memory for TrustZone system. It is performed with below implementations with allocated stack sizes

tabulated on table-4:

1) Semaphore function - Used 3 threads and 1 Semaphore functions

2) Mutex function - Used 3 Threads and 1 Mutex functions

Table 4 Stack size of the threads

Thread Name Assumed stack size

Thread_1 256 Bytes

Thread_2 128 Bytes

Thread_3 200 Bytes (Default)

Parameters MBED OS – Memory

Code Size < 4 KBytes

RAM space for Kernel < 300 Bytes + 128 Bytes

User Stack

RAM space for Task 52 Bytes + TaskStackSize

RAM space for Semaphore 8 Bytes

RAM space for Mutex 12 Bytes

RAM space for user timer 8 Bytes

39

3.3.1 Thread Analysis on Cortex M4 and Cortex M33

Figure 23 Thread Analysis on Cortex M4

An operating system – MBED offers services to both the users and programs to execute, which

follows sequences of operation known as process, which requires certain resources adopting CPU

time, memory, files and input and output devices to complete a specific task. Main memory also

known as Program memory is responsible for accessing the data quicker, which is shared by CPU.

This program or main memory consists of following memories:

a) Code Memory – This is mainly dependent on program coding that is viewed on-chip as ROM

or EPROM. This code memory can also be saved fully off-chip in external ROM. It can be

observed that flash RAM can also be used to saving a program.

b) Read only data Memory – When the required program code or data is written onto ROM

memory, it can’t be eliminated and can be viewed or read only. Compared to RAM memory,

ROM restores its contents even though hardware is switched off. Thus, RAM is volatile,

whereas ROM is non-volatile memory.

c) Read write data Memory – It is type of memory that is basically written into chip as well as

read from it, which is normally linked with running software and not requiring physical

processes unlike ROM memory. Thus, RAM is often referred to as Read write memory.

40

Without Thread

MBED OS operating systems are initially performed without threads. RTX 5 kernel on MBED

OS that is no longer available when there is no thread, so the system does not interface until the main

reached. Once it reaches, the hardware will initialize and starts the kernel. The kernel will initialize

when the main execute. The types of memory without thread consume memory size based on the

defined kernel configuration.

1. To calculate used ROM space adding code memory, RO data and RW data, the results are

obtained.

2. To calculate used RAM space adding RW data and ZI data, the results are obtained.

MBED OS ROM & RAM usage without Thread:

• ROM = 4808+496+176 = 5480 Bytes

• RAM = 176+9520 = 9696 Bytes

With one Thread

Thread mainly refers to performing scheduled tasks sequentially which is contained within a

process and various threads created on same process or operation share memory, which is described

on calculation. It is to note that thread, which is basic unit of CPU utilization contains PC (Program

Counter), stack, registers with corresponding thread ID for checking which thread is performing

allotted task or operation. Additionally, on multiprocessor or multicore, threads designed on RTX-5

kernel for MBED OS has a functionality of running at same time, thus saving the execution time.

Threads has two types, which are user threads and idle thread designated within kernel itself. It is to

view that if kernel is single thread, the user thread handling blocked threads will affects entire process

to block, where the idle thread plays its role of performing the remaining task. However rather than

having single thread of handling various process, it is essential to increase the number of threads for

handling multitasks and thereby saving execution time, which is tested on experimental results

discussed on next section. The types of memories are obtained by using one thread function in MBED

OS.

MBED OS ROM & RAM usage with one Thread:

• ROM = 5128+496+224 = 5848 Bytes

• RAM = 224+9496 = 9720 Bytes

By comparing with and without thread the memory consumptions of the operating systems are

approximately same. The thread function that reduce the processing time in an operating system

41

With one Thread and Semaphore

As stated earlier on section 2.4.2 regarding functionality of Semaphore defined within

CMSIS-RTOS2 is mainly used for secured variables which adopts shared resources on multi-

processing environment. It can be noted that semaphore functions don’t operate without thread

functionality. Semaphore acquire and release values by using thread.

MBED OS ROM & RAM usage with one Thread and one Semaphore:

• ROM = 5884+496+248 = 6628 Bytes

• RAM = 248+9520 = 9768 Bytes

With one Thread and Mutex

It was described previously on section 2.4.3 that mutex defined within CMSIS-RTOS2 is a

program object which allows multiple threads to share resources but not simultaneously. It creates

resource with unique name.

MBED OS ROM & RAM usage with one Thread and one Mutex:

• ROM = 5832+528+248 = 6608 Bytes

• RAM = 248+9528 = 9776 Bytes

By comparing thread with semaphore and mutex the memory consumptions of MBED operating

system consume the values which are predefined in table 4.

Figure 24 Thread Analysis on Cortex M33

42

Cortex M33 is the developer of Cortex M4 processor. Both are having same properties but

Cortex M33 has different register address and have secure gate through Trustzone. The initial same

testing also done on Cortex M33 which is same as M4. Thus, we calculate consumed ROM and RAM

memory in M33 using different memory types.

Without Thread

MBED OS ROM & RAM usage without Thread:

• ROM = 5148+860+176 = 6184 Bytes

• RAM = 176+9520 = 9696 Bytes

With one Thread

MBED OS ROM & RAM usage with one Thread:

• ROM = 5468+860+224 = 6552 Bytes

• RAM = 224+9496 = 9720 Bytes

With one Thread and Semaphore

MBED OS ROM & RAM usage with one Thread and one Semaphore:

• ROM = 6224+860+248 = 7332 Bytes

• RAM = 248+9520 = 9768 Bytes

With one Thread and Mutex

MBED OS ROM & RAM usage with one Thread and one Mutex:

• ROM = 6172+892+248 = 7312 Bytes

• RAM = 248+9560 = 9808 Bytes

3.3.2 Experimental results on Cortex M4 and Cortex M33

As described earlier that with use of single thread, it is unable to handle multitasks and it takes

more time to execute, where more memory will be consumed, hence the experimental results were

carried out for multitasking by increasing the number of threads and other functions within CMSIS-

RTOS2 stated on section 3.5. This is mainly done to investigate the memory consumptions on both

ARM cortex M4 and M33 processors.

