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Rugile Kregzdyte 1, Laurynas Braukyla 1, Rassul Zhumagaliyev 4, Serik Aitaliyev 4,5,* , Nurlan Zhanabayev 6,
Rauan Botabayeva 6, Yerlan Orazymbetov 4,7 and Ramunas Unikas 1

1 Department of Cardiology, Hospital of Lithuanian University of Health Sciences Kauno Klinikos, Lithuanian
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Abstract: Background: Early safety outcomes following transcatheter aortic valve implanta-
tion (TAVI) for severe aortic stenosis are critical for patient prognosis. Accurate prediction
of adverse events can enhance patient management and improve outcomes. Aim: This
study aimed to develop a machine learning model to predict early safety outcomes in pa-
tients with severe aortic stenosis undergoing TAVI. Methods: We conducted a retrospective
single-centre study involving 224 patients with severe aortic stenosis who underwent TAVI.
Seventy-seven clinical and biochemical variables were collected for analysis. To handle
unbalanced classification problems, an adaptive synthetic (ADASYN) sampling approach
was used. A fined-tuned random forest (RF) machine learning model was developed to
predict early safety outcomes, defined as all-cause mortality, stroke, life-threatening bleed-
ing, acute kidney injury (stage 2 or 3), coronary artery obstruction requiring intervention,
major vascular complications, and valve-related dysfunction requiring repeat procedures.
Shapley Additive Explanations (SHAPs) were used to explain the output of the machine
learning model by attributing each variable’s contribution to the final prediction of early
safety outcomes. Results: The random forest model identified left femoral artery diameter
and aortic valve calcification volume as the most influential predictors of early safety
outcomes. SHAPs analysis demonstrated that smaller left femoral artery diameter and
higher aortic valve calcification volume were associated with poorer early safety prognoses.
Conclusions: The machine learning model highlights of early safety outcomes after TAVI.
These findings suggest that incorporating these variables into pre-procedural assessments
may improve risk stratification and inform clinical decision-making to enhance patient care.
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1. Introduction
Aortic stenosis (AS), a prevalent valvular heart condition in older adults over 65 years

of age, affects approximately 2–7% of this population and is further exacerbated by risk
factors like hypertension, diabetes, and hyperlipidemia [1,2]. Untreated AS poses significant
morbidity and mortality risks [3]. However, due to elevated surgical risks, many patients
are not eligible for surgical aortic valve replacement (SAVR) [4,5]. For such high-risk
groups, transcatheter aortic valve implantation (TAVI) has emerged as a minimally invasive
alternative, offering effective treatment for severe symptomatic AS while avoiding open
surgery [6,7].

Despite its advantages, predicting TAVI outcomes is complex. Postoperative results
are influenced by multiple factors, including patient comorbidities, anatomical features,
and preoperative health conditions [8,9]. This variability underscores the need for precise
risk stratification and individualized treatment approaches [10].

Machine learning (ML) methods have transformed cardiovascular medicine by improv-
ing predictive models for clinical outcomes through the detection of intricate, non-linear
variable relationships [11,12]. In the context of TAVI, ML approaches have surpassed
traditional statistical methods in predicting complications such as vascular injury, valve
dysfunction, and acute kidney injury [13,14]. Random forest algorithms, for instance,
effectively classify patient risks by integrating diverse clinical and imaging data [15,16].

Advanced imaging modalities, such as computed tomography (CT), are essential for
preoperative planning in TAVI, providing critical parameters like aortic valve calcification
volume, left ventricular outflow tract dimensions, and femoral artery diameter, which are
strong predictors of procedural success and complications [17,18]. Combining echocardio-
graphic findings with ML algorithms further enhances predictive accuracy [19,20].

This study leverages an integrative ML framework to identify predictors of early
safety outcomes in TAVI patients. Employing adaptive synthetic (ADASYN) sampling to
address data imbalance and SHapley Additive exPlanations (SHAPs) for interpretability,
this research provides a robust approach for personalized risk stratification [21,22]. These
methods, validated across clinical applications, improve prediction reliability and decision-
making utility [23,24].

