
Academic Editor: Antoni Morell

Received: 17 January 2025

Revised: 13 February 2025

Accepted: 14 February 2025

Published: 20 February 2025

Citation: Audinys, R.; Šlikas, Ž.;

Radkevičius, J.; Šutas, M.; Ostreika, A.

Deep Reinforcement Learning for a

Self-Driving Vehicle Operating Solely

on Visual Information. Electronics 2025,

14, 825. https://doi.org/10.3390/

electronics14050825

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Deep Reinforcement Learning for a Self-Driving Vehicle
Operating Solely on Visual Information
Robertas Audinys, Žygimantas Šlikas, Justas Radkevičius, Mantas Šutas and Armantas Ostreika *

Department of Multimedia Engineering, Faculty of Informatics, Kaunas University of Technology,
LT-51368 Kaunas, Lithuania; robertas.audinys@ktu.edu (R.A.); zygimantas.slikas@ktu.edu (Ž.Š.);
justas.radkevicius@ktu.edu (J.R.); mantas.sutas@ktu.edu (M.Š.)
* Correspondence: armantas.ostreika@ktu.lt; Tel.: +370-614-21-727

Abstract: This study investigates the application of Vision Transformers (ViTs) in deep
reinforcement learning (DRL) for autonomous driving systems that rely solely on visual
input. While convolutional neural networks (CNNs) are widely used for visual processing,
they have limitations in capturing global patterns and handling complex driving scenarios.
To address these challenges, we developed a ViT-based DRL model and evaluated its
performance through extensive training in the MetaDrive simulator and testing in the
high-fidelity AirSim simulator. Results show that the ViT-based model significantly outper-
formed CNN baselines in MetaDrive, achieving nearly seven times the average distance
traveled and an 87% increase in average speed. In AirSim, the model exhibited superior
adaptability to realistic conditions, maintaining stability and safety in visually complex
environments. These findings highlight the potential of ViTs to enhance the robustness and
reliability of vision-based autonomous systems, offering a transformative approach to safe
exploration in diverse driving scenarios.

Keywords: autonomous driving; Vision Transformers (ViT); Deep Reinforcement Learning
(DRL); policy learning; metadrive; airsim; safe exploration

1. Introduction
Autonomous driving is one of the most important advancements in modern trans-

portation, offering solutions to big problems like road safety, traffic jams, and pollution.
Human error causes over 90% of road accidents, leading to a huge loss of life and prop-
erty [1]. At the same time, cities are becoming more crowded, with more vehicles on the
roads, making traffic worse and increasing pollution. Autonomous vehicles aim to solve
these problems by removing human error, improving how traffic moves, and cutting fuel
use with smart control systems. They also provide better mobility for people who have
limited access to transportation, such as the elderly or disabled, improving their quality of
life [2].

Even with major progress, building systems that can handle complex and constantly
changing environments is still a big challenge. Traditional autonomous driving systems
use separate modules for perception, planning, and control [3]. While these systems are
easier to understand, they often suffer from issues like passing errors between modules and
struggling to adapt to new situations. End-to-end approaches using deep reinforcement
learning (DRL) aim to fix these problems by directly linking input data, like images, to
driving actions [4,5]. However, most DRL systems rely on Convolutional Neural Networks
(CNNs) for processing visual information. CNNs are good at tasks like object detection

Electronics 2025, 14, 825 https://doi.org/10.3390/electronics14050825

https://doi.org/10.3390/electronics14050825
https://doi.org/10.3390/electronics14050825
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-5718-3766
https://doi.org/10.3390/electronics14050825
https://www.mdpi.com/article/10.3390/electronics14050825?type=check_update&version=1

Electronics 2025, 14, 825 2 of 30

and recognizing scenes [6], but they struggle to understand large-scale patterns and long-
distance relationships in images. This makes it hard for them to handle different driving
conditions, such as heavy traffic, poor lighting, or complex road designs [7,8].

This study addresses these challenges by incorporating Vision Transformers (ViTs)
into the reinforcement learning framework for autonomous driving. Unlike CNNs, which
focus on small, localized image details, ViTs use self-attention to capture bigger patterns
and relationships in images. This makes them better at understanding the complexity of
visual environments [9–11]. The research tests ViTs for feature extraction in DRL systems to
improve their ability to generalize, stay safe, and handle unexpected conditions. Training
begins in the MetaDrive simulator, which creates many different driving scenarios [12], and
testing is done in the AirSim simulator, which offers a more realistic driving environment
to evaluate the system’s ability to adapt to new settings [13].

In this research paper we test 2 hypotheses: firstly—whether patch-based information
structure from ViTs is suitable for efficient reinforcement learning, secondly—whether ViTs
pretrained in self-supervised fashion help to generalize RL to different visual environments.

The organization of the paper is as follows: Section 2 presents a review of related work.
Section 3 describes the methodology, including the development of the ViT-based DRL
model. Section 4 discusses the experimental setup and results. Finally, Section 5 concludes
the paper and outlines future research directions.

2. Literature Review
Autonomous driving is an important innovation with the potential to change trans-

portation by solving major problems like road safety, traffic jams, and pollution. A large
part of research in this area focuses on teaching self-driving cars to see and navigate using
visual data. Deep reinforcement learning (DRL) has become a promising method for this,
as it maps input from sensors directly to driving actions. This approach avoids the issues
of traditional systems, which often rely on separate modules that can pass errors between
them [1].

Convolutional Neural Networks (CNNs) have been widely used in autonomous
driving for processing images, as they are good at identifying patterns and features in visual
data. However, CNNs have trouble understanding large-scale relationships in images and
adapting to complex scenarios, like busy city traffic or unpredictable environments [1,3,4].
To address these problems, Vision Transformers (ViTs) have been introduced. ViTs use a
different approach called self-attention, which helps them understand the big picture in
images and handle complex visual scenes better than CNNs [3].

Simulation environments like MetaDrive and AirSim play a key role in developing
and testing self-driving systems. These simulators allow researchers to create controlled
conditions to evaluate models. MetaDrive provides a simpler environment with tools
to quickly generate a variety of road layouts, while AirSim offers more detailed visuals,
realistic physics, and challenging scenarios. This combination helps researchers study
how well models work across different environments and prepare them for real-world
applications [4].

This review looks at the use of CNNs and ViTs in self-driving systems, their role in
DRL, and the challenges of using simulators for training. By examining past research,
it builds a foundation for comparing performance in simpler and more complex simu-
lation environments. This sets the stage for the current study, which aims to improve
autonomous driving technology by combining better visual processing and reinforcement
learning techniques.

Electronics 2025, 14, 825 3 of 30

2.1. Role of Vision in Autonomous Driving

Visual perception is a critical component of autonomous vehicles, providing the data
needed for tasks like detecting objects, recognizing lanes, and making driving decisions.
Compared to sensors like LiDAR or radar, cameras offer a detailed, high-resolution view
of the environment at a lower cost, making them a practical and scalable choice for au-
tonomous systems [1]. This focus on visual data mirrors how humans rely on sight for
driving, emphasizing its importance for navigation and safety.

However, vision-based systems face challenges in dynamic environments. Changes
in lighting, weather, or visibility, as well as unpredictable traffic and road conditions, can
significantly reduce the accuracy of visual perception algorithms. In addition, visual data
alone may lack the precise depth information required for tasks like obstacle detection and
avoidance. These limitations can be mitigated by incorporating multimodal sensor data,
such as LiDAR, radar, and GPS, which can provide complementary information to improve
robustness and reliability. Multimodal sensor data integration, including UAV imagery
and remote sensing, has been successfully used in precision agriculture for autonomous
navigation, demonstrating its potential in improving the robustness of visual perception in
dynamic environments [14].

However, while complex systems use multimodal sensors, the processing of visual
information must be reliable and accurate, as it is a key part of the systems. On the other
hand, cameras are cheaper and simpler than other sensors, so the focus of this work is on
the processing of visual information.

Deep learning approaches, particularly convolutional neural networks (CNNs), have
advanced the processing of visual data. CNNs are effective at identifying features such as
edges, textures, and shapes, which are essential for tasks like object detection and scene
segmentation [4]. However, CNNs have limitations in understanding long-range spatial
relationships and global context, which are critical for navigating complex environments [9].
These shortcomings have led to growing interest in Vision Transformers (ViTs). Unlike
CNNs, ViTs leverage self-attention mechanisms to capture global patterns and relationships
in visual data, enabling them to handle interactions between objects and dynamic elements
in the environment more effectively [9,13].

Visual data’s role goes beyond perception, it is also central to decision-making. End-
to-end learning systems, which directly connect visual inputs to driving actions, aim to
simplify the process and reduce errors caused by multiple pipeline stages. These systems
must combine visual perception with decision-making to drive safely and efficiently [15].
Training and testing such systems in real-world settings is challenging, so simulation plat-
forms like MetaDrive and AirSim are essential. These tools allow models to experience
a wide range of scenarios, testing their ability to adapt and generalize across environ-
ments [10,12]. Simulation also provides a controlled space to train models for reliable
performance in real-world conditions [16].

2.2. CNNs in Autonomous Driving

Convolutional Neural Networks (CNNs) have played a pivotal role in advancing
the capabilities of autonomous vehicles by enabling them to interpret complex visual
data with high accuracy. As one of the earliest and most widely used architectures for
visual perception, CNNs remain a benchmark for performance in many autonomous
driving systems.

CNNs are characterized by a hierarchical structure consisting of convolutional layers,
pooling layers, and fully connected layers. Convolutional layers apply filters to detect
spatial features such as edges, corners, and textures. Pooling layers reduce the spatial di-
mensions of data, preserving critical information while optimizing computational efficiency.

Electronics 2025, 14, 825 4 of 30

Fully connected layers combine learned features to generate predictions [6,17]. This design
enables CNNs to process raw visual inputs and extract meaningful patterns, making them
essential for tasks like object detection, lane detection, and traffic sign recognition:

1. Feature Extraction: CNNs excel at extracting local spatial features, enabling them
to detect objects, identify lane markings, and recognize traffic signs with high
accuracy [5,7].

2. Translation Invariance: The architecture of CNNs ensures robust feature detection
regardless of object position within an image, which is vital for autonomous vehicles
operating in dynamic environments [17,18].

3. Scalability: CNNs can handle high-resolution input data, making them suitable for
detailed visual processing in urban and highway settings [6,8].

Despite their strengths, CNNs face notable challenges:

1. Limited Global Context Understanding: CNNs focus on local patterns, making it
difficult to capture long-range dependencies and holistic spatial relationships [6,19].

2. Computational Intensity: Deep CNN architectures require significant computational
resources, posing challenges for real-time processing in autonomous vehicles [7,17].

3. Vulnerability to Adversarial Attacks: CNNs are susceptible to small, intentional
perturbations in input data, which can lead to erroneous predictions—a critical safety
concern for autonomous driving [20].

Despite the emergence of Vision Transformers (ViTs) and other advanced architectures,
CNNs remain a foundational component of autonomous driving research. Their established
performance and extensive optimization make them an ideal baseline for evaluating newer
models. Moreover, hybrid models combining CNNs and other architectures, such as
attention mechanisms, have shown promise in enhancing visual perception for autonomous
systems [1,8,19]. Benchmarks based on CNNs provide a robust reference point to assess
advancements in performance, efficiency, and generalization capabilities [6,20].

CNNs have significantly contributed to the progress of vision-based autonomous
driving systems. Their ability to extract features, process high-resolution data, and support
end-to-end learning frameworks has been instrumental in enabling autonomous vehicles
to navigate complex environments. While newer architectures like ViTs address some of
CNNs’ limitations, understanding and leveraging CNNs’ strengths ensures they remain
relevant for developing and evaluating autonomous systems [5,8,20].

2.3. Vision Transformers (ViTs) for Visual Perception

Vision Transformers (ViTs) represent a significant advancement in visual perception,
offering substantial improvements over Convolutional Neural Networks (CNNs) in tasks
critical to autonomous driving.

ViTs leverage the Transformer architecture, originally designed for natural language
processing, to process visual data. Unlike CNNs, which rely on localized feature extrac-
tion, ViTs divide an image into fixed-size patches, embed these patches linearly, and add
positional encodings to retain spatial information. These embeddings are then processed
through multiple layers of self-attention mechanisms, allowing the model to analyze the
entire image holistically. This structure enables ViTs to capture global dependencies and
complex spatial relationships, overcoming the limitations of CNNs in handling long-range
interactions [9–11].

ViTs have demonstrated their capabilities across a range of vision tasks:

1. Image Classification: ViTs have achieved state-of-the-art performance on large-scale
datasets such as ImageNet, outperforming CNNs when sufficient training data is
available [9,10,21].

Electronics 2025, 14, 825 5 of 30

2. Object Detection and Semantic Segmentation: With their global attention mechanism,
ViTs improve object detection and segmentation tasks, enabling more accurate and
coherent scene understanding [4,9].

3. 3D Perception for Autonomous Driving: ViTs have been successfully applied to 3D
data, such as LiDAR point clouds, to enhance semantic segmentation and improve
environmental understanding [19,22].

ViTs provide several benefits that address the limitations of CNNs in autonomous
driving applications:

1. Global Context Modeling: By leveraging self-attention, ViTs capture long-range spatial
dependencies, essential for interpreting complex driving environments [9,10,22].

2. Adaptability to Multimodal Inputs: ViTs can seamlessly integrate diverse input modal-
ities, such as images, radar, and LiDAR data, making them ideal for sensor fusion in
autonomous systems [10,22].

3. Scalability with Data: ViTs excel in performance when trained on large datasets,
which aligns well with the extensive data typically available in autonomous driving
applications [9,21].

