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INTRODUCTION

Over the last decades, the interest in the digital image analysis has increased
considerably. Images as the most perceivable form of information have gained
strong involvement in such fields as medicine, microscopy, astronomy, robotics,
defence industry, etc.

Interpretation, analysis and processing of the human perception of images
and realization of the analogous action mechanism on computers are rapidly
increasing. Improvements in computer technology have made it possible to
implement and practically apply complex image processing techniques and
methods. It is essential to replace human activities in spheres requiring a long and
tense human labour under difficult conditions. Quality control optimization of the
industrial process which often relies on visual analysis of digital images is one of
such fields.

Quality control carries great importance in today’s competitive industry.
International standard ISO 9000 describes quality as a “set of production
properties and characteristics of services which allows satisfying the stated or
implied requirements”.

One of the approaches to improve the quality of the final product is ensuring
effectiveness at each stage of the production process. Usually, it is humans
(inspectors) who are responsible for detecting defects on the surfaces of various
industrial products. However, this method is very subjective and it slows down the
production process, thus it is both costly and time consuming. It is estimated that
human productivity in determining the quality of the product is 60-75 %.
Therefore, it is important to develop and computerise efficient defect detection
techniques for texture images.

The texture defect detection techniques (in images of paper, glass sheets,
ceramic tiles, fabrics, leather, plastic products and other) are closely related to the
digital image processing procedures. Literature sources present many various
approaches and technologies to tackle this issue. All of them can be divided into
the following groups: statistical, spectral texture analysis, model-based and
structural approach. Also, methods for detecting specific defects, such as holes,
stains, fractures or colour tones can be distinguished. Currently, a need for systems
which could analyse and identify various textures and a wide range of their defects
is growing.

This dissertation proposes a novel defect detection technique for texture
(surface) images. The developed technique is implemented in the spectral discrete
wavelet domain. It is worth emphasizing that nowadays discrete wavelets
represent the most popular and effective method of analysis. The proposed
technique for detecting texture defects is successfully applied for the analysis of
actual texture surfaces and their quality control.



The object of the research: texture surface (image) classification techniques
based on the discrete wavelet theory.

The aim of the research: to develop a new flexible (parameterized) system for
assessing the quality of texture images in the spectral discrete wavelet domain and
adjust the system to actual quality testing environments.

Objectives of the research

In order to achieve the aim of the research, the following objectives were
set:

(1) To develop criteria for detecting texture defects in the spectral discrete
wavelet domain and provide the methodology;

(2) To investigate the possibilities of applying various discrete wavelet
transforms (DWT) for determining the quality of texture images;

(3) To develop an algorithm for fast calculation of DWT spectra for given
fragments of texture images;

(4) To propose an effective technique for texture defect localization;

(5) To develop a parameterized system for testing texture images and
localizing the detected defects;

(6) To investigate the overall performance of the developed system using
different classes of texture images (ceramic tiles, glass products, fabrics and
other);

(7) To discuss other non-standard texture defect detection methods with
respect to the research carried out.

Research methods and software

This research is based on matrix calculations, methods of discrete wavelet
analysis and mathematical (statistical) tools (parameter estimates, statistical
hypotheses).

Experiments were carried out in Matlab R2014a environment.

Novelty of the research

This dissertation proposes several novel solutions for -effectively
implementing the texture defect detection system in the spectral discrete wavelet
domain. These are:

(1) the proposed texture defect detection technique is based on multiple
image scanning; the known methods found in literature are limited to onetime
image (or its wavelet spectrum, if wavelet transforms are applied) run-through.
Multiple image scanning allows forming a multi-valued texture defect detection
criterion, when the final decision on the quality of the texture image under
processing is made depending on the percentage of unfavourable criterion values.

(2) the task-oriented statistical analysis of specific subsets of Haar wavelet



coefficients of a texture image enhances the implementation of the texture defect
detection system (methodology), which can control true-positive and true-negative
image classification process, thereby ensuring the flexibility of the system.

(3) the same criteria and principles of analysis are explored for texture
defect localization, as previously used for defect detection in texture images.

(4) a novel fast algorithm for computing Haar wavelet spectra of the
selected texture image fragments is proposed. The efficiency of the algorithm
leans upon the fact that the absolute majority of Haar wavelet coefficients found
for the whole texture image are transferred without any changes to the fragmental
spectra. This circumference is of particular importance in real-time applications.

Defence statements

(1) The decision about the quality of the test texture image is based on the
results of multiple image scanning when a different filter for two-dimensional
discrete wavelets is employed for each scan. This ensures a relatively high
(83-98 %) accuracy of testing;

(2) The proposed novel algorithm for computing the discrete Haar wavelet
spectra of the selected image fragments is 10-30 times faster than the direct
procedures for obtaining fragmental spectra of the image;

(3) The detected defects are localized by employing appropriately chosen
subsets of the multi-valued texture defect detection criterion;

(4) The results of the experimental analysis obtained by applying the newly
developed defect detection and localization system proved the effectiveness and
appeal of the proposed solutions.

Practical significance of the research results

The solutions proposed in this dissertation, i.e. image texture analysis by
employing two-dimensional filters for discrete wavelets, an original algorithm for
computing the Haar spectrum of the selected image fragments, and principles for
generating defect detection criterion can be successfully applied not only in defect
detection and localization processes but also in other fields related to digital image
processing, such as object localization in lattice-structured images, locally
progressive image coding, feature extraction, etc.

It should be noted that the proposed defect detection and localization
technique allows classifying texture images and localizing the detected defects in
real time. This is especially important when it comes to the automated textured
surface testing systems.

Approbation of the dissertation results

Six scientific papers on the subject of the dissertation have been published.
Four of them have appeared in international journals with citation indices,
included in the main list of the International Scientific Institute Database, others —



in conference materials. The research on the subject of the dissertation has been
presented at two international and two national conferences.

The structure

The doctoral dissertation consists of an introduction, four main chapters,
conclusions, a list of references and scientific publications. The volume of
dissertation is 104 pages. It contains 35 figures, 13 tables and 145 references.

1. LITERATURE REVIEW

This dissertation gives an extensive overview of defect detection methods
for texture images. Even though the visual techniques employed in defect
detection research are very diverse and constantly changing, all the basic methods
of analysis can be divided into several main groups, in particular: statistical,
spectral, model-based and structural analysis (Karimi et al., 2014; Ngan et al.,
2011; Xie, 2008).

Statistical approach methods analyse the spatial distribution of the pixel
values. The main purpose of this analysis is to detect changes in the various
statistical parameters of the image regions. Many statistical texture features have
been proposed, ranging from first order statistics to higher order statistics.
Amongst them, histogram statistics (mean, standard deviation, variance, median,
etc.) (Saeidi et al., 2015; Yuan et al., 2015), co-occurrence matrices (Hu et al.,
2011; Raheja et al., 2013), autocorrelation function (Tolba, 2012; Hoseini et al.,
2013), local binary patterns (Tajeripour et al., 2014; Song et al., 2013), principal
and independent component analysis (Chen et al., 2011; Tsai et al., 2008) and
Weibul distribution (Timm et al., 2011) have been applied to visual inspection.

In the structural approach, texture is characterised by texture primitives or
texture elements and the spatial arrangement of these primitives. Thus, the primary
goals of the approach are, firstly, to extract texture primitives and, secondly, to
model or generalise the spatial placement rules. The main disadvantages of these
methods are that they work well only with regular textures. This approach widely
uses morphological operations (Elbehiery et al., 2007; Mak et al., 2009) and edge
detection techniques (Najafabadi et al., 2011; Sham et al., 2008) for defect
detection.