Advancements in TAVI device technology, including balloon-expandable and self-
expanding prostheses, have significantly enhanced procedural success rates [25,26]. How-
ever, these innovations necessitate detailed preoperative evaluations to mitigate risks
associated with challenging anatomical conditions, such as severe calcification and narrow
vascular access [27,28].

This research aims to bridge the gap between advanced ML techniques and clin-
ical practice by utilizing a comprehensive dataset encompassing clinical and imaging
parameters. By identifying critical predictors of early safety outcomes, it seeks to refine
patient selection, optimize procedural strategies, and elevate the overall standard of TAVI
care [29,30].

2. Materials and Methods
2.1. Patient Selection

This retrospective, single-centre study was conducted in the Cardiology Department
of the Lithuanian University of Health Sciences, Kauno Clinics, from 1 September 2021
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to 1 April 2023. The study aimed to evaluate the influence of procedural factors on
the outcomes of TAVI in 230 patients diagnosed with severe aortic stenosis. A total of
six patients were excluded from the initial pool: four patients declined to participate, one
had severe calcification of the aorta, abdominal, and femoral arteries, and one patient was
excluded because the TAVI procedure was performed via the subclavian artery.

In the study, 224 patients with severe aortic stenosis were included according to the
latest guidelines of the European Society of Cardiology [2]. Inclusion criteria were an
older age (≥75 years), previous cardiac surgery, severe frailty, TAVI that is feasible via a
transfemoral approach, a porcelain aorta, a high likelihood of severe patient–prosthesis
mismatch (AVA < 0.65 cm2 m2 BSA), severe chest deformation or scoliosis and Heart Team
decision for TAVI. Exclusion criteria included elevated myocardial injury markers, other
significant heart valvular diseases and any type of aortic aneurysm. The TAVI procedures
were performed based on the decisions of the “Heart Team”, which included specialists
such as cardiac surgeons, interventional cardiologists, imaging specialists, cardiologists
and sometimes other specialists.

Follow-Up: A complete follow-up was conducted over a one-year period, collecting
detailed demographic information, medical history, and postoperative outcomes (such as
survival rates and hospital readmission frequency). Follow-up was performed through
outpatient visits and, when necessary, via telephone contact with patients or their physi-
cians. The follow-up concluded in April 2024. The study was approved by the local ethics
committee, and all participants provided written informed consent in accordance with
established ethical standards (BE-2-101/08.11.2022).

2.2. Data Collection

Echocardiography
All patients underwent blood tests (Hemoglobin, White Blood Cell (WBC), Neutrophil,

Lymphocyte, Thrombocyte) and transthoracic echocardiography (TTE) or transoesophageal
echocardiography (TEE) both before and after the TAVI procedure. These assessments
were conducted 24 h prior to the procedure and 12–48 h post-procedure. TTE or TEE were
performed using a Philips echocardiograph (Philips North America, Andover, MA, USA).

The following echocardiographic parameters were included: the left ventricular end-
diastolic diameter, the left ventricular end-diastolic diameter index, the septal thickness,
the posterior wall thickness, the left ventricle mass, the left ventricular ejection fraction,
the left ventricle relative wall thickness, the right ventricle diameter, the right ventricular
function, the left atrium diameter, the left atrium volume, the left atrium volume index,
the right atrium diameter, the aortic valve annulus diameter, the sinuses of Valsalva
diameter, the sinuses of Valsalva index, the ascending aorta diameter, the right ventricle
outflow tract acceleration time, the aortic valve maximal velocity, the mean aortic valve
gradient, the aortic valve area, the aortic valve area index, the aortic valve velocity ratio,
aortic regurgitation severity, mitral regurgitation severity, tricuspid regurgitation severity,
tricuspid valve maximal velocity, the tricuspid valve maximal gradient, pulmonary artery
systolic pressure, pulmonary artery mean pressure, and the presence of the bicuspid
aortic valve.