ViTs address critical challenges in autonomous driving, such as understanding com-
plex environments, processing multimodal sensor data, and generalizing across diverse
driving scenarios. These features make them a strong complement to CNNs, which often
serve as baselines for comparison. While CNNs are effective at local feature extraction, they
struggle with modeling global spatial dependencies, which are critical for decision-making
in autonomous driving. Recent studies [9–11] have demonstrated that Vision Transform-
ers (ViTs) address this limitation by utilizing self-attention mechanisms to capture global
context across an image. Our study extends these findings by applying ViTs in reinforce-
ment learning for autonomous driving tasks, showing a significant improvement over
CNN-based models.

The integration of Vision Transformers in visual perception for autonomous driving
marks a transformative step in the field. By addressing the limitations of CNNs and en-
abling advanced capabilities such as multimodal integration and global context awareness,
ViTs are well-positioned to play a pivotal role in the next generation of autonomous vehicle
technologies. Future research will focus on improving their efficiency and adapting them
for real-time applications [9,21,22].

2.4. Simulators in Autonomous Driving Research

Simulators are integral to autonomous driving research, providing safe, scalable,
and cost-effective environments for testing and validation. They enable researchers to
evaluate algorithms across diverse conditions without the risks associated with real-world
deployment. MetaDrive and AirSim are two prominent simulators that cater to distinct
aspects of autonomous driving research.

MetaDrive is an open-source simulator designed to generate procedurally diverse
driving scenarios. Its primary strength lies in its ability to create infinite variations of
road layouts, traffic conditions, and environmental complexities. This diversity supports
reinforcement learning (RL) research by exposing models to varied conditions, fostering
better generalization across unseen environments. MetaDrive is computationally efficient,
running on standard hardware while supporting high-throughput experiments [12]. Its em-
phasis on scenario diversity makes it particularly well-suited for studying policy learning
in dynamic and procedurally generated environments.

Developed by Microsoft, AirSim offers high-fidelity visual and physical simulations
for both ground and aerial vehicles. Built on the Unreal Engine, it provides realistic
physics, photorealistic environments, and extensive support for various sensors such as

Electronics 2025, 14, 825 6 of 30

LiDAR, radar, and cameras. AirSim’s modular design allows for significant customization,
making it a preferred choice for tasks that demand detailed simulations, such as perception,
planning, and control in complex urban environments. Its realism facilitates the evaluation
of sensor fusion strategies and simulation-to-reality transfer techniques, where simulated
policies are deployed in real-world scenarios [13].

MetaDrive and AirSim serve different but complementary purposes in autonomous
driving research:

• Scenario Diversity vs. Realism: MetaDrive excels at generating diverse scenarios effi-
ciently, aiding generalization studies. AirSim’s high-fidelity simulations are invaluable
for testing algorithms under lifelike conditions [12,13].

• Hardware Requirements: MetaDrive is lightweight and runs smoothly on standard
PCs, enabling large-scale RL experiments. In contrast, AirSim’s detailed simulations
are computationally intensive, necessitating high-performance hardware [13].

• Customization: While AirSim allows researchers to design specific sensors and vehicle
configurations, MetaDrive focuses on procedurally generating diverse scenarios with
minimal setup [12].

Generalization is a key challenge in autonomous driving, requiring models to perform
reliably across diverse, unseen environments. MetaDrive addresses this challenge by ex-
posing models to a wide range of procedurally generated scenarios during training. This
process improves their adaptability and robustness [12]. Meanwhile, AirSim’s high-fidelity
simulations allow researchers to test the generalization of trained models under realistic en-
vironmental conditions, bridging the gap between simulation and real-world applications.

MetaDrive and AirSim are indispensable tools in autonomous driving research.
MetaDrive’s focus on efficiency and diversity makes it ideal for reinforcement learning and
generalization studies, while AirSim’s realism supports detailed perception and control
tasks. Together, they enable comprehensive evaluation of autonomous driving systems,
addressing both theoretical and practical challenges.

2.5. Comparative Studies and Research Gaps

Comparative studies of Convolutional Neural Networks (CNNs) and Vision Trans-
formers (ViTs) have highlighted the unique advantages and limitations of each archi-
tecture in autonomous driving. These analyses also reveal critical research gaps in
cross-environment generalization, where models must adapt to unseen scenarios and
dynamic conditions.

CNNs have long been a cornerstone in computer vision due to their ability to extract hi-
erarchical spatial features efficiently. However, their reliance on local receptive fields limits
their capacity to model long-range dependencies and global context, which are crucial for
understanding complex driving environments [9,10]. ViTs, in contrast, utilize self-attention
mechanisms to capture global context across an image, enabling superior performance
in scenarios requiring holistic scene understanding [23]. ViTs also demonstrate enhanced
adaptability to diverse data modalities, such as LiDAR and radar, further extending their
utility in autonomous systems [9,24].

Despite their strengths, ViTs require extensive training data and computational re-
sources to achieve optimal performance. CNNs, on the other hand, remain efficient and
effective for tasks with constrained data or simpler visual requirements. Studies comparing
these architectures, such as those by Raghu et al. (2021) [23] and Leite et al. (2022) [25], em-
phasize that the choice between CNNs and ViTs often depends on the task and dataset size.

Generalization across environments remains a significant challenge for autonomous
driving systems. Current research highlights the difficulty of training models that can reli-
ably adapt to unseen scenarios involving variable lighting, weather, and traffic conditions.

Electronics 2025, 14, 825 7 of 30

While both CNNs and ViTs have shown promise, neither architecture fully addresses this
gap [25].

Simulators like MetaDrive and AirSim have been instrumental in studying generaliza-
tion by enabling the creation of diverse training scenarios [12]. However, there is a need for
more robust evaluation frameworks that test models under extreme and unpredictable con-
ditions. Moreover, recent studies, such as Alijani et al. (2022) [26] and Yue et al. (2021) [27],
emphasize the importance of domain adaptation and randomization techniques for bridg-
ing the gap between simulation and reality. These methods enhance model robustness but
require further exploration to achieve consistent results in real-world applications.

This study addresses these gaps by comparing CNNs and ViTs in the context of cross-
environment generalization. By leveraging MetaDrive for diverse scenario generation
and AirSim for high-fidelity testing, it evaluates the strengths and weaknesses of both
architectures. The integration of reinforcement learning further examines how these models
adapt to dynamic and procedurally generated environments. This work contributes to a
deeper understanding of architectural trade-offs and provides a pathway for developing
more generalizable autonomous driving systems.

2.6. Future Directions

The findings of this study point to several promising avenues for advancing au-
tonomous driving systems. By comparing the strengths and limitations of CNNs and ViTs
across various environments, key opportunities for further research have been identified.

One important direction is using multi-modal data, combining inputs like camera
feeds, LiDAR, and radar with ViTs. This approach could make systems more adaptable
and reliable by providing richer and more diverse information for decision-making [28].
Combining data from multiple sources could help overcome the current limitations of
CNNs and ViTs, improving their ability to handle complex environments. The integration
of self-driving systems with real-time data fusion, as demonstrated in precision agricul-
ture [29], suggests promising future directions for combining vision perception models
with sensor fusion techniques to enhance vehicle adaptability to diverse environments.

Although ViTs show strong potential, their high computational needs make real-time
use a challenge. Research into more efficient ViT designs, such as those proposed by Pan
et al. (2022), could help reduce delays and energy use, making them more suitable for use
in self-driving cars [30].

Simulation platforms like MetaDrive and AirSim are great tools for testing in con-
trolled environments, but the difference between simulation and real-world conditions
remains an issue. Techniques like domain randomization and pyramid consistency could
be further improved to help models perform just as well in real-world settings as they do
in simulations [31].

The use of ViTs in autonomous systems has the potential to change how visual data
is processed. Additionally, methods like masked autoencoders for unsupervised learning
could reduce the need for large amounts of labelled data, making training more efficient [32].
By addressing these challenges, future research can help create safer and more flexible
autonomous driving systems that can handle the complexities of real-world environments.

2.7. Conclusion of the Literature Review

The examination of Convolutional Neural Networks (CNNs) and Vision Transform-
ers (ViTs) in autonomous driving highlights the unique strengths and limitations of each
architecture. CNNs are effective at processing local spatial features, offering computa-
tional efficiency and reliability in controlled, well-structured scenarios. On the other
hand, ViTs utilize self-attention mechanisms to understand global contextual information,

Electronics 2025, 14, 825 8 of 30

making them better suited for handling complex and dynamic environments. However,
ViTs often require significant computational resources and large datasets for effective
training [9,10,30].

A key challenge identified is the difficulty these models face in generalizing across
different environments. Both CNNs and ViTs tend to experience performance drops when
exposed to unfamiliar conditions, such as changes in weather, lighting, or traffic. This
limitation highlights the importance of robust training techniques and evaluation methods
that include diverse and varied driving scenarios [12,25].

Simulation platforms like MetaDrive and AirSim play a crucial role in overcoming
these challenges by providing controlled environments for training and testing. These tools
enable researchers to create a wide range of scenarios, helping evaluate the adaptability
and generalization of autonomous driving [12,31].

Building on these findings, our approach integrates CNN and ViT architectures within
simulated environments to compare their performance under diverse driving conditions.
By combining the strengths of these models and utilizing advanced simulation tools, this
study aims to develop a more robust autonomous driving system capable of adapting to
the complexities of real-world environments [9,10,31].

3. Materials and Methods
This section presents the methodologies and resources used to develop and evaluate

the proposed reinforcement learning framework for autonomous driving based on Vision
Transformers (ViTs). The approach substitutes CNNs with ViTs for visual feature extraction
to enhance the robustness and generalization of the policy.

Training is conducted using the MetaDrive simulator in procedurally generated envi-
ronments, while testing is carried out in realistic scenarios using the AirSim simulator. Key
performance metrics, including success rate, collision rate, and average distance travelled,
are used to measure the model’s effectiveness compared to the CNN baseline.

The subsections provide detailed descriptions of the system architecture, hardware
and software setup, training protocols, and evaluation criteria.

3.1. System Architecture Overview

The system architecture combines simulation tools, visual data processing, and
decision-making into one streamlined reinforcement learning setup. At the input stage, the
agent receives image data from a virtual car’s front-facing camera, usually as a series of
4 RGB frames. These frames show the road ahead, nearby cars, and current weather or
lighting conditions (see Figure 1 for an example of a road with cars).

Next, the image processing part converts these detailed raw images into simpler,
meaningful features. In early tests, a convolutional neural network (CNN) was used to
pull out spatial details from the images. Later, a Vision Transformer (ViT) was used to get
even better, more comprehensive features. These features focus on important details and
remove unnecessary ones, creating a compact summary of the scene. The complete system
design is illustrated in Figure 2.

Once the visual features are prepared, they go to the decision-making system. This
system uses fully connected networks to handle policy (choosing actions) and value func-
tions (estimating the benefits of actions). The agent uses a reinforcement learning algorithm
called Proximal Policy Optimization (PPO) to connect visual data to car control actions like
steering, accelerating, and braking. These actions are sent back into the simulation, creating
a feedback loop between perception and action.

Electronics 2025, 14, 825 9 of 30

Electronics 2025, 14, x FOR PEER REVIEW 8 of 30

A key challenge identified is the difficulty these models face in generalizing across
different environments. Both CNNs and ViTs tend to experience performance drops when
exposed to unfamiliar conditions, such as changes in weather, lighting, or traffic. This lim-
itation highlights the importance of robust training techniques and evaluation methods
that include diverse and varied driving scenarios [12,25].

Simulation platforms like MetaDrive and AirSim play a crucial role in overcoming
these challenges by providing controlled environments for training and testing. These
tools enable researchers to create a wide range of scenarios, helping evaluate the adapta-
bility and generalization of autonomous driving [12,31].

Building on these findings, our approach integrates CNN and ViT architectures
within simulated environments to compare their performance under diverse driving con-
ditions. By combining the strengths of these models and utilizing advanced simulation
tools, this study aims to develop a more robust autonomous driving system capable of
adapting to the complexities of real-world environments [9,10,31].

3. Materials and Methods
This section presents the methodologies and resources used to develop and evaluate

the proposed reinforcement learning framework for autonomous driving based on Vision
Transformers (ViTs). The approach substitutes CNNs with ViTs for visual feature extrac-
tion to enhance the robustness and generalization of the policy.

Training is conducted using the MetaDrive simulator in procedurally generated en-
vironments, while testing is carried out in realistic scenarios using the AirSim simulator.
Key performance metrics, including success rate, collision rate, and average distance trav-
elled, are used to measure the model’s effectiveness compared to the CNN baseline.

The subsections provide detailed descriptions of the system architecture, hardware
and software setup, training protocols, and evaluation criteria.

3.1. System Architecture Overview

The system architecture combines simulation tools, visual data processing, and deci-
sion-making into one streamlined reinforcement learning setup. At the input stage, the
agent receives image data from a virtual car’s front-facing camera, usually as a series of 4
RGB frames. These frames show the road ahead, nearby cars, and current weather or light-
ing conditions (see Figure 1 for an example of a road with cars).

Figure 1. Agent’s visual context. Figure 1. Agent’s visual context.

Electronics 2025, 14, x FOR PEER REVIEW 9 of 30

Next, the image processing part converts these detailed raw images into simpler,
meaningful features. In early tests, a convolutional neural network (CNN) was used to
pull out spatial details from the images. Later, a Vision Transformer (ViT) was used to get
even better, more comprehensive features. These features focus on important details and
remove unnecessary ones, creating a compact summary of the scene. The complete system
design is illustrated in Figure 2.

Figure 2. General model of commonly used neural network structure. Our experiments explore dif-
ferent alternatives for image processing.

Once the visual features are prepared, they go to the decision-making system. This
system uses fully connected networks to handle policy (choosing actions) and value func-
tions (estimating the benefits of actions). The agent uses a reinforcement learning algo-
rithm called Proximal Policy Optimization (PPO) to connect visual data to car control ac-
tions like steering, accelerating, and braking. These actions are sent back into the simula-
tion, creating a feedback loop between perception and action.