Filtering technologies are spectral analysis methods for texture surfaces
which are analysed as spectral coefficient sets. Image components representing
spectral features of desired frequency are extracted based on the energy of the
transformation. These features show low sensitivity to noise, so it is often used for
defect detection tasks. The main methods for such techniques are Fourier analysis
(Chen et al., 2013; Tsai et al., 2012), Gabor filters (Hu, 2015; Mak et al., 2008) or
discrete wavelet transforms (Ngan et al., 2011; Guan et al., 2014).

A different approach to texture analysis is based on trying to determine the
analytical model of the image using the model-based methods. Such models are



built on the assumption that each pixel in the image is a weighted average of the
intensities of the neighbouring pixels. The model parameters define the texture.
These methods include texture analysis, which is based on the application of
autoregressive models (Bu et al., 2010; Chuang et al., 2009), Markov random
fields (Hadizadeh et al., 2008; Hu et al., 2014) and the fractal model (Bu et al.,
2008, 2009; Hanmandlu et al., 2015).

The majority of defect detection methods found in literature are adapted to
process one type of texture surfaces. They are oriented to detect specific defects
such as slub (Liu et al., 2008), pincher (Chuang et al., 2009), knots (Hu et al.,
2011) and colour tonality (Xie et al., 2006). However, at present there is a growing
need to develop more flexible defect detection systems suitable for processing
several types of texture surfaces. For instance, Kwon et al. (2015) indicates that
seven different classes of texture images have been tested using Variance of
Variance (VOV) profiles applied to the random forest-based machine learning
algorithm. An article by Yuan et al. (2015) describes a modified Otsu method with
the weight function which can be used to detect defects on texture surfaces, such
as wood, fabric, metal, rail images, etc. Hu et al. (2014) propose a wavelet-domain
hidden Markov tree (HMT) model to process such surfaces like textile fabric,
woven wool, leather and sandpaper.

The literature analysis shows that there is a lack of research concerning the
defect detection for various types of textures. Nor are there any generalized
algorithms for detecting different types of defects. Finally, the literature review
shows that hybrid methods would be useful for industrial applications. Therefore,
the visual method based on discrete wavelet transforms and the statistical approach
can be developed in the context of texture defect detection. Due to this reason, this
dissertation proposes several approaches for analysing images of different texture

types.

2. GENERATING THE DEFECT DETECTION AND LOCALIZATION
TECHNIQUE FOR TEXTURE IMAGES

The approach proposed in this dissertation is based on the discrete Haar
wavelet transform. This choice has been determined by several factors: firstly, the
Haar transform is fully localized in space. This feature allows a more
comprehensive and effective usage of the proposed defect detection criterion.
Secondly, Haar functions are square-shaped. This is a great advantage when the
analysed image is characterised by sharp changes in contrast, which is the case in
texture defect detection context.
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2.1. Generating and investigating the defect detection technique for texture
images

2.1.1. Discrete Haar transform, its features and fast computational
algorithms

Each discrete wavelet transform (DWT) can be realized iteratively by
applying coefficients of the scaling function (low frequency filter) and the wavelet
function (high frequency filter).

Let us take an initial data vector (one-dimensional image)
X=X0) X(1) .. X(N—1)T (N =2" ne€N). After the i-th iteration
i €{1,2,..,n}, the intermediate vectors obtained by applying low and high
frequency filters shall be defined as follows:

. N . T

s = (sé‘) sO . S;’L)—i_l) , )
. . . . T

p® = (af’ a® .. a9, ) ©)

— (@ @ @ \ _
here S©@ = (so Sp e Szn—i-1) =X.
The DWT spectrum Y for data vector X = (X(0) X(1) .. X(N — D)7 is
obtained after n iterations and is specified as follows:

T
v = (s d dy ™ al P al PP LafP dP L d(), ) . 3)

In general, the computational procedure for the DWT spectrum Y can be
implemented by using the DWT matrix Tpyr:

. ®
—i oG-y — (S
TDWT (n i+ 1) S : - (D(L)>l (4)
where ™ = (s{) and D™ = (d{™).
The structure of matrix Tpyr = Tpwr (R — i + 1),i € {1, 2, ...,n}, depends
on the specific DWT scaling and wavelet functions, i.e. on the applied filter
coefficients. For example, the discrete Haar transform (HT) is characterized by the

following sets of coefficients: scaling function (low frequency filter) — hy = 1/v/2
and h; = 1/+/2, and wavelet function (high frequency filter) — go = h; = 1/3/2
and g; = —hy = —1/+/2. Thus, the HT matrix is as follows:
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To find the HT spectrum, usually a fast calculation algorithm is applied
which can be defined by the following expressions (Valantinas et al., 2013):

. . ) 1 . )
-1 -1 -1 -1
R S A S
. . . 1 . .
@ _ (i-1) (i-1) _ (i-1) (i-1)
dy” =90 Syt 91 Sak41 = N (s2k = Saret)s (7)

forallk =0,1,..,2" ¢ - 1,i €{1,2,..,n}.

It should be noted that each numerical value of the HT spectral coefficient
is specified by a certain (strictly-fixed) subset with data vector X elements.

It is evident that the numerical values of the spectral coefficients obtained
during each iteration are unambiguously specified by non-overlapping subsets of
data vectors X, whose union corresponds to X. This situation in different contexts
is defined as a feature of the full HT localization in space.

HT can be easily generalized for two-dimensional images. Practical
realisation of the two-dimensional HT is entered into the 2N-th application of the
one-dimensional HT: firstly, one-dimensional data vectors [X (m,,m;)] at fixed
index m, values (m, € {0,1,..., N — 1}) are processed and an intermediate data
array [Y(ky,m,)] is obtained; further, rows of intermediate data array are
processed at fixed k, values (k; € {0,1,..., N — 1}). The last step provides a two-
dimensional discrete HT spectrum [Y (kq, k;)] of the initial image [X (mq, m,)].
The order of processing rows and columns does not affect the final result.

2.1.2. Generating the defect detection criterion for texture images
2.1.2.1. Partitioning the discrete Haar spectrum in the texture images

Let X =[X(m,;,m;)] be a two-dimensional grey-scale digital NXN
(N =2",n € N)image and Y = [Y(kq, k)] be its discrete HT spectrum.

The new defect detection system for texture images has been developed and
implemented in the Haar wavelet domain considering the following two factors:

(1) the numerical value of the Haar wavelet coefficient Y (kq, k)
(ki ky € {1,2,...,N —1}; kg = 2™ + i is € {1,2,..,n}, js € {0,1,..., 2" —
1}, iy = 1,2) is uniquely specified by the image block X ¥1%2) of size 211 x2%2,
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with X*1%2)(0,0) = X (2%, 2%2j,);

(2) the discrete HT spectrum Y of X can be partitioned into a finite number
of non-intersecting subsets (regions) R(0,0), R(iy,0), R(0,i,) and R(iy, i)
(i, i, = 1,2,...,n), containing 1, 2"~ 2"~z and 22"~z Haar wavelet
coefficients, respectively (Fig. 2.1). The numerical values of all Haar wavelet
coefficients falling into a particular region R(iy,i,) (i3,i, € {0,1,...,n}) are
specified by non-overlapping image blocks covering the whole image X.

k k, ] )
4 , B=2 i =1 : | B=2 =1
0 | 1 | 2 3 0 ! 1 ! 2 3
1/4 1/4 1/22 1/242

Koo 90,0y | 90,2) RO b B} [. ﬂ] UII

1/4 1/4 Uz 122

i=2 1] RQ2,0) | RQ2.,2) R(2,1) =21 E H\ | H
|
|

o U2z | 22 1z 11

2 2 E E ﬁ} E

|
i=1 | R®10) | R(,2) R j=1 p-—=—m-f-—m—=-f-—===- % 7777777

|
|
|
|
|

(@) (b)

Fig. 2.1. Discrete Haar wavelet transform (N = 4): (a) Regions of Haar spectral
coefficients characterized by the same computational scheme; (b) Evaluating Haar
spectral coefficients (pixel values falling into the black area of the image block are

subtracted from those falling into the respective grey area; the algebraic sum then is
multiplied by the scalar located above)

2.1.2.2. Statistical analysis of the discrete Haar spectrum regions

A set of defect-free texture images {X;,X,,...,X;.} € T (T stands for the
total population of all defect-free images) which consists of NXN (N = 2™,
n € N) sized images is analysed. {V},Y,,...,Y,} represents the set of the
corresponding HT spectra.