Thus, the threads are increased by allocating different stack sizes and giving different priority

for each thread, so that each thread performs its own operation on priority basis and simultaneously

the memory consumed by each thread and release and acquire operations of Semaphore and Mutex

functions are noted, which is tabulated on Thread Management table on Appendix. The plots are

correspondingly described on figure 25.

43

Figure 25 Experimental results on Cortex M4

With 3 Threads and 1 Semaphores

MBED OS

ROM = 6536+632+248 = 7416 Bytes

RAM =248+10424 = 10672 Bytes

With 3 Threads and 1 Mutexes

MBED OS

ROM = 6480+136+248= 6864 Bytes

RAM =248+10432 = 10680 Bytes

Final testing on M33 same as M4, memory management in M33 gives the performance analysis of

operating system. It will decide that which operating system having better function. Core Link SSE

200 prototyping processor depends on operating system which will be implemented on it. Therefore,

the memory consumption of M33 should be lower while comparing with others. It will also have

depicted the operating system.

44

Figure 26 Experimental results on Cortex M33

With 3 Threads and 1 Semaphores

MBED OS

ROM = 6876+996+248 = 8120 Bytes

RAM = 248+10424 = 10672 Bytes

With 3 Threads and 1 Mutexes

MBED OS

ROM = 6820+1000+248 = 8068 Bytes

RAM =248+10432 = 10680 Bytes

Comparing thread analysis and experimental results on Cortex M4 and Cortex M33

Based on above conducted results it can be observed that thread supports greatly on MBED

OS for performing multitasks by consuming less memory, which is satisfying the needs of security

solutions to be fit into TrustZone system. MBED OS supports string functions and has well defined

libraries, which is main point for having less ROM consumption. Thus, the initial testing on both

processors performs well. On the final testing of MBED OS, by increasing thread function and

corresponding thread managements using semaphore and mutex. The RAM consumed by these values

are higher than the initial values. Because increasing functions in operating system also increase the

RAM memory. If it is less number of functions means it will consume less memory otherwise it will

increase.

45

According to the result the memory consumption of MBED OS is moderate and nearly coping with

ARM Cortex M4, thus it will suitable for Cortex M33 processor to be implement MBED OS together

with TrustZone on this latest processor which is later integrated into Core Link SSE 200.

3.3.3 Stack Management on Cortex M33

The operation of program is done by using semaphore and mutex structures. Kernel

configured with semaphore and mutex functions, where one thread is defined as default stack size

200 bytes and remaining threads have specific stack size. The performance based on MBED OS stack

size and corresponding address are tabulated in the Appendix. The table in the appendix depicts thread

management using semaphore, mutex which can be observed that each thread has different stack size

and if certain threads are in ready or blocked mode they will consume same memory in ready and

blocked mode. But in the running mode it will consume different memory size. It should be noted the

maximum stack size of each thread and define used size of memory in bytes. Although stack

consumption will be performed on Cortex M4, the deciding processor for MBED OS together with

TrustZone for NB-IoT is ARM cortex M33. Thus, the Stack consumption using thread function of

semaphore and mutex are shown in figure 27. This is mainly done based on memory consumption

between ARM Cortex M4 and M33, since the memory consumption plays major role on security

solutions for protecting the registers with less memory handling.

Figure 27 Stack consuming using Semaphore and Mutex Functions

46

RTX kernel information

It gives kernel ID and kernel state. State define that the kernel is in running or ready mode.

The frequency of kernel is 1000 Hz for all thread managements. Kernel tick count defines the running

time of kernel. Therefore, the thread objects provide control block size, default size and user stack

size. Control block size define process table, Task Strut or switch frame in the operating system. The

semaphore consumes 16 bytes in control block, and mutex consumes 28 bytes.

Figure 28 Kernel Information of semaphore and mutex

3.3.4 Performance Analysis

The operating systems executes the program in certain time which is dependent on kernel.

The main defines with thread having different execution time based on the priority and task on it. The

thread managements with semaphore and mutex of both MBED OS with each thread timings are

tabulated in table 5. From the table, we conclude that the running thread takes little bit time comparing

with other threads. The total execution time is obtained by adding all thread timings.

Table 5 Thread Execution timings

Functions Threads Execution time

on MBED OS

Semaphore

Thread 1 1.098 sec

Thread 2 2.083 us

Thread 3 26.858 ms

Total execution time (in sec) 1.124 Sec

Mutex

Thread 1 1.012 us

Thread 2 2.083 us

Thread 3 29.087 ms

Total execution time (in sec) 1.041 sec

47

3.3.5 Trustzone Results

Based on the MBED OS memory consumption TrustZone will be implemented on Cortex

M33. It can be noted that memory consumed by different registers on MBED operating system is

simultaneously secured using TrustZone system. Figure 29 defines secure and non-secure functions

of the thread which is pointing different regions of memory. The workflow of Trustzone in this

method has five different functions with callable function. It gives integer data type output values.

The program is structured with three threads each performing specific operations.

Function - 1: Non-secure callable function

Function - 2: Non-secure callable function calling a non-secure callback function [Function - 6]

Function - 3: Non-secure callable function

Function - 4: Non-secure callable function calling a non-secure callback function [Function - 6]

Function - 5: Non-secure callable function calling a non-secure callback function [Function - 6]

The three different threads contain different functions. They are,

Thread A – uses value 1 and 2 [Val1_ThreadA and Val2_Thread2]

Thread B – uses value 3 and 4 [Val3_ThreadB and Val4_ThreadB]

Thread C – uses value 5 [Val5_ThreadC].