Training happens step-by-step. The agent drives in the simulation, learns from expe-
rience, and updates its decision-making rules to get better over time. Different maps are
used to make sure the agent doesn’t just memorize one specific road but learns how to
handle varied conditions. By testing the system multiple times with random variations,
the agent’s ability to adapt to new scenarios is confirmed. In short, the architecture com-
bines simulated vision, advanced visual processing, smart decision-making, and repeated
training to create adaptable and effective self-driving skills.

3.2. Hardware Infrastructure

All experiments were carried out on a workstation with an Nvidia RTX 4060 GPU
that has 8 GB of video memory. This GPU provided enough power to train large neural
network models, including both CNNs and Vision Transformers (ViTs). The system’s 32
GB of main memory efficiently handled simulation data, model settings, and intermediate
results, even when running multiple simulations at the same time. A 200 GB solid-state
drive (SSD) was used for storing simulation environments, model checkpoints, training
records, and evaluation outcomes.

3.3. Software Environment

The research used a carefully designed software setup to ensure the experiments
were stable, repeatable, and compatible with the overall goals. This setup made it possible
to develop, train, and test reinforcement learning methods for autonomous driving.

Figure 2. General model of commonly used neural network structure. Our experiments explore
different alternatives for image processing.

Training happens step-by-step. The agent drives in the simulation, learns from experi-
ence, and updates its decision-making rules to get better over time. Different maps are used
to make sure the agent doesn’t just memorize one specific road but learns how to handle
varied conditions. By testing the system multiple times with random variations, the agent’s
ability to adapt to new scenarios is confirmed. In short, the architecture combines simulated
vision, advanced visual processing, smart decision-making, and repeated training to create
adaptable and effective self-driving skills.

3.2. Hardware Infrastructure

All experiments were carried out on a workstation with an Nvidia RTX 4060 GPU
that has 8 GB of video memory. This GPU provided enough power to train large neural
network models, including both CNNs and Vision Transformers (ViTs). The system’s 32 GB
of main memory efficiently handled simulation data, model settings, and intermediate
results, even when running multiple simulations at the same time. A 200 GB solid-state
drive (SSD) was used for storing simulation environments, model checkpoints, training
records, and evaluation outcomes.

Electronics 2025, 14, 825 10 of 30

3.3. Software Environment

The research used a carefully designed software setup to ensure the experiments were
stable, repeatable, and compatible with the overall goals. This setup made it possible to
develop, train, and test reinforcement learning methods for autonomous driving.

Operating System: All experiments were run on the Windows 11 operating system.
Windows 11 was chosen because it works well with both the MetaDrive and AirSim
simulators, making it easier to combine these tools with machine learning frameworks.

Programming Language and Machine Learning Frameworks: Python 3.11 was the
main programming language because it has many useful libraries for machine learning
and reinforcement learning. The training system used PyTorch 2.4.0 to build Vision Trans-
formers (ViTs) and manage deep learning tasks like feature extraction and training. Stable
Baselines3 2.3.2 was used to implement Proximal Policy Optimization (PPO), a reinforce-
ment learning method that works well with continuous actions like steering or braking.
To process data and handle numbers efficiently, the system used NumPy and pandas.
OpenCV was included for image processing and to make sure the visual input data from
the simulators was consistent and high-quality.

To keep track of all the hyperparameters, metrics, and results, the experiments used
MLflow. This made it easier to manage and reproduce the experiments. All the training
data, model versions, logs, and results were stored on a 2 TB NVMe SSD, allowing quick
access for analysis.

Simulation Environments: For simulation environments, MetaDrive version 0.4.2.3
was used because it is lightweight and can quickly create different road layouts and traffic
situations. Its low computational demands allowed for fast policy training and frequent
testing. AirSim, on the other hand, is based on Unreal Engine and provides a highly realistic
environment with accurate physics and detailed visuals. This made it ideal for testing how
well the trained policies could adapt to real-world-like challenges.

Justifications for Software Choices: The combination of these tools and software was
intentional. MetaDrive made it easy to quickly train policies in varied environments, while
AirSim provided a realistic way to test their reliability. Similarly, PyTorch and Stable
Baselines3 were chosen because they are reliable, widely used in the research community,
and well-documented. Together, these tools helped create a balance between efficiency
and realism, ensuring the research produced trustworthy and adaptable autonomous
driving models.

3.4. Performance Metrics

Evaluating the proposed Vision Transformer (ViT)-based deep reinforcement learning
(DRL) framework involves analyzing its performance through various metrics. These
metrics are essential for comparing the effectiveness of vision processing components (CNN
vs. ViT) and assessing performance across two simulators: a lightweight, procedurally
generated simulator with simple visual contexts and a high-fidelity simulator with complex,
realistic visual representations.

In this study, robustness refers to the model’s ability to perform consistently across
different environments and conditions, demonstrating adaptability to unseen road lay-
outs and traffic densities. This is assessed through metrics such as average distance
traveled, average episode length, and transferability from MetaDrive to AirSim. A
more robust model should perform well across diverse environments without requiring
extensive retraining.

Safety is defined as the ability of the autonomous system to minimize hazardous
situations, particularly collisions, erratic lane departures, and abrupt braking. We quantify

Electronics 2025, 14, 825 11 of 30

safety using collision rate per episode and lane adherence. A lower collision rate and
smoother control inputs indicate a safer driving policy.

The following key metrics are used to evaluate the models.
The Success Rate quantifies the percentage of episodes where the agent successfully

completes its task, such as reaching a target destination without collisions or violations. It
is calculated as follows:

Success Rate =
Num o f success f ul episodes

Total episodes
(1)

Success Rate provides a high-level measure of the system’s reliability. In a lightweight
simulator, it indicates basic navigational robustness, while in a realistic simulator, it reflects
the system’s ability to handle more intricate and visually complex scenarios. This metric
is especially useful in simulation environment comparisons, as a higher Success Rate in
the realistic simulator would demonstrate ViT’s superior ability to handle detailed visual
inputs [33].

The Average Distance Travelled measures the total distance covered by the agent
during an episode. It is computed as:

Avg dist travelled =
∑N

i=1 di

N
(2)

where di is the distance covered in episode i, and N is the total number of episodes.
This metric evaluates how effectively the agent navigates without collisions. It reflects

overall progress and navigation efficiency and are useful for detecting early failures (in
short distances).

The Collision Rate per Episode measures the frequency of collisions within an episode.
It is calculated as follows:

Collision Rate =
Num o f collisions in an episode

Total episodes
(3)

This metric is critical for safety evaluation. In simulators, it tests basic obstacle
avoidance or challenges the system’s ability to manage more dynamic elements, such
as other vehicles and pedestrians. The advantage of this metric is that it directly measures
safety performance and helps to identify problematic scenarios, but this metric does not
account for collision severity.

The Average Steps per Episode tracks the number of timesteps required to complete
an episode.

Avg steps per episode = ∑N
i=1 Si

N
(4)

where Si is the number of steps in episode i. This metric reflects the time efficiency of the
agent. It demonstrates the system’s ability to adapt to dynamic and complex situations. A
model with fewer steps per episode demonstrates more effective policy decisions [34,35].
The advantage of this metric is that it shows efficiency of navigation and helps identify
unnecessary delays, but it does not directly account for safety or smoothness of driving.

These metrics were chosen as they align with standard practices in reinforcement
learning and autonomous driving research, offering a comprehensive evaluation of safety,
reliability, and efficiency [34].

3.5. Reinforcement Learning Framework

Our experiments use Proximal Policy Optimization algorithm to train simulation
agents. This algorithm belongs to on-policy type and relies on multiple parallel actors for

Electronics 2025, 14, 825 12 of 30

data collection and can be characterized by single loss function (5), where its terms are
expressed in Equations (6) and (7).

LCLIP+VF+S(θ) = E
[

LCLIP(θ)− c1LVF(θ) + c2S(st|πθ)
]

(5)

LVF(θ) =
(
Vθ(st)− Vtarg)2 (6)

LCLIP(θ) = E
[

min
(
{πθ(at|st)}
πθold(at|st)

At, clip
(
{πθ(at|st)}
πθold(at|st)

, 1 − ε, 1 + ε

)
At

)]
(7)

where Vtarg and A are state value target and advantage values given by GAE (General-
ized advantage estimator), c1 and c2 are hyperparameters, V and π are neural networks
predicted state value and action probability values, S function is an entropy of policy
distribution, which encourages exploration at the start of the training. The main goal of this
function is to minimize agent’s policy change in one step, which in turn avoids big changes
in collected data and optimized target and saves from instability. The implementation of
this algorithm was provided by StableBaselines3 library.

We use SafeMetaDriveEnv environment from MetaDrive as an agent’s training en-
vironment with mostly default reward functions. Changed default values are shown in
Table 1 and are taken into account when calculating when the final reward. The default
reward function consist of three main parts [12].

R = c1Rdisp + c2Rspeed + Rterm (8)

Table 1. MetaDrive simulator environment’s parameters.

Parameter Value

Speed reward 0.0
Use lateral reward False

Out of road penalty 30 score
Crash object done False

Crash vehicle done False
Out of road done True

On continuous line done False
Traffic density 0.05 ratio

Accident probability 0.8
Map “CCCCCCCCCCCCCCC”

The driving reward (Rdisp) encourages the agent to move forward towards the desti-
nation by considering the difference in longitudinal coordinates of the vehicle between two
consecutive time steps. It is measured in meters (m). The speed reward (Rspeed) incentivizes
the agent to drive faster, using the vehicle’s current velocity (v) relative to a maximum
velocity of 80 km/h. The termination reward (Rterm) is a sparse reward given at the end
of an episode, accounting for events such as successful completion, going off-road, or
crashing into objects or vehicles [12]. The coefficients c1 and c2 are weights that determine
the relative importance of the driving and speed rewards.

The aim of changing these default environment parameters was to give more freedom
for agent to learn and increase the training speed.

Both ViT and CNN vision processing architectures were combined with the same
PPO reinforcement learning algorithm. The Convolutional Neural Network (ResNet34)
and Vision Transformer (DinoV2) models were used as pretrained feature extractors, and
their weights remained frozen during training. The only components trained were our

Electronics 2025, 14, 825 13 of 30

additional neural network layers (as seen in images Figures 3 and 4), which learned the
policy mapping from vision features to control actions.

Electronics 2025, 14, x FOR PEER REVIEW 13 of 30

• Training Map: “CCCCCCCCCCCCCC” (Curved road segments).
• Number of Scenarios: 200.
• Random Seed: 42 (for reproducibility).

Figure 3. Our neural network with ResNet34 as feature extractor.

Figure 4. Our neural network with DinoV2 21M as visual feature extractor.

After multiple preliminary trials, we found that the hyperparameter values listed in
Table 2) yield the most promising results. We chose a balance between obtained results
(“episode reward mean”—last column), training stability and speed. If it’s possible to en-
sure stable convergence—bigger learning rate should generally provide faster learning.
For this reason, we prioritized hyperparameter configurations with value 4 · 10ିସ. One
experiment that used clipping values decay showed particularly promising results with
episode reward mean twice the size of other trials, but some instabilities in learning lead
it to diverge in just a couple final iterations. Despite this, we have chosen to conduct fur-
ther experiments using plipping decays while keeping eye on potential instabilities.
Learning rate also used linear decay to enable smaller adjustments and prevent radical
changes in policy. The PPO clip range of 0.2 gives algorithm more freedom to change its
policy, compared to smaller values. A higher value function clip (10) allows sufficient flex-
ibility for value estimation. An entropy coefficient of 0.01 maintains exploration without
excessive randomness, we have observed that this value gave better results. Gradient clip-
ping at 1 prevents instability from exploding gradients.

The batch size of 1024 · 3 was based on memory consumption and RAM available
and a minibatch size of 256 was picked to balance update count and gradient stability.
Three training epochs per batch prevent overfitting while refining policy updates. A dis-
count factor (γ = 0.99) promotes long-term reward optimization, and GAE (λ = 0.95) bal-
ances bias and variance in advantage estimation (default values from PPO, rarely
changed). Results with different hyperparameters can be seen in Figure A1.

Table 2. Used PPO algorithm hyperparameters.

Parameter Value
Simulations count 3

Learning rate 4 · 10ିସ
Clip range 0.2

Figure 3. Our neural network with ResNet34 as feature extractor.

Electronics 2025, 14, x FOR PEER REVIEW 13 of 30

• Training Map: “CCCCCCCCCCCCCC” (Curved road segments).
• Number of Scenarios: 200.
• Random Seed: 42 (for reproducibility).

Figure 3. Our neural network with ResNet34 as feature extractor.

Figure 4. Our neural network with DinoV2 21M as visual feature extractor.

After multiple preliminary trials, we found that the hyperparameter values listed in
Table 2) yield the most promising results. We chose a balance between obtained results
(“episode reward mean”—last column), training stability and speed. If it’s possible to en-
sure stable convergence—bigger learning rate should generally provide faster learning.
For this reason, we prioritized hyperparameter configurations with value 4 · 10ିସ. One
experiment that used clipping values decay showed particularly promising results with
episode reward mean twice the size of other trials, but some instabilities in learning lead
it to diverge in just a couple final iterations. Despite this, we have chosen to conduct fur-
ther experiments using plipping decays while keeping eye on potential instabilities.
Learning rate also used linear decay to enable smaller adjustments and prevent radical
changes in policy. The PPO clip range of 0.2 gives algorithm more freedom to change its
policy, compared to smaller values. A higher value function clip (10) allows sufficient flex-
ibility for value estimation. An entropy coefficient of 0.01 maintains exploration without
excessive randomness, we have observed that this value gave better results. Gradient clip-
ping at 1 prevents instability from exploding gradients.