The defect detection criterion for texture images is developed on the basis
of the following steps:

1) Computation of the averaged spectral coefficient values for the HT
spectra Y (s = 1,2,..,7r) regions R;(0,0), Re(iy,0), Rs(0,i,) and R,(iy,iy)
(i, i €{1,2,...,n}), 1.e:

¥5(0,0) = |Y5(0,0)|, ®)

13
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T(0,0) = o ). %0, (10)
J2=0
1 2niz—g pn g
Ys(i1,iz)=m Z Z |Ys(key, k)15 (11)
J2=0  j1=0

2) For each region $R(0,0), $R(i;,0), R(0,i,) and R(iy,i,)
(i, i, € {1,2, ...,n}) the following simple samples are provided:

(¥,(0,0), %,(0,0),.., ¥.(0,0)), (12)
(Y1(i1,0), ¥,(iy,0), ..., ¥.(iy,0)), (13)
(1,(0,iy), %(0,iy), .., %.(0,iy)), (14)
(71(i1’i2)' Yz(ipiz):---: 17r(i1;l‘2))2 (15)

3) The generated samples are analysed statistically to test the
non-parametric statistical hypothesis on the distribution of the mean values
(random variables) Y of the spectral coefficient representing the specific region
and relating to the total population T. A compatibility criterion (statistics) y? is
used to test the hypothesis;

4) The so-called g-intervals 1,,(0,0), I, (i, 0), I,(0, i) and L, (i, i) with
fixed (selected) probability p (p € [0.5;0.99]) are generated for all regions
R(0,0), R(i1,0), R(O,i,), and R(iy,iy) (i1, i, € {1,2,...,n}), depending on the
detected distribution, namely:

(1) In the case of normal distribution Y ~N (m, 0),

I, = L(iyi) = (m—t-0, m+t-o), (16)
where t = W~ 1(p/2) and ¥(x) = \/%foxe‘tz/zdt is the Laplace function; in

other words, P{7 € Ip} =p;
(2) In the case of log-normal distribution ¥ ~InN (m, o),

I, = L(iy, i) = (m/at, m- at), (17)

where t = WY~ 1(p/2);
(3) In the case of exponential distribution ¥ ~E (1),

I, = Ly(i1, i) = [0, t-0), (18)

14



wheret = —In (1 —p) and 0 = 1/A.

In this way, a multi-valued defect detection criterion for texture images
NxN (N = 2", n € N) is developed. The flexibility of the criterion and thereby
the possibility of adapting the proposed defect detection technique for different
classes of texture images is guaranteed by the selected parameter (probability)
(p € [0,5;0,99)).

The tested image X;.s is assumed to be defect-free, if not less than
p(n + 1)? of all the averages from the set {V,5:(0,0), Viese(i1,0), Yiese (0, 1),
Yiest (i1, i2)| 1,0 €{1,2,..,n}} fall into the corresponding o-intervals I,,.
Otherwise, the image X, is considered to be defective.

Obviously, in constructing o-intervals for R(iy, i,) (i1,i, € {0,1,2,...,n}),
we can state statistical hypotheses (with an acceptable significance level) about
the appropriateness of any other probability distribution, and construct respective
o-intervals. But, if no suitable distributions are found, the criteria for R(iy, i,)
(iy,i, €{0,1,2,...,n}) are formed using the minimal and maximal average
values, i.e. I, = I,(i1,i3) = [Vinin, Yimax]. In this case, the interval is independent
on the parameter p, what lowers the flexibility of the entire system.

Undoubtedly, in constructing texture defect detection criteria higher-order
statistics (variance, kurtosis, higher-order moments, etc.) can be employed.
Unfortunately, the usage of higher-order statistics considerably increases the
number of regions with intervals of type [V, Yinaxl- Also, experimental studies
have shown that the exploration of higher-order statistics (variance and kurtosis)
does not meet the requirements of texture defect classification.

2.2. Organization of defect localization in texture images

Let us consider a defective texture image Xgor = [Xdef(ml,mz)] with
dimensions of NXN (N =2", ne€eN) and its discrete HT spectrum
Yaer = [Vae £k, k3)]. In order to localize the defect, the image X4 £ is partitioned
into a finite number of the same size 2M™x2™ (me{n—1, n—-2,..})
non-overlapping fragments X ¥1%2) (k,, k, € {2""™, 20" ™ + 1,..,, 2"+ — 1},
Section 2.1.2.1). The discrete HT spectra Y&vk2) = [yKkuka)(y,  yu,)]
(uq,u, =0,1,...,2™ — 1) of the latter fragments are obtained by employing the
HT spectrum Y, of the whole image X,

The transition from the HT spectrum Yy, for the image Xg.f to the HT
spectrum of the image fragment X (k1k2) is realized by applying a newly developed
fast algorithm (Valantinas et al., 2013), namely:

1) The following sets are generated:

SV = {ao, (Xl, ) (Xn_m}, (19)

S = {Bos B1 -+ Bn-m}, (20)
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m-1

3, = (k) U U 3.(0), 5,(Q) = (2%, 2%, + 1, .., 290k, + 1) — 13, (21)

q=1
m-1

=3V %@, %0 = 202 +1,.., 2900+ D- 1 ©2)
q=1
here: ag = kq, as = |as_1/2], s =1,2,..,n—m, and By = k3, B; = |Bt-1/2],
t=12,.,n—m;
2) The HT spectral coefficients Y®*1k2)(0,0), Y®*uk2)(y,,0) and
Yy kuk2)(0,u,) (ug,up = 1,2, ...,2™ — 1) for the fragment X *1%2) are found by
the following expressions:

as—
Yy *1k2)(0,0) = ——VY,4,,(0,0) + G 1) Ly, (s, 0)
’ on—m "def \/— def Qs
& (—1)Bt-1 1 @s—1+B -1 (23)
=) e Va0 + = )_ Yoyt )
— “Laer\Y, Pt — = " ldef\Us,Pt)s
m — 2(3 &= 25+t’
(eukes) 1 (=1)Pt1 .
Y k2 (ul' 0) \/Z—Ydef(kl’ 0) + Z \/_ Ydef(kllﬁt)) (24)

y (aka) (0,u,) = _1 Yaer (0, k3 )+Z%i“ Yaer (a5, k2),  (25)

with all the u;,u, =1,2,...,2™ —1; ki, k; are respectively u;-th and u,-th
elements of sets J; and T, (the numbering of elements in sets J; and J, starts
from one);

3)The remaining HT  spectral  coefficients Y ®vk2)(yy,u,)
(ny,ny =1,2,...,2™ — 1) for fragment X*1¥2) are simply selected from the
spectrum Yy, i.e. Y K2 (uy, u,) = Yy, (ki k3); here ki and k; are respectively
u;-th and u,-th elements of sets J; and J, (the numbering of elements in sets J;
and 33, starts from one).