Workflow of Trustzone describes, initially the thread is in secure mode when the breakpoint

is placed at specific value, it changes to non-secure mode. It refers that the non-secure start and to

perform the operation needed for the specific value which is defined under the thread. For example,

if the breakpoint is placed in val1_ThreadA the system that switches to non-secure to perform the

value. Thus, the ThreadA is in running mode and remaining threads are in ready mode.

Both MBED OS supporting on ARM v8 M architecture. But CMSIS RTOS v2 gives standard

interface for RTOS running on M33. Thus, MBED OS is the better solution for the Trustzone. The

RTX 5 runs in non-secure state, but the call functions from the secure state. Memory management of

Trustzone of secure and non-secure is shown in table 6.

Table 6 Memory Management in Trustzone

MEMORY MANAGEMENT

 SECURE NON-SECURE

 Code Memory 2432 Bytes 5812 Bytes

Read Only Data Memory 588 Bytes 968 Bytes

Read Write Data Memory 8 Bytes 224 Bytes

Zero Initialized Data Memory 6336 Bytes 11144 Bytes

48

Figure 29 Trustzone Secure and Non-Secure Functions

49

The corresponding values of each thread is shown in figure 30

Figure 30 Thread Values

Switching between Secure and Non-Secure Modes

Figure 31 Security Transition States

The processor that handles state transition exchange from Secure Gateway to Non-secure state

BXNS and the branch with link exchange to BLXNS. Secure gateway (SG) is used for switching

from Non-secure to Secure state at the first instruction of Secure entry point. Branch with exchange

to Non-secure state (BXNS) is used by Secure software to branch or return to Non-secure program.

Branch with link and exchange to Non-secure state (BLXNS) is used by Secure software to call Non-

secure functions. A direct API function call from Non-secure to Secure software entry points is

allowed if the first instruction of the entry point is SG, and it is in a Non-secure callable memory

location [17]. The corresponding registers with address in secure and non-secure mode with stack

where the address in both secure and non-secure modes that protects different regions in system

memory. It shows that stack point process and limit function with control registers in the states. The

workflow of Trustzone with breakpoints values and corresponding address and stack size are

tabulated in Appendix. The table 7 shows how the functions that initially change from non-secure to

secure state.

50

Table 7 Registers Address Point Corresponding Regions

Detailed Description state of transition

When non-secure program calls secure state, that API completes by returning to NS state using

BXNS instruction. The program in NS attempts to call a secure program address without using entry

point otherwise it generates fault event. The architecture contains hard fault to handles fault events in

secure state. The security extension in an architecture that allow a secure program to call non-secure

state. Therefore, BLXNS instruction is used to call non-secure program.

The return address and some processor are pushed onto secure stack, while return address on LR

with a special value known as FNC_RETURN, the address should be zero. The non-secure function

performing branch address which automatically trigger unstacking of return address from secure stack

to call function. Secure state selects to transfer some register values to non-secure and clear other data

from register banks before function call.

51

a. Non-secure Start

Figure 32 Start of Non-secure mode

b. Switching from non-secure to secure state

Figure 33 Non-secure to secure state

52

Figure 34 Secure to non-secure state

Table 7 describes the transition state with corresponding addresses. Initially, when the

breakpoint set to the value. It changes the state from secure to non-secure start, that was shown in

above figures. thus, the values in non-secure call secure state to execute the function. It is a cyclic

process that changes from secure to non-secure, some functions are defined with callable function

which is taken from non-secure itself. The code memory and expansion 0 memory address change

from non-secure to secure vice versa. The details that contain in secure mode is always protected. But

in non-secure it needs call function to protect the data. Trustzone that protect whole Core Link SSE

200 system.

53

CONCLUSIONS AND SUGGESTIONS

From the results and discussions, I conclude the project “Investigation of MBED operating system

with TrustZone as security solutions for a cellular IoT” by the followings.

1. Operating system plays a major role in Cortex M processors. The Core Link SSE 200 IoT

subsystem contains two ARM Cortex M33 processors. Based on the operating system the

device should perform well. On the other side, the operating system needs security purpose to

secure the memory which contains all the data and registers values. Thus, the processor needs

better operating system with security solution. In section 1.4 it is clearly explained about the

reason of choosing MBED OS, it also explains MBED OS with TrustZone security in the next

section 1.5. Depending on the functionalities of CMSIS RTOS v2 the processors were tested

using MBED OS in both Cortex M33 and Cortex M4 processors. Based on the performance,

memory consumption and stack values of both processors, it clearly shows that Cortex M33

has better solution than Cortex M4 which are proven in section 3.3.

2. Memory consumption of MBED operating system is done with thread management using

semaphore and mutex functions. Initially, testing was carried out with and with single thread

and thread using one semaphore and one mutex. Thus, the kernel is performed better solution

for memory management. The memory consumption of initial testing values is acceptable

which are already predefined in kernel functions. Finally, thread management is increased

based on the user defined application. In this project, final testing is done with 3 threads, 1

semaphores and 1 mutex function. Even the number of threads can be increased by user, the

cellular IoT has more operations and functions. So, the number of threads and thread

managements are increased. Consumption of memory is also increased due to the larger

number of thread.

3. On the security side, Trustzone parameters are tested on Cortex M33 processor. Cortex M33

is only having security layer, whereas it is not in Cortex M4. The main advantage of Trustzone

is that it protects AHB5 on Core Link SSE 200 IoT subsystem. It has two modes secure and

non-secure. Both modes are having same handler and ISR function. From the non-secure point

of view, the registers are protected within secure state via callable function. The memory

based calculation on MBED OS are used to protect the register function in the property of

TrustZone. It will explain the secure and non-secure function of register with corresponding

memory and address. It clearly shows that how the stack limit is consumed and stack pointer

in the registers which are mentioned in the section 3.3.5.