The batch size of 1024 · 3 was based on memory consumption and RAM available
and a minibatch size of 256 was picked to balance update count and gradient stability.
Three training epochs per batch prevent overfitting while refining policy updates. A dis-
count factor (γ = 0.99) promotes long-term reward optimization, and GAE (λ = 0.95) bal-
ances bias and variance in advantage estimation (default values from PPO, rarely
changed). Results with different hyperparameters can be seen in Figure A1.

Table 2. Used PPO algorithm hyperparameters.

Parameter Value
Simulations count 3

Learning rate 4 · 10ିସ
Clip range 0.2

Figure 4. Our neural network with DinoV2 21M as visual feature extractor.

Simulation Environment:

• Frame Size: 224 × 224 pixels.
• Stacked Frames: 4 consecutive frames as input.
• Traffic Density: 0.1 (adjusted per training stage).
• Accident Probability: 0.8.
• Training Map: “CCCCCCCCCCCCCC” (Curved road segments).
• Number of Scenarios: 200.
• Random Seed: 42 (for reproducibility).

After multiple preliminary trials, we found that the hyperparameter values listed in
Table 2 yield the most promising results. We chose a balance between obtained results
(“episode reward mean”—last column), training stability and speed. If it’s possible to
ensure stable convergence—bigger learning rate should generally provide faster learning.
For this reason, we prioritized hyperparameter configurations with value 4 · 10−4. One
experiment that used clipping values decay showed particularly promising results with
episode reward mean twice the size of other trials, but some instabilities in learning lead it
to diverge in just a couple final iterations. Despite this, we have chosen to conduct further
experiments using plipping decays while keeping eye on potential instabilities. Learning
rate also used linear decay to enable smaller adjustments and prevent radical changes
in policy. The PPO clip range of 0.2 gives algorithm more freedom to change its policy,
compared to smaller values. A higher value function clip (10) allows sufficient flexibility
for value estimation. An entropy coefficient of 0.01 maintains exploration without excessive
randomness, we have observed that this value gave better results. Gradient clipping at 1
prevents instability from exploding gradients.

The batch size of 1024 · 3 was based on memory consumption and RAM available and
a minibatch size of 256 was picked to balance update count and gradient stability. Three
training epochs per batch prevent overfitting while refining policy updates. A discount
factor (γ = 0.99) promotes long-term reward optimization, and GAE (λ = 0.95) balances bias

Electronics 2025, 14, 825 14 of 30

and variance in advantage estimation (default values from PPO, rarely changed). Results
with different hyperparameters can be seen in Figure A1.

Table 2. Used PPO algorithm hyperparameters.

Parameter Value

Simulations count 3
Learning rate 4 · 10−4

Clip range 0.2
Clip range value function 10

Entropy coefficient 0.01
Value function coefficient 1

Max gradient norm 1
Batch size 1024 · 3

Minibatch size 256
N epochs 3

Discount γ 0.99
GAE λ 0.95

Learning rate, policy clip and value function clip parameters also use linear decay
over training span.

3.6. Vision Processing: Transition from CNN to ViT

Vision transformers based neural net architectures already show better results than
their convolutional counterparts partly because of lack of bias that comes with hardcoded
convolution filter sizes, but ViTs aren’t much explored in RL scene as image feature extrac-
tors. Our work explores possible advantages of using transformer-based image feature
extraction networks instead of convolutional. For this comparison, we selected two simi-
larly sized (~21M parameters) pretrained networks with the smallest possible number of
parameters to optimize resource usage and training time. We then adapted their outputs
by applying additional compression before producing state value and action probability
outputs in the final layer. Images (see: Figures 3 and 4) show used neural net architectures.
As CNN representation we chose ResNet34 because ResNet models are widely used in
literature and one of the best for this task. For vision transformers model we chose to use
Meta’s DinoV2 21M parameter model with registers modification. It was pretrained using
self-supervised learning on large dataset and shows good results on various styles of images
with ability to extract depth and semantic information with only a few additional layers.
Additionally, DinoV2’s authors show that it is possible to find matching features between
different style images, using principal component analysis. Knowing this, we assume that
DinoV2 based model would be able to trivially adapt to different visual environments, for
example: using different complexity simulators (see Figure 5) or sim2real.

Electronics 2025, 14, x FOR PEER REVIEW 14 of 30

Clip range value function 10
Entropy coefficient 0.01

Value function coefficient 1
Max gradient norm 1

Batch size 1024 · 3
Minibatch size 256

N epochs 3
Discount γ 0.99

GAE λ 0.95

Learning rate, policy clip and value function clip parameters also use linear decay
over training span.

3.6. Vision Processing: Transition from CNN to ViT

Vision transformers based neural net architectures already show better results than
their convolutional counterparts partly because of lack of bias that comes with hardcoded
convolution filter sizes, but ViTs aren’t much explored in RL scene as image feature ex-
tractors. Our work explores possible advantages of using transformer-based image fea-
ture extraction networks instead of convolutional. For this comparison, we selected two
similarly sized (~21M parameters) pretrained networks with the smallest possible number
of parameters to optimize resource usage and training time. We then adapted their out-
puts by applying additional compression before producing state value and action proba-
bility outputs in the final layer. Images (see: Figures 3 and 4) show used neural net archi-
tectures. As CNN representation we chose ResNet34 because ResNet models are widely
used in literature and one of the best for this task. For vision transformers model we chose
to use Meta’s DinoV2 21M parameter model with registers modification. It was pretrained
using self-supervised learning on large dataset and shows good results on various styles
of images with ability to extract depth and semantic information with only a few addi-
tional layers. Additionally, DinoV2’s authors show that it is possible to find matching fea-
tures between different style images, using principal component analysis. Knowing this,
we assume that DinoV2 based model would be able to trivially adapt to different visual
environments, for example: using different complexity simulators (see Figure 5) or
sim2real.

Figure 5. Example images from MetaDrive (left) and AirSim (right) simulators. We attempt to train
neural network on MetaDrive simulator and apply it to control agent in AirSim.

3.7. Training and Evaluation Process

This research consists of 2 parts—training CNN based and ViT based PPO algorithms
and evaluating trained ViT networks capabilities in different simulators.

For the first part, we trained a baseline neural-network based on most common meth-
ods found in literature, which is ResNet based visual feature extraction. After that, we
aimed to isolate and directly compare convolutional and transformer network

Figure 5. Example images from MetaDrive (left) and AirSim (right) simulators. We attempt to train
neural network on MetaDrive simulator and apply it to control agent in AirSim.

Electronics 2025, 14, 825 15 of 30

3.7. Training and Evaluation Process

This research consists of 2 parts—training CNN based and ViT based PPO algorithms
and evaluating trained ViT networks capabilities in different simulators.

For the first part, we trained a baseline neural-network based on most common
methods found in literature, which is ResNet based visual feature extraction. After that, we
aimed to isolate and directly compare convolutional and transformer network architectures
for vision-based reinforcement learning, by training DivoV2 based model with as little
additional modifications as possible. The training is done only in the Metadrive simulator
using reinforcement learning with no external datasets or additional inputs. During training
the observations received from the simulator after each action are passed to the agent which
outputs the next action.

In the second part, the trained ViT-based model was tested in the AirSim simulator.
With its more realistic physics and detailed visual environments, AirSim offered a better
representation of real-world conditions. This phase assessed how well the ViT model could
adapt, remain robust, and generalize to more complex and challenging scenarios.

3.7.1. Step 1: CNN and ViT Comparison Experiments
Environment Setup

In order to isolate all variables and fairly compare only network architectures, we
used identical environments for both steps, CNN and ViT. Road is made from randomly
assembled, curved highway sections with occasional other cars and road obstacles. Road
example can be seen in (Figures 5 and 6) and hyperparameters used for map generation in
(Table 1). This configuration represents driving and keeping lanes on the highway in the
real world, and it can be considered the simplest case of autonomous driving. This research
focuses on different vision models integration and their ability to perform in different
environments, for this reason we have chosen to train agents in the simplest map type
to minimize complexity that comes from broader reinforcement learning tasks. Adding
more types of roads would require modifications of our neural networks—incorporating
turning signals. In our case simulations start at the beginning of the curved road and in the
correct direction. A vehicle’s goal is to drive as far as possible or until the road ends while
avoiding collisions with other vehicles and occasional obstacles and staying in its own lane.
In all episodes the agent drives the same car.

Electronics 2025, 14, x FOR PEER REVIEW 15 of 30

architectures for vision-based reinforcement learning, by training DivoV2 based model
with as little additional modifications as possible. The training is done only in the
Metadrive simulator using reinforcement learning with no external datasets or additional
inputs. During training the observations received from the simulator after each action are
passed to the agent which outputs the next action.

In the second part, the trained ViT-based model was tested in the AirSim simulator.
With its more realistic physics and detailed visual environments, AirSim offered a better
representation of real-world conditions. This phase assessed how well the ViT model
could adapt, remain robust, and generalize to more complex and challenging scenarios.

3.7.1. Step 1: CNN and ViT Comparison Experiments

Environment Setup

In order to isolate all variables and fairly compare only network architectures, we
used identical environments for both steps, CNN and ViT. Road is made from randomly
assembled, curved highway sections with occasional other cars and road obstacles. Road
example can be seen in (Figures 5 and 6) and hyperparameters used for map generation
in (Table 1). This configuration represents driving and keeping lanes on the highway in
the real world, and it can be considered the simplest case of autonomous driving. This
research focuses on different vision models integration and their ability to perform in dif-
ferent environments, for this reason we have chosen to train agents in the simplest map
type to minimize complexity that comes from broader reinforcement learning tasks. Add-
ing more types of roads would require modifications of our neural networks—incorpo-
rating turning signals. In our case simulations start at the beginning of the curved road
and in the correct direction. A vehicle’s goal is to drive as far as possible or until the road
ends while avoiding collisions with other vehicles and occasional obstacles and staying in
its own lane. In all episodes the agent drives the same car.

Figure 6. Examples of C road section combinations in MetaDrive simulator.

Policy Initialization and Feature Extraction

CNN neural network architecture is showed in Figure 3. For a ResNet34 part, we use
pretrained and frozen weights from PyTorch library. Simulator return RGB images of size
224 × 244 pixels, to be able to infer current movement information from view, we save last
4 frames in a circular buffer and pass them together to neural net at each step. Also as
required by ResNet, we normalize and scale each color channel by different factor.

ViT neural network architecture is shown in Figure 4. For a vision transformer we
use pretrained DinoV2 20M parameter model with registers modification, weights are

Figure 6. Examples of C road section combinations in MetaDrive simulator.

Electronics 2025, 14, 825 16 of 30

Policy Initialization and Feature Extraction

CNN neural network architecture is showed in Figure 3. For a ResNet34 part, we use
pretrained and frozen weights from PyTorch library. Simulator return RGB images of size
224 × 244 pixels, to be able to infer current movement information from view, we save
last 4 frames in a circular buffer and pass them together to neural net at each step. Also as
required by ResNet, we normalize and scale each color channel by different factor.

ViT neural network architecture is shown in Figure 4. For a vision transformer we use
pretrained DinoV2 20M parameter model with registers modification, weights are frozen
and not trained. Similarly, as with CNN, we save last 4 frames and give them to the neural
net at each iteration. From DinoV2 results we use just image patch embedding values
(localized features). Patches represent 14 × 14 pixel squares which in our care translates
to 16 × 16 patches for image, each having 384 length vector embeddings. Because of high
dimensionality, we further compress embeddings using CNNs as shown in the diagram
(Figure 4).

Training Process

The training involved randomly generated maps of combined C-shaped road sec-
tions, ensuring the agent encountered new layouts and traffic scenarios regularly. This
variety prevented the agent from simply memorizing patterns, fostering adaptability and
reducing overfitting. For a reward function, we used base evaluation provided by the
MetaDrive SafeDrivingEnv environment with some hyperparameters changed as shown
in Table 1. The agent earned rewards for staying in lanes and maintaining appropriate
speeds while facing penalties for collisions and going off-road. Agents were trained for
200k simulation steps using 3 simulations running in parallel. PPO algorithms training
process showed to be unstable and sensitive to selected hyperparameters. Depending
on selected hyperparameters and reward scaling values, many times agents ended up
learning suboptimal strategies, such as: staying in place and not moving at all, turning
in circles or deliberately ending an episode by driving off the road. To make neural net
convergence more stable we added normalization layers after each custom layer, which
made convergence a little bit more stable and predictable. In addition, we removed most
conditions related to simulation episode termination, such as driving on the opposite side
of the road (penalties still present), this gave agent more freedom for various strategies
and improved simulation speed performance, because MetaDrives 3D environments have
extremely slow reset times. These changes allowed us to find hyperparameters that gives
somewhat reasonable results, keeping in mind that 200k frames is comparatively small
amount of data to achieve good results in RL. To improve results a little bit more, we added
linear hyperparameter decay for: learning rate, clipping rate and value function clipping
rate. This forces algorithm to make smaller and smaller changes which in turn allows it to
find more precise, locally optimum strategy location and prevents it from making radical,
potentially disruptive changes later in the training process.

Training Performance

Our experiments focus on using pretrained neural networks for visual information
without further refinement (frozen weights), which means that image embeddings for
the same frames always stay the same. Also, our chosen PPO algorithm in the training
process reevaluates its predictions tenths of times, which usually also includes relatively
expensive vision models. To avoid unnecessary repetitions of vision model calls, we com-
bined our environment class with vision models and as a result from simulation returned
just image embedding values. This massively reduces needed computations and RAM

Electronics 2025, 14, 825 17 of 30

requirements, because we no longer need to save image batches. In our case training speed
improved twice.