According to the described fast algorithm, once the discrete HT spectrum
y®uk) (g, k, € (277™, 2™ 4 1, ..., 2"7™+ — 13) for image’s X g fragment
Xkuk2) ig obtained, further image analysis is carried out. The HT spectrum
y(uk2) is divided into non-overlapping regions (Section 2.1.2) Rk1k2)(0,0),
Rkuk2) (i, 0), REk2D(0,i,) and REV*2(iy,i,) (iy, i, € {1,2,...,m}), for
which the following conclusions are correct (provided that the processed image
X ey represents the class of images characterized by smooth texture and quite fine
pattern):
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~The HT coefficient |Y*1¥2)(0,0)| for region R*1*2)(0,0) with the
multiplier 2™™™ falls into (or, escapes) the previously determined interval
I, = ,(0,0) (Section 2.1.2.2);

— Averages of spectral coefficients Y*%2)(i,,0) and Y®vk2)(0,i,)
(i1,i € {1,2,...,m}), for regions R*1*2)(i;,0) and R*1*2)(0,i,), with the
multiplier (v2)"~™ belong (or, do not belong) to the interval I,,(i1,0) and I,, (0, i)
of the criterion;

— Averages Y*0%2) (i, i,) (iy, i, € {1,2, ..., m}) of the spectral coefficients
for the regions R*1%2) (iy, i,) fall into (or, escape) I,, = I,(iy, i5).

Thus, with a fixed probability p, the image fragment X ¥1:¥2) is recognized
as defect-free, provided that at least p(m + 1)2 average dependency for
corresponding o-intervals is met. In other words, for defect localization, the same
texture defect detection criterion can be explored. An illustration of regions
applied to defect localization is provided in Fig. 2.2.

It should be noted that in cases when the requirements for texture are not
met (smoothness, fine print, etc.), the texture defect detection criteria (in the
context of defect localization) should be developed individually for every image
fragment X*vk2)  (k , k, € {277, 20 +1,...,27 ™1 —1}), based on
analogous considerations for the whole texture image (Section 2.1.2.).

When it comes to the usage of higher order DWT in the texture defect
localization process, it has been observed that fast transition from DWT spectrum
of the whole texture image to fragmental spectra of image blocks is no longer
possible, unless some special decorrelation procedures are applied to the DWT in
use (Valantinas et al., 2013).

1,(0,0) 1,(0,n) 1,(0,n—1) 1,(0,m) 1,00,2) | 1,(0,1)
1,(n,0) 1,(n,n) I,(n,n—1) 1,(n,m) 1,(n,2) 1,(n,1)
1,(n-1,0) I, (n=Ln) |l (n=1r=1) 1,(n—1,m) 1,(n=12) | 1,(n-11)
1,(m,0) 1,(m,n) 1,(m,n—-1) 1,(m,m) 1,(m,2) 1,(m,1)
1,(2,0) 1,(2,n) 1,2,n-1) 1,(2,m) 1,(2,2) 1,(2,1)
1,(1,0) 1,(L,n) 1,(L,n=1) 1,(1,m) 1,(1,2) 1,(LY)

Fig. 2.2. Defect detection criterion for image 2™ x2"; for the analysis of 2™ x2™ image
blocks only the white coloured zones with corresponding multipliers are used
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2.3. Chapter conclusions

The discrete Haar wavelet transform allows developing a very effective
defect detection technique for texture images. Due to full localization in space,
this transform accumulates image features in various levels of image detailing.

A texture defect detection technique (system) based on statistical image
analysis in the spectral discrete wavelet domain is proposed. The system is
controllable and flexible with respect to the defect, i.e. it gives an opportunity to
select an appropriate value of a parameter (probability) p which could reduce the
number of incorrectly recognized texture images.

The developed defect detection technique scans the image for (n + 1)
times, i.e. the defect detection criterion is based on multiple image scanning, which
suggests that the results of the analysis are meticulous and correspond with the
information compiled in the image.

The proposed system allows analysing the target regions by paying attention
to the specific image texture. Despite the fact that some of the regions are rejected
in this way, the entire image information is retained.

The described novel technique for defect localization is characterized by
several original ideas. Firstly, a newly developed fast computational algorithm for
the fragment HT spectrum is applied: the majority of spectral coefficients are
simply selected from the HT spectrum of the whole image. Secondly, under certain
conditions, this technique does not require a criterion recalculation. This
dissertation demonstrates that averages of HT spectral coefficients for regions
R(iy, i5), when switching from the image 2" x2" to fragments 2™ x2™, differ in
a specified multiplier (with a minor error ¢).

3. REALISATION OF THE DEFECT DETECTION AND
LOCALIZATION TECHNIQUE FOR TEXTURE IMAGES

3.1. The organization of the experiment

In this part of the research, the following classes of texture images are
employed to assess the overall performance of the defect detection and localization
technique: ceramic tiles, glass sheets and fabric scraps. All sets of texture images
were obtained from the major Lithuanian industrial companies. Examples of the
investigated texture images are provided in Fig. 3.1. Data sets of the first two
classes are compiled of 100 defect-free and 100 defective texture images. The set
of fabric scraps is compiled of 100 defect-free and 60 defective images. All the
analysed images are characterised by a grey light intensity scale, and their size is
256x256 pixels.

The general technique for texture defect detection proposed for grey-scale
images is presented in Fig. 3.2. The defect detection process comprises six main
steps:

1) Obtaining the discrete wavelet spectra (DWT) Y; (j = 1,2, ...,7) for the
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selected defect-free texture images X; (j = 1,2, ...,7);

2) Partitioning the spectrum Y; (j € {1,2,...,7}) into non-overlapping

subsets (regions) R(iy, i) (i1,i, =0,1,...,n);

3) Statistically analysing the spectral coefficients falling into the region

9{(il: lZ) (ill i2 € {0: 1: e ln});

4) Generating the defect detection criterion (o-intervals) I, = I,(iy,i3)

(p € [0.5; 0.99]) for all regions R(iy,i5) (i1,i, =0,1,...,n);
5) Testing the texture image X;o¢;
6) Localising the defect in the defective texture image.

.. . Partitioning of the discrete wavelet
Training set of defect-free texture images

() (b) (©)

Fig. 3.1. Defect-free texture images: (a) ceramic tile; (b) glass sheet; (c) fabric scrap
I—__________________________________'; r- TS TS T T T TS T T T ST TS TS T T T T T T
| o
i i i
i ] NxN ! i i
1 ! |
| ! |
| IDWT |
I X Y,
a L .
| xoo o no
i i i
i [ i
| ! |

spectra into non-overlapping regions

Generating statistically-based defect
detection criteria

Fig. 3.2. The structural scheme of defect detection and localization in texture images
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During the experiment, the defect detection criterion was generated by
selecting 50 defect-free images from each class of texture images. The overall
performance of the texture defect detection technique was evaluated by conducting
five experiments with each group. Each experiment was carried out by randomly
selecting 50 defect-free and 50 defective images both from ceramic tiles and glass
sheets, and respectively 30 images from the class of fabric scraps.

3.2. Experimental analysis of the texture images

The classification results which were obtained by applying the technique
presented in chapter 3.1. They cover all the said five experiments which are
presented in Tables 3.1-3.3, where the parameters are as follows: TP (true
positive) means that the tested defective images are recognized as defective, TN
(true negative) means that defect-free images are recognized as defect-free, FP
(false positive) means that defect-free images are recognized as defective, FN
(false negative) means that defective images are recognized as defect-free.

It is rather evident that the classification results of ceramic tiles (Table 3.1)
indicate that the quality of texture images is determined correctly in all five
experiments (i.e. a good image is recognized as good, and a bad image is
recognized as bad) in more than 92 % of cases, when p = 0.99, and in more than
90 % of cases, when p = 0.95 and p = 0.90. Summarizing all five experiments, it
can be stated that defective images are identified correctly, on average, in 98 % of
cases, while defect-free images, on average, in 95 % of cases.

