
Copyright © 2025 The Author. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

echT PressScience

DOI: 10.32604/cmc.2024.057431

REVIEW

Patterns in Heuristic Optimization Algorithms: A Comprehensive Analysis

Robertas Damasevicius*

Center of Real Time Computer Systems, Kaunas University of Technology, Kaunas, 44249, Lithuania
*Corresponding Author: Robertas Damasevicius. Email: robertas.damasevicius@ktu.lt
Received: 17 August 2024 Accepted: 12 December 2024 Published: 17 February 2025

ABSTRACT

Heuristic optimization algorithms have been widely used in solving complex optimization problems in various
fields such as engineering, economics, and computer science. These algorithms are designed to find high-quality
solutions efficiently by balancing exploration of the search space and exploitation of promising solutions. While
heuristic optimization algorithms vary in their specific details, they often exhibit common patterns that are essential
to their effectiveness. This paper aims to analyze and explore common patterns in heuristic optimization algorithms.
Through a comprehensive review of the literature, we identify the patterns that are commonly observed in these
algorithms, including initialization, local search, diversity maintenance, adaptation, and stochasticity. For each
pattern, we describe the motivation behind it, its implementation, and its impact on the search process. To
demonstrate the utility of our analysis, we identify these patterns in multiple heuristic optimization algorithms.
For each case study, we analyze how the patterns are implemented in the algorithm and how they contribute to
its performance. Through these case studies, we show how our analysis can be used to understand the behavior
of heuristic optimization algorithms and guide the design of new algorithms. Our analysis reveals that patterns in
heuristic optimization algorithms are essential to their effectiveness. By understanding and incorporating these
patterns into the design of new algorithms, researchers can develop more efficient and effective optimization
algorithms.
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1 Introduction
1.1 Background and Motivation

Optimization problems arise in various fields such as engineering, economics, and computer sci-
ence. Finding the optimal solution to these problems is often difficult and time-consuming, especially
when the problem involves a large search space or multiple objectives [1–4]. As these problems become
increasingly complex, finding optimal or near-optimal solutions through traditional deterministic
methods has proven to be both time-consuming and computationally infeasible [5,6]. This has led
to the broad adoption of heuristic optimization algorithms, which are specifically designed to explore
large and complex search spaces efficiently. These algorithms effectively balance the need to search
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for new solutions (exploration) with the focus on refining known, promising solutions (exploitation)
[7,8]. However, despite their effectiveness, the design of these algorithms remains a challenging task,
often requiring a deep understanding of both the problem domain and the algorithmic strategies
involved [2,9].

To address this challenge, researchers developed heuristic optimization algorithms, which are
designed to find high-quality solutions efficiently by balancing exploration of the search space
and exploitation of promising solutions [7,8,10]. While heuristic optimization algorithms have been
successful in solving many complex optimization problems, the design of these algorithms remains a
challenging task [11,12].

One approach to designing effective heuristic optimization algorithms is to identify the common
patterns that are essential to their effectiveness [13,14]. These patterns can provide guidance on how
to design new algorithms and improve the performance of existing ones [6,15].

This research is driven by the need for an analysis of common patterns in heuristic optimization
algorithms, as these patterns play a crucial role in enhancing algorithmic efficiency and effectiveness
across various complex optimization tasks. The goal is to provide a structured understanding of these
patterns, not only in terms of their functions but also in how they influence the search process to
achieve optimal solutions. This analysis aims to bridge gaps in the existing literature by offering a
framework that highlights the underlying principles guiding the design and adaptation of heuristic
algorithms. We identify core patterns—such as initialization, local search, diversity maintenance,
adaptation, and stochasticity—that recur across different algorithmic families. For each pattern, we
provide specific motivations behind its use, the techniques employed for its implementation, and the
measurable impact it has on the search dynamics and final outcomes of the algorithms. By examining
these components, we aim to contribute new insights that can guide the development of more adaptive,
resilient, and high-performing heuristic optimization algorithms tailored to a variety of complex
optimization problems.

1.2 Previous Studies

Previous research efforts on analyzing search patterns and styles in heuristic optimization algo-
rithms have been focused on identifying and analyzing individual algorithms or families of algorithms,
such as evolutionary algorithms, swarm intelligence algorithms, and simulated annealing, among
others [16,17]. For instance, some studies have analyzed the impact of different search operators, such
as mutation, crossover, and selection, on the performance of evolutionary algorithms [18,19]. Others
have focused on identifying the key parameters and settings that affect the behavior and performance
of swarm intelligence algorithms, such as the number of agents, the size of the search space, and the
communication topology [20,21]. There have been efforts to classify heuristic optimization algorithms
based on their search patterns or styles. For example, some studies have classified algorithms as either
exploration-based or exploitation-based, depending on whether they prioritize exploring new areas
of the search space or exploiting known solutions [22,23]. Other studies have classified algorithms as
either global or local, depending on whether they focus on finding the global optimum or a good local
optimum [24,25].

The behavior of individuals in nature can be mapped to search operators in optimization
algorithms, and that the learning process between individuals can be translated to the learning
process between different solutions in optimization [26,27]. They also emphasize the importance
of competition, which can be translated to competing for the best fitness value in optimization
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[28,29]. Their approach is aimed at leveraging the insights from natural systems to develop effective
optimization algorithms [30,31].

Recent studies have explored the integration of heuristic optimization algorithms with machine
learning techniques, particularly reinforcement learning methods like Q-learning and Deep Q-
Networks (DQN). This hybridization leverages the strengths of both approaches: heuristic optimiza-
tion as ability to effectively search complex spaces and machine learning as capability to adaptively
learn and make decisions based on accumulated knowledge. For example, Q-learning, a model-free
reinforcement learning algorithm, has been successfully combined with heuristic optimization patterns
to dynamically adjust search strategies in response to changing environments, showing promise in
applications like resource allocation and scheduling [32]. DQN, which uses deep neural networks to
approximate Q-values, has been integrated with heuristic algorithms to enhance the balance between
exploration and exploitation in large search spaces [33]. Recent research demonstrates that combining
DQN with optimization patterns like local search and adaptive mechanisms can significantly improve
convergence rates and solution quality, especially in dynamic and high-dimensional problem spaces
[34]. These advances highlight the potential of combining reinforcement learning with heuristic
patterns to address increasingly complex optimization challenges, positioning hybrid approaches as a
promising direction for future developments in adaptive optimization algorithms.

These previous research efforts have provided valuable insights into the behavior and performance
of heuristic optimization algorithms and have helped to inform the design of new algorithms [35,36].
However, there is still a need for more comprehensive and systematic analyses of heuristic optimization
patterns.

1.3 Research Objective and Scope

The objective of this research paper is to analyze and explore the common patterns in heuristic
optimization algorithms. The paper aims to provide a comprehensive understanding of these patterns,
including their motivation, implementation, and impact on the search process. The scope of this paper
includes a comprehensive review of the literature on heuristic optimization algorithms, with a focus on
the identification and analysis of common patterns. We will examine the impact of these patterns on the
search process, including their contributions to the efficiency and effectiveness of the algorithms. We
also apply these patterns to three case studies: Krill Herd optimisation (KHO), Red Fox Optimisation
(RFO) and Coronavirus Herd Immunity Optimizer (CHIO) algorithms. Through these case studies,
we analyze how the patterns are implemented in the algorithms and how they contribute to their
performance.

1.4 Novelty and Contributions

The novelty and contributions of this paper are:

• A comprehensive analysis of heuristic optimization algorithms by examining common patterns
across different algorithms. This analysis allows for a better understanding of the strengths and
limitations of different optimization algorithms.

• A detailed description of how common patterns, such as initialization, local search, diversity
maintenance, adaptation, stochasticity, population-based search, memory-based search, and
hybridization, are implemented in KHO, RFO and CHIO algorithms. This analysis provides a
deeper understanding of the inner workings of these algorithms.



1496 CMC, 2025, vol.82, no.2

2 Identification and Description of Patterns in Heuristic Optimization Algorithms
2.1 Pattern Description Scheme

The pattern description scheme in heuristic optimization algorithms is inspired by the need to
systematically capture and convey the core principles, techniques, and impacts of recurring strategies
used in solving complex optimization problems [36,37]. In essence, the pattern description scheme
draws inspiration from software engineering, where design patterns are utilized to describe general
reusable solutions to common problems [38,39]. In the context of heuristic optimization, patterns
are identified and documented to provide a framework that guides the design and implementation
of optimization algorithms across various domains [40]. An inspiration for this scheme comes from
the field of artificial intelligence and machine learning, where the behavior of algorithms is often
analyzed and refined through the understanding of underlying patterns [41,42]. By identifying and
categorizing these patterns, researchers and practitioners can better understand the strengths and
weaknesses of different heuristic approaches [17]. This understanding facilitates the development of
more robust and efficient algorithms, as the patterns provide a blueprint for solving specific types
of optimization problems [43]. These patterns offer a way to encapsulate best practices, enabling the
transfer of knowledge and experience across different applications and domains [44].