Considering environments simulation performance for future works, StableBaselines3
and MetaDrive combination showed to be slower than expected. Firstly, Metadrive simula-
tions required multiple GB of RAM each despite being visually simple, and because of that
system with 32 GB of RAM could only run 4 parallel simulations at maximum. Secondly,
environment restarts take multiple (up to 10) seconds which substantially slows down
data collection. Also, in StabeBaselines3, even parallel simulations steps are performed
in sync including restarts which further increases restart wait time by multiplier equal to
the number of parallel simulations. Some restarts can be avoided by increasing the map’s
road length (with negligible RAM increase), also using more advanced RL framework with
asynchronous execution would remove costly multiplier.

Evaluation, Results and Discussion

The agent’s progress was measured at training and later as an evaluation step, using
metrics such as success rates, collision frequencies, total distances travelled, and episode
durations. These evaluations were performed with different random seeds to test the
robustness of the learned policies across varying initial conditions. At evaluation time we
also tested algorithms performance on novel unseen types of maps (T intersection).

Despite serving as a benchmark, the CNN-based policy struggled to achieve satisfac-
tory performance. Even after 200,000 training steps, the results fell short of expectations.
Extending the training to 1 million steps did not significantly improve performance. Agent
only managed to turn in circles. This could be attributed to very small amount of data used
to train our networks. Also as seen in the network diagrams, our ResNet34 adaptation has
a bottleneck where one layer has only 512 neurons which heavily compressed information
and could lose necessary details, although further investigation into this architecture flaw
is needed. However, the performance gap between ResNet34 and DinoV2 can primarily be
attributed to differences in feature extraction rather than changes to the overall training
setup. Since only hyperparameter adjustments were made to optimize each model, inter-
mediate ablation studies were not necessary. The comparison was intended to evaluate the
architectures under equivalent conditions rather than isolate individual components. The
other possible explanation could be instability of the PPO algorithm, given the fact that the
same situations occurred in the DinoV2-based model too. Experimenting with off-policy
algorithms could solve this problem because of their optimum policy guarantees.

Meanwhile DinoV2 based model showed promising results with steady improve-
ments when appropriate hyperparameters were used. Although algorithms learned to
use steering signals very well, it failed to learn usefulness of breaks, agent was stuck at
maximum acceleration at all experiments, despite various reward function and penalties
variations. This behavior can be attributed to the reward structure, which emphasized
forward progression by rewarding distance traveled toward the finish line. At the start of
an episode, the agent received positive rewards for acceleration, as the car was initially
well-aligned with the road, and boundaries were relatively far apart. This setup incen-
tivized the agent to maximize immediate rewards by accelerating continuously, creating a
reinforcement loop that made braking or cautious driving less favorable. Attempts to adjust
the reward structure included testing speed-based incentives, experimenting with small
positive rewards for deceleration trying maps that would require deceleration. However,
these adjustments were only partially successful, as the agent still associated acceleration
with higher rewards overall. Also in order to achieve good final policy—it is common to de-
crease policy clipping value during training, this allows model to perform small finetuning
adjustments, but prohibits large strategy changes which are needed in order to unlearn bias

Electronics 2025, 14, 825 18 of 30

for acceleration. This policy transition problem is related to PPO algorithm and could be
solved by using off-policy algorithms like SAC or engineering more diverse environments
from the training start where agent would have to brake immediately, but this was out of
scope for our research. Also, PPO in this case showed to be quite unstable and sensitive to
small hyperparameter changes, opposing to what was expected after literature review.

Despite our efforts to make both neural networks as similar as possible, some differ-
ences such as layer count remain. Further research could focus on experimenting with
different vision models’ outputs adaptations, possibly modifying base models to extract
different features.

3.7.2. Step 2: Testing and Refinement in AirSim

This was the testing of the policies trained in MetaDrive in the AirSim simulator.
The transition emphasized the challenges in handling more detailed visuals, like dynamic
shadows and complex textures, as well as adapting to a realistic physics engine simulating
wheel slip and friction. Adjustments needed to be made in the areas of steering, braking,
and throttle to maintain stability and improve control in this more demanding simulation
environment. This called for revising the manner in which actions were taken and perfor-
mance measured. Although no fine-tuning was made on the model, domain adaptation
techniques and refined mechanisms of control were set up to sustain high performance
for the policy. A few key improvements addressed a couple of major challenges in Air-
Sim’s complex environment, where refined steering adjustments helped damp excessive
wobbling of the vehicle that resulted from minor adjustments, hence handling sharp turns
in the path with much ease giving smooth trajectories. Throttle and brake refinements
balance speed with stability in high-speed maneuvers and emergency scenarios, such as
sudden stops. These targeted changes enhanced the model’s adaptability to AirSim’s realis-
tic physics and its unpredictable dynamics for improved overall performance and safety
in navigation.

Differences Between MetaDrive and AirSim

The transition from MetaDrive to AirSim involved several significant differences that
impacted the model’s performance. AirSim’s visuals included complex textures, dynamic
shadows, and more realistic lighting conditions, whereas MetaDrive’s visuals were simpler
and less detailed. These changes made it harder for the model to interpret the environment
without adaptation. Additionally, AirSim had a more advanced physics engine, with
realistic vehicle dynamics such as wheel slip, friction, and weight distribution, while
MetaDrive used simplified physics. This required more precise control adjustments for
actions like steering and braking.

AirSim featured larger and more intricate maps with multiple intersections, tight
curves, and varying elevations. In contrast, MetaDrive’s maps were procedurally generated
but less challenging, with simpler layouts. Vehicle controls, such as steering and throttle,
were also more sensitive in AirSim due to its detailed physics engine, demanding fine-tuned
adjustments for smooth navigation. Furthermore, AirSim included variable environmental
conditions, such as wind and uneven terrain, which were absent in MetaDrive. The com-
bination of realistic visuals and dynamic elements in AirSim required the model to make
more context-aware decisions, unlike the relatively predictable scenarios in MetaDrive.

Steering Adjustments

Steering adjustments were made to address two key issues: unnecessary small steering
changes that caused the car to wobble, and insufficient steering during sharp maneuvers.
Small steering adjustments were reduced to stabilize the vehicle’s trajectory, while larger
steering outputs were locked and amplified to ensure the car could handle challenging

Electronics 2025, 14, 825 19 of 30

turns effectively. These changes improved overall stability and control, especially during
dynamic movements. When the vehicle moved in reverse, steering angles were inverted
to ensure accurate corrections. To further smooth the vehicle’s trajectory, recent steering
outputs were averaged, reducing sudden directional changes and promoting steady control.

Throttle Adjustments

Throttle adjustments were introduced to balance speed and control, particularly during
turns and high-speed driving. The throttle was scaled inversely to the magnitude of the
steering angle, reducing speed during sharp turns to prevent skidding or overshooting. For
smaller steering angles, throttle output was kept near maximum to maintain efficient travel
on straight paths. To avoid unsafe speeds, the throttle was proportionally reduced when the
vehicle exceeded a predefined speed limit, ensuring consistent and controlled navigation.

Braking Mechanisms

Braking mechanisms were also refined to improve safety. Braking intensity was
calculated based on the vehicle’s deceleration. When deceleration was detected, braking
force was applied proportionally to maintain stability. Emergency braking was added for
situations involving extreme steering angles or abrupt speed changes, preserving control in
challenging conditions and preventing accidents.

Gear Selection and Reversing Logic

Gear selection and reversing logic depended on the vehicle’s speed and acceleration.
Positive acceleration automatically engaged the forward gear, while negative acceleration
below a specific threshold triggered reverse gear. During reversing, throttle and steering
outputs were carefully coordinated to ensure smooth and stable repositioning without
sudden directional changes, improving maneuverability in reverse.

Action Synchronization

A sequential execution mechanism prevented conflicting actions (e.g., simultaneous
braking and throttle application). This ensured the agent’s actions were logically coherent
and physically realistic.

Domain Adaptation

Domain adaptation techniques were essential for adapting the model from MetaDrive
to AirSim’s more complex environment. Domain adaptation techniques were applied to
address the visual differences between MetaDrive and AirSim. These included Adaptive
Instance Normalization (AdaIN) and a lightweight style transfer mechanism. A repre-
sentative style image from MetaDrive was resized to 224 × 224 pixels, normalized using
ImageNet statistics, and processed through DinoV2’s forward features to extract normal-
ized patch tokens (x_norm_patchtokens). These tokens were used to align the embeddings
of MetaDrive frames with AirSim’s higher-fidelity visuals in an efficient manner. How-
ever, the overall impact of these adjustments on model performance was minimal, likely
due to DinoV2’s robust pretraining, which enabled generalization across visual domains
without requiring significant alignment. Temporal embedding stacking further improved
the model’s ability to recognize changes over time, such as moving vehicles and shifts
in lighting, by using a rolling buffer of four consecutive image embeddings. These tech-
niques addressed challenges like handling AirSim’s detailed visuals and dynamic elements,
enabling smoother navigation and better decision-making.

Electronics 2025, 14, 825 20 of 30

Evaluation Metrics

Policy performance in AirSim was assessed using several key metrics to evaluate
navigation efficiency and safety. The average episode length, which measures how long the
agent could navigate, decreased in AirSim due to its more complex maps and challenging
road layouts, making it harder to maintain stable navigation. Collision rates, indicating
how often the agent hit obstacles and reflecting safety, were higher because of AirSim’s
realistic physics and detailed environments. The average speed, showing how smoothly
the agent drove, was lower as vehicles had to slow down frequently for sharp turns and
intersections. Success rates, which track how often the agent completed its goals without
errors, also dropped in the more demanding AirSim environment. Finally, the average
distance traveled per episode, which shows how far the agent could go without unnecessary
stops, was shorter because of the increased difficulty in AirSim. Together, these metrics
highlighted the greater challenges posed by AirSim and the model’s struggles to adapt to a
more realistic and demanding simulation environment.

Scenario Design and Execution

Scenario design in AirSim ensured consistent and fair testing conditions. At the start
of each episode, the environment was re-initialized, resetting both the vehicle’s state and
environmental parameters to provide comparable conditions across trials. Episodes ran for
a fixed number of simulation steps, ending when the vehicle reached its goal or experienced
a collision. Throughout each episode, the agent processed real-time observations, including
speed, position, and collision data, to guide its actions. After each run, metrics such as
distance travelled, collision count, episode length, and average speed were recorded. These
metrics were aggregated across multiple trials to produce a statistically reliable assessment
of the policy’s performance and ability to generalize to different scenarios.

4. Results
We start by looking at how the models were trained in the MetaDrive simulator,

comparing the DinoV2 ViT-S/14 and ResNet34 models over different training periods.
Next, we review how the trained models performed in MetaDrive and their key results.
Finally, we discuss testing the models in the AirSim simulator and the adjustments made
to improve their performance in this more complex environment. These results show the
challenges of moving models trained in simpler simulators like MetaDrive to more realistic
ones like AirSim. They highlight the need to fine-tune important settings like steering
control, lane correction, and sensor adjustments to achieve better performance in these
challenging conditions.

4.1. Model Training Evaluation

This section evaluates model performance during training in the MetaDrive simulator.
Models were trained for 200,000 and 1,000,000 steps, with the backbone feature extractors
(DinoV2 ViT-S/14 and ResNet34) frozen during training. Key metrics, including mean
episode reward and mean episode length, were compared to assess performance in Figure 7.

As shown in the chart, the DinoV2 model trained for 1,000,000 steps achieved the
best performance, with the longest mean episode length (1394.8) and the highest mean
reward (676.49). The DinoV2 model trained for 200,000 steps performed moderately, pro-
ducing shorter episodes and lower rewards. ResNet34 showed consistently weaker perfor-
mance across both training durations, with the 200,000-step version performing the worst.
These results demonstrate DinoV2’s superior capability, particularly when trained for a
longer duration.

Electronics 2025, 14, 825 21 of 30

Electronics 2025, 14, x FOR PEER REVIEW 20 of 30

indicating how often the agent hit obstacles and reflecting safety, were higher because of
AirSim’s realistic physics and detailed environments. The average speed, showing how
smoothly the agent drove, was lower as vehicles had to slow down frequently for sharp
turns and intersections. Success rates, which track how often the agent completed its goals
without errors, also dropped in the more demanding AirSim environment. Finally, the
average distance traveled per episode, which shows how far the agent could go without
unnecessary stops, was shorter because of the increased difficulty in AirSim. Together,
these metrics highlighted the greater challenges posed by AirSim and the model’s strug-
gles to adapt to a more realistic and demanding simulation environment.

Scenario Design and Execution

Scenario design in AirSim ensured consistent and fair testing conditions. At the start
of each episode, the environment was re-initialized, resetting both the vehicle’s state and
environmental parameters to provide comparable conditions across trials. Episodes ran
for a fixed number of simulation steps, ending when the vehicle reached its goal or expe-
rienced a collision. Throughout each episode, the agent processed real-time observations,
including speed, position, and collision data, to guide its actions. After each run, metrics
such as distance travelled, collision count, episode length, and average speed were recorded.
These metrics were aggregated across multiple trials to produce a statistically reliable as-
sessment of the policy’s performance and ability to generalize to different scenarios.

4. Results
We start by looking at how the models were trained in the MetaDrive simulator,

comparing the DinoV2 ViT-S/14 and ResNet34 models over different training periods.
Next, we review how the trained models performed in MetaDrive and their key results.
Finally, we discuss testing the models in the AirSim simulator and the adjustments made
to improve their performance in this more complex environment. These results show the
challenges of moving models trained in simpler simulators like MetaDrive to more realis-
tic ones like AirSim. They highlight the need to fine-tune important settings like steering
control, lane correction, and sensor adjustments to achieve better performance in these
challenging conditions.

4.1. Model Training Evaluation

This section evaluates model performance during training in the MetaDrive simulator.
Models were trained for 200,000 and 1,000,000 steps, with the backbone feature extractors
(DinoV2 ViT-S/14 and ResNet34) frozen during training. Key metrics, including mean epi-
sode reward and mean episode length, were compared to assess performance in Figure 7.