54

4. Registers in ARM v8 M architecture are protected by MBED OS based Trustzone function.

While RTX 5 supports Trustzone without any fails. But in other RTOS it needs some internal

functions to call secure state. Therefore, Trustzone using MBED OS on Cortex M33 gives

best solution for cellular IoT.

Overall, the conclusion of embedded operating system with security solution can be done using

MBED operating system with Trustzone security on Cortex M33. Therefore, MBED OS supports for

Core Link SSE 200 IoT subsystem.

In future scope ARM CORDIO Radio Core IP is to be integrated with Core Link SSE 200 subsystem

that provides more services and productivity towards the cellular IoT which is referred as Cadelsi

NB-IoT.

55

INFORMATION SOURCE LIST

[1] LTE evolution for IoT connectivity, Nokia, 2017, pp. 1-18.

[2] “Cellular IoT,” [Online]. Available: https://iot-for-all.com/cellular-iot-explained-nb-iot-vs-

lte-m/.

[3] “FreeRTOS,” [Online]. Available: http://www.freertos.org/about-RTOS.html.

[4] Hahm, Emmanuel Baccelli and Oliver; W¨ahlisch, Mesut G¨unes and Matthias; Schmidt,

Thomas C., RIOT OS: Towards an OS for the Internet of Things, pp. 1-2, 2013.

[5] Arijit, Ukil; Jaydip, Sen; Sripad, Koilankonda, Embedded security for Internet of Things,

2011.

[6] Roger Piqueras Jover, Security and impact of the IoT on LTE mobile networks, pp. 1-25,

2015.

[7] Mihail Stoyanov,, “Introduction to mbed OS,” ARM, china, 2016.

[8] Sam Grove, “mbed OS technical overview,” ARM, Las Vegas, 2016.

[9] “CMSIS Keil,” [Online]. Available:

http://www.keil.com/pack/doc/CMSIS/General/html/index.html.

[10] “CMSIS RTOS API,” [Online]. Available:

https://www.keil.com/pack/doc/CMSIS/RTOS2/html/genRTOS2IF.html.

[11] “CMSIS Thread,” [Online]. Available:

https://www.keil.com/pack/doc/CMSIS/RTOS2/html/group__CMSIS__RTOS__ThreadMgm

t.html.

[12] “CMSIS Semphore,” [Online]. Available:

https://www.keil.com/pack/doc/CMSIS/RTOS2/html/group__CMSIS__RTOS__Semaphore

Mgmt.html.

[13] “CMSIS Mutex,” [Online]. Available:

https://www.keil.com/pack/doc/CMSIS/RTOS2/html/group__CMSIS__RTOS__MutexMgm

t.html.

[14] Using TrustZone on ARMv8, ARM Keil, 2016.

[15] TrustZone® technology for ARM®v8-M Architecture Version 1.1, ARM, 2016.

[16] ARM® Cortex®-M23 Processor Technical Reference Manual, ARM, 2016.

[17] TrustZone®technology for ARM®v8-M Architecture Version 1.0, ARM, 2016.

[18] “Embedded Know How,” [Online]. Available: http://www.embedded-know-

how.com/article/2425/iot-automation-platform-based-on-arm-cortex-m-and-freertos.

56

[19] “Development Board,” [Online]. Available: https://developer.arm.com/products/system-

design/development-boards/cortex-m-prototyping-system.

[20] “CMSIS Message Queue,” [Online]. Available:

https://www.keil.com/pack/doc/CMSIS/RTOS2/html/group__CMSIS__RTOS__Message.ht

ml.

[21] “RTX memory requirements,” [Online]. Available: http://www.keil.com/rl-arm/rtx_size.asp.

[22] Ö. Fredrik, A Sensor Network Simulator for the Contiki OS, pp. 1-40, 2006.

[23] K. Mahdi Amiri and B. Hadj , A Survey On Embedded Open Source System Software For

The Internet Of Things, pp. 27-32, 2017.

[24] M. Nicolas, “Study of an operating system: FreeRTOS”.Operating systems for embedded

devices .

[25] 3GPP Low Power wide Area Technologies, Svetlana Gran (GSMA), 2016.

[26] Cortex-M33 processor ARMv8-M IoT Kit FVP User Guide Version 2.0, ARM, 2017.

[27] L. Miller, M2M/IoT Cellular Data Security, TELIT, 2015.

[28] “ARM TrustZone,” [Online]. Available: https://www.arm.com/products/security-on-

arm/trustzone.

[29] Diaa Jadaan, “Memory management and error handling in FreeRTOS for a CubeSat project”.

[30] Rich Goyette, An Analysis and Description of the Inner Workings of the FreeRTOS Kernel,

pp. 1-46, 2011.

[31] Sagar P M, “Embedded Operating Systems for Real,” 2002.

[32] ARM, “TrustZone,” [Online]. Available: https://developer.arm.com/technologies/trustzone.

[33] Johannes Winter, “Trusted Computing Building Blocks for Embedded Linux-based ARM

TrustZone Platforms,” pp. 1-10.

[34] Ferdinand Brasser; Daeyoung Kim; Christopher Liebchen; Vinod Ganapathy; Liviu Iftode;

Ahmad-Reza Sadeghi, “Regulating Smart Personal Devices in Restricted Spaces,” pp. 1-14,

2015.

[35] T. Sandhu, “ARM unveils new IoT platform,” Hexus, 25 October 2016.