The scheme is also inspired by the concept of modularity in algorithm design, where complex
systems are broken down into smaller, manageable components or modules [45,46]. In heuristic
optimization, each pattern can be seen as a modular component that addresses a particular aspect
of the optimization process, such as initialization, local search, or diversity maintenance [47,48]. By
isolating and documenting these components, the pattern description scheme allows for the flexible
combination and adaptation of patterns to suit the needs of specific optimization tasks. This modular
approach not only enhances the reusability of algorithms but also fosters innovation by enabling the
exploration of new combinations of patterns [49].

Another inspiration for the pattern description scheme is the need for clarity and consistency
in the communication of algorithmic strategies [50,51]. The scheme provides a standardized way to
describe the motivation, implementation, and impact of each pattern, ensuring that the information
is accessible and understandable to both researchers and practitioners [52]. This standardization is
important in the context of interdisciplinary collaboration, where different fields may employ varied
terminologies and approaches. By offering a common language for describing heuristic optimization
patterns, the scheme promotes the exchange of ideas and techniques across disciplines, leading to the
advancement of the field as a whole [53].

Finally, the pattern description scheme is inspired by the ongoing evolution of heuristic optimiza-
tion algorithms and the recognition that these algorithms must continually adapt to new challenges
and technological advancements [54]. As optimization problems become more complex and diverse,
the need for a dynamic and adaptable framework for algorithm design becomes increasingly important
[55]. The pattern description scheme addresses this need by providing a structured yet flexible approach
to documenting and applying optimization patterns, allowing for the continuous refinement and
expansion of heuristic strategies in response to emerging trends and challenges in the field [56].

Here we propose a heuristic optimisation algorithm pattern description scheme that could be used
to describe common behaviours of heuristic optimization algorithms:

• Pattern name: A descriptive name for the pattern
• Motivation: A brief explanation of the problem that the pattern is intended to solve
• Impact: A description of how the pattern affects the search process
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• Form: A formal definition of the pattern, if possible
• Algorithm: A detailed pseudocode description of the pattern
• Variants: Any variants or modifications of the pattern that have been proposed or implemented
• Examples: Examples of the pattern in use in specific heuristic optimization algorithms or

problems
• References: Citations to relevant literature on the pattern and its use in heuristic optimization.

2.2 Identification and Outlook of Patterns

The identification of patterns in heuristic optimization algorithms was achieved through a
comprehensive and systematic review of the existing literature, coupled with a detailed analysis of
various optimization algorithms across multiple domains. The process began by examining a broad
range of heuristic optimization techniques, including evolutionary algorithms, swarm intelligence
methods, simulated annealing, and other nature-inspired approaches. By scrutinizing the underlying
mechanisms of these algorithms, the study aimed to uncover recurring strategies and structures that
contribute to their effectiveness. The initial phase of the research focused on gathering a wide array
of scholarly articles, technical reports, and case studies that describe the design, implementation,
and application of heuristic optimization algorithms. Once the relevant literature was collected, the
researchers employed a pattern recognition methodology to distill common elements from the diverse
set of algorithms. This involved breaking down each algorithm into its constituent components and
analyzing the roles these components play in the search process.

Based on the above process, the following patterns were identified:

• Initialization pattern: Many heuristic optimization algorithms begin by initializing the solution
randomly or using some other heuristic. This allows the algorithm to explore a wide range of
solutions and avoid getting stuck in local optima [57].

• Local Search pattern: Heuristic optimization algorithms often use local search techniques to
improve the quality of the solutions. Local search involves making small changes to the current
solution and evaluating the new solution. If the new solution is better, it replaces the current
solution. Local search can be repeated multiple times to further improve the solution [58].

• Diversity Maintenance pattern: Maintaining diversity in the population of solutions is impor-
tant in many heuristic optimization algorithms. This is because diversity helps the algorithm
explore a wider range of solutions and avoid premature convergence. Techniques such as niching
and crowding are commonly used to maintain diversity [59].

• Adaptation pattern: Many heuristic optimization algorithms adapt their search strategy based
on the performance of the solutions found so far. For example, if the algorithm is finding good
solutions quickly, it may increase the intensity of the search. Conversely, if the algorithm is
struggling to find good solutions, it may decrease the intensity of the search to explore a wider
range of solutions [60].

• Stochasticity pattern: Heuristic optimization algorithms often introduce some degree of
stochasticity in the search process. This can help the algorithm explore a wider range of
solutions and avoid getting stuck in local optima. Examples of stochastic techniques include
randomization of the search direction, random perturbations of the solutions, and random
selection of solutions for further evaluation [61].

• In population-based search pattern, multiple candidate solutions are maintained simultane-
ously and evolve over time. The population can be updated using techniques such as mutation,
crossover, and selection. Population-based search pattern is effective in problems with complex
landscapes or multiple optima [62].
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• Memory-based search pattern involves storing information about the search process to guide
future search. This can be done by maintaining a history of previous solutions or by using a
memory-based search technique such as tabu search or simulated annealing [63].

• Hybridization pattern involves combining two or more different optimization algorithms to
create a new algorithm [64]. This can lead to improved performance by combining the strengths
of different algorithms. For example, a genetic algorithm may be combined with a local search
algorithm to create a hybrid algorithm that benefits from both global and local search [65].

• Constraint handling pattern: Many optimization problems have constraints that must be
satisfied. Constraint handling techniques can be used to ensure that the solutions generated
by the algorithm are feasible and satisfy the constraints [66].

• Fitness landscape analysis pattern: The fitness landscape of an optimization problem refers
to the relationship between the fitness of a solution and the values of its parameters. Fitness
landscape analysis techniques can be used to gain insight into the properties of the fitness
landscape and design more effective optimization algorithms [67].

These patterns are not exhaustive, and different heuristic optimization algorithms may use differ-
ent combinations of these patterns or other patterns altogether. However, these patterns are common
in many heuristic optimization algorithms and provide a useful starting point for understanding the
search process.

3 Common Patterns in Heuristic Optimization Algorithms
3.1 Initialization Pattern

3.1.1 Motivation

The motivation behind the Initialization pattern in heuristic optimization algorithms is to generate
a diverse set of initial solutions for the optimization process. The initial solutions serve as the starting
point for the search process, and they can have a significant impact on the quality of the final solution
[57,68]. Random initialization is a commonly used approach in heuristic optimization algorithms. It
generates solutions by randomly selecting values for each variable within the defined search space [69].
Other initialization techniques may also be used, such as constructing solutions using domain-specific
knowledge or heuristics [70]. The goal of the Initialization pattern is to ensure that the search process
is not biased towards a specific region of the search space and to increase the chances of finding a
high-quality solution [71]. By generating a diverse set of initial solutions, the algorithm can explore a
wider range of solutions and avoid getting stuck in local optima [72].

3.1.2 Implementation

The Initialization pattern is a commonly used pattern in heuristic optimization algorithms. It is
used to initialize the search process by generating an initial solution or population of solutions.

The Initialization pattern can be described in pseudocode in Algorithm 1.

Algorithm 1: Initialization pattern algorithm
1: function Initialize
2: S ← initial solution
3: f best ← evaluate(S)
4: for i ← 1 to N do
5: Si ← random solution

(Continued)



CMC, 2025, vol.82, no.2 1499

Algorithm 1 (continued)
6: f i ← evaluate(Si)
7: if f i < f best then
8: S ← Si

9: fbest ← fi

10: end if
11: end for
12: return S
13: end function

This algorithm initializes the search process by generating a set of N random solutions and
evaluating their quality. The best solution is then used as the initial solution for the optimization
algorithm. The exact method of generating the initial solution(s) can vary depending on the specific
optimization problem and the heuristic algorithm being used. The goal of the Initialization pattern
is to provide a starting point for the search process that allows the algorithm to explore a wide
range of solutions and avoid getting stuck in local optima. This approach allows the algorithm to
explore a diverse set of candidate solutions and avoid getting stuck in local optima. The algorithm
can be modified to use different initialization strategies, such as using a heuristic to generate the initial
solution or using a set of previously known good solutions as a starting point.

3.1.3 Impact on Search Process

The Initialization pattern (Fig. 1) has a significant impact on the search process of a heuristic
optimization algorithm. Since the algorithm starts with a randomly generated or heuristic-based initial
solution, the quality of the initial solution has a direct impact on the quality of the final solution
obtained by the algorithm. If the initialization generates a good initial solution, the algorithm may
converge quickly to a high-quality solution. On the other hand, if the initialization generates a poor
initial solution, the algorithm may take a longer time to converge or may even get stuck in a suboptimal
solution. Therefore, a well-designed initialization strategy can significantly improve the performance
of a heuristic optimization algorithm.