This detailed echocardiographic assessment allowed for thorough pre- and post-
procedure evaluation of cardiac function and valve dynamics in patients undergoing TAVI.

Computed Tomography
All patients underwent contrast-enhanced computed tomography (CT) scans of the

heart, aorta, and femoral arteries. The CT scans were performed at Kaunas Clinics using
a 640-slice CT scanner with a 0.5 mm slice thickness in 0.275 s per full rotation (Aquilion
GENESIS; Canon Medical Systems USA, Inc., Tustin, CA, USA). Each patient received
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70–90 mL of Omnipaque Iomeron 400 (Patheon Italia, Ferentino, Italy) contrast agent.
After the CT scans, the data were processed using 3Mensio Structural Heart and Vascular
software (version 5.1; Pie Medical Imaging, Maastricht, The Netherlands).

The following parameters were evaluated: aortic annulus dimensions (systolic annular
aortic perimeter, perimeter-derived diameter, systolic annular aortic area, area-derived
diameter, aortic annulus angle), left ventricular outflow tract (LVOT) dimensions (perime-
ter, area, maximum diameter, minimum diameter, perimeter-derived diameter), sinus
of Valsalva (SoV) dimensions (SoV diameters: right coronary sinus, left coronary sinus,
non-coronary sinus; right coronary leaflet length; left coronary leaflet length; non-coronary
leaflet length), aortic root dimensions (coronary height of the right coronary artery, coro-
nary height of the left coronary artery, Sinotubular junction diameter, Sinotubular junction
height, average ascending aorta diameter), calcium quantification (calcium volume), the
peripheral arteries’ dimensions (left and right sides: common iliac artery minimum, max-
imum and average diameters; external iliac artery minimum; maximum and average
diameter; femoral artery minimum; maximum and average diameter). These detailed CT
measurements allowed for a comprehensive preoperative evaluation of both central and
peripheral vascular anatomy to support safe and effective TAVI procedures.

All TAVI procedures were performed under local anesthesia with sedation. Access was
obtained through the right or left femoral artery in all patients. The puncture was conducted
using the Seldinger technique under ultrasound guidance (Philips North America, Andover,
MA, USA) in Doppler mode, targeting either the right or left femoral artery depending
on vessel integrity, the absence of atherosclerosis, and significant calcification. Based on
CT data, parameters such as the diameter, the bifurcation height of the femoral artery,
iliac artery tortuosity, and calcification severity were considered. After puncturing both
femoral arteries and placing a 6 French introducer (SuperSheath, Medikit, Tokyo, Japan;
Radifocus Introducer IIH, Terumo, Tokyo, Japan), the valve introducer was inserted. In the
contralateral femoral artery, a 7 French introducer was placed, and an 8 French introducer
was also placed in the femoral vein in the same area. The 6 French introducer was then
removed, leaving a soft guidewire in the artery. Following this, a Perclose ProGlide
vascular closure device (Abbott Vascular, Santa Clara, CA, USA) was used for vessel
closure and securing, after which the Perclose ProGlide was removed, leaving fixed sutures.
A soft guidewire was reintroduced to guide the insertion of a 10 French introducer. A
6 French pigtail catheter with a soft guidewire was then advanced through the 10 French
introducer to the level of the descending aorta under fluoroscopic guidance, and the
guidewire was subsequently removed. A stiff Safari guidewire was then introduced
through the pigtail catheter. Once the introducer for the valve was prepared, the pigtail
and the 10 French introducer were removed, leaving the Safari guidewire in place. The
valve introducer was inserted under fluoroscopic control, and unfractionated heparin
(10,000 units) was administered. Invasive arterial pressure monitoring was connected. A
bipolar endocardial electrode was inserted into the right ventricle for temporary cardiac
pacing through the 8 French introducer in the femoral vein under fluoroscopy. The puncture
site was closed using the Perclose ProGlide system (Abbott Vascular, Santa Clara, CA, USA)
and an 8F collagen-based Angio-Seal device (Terumo Interventional Systems, Somerset, NJ,
USA). The aortic prosthesis was deployed under angiographic and fluoroscopic control.
Following valve implantation, aortography was performed to quantify the degree of aortic
regurgitation using the Sellers classification, and a follow-up transthoracic echocardiogram
was conducted 48 h later.