Table 3.1. Classification of ceramic tiles

Probability, p 1 Seri2a1 number of3 the experinfnt :
TP 100 % 98 % 96 % 98 % 100 %
0.99 FP 2% 2% 8% 4% 4%
’ TN 98 % 98 % 92 % 96 % 96 %
FN 0% 2% 4 % 2% 0%
TP 100 % 98 % 96 % 98 % 100 %
0.95 FP 2% 0% 10 % 4% 10 %
’ N 98 % 100 % 90 % 96 % 90 %
FN 0% 2% 4 % 2% 0%
TP 98 % 90 % 94 % 98 % 100 %
0.90 FP 4% 4% 10 % 2% 6%
’ N 96 % 96 % 90 % 98 % 94 %
FN 2% 10 % 6% 2% 0%

During the analysis of fabric images, their specific texture, i.e. tendency to
regularity, was taken into account. It has been noticed that a more suitable analysis
for the said images should be performed without incorporating regions of the
multi-aspect criterion, which analyse the neighbouring pixels of the texture image.
The following research results for this class were obtained by applying the
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criterion {I, = I,(iy, i,)} (i, i, €{0,2,3,4,5,6,7,8}). The research presented in
Table 3.2 reveals that the best classification results are obtained when probability
p equals 0.975. Then the success rate of texture defect detection
(TP+TN)/(TP+FN+TN+FP) is equal to 0.94. When p = 0.95, the success rate is
0.922 and has a tendency to decrease, with decreasing values of p.

Table 3.2. Classification of fabric products

e Serial number of the experiment

Probability, p 1 5 3 n 5
TP 97 % 93 % 93 % 97 % 93 %
0.99 FP 30 % 33 % 23 % 23 % 30 %
’ TN 70 % 67 % 77 % 77 % 70 %
FN 3% 7% 7% 3% 7%
TP 93 % 90 % 90 % 93 % 90 %
0.975 FP 3% 3% 3% 0% 7%
’ TN 97 % 97 % 97 % 100 % 93 %
FN 7% 10 % 10 % 7% 10 %
TP 90 % 90 % 87 % 87 % 87 %
0.95 FP 3% 3% 3% 3% 7%
’ N 97 % 97 % 97 % 97 % 93 %
FN 10 % 10 % 13 % 13 % 13 %

Experimental analysis of glass sheets (Table 3.3) has shown that this class
is less sensitive to changes in probability p. This can be explained by the fact that
only very small and minor defects (such as scratches) are ignored, while all the
others are recognized.

Table 3.3. Classification of glass products

Probability, p 1 Szerial number ;)f the experin:‘ent -
TP 98 % 96 % 98 % 98 % 100 %
0.99 FP 6 % 0 % 0 % 0% 0%
’ TN 94 % 100 % 100 % 100 % 100 %
FN 2% 4% 2% 2 % 0 %
TP 98 % 96 % 98 % 98 % 100 %
0.95 FP 8 % 6 % 4% 6 % 6 %
’ TN 92 % 94 % 96 % 94 % 94 %
FN 2% 4% 2% 2% 0 %
TP 98 % 96 % 98 % 98 % 100 %
0.90 FP 10 % 8 % 6 % 14 % 12 %
’ TN 90 % 92 % 94 % 86 % 88 %
FN 2% 4% 2% 2% 0 %

The results of defect localization are presented in Fig. 3.3. In all cases the
defective texture image 256x256 was divided into smaller blocks of size 64x64,
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and then each block was analysed. Image fragments which failed to satisfy the
criterion were assumed to be defective and were marked in a darker colour.

a) Ceramic tiles

b)Fabr c scraps

¢) Glass sheets

Fig. 3.3. Texture images with localized defects (p = 0.99, m = 6, n = 8)

3.3. Evaluation of the overall performance of the defect detection technique
for texture images

In order to evaluate the overall performance of the newly developed texture
defect detection technique, three widely used secondary performance parameters
of the system were explored, namely: Accuracy (the success rate of texture defect
detection) = (TP+TN)/(TP+FN+TN+FP), Sensitivity = TP/(TP+FN) and
Specificity = TN/(TN+FP).

The generalized values of the texture defect detection accuracy are provided
in Fig. 3.4. The highest obtained rates are: 0.972, for ceramic tiles; 0.984, for glass
sheets, when p = 0.99; 0.94, for fabric scraps, when p = 0.975. Since the accuracy
values in all image classes tend to decrease, with the decreasing probability p, in
actual applications the p values should be close to 1. Moreover, the average
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success rate (accuracy) of the proposed defect detection technique is 0.965.
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Fig. 3.4. Dependence of the defect detection accuracy on the system’s parameter p
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Fig. 3.5. Dependence of the defect detection sensitivity rate on probability p
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Fig. 3.6. Dependence of the defect detection specificity rate on probability p

Fig. 3.5 and Fig. 3.6 show the dependence of the remaining secondary
parameters (sensitivity and specificity) on probability p. The latter parameters are

23



usually explored to control the risk in the process of texture defect detection: (1) if
there is an interest in the selection of highest quality products (fabric scraps,
ceramic tiles, glass sheets), i.e. in sorting out all defective products, even at the
expense of some defect-free products, the value of p should be chosen in such a
way that sensitivity is close to 1 and specificity less than 1; (2) if there is an interest
in the second-rate products, the value of p should be fixed so that sensitivity is less
than 1 and specificity is close to 1.

For instance, in the case of fabric scraps (Fig. 3.5, Fig. 3.6), for p = 0.99:
Sensitivity = 0.94 and Specificity = 0.72. It means that 28 % of actually defect-free
texture images (however, characterized by negligible defects) are classified as
defective. The remaining images classified as defect-free are of the highest quality.

For p = 0.7, in the class of ceramic tiles (Fig. 3.5 and Fig. 3.6),
Specificity = 1 and Sensitivity = 0.87. Therefore, 13 % of actually defective
images are classified as being defect-free. This fact leads to a preparation
(classification) of second-rate ceramic tiles.

In the case of glass sheets (Fig. 3.5 and Fig. 3.6), it has been found that
Sensitivity = 0.99 for p = {0.825, 0.85, 0.875, 0.9, 0.925, 0.95} and Specificity
varied from 0.85 to 0.94, respectively. It means that the quality (at the same time
percentage) of the classified defect-free images can be controlled, by removing
6 % or more (up to 15 %) of actually defect-free images (perhaps having small
defects).

Algorithms proposed by other authors were also employed to evaluate the
overall performance of the proposed technique. For comparative analysis, the
following methods were selected: 1) the application of VOV profiles with
forest-based learning algorithm (Kwon et al., 2015); 2) the co-occurrence matrix
(Raheja et al., 2013). These systems were realized in the Matlab environment,
together with the proposed original method. Table 3.4 provides the results of
defect detection accuracy.

All the mentioned facts prove that the proposed defect detection technique
is flexible and has a wide range of application possibilities.

Table 3.4. A comparison of the obtained accuracy results for defect detection

Ceramic tiles | Fabric scraps | Glass sheets Average

accuracy
Proposed method 0.972 0.940 0.984 0.965
VOV features 0.971 0.919 0918 0.936
Co-occurrence matrix 0.850 0.593 0.866 0.769

3.4. Chapter conclusions

The results of the experimental analysis obtained for three image classes
(ceramic tiles, fabric and glass sheets) prove that the proposed defect detection
technique is quite versatile and can be applied for analysing various textures.

The research shows that the best classification results for ceramic tiles and
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glass sheets are obtained when a full multi-valued criterion is used, whereas the
class of fabrics requires applying a task-oriented subset of the criterion
(o-intervals).

A comparative analysis of texture defect detection methods reveals that the
newly proposed technique is competitive. A notable advantage is its flexibility
which other known and described texture defect detection methods lack.

Since all the texture defect detection systems are designed for real-time
application, time consumption also plays an important role. The research shows
that the time needed to test a single image, when probability p is fixed, equals
0.028 s and defect localization requires additional 0.04 s. At the same time, a
computational complexity of the image defect detection process was assessed, in
particular 0(9N?), when NXN stands for dimensions of the texture image.