The initialization pattern is also important for ensuring diversity in the population of solutions.
A good initialization strategy should generate diverse initial solutions to ensure that the algorithm
explores a wide range of solutions and avoids getting stuck in local optima.
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Figure 1: Initialization pattern

3.2 Local Search Pattern

3.2.1 Motivation

The Local Search pattern focuses on refining existing solutions by exploring their immediate
neighborhoods [73]. The primary motivation behind this pattern is to enhance the quality of solutions
by making incremental improvements [74]. In many optimization problems, particularly those with a
large search space, it can be computationally expensive to evaluate every possible solution. Therefore,
the Local Search pattern offers a practical strategy by allowing the algorithm to start with an initial
solution and iteratively explore nearby solutions to find better alternatives [75]. Local Search is
particularly valuable in scenarios where solutions are densely packed, and small adjustments can
yield significant improvements. The approach leverages the idea that the optimal solution is likely
to be located close to a good starting point [76]. This is especially true for problems characterized by
a smooth fitness landscape, where small changes in the solution can result in better outcomes. The
Local Search pattern can help mitigate the risk of becoming trapped in local optima by enabling the
algorithm to explore various neighborhoods around the current solution [77]. By adopting a systematic
search strategy that includes mechanisms to escape local optima, such as allowing for random jumps
to less explored areas of the search space, the algorithm can improve its chances of converging to a
global optimum [78]. Therefore, the algorithm can effectively navigate the search space, often leading
to high-quality solutions without the need for exhaustive searches.
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3.2.2 Implementation

The Local Search pattern is a heuristic optimization pattern that aims to improve a given solution
by iteratively exploring its neighborhood solutions. It can be described by Algorithm 2. In this pattern,
the initial solution is first set as the current solution s. Then, the algorithm iterates over each neighbor
solution of s, which can be obtained by making small modifications to s. For example, in a continuous
optimization problem, a neighbor solution can be obtained by adding a small random value to each
variable of s. In a discrete optimization problem, a neighbor solution can be obtained by swapping
the values of two variables. If a neighbor solution n has better fitness than the current best solution
s′, then s′ is updated to n. This process is repeated until no better neighbor solution is found, at which
point the algorithm returns the improved solution s′.

The Local Search pattern can be applied as a standalone optimization method or can be used as a
subroutine in more complex optimization algorithms. It is particularly effective in optimizing problems
with a relatively smooth fitness landscape. Here is the pseudocode for the Local Search pattern:

Algorithm 2: Local Search pattern algorithm
1: procedure LocalSearch(x)
2: improved ← True
3: while improved do
4: improved ← False
5: for y ∈ neighborhood(x) do
6: if f (y) < f (x) then
7: x ← y
8: improved ← True
9: break
10: end if
11: end for
12: end while
13: return x
14: end procedure

Here, the procedure LocalSearch takes an initial solution x and iteratively searches its neigh-
borhood for a better solution. It uses a Boolean variable improved to keep track of whether any
improvement was made in each iteration. It repeatedly loops over all the neighbors of x and checks if
a neighbor y has a lower objective function value than x. If so, y is considered an improvement over x,
and x is updated to y. The loop continues until no improvement is found, at which point the procedure
returns the current best solution x.

3.2.3 Impact on Search Process

The Local Search pattern can have a significant impact on the search process in heuristic
optimization algorithms. By performing local search around a candidate solution, the algorithm can
refine and improve the solution by exploring the neighborhood of the current solution (Fig. 2). This
can help to avoid getting stuck in local optima and to improve the overall quality of the solutions found.
The impact of the Local Search pattern can vary depending on the specifics of the algorithm and the
problem being solved. In some cases, local search may be crucial for finding high-quality solutions,
while in other cases it may be less important or even detrimental to the search process. Overall, the
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Local Search pattern can be a powerful tool for improving the effectiveness and efficiency of heuristic
optimization algorithms.

Figure 2: Local Search pattern

3.3 Diversity Maintenance Pattern

3.3.1 Motivation

The motivation behind the Diversity Maintenance pattern in heuristic optimization algorithms is
to prevent premature convergence to suboptimal solutions and to ensure that the algorithm explores
a wide range of solutions in the search space [79,80]. Without diversity maintenance, the algorithm
may quickly converge to a local optimum or a small subset of the solution space, which can limit the
quality of the solutions that are found [81,82]. By maintaining diversity in the population of solutions,
the algorithm can continue to explore different regions of the solution space and avoid getting stuck
in local optima [83,84].
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Diversity maintenance can also help the algorithm to identify multiple optimal solutions, rather
than just a single global optimum. This is particularly important in multi-objective optimization
problems, where there may be multiple solutions that are optimal in different ways [83,85].

The motivation behind the Diversity Maintenance pattern is to improve the quality and robustness
of the solutions found by heuristic optimization algorithms, and to enable the algorithm to explore a
wide range of solutions in the search space [86,87].

3.3.2 Implementation

The Diversity Maintenance pattern refers to the practice of maintaining diversity in the population
of solutions throughout the optimization process. This is typically achieved by ensuring that the
population contains solutions that are not only high quality, but also diverse in terms of their
characteristics or attributes. Formally, diversity maintenance can be defined as a constraint that is
imposed on the optimization algorithm to ensure that the population of solutions does not converge
too quickly towards a single optimal solution. This can be achieved by introducing mechanisms that
promote exploration of different regions of the solution space, such as:

• Niching: This involves partitioning the population into subgroups or niches, where each niche
represents a different region of the solution space. Solutions are then evaluated based on their
fitness within their respective niches, and only the fittest solutions from each niche are allowed
to reproduce and create the next generation.

• Crowding: This involves selecting a subset of the population that represents the diversity of
solutions and removing solutions that are too similar to each other. This ensures that the
population is not dominated by a few highly similar solutions.

• Fitness sharing: This involves reducing the fitness of a solution based on its similarity to other
solutions in the population. This encourages the population to explore different regions of the
solution space and prevents the population from converging too quickly.

Here is an example algorithm for Diversity Maintenance pattern in pseudocode given as
Algorithm 3.

Algorithm 3: Diversity Maintenance pattern algorithm
1: Initialize population P
2: Evaluate fitness of each solution in P
3: Set t = 0
4: while stopping criterion not met do
5: Sort solutions in P by fitness
6: Select Nelite solutions with highest fitness
7: Select Nnew solutions for random initialization
8: Generate Nmutate mutated solutions
9: Evaluate fitness of new solutions
10: Add new solutions to P
11: Remove Nreplace solutions with lowest fitness from P
12: Apply diversity maintenance technique to remaining solutions in P
13: t = t + 1
14: end while
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In this algorithm, the Diversity Maintenance pattern is implemented by applying a diversity
maintenance technique to the remaining solutions in the population P. The specific technique used
will depend on the algorithm being used, but could include methods such as niching or crowding.
The algorithm starts by initializing the population P and evaluating the fitness of each solution.
The algorithm then enters a loop where it iteratively improves the population by generating new
solutions, evaluating their fitness, and adding them to the population while also removing solutions
with low fitness. In addition to this basic optimization process, the algorithm also includes a step
where a diversity maintenance technique is applied to the population. This helps to ensure that the
population of solutions remains diverse, even as the algorithm converges towards a solution. The
algorithm continues until a stopping criterion is met, such as reaching a maximum number of iterations
or achieving a desired level of solution quality. At this point, the best solution found by the algorithm
is returned as the output.

3.3.3 Impact on Search Process

The impact of the Diversity Maintenance pattern on the search process in heuristic optimization
algorithms is significant. By maintaining diversity in the population of solutions, the algorithm is able
to explore a wider range of solutions and avoid getting stuck in local optima. This can lead to better
quality solutions and a more robust search process. Diversity maintenance can also help the algorithm
to identify multiple optimal solutions, rather than just a single global optimum. This is particularly
important in multi-objective optimization problems, where there may be multiple solutions that are
optimal in different ways. However, maintaining diversity in the population of solutions can also have
some drawbacks. For example, it can increase the computational complexity of the algorithm, as more
solutions need to be evaluated and stored. Maintaining diversity can also make it more difficult for
the algorithm to converge to a high-quality solution, as the search process is more exploratory and
less focused.

The impact of the Diversity Maintenance pattern on the search process depends on the specific
implementation of the algorithm and the characteristics of the optimization problem being solved.
In general, however, maintaining diversity is an important strategy for improving the quality and
robustness of heuristic optimization algorithms.

Diversity maintenance (Fig. 3) is an important pattern in heuristic optimization algorithms
because it allows the algorithm to explore a wider range of solutions and avoid premature convergence
to suboptimal solutions. By maintaining diversity, the algorithm can continue to search for better
solutions even after it has found a good solution, which can lead to further improvements in the quality
of the solutions.

3.4 Adaptation Pattern

3.4.1 Motivation

The motivation behind the Adaptation pattern in heuristic optimization is to improve the
efficiency and effectiveness of the search process by dynamically adjusting the search strategy based on
the performance of the algorithm [88,89]. In traditional heuristic optimization algorithms, the search
strategy is fixed throughout the search process, which can limit the algorithm’s ability to find good
solutions [90]. By adapting the search strategy, the algorithm can focus on promising areas of the
search space and avoid wasting time exploring areas that are unlikely to yield good solutions [91,92].
For example, if the algorithm is finding good solutions quickly, it may increase the intensity of the
search by using more aggressive operators or focusing on a smaller region of the search space [93].



CMC, 2025, vol.82, no.2 1505

Conversely, if the algorithm is struggling to find good solutions, it may decrease the intensity of the
search to explore a wider range of solutions [94]. Adaptation can also help the algorithm overcome
challenges such as changing problem landscapes or noisy objective functions [95]. By monitoring
the performance of the algorithm and adjusting the search strategy accordingly, the algorithm can
quickly adapt to these challenges and continue to search for good solutions [96]. The motivation
behind the Adaptation pattern is to make heuristic optimization algorithms more flexible, robust, and
efficient by dynamically adjusting the search strategy based on the problem and the performance of the
algorithm [97].