Two types of valves were implanted in patients: balloon-expandable valves (BEVs)
and self-expanding valves (SEVs). The BEVs implanted were Myval (Meril Life Sciences
Pvt. Ltd., Mumbai, India) and the SEVs implanted were CoreValve/Evolut R/Evolut
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Pro (Medtronic, Minneapolis, MN, USA) and Acurate Neo 2 (Boston Scientific Corp.,
Watertown, MA, USA).

Clinical outcomes and adverse events were documented at 30 days post-procedure.
Follow-up was conducted through phone calls with all patients, as well as regular monitor-
ing via the electronic medical portal eSveikata.lt to ensure the thorough tracking of patient
progress and potential complications over time.

Early safety outcomes for 30 days were defined according to the Valve Academic
Research Consortium II (VARC-2) criteria [16]. The following early safety outcomes were
included: all course mortality, stroke, life-threatening bleeding, valve-related dysfunc-
tion requiring a repeat procedure, and acute kidney injury—stage 2 or 3. A permanent
pacemaker was implanted if an advanced atrioventricular block developed, following the
European Society of Cardiology (ESC) guidelines for patients with an acquired AV block in
specific clinical situations.

2.3. Model Selection

To solve the issue of an imbalanced dataset, adaptive synthetic (ADASYN) sampling
was used, which generates synthetic instances, particularly focusing on those that are
difficult to learn [17]. This approach could be considered as a generalization of the Synthetic
Minority Over-sampling Technique (SMOTE) by better aligning the generated samples
with the underlying distribution of the minority class.

A random forest classifier (RF) was used to build a classification model to predict early
safety outcomes after TAVI. The selection of RF over other machine learning approaches
is attributed to its several advantages such as its robustness to overfitting, resilience to
noisy data, ability to handle non-linear relationships, demonstrating a good performance
with a large number of features, and its well-handling of imbalance data when combined
with techniques like SMOTE and ADASYN [18–20]. Furthermore, the RF model was tuned
via a grid-search algorithm for optimal hyperparameters and validated using a 10-fold
stratified cross-validation. The discriminatory power of built machine learning models was
determined using confusion matrix and performance measures such as accuracy, precision,
recall, and F1-score [21].

Finally, to understand how an individual feature contributes to the prediction of
early safety outcomes, SHapley Additive exPlanations (SHAPs) were calculated. More
specifically, the SHAP value is determined via measuring the average marginal contribution
of a feature value across all potential feature combinations [22,23].

Model performance.
The original data sample was split into training and testing with a ratio 75:25. As a

result, 56 unseen observations were reserved to test the predictions for the imbalanced case.
ADASYN sampling with a sampling strategy of α = 0.9 and k = 5 nearest neighbours

was used to balance the training data sample, consisting of 245 observations.
A grid-search was performed to fine-tune the hyperparameters of random forest using

10-fold cross validation. As a result, Tables 1 and 2 present the discriminatory power of
fitted random forest with fine-tuned parameters: criterion = “Gini” to measure the quality
of split, the maximum depth of the tree is 8, and the maximum number of features to
consider when looking for the best split is

√
number o f f eatures, number of trees in the

forest = 300.
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Table 1. Confusion matrix: cross-validation testing for balanced sample.