Figure 7. Model performance comparison across training steps in the MetaDrive simulator. Here
yellow represents model with DinoV2 ViT-S/14 backbone trained for 1 million steps, blue represents
model with ResNet34 backbone trained for 1 million steps.

From multiple hyperparameter tuning experiments, the averaged graphs
(Figures 8 and 9) show key performance trends. Figure 8 illustrates how, as training
progresses, the model learns to approximate the expected return from the environment,
reducing errors and improving its ability to generalize from experience. Similarly, Fig-
ure 9 shows the mean episode reward increasing over training steps because the model’s
improved generalization enables it to learn better driving strategies, leading to higher
rewards. All models in these graphs were trained for 200,000 frames on a map with curved
road segments. The blue line represents DinoV2-based models, and the yellow line shows
ResNet34-based models. On average, the ViT-based models achieved higher rewards, and
the difference in performance grew with training. The PPO algorithm also seemed to
evaluate the agent’s state more effectively and faster when using the Vision Transformer,
further proving its advantage over CNN-based models.

Electronics 2025, 14, x FOR PEER REVIEW 21 of 30

Figure 7. Model performance comparison across training steps in the MetaDrive simulator. Here
yellow represents model with DinoV2 ViT-S/14 backbone trained for 1 million steps, blue represents
model with ResNet34 backbone trained for 1 million steps.

As shown in the chart, the DinoV2 model trained for 1,000,000 steps achieved the best
performance, with the longest mean episode length (1394.8) and the highest mean reward
(676.49). The DinoV2 model trained for 200,000 steps performed moderately, producing
shorter episodes and lower rewards. ResNet34 showed consistently weaker performance
across both training durations, with the 200,000-step version performing the worst. These
results demonstrate DinoV2’s superior capability, particularly when trained for a longer
duration.

From multiple hyperparameter tuning experiments, the averaged graphs (Figures 8
and 9) show key performance trends. Figure 8 illustrates how, as training progresses, the
model learns to approximate the expected return from the environment, reducing errors
and improving its ability to generalize from experience. Similarly, Figure 9 shows the
mean episode reward increasing over training steps because the model’s improved gen-
eralization enables it to learn better driving strategies, leading to higher rewards. All mod-
els in these graphs were trained for 200,000 frames on a map with curved road segments.
The blue line represents DinoV2-based models, and the yellow line shows ResNet34-
based models. On average, the ViT-based models achieved higher rewards, and the dif-
ference in performance grew with training. The PPO algorithm also seemed to evaluate
the agent’s state more effectively and faster when using the Vision Transformer, further
proving its advantage over CNN-based models.

Figure 8. The mean episode reward throughout model training. The blue line shows model with
DinoV2 backbone while the orange line shows model with ResNet34 model backbone.
Figure 8. The mean episode reward throughout model training. The blue line shows model with
DinoV2 backbone while the orange line shows model with ResNet34 model backbone.

Electronics 2025, 14, 825 22 of 30Electronics 2025, 14, x FOR PEER REVIEW 22 of 30

Figure 9. Value function’s explained variance difference throughout model training. The blue line shows
model with DinoV2 backbone while the orange line shows model with ResNet34 backbone model.

4.2. Trained Model Results in Metadrive

Before evaluating the trained models in the MetaDrive simulator, several adjust-
ments were made to the default settings. The vehicle’s maximum speed was reduced, and
the termination rule for entering oncoming traffic was disabled. This decision allowed the
agent to explore navigation strategies more freely, particularly during early training
phases, without being prematurely penalized for minor deviations. However, this adjust-
ment also led to the emergence of suboptimal behaviors, as the agent occasionally priori-
tized smoother paths in opposing lanes over staying within its designated lane. To coun-
teract this, additional vehicles were introduced in opposing lanes, creating a higher risk
of collisions and incentivizing the agent to adhere to correct lane usage. These adjustments
balanced exploration and realistic behavior development, ensuring that the agent could
generalize better across diverse driving scenarios.

To ensure a fair comparison between MetaDrive and AirSim, the way distances were
measured was adjusted to account for differences in how each simulator calculates them.
MetaDrive measures distances in meters, while AirSim uses the cumulative Euclidean
distance between consecutive coordinates. AirSim’s method often exaggerates path
lengths due to its finer granularity and the inclusion of curves.

To align MetaDrive’s distance measurements with AirSim’s format, the average step
distance in MetaDrive (0.222 m, calculated from the distance and episode length) was
scaled by a factor of 4. This scaling factor was derived empirically by generating identical
paths in both simulators and recording the total distance traveled by the vehicle. The re-
sults showed that AirSim’s Euclidean distance calculation, which accounts for finer gran-
ularity and curved trajectories, inflated distance measurements by approximately four
times compared to MetaDrive’s straight-line segment calculations. This validation step
supports the appropriateness of the ×4 scaling factor, ensuring that the reported results
are directly comparable across the two simulators.

The evaluation results (see Table 3) show that the DinoV2 ViT-S/14 model signifi-
cantly outperformed ResNet34 as the backbone model in the MetaDrive simulator. After
1 million training steps, DinoV2 achieved the best overall performance, with an average
distance traveled of 265.91 units, minimal collisions (0.2), the longest episode length (299.2
steps), and a higher average speed (7.82 units). At 200,000 steps, its performance was
lower, with an average distance of 67.19 units, a collision rate of 1, but a competitive speed
of 6.21 units.

Figure 9. Value function’s explained variance difference throughout model training. The blue
line shows model with DinoV2 backbone while the orange line shows model with ResNet34 back-
bone model.

4.2. Trained Model Results in Metadrive

Before evaluating the trained models in the MetaDrive simulator, several adjustments
were made to the default settings. The vehicle’s maximum speed was reduced, and the
termination rule for entering oncoming traffic was disabled. This decision allowed the
agent to explore navigation strategies more freely, particularly during early training phases,
without being prematurely penalized for minor deviations. However, this adjustment
also led to the emergence of suboptimal behaviors, as the agent occasionally prioritized
smoother paths in opposing lanes over staying within its designated lane. To counteract this,
additional vehicles were introduced in opposing lanes, creating a higher risk of collisions
and incentivizing the agent to adhere to correct lane usage. These adjustments balanced
exploration and realistic behavior development, ensuring that the agent could generalize
better across diverse driving scenarios.

To ensure a fair comparison between MetaDrive and AirSim, the way distances were
measured was adjusted to account for differences in how each simulator calculates them.
MetaDrive measures distances in meters, while AirSim uses the cumulative Euclidean
distance between consecutive coordinates. AirSim’s method often exaggerates path lengths
due to its finer granularity and the inclusion of curves.

To align MetaDrive’s distance measurements with AirSim’s format, the average step
distance in MetaDrive (0.222 m, calculated from the distance and episode length) was
scaled by a factor of 4. This scaling factor was derived empirically by generating identical
paths in both simulators and recording the total distance traveled by the vehicle. The
results showed that AirSim’s Euclidean distance calculation, which accounts for finer
granularity and curved trajectories, inflated distance measurements by approximately four
times compared to MetaDrive’s straight-line segment calculations. This validation step
supports the appropriateness of the ×4 scaling factor, ensuring that the reported results are
directly comparable across the two simulators.

The evaluation results (see Table 3) show that the DinoV2 ViT-S/14 model significantly
outperformed ResNet34 as the backbone model in the MetaDrive simulator. After 1 million
training steps, DinoV2 achieved the best overall performance, with an average distance
traveled of 265.91 units, minimal collisions (0.2), the longest episode length (299.2 steps),
and a higher average speed (7.82 units). At 200,000 steps, its performance was lower, with
an average distance of 67.19 units, a collision rate of 1, but a competitive speed of 6.21 units.

Electronics 2025, 14, 825 23 of 30

Table 3. Trained model evaluation results in Metadrive.

Backbone Model Training Steps Avg. Distance
Travelled (m)

Avg.
Collisions

Avg. Episode
Length (s)

Avg. Speed
(km/h)

DinoV2 ViT-S/14
distilled with registers 1,000,000 265.91 0.2 299.2 7.82

DinoV2 ViT-S/14
distilled with registers 200,000 67.19 1 75.6 6.21

ResNet34 1,000,000 39.1 0 44 4.18

ResNet34 200,000 51.54 0 58 3.01

In contrast, ResNet34 showed only slight improvement even with extended training.
After 1 million steps, it managed an average distance of just 39.1 units, no collisions, an
episode length of 44 steps, and a speed of 4.18 units. At 200,000 steps, its performance
was similarly limited, achieving an average distance of 51.54 units with a lower speed of
3.01 units.

These findings emphasize the superior ability of DinoV2 ViT-S/14 to process vi-
sual information for autonomous driving tasks, especially when given sufficient training.
ResNet34’s limited performance highlights its difficulty in handling the complexity of
visual navigation in MetaDrive.

While DinoV2 performed better in numbers, test drives showed some problems. The
model sometimes went outside lane boundaries and had trouble keeping a steady speed,
meaning it needs better control and to follow driving rules more closely. ResNet34, on
the other hand, often went off the road completely. This explains its low collision rates
but shows that it couldn’t drive steadily, making it unreliable for autonomous driving in
this environment.

4.3. Results from Trained Model Testing in AirSim

Testing a model trained in a simpler simulator like MetaDrive in a more complex
environment like AirSim posed significant challenges due to the differences in visuals,
physics, and map complexity. The Vision Transformer (ViT)-based model showed better
adaptability than the CNN model but still required several adjustments. Changes to steering
control, lane detection, camera placement, and braking logic were necessary to align the
model’s actions with AirSim’s realistic physics and detailed visuals. These adjustments
were guided by the unique demands of AirSim’s environment, including more intricate
road layouts and dynamic conditions. Together, these refinements helped the model
navigate the complex environment effectively and prepared it for performance evaluations.

The results (Table 4) highlight that steering dynamics are the most critical aspect of
successful navigation. Adjustments to steering logic play a vital role in autonomous driving
performance. When additional steering logic was removed, the model’s performance
dropped dramatically, with an 82.9% decrease in distance traveled and nearly halved
average speed compared to the baseline. Without proper steering adjustments, the model
could not control the vehicle effectively, resulting in erratic or stalled behavior. This
highlights the importance of fine-tuning steering logic to align with AirSim’s more sensitive
and realistic physics system. Steering adjustments ensured smoother trajectories, even in
the absence of other advanced features like lane detection or style transfer.

Electronics 2025, 14, 825 24 of 30

Table 4. AirSim simulator adjustments results.

Scenario Average Distance
Travelled (m)

Average
Collisions

Average Episode
Length (s)

Average Speed
(km/h)

Fully implemented system 103.47 1 9.4 6.82

No forward camera adjustment 112.01 1 11.6 8.12

No lane correction logic (removing
line detection) 128.62 1 14.8 7.98

No style transfer, no forward
camera adjustment, no lane
correction

102.56 1 9.8 6.33

No brake logic, no forward camera
adjustment, no lane correction 98.14 1 12.2 7.36

No speed logic, no forward
camera adjustment, no lane
correction

114.38 1 11.2 10.88

No steering logic, no forward
camera adjustment, no lane
correction

17.7 1 6 3.45

Lane detection corrections, initially implemented using a Hough Transform-based
method, aimed to align the vehicle’s trajectory by detecting lane boundaries. However, in
AirSim’s high-fidelity environment, this approach often misidentified non-lane elements,
such as shadows, curbs, and complex textures, as lane markings. These noisy inputs
frequently conflicted with the reinforcement learning (RL) policy, which already utilized
visual embeddings to make context-aware navigation decisions. This conflict resulted in
oscillatory or unstable steering behavior, particularly on curved roads or intersections with
ambiguous or missing lane markings.

Disabling the lane detection corrections resolved these conflicts by allowing the RL
policy to operate independently, relying solely on its learned understanding of the envi-
ronment. This simplification led to the best performance overall, with a 24.3% increase in
distance traveled compared to the baseline. This result underscores that in high-variability
environments like AirSim, simpler systems relying on robust learned policies can outper-
form pipelines that introduce noise through redundant or conflicting inputs.

Removing forward camera adjustments resulted in an 8.54% improvement in distance
traveled, indicating that the default sensor alignment may already be optimal. Proper
placement of sensors is critical, and any adjustments should be carefully tested to ensure
they improve rather than disrupt the perception system.

Disabling the speed control logic resulted in the highest average speed and a notable
improvement in distance travelled, with a 10.6% increase over the baseline. However, this
approach comes with risks, as faster speeds can reduce control and increase the chances of
instability or collisions. Striking a balance between aggressive speed strategies and stability
is crucial. Adaptive speed control, which adjusts speed based on real-time conditions,
could provide better results than fixed-speed strategies.

When braking logic was removed, the distance travelled decreased slightly by 5.2%,
but the average speed increased by 7.9%. Braking logic helps maintain stability by smooth-
ing sudden changes in speed or direction, but it can also limit forward momentum. To
optimize performance, braking logic should be adjusted to allow for better momentum
while still ensuring stability during challenging maneuvers.

Electronics 2025, 14, 825 25 of 30

Removing style transfer caused only a minor impact on performance, with a 0.9%
reduction in distance travelled and a 7.2% drop in speed. This suggests that style transfer
is not essential for navigation in this scenario. While it helps align visual embeddings with
training conditions, such as images from MetaDrive, the DinoV2 features proved robust
enough to perform effectively without it. Style transfer remains useful in environments
with significant visual differences or domain shifts, such as transitioning from synthetic
data to real-world images, but it is not critical in all cases.