Figure 3: Diversity Maintenance pattern

3.4.2 Implementation

The Adaptation pattern is not an algorithm by itself but rather a general approach to adjust the
behavior of a heuristic optimization algorithm during its execution. Specific adaptation mechanisms
must be defined and implemented for each particular algorithm.

However, we can provide a general overview of the Adaptation pattern:

1. Define a set of parameters or settings that control the behavior of the algorithm.
2. Monitor the performance of the algorithm as it searches for a solution.
3. Use performance information to adjust the parameters or settings in order to improve the

algorithm’s performance.
4. Repeat Steps 2 and 3 until a satisfactory solution is found or a stopping criterion is met.
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The specific adaptation mechanisms can vary widely depending on the algorithm and the problem
being solved. Some examples of adaptation mechanisms include:

• Changing the search space or the search direction based on the current state of the search.
• Adjusting the step size or the mutation rate in a local search algorithm.
• Increasing or decreasing the population size in a population-based algorithm.
• Adjusting the probability distribution used to generate new solutions.
• Changing the selection mechanism used to choose the next solution to evaluate.

The goal of the Adaptation pattern is to allow the algorithm to dynamically adjust its behavior
to the problem being solved and the progress it has made so far, to improve its performance and find
better solutions.

Algorithm 4: Adaptation pattern algorithm
1: procedure Adaptation
2: Initialize algorithm parameters and population
3: Evaluate initial population
4: t ← 0
5: bestSolution ← best solution in population
6: while termination criterion not met do
7: t ← t + 1
8: if t modulo adaptation interval = 0 then
9: Update algorithm parameters based on performance of solutions
10: end if
11: Apply heuristic search operator(s) to population
12: Evaluate new population
13: bestNew ← best solution in population
14: if bestNew is better than bestSolution then
15: bestSolution ← bestNew
16: end if
17: end while
18: return bestSolution
19: end procedure

In Algorithm 4, the Adaptation pattern is implemented by periodically updating the algorithm
parameters based on the performance of the solutions found so far. The adaptation interval determines
how often the parameters are updated. In addition to adaptation, the algorithm also includes
initialization, evaluation, and heuristic search operators. The best solution found is tracked and
returned as the output of the algorithm.

3.4.3 Impact on Search Process

The Adaptation pattern is a commonly used heuristic optimization pattern (Fig. 4) that allows
the algorithm to dynamically adjust its search strategy based on the performance of the solutions
found. This pattern is motivated by the fact that different problems require different search strategies,
and a fixed search strategy may not be effective for all problems. By adapting the search strategy,
the algorithm can more effectively explore the search space and find better solutions. The impact of
the Adaptation pattern on the search process can be significant. By dynamically adjusting the search



CMC, 2025, vol.82, no.2 1507

strategy, the algorithm can avoid getting stuck in local optima and explore a wider range of solutions.
This can lead to better performance and faster convergence to good solutions. Adaptation can help the
algorithm maintain diversity in the population of solutions, which is important for avoiding premature
convergence. Adaptation can also introduce additional complexity into the algorithm, particularly if
the adaptation mechanism is not well-designed. Careful consideration must be given to the design of
the adaptation mechanism to ensure that it is effective and does not introduce unintended side effects.

Figure 4: Adaptation pattern
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3.5 Stochasticity

3.5.1 Motivation

The motivation behind the Stochasticity pattern in heuristic optimization patterns is to introduce
randomness or probabilistic decisions in the search process. This pattern is used in heuristic optimiza-
tion algorithms to avoid being trapped in local optima and explore the solution space more effectively
[98,99]. Stochasticity allows the algorithm to take risks and try new search directions, which can lead
to the discovery of better solutions [100]. In addition, stochasticity can help the algorithm escape from
plateaus or other regions of the search space where the objective function is flat or nearly constant
[101,102]. By introducing stochasticity, the algorithm can sample a wider range of solutions and make
progress towards better solutions [103,104].

3.5.2 Implementation

The Stochasticity pattern (Algorithm 5) is a heuristic optimization pattern that involves introduc-
ing some degree of randomness or chance in the search process. This can help the algorithm explore a
wider range of solutions and avoid getting stuck in local optima. The degree of randomness introduced
can vary from completely random search to partially randomized search, where only certain aspects of
the search process are randomized. In addition to random perturbation, other stochastic techniques
such as randomization of the search direction and random selection of solutions for further evaluation
can be used to introduce randomness in the search process.

Algorithm 5: Stochasticity pattern algorithm
1: procedure Stochasticity
2: Initialize solution x
3: while termination criterion not met do
4: Generate random perturbation �x
5: Evaluate solution x + �x
6: if improved solution found then
7: Set x = x + �x
8: end if
9: end while
10: end procedure

In this algorithm, we start by initializing the solution, and then we repeatedly generate random
perturbations to the solution and evaluate the new solutions. If a new solution is found that is better
than the current solution, we update the solution. This introduces stochasticity into the search process,
as the random perturbations allow the algorithm to explore a wider range of solutions.

3.5.3 Impact on Search Process

The Stochasticity pattern (Fig. 5) has a significant impact on the search process in heuristic
optimization algorithms. By introducing randomness and probability into the search process, it helps
the algorithm explore a wider range of solutions and avoid getting stuck in local optima. Stochastic
techniques can be used in various parts of the algorithm, such as the initialization, the generation
of new solutions, the selection of solutions for further evaluation, and the local search process. For
example, in the initialization phase, the solutions can be generated randomly, with a certain probability
of each solution being selected. In the generation of new solutions, stochastic techniques can be used to
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add randomness to the search direction or to perturb the current solution randomly. In the selection of
solutions for further evaluation, random selection can be used to avoid bias towards certain solutions.
In the local search process, stochastic techniques can be used to add noise to the search direction or to
perturb the current solution randomly. This can help the algorithm explore a wider range of solutions
and avoid getting stuck in local optima.

Figure 5: Stochasticity pattern
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The Stochasticity pattern plays an important role in balancing exploration and exploitation in the
search process, which is crucial for finding high-quality solutions in heuristic optimization algorithms.

3.6 Population-Based Search

3.6.1 Motivation

The Population-based search pattern aims to enhance the optimization process by leveraging
the collective knowledge and experiences of a group of candidate solutions. In many optimization
scenarios, the optimal solution is not readily apparent and can be challenging to locate through
a single search method. By employing a population-based approach, the algorithm can explore a
more extensive search space and potentially discover superior solutions compared to single-solution
strategies [105,106]. This approach also helps prevent premature convergence by maintaining diversity
among the solutions [107,108].

3.6.2 Implementation

Population-based search is a prevalent pattern in heuristic optimization algorithms [65]. The
core concept is to maintain a population of candidate solutions and utilize the interactions between
these solutions to guide the search toward optimal outcomes [106]. Typically, the population is
initialized either randomly or through heuristic methods, with the search process focusing on iteratively
improving the quality of the solutions within the population [57]. During each iteration, the algorithm
generates a new set of candidate solutions by applying various search operators, such as mutation,
crossover, and selection, to the existing population. These new solutions are evaluated based on their
fitness, which informs the subsequent update of the population. The design of the search operators is
crucial, as it fosters diversity within the population, thereby reducing the risk of the algorithm getting
trapped in local optima.

Population-based search can be enhanced by incorporating adaptive mechanisms that modify the
parameters of the search operators in response to the algorithm’s performance [109]. For instance, if the
algorithm shows signs of rapid convergence, the mutation rate may be increased to encourage further
exploration [110]. This pattern has been successfully applied across various heuristic optimization
frameworks, including genetic algorithms, particle swarm optimization, and differential evolution,
among others [111]. The population-based search pattern can be described as follows:

1: Initialize population P with N random solutions

2: Evaluate fitness of each solution in P

3: Set generation counter g = 1

4: while g ≤ G do

5: Select parents from P using a selection strategy

6: Generate offspring by applying genetic operators to parents

7: Evaluate fitness of offspring

8: Merge P and offspring into a combined population Q

9: Select new population P from Q using a selection strategy

10: Evaluate fitness of new population P

11: g = g + 1
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12: end while

13: Return best solution found in P

In this algorithm, the population of solutions is represented by the variable P, which is initialized
with N random solutions in Line 1. The fitness of each solution in P is evaluated in Line 2. The
algorithm then enters a loop that iterates for a maximum G generations (Lines 4–12). In each
generation, the algorithm selects parents from the population using a selection strategy (Line 5). The
parents are used to generate offspring by applying genetic operators such as mutation and crossover
(Line 6). The fitness of the offspring is evaluated (Line 7). The offspring are then merged with the
original population into a combined population Q (Line 8). The new population P is selected from Q
using a selection strategy (Line 9), and the fitness of the new population is evaluated (Line 10). The
generation counter g is incremented (Line 11), and the algorithm proceeds to the next generation until
the maximum number of generations is reached. Finally, the best solution found in P is returned as
the output of the algorithm (Line 13).