Predicted outcome

0 1 Accuracy = 0.8571
Precision = 0.9
Recall = 0.7826

F1-score = 0.8372
Known

outcome

0 24 2

1 5 18

Table 2. Confusion matrix: cross-validation testing for imbalanced sample with threshold = 0.4.

Predicted outcome

0 1 Accuracy = 0.8571
Precision = 0.6429

Recall = 0.75
F1-score = 0.6923

Known
outcome

0 39 5

1 3 9

3. Results
Between 2021 and 2023, a total of 224 patients with severe aortic stenosis were included

in the study following the Heart Team’s decision to undergo TAVI. The collected patients
were divided into two groups: those with early clinical outcomes and those without. The
mean age of patients without early clinical outcomes was 79.96 ± 6.97 years, while for
patients with outcomes, it was slightly higher at 81.94 ± 3.38 years. However, this difference
was not statistically significant (p = 0.251). In the group without early clinical outcomes,
39.4% were men and 60.6% were women. In the group with early clinical outcomes, the
distribution was similar: 38.8% men and 61.2% women.

Out of 224 patients, 23 (10.3%) had previously undergone cardiac surgery. Coronary
artery disease (CAD) and prior percutaneous coronary intervention (PCI) also did not
demonstrate significant differences between the groups (p = 0.432 and p = 0.452, respec-
tively). However, a history of myocardial infarction (MI) was significantly associated with
early clinical outcomes: 32.0% of patients in the outcomes group compared to 68.0% in the
group without outcomes (p = 0.049). The EuroScore II was higher in the group with early
clinical outcomes (7.3 ± 6.61%) compared to the group without outcomes (4.9 ± 3.55%),
with borderline significance (p = 0.059). Patients with NYHA class III-IV were more likely
to experience early clinical outcomes compared to those with NYHA class I-II, but the
differences did not reach statistical significance (p = 0.355). Baseline echocardiographic pa-
rameters, such as the left ventricular end-diastolic dimension (LVEDd) and left ventricular
ejection fraction (LVEF), were similar between the groups. Other parameters, such as the
mean gradient across the aortic valve (AV Gmean) and pulmonary artery systolic pressure
(PASP), also did not show significant differences between the groups.

CT scan data revealed that the aortic valve calcification volume (AVCV) was signif-
icantly higher in patients with early clinical outcomes (p = 0.025). Other CT parameters,
such as aortic valve diameter (AVd) and perimeter-derived diameter (AVp.d), were slightly
higher in the outcomes group but did not reach statistical significance (p = 0.075 and
p = 0.104, respectively) (Table 3).

In the group with early clinical outcomes, definitions were categorized based on
recommendations (VARC II), specifying composite endpoints referred to as “early safety
outcomes after TAVI within 30 days”. Early safety outcomes after TAVI within 30 days were
observed in 49 patients (21.8%). Among them, 25 patients had 1 outcome, and 24 patients
had 2 or more outcomes. All-cause mortality was recorded in seven cases (14.3%). Stroke
occurred in five patients (10.2%). Life-threatening bleeding was observed in 18 patients
(36.7%), including 16 cases requiring vasopressors or surgery. Among these were one case
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of conversion to open surgery, two cases of coronary obstruction, and two cases of cardiac
tamponade. Valve dysfunction was reported in nine patients (18.4%), including three cases
requiring TAV-in-TAV implantation. Acute kidney injury (stage 2 or 3) was diagnosed
in nine patients (18.4%). Pacemaker implantation was performed in 15 patients (30.6%)
(Figure 1).

Table 3. Preprocedural baseline characteristics before TAVI.