Despite its strong performance in MetaDrive (Table 3). the model with DinoV2 ViT-
S/14 model faced difficulties in the more realistic AirSim environment. Lane correction
logic had to be disabled due to conflicts with dynamic conditions, and a speed limit was
necessary to maintain control. Even with these adjustments the average distance travelled
dropped from 265.91 to 128.62 units. Collisions increased to an average of 1 per episode,
and although the average speed remained comparable at 7.98 units, the model’s episode
length was reduced to 14.8, indicating challenges in maintaining stable navigation.

4.4. Reasons for Environment Transition Difficulties

As shown by results DinoV2 did allow algorithm to generalize to novel environ-
ments. It demonstrates that DinoV2 enabled successful model transfer from the lightweight
MetaDrive simulator to the more complex AirSim, proving that reinforcement learning
models trained in simplified environments can adapt to more realistic settings. How-
ever, full real-world deployment remains challenging due to visual, physics, sensor, and
control differences.

One major limitation was that some real-world dynamics in AirSim had to be refined
for our model to function correctly. Features like advanced physics steering control, lane
detection, camera placement, and braking logic caused instability, forcing us to align these
control mechanics. This highlight critical gaps in the model’s adaptability, particularly in
handling complex physics, environmental variations, and real-time perception.

Agents suffered from big action mistiming and strength. From this we can notice
a major unaddressed part in our study—physics and car parameter differences. Even
in the same simulator different car models can have different mass, acceleration, speed
and turning radius parameters, which wasn’t accounted for when creating the primary
neural networks. In addition to control signals, algorithms received images can be recorded
from different relative positions and angles, which can be mistakenly identified by neural
network as different distances.

To truly enable transfer to real-world scenarios, further investigation is needed in do-
main adaptation (to handle visual differences like lighting and reflections), vehicle physics
modeling (to improve braking, acceleration, and steering response), sensor fusion (to inte-
grate IMU, and radar for better perception), and adaptive control strategies (to dynamically
adjust to varying road and vehicle conditions). Addressing these areas will be essential for
ensuring a smooth transition from simulation to real-world autonomous driving.

5. Conclusions and Future Research
In this study we show that it’s possible to use vision transformers and patch-based

information for autonomous reinforcement learning tasks. With a relatively limited about
of training data (200k frames) and PPO algorithm we achieved 87% better performance
using ViT type DinoV2 backbone over CNN type ResNet34. Secondly, we show that vison
backbones pretrained in self-supervised fashion offers big advantages over recognition
networks, as DinoV2’s abilities to adapt to different visual domains were successfully
utilized in RL tasks. This allowed our algorithm to adapt to entirely different visuals in
different simulator with no additional modifications.

Electronics 2025, 14, 825 26 of 30

Despite success in vision, adaptability to different physical properties of the vehicle
and the road still remains a challenge. Future work should focus on giving an agent the
ability to evaluate its actions results from visual information, in turn allowing it to plan in
accordance with its limitations.

While convolutional neural networks (CNNs) have been a reliable choice for vision-
based tasks, our experiments demonstrated their limitations in capturing long-range de-
pendencies and understanding global contextual cues, particularly when using a relatively
small dataset (approximately 200,000 frames). CNNs rely on local receptive fields, which
restrict their ability to process spatial relationships across an entire image, making it harder
to generalize to complex driving scenarios. In contrast, Vision Transformers (ViTs) utilize
self-attention mechanisms that analyze global patterns and relationships in visual data,
enabling a more comprehensive understanding of spatial structures. This led to faster train-
ing and more robust policies under the same conditions. Based on this performance, it is
reasonable to infer that training with a larger dataset could further enhance the robustness
of ViTs, enabling them to handle an even more visually complex environment.

Our trained ViT-based policy performed better in handling complex road layouts,
varying traffic patterns, and challenging road designs such as T-intersections and C-shaped
curves compared to CNN’s. This ability to handle visually complex environments high-
lights ViTs’ potential for enhancing safety and reliability in real-world autonomous vehicle
systems. Furthermore, their demonstrated adaptability across simulated environments
suggests they could reduce retraining costs and accelerate deployment in diverse geo-
graphic regions.

Using universal DinoV2 features allowed the system to adapt to different visual
environments when other settings were carefully aligned. This was evident in the partial
success of transferring the trained agent to a more realistic simulator (AirSim). However,
additional training is needed to better address differences in simulator physics and camera
angles. These findings show the potential of ViTs to reduce the gap between controlled
simulations and more realistic testing conditions.

Lightweight embedding-level style transfer techniques showed limited impact in
addressing the domain gap between MetaDrive and AirSim, likely due to the strong gener-
alization capabilities of DinoV2. Additionally, refining perception and control strategies
will remain critical for bridging the gap between simulation and real-world implementation.
Steering control has been identified as a key factor in navigation, suggesting that more
adaptive steering strategies or advanced reinforcement learning algorithms could enhance
performance. Simplifying perception systems by relying on robust, general-purpose feature
extraction instead of complex, rule-based methods could streamline system design and
improve reliability.

Improving sensor placement and camera angles could also enhance perception quality
without adding unnecessary computational load. Additionally, control mechanisms for
speed and braking should be fine-tuned to strike a balance between safety and efficiency.
More advanced RL algorithms could be better at learning appropriate speed strategy. The
use of style transfer techniques to adapt to different operating conditions should be con-
sidered based on the specific differences between training and deployment environments.
Finally, future work should explore deploying ViT-based reinforcement learning systems
in real-world scenarios or in more realistic, visually detailed simulation environments.
This would help validate their ability to handle larger images and operate effectively
in real-time settings, taking the research a step closer to practical applications. For the
full implementation details, code, and trained models, refer to the public GitHub reposi-
tory at https://github.com/ktu-need-for-speed-team/self-driving-research (accessed on 5
January 2025).

https://github.com/ktu-need-for-speed-team/self-driving-research

Electronics 2025, 14, 825 27 of 30

This repository provides resources to save time and enable reproducibility by offering
pretrained models, configuration files and scripts. The models, stored in the models folder,
include DinoV2 backbones trained for 200k and 1M steps, as well as ResNet34 backbones
trained for equivalent durations. Configuration files in the configs folder define setups for
both training and evaluation. Scripts such as main.py facilitate flexible training and testing
with parameters that enable automated metrics collection.

Two simulators were employed in this research, MetaDrive and AirSim, each serving
distinct roles. MetaDrive, version 0.4.2.3, offers lightweight, procedurally generated scenar-
ios and was configured with custom settings such as CCCC road maps, adjusted penalties,
and low traffic density. AirSim, on the other hand, provides high-fidelity simulations with
realistic visuals and physics, including detailed textures, dynamic shadows, and vehicle
dynamics. Custom scenarios in AirSim featured variable environmental conditions, en-
hancing the complexity and realism of the tests. Both simulator settings and road layouts
are documented to ensure experimental replication.

The methodology utilized the Proximal Policy Optimization (PPO) algorithm with
key hyperparameters, including a learning rate of 4 × 10−4, batch size of 1024 × 3, and a
discount factor of 0.99. Linear decay was applied to stabilize training. Vision Transformers
(ViTs), specifically the DinoV2 model, were integrated as replacements for CNNs such as
ResNet34. DinoV2 embeddings were compressed to optimize reinforcement learning tasks,
resulting in improved efficiency and performance.

The hardware setup included an Nvidia RTX 4060 GPU with 8 GB of VRAM, 32 GB
of RAM, and a 200 GB SSD for data storage. The software stack featured Python 3.11 and
PyTorch 2.4.0 for model development, Stable Baselines3 2.3.2 for reinforcement learning,
and additional tools like NumPy, Pandas, OpenCV, and MLflow for data processing and
tracking. This configuration ensured the computational and developmental needs of the
project were fully supported.

Evaluation protocols focused on metrics such as success rate, collision rate, average
distance traveled, and episode length. Automated scripts streamlined the collection of
these metrics, while the use of random seeds ensured consistent results. Logs of training
and testing processes were detailed to allow for performance benchmarking.

Comprehensive documentation is provided to guide setup and usage, with detailed
instructions in the README file for installing dependencies, configuring environments,
and running the system. These include commands for setting up MetaDrive, installing Py-
Torch, and verifying installations. Examples of training and testing processes are included,
along with results from MetaDrive and AirSim. The availability of pretrained models,
documented configurations, and usage examples ensures that researchers can easily repli-
cate the findings. Additionally, this work lays a foundation for future research, such as
extending the simulation results to real-world implementations, improving performance
in the visual processing components, or exploring other domains like adaptive control
systems, multi-agent learning, or task-specific optimizations. This flexibility highlights the
potential for advancing the field of autonomous driving and related applications.

Author Contributions: Conceptualization, A.O.; Methodology, R.A., J.R., M.Š. and Ž.Š.; Software,
Ž.Š., R.A. and J.R.; Validation, R.A., J.R., M.Š. and Ž.Š.; Formal Analysis, R.A. and J.R.; Investigation,
Ž.Š., R.A., J.R. and M.Š.; Resources, A.O.; Data Curation, R.A.; Writing—Original Draft, R.A.; Writing—
Review & Editing, R.A., J.R., M.Š., Ž.Š. and A.O.; Visualization, R.A.; Supervision, A.O. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data are contained within the article.

Electronics 2025, 14, 825 28 of 30

Acknowledgments: The use of artificial intelligence techniques for language enhancement and
grammar checking is acknowledged by the writers.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Electronics 2025, 14, x FOR PEER REVIEW 28 of 30

Appendix A

Figure A1. Parallel coordinates plot illustrating results from various hyperparameter combinations.
Each line represents a different experiment, with individual axes corresponding to specific hyperpa-
rameters. The final column represents the median episode reward, which serves as the primary crite-
rion for selecting optimal hyperparameters. Additionally, training curve stability, training time, and
consistency across multiple trials are considered when evaluating performance. The color gradient
indicates variations in performance, helping to identify the most effective hyperparameter settings.

References
1. Yurtsever, E.; Lambert, J.; Carballo, A.; Takeda, K. A Survey of Autonomous Driving: Common Practices and Emerging

Technologies. IEEE Access 2020, 8, 58443–58469. ISSN 2169-3536. Available online:
https://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=9046805 (accessed on 24 November 2024).

2. Crayton, T.; Meier, B.M. Autonomous Vehicles: Developing a Public Health Research Agenda to Frame the Future of
Transportation Policy. 2017. Available online: https://papers.ssrn.com/abstract=2966084 (accessed on 24 November 2024).

3. Cultrera, L.; Becattini, F.; Seidenari, L.; Pala, P.; Bimbo, A.D. Addressing Limitations of State-Aware Imitation Learning for
Autonomous Driving. IEEE Trans. Intell. Veh. 2024, 9, 2946–2955. ISSN 2379-8858.

4. Tampuu, A.; Tambet, M.; Semikin, M.; Fishman, D.; Muhmmad, N. A Survey of End-to-End Driving: Architectures and Training
Methods. IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 1364–1384. ISSN 2162-237X. Available online:
http://arxiv.org/abs/2003.06404 (accessed on 8 January 2025).

5. El Sallab, A.; Abdou, M.; Perot, E.; Yogamani, S. Deep Reinforcement Learning framework for Autonomous Driving. Electron.
Imaging 2017, 29, 70–76. ISSN 2470-1173. Available online: http://arxiv.org/abs/1704.02532 (accessed on 5 January 2025).

6. Chen, C.; Seff, A.; Kornhauser, A.; Xiao, J. DeepDriving: Learning Affordance for Direct Perception in Autonomous Driving. In
Proceedings of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 1–13 December 2015; pp. 2722–
2730. Available online: https://ieeexplore.ieee.org/document/7410669 (accessed on 5 January 2025).

7. Huval, B.; Wang, T.; Tandon, S.; Kiske, J.; Song, W.; Pazhayampallil, J.; Andriluka, M.; Rajpurkar, P.; Migimatsu, T.; Cheng-Yue,
R; et al. An Empirical Evaluation of Deep Learning on Highway Driving. 2015. Available online: http://arxiv.org/abs/1504.01716
(accessed on 8 January 2025).

8. � hang, � .; Liniger, A.; Dai, D.; Yu, F.; Van Gool, L. End-to-End Urban Driving by Imitating a Reinforcement Learning Coach.
2021. Available online: http://arxiv.org/abs/2108.08265 (accessed on 5 January 2025).

9. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; � hai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. An Image Is Worth 16 × 16 Words: Transformers for Image Recognition at Scale. 2021. Available online:
http://arxiv.org/abs/2010.11929 (accessed on 5 January 2025).

Figure A1. Parallel coordinates plot illustrating results from various hyperparameter combinations.
Each line represents a different experiment, with individual axes corresponding to specific hyper-
parameters. The final column represents the median episode reward, which serves as the primary
criterion for selecting optimal hyperparameters. Additionally, training curve stability, training time,
and consistency across multiple trials are considered when evaluating performance. The color
gradient indicates variations in performance, helping to identify the most effective hyperparame-
ter settings.

References
1. Yurtsever, E.; Lambert, J.; Carballo, A.; Takeda, K. A Survey of Autonomous Driving: Common Practices and Emerging

Technologies. IEEE Access 2020, 8, 58443–58469. Available online: https://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=904680
5 (accessed on 24 November 2024). [CrossRef]

2. Crayton, T.; Meier, B.M. Autonomous Vehicles: Developing a Public Health Research Agenda to Frame the Future of Transporta-
tion Policy. 2017. Available online: https://papers.ssrn.com/abstract=2966084 (accessed on 24 November 2024).