3.6.3 Impact on Search Process

The population-based search pattern (Fig. 6) can have a significant impact on the search process
in heuristic optimization algorithms. By maintaining a diverse population of solutions and allowing
for interaction between individuals, population-based search can help the algorithm explore a wider
range of solutions and avoid getting stuck in local optima. This pattern can also help the algorithm
converge more quickly to high-quality solutions by sharing information between individuals.

The use of the population-based search can also make the algorithm more robust to changes in
the problem landscape. If the problem landscape changes during the search process, some individuals
in the population may become less fit or even become completely invalid solutions. However, the use
of a diverse population can help ensure that the algorithm is still able to find high-quality solutions
by exploring alternative regions of the search space. Therefore, the population-based search pattern
can have a positive impact on the search process by promoting diversity, sharing information between
individuals, and improving the robustness of the algorithm.

3.7 Memory-Based Search

3.7.1 Motivation

The motivation behind the Memory-based search pattern is to improve the search process by using
information from previous iterations to guide the search towards promising regions of the solution
space. By maintaining a memory of the best solutions found so far, the algorithm can avoid revisiting
unpromising areas and focus on exploring areas that are likely to yield better solutions [112,113]. This
can lead to faster convergence and improved quality of the solutions [114]. Memory-based search is
particularly useful in problems where the objective function is noisy or where the search space is large
and complex [115,116].
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Figure 6: Population-based search pattern

3.7.2 Implementation

Memory-based search pattern involves storing information about previous solutions and using
it to guide the search towards better solutions. The main motivation behind this pattern is that good
solutions often have similar characteristics and are in similar regions of the search space. By using
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information about previous solutions, the algorithm can avoid exploring unpromising regions of the
search space and focus on the areas that are more likely to contain good solutions.

The implementation of the Memory-based search pattern typically involves maintaining a mem-
ory of the best solutions found so far, as well as the corresponding regions of the search space. This
memory can be used in various ways, such as:

• Intensification: If the algorithm finds a new solution that is similar to a previously discovered
good solution, it can intensify the search in the corresponding region of the search space. This
can be done by increasing the local search intensity, or by using specialized search operators
that are tailored to the characteristics of the region.

• Diversification: If the algorithm is struggling to find new good solutions, it can use the memory
to diversify the search. This can be done by selecting solutions from the memory that are
dissimilar to the current solution and exploring the corresponding regions of the search space.

• Restart: If the algorithm gets stuck in a local optima, it can use the memory to perform a restart.
This involves selecting a solution from the memory and using it as the starting point for a new
search.

The pseudocode for the Memory-based search pattern is presented in Algorithm 6.

In this algorithm, the memory M stores a set of previously generated solutions. The algorithm
begins by initializing the memory and a current solution S. Then, it generates a candidate solution Sc
and compares its objective function value to that of the current solution S. If Sc has a lower objective
function value, it replaces S and adds S to the memory. Otherwise, it adds Sc to the memory. After
each iteration, the algorithm selects a solution from the memory and updates the current solution S
to the selected solution. This helps the algorithm maintain a diverse set of solutions and avoid getting
stuck in local optima. The algorithm continues until a termination criterion is met, such as a maximum
number of iterations or a sufficient improvement in the objective function value. Finally, the algorithm
returns the best solution found during the search process.

3.7.3 Impact on Search Process

The Memory-based search pattern (Fig. 7) in heuristic optimization algorithms involves utilizing
the information obtained from previous searches to guide the search towards better solutions. This
pattern is motivated by the fact that previous search experiences can provide valuable insights into the
search space and help avoid revisiting unpromising areas.

Algorithm 6: Memory-based search algorithm
1: procedure Memory-based search
2: Initialize memory M
3: Initialize current solution S
4: while termination criterion not met do
5: Generate candidate solution Sc

6: if f (Sc) < f (S) then
7: Add S to memory M
8: Set S to Sc

9: else
10: Add Sc to memory M
11: end if

(Continued)
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Algorithm 6 (continued)
12: Select solution from memory M
13: Update S to selected solution
14: end while
15: return S
16: end procedure

Figure 7: Memory-based search pattern

By incorporating memory-based search, the algorithm is able to learn from past experiences
and use this information to guide the search towards promising regions of the search space. This
can significantly improve the efficiency and effectiveness of the search process, as the algorithm
is able to avoid repeating unsuccessful search paths and focus on promising areas. Memory-based
search can help the algorithm escape local optima and find better solutions. By storing information
about previous search experiences, the algorithm is able to remember promising solutions that were
previously found and explore the search space around them in more detail.
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The Memory-based search pattern can be combined with other patterns, such as population-based
search and hybridization, to further improve the search performance. Memory-based search can have
a significant impact on the search process by improving the efficiency, effectiveness, and robustness of
the algorithm.

3.8 Hybridization

3.8.1 Motivation

The motivation behind the hybridization pattern in heuristic optimization algorithms is to leverage
the strengths of different algorithms or techniques and overcome their weaknesses to achieve better
results. In many cases, a single algorithm or technique may not be sufficient to solve complex
optimization problems, or may become trapped in local optima and fail to find the global optimum
[117,118]. By combining two or more algorithms or techniques, the hybrid algorithm can benefit
from their complementary strengths and overcome their weaknesses. For example, one algorithm may
be good at global exploration but slow to converge, while another algorithm may be good at local
exploitation but prone to getting stuck in local optima. By combining these two algorithms, the hybrid
algorithm can explore a wider range of solutions and quickly converge to good solutions [119,120].
Another motivation behind the hybridization pattern is to enhance the robustness of the optimization
process. By using multiple algorithms or techniques, the hybrid algorithm is less vulnerable to the
performance fluctuations of individual algorithms or techniques. This is particularly important
in noisy or dynamic optimization problems where the quality of the solutions may change over
time [121,122].

The motivation behind the hybridization pattern is to improve the effectiveness and efficiency
of the optimization process by combining different algorithms or techniques in a synergistic
way [123,124].

3.8.2 Implementation

The hybridization pattern is a pattern in heuristic optimization algorithms where two or more dif-
ferent algorithms or techniques are combined to improve the overall performance of the optimization
process. The motivation behind this pattern is to leverage the strengths of each individual algorithm
or technique to overcome their weaknesses and achieve better results. The hybridization pattern
involves combining two or more algorithms or techniques to form a new algorithm or technique that
incorporates the strengths of each individual component. The combination can be done in various
ways, such as running the individual algorithms sequentially, running them in parallel, or alternating
between them at different stages of the optimization process.

The hybridization pattern can be used in a variety of contexts, such as combining different
optimization algorithms, combining optimization algorithms with machine learning techniques, or
combining optimization algorithms with mathematical programming techniques. The choice of algo-
rithms or techniques to combine depends on the problem being solved and the characteristics of the
individual algorithms or techniques. The impact of the hybridization pattern on the search process can
be significant, as it allows for a more diverse and robust exploration of the search space. By combining
different algorithms or techniques, the hybrid algorithm is able to benefit from the strengths of each
individual component and overcome their weaknesses, resulting in improved convergence, solution
quality, and efficiency.
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Algorithm 7 presents the Hybridization pattern. In this algorithm, we first initialize the population
P using some heuristic or randomization technique. Then, we repeat a cycle of operations until a
stopping criterion is met. During each cycle, we first apply local search to a subset of the solutions in
P to improve their quality. Then, we apply crossover and mutation operators to the solutions in P to
generate new solutions. We evaluate the fitness of the new solutions and select the best solutions from
P and the new solutions to form the next generation. Finally, we return the best solution found during
the search.

Algorithm 7: The hybridization pattern algorithm
1: Initialize population P using some heuristic or random method
2: Evaluate the fitness of each individual in P
3: while not stopping criterion met do
4: Apply local search techniques to a subset of P
5: Perform crossover and mutation operations on P to create new individuals
6: Evaluate the fitness of each new individual
7: Select individuals for the next generation using a combination of fitness and diversity

measures
8: Apply adaptation techniques to adjust the search strategy based on the performance

of the solutions found so far
9: end while

3.8.3 Impact on Search Process

The Hybridization pattern (Fig. 8) combines different optimization techniques to enhance the
search process. The use of local search can help to refine promising solutions, while the use of crossover
and mutation can introduce diversity and explore new areas of the search space. By combining these
techniques, the Hybridization pattern can be more effective at finding high-quality solutions than any
single technique alone.

The impact of hybridization on the search process can be significant. By combining different
optimization algorithms or techniques, hybridization can improve the exploration and exploitation
of the search space, leading to better-quality solutions. Hybridization can also help overcome the
limitations or weaknesses of individual algorithms. For example, one algorithm may be good at
exploring the search space but may struggle to converge to a good solution, while another algorithm
may be good at exploitation but may get stuck in local optima. By combining these algorithms, the
hybrid algorithm can leverage the strengths of both and overcome their weaknesses. The Hybridization
pattern can also enable the use of complementary search strategies. For instance, a population-based
search algorithm may be combined with a memory-based search algorithm, where the population-
based algorithm explores the search space globally, and the memory-based algorithm exploits the
promising regions found by the population-based algorithm. The impact of hybridization on the search
process can be highly positive, leading to improved quality of solutions, faster convergence, and better
exploration of the search space.
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Figure 8: Hybridization pattern

3.9 Constraint Handling

3.9.1 Motivation

The Constraint Handling pattern is motivated by the fact that many real-world optimization
problems involve constraints that need to be satisfied. These constraints could be hard constraints
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that must be satisfied for a solution to be valid, or soft constraints that represent preferences that
should be optimized while satisfying the hard constraints [125,126]. In such cases, it is important for
optimization algorithms to take these constraints into account during the search process to ensure that
the solutions found are feasible and acceptable [127,128]. The Constraint Handling pattern provides a
systematic approach for incorporating constraints into the search process, and can improve the quality
of solutions and efficiency of the search process [129,130].