Variables Early Clinical Outcomes
(No)

Early Clinical Outcomes
(Yes) p-Value

Gender:
0.934Male 69 (39.4%) 19 (38.8%)

Female 106 (60.6%) 30 (61.2%)

Age (years), mean ± SD 79.96 ± 6.97 81.94 ± 3.38 0.251

BMI (kg/m2), mean ± SD 28.94 ± 6.22 28.88 ±6.48 0.974

AH 165 (78.2%) 46 (21.8%) 0.914

DM 46 (79.3%) 12 (20.7%) 0.800

CAD 157 (78.9%) 42 (21.1%) 0.432

Previous MI 34 (68.0%) 16 (32.0%) 0.049

CABG 16 (69.6%) 7 (30.4%) 0.295

PCI 173 (77.9%) 49 (22.1%) 0.452

EuroScore II (%), mean ± SD 4.9 ± 3.55 7.3 ± 6.61 0.059

NYHA class: 0.355

1–2 class 55 (82.3%) 11 (17.7%)

3–4 class 124 (76.5%) 38 (23.5%)

Echocardiographic findings before TAVI

LVEDd (mm), mean ± SD 48.2 ± 5.6 46.94 ± 7.66 0.452

LV EF (%), mean ± SD 46.9 ± 11.98 44.94 ± 13.87 0.565

S’, mean ± SD 11.37 ± 2.89 10.9 ± 3.2 0.561

PASP, mean ± SD 46.53 ± 15.52 41.49 ± 10.52 0.204

Bicuspid AV 12 (80.0%) 3 (20.0%) 0.856

AVA (mm2), mean ± SD 0.76 ± 0.20 0.81 ± 0.22 0.369

AVAi, mean ± SD 0.41 ± 0.11 0.44 ± 0.12 0.423

AV Gmean, mmHg, mean ± SD 48.38 ± 18.6 42.1 ± 11.48 0.176

AR 76 (82.6%) 16 (17.4%) 0.175

Sinvals.i, mean ± SD 18.75 ± 2.99 18.72 ± 3.55 0.969

TV Vmax, mean ± SD 3.08 ± 0.6 0.92 ± 0.43 0.284

TV Gmax, mean ± SD 39.63 ± 15.42 34.88 ± 10.52 0.229

TR 107 (78.7%) 29 (21.3) 0.804

LA diameter, mean ± SD 45.41 ± 5.1 44.27 ± 5.44 0.421

MSCT findings

AVd, mean ± SD 24.68 ± 2.23 25.86 ± 2.91 0.075
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Table 3. Cont.

Variables Early Clinical Outcomes
(No)

Early Clinical Outcomes
(Yes) p-Value

AVp.d, mean ± SD 24.87 ± 2.23 25.95 ± 2.87 0.104

AVCV: 0.025

1. 57 (87.7%) 8 (12.3%)

2. 117 (74.1%) 41 (25.9%)