57

APPENDIXES

APPENDIX 1 Testing Results
Thread Analysis on Cortex M4 Thread Analysis on Cortex M33

MBED OS without Thread: MBED OS without Thread:

Code 4808 Bytes

RO Data 496 Bytes

RW Data 176 Bytes

ZI-Data 9520 Bytes

MBED OS with one Thread: MBED OS with one Thread:

Code 5128 Bytes

RO Data 496 Bytes

RW Data 224 Bytes

ZI-Data 9496 Bytes

MBED OS with 1 Thread & MBED OS with 1 Thread &

1 Semaphore: 1 Semaphore:

 Code 5884 Bytes

RO Data 496 Bytes

RW Data 248 Bytes

ZI-Data 9520 Bytes

MBED OS with 1 Thread & 1 Mutex: MBED OS with 1 Thread & 1 Mutex:

Code 5832 Bytes

RO Data 528 Bytes

RW Data 248 Bytes

ZI-Data 9528 Bytes

Experimental Results on Cortex M4 Experimental Results on Cortex M33

MBED OS with 3 Thread & 1 Semaphore: MBED OS with 3 Thread & 1 Semaphore:

Code 6536 Bytes

RO Data 632 Bytes

RW Data 248 Bytes

ZI-Data 10424 Bytes

MBED OS with 3 Thread & 1 Mutex: MBED OS with 3 Thread & 1 Mutex:

Code 6480 Bytes

RO Data 136 Bytes

RW Data 248 Bytes

ZI-Data 10432 Bytes

Code 5148 Bytes

RO Data 860 Bytes

RW Data 176 Bytes

ZI-Data 9520 Bytes

Code 5468 Bytes

RO Data 860 Bytes

RW Data 224 Bytes

ZI-Data 9496 Bytes

Code 6224 Bytes

RO Data 860 Bytes

RW Data 248 Bytes

ZI-Data 9520 Bytes

Code 6172 Bytes

RO Data 892 Bytes

RW Data 248 Bytes

ZI-Data 9560 Bytes

Code 6876 Bytes

RO Data 996 Bytes

RW Data 248 Bytes

ZI-Data 10424 Bytes

Code 6820 Bytes

RO Data 1000 Bytes

RW Data 248 Bytes

ZI-Data 10432 Bytes

58

MBED OS ON M33 (KERNEL - RTX 5 (CMSIS API v2) [SEMAPHORE]

Initial Condition Semaphore_1 Max_Count_Token - 3 Initial_Count_Token - 2

Parameters Thread_1 (Use

Semaphore_1)

Thread_2 (Use

Semaphore_2)

Thread_3 (Use

Semaphore_2)

State osThreadRunning osThreadReady osThreadBlocked

Priority Low Idle High

Stack Top

(address) 0x38001640

0x380016A8

0x38001820

Stack Limit

(address) 0x38001540

0x38001648

0x38001758

Stack

Available

Stack (used 15%

Max 28%)

Stack (used

75% Max 75%)

Stack (used 36%

Max 36%)

Used:40 Used:72 Used:72

Max:72 Max:72 Max:72

Stack Size 256 Bytes

96 Bytes

200 Bytes

Running Condition Semaphore_1 Max_Count_Token - 3 Initial_Count_Token - 3

MBED OS ON M33 (KERNEL - RTX 5 (CMSIS API v2) [MUTEX]

Parameters Thread_1 (Use

Mutex_1)

Thread_2 (Use

Mutex_2)

Thread_3 (Use

Mutex_2)

State osThreadRunning osThreadReady osThreadBlocked

Priority Low Idle High

Stack Top

(address) 0x38001648

0x380016B0

0x38001828

Stack Limit

(address) 0x38001548

0x38001650

0x38001760

Stack

Available

Stack (used 4%
Max 28%)

Stack (used
75% Max 75%)

Stack (used 36%
Max 36%)

Used:10 Used:72 Used:72

Max:72 Max:72 Max:72

Stack Size 256 Bytes

96 Bytes

200 Bytes

States MUTEX 1

OS Mutex

Receive

True

OS Mutex

PrioInherit

True

OS Mutex

Robust

False

Owner

Thread

Thread 1

59

MBED OS ON M4 (KERNEL - RTX 5 (CMSIS API v2) [SEMAPHORE]

Initial Condition Semaphore_1 Max_Count_Token - 3 Initial_Count_Token - 2

Parameters Thread_1 (Use

Semaphore_1)

Thread_2 (Use

Semaphore_2)

Thread_3 (Use

Semaphore_2)

State osThreadRunning osThreadReady osThreadBlocked

Priority Low Idle High

Stack Top

(address) 0x20001640

0x200016A8

0x20001820

Stack Limit

(address) 0x20001540

0x20001648

0x20001758

Stack

Available

Stack (used 15%

Max 28%)

Stack (used

75% Max 75%)

Stack (used 36%

Max 36%)

Used:40 Used:72 Used:72

Max:72 Max:72 Max:72

Stack Size 256 Bytes

96 Bytes

200 Bytes

Running Condition Semaphore_1 Max_Count_Token - 3 Initial_Count_Token - 3

MBED OS ON M4 (KERNEL - RTX 5 (CMSIS API v2) [MUTEX]

Parameters Thread_1 (Use

Mutex_1)

Thread_2 (Use

Mutex_2)

Thread_3 (Use

Mutex_2)

State osThreadRunning osThreadReady osThreadBlocked

Priority Low Idle High

Stack Top

(address) 0x20001648

0xx200016B0

0x20001828

Stack Limit

(address) 0x20001548

0x20001650

0x20001760

Stack

Available

Stack (used 4%

Max 28%)

Stack (used

75% Max 75%)

Stack (used 36%

Max 36%)

Used:10 Used:72 Used:72

Max:72 Max:72 Max:72

Stack Size 256 Bytes

96 Bytes

200 Bytes

States MUTEX 1

OS Mutex

Receive

True

OS Mutex

PrioInherit

True

OS Mutex

Robust

False

Owner

Thread

Thread 1

60

Trustzone

Table 1: Thread Management (Break point at Value1 / Value2)

 Thread_A Thread_B Thread_C

State osThreadRunning osThreadReady osThreadReady

Priority High Normal Above Normal

 Stack (used 1%

Max 12%)

Stack (used

50% Max 50%)

Stack (used

32% Max 32%)