3.9.2 Implementation

The Constraint Handling pattern is a set of techniques used in heuristic optimization algorithms
to handle constraints imposed by the problem. The pattern typically involves handling constraints in
a way that ensures feasible solutions are generated, and unfeasible solutions are either discarded or
repaired.

The Constraint Handling pattern can be described by Algorithm 8. This algorithm iteratively
solves a constrained subproblem that minimizes the objective function subject to the violated con-
straints at the current solution. The algorithm terminates when all constraints are satisfied, or the
maximum number of iterations is reached. The function gi(x) returns the value of the i-th constraint
function at x, and the constraints are considered violated if their value is greater than zero.

The Constraint Handling pattern (Fig. 9) can be used in conjunction with other heuristic opti-
mization patterns to improve the search process, such as Initialization, Local Search, and Diversity
Maintenance. By ensuring that feasible solutions are generated, the Constraint Handling pattern can
help to guide the search towards better solutions, while avoiding infeasible regions of the search space.

Algorithm 8: The Constraint Handling pattern algorithm
Require: f (x): objective function, gi(x): i-th constraint function, x0: initial solution,

max_iter: maximum number of iterations
Ensure: x∗: best solution found
1: function ConstraintHandling(f , g1, g2, . . . , gm, x0, max_iter)
2: x∗ ← x0

3: k ← 0
4: while k < max_iter do
5: Evaluate f (x∗)
6: if All constraints are satisfied at x∗ then
7: return x∗

8: end if
9: Find violated constraints: gi(x∗) > 0 for some i
10: Solve the constrained subproblem: minx∈Rn f (x) subject to gi(x) ≤ 0 for all violated

constraints
11: Update x∗

12: k ← k + 1
13: end while
14: return x∗

15: end function
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Figure 9: Constraint Handling pattern

3.9.3 Impact on Search Process

The Constraint Handling pattern is aimed at improving the search process of optimization
algorithms in constrained optimization problems. By incorporating constraints into the optimization
process, this pattern ensures that the solutions generated by the algorithm satisfy the constraints
imposed by the problem.

The impact of the Constraint Handling pattern on the search process can be significant, especially
in constrained optimization problems. By incorporating the constraints, the algorithm is able to
generate feasible solutions, thereby reducing the search space and improving the efficiency of the
search process. By ensuring that the solutions generated satisfy the constraints, the algorithm is able
to produce high-quality solutions that are likely to be acceptable in practice. The impact of the
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Constraint Handling pattern on the search process may depend on the specific approach used to
handle the constraints. Different methods, such as penalty functions, feasibility-based methods, and
constraint handling techniques based on evolutionary algorithms, have been proposed in the literature,
and their effectiveness may vary depending on the problem characteristics and the algorithm being
used. Therefore, careful consideration and selection of the appropriate constraint handling approach
is important for achieving optimal performance in constrained optimization problems.

3.10 Fitness Landscape Analysis

3.10.1 Motivation

The motivation behind the Fitness Landscape Analysis pattern is to gain insights into the problem
structure and characteristics of the fitness landscape of a given optimization problem. The fitness
landscape is a visualization of the relationship between the objective function and the search space, and
it provides information on how difficult the optimization problem is and what search strategies might
be effective [131,132]. By analyzing the fitness landscape, researchers can gain valuable knowledge
that can be used to design better optimization algorithms or adapt existing ones to improve their
performance on specific problem instances [133,134]. The fitness landscape analysis can also be used to
guide the selection of appropriate operators and parameters for an optimization algorithm [135,136].

3.10.2 Implementation

The Fitness landscape pattern describes the analysis of the problem’s fitness landscape to gain
insight into the problem structure and search process. The fitness landscape refers to the mapping of
the search space onto the fitness or objective function values. This pattern is motivated by the idea that
understanding the problem’s fitness landscape can lead to the development of more effective search
algorithms.

A fitness landscape is a function that maps a set of candidate solutions to fitness value. More
formally, let S be the set of all possible solutions to an optimization problem, and let f : S → R
be the fitness function that assigns a real-valued fitness score to each solution s ∈ S. The fitness
landscape is then defined as the mapping L : S → Rn that maps each solution s to a vector L(s) =
(f (s), c1(s), c2(s), . . . , cn−1(s)), where ci(s) is the number of solutions that are at a Hamming distance of
i from s.

The fitness landscape captures not only the fitness score of each solution, but also the structure
of the search space, by counting the number of neighboring solutions at different distances. This
information can be used to guide the search process, by identifying regions of the search space that
are likely to contain good solutions, or by characterizing the overall topology of the search space.

The fitness landscape pattern can be described as Algorithm as follows:

1. Input: Problem instance P.
2. Output: Analysis of the fitness landscape.
3. Generate a set of representative solutions from the search space.
4. Evaluate the fitness function for each of the representative solutions.
5. Analyze the fitness values of the representative solutions to identify the characteristics of the

fitness landscape, such as the number and location of local optima, the degree of ruggedness,
and the presence of plateaus or ridges.

6. Use the insights gained from the fitness landscape analysis to inform the design of the search
algorithm, such as selecting appropriate search operators or tuning the algorithm parameters.
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The fitness landscape pattern (Fig. 10) does not provide a specific algorithm for solving the
optimization problem but rather a framework for analyzing the problem structure to guide the
development of more effective search algorithms.

Figure 10: Fitness landscape analysis pattern
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3.10.3 Impact on Search Process

The Fitness landscape analysis pattern has a significant impact on the search process in heuristic
optimization. By analyzing the fitness landscape, it is possible to gain insights into the characteristics
of the search space, such as the presence of local optima, the smoothness of the landscape, and the
degree of epistasis. This information can be used to guide the design of the search algorithm and
to make informed decisions about the search strategy. For example, if the fitness landscape is found
to be rugged with many local optima, it may be necessary to employ a search algorithm that is able to
escape local optima, such as a metaheuristic that uses population-based search. On the other hand,
if the landscape is found to be relatively smooth, a simpler optimization algorithm such as gradient
descent may be sufficient.

The Fitness landscape analysis pattern can improve the efficiency and effectiveness of the search
process by providing valuable information about the search space that can be used to tailor the search
algorithm to the specific problem at hand.

4 Case Studies
4.1 Overview of Heuristic Optimization Algorithms

Heuristic optimization algorithms are computational methods used to find approximate solutions
to complex optimization problems. These problems often involve finding the optimal solution to a
problem with a large number of variables and constraints, and in many cases, the solution space is too
vast to search exhaustively [137,138]. Heuristic optimization algorithms are based on the principles of
natural systems, such as evolution, swarm behavior, and survival of the fittest. These algorithms are
designed to strike a balance between exploration of the search space and exploitation of promising
solutions [139]. In other words, these algorithms try to find the optimal solution by exploring as much
of the search space as possible while also exploiting the most promising areas of the search space [117].

There are many types of heuristic optimization algorithms, including genetic algorithms, par-
ticle swarm optimization, simulated annealing, ant colony optimization, and differential evolution.
Each algorithm has its own strengths and weaknesses and is designed to solve specific types of
problems [140,141].

The general workflow of heuristic optimization algorithms can be described as follows. First, the
algorithm initializes the search process by creating a population of potential solutions. These solutions
are randomly generated and are represented as a set of variables or decision variables [142]. The next
step is to evaluate the fitness of each solution by calculating the objective function value. The objective
function is the function that the algorithm is trying to optimize [143]. After the fitness evaluation, the
algorithm applies various operators to the population, such as mutation, crossover, and selection, to
create new solutions. These operators are designed to mimic the principles of natural selection and
evolution [144].

The newly generated solutions are then evaluated using the objective function, and the process
continues until the stopping criteria are met. The stopping criteria can be a maximum number of
iterations, reaching a predefined fitness level, or running out of computational resources [145].

The motivation for using Krill Herd Optimization (KHO), Red Fox Optimization (RFO), and
Coronavirus Herd Immunity Optimizer (CHIO) as case studies in this paper lies in their representation
of diverse and innovative approaches within the field of heuristic optimization, each inspired by
different natural processes. KHO is based on the biological principles of krill herding behavior, empha-
sizing global search through environmental sensing and local search through individual movements,
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making it a prime example of a bio-inspired algorithm. RFO, inspired by the hunting strategies of
red foxes, offers a distinct approach that combines exploration and exploitation in a dynamic search
space. RFO has been applied in medical imaging [146]. CHIO, modeled on the concept of herd
immunity from epidemiology, introduces a unique mechanism of solution propagation and immune
response, showcasing how heuristic optimization can be creatively adapted from various scientific
domains. CHIO has been used for various optimization problems, including power scheduling [147].
By analyzing these diverse algorithms, the study aims to illustrate the applicability and effectiveness
of common optimization patterns across different problem-solving paradigms, thereby enriching the
understanding of heuristic optimization design.