AVp, mean ± SD 78.2 ± 7.01 81.55 ± 8.96 0.105

AAA, mean ± SD 49.82 ± 7.96 54.0 ± 11.48 0.089

LCAH, mean ± SD 13.96 ± 3.40 13.93 ± 2.47 0.976

CNCC 154 (77.8%) 44 (22.2%) 0.800

RCAH, mean ± SD 16.17 ± 3.49 17.32 ± 3.21 0.222

LVOT min, mean ± SD 21.3 ± 2.88 21.82 ± 2.92 0.509

STJ Average, mean ± SD 31.82 ± 25.61 30.56 ± 3.39 0.836

RAFd, mean ± SD 8.14 ± 1.21 8.01 ± 1.63 0.714

LAFd, mean ± SD 7.76 ± 1.05 7.96 ± 1.38 0.508

Blood test

Hemoglobin, mean ± SD 120.8 ± 13.91 118.66 ± 13.10 0.569

WBC, mean ± SD 6.25 ± 1.57 7.12 ± 2.41 0.068

Thrombocyte, mean ± SD 205.65 ± 65.97 209.50 ± 58.70 0.826
(AH—arterial hypertension; DM—diabetes mellitus; CAD—coronary artery disease; Previous MI—previous my-
ocardial infarction; CABG—coronary artery bypass grafting; Previous PCI—percutaneous coronary intervention;
EuroScore II—European System for Cardiac Operative Risk Evaluation II; NYHA—New York Heart Association;
BMI—Body Mass Index; LVEDd—left ventricular end-diastolic diameter; LVEF—left ventricle ejection fraction;
S’—right ventricular function; PASP—pulmonary artery systolic pressure; Bicuspid AV—bicuspid aortic valve;
AVA—aortic valve area; AVAi—aortic valve area index; AV Gmean—mean aortic valve gradient; AR—aortic re-
gurgitation; Sinvals.i—sinuses valsalva index; TV Vmax—tricuspid valve maximal velocity; TV Gmax—maximal
tricuspid valve gradient; TR—tricuspid regurgitation; LAd—left atrium diameter; AVd—aortic valve diameter;
AVp.d—aortic valve perimeter derived; AVCV—aortic valve calcified volume; AVp—aortic valve perimeter;
AAA—angle of aortic annulus; LCAH—left coronary artery height; RCAH—right coronary artery height; CNCC—
calcified non-coronary cusp; LVOTmin—left ventricular outflow tract minimal size; STJAverage—sinotubular
junction average; RAFd—right femoral artery diameter; LAFd—left femoral artery diameter).

To identify key factors influencing early safety outcomes following transcatheter
aortic valve implantation (TAVI), the SHapley Additive Explanations (SHAPs) method was
applied. This analysis provided an in-depth understanding of the contribution of each
feature to the model’s predictions, highlighting several key predictors. SHAP analysis
demonstrated that the left femoral artery diameter, a higher aortic valve calcification
volume and a larger angle of the aortic annulus were associated with poorer early safety
prognoses (Figure 2).

The SHAPs chart (Figure 2) demonstrates the ranked influence of predictors on the
model’s outcomes. Features with high SHAP values exerted the most significant impact on
predictions. The colour gradients (red for high feature values, blue for low) illustrate the
directional effects of each predictor on the model’s output.
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index; AVCV—aortic valve calcified volume; AVd—aortic valve diameter; AVp—aortic valve perime-
ter; AVp.d—aortic valve perimeter derived; BMI—Body Mass Index; Bicuspid AV—bicuspid aortic
valve; CNCC—calcified non-coronary cusp; EuroScoreII—European System for Cardiac Operative
Risk Evaluation II; Hemoglobin—Hemoglobin; IVS—Interventricular Septum; LAd—left atrium
diameter; LAFd—left femoral artery diameter; LCAH—left coronary artery height; LVM/BSA—
Left Ventricular Mass/Body Surface Area; LVOTmin—left ventricular outflow tract minimal size;
Lymphocyte—Lymphocyte Count; NLR—Neutrophil-to-Lymphocyte Ratio; PASP—pulmonary
artery systolic pressure; PWT—posterior wall thickness; RAFd—right femoral artery diameter;
S’—right ventricular function; Sinvals—sinuses of Valsalva; Sinvals.i—sinuses of Valsalva index;
SOVleft—Sinus of Valsalva Left Side; STJAverage—sinotubular junction average; Thrombocyte—
Thrombocyte Count; TV Gmax—maximal tricuspid valve gradient; TV Vmax—tricuspid valve
maximal velocity; WBC—White Blood Cell Count).

4. Discussion
The findings from this study emphasize the potential of machine learning (ML) models

in predicting early safety outcomes following transcatheter aortic valve implantation (TAVI).
Specifically, the random forest model demonstrated its ability to integrate diverse clinical
and imaging data, identifying significant predictors of adverse outcomes such as left
femoral artery diameter and aortic valve calcification volume.

The association between a smaller left femoral artery diameter and vascular complica-
tions aligns with the existing literature, highlighting its role as a critical predictor. Studies
have shown that a restricted femoral artery diameter increases procedural difficulty and
the risk of vascular injuries. Narrow vascular access is often associated with procedural
challenges and can lead to higher rates of bleeding or vascular rupture. Addressing these
anatomical variations with precise preprocedural planning can mitigate risks, as noted in
studies on pre-TAVI imaging protocols [31,32].