Used Used:8 Bytes Used:64 Bytes Used:64 Bytes

Max Max:64 Bytes Max:64 Bytes Max:64 Bytes

Top 0x28200360 0x282003E0 0x28201AD0

Limit 0x28200160 0x28200360 0x28201A08

Size 512 Bytes 128 Bytes 200 Bytes

Table 2: Thread Management (Break point at Value3 / Value4)

 Thread_A

State osThreadRunning

Priority Low

 Stack (used 6%

Max 56%)

Used Used:8

Max Max:72

Top 0x282003E0

Limit 0x28200360

Size 128 Bytes

Table 3: Thread Management (Break point at Value5)

 Thread_B Thread_C

State osThreadReady osThreadRunning

Priority Normal Above Normal

 Stack (used

56% Max 56%)

Stack (used 4%

Max 32%)

Used Used:64 Bytes Used:8 Bytes

Max Max:64 Bytes Max:64 Bytes

Top 0x282003E0 0x28201AD0

Limit 0x28200360 0x28201A08

Size 128 Bytes 200 Bytes

Note: Stack Configuration (in bytes) - 0x0000 0400

 Heap Configuration (in bytes) - 0x0000 0C00

61

APPENDIX 2 Main Programs

Semaphore

#include "cmsis_os2.h"

#include “mbed.h” // mbed

void Thread_Semaphore1 (void *argument); // function prototype for thread_1

osThreadId_t tid_Thread_Semaphore1; // thread id_1

osSemaphoreId_t sid_Thread_Semaphore1; // semaphore id_1

void Thread_Semaphore2 (void *argument); // function prototype for thread_2

osThreadId_t tid_Thread_Semaphore2; // thread id_2

osSemaphoreId_t sid_Thread_Semaphore2; // semaphore id_2

void Thread_Semaphore3 (void *argument); // function prototype for thread_3

osThreadId_t tid_Thread_Semaphore3; // thread id_3

osStatus_t status;

/* ----------- THREAD_FUNCTION_1 --------------- */

void Thread_Semaphore1 (void *argument) // thread function_1

{

osThreadFlagsSet(tid_Thread_Semaphore1,0x00000004U); // Sets the thread flags for a thread

specified by parameter thread_1

osThreadFlagsWait (0x00000006U, osFlagsWaitAny, 1); // Wait forever until thread flag 1 is

set.

while (1) {

tid_Thread_Semaphore1 = osThreadGetId (); // Obtain ID of current running thread

osThreadSetPriority (tid_Thread_Semaphore1, osPriorityLow); // Set thread priority

status = osSemaphoreAcquire (sid_Thread_Semaphore1, 10); // wait 10 mSec to acquire a

Semaphore token

status = osSemaphoreRelease (sid_Thread_Semaphore1); // Return a token back to a semaphore

status = osThreadYield (); // suspend thread

}

}

/* -------------- THREAD_1 STRUCTURE----------------- */

const osThreadAttr_t Thread_Semaphore1_attr = {

"Thread_Sem1",

.stack_size = 256

};

/* ----------- THREAD_FUNCTION_2 --------------- */

void Thread_Semaphore2 (void *argument) // thread function_2

{

osThreadFlagsSet(tid_Thread_Semaphore2,0x00000001U); // Sets the thread flags for a thread

specified by parameter thread_2

while (1) {

62

tid_Thread_Semaphore2 = osThreadGetId (); // Obtain ID of current running thread

osThreadSetPriority (tid_Thread_Semaphore2, osPriorityBelowNormal); // Set thread priority

status = osSemaphoreAcquire (sid_Thread_Semaphore2, osWaitForever); // Wait indefinitely to

acquire a Semaphore token

status = osSemaphoreRelease (sid_Thread_Semaphore2); // Return a token back to a semaphore

status = osThreadYield (); // suspend thread

}

}

/* -------------- THREAD_2 STRUCTURE----------------- */

const osThreadAttr_t Thread_Semaphore2_attr = {

"Thread_Sem2",

.stack_size = 96

};

/* ----------- THREAD_FUNCTION_3 --------------- */

void Thread_Semaphore3 (void *argument) // thread function_3

{

osThreadFlagsSet(tid_Thread_Semaphore3,0x00000003U); // Sets the thread flags for a thread

specified by parameter thread_3

osThreadFlagsWait (0x00000002U, osFlagsWaitAny, osWaitForever); // Wait forever until

thread flag is set.

while (1) {

tid_Thread_Semaphore3 = osThreadGetId (); // Obtain ID of current running thread

osThreadSetPriority (tid_Thread_Semaphore3, osPriorityHigh); // Set thread priority

osDelay(1); // Pass control to other tasks for 1ms

status = osSemaphoreAcquire (sid_Thread_Semaphore2, 2); // wait 2 mSec to acquire a Semaphore

token

status = osSemaphoreRelease (sid_Thread_Semaphore2); // Return a token back to a semaphore

status = osThreadYield (); // suspend thread

}

}

/* -------------- THREAD_3 STRUCTURE----------------- */

const osThreadAttr_t Thread_Semaphore3_attr = {

"Thread_Sem3",

.stack_size = 200

};

/* ---------- SEMAPHORE STRUCTURE-------------- */

const osSemaphoreAttr_t Thread1_semaphore_attr = {

 "Semaphore1", // human readable semaphore name

 };

const osSemaphoreAttr_t Thread2_semaphore_attr = {

 "Semaphore2", // human readable semaphore name

 };

int main(void) {

63

// System Initialization

//SystemCoreClockUpdate();

if(osKernelGetState() == osKernelInactive) {

status=osKernelInitialize();

}

sid_Thread_Semaphore1 = osSemaphoreNew(4, 2, &Thread1_semaphore_attr);

if (!sid_Thread_Semaphore1) {

; // Semaphore object not created, handle failure

}

sid_Thread_Semaphore2 = osSemaphoreNew(5, 3, &Thread2_semaphore_attr);

if (!sid_Thread_Semaphore2) {

; // Semaphore object not created, handle failure

}

tid_Thread_Semaphore1 = osThreadNew (Thread_Semaphore1, NULL, &Thread_Semaphore1_attr);

if (!tid_Thread_Semaphore1) {

return(-1);