4.2 Krill Herd Optimisation (KHO)

4.2.1 Description of KHO

Krill Herd Optimization (KHO) is a swarm intelligence-based heuristic optimization algorithm
that mimics the behavior of a krill herd [148]. The Krill Herd Optimization (KHO) algorithm is given
in Algorithm 9. It models the movement and behavior of the krill in the herd. The KHO algorithm
(Algorithm 9) models the collective behavior of the krill herd to guide the search for the optimal
solution to the optimization problem. By adjusting the parameters in the equations, such as the step
size and weighting coefficients, the KHO algorithm can be tailored to different optimization problems
and solution spaces.

Algorithm 9: KHO algorithm
Require: Fitness function f (�x), population size N, maximum number of iterations MaxIter
1: Initialize krill population �x1, �x2, . . ., �xN randomly within the search space
2: Calculate the initial fitness values f 1 = f ( �x1), f 2 = f ( �x2), . . ., f N = f ( �xN)
3: for t = 1 to MaxIter do
4: Calculate the movement and behavior of each krill individual:
5: for i = 1 to N do
6: Calculate the step size β based on the distance to other krill individuals
7: Calculate the direction vector �di based on the distance to the food source and

the other krill individuals
8: Generate the random step vector �→ri

9: Update the position of krill i using Eq. (1) as: �xi ← �xi + β�di + ��ri

10: end for
11: Perform krill herding:
12: for i = 1 to N do
13: Calculate the weighting coefficients ωij based on the distance between krill

individuals
14: Calculate the movement vector �fij based on the distance and the difference in fitness

between krill i and j
15: Update the position of krill i using Eq. (2) as: �xi ← �xi + β

∑N

j=1ωij
�fij

16: end for
17: Perform feeding:
18: for i = 1 to N do

(Continued)
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Algorithm 9 (continued)

19: Calculate the feeding vector �Sj based on the difference in fitness between krill i and
the best krill in the herd

20: Update the position of krill i using Eq. (3) as: �xi ← �xi + β�si

21: end for
22: Calculate the fitness values of the new positions: f 1 = f ( �x1), f 2 = f ( �x2),. . . ,

f N = f ( �xN)
23: end for

Ensure: The best solution found in the population

4.2.2 Patterns of KHO

KHO combines elements of swarm intelligence, evolutionary algorithms, and local search to find
high-quality solutions to optimization problems. Here are some of the key patterns implemented in
KHO:

• Initialization pattern: In KHO, the initial population of solutions is generated randomly, with
each krill (i.e., solution) represented as a vector of decision variables.

• Local Search pattern: KHO uses a local search mechanism called krill neighborhood search
(KNS) to improve the quality of the solutions. KNS selects a subset of the krill in the population
and performs a local search around each krill to improve its fitness. The best solution found in
this local search is then added to the population.

• Diversity Maintenance pattern: KHO uses a diversity maintenance mechanism called krill
movement to maintain diversity in the population. Krill movement involves randomly perturb-
ing the position of each krill in the population to encourage exploration of different regions of
the search space.

• Adaptation pattern: KHO includes several adaptive mechanisms to adjust the search strategy
based on the performance of the algorithm. For example, the step size used in krill movement
is adjusted based on the convergence rate of the algorithm.

• Stochasticity pattern: KHO includes stochastic elements in several parts of the algorithm. For
example, the krill movement mechanism introduces random perturbations to the position of
each krill. The selection of krill for KNS is performed randomly.

Overall, KHO combines these patterns to create a search process that involves both exploration
of the search space and exploitation of promising solutions. By combining swarm intelligence,
evolutionary algorithms, and local search, KHO is able to efficiently search large and complex search
spaces and find high-quality solutions to a wide range of optimization problems.

4.3 Red Fox Optimisation (RFO)

4.3.1 Description of RFO

Red Fox Optimization (RFO) is a metaheuristic optimization algorithm inspired by the hunting
behavior of red foxes [149]. The RFO algorithm is based on the idea of dividing the search process into
three phases: the red fox movement phase, the pouncing behavior phase, and the searching behavior
phase. In each phase, candidate solutions in the population are updated based on the positions of
other solutions or the leader red fox. RFO has been shown to be effective in solving a wide range of
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optimization problems, including engineering design, feature selection, and image processing, among
others.

The RFO algorithm consists of the following steps:

1. Initialization: Initialize the population of candidate solutions x1, x2, . . ., xN randomly within
the search space.

2. Red fox movement: Each candidate solution xi is updated based on the position of the leader
red fox L as follows:

xi
(t+1) = xi

(t) + α1 · dL,i + β1 · r1,i, (1)

where dL,i is the Euclidean distance between the leader L and candidate solution xi, r1,i is a
random vector, α1 and β1 are the movement step sizes.

3. Pouncing behavior: The pouncing behavior updates the position of each candidate solution
based on the positions of other candidate solutions within a certain radius rp around them:

xi
(t+1) = xi

(t) + α2 · di,S + β2 · r2,i, (2)

where S is the set of candidate solutions within the radius rp of candidate solution xi, di,S is the
Euclidean distance between candidate solution xi and the centroid of the solutions in S, r2,i is
a random vector, α2 and β2 are the movement step sizes.

4. Searching behavior: The searching behavior updates the position of each candidate solution
based on its distance to the best candidate solution G in the population:

xi
(t+1) = xi

(t) + α3 · di,G + β3 · r3,i, (3)

where di,G is the Euclidean distance between candidate solution xi and the global best solution
G, r3,i is a random vector, α3 and β3 are the movement step sizes.

5. Update population: Calculate the fitness values of the new candidate solutions, and replace
the worst solutions in the population with the new solutions if they have better fitness values.

6. Termination: Terminate the algorithm if a stopping criterion is met (e.g., maximum number of
iterations, target fitness value, etc.).

The algorithm for Red Fox Optimization (RFO) is presented in Algorithm 10.

Algorithm 10: Red Fox Optimization (RFO) algorithm
Require: Population size N, number of iterations T , search space bounds [L,U ]

1: Initialize population P with N random solutions
2: for t = 1 to T do
3: Calculate fitness for all solutions in P
4: Sort population P based on fitness in ascending order
5: Update the leader red fox X ∗ as the best solution in P
6: for i = 1 to N do
7: Calculate the foxes’ probability distribution Pi

8: Update the position of fox i using Eq. (1)
9: Apply search limits to ensure the position is within [L,U ]
10: if f (xi) < f (X ) then
11: Update X ∗ with xi

12: end if
(Continued)
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Algorithm 10 (continued)
13: end for
14: end for
15: return X ∗

4.3.2 Patterns of RFO

RFO incorporates several patterns commonly observed in heuristic optimization algorithms. Here
is how some of these patterns are implemented in RFO:

• Initialization pattern: RFO begins by randomly generating a population of candidate solutions.
The population size is user-defined and typically ranges from 10 to 50.

• Local Search pattern: RFO uses a local search technique called ‘local roaming’ to improve the
quality of the solutions. In local roaming, a random subset of solutions is selected from the
population, and each solution is randomly perturbed. If the perturbed solution is better than the
original solution, it replaces the original solution in the population. Local roaming is performed
a user-defined number of times.

• Diversity Maintenance pattern: RFO maintains diversity in the population using a technique
called ‘predator-prey interaction’. In this technique, each solution in the population is assigned
a prey index and a predator index. Solutions with similar prey indices are encouraged to move
towards each other, while solutions with similar predator indices are encouraged to move away
from each other. This helps to maintain diversity in the population.

• Adaptation pattern: RFO adapts its search strategy by dynamically adjusting the values of
several parameters based on the performance of the solutions found so far. For example, if
the algorithm is finding good solutions quickly, it may increase the intensity of the search.
Conversely, if the algorithm is struggling to find good solutions, it may decrease the intensity
of the search to explore a wider range of solutions.

• Stochasticity pattern: RFO introduces stochasticity in several ways. Firstly, the local roaming
step involves randomly perturbing the solutions. Secondly, the predator-prey interaction tech-
nique uses random values to assign prey and predator indices. Thirdly, the algorithm uses a
random number generator to make certain decisions, such as which solutions to update.

• Population-based search pattern: RFO is a population-based search algorithm. The population
of candidate solutions is updated using a technique called ‘hunting’. In hunting, each solution
in the population is assigned a hunting distance. Solutions with shorter hunting distances are
more likely to be selected for further search. A user-defined number of solutions are selected
for hunting, and their hunting distances are updated based on their performance.

• Memory-based search pattern: RFO does not explicitly use a memory-based search technique,
but it does maintain a history of the best solution found so far. This history is used to determine
when to terminate the search.