Additionally, a higher aortic valve calcification volume was strongly linked to adverse
outcomes such as paravalvular regurgitation and valve dysfunction. This finding supports
previous research advocating for precise preoperative imaging to assess calcification and
optimize procedural strategies. Extensive calcification has been shown to compromise
prosthetic valve deployment and functionality, emphasizing the need for innovative devices
that adapt to calcified anatomies [33].

Moreover, patients with elevated pulmonary artery pressures were at increased risk of
poor outcomes. This relationship underscores the importance of assessing hemodynamic
parameters, as pulmonary hypertension is a known prognostic factor in TAVI. Elevated
pressures can indicate pre-existing right heart strain, potentially complicating postoperative
recovery [34]. Incorporating pulmonary artery pressure monitoring into patient evaluation
workflows has been suggested to enhance risk stratification [35].

The use of adaptive synthetic sampling (ADASYN) sampling in this study to address
data imbalance proved effective, improving the model’s predictive accuracy and robustness.
Balancing techniques like ADASYN sampling are particularly valuable in medical datasets,
where under-represented outcomes often challenge predictive reliability. Other approaches,
such as SMOTE and ensemble learning techniques, have similarly demonstrated success in
addressing imbalances in TAVI-related data [36,37].

Technological advancements in TAVI devices, including balloon-expandable and
self-expanding prostheses, also influenced outcomes. The selection of the appropriate
prosthesis type, tailored to individual patient anatomy, has been shown to minimize com-
plications [38]. Comparative studies have indicated varying rates of paravalvular leakage
and durability between device types, underscoring the importance of individualized device
selection [17,39].
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Shapley Additive Explanations (SHAPs) analysis, employed in this study, provided
transparency in understanding the model’s predictions. SHAPs effectively identified critical
features such as left femoral artery diameter and aortic valve calcification, enhancing
interpretability and clinical applicability. Similar explainable AI techniques have been
validated in other cardiac intervention studies, highlighting their value in clinical decision-
making [20].

Another important factor is the impact of comorbidities such as chronic kidney disease
and coronary artery disease on early outcomes. Chronic kidney disease has been associated
with increased risks of contrast-induced nephropathy during TAVI, necessitating careful pa-
tient selection. Similarly, coronary artery disease often requires concomitant interventions,
which can complicate procedural outcomes.

Finally, the integration of multimodal imaging, including echocardiography and CT,
with ML algorithms offers promising avenues for improving TAVI outcomes. Combining
preoperative imaging with ML can refine risk models and enhance patient stratification.
Recent advancements in fusion imaging, integrating CT and 3D echocardiography, have
shown promise in reducing procedural errors [35].

5. Conclusions
This study highlights the effectiveness of machine learning (ML) models in predicting

early safety outcomes in TAVI procedures. Using a random forest model with ADASYN
sampling, the research identified key predictors such as a reduced femoral artery diameter
and increased aortic valve calcification volume, both associated with a higher risk of
complications. Future studies should expand on these findings by incorporating larger
datasets, evaluating novel device designs, and exploring advanced ML techniques to
further refine predictive accuracy and clinical utility.
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BSA Body surface area
BEVs Balloon-expandable valves
CABG Coronary artery bypass graft
CT Computed tomography
CAD Coronary artery disease
EuroSCORE II European System for Cardiac Operative Risk Evaluation
LVEF Left ventricular ejection fraction
MI Myocardial infarction
MR Mitral valve regurgitation
NYHA New York Heart Association
PCI Percutaneous coronary intervention
SAVR Surgical aortic valve replacement
SEV Self-expandable valve
SPSS Statistical analysis was performed using SPSS
TAVI Transcatheter aortic valve implantation
VARC-2 Valve Academic Research Consortium II
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