4. APPLICATION OF IMAGE SMOOTHNESS AND SIMILARITY
ESTIMATES TO THE PROCESS OF TEXTURE DEFECT DETECTION

The concepts of image smoothness and image similarity are very common
in digital image processing (fractal image coding, filtering, synthesis and so on).
Incidentally, these concepts have been explored in the ball bearing failure
diagnostics (Vaideliene et al., 2015), where the bearing fault, bearing inner race
and outer race faults were analysed. It was found out that the image smoothness
and similarity estimates might reduce computational tolerance in the signal
analysis systems. On this basis, experiments were done to employ the image
smoothness estimate in the texture image quality analysis as a useful parameter of
visual features.

4.1. Mathematical interpretation of image smoothness and image similarity

Let us take a grey-scale image [X(m,,m;)] (m;,m, € {0,1,...,N —1})
and its discrete (cosine, Fourier, Walsh, etc.) spectrum [Y (k4, k,)]. We are making
an additional assumption that the basis vectors of the discrete transform (DT), i.e.
(DT matrix rows) are arranged by their frequency. Then, the DT coefficient array
{IY (ky, k3)||k? + k3 # 0} can be approximated by a hyperbolic surface:

c
z=z(x,y)=w, (26)

where C is a constant and « is defined to be the smoothness parameter for the
image [X(my,m,)]. To obtain an approximate value (an estimate) of the
smoothness parameter ¢, a fast iterative computational algorithm is applied
(Zumbakis et al., 2004), namely:

(D) a:=0;6:= Spax-

(2) Compute: Yy = Tyenl¥ (ky, k)12,

(3) Find:
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Zy(@) = Y ¥ (kI - Alhy, Ky, @), @7

keH
Zi(a)
A(a)’

here: A(ky, kg, @) = 1/(ky - k3) " A@) = Sien A (ky, kg, @).

(4) If T < 6, then §: = 7. Otherwise, go to step (6).

S) Ifa < Ay, then a:= a + h (h € (0; 0.1)), and go back to step (3).

(6) The image smoothness estimate « is obtained.

The dissertation also considers a fragment U = [U(l,1,)]
(l;,, €{01,..,M —1}) of the image [X(m,,m,)], when the smoothness
parameter value (the estimate) of U is ay. V = U + AU is a new fragment obtained
by assigning small inurement AU to U and a, signifies the smoothness parameter
value of V.

For assessing the fragmental similarity between U and V, a root mean
squared error (metrics) § is used, i.e.

t=1(a) =Ys — (28)

1/2

1 = 2
6=0W V) = z V(L) - UL 1) | . (29)

ll,l2=0

Images U and V are said to be similarif 6 = 6 (U, V) < §, (6, being a priori
fixed positive number).

It has been proven that small changes in pixel values of the fragment U lead
to small changes in the smoothness parameter value ay, i.e.:

GW,V)=6WU,U+AU) <6y = (lay — ayl = |Aay| < €); (30)

here g, = £(6y).

Consequently, the precondition for the similarity of U and V images is
defined by the following relationship (the necessary condition for fragmental
similarity):

(lay — ayl > &) = (6(U,V) > &). €2))

In other words, fragments U and V cannot be similar if their smoothness
differ significantly (in terms of the root mean squared error).

4.2. The general texture defect detection technique

To describe the potential capability and effectiveness of application of the
fragmental image smoothness and fragmental image similarity to the texture defect
detection process, the following considerations are taken into account:

(1) Defect-free texture images NXN (N = 2™, n € N) are analysed. During
this analysis the defect detection criterion is developed. To be more precise, the
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criterion domain is generated in the plane of increments of image smoothness and
image similarity. First of all, by averaging all non-overlapping fragments of size
2!x2! (I < n) of the selected defect-free texture image, a reference fragment
U = [U(my,m,)] (my,m, €{0,1,...,2" — 1}) is generated and its smoothness
parameter ay; is obtained. Then, all the possible fragments V' (of double or triple
size, in comparison with U) of the remaining defect-free texture images are
analysed, i.e. their smoothness estimates a;, are recorded and fragmental similarity
for each pairing “U < V” (in terms of is § = §(U,V)) is determined.

(2) By using all the obtained values, i.e. points (|Aay |, §(U,V)), a “cloud”
is generated in the image smoothness and image similarity increments plane for
each investigated texture image. The centre (|Aay |yiq, 85iq(U, V) of the “cloud”,
for each defect-free texture image, is obtained. Next, the maximum and minimum
values of the centre coordinates (in the context of all defect-free images) are
selected, and a rectangular domain B of texture defect detection criterion is
formed, namely:

B = {(lAaul; s, V))”Aaulmin < |Aayl| < |Aay|max
é\min(U' V)<6(U,V) < 6max(U' N}

here: |Aay|min = min{lAaylyia}, [Aaylmax = max{ldaylyia}, Smin(U,V) =
min{6,iq4(U,V)}, 8max (U, V) = max{6,;a (U, V)}.

(3) The same reference fragment U is compared with all the fragments V.
(of double or triple size, in comparison with U) of the tested texture image X;og;-
The “cloud” is formed and its centre (|Aaty|pig, 8yia(U, Vies)) is found; here
[Aay| = |aU - avtest|. An image X;.q; 1S recognized as defect-free, if this point
(centre) falls into the criterion domain B, and as defective otherwise.

(32

4.3. Experimental research

During the experiment, three classes of texture images 256x256 (ceramic
tiles, fabric scraps, glass sheets) were investigated. For the reference fragment U
of size 16x16 (32x32 or 64%x64), all possible pairings with fragments V of size
32%32 (64%64 or 128%128) of the tested image X;,s; were examined.

For all classes, the domains B of the texture defect detection criteria were
generated. For this purpose, 50 defect-free images from each class were used.
Fig. 4.1 provides all three cases when the tested image (ceramic tile, fabric scrap,
glass sheet) was recognized as defect-free. In all cases, the centre coordinates of
the “cloud”, i.e. the points (|Aay |yiq, (U, Viest)) fell into the respective criterion
domain B. Meanwhile, Fig. 4.2 presents the situations when the tested texture
images were recognized as defective, as points (Aau,6 U, Vtest)) escaped the
domain B of the respective criterion.
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Fig. 4.1. Tested texture image is recognized as defect-free:
(a) ceramic tile; (b) fabric scrap; (c) glass sheet

0.3

In connection with this, it is important to emphasize the high concentration
of points in the “cloud” (Fig. 4.1 and Fig. 4.2) conditioned, undoubtedly, by the
existing strong correlation between image smoothness and image similarity
(expression (30)); Section 4.1.) and regularity of the defect-free texture images.

The further stages of the experiment were carried out in the same way as for
the statistically-based texture defect detection technique (Section 3). Five
experiments were carried out. For each experiment, the defect detection criterion
was developed using a half of the compiled defect-free texture images which were
selected randomly. All experiments used the same criterion domain B which was
formed of the previously distinguished subset of images (Section 3).
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Fig. 4.2. Tested texture image is recognized as defective:
(a) ceramic tile; (b) fabric scrap; (c) glass sheet

Tables 4.1 and 4.3 present the classification results obtained for different
texture surfaces, with variable size of image fragments U and V.