The patterns used in RFO are designed to help the foxes explore the search space efficiently and
to converge towards promising regions. By mimicking the hunting behavior of red foxes, RFO is able
to leverage these patterns to effectively optimize a wide range of computational problems.
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4.4 Coronavirus Herd Immunity Optimizer (CHIO)

4.4.1 Description of CHIO

Coronavirus Herd Immunity Optimizer (CHIO) is a nature-inspired heuristic optimization algo-
rithm [150]. The algorithm is inspired by the herd immunity phenomenon in epidemiology and aims to
find the optimal solution to a given optimization problem by simulating the process of herd immunity.
The algorithm uses a combination of two strategies, namely, immunity and infection, to generate
new candidate solutions and gradually converge towards the global optimum. The CHIO algorithm
has been applied to a variety of optimization problems and has shown promising results in terms of
efficiency and effectiveness. The CHIO algorithm aims to simulate the herd immunity phenomenon by
dividing the population of candidate solutions into three categories: susceptible, infected, and immune.

Let f (x) be the objective function to be optimized, where x is the candidate solution vector. The
CHIO algorithm can be described mathematically as follows:

1. Initialize the population of candidate solutions P = x1, x2, . . ., xn randomly.
2. Define the initial values of the parameters, including the infection rate β, the recovery

rate γ , the immunity rate α, and the maximum number of iterations Tmax.
3. Evaluate the fitness of each candidate solution in P using the objective function f (x).
4. Sort the candidate solutions in P based on their fitness values in descending order.
5. Initialize the infected and immune populations I and U as empty sets.
6. Set the infection status of each candidate solution in P as susceptible.
7. Randomly select a candidate solution xi from P and infect it.
8. Update the infection status of the remaining candidate solutions in P based on their

distance to xi and the infection rate β.
9. Evaluate the fitness of the newly infected candidate solutions and add them to I .

10. Update the infection status of the candidate solutions in I based on the recovery rate γ and
the immunity rate α.

11. Evaluate the fitness of the newly immune candidate solutions and add them to U .
12. Select the best candidate solution x∗ from P ∪ I ∪ U based on their fitness values.
13. Terminate the algorithm if the maximum number of iterations Tmax is reached or a

stopping criterion is met; otherwise, go to Step 7.
14. Return the best candidate solution x∗.

The CHIO algorithm (Algorithm 11) simulates the herd immunity phenomenon by updating the
infection status of candidate solutions based on their proximity to the infected and the infection rate.
The recovery and immunity rates are used to update the infection status of the infected candidate
solutions, which eventually become immune and help to improve the quality of the solutions. The
CHIO algorithm has shown promising results in solving various complex optimization problems.

Algorithm 11: The Coronavirus Herd Immunity Optimizer (CHIO) algorithm
Require: Problem instance P, Population size N, Maximum number of iterations MaxIter,
Infection rate threshold IR, Herd immunity threshold HI
Ensure: Best solution found
1: Initialize the population
2: Evaluate the fitness of each individual
3: Set the iteration counter i to 0

(Continued)
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Algorithm 11 (continued)
4: Set the best solution found so far as the individual with the highest fitness value
5: Set the current infection rate IR as 0
6: while i < MaxIter and IR < HI do
7: Perform the herd immunity operation on the population
8: Perform the infection operation on the population
9: Evaluate the fitness of each individual
10: if the individual with the highest fitness value is better than the best solution found

so far then
11: Update the best solution found so far
12: end if
13: Update the iteration counter i
14: end while

return Best solution found

4.4.2 Patterns of CHIO

The Coronavirus Herd Immunity Optimizer (CHIO) algorithm is a metaheuristic optimization
algorithm that aims to find optimal solutions to complex optimization problems by simulating the
process of herd immunity. The CHIO algorithm incorporates several heuristic optimization patterns
to enhance its performance and improve the quality of solutions as follows:

• Initialization pattern: CHIO initializes a population of candidate solutions randomly in the
search space.

• Local Search pattern: CHIO employs a local search operator to exploit the promising regions
of the search space. Specifically, the algorithm uses a mutation operator that generates new
solutions by making small perturbations to the current solutions.

• Diversity Maintenance pattern: CHIO maintains diversity in the population by employing a
niching operator that identifies and preserves different clusters of solutions.

• Stochasticity pattern: CHIO introduces stochasticity in the search process by incorporating a
probabilistic update rule for selecting the new candidate solutions.

• Population-based search pattern: CHIO employs a population-based search strategy to explore
the search space efficiently. The algorithm updates the population by selecting the best solutions
from the current population and the newly generated solutions.

• Adaptation pattern: CHIO adapts its search strategy by adjusting the algorithm parameters
dynamically based on the current state of the search. Specifically, the algorithm increases the
mutation rate and niching radius when the search progress slows down.

4.5 Key Findings

For each of the three algorithms in your study–Krill Herd Optimization (KHO), Red Fox
Optimization (RFO), and Coronavirus Herd Immunity Optimizer (CHIO)–different optimization
patterns show varying impacts on their performance and results:

• For KHO, the Diversity Maintenance pattern has a significant impact on the results. This
algorithm leverages krill movement mechanisms to maintain diversity in the population, thereby
avoiding premature convergence and enhancing exploration in complex search spaces. The
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diversity pattern allows KHO to adapt dynamically to varying optimization landscapes, making
it particularly effective in locating high-quality solutions across diverse environments.

• For RFO, the local search pattern is especially impactful due to its reliance on local roaming
and predatorprey interactions to refine candidate solutions iteratively. By simulating red fox
hunting behavior, this pattern improves solution quality within the immediate neighborhood
of high-potential solutions, significantly enhancing the algorithm as exploitation capabilities.
This pattern is crucial for RFO’s convergence efficiency, as it maximizes solution refinement in
high-density regions of the search space.

• For CHIO, the adaptation pattern has the most notable effect. CHIO uses this pattern by
adjusting mutation rates and niching radii based on the current state of the search, which helps
maintain balance between exploration and exploitation. This dynamic adaptation supports
CHIO as ability to adjust search intensity according to the population as progress, improving
its effectiveness in navigating complex optimization landscapes.

4.6 Computational Complexity of Patterns

The computational complexity of the patterns is given in Table 1.

Table 1: Computational complexity of heuristic optimization patterns

Pattern Computational complexity

Initialization O(n)
Local search O(n2)
Diversity maintenance O(n2)
Adaptation O(n)
Stochasticity O(n)
Population-based search O(np)
Memory-based search O(np)
Hybridization Depends on the specific combination
Constraint handling Depends on the specific constraints
Fitness landscape analysis Depends on the specific analysis
Note: n represents the size of the problem, and p represents the population size. The complexity

may vary depending on the specific implementation of the pattern and the problem instance.

5 Discussion and Conclusion

The paper provides a comprehensive analysis of heuristic optimization patterns in various
algorithms. Heuristic optimization patterns provide a useful framework for designing new heuristic
optimization algorithms. By following these patterns, researchers can build upon existing knowledge
and design algorithms that are more likely to be effective and efficient. One implication of heuristic
optimization patterns is that they can guide the selection of appropriate components for an algorithm.
For example, if a problem is known to have many local optima, an algorithm designer may choose to
incorporate a local search pattern to help the algorithm escape these optima. If the problem is known
to have a rugged fitness landscape, the designer may choose to incorporate a diverse maintenance
pattern to promote exploration of the search space. Another implication is that the patterns can be
combined in various ways to create hybrid algorithms. For example, an algorithm may incorporate
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both local search and population-based search patterns to leverage the strengths of both approaches.
The patterns can also inform the parameter-tuning process for heuristic optimization algorithms. By
understanding the impact of different patterns on the search process, algorithm designers can better
tune the parameters to balance exploration and exploitation and improve the overall performance of
the algorithm.

The limitations of this study are as follows:

• The study mainly focused on nature-inspired heuristic optimization algorithms and did not
cover other types of optimization algorithms such as mathematical programming or evolution-
ary algorithms.

• The study is limited to the patterns identified in the literature up to 2021, and there may be
additional patterns that have not yet been discovered.

• The study did not include a comparison of the effectiveness of different patterns or their
combinations in solving specific problems.

Further research could focus on identifying new patterns in heuristic optimization algorithms
that have not yet been discovered. The effectiveness of different patterns or combinations of patterns
could be compared using a variety of benchmarks and real-world problems. Future research also
could investigate the use of machine learning techniques to identify the most effective patterns for
a given problem; the transferability of patterns between different types of optimization algorithms
and domains; and the integration of multiple patterns into a single algorithm to enhance the overall
performance of heuristic optimization algorithms.
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[149] D. Połap, and M. Woźniak, “Red fox optimization algorithm,” Expert. Syst. Appl., vol. 166, 2021, Art.
no. 114107. doi: 10.1016/j.eswa.2020.114107.

[150] M. A. Al-Betar, Z. A. A. Alyasseri, M. A. Awadallah, and I. Abu Doush, “Coronavirus herd immunity
optimizer (CHIO),” Neural Comput. Appl., vol. 33, no. 10, pp. 5011–5042, 2021. doi: 10.1007/s00521-
020-05296-6.

https://doi.org/10.1016/j.eswa.2020.114107
https://doi.org/10.1007/s00521-020-05296-6

	Patterns in Heuristic Optimization Algorithms: A Comprehensive Analysis
	1 Introduction
	2 Identification and Description of Patterns in Heuristic Optimization Algorithms
	3 Common Patterns in Heuristic Optimization Algorithms
	4 Case Studies
	5 Discussion and Conclusion
	References