}

 tid_Thread_Semaphore2 = osThreadNew (Thread_Semaphore2, NULL,

&Thread_Semaphore2_attr);

if (!tid_Thread_Semaphore2) {

return(-1);

}

tid_Thread_Semaphore3 = osThreadNew (Thread_Semaphore3, NULL, &Thread_Semaphore3_attr);

if (!tid_Thread_Semaphore3) {

return(-1);

}

if (osKernelGetState() == osKernelReady) {

status=osKernelStart(); // Start thread execution

}

for (;;) {}

}

Mutex

#include "cmsis_os2.h"

#include “mbed.h” // mbed

void Thread_Mutex1 (void *argument); // thread function

osThreadId_t tid_Thread_Mutex1; // thread id

osMutexId_t mutex1_id; // Mutex id

void Thread_Mutex2 (void *argument); // thread function

osThreadId_t tid_Thread_Mutex2; // thread id

osMutexId_t mutex2_id; // Mutex id

void Thread_Mutex3 (void *argument); // thread function

osThreadId_t tid_Thread_Mutex3; // thread id

osMutexId_t mutex3_id; // Mutex id

64

osStatus_t status;

/* ----------- THREAD_FUNCTION_1 --------------- */

void Thread_Mutex1 (void *argument)

{

osThreadFlagsSet(tid_Thread_Mutex1,0x00000004U); // Sets the thread flags for a thread

specified by parameter thread_1

osThreadFlagsWait (0x00000006U, osFlagsWaitAny, 1); // Wait forever until thread flag 1 is set.

while (1) {

tid_Thread_Mutex1 = osThreadGetId (); // Obtain ID of current running thread

osThreadSetPriority (tid_Thread_Mutex1, osPriorityLow); // Set thread priority

status = osMutexAcquire(mutex1_id, 10); // Waits 10ms for a mutex object specified by

parameter mutex_id becomes available

status = osMutexRelease(mutex1_id); // Releases a mutex specified by parameter

mutex_id.

status=osThreadYield (); // Suspend thread

 }

}

/* -------------- THREAD_1 STRUCTURE----------------- */

const osThreadAttr_t Thread_Mutex1_attr = {

 "Thread_Mutex1",

 .stack_size = 256

 };

/* ----------- Mutex-1 Structure --------------- */

const osMutexAttr_t Thread_Mutex1a_attr = {

 "myThreadMutex1", // human readable mutex name

 osMutexRecursive | osMutexPrioInherit, // attr_bits

 NULL, // memory for control block

 NULL // size for control block

 };

/* ----------- THREAD_FUNCTION_2 --------------- */

void Thread_Mutex2 (void *argument)

{

osThreadFlagsSet(tid_Thread_Mutex2,0x00000001U); // Sets the thread flags for a thread

specified by parameter thread_2

while (1) {

tid_Thread_Mutex2 = osThreadGetId (); // Obtain ID of current running thread

osThreadSetPriority (tid_Thread_Mutex2, osPriorityIdle); // Set thread priority

status = osMutexAcquire(mutex2_id, osWaitForever); // Waits until a mutex object specified by

parameter mutex_id becomes available

status = osMutexRelease(mutex2_id); // Releases a mutex specified by parameter

mutex_id.

status=osThreadYield (); // suspend thread

}

65

}

/* -------------- THREAD_2 STRUCTURE----------------- */

const osThreadAttr_t Thread_Mutex2_attr = {

 "Thread_Mutex2",

 .stack_size = 96

 };

/* ----------- Mutex-2 Structure --------------- */

const osMutexAttr_t Thread_Mutex2a_attr = {

 "myThreadMutex2", // human readable mutex name

 osMutexRecursive | osMutexRobust, // attr_bits

 NULL, // memory for control block

 NULL // size for control block

 };

/* ----------- THREAD_FUNCTION_3 --------------- */

void Thread_Mutex3 (void *argument) // thread function_3

{

osThreadFlagsSet(tid_Thread_Mutex3,0x00000003U); // Sets the thread flags for a thread

specified by parameter thread_3

osThreadFlagsWait (0x00000002U, osFlagsWaitAny, osWaitForever); // Wait forever until thread

flag is set.

while (1) {

tid_Thread_Mutex3 = osThreadGetId (); // Obtain ID of current running thread

osThreadSetPriority (tid_Thread_Mutex3, osPriorityHigh); // Set thread priority

osDelay(1); // Pass control to other tasks for 1ms

status = osMutexAcquire(mutex2_id, 2); // Waits 2ms for a mutex object specified by

parameter mutex_id becomes available

status = osMutexRelease(mutex2_id); // Releases a mutex specified by parameter

mutex_id.

status = osThreadYield (); // suspend thread

}

}

/* -------------- THREAD_3 STRUCTURE----------------- */

const osThreadAttr_t Thread_Mutex3_attr = {

 "Thread_Mutex3",

 .stack_size = 200

 };

int main(void) {

// System Initialization

//SystemCoreClockUpdate();

if(osKernelGetState() == osKernelInactive) {

status=osKernelInitialize();

66

}

mutex1_id = osMutexNew(&Thread_Mutex1a_attr);

if (mutex1_id != NULL) {

// Mutex object created

}

mutex2_id = osMutexNew(&Thread_Mutex2a_attr);

if (mutex2_id != NULL) {

// Mutex object created

}

mutex3_id = osMutexNew(&Thread_Mutex3a_attr);

if (mutex3_id != NULL) {

// Mutex object created

}

tid_Thread_Mutex1 = osThreadNew (Thread_Mutex1, NULL, &Thread_Mutex1_attr);

if (!tid_Thread_Mutex1) {

return(-1);