Summing up, the research shows that the best classification results for the
class of ceramic tiles are obtained when the size of U is 16x16 and the size of
fragment IV is 32x32. Meanwhile, the best results for glass sheets and fabric scraps
are obtained when the size of U is 32x32 and the size of V is 64x64. The texture
defect detection accuracy is found to be: 0.95 (ceramic tiles), 0.67 (fabric scraps),
0.96 (glass sheets). It should be noted that the analysis of various size fragments
(U and V) does not indicate any significant changes in the results.
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Table 4.1. Ceramic tile classification results based on fragmentary smoothness and
similarity

16x16 (U), 32x32 (V) | 32x32 (U), 64x64 (V) | 64x64 (U), 128x128 (V)
12345 |1 [2]3[4a[s[1]2]3]4a]5
TP | 100 | 100 | 100 | 100 | 100 | 100 | 100 |98 | 100 |98 | 92 | 94 | 90 | 98 | 96
FP| 8 | 12|10 | 10| 12 |10 | 14 12|10 |8 |10]| 10|10 ] 10 8
TN| 92 | 88 | 90 | 90 | 88 | 90 | 86 | 88| 90 |92 90 | 90 | 90 | 90 | 92
FN| OO | o]0 |o]o|o|2[0 28 6 |10]2]4

Table 4.2. Fabric scrap classification results based on fragmentary smoothness and
similarity

16x16 (U), 32x32 (V) 32x32 (U), 64x64 (V) | 64x64 (U), 128x128 (V)
1 2 131415 1 2 131415 1 2 131415
TP | 40 | 47 | 40 | 37 | 40 | 40 | 53 | 47 | 33 | 43 | 33 |47 |40 |27 |37
FP | 13| 7 | 7 |13|3 |13|7 |7 (133 [3]|10]10) 7 |7
TN |87 193193187197 8719319387197 19719 |9 |93 |93
FN 160 |53 ]160]63]60)60)47 |53 |67 |57 |67 |53]60]73]|63

Table 4.3. Glass sheet classification results based on fragmentary smoothness and
similarity

16x16 (U), 32x32 (V) | 32x32 (U), 64x64 (V) | 64x64 (U), 128x128 (V)
12345123 a5 1[2]3[4]5
TP | 92 | 94 | 86 | 84 |90 | 94 | 96 | 96 | 96 | 96 | 82 | 86 | 78 | 84 | 80
FP | 6 | 8 | 6 | 8 |14 4| 2] 0 | 4|28 |8 |4|10]6
TN | 94 |92 [ 94 | 92 [ 86 | 96 | 98 | 100 | 96 | 98 | 92 | 92 | 96 | 90 | 94
FN|8 |6 |14 6|10/ 6|4 6 |66 |18]14]22][16]20

4.4. Chapter conclusions

The preliminary experimental results show that the established relationships
between image smoothness and image similarity can be employed in the context
of defect detection for texture images.

This proposed approach (method) is best suited for classifying ceramic tile
and glass sheet products which can be characterised as very noisy and/or smooth
enough.

It is important to mention that the theoretical and experimental analysis
indicates minor fragment changes caused by minor changes in the image
smoothness parameter (the necessary image similarity condition). Thus, in
general, the image similarity clause can be also explored to reduce the scale of
computing for the image testing process.

Of course, this method requires extensive additional studies and
optimization procedures to be ready to implement it in a real defect detection
system. First of all, this approach should be implemented using some lower level
programming language.
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In parallels, it can be observed that in this case the computational

complexity of texture defect detection process is 0(6x107N?), for image of
size NXN.

5

. CONCLUSIONS

Most of the texture defect detection methods proposed and described in other
literature sources focus on specific image texture classes. Considering the fact
that the characteristics of textures belonging to the same class can differ
significantly, it is expedient to apply a more flexible (parameterized) defect
detection and localization technique.

The analysis of the overall performance of various discrete wavelet (Haar,
LeGall, Daubechies D4) transform (DWT) application for testing texture
images reveals that the discrete Haar wavelet transform provides better test
results by on average 7-21 % in comparison with other DWT. This can be
explained by the fact that Haar wavelets are “square” shaped, i.e. are not
continuous. It is regarded as an advantage when analysing signals (images)
which are characterised by sudden transitions (contrast changes). The latter
condition is mainly common for the defective texture images.

Since the decision about the quality of the texture surface (image) in the
proposed defect detection technique is based on a multiple image scanning by
simultaneously applying a different two-dimensional discrete Haar wavelet
filter, a relatively high (83-98 %) and competitive image testing accuracy is
guaranteed.

A novel algorithm for computing discrete Haar spectra for the selected texture
image fragments is proposed. The algorithm appears to be 10-20 times faster
than direct estimation procedures. This is particularly important in real-time
applications (defect localization in texture images, locally progressive image
coding, etc.).

An important fact which allows improving the effectiveness of the whole
texture defect detection and localization process (in terms of time input up to
20 %) is a possibility to use a priori generated subsets of multi-valued defect
detection criterion for defect localization on surfaces which are characterised
by fine or regular texture.

The performed experimental research revealed that the application of the
newly developed statistically-based multi-valued texture defect detection
criterion allows obtaining a relatively high mean accuracy of image (surface)
quality evaluation, in particular (system parameter p = 0.99): 0.98 (class of
glass sheets); 0.97 (class of ceramic tiles); 0.83 (class of textile products
characterised by a strongly expressed directional texture). The obtained results
are assumed to be good and competitive in comparison with the defect
detection methods presented in other literature sources.
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7.

This dissertation also provides an alternative texture defect detection technique
by employing the image fragment smoothness and similarity relations. Even
though this approach is implementable, the obtained results of texture quality
testing are considered to be worse (2—13 %) in comparison with the results
recorded in the spectral Haar wavelet domain, i.e. by applying a
multiple-valued defect detection criterion.
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REZIUME

Skaitmeniniy vaizdy analizei skiriamas démesys per pastaruosius
desimtmecCius gerokai iSaugo. Vaizdai, kaip geriausiai Zzmogui suvokiama
informacijos forma, giliai prasiskverbé ] tokias veiklos sritis kaip medicina,
mikroskopija, astronomija, robotika, gynybos pramon¢ ir kt.

Zmogiskojo vaizdy suvokimo proceso interpretacija, analizé ir apdorojimas
bei analogisko veikimo mechanizmo realizavimas kompiuteriu sparéiai auga.
IStobuléjus kompiuterinei technikai, atsirado galimybé realizuoti bei praktiskai
taikyti sudétingus vaizdy apdorojimo metodus ir technologijas. Labai svarbu
pakeisti zmogaus veikla tose srityse, kurios reikalauja ilgo, jtempto sudétingomis
salygomis zmogaus darbo. Viena tokiy sriciy yra kokybés kontrolés
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optimizavimas pramoniniame procese, daznai besiremiantis vizualiagja
skaitmeniniy vaizdy analize.

Kokybés kontrolé — labai svarbus aspektas Siandieninéje konkurencingoje
pramonéje. Kokybés savoka apibrézia tarptautinis standartas ISO 9000 — tai
,visuma produkcijos savybiy ir charakteristiky arba paslaugy, kurios uztikrina
galimybe patenkinti nustatytus arba numanomus poreikius*.

Vienas i$ blidy siekiant pagerinti galutinio produkto kokybe¢ yra uztikrinti
kiekvieno gamybos proceso etapo efektyvumg. [vairiy pramonés gaminiy
pavirSiaus (teksthriniy vaizdy) defektai daugiausia aptinkami Zmonéms —
inspektoriams padedant. Deja, toks biidas yra labai subjektyvus, létina visg
gamybos procesa, todél jis tampa brangus ir atimantis daug laiko. Nustatyta, jog
zmogaus efektyvumas, nustatant gaminio kokybe, siekia 6075 %. Todél aktualu
§i procesa automatizuoti bei kurti efektyvius metodus tekstiiriniy pavirsiy (vaizdy)
defektams nustatyti.

Defekty aptikimo metodika tekstliriniuose vaizduose, tokiuose kaip
popierius, stiklo lakstai, keraminés plytelés, audiniai, oda, plastiko produkcija, yra
glaudziai susijusi su skaitmeniniy vaizdy apdorojimo procediiromis. Literattiroje
sitiloma jvairiy poziiiriy ir technologijy Siai problemai spresti. Visus juos galima
suskirstyti j kelias grupes, biitent: statistinis, spektriné tekstiiros analizé, modeliais
grindziamas ir strukttrinis poziiiriai. Taip pat galima i$skirti metodus, kurie skirti
aptikti specifinius tekstiiros defektus: skyles, démes, jtrikimus, spalvos tong ir
pan. Nors $iuo metu didéja poreikis kurti sistemas, kurios geba analizuoti bei
identifikuoti jvairias tekstiiras ir jy plataus spektro defektus.