3. Cultrera, L.; Becattini, F.; Seidenari, L.; Pala, P.; Bimbo, A.D. Addressing Limitations of State-Aware Imitation Learning for
Autonomous Driving. IEEE Trans. Intell. Veh. 2024, 9, 2946–2955. [CrossRef]

4. Tampuu, A.; Tambet, M.; Semikin, M.; Fishman, D.; Muhmmad, N. A Survey of End-to-End Driving: Architectures and Training
Methods. IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 1364–1384. Available online: http://arxiv.org/abs/2003.06404 (accessed
on 8 January 2025). [CrossRef] [PubMed]

5. El Sallab, A.; Abdou, M.; Perot, E.; Yogamani, S. Deep Reinforcement Learning framework for Autonomous Driving. Electron.
Imaging 2017, 29, 70–76. Available online: http://arxiv.org/abs/1704.02532 (accessed on 5 January 2025). [CrossRef]

6. Chen, C.; Seff, A.; Kornhauser, A.; Xiao, J. DeepDriving: Learning Affordance for Direct Perception in Autonomous Driving.
In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 1–13 December 2015; pp.
2722–2730. Available online: https://ieeexplore.ieee.org/document/7410669 (accessed on 5 January 2025).

7. Huval, B.; Wang, T.; Tandon, S.; Kiske, J.; Song, W.; Pazhayampallil, J.; Andriluka, M.; Rajpurkar, P.; Migimatsu, T.; Cheng-Yue, R.;
et al. An Empirical Evaluation of Deep Learning on Highway Driving. 2015. Available online: http://arxiv.org/abs/1504.01716
(accessed on 8 January 2025).

8. Zhang, Z.; Liniger, A.; Dai, D.; Yu, F.; Van Gool, L. End-To-End Urban Driving by Imitating a Reinforcement Learning Coach.
2021. Available online: http://arxiv.org/abs/2108.08265 (accessed on 5 January 2025).

https://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=9046805
https://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=9046805
https://doi.org/10.1109/ACCESS.2020.2983149
https://papers.ssrn.com/abstract=2966084
https://doi.org/10.1109/TIV.2023.3336063
http://arxiv.org/abs/2003.06404
https://doi.org/10.1109/TNNLS.2020.3043505
https://www.ncbi.nlm.nih.gov/pubmed/33373304
http://arxiv.org/abs/1704.02532
https://doi.org/10.2352/ISSN.2470-1173.2017.19.AVM-023
https://ieeexplore.ieee.org/document/7410669
http://arxiv.org/abs/1504.01716
http://arxiv.org/abs/2108.08265

Electronics 2025, 14, 825 29 of 30

9. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold,
G.; Gelly, S.; et al. An Image Is Worth 16 × 16 Words: Transformers for Image Recognition at Scale. 2021. Available online:
http://arxiv.org/abs/2010.11929 (accessed on 5 January 2025).

10. Lai-Dang, Q.-V. A Survey of Vision Transformers in Autonomous Driving: Current Trends and Future Directions. 2024. Available
online: http://arxiv.org/abs/2403.07542 (accessed on 5 January 2025).

11. Khan, S.; Naseer, M.; Hayat, M.; Zamir, S.W.; Khan, F.S.; Shah, M. Transformers in Vision: A Survey. ACM Comput. Surv. 2022, 54,
1–41. Available online: http://arxiv.org/abs/2101.01169 (accessed on 5 January 2025). [CrossRef]

12. Li, Q.; Peng, Z.; Feng, L.; Zhang, Q.; Xue, Z.; Zhou, B. MetaDrive: Composing Diverse Driving Scenarios for Generalizable
Reinforcement Learning. 2022. Available online: http://arxiv.org/abs/2109.12674 (accessed on 24 November 2024).

13. Shah, S.; Dey, D.; Lovett, C.; Kapoor, A. AirSim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles; Springer
International Publishing: Cham, Germany, 2018; pp. 621–635. Available online: https://link.springer.com/chapter/10.1007/978-
3-319-67361-5_40 (accessed on 5 January 2025).

14. Barrile, V.; Simonetti, S.; Citroni, R.; Fotia, A.; Bilotta, G. Experimenting Agriculture 4.0 with Sensors: A Data Fusion Approach
Between Remote Sensing, UAVs and Self-Driving Tractors. Sensors 2022, 22, 7910. Available online: https://www.mdpi.com/14
24-8220/22/20/7910 (accessed on 2 February 2025). [CrossRef] [PubMed]

15. Codevilla, F.; Müller, M.; López, A.; Koltun, V.; Dosovitskiy, A. End-To-End Driving via Conditional Imitation Learning. 2018.
Available online: http://arxiv.org/abs/1710.02410 (accessed on 5 January 2025).

16. Chen, D.; Zhou, B.; Koltun, V.; Krähenbühl, P. Learning by Cheating. Proc. Conf. Robot. Learn. 2019, 100, 66–75. Available
online: https://www.semanticscholar.org/paper/Learning-by-Cheating-Chen-Zhou/ca5045c9d9e0bf2e95f6694dff657e28ffcd4
f07 (accessed on 5 January 2025).

17. Bojarski, M.; Del Testa, D.; Dworakowski, D.; Firner, B.; Flepp, B.; Goyal, P.; Jackel, L.D.; Monfort, M.; Muller, U.; Zhang, X.; et al.
End to End Learning for Self-Driving Cars. 2016. Available online: http://arxiv.org/abs/1604.07316 (accessed on 5 January 2025).

18. Xu, H.; Gao, Y.; Yu, F.; Darrell, T. End-to-End Learning of Driving Models from Large-Scale Video Datasets. 2017. Available
online: http://arxiv.org/abs/1612.01079 (accessed on 5 January 2025).

19. Chen, X.; Ma, H.; Wan, J.; Li, B.; Xia, T. Multi-View 3D Object Detection Network for Autonomous Driving. 2017. Available online:
http://arxiv.org/abs/1611.07759 (accessed on 5 January 2025).

20. Zeng, W.; Luo, W.; Suo, S.; Sadat, A.; Yang, B.; Casas, S.; Urtasun, R. End-to-End Interpretable Neural Motion Planner. 2021.
Available online: http://arxiv.org/abs/2101.06679 (accessed on 5 January 2025).

21. Touvron, H.; Cord, M.; Douze, M.; Massa, F.; Sablayrolles, A.; Jegou, H. Training Data-Efficient Image Transformers & Distillation
Through Attention. 2021. Available online: http://arxiv.org/abs/2012.12877 (accessed on 5 January 2025).

22. Ando, A.; Gidaris, S.; Bursuc, A.; Puy, G.; Boulch, A.; Marlet, R. RangeViT: Towards Vision Transformers for 3D Semantic
Segmentation in Autonomous Driving. 2023. Available online: http://arxiv.org/abs/2301.10222 (accessed on 5 January 2025).

23. Raghu, M.; Unterthiner, T.; Kornblith, S.; Zhang, C.; Dosovitskiy, A. Do Vision Transformers See Like Convolutional Neural
Networks? 2022. Available online: http://arxiv.org/abs/2108.08810 (accessed on 7 January 2025).

24. Tolstikhin, I.; Houlsby, N.; Kolesnikov, A.; Beyer, L.; Zhai, X.; Unterthiner, T.; Yung, J.; Steiner, A.; Keysers, D.; Uszkoreit, J.;
et al. MLP-Mixer: An All-MLP Architecture for Vision. 2021. Available online: http://arxiv.org/abs/2105.01601 (accessed on 7
January 2025).

25. Leite, D.; Teixeira, I.; Morais, R.; Sousa, J.J.; Cunha, A. Comparative Analysis of CNNs and Vision Transformers for Automatic
Classification of Abandonment in Douro’s Vineyard Parcels. Remote Sens. 2024, 16, 4581. Available online: https://www.mdpi.
com/2072-4292/16/23/4581 (accessed on 8 January 2025). [CrossRef]

26. Alijani, S.; Fayyad, J.; Najjaran, H. Vision Transformers in Domain Adaptation and Domain Generalization: A Study of Robustness.
2024. Available online: http://arxiv.org/abs/2404.04452 (accessed on 7 January 2025).

27. Yue, X.; Zhang, Y.; Zhao, S.; Sangiovanni-Vincentelli, A.; Keutzer, K.; Gong, B. Domain Randomization and Pyramid Consistency:
Simulation-To-Real Generalization Without Accessing Target Domain Data. 2022. Available online: http://arxiv.org/abs/1909.0
0889 (accessed on 7 January 2025).

28. Xu, P.; Zhu, X.; Clifton, D.A. Multimodal Learning with Transformers: A Survey. 2023. Available online: http://arxiv.org/abs/22
06.06488 (accessed on 7 January 2025).

29. Bilotta, G.; Genovese, E.; Citroni, R.; Cotroneo, F.; Meduri, G.M.; Barille, V. Integration of an Innovative Atmospheric Fore-
casting Simulator and Remote Sensing Data into a Geographical Information System in the Frame of Agriculture 4.0 Concept.
AgriEngineering 2023, 5, 1280–1301. Available online: https://www.mdpi.com/2624-7402/5/3/81 (accessed on 2 February 2025).
[CrossRef]

30. Diffusion Models in Vision: A Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence. Available online:
https://dl.acm.org/doi/10.1109/TPAMI.2023.3261988?utm_source=chatgpt.com (accessed on 7 January 2025).

http://arxiv.org/abs/2010.11929
http://arxiv.org/abs/2403.07542
http://arxiv.org/abs/2101.01169
https://doi.org/10.1145/3505244
http://arxiv.org/abs/2109.12674
https://link.springer.com/chapter/10.1007/978-3-319-67361-5_40
https://link.springer.com/chapter/10.1007/978-3-319-67361-5_40
https://www.mdpi.com/1424-8220/22/20/7910
https://www.mdpi.com/1424-8220/22/20/7910
https://doi.org/10.3390/s22207910
https://www.ncbi.nlm.nih.gov/pubmed/36298261
http://arxiv.org/abs/1710.02410
https://www.semanticscholar.org/paper/Learning-by-Cheating-Chen-Zhou/ca5045c9d9e0bf2e95f6694dff657e28ffcd4f07
https://www.semanticscholar.org/paper/Learning-by-Cheating-Chen-Zhou/ca5045c9d9e0bf2e95f6694dff657e28ffcd4f07
http://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1612.01079
http://arxiv.org/abs/1611.07759
http://arxiv.org/abs/2101.06679
http://arxiv.org/abs/2012.12877
http://arxiv.org/abs/2301.10222
http://arxiv.org/abs/2108.08810
http://arxiv.org/abs/2105.01601
https://www.mdpi.com/2072-4292/16/23/4581
https://www.mdpi.com/2072-4292/16/23/4581
https://doi.org/10.3390/rs16234581
http://arxiv.org/abs/2404.04452
http://arxiv.org/abs/1909.00889
http://arxiv.org/abs/1909.00889
http://arxiv.org/abs/2206.06488
http://arxiv.org/abs/2206.06488
https://www.mdpi.com/2624-7402/5/3/81
https://doi.org/10.3390/agriengineering5030081
https://dl.acm.org/doi/10.1109/TPAMI.2023.3261988?utm_source=chatgpt.com

Electronics 2025, 14, 825 30 of 30

31. Katiyar, N.; Shukla, A.; Chawla, N.; Singh, R.; Singh, S.K.; Husain, F. AI in Autonomous Vehicles: Opportunities, Challenges, and
Regulatory Implications. Educ. Adm. Theory Pract. 2024, 30, 6255–6264. Available online: https://kuey.net/index.php/kuey/
article/view/2373 (accessed on 8 January 2025). [CrossRef]

32. He, K.; Chen, X.; Xie, S.; Li, Y.; Dollár, P.; Girshick, R. Masked Autoencoders Are Scalable Vision Learners. 2021. Available online:
http://arxiv.org/abs/2111.06377 (accessed on 7 January 2025).

33. Gutiérrez-Moreno, R.; Barea, R.; López-Guillén, E.; Araluce, J.; Bergasa, L.M. Reinforcement Learning-Based Autonomous Driving
at Intersections in CARLA Simulator. Sensors 2022, 22, 8373. Available online: https://www.mdpi.com/1424-8220/22/21/8373
(accessed on 7 January 2025). [CrossRef] [PubMed]

34. Voogd, K.; Allamaa, J.P.; Alonso-Mora, J.; Son, T.D. Reinforcement Learning from Simulation to Real World Autonomous Driving
Using Digital Twin. 2022. Available online: http://arxiv.org/abs/2211.14874 (accessed on 7 January 2025).

35. Zhang, T.; Liu, H.; Wang, W.; Wang, X. Virtual Tools for Testing Autonomous Driving: A Survey and Benchmark of Simulators,
Datasets, and Competitions. Electronics 2024, 13, 3486. Available online: https://www.mdpi.com/2079-9292/13/17/3486
(accessed on 7 January 2025). [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://kuey.net/index.php/kuey/article/view/2373
https://kuey.net/index.php/kuey/article/view/2373
https://doi.org/10.53555/kuey.v30i4.2373
http://arxiv.org/abs/2111.06377
https://www.mdpi.com/1424-8220/22/21/8373
https://doi.org/10.3390/s22218373
https://www.ncbi.nlm.nih.gov/pubmed/36366072
http://arxiv.org/abs/2211.14874
https://www.mdpi.com/2079-9292/13/17/3486
https://doi.org/10.3390/electronics13173486

	Introduction
	Literature Review
	Role of Vision in Autonomous Driving
	CNNs in Autonomous Driving
	Vision Transformers (ViTs) for Visual Perception
	Simulators in Autonomous Driving Research
	Comparative Studies and Research Gaps
	Future Directions
	Conclusion of the Literature Review

	Materials and Methods
	System Architecture Overview
	Hardware Infrastructure
	Software Environment
	Performance Metrics
	Reinforcement Learning Framework
	Vision Processing: Transition from CNN to ViT
	Training and Evaluation Process
	Step 1: CNN and ViT Comparison Experiments
	Step 2: Testing and Refinement in AirSim

	Results
	Model Training Evaluation
	Trained Model Results in Metadrive
	Results from Trained Model Testing in AirSim
	Reasons for Environment Transition Difficulties

	Conclusions and Future Research
	Appendix A
	References