}

tid_Thread_Mutex2 = osThreadNew (Thread_Mutex2, NULL, &Thread_Mutex2_attr);

if (!tid_Thread_Mutex2) {

return(-1);

}

tid_Thread_Mutex3 = osThreadNew (Thread_Mutex3, NULL, &Thread_Mutex3_attr);

if (!tid_Thread_Mutex3) {

return(-1);

}

if (osKernelGetState() == osKernelReady) {

status=osKernelStart(); // Start thread execution

}

for (;;) {}

}

Trustzone

Secure Program

#include <arm_cmse.h>

#include "RTE_Components.h"

#include CMSIS_device_header

/* TZ_START_NS: Start address of non-secure application */

#ifndef TZ_START_NS

#define TZ_START_NS (0x200000U)

#endif

/* typedef for non-secure callback functions */

typedef void (*funcptr_void) (void) __attribute__((cmse_nonsecure_call));

/* Secure main() */

int main(void) {

 funcptr_void NonSecure_ResetHandler;

67

 /* Add user setup code for secure part here*/

 /* Set non-secure main stack (MSP_NS) */

 __TZ_set_MSP_NS(*((uint32_t *)(TZ_START_NS)));

 /* Get non-secure reset handler */

 NonSecure_ResetHandler = (funcptr_void)(*((uint32_t *)((TZ_START_NS) + 4U)));

 /* Start non-secure state software application */

 NonSecure_ResetHandler();

 /* Non-secure software does not return, this code is not executed */

 while (1) {

 __NOP();

 }

}

Non-secure Program

#include "cmsis_os2.h"

#include "mbed.h"

#include "interface.h"

#include <stdio.h>

extern volatile int val1, val2, val3, val4, val5;

volatile int val1, val2, val3, val4, val5;

void ThreadA (void *argument);

static osThreadId_t tid_ThreadA;

void ThreadB (void *argument);

static osThreadId_t tid_ThreadB;

void ThreadC (void *argument);

static osThreadId_t tid_ThreadC;

static osStatus_t status;

int func6(int x);

int func6(int x) {

 return (x+6);

}

void ThreadA (void *argument){

 tid_ThreadA = osThreadGetId();

 status = osThreadSetPriority(tid_ThreadA, osPriorityHigh);

 val1 = func1 (1);

 val2 = func2 (func6, val1);

 status=osThreadYield () ;

}

68

void ThreadB (void *argument){

 tid_ThreadB = osThreadGetId();

 status = osThreadSetPriority(tid_ThreadB, osPriorityLow);

 val3 = func3 (val1, val2);

 val4 = func4 (func6);

 status=osThreadYield () ;

}

void ThreadC (void *argument){

 tid_ThreadC = osThreadGetId();

 status = osThreadSetPriority(tid_ThreadC, osPriorityAboveNormal);

 val5 = func5 (4, func6);

 status=osThreadYield () ;

}

static uint64_t Thread_1_stk_1[64];

static const osThreadAttr_t Thread_1_attr = {

 .tz_module = 1U,

 .stack_mem = &Thread_1_stk_1[0],

 .stack_size = sizeof(Thread_1_stk_1)

};

static uint32_t Thread_2_stk_1[32];

static const osThreadAttr_t Thread_2_attr = {

 .tz_module = 1U,

 .stack_mem = &Thread_2_stk_1[0],

 .stack_size = sizeof(Thread_2_stk_1)

};

static const osThreadAttr_t Thread_3_attr = {

 .tz_module = 1U,

 .stack_size = 0

};

int main(void) {

if(osKernelGetState() == osKernelInactive) {

status=osKernelInitialize();

}

 tid_ThreadA = osThreadNew(ThreadA, NULL, &Thread_1_attr);

 tid_ThreadB = osThreadNew(ThreadB, NULL, &Thread_2_attr);

 tid_ThreadC = osThreadNew(ThreadC, NULL, &Thread_3_attr);

69

if (osKernelGetState() == osKernelReady) {

status=osKernelStart();

}

for (;;) {}

}

Interface.c

#include <arm_cmse.h> // CMSE definitions

#include "interface.h" // Header file with secure interface API

/* typedef for non-secure callback functions */

typedef funcptr funcptr_NS __attribute__((cmse_nonsecure_call));

/* Non-secure callable (entry) function */

int func1(int x) __attribute__((cmse_nonsecure_entry)) {

 return x+4;

}

/* Non-secure callable (entry) function, calling a non-secure callback function */

int func2(funcptr callbackA, int x) __attribute__((cmse_nonsecure_entry)) {

 funcptr_NS callbackA_NS; // non-secure callback function pointer

 int y;

 /* return function pointer with cleared LSB */

 callbackA_NS = (funcptr_NS)cmse_nsfptr_create(callbackA);

 y = callbackA_NS (x+7);

 return (y+2);

}

/* Non-secure callable (entry) function */

int func3(int x, int y) __attribute__((cmse_nonsecure_entry)) {

 return (x+y);

}

/* Non-secure callable (entry) function, calling a non-secure callback function */

int func4(funcptr callbackB) __attribute__((cmse_nonsecure_entry)) {

 funcptr_NS callbackB_NS; // non-

secure callback function pointer

 int y;

 /* return function pointer with cleared LSB */

 callbackB_NS = (funcptr_NS)cmse_nsfptr_create(callbackB);

 y = callbackB_NS(3);

 return y;

}

70

/* Non-secure callable (entry) function, calling a non-secure callback function */

int func5(int x,funcptr callbackC) __attribute__((cmse_nonsecure_entry)) {

 funcptr_NS callbackC_NS;

 int y;

 /* return function pointer with cleared LSB */

 callbackC_NS = (funcptr_NS)cmse_nsfptr_create(callbackC);

 y = callbackC_NS (x+5);

 return (2+y);

}