Darbe pasitlyta nauja, originali tekstiriniy vaizdy (pavir$iy) defekty
aptikimo metodika, kuri realizuota spektrinéje diskreCiyjy bangeliy srityje. Beje,
diskreciosios bangelés Siuo metu yra vienas populiariausiy ir efektyviausiy
analizés metody. Pasiiillyta tekstiiros defekty aptikimo metodika sékmingai
pritaikyta realiy tekstiiriniy pavirSiy tyrimams bei jy kokybés kontrolei.

Darbo objektas — diskreCiyjy bangeliy teorija grindziami tekstiiriniy pavirSiy
(vaizdy) klasifikavimo metodai.

Darbo tikslas — sukurti lankscig teksttiriniy vaizdy kokybés jvertinimo spektrinéje
diskreciyjy bangeliy srityje metodika bei adaptuoti ja realioms gaminiy kokybés
testavimo sistemoms.

Darbo uzdaviniai

Darbo tikslui pasiekti iskelti tokie uzdaviniai:

(1) suformuoti tekstiiros defekty aptikimo spektrinéje diskreciyjy bangeliy
srityje kriterijus bei pateikti metodika;

(2) iSanalizuoti jvairiy diskreéiyjy bangeliy transformacijy (DBT)
panaudojimo tekstiiriniy vaizdy kokybei tirti galimybes;

(3) sudaryti DBT spektro greito apskai¢iavimo pasirinktiems tekstiirinio
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vaizdo fragmentams procediira;

(4) pasitlyti efektyvia tekstiiros defekty lokalizavimo metodika;

(5) sukurti parametrizuotg sistema, leidziancig testuoti tekstiirinius vaizdus
ir lokalizuoti juose aptiktus defektus;

(6) istirti  sukurtos sistemos efektyvumg atskiroms tekstiiriniy vaizdy
klaséms (Saligatvio plytelés, stiklo gaminiai, tekstilés audiniai ir kt.);

(7) atlikty tyrimy kontekste aptarti kitus galimus teksttiros defekty aptikimo
problemos sprendimo btidus.

Tyrimy metodai ir programiné jranga

Darbe taikomi matriciniai skaiCiavimai, diskreciyjy bangeliy analizés
metodai bei matematinés statistikos priemonés (parametry jverciai, statistinés
hipotezes).

Eksperimentai realizuoti Matlab R2014a aplinkoje.

Darbo mokslinis naujumas

Disertacijoje pasiiilyta keletas naujy sprendimy, uztikrinanciy efektyvia
tekstiros defekty aptikimo spektrinéje diskreciyjy bangeliy srityje sistemos
realizacijg. Jie tokie.

(1) Pasitilyta tekstiiros defekty aptikimo metodika remiasi daugkartiniu
apdorojamo tekstiirinio vaizdo skenavimu, o visi zinomi (literattiroje sutinkami)
metodai apsiriboja vienkartine vaizdo (ar jo diskreCiojo bangeliy spektro, jei
taikoma bangeliy transformacija) analize. Daugkartinis vaizdo skenavimas leidzia
suformuoti daugiareik§mj tekstiiriniy vaizdy defekty aptikimo kriterijy, kai
sprendimas apie apdorojamo tekstiirinio vaizdo kokybe siejamas su procentiniu
palankiy ir nepalankiy teigiamai iSvadai apie vaizdo kokybe priimti kriterijaus
reik§miy santykiu.

(2) Panaudota  statistiné  tikslingai orientuota tekstiirinio vaizdo
diskreciosios Haar transformacijos koeficienty poaibiy analizé leido realizuoti
tekstiros defekty aptikimo sistema (metodika), kuri geba valdyti kokybisky ir
nekokybisky vaizdy klasifikavimo procesa, tokiu biidu uztikrinant sistemos
lankstuma.

(3) Tekstuiros defektams lokalizuoti taikomi tie patys defekty aptikimo
tekstliriniuose vaizduose kriterijai bei analizés principai, t. y. panaudojami jau
suformuoto daugiareikSmio teksttiros defekty aptikimo kriterijaus poaibiai.

(4) Pasiiilytas naujas atskiry tekstirinio vaizdo fragmenty diskreciojo Haar
spektro apskaic¢iavimo algoritmas. Algoritmo efektyvuma ir greitj salygoja tai, jog
didzioji dalis spektriniy Haar koeficienty tiesiog atrenkami i§ viso vaizdo Haar
spektro. Tai ypac svarbu tais atvejais, kai teksttiros defekto lokalizavimas vyksta
realiuoju laiku.
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Ginamieji teiginiai

(1) Sprendimas dél tekstiirinio vaizdo kokybés priimamas remiantis
daugkartinio vaizdo skenavimo rezultatais, kai kiekviengkart panaudojami
skirtingi dvimaciai diskreCiyjy bangeliy filtrai. Tai uztikrina gana auksta
(83-98 %) testavimo tiksluma.

(2) Pasitilytas originalus diskreCiojo Haar spektro apskaiCiavimo
pasirinktiems tekstiirinio vaizdo fragmentams algoritmas, jvertinus greicio i$losj,
yra 10-30 karty efektyvesnis uz tiesiogines fragmentinio spektro radimo
procediiras.

(3) Aptikti tekstliros defektai lokalizuojami, panaudojant tikslingai
atrinktus jau suformuoto daugiareikSmio defekty aptikimo kriterijaus poaibius.

(4) Eksperimento rezultatai, gauti taikant naujai sukurta tekstiiros defekty
aptikimo ir lokalizavimo sistemg, patvirtino pasitlyty sprendimy patraukluma ir
efektyvuma.

Darbo rezultaty praktiné reik§mé

Disertacijoje pateikti sprendimai — vaizdy teksttros analizé, panaudojant
dvimacius diskreéiyjy bangeliy filtrus, originalus pasirinkty vaizdo fragmenty
Haar spektro apskaiCiavimo algoritmas, tekstiiros defekty aptikimo kriterijaus
formavimo principai gali buti sékmingai panaudoti ne tiktai tekstiiros defekty
aptikimo ir lokalizavimo procesams, bet ir kitose su skaitmeniniy vaizdy
apdorojimu susijusiose srityse, tokiose kaip objekty lokalizavimas gardeling
struktiirg turin¢iuose vaizduose, lokaliai progresyvus vaizdy kodavimas, vaizdo
pozymiy i$skyrimas ir pan.

Bitina pabrézti, jog pasiiilyta tekstliros defekty aptikimo ir lokalizavimo
metodika leidzia klasifikuoti tekstlirinius vaizdus bei lokalizuoti juose aptiktus
defektus realivoju laiku. Tai ypa¢ svarbu, kai kalbama apie automatizuotas
pramonines tekstiiriniy pavirsiy testavimo sistemas.

Disertacijos rezultaty aprobavimas

Disertacijos tema paskelbti 6 moksliniai straipsniai, i$ jy 4 tarptautiniuose
zurnaluose su citavimo indeksais, referuojamuose Mokslinés informacijos
instituto (ISI) pagrindiniame sarase, kiti — konferencijy medziagoje. Tyrimai
disertacijos tema pristatyti 2 tarptautinése ir 2 nacionalinése konferencijose.

Disertacijos struktiira

Daktaro disertacijg sudaro jvadas, 4 pagrindiniai skyriai, i§vados, literatiiros
sgrasas ir moksliniy publikacijy sgraSas. Disertacijos teksto apimtis — 104
puslapiai. Disertacijos pagrindinéje dalyje yra 35 iliustracijos, 13 lenteliy.
Rengiant disertacija pasitelkti 145 literatiiros saltiniai.
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