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ABSTRACT
The COVID-19 pandemic underscored the need for resilient energy 
management systems in smart buildings, especially during crises. This 
study investigates the role of Digital Twins in optimising energy 
systems, analysing energy use in a residential complex in Cyprus under 
lockdown conditions. Advanced predictive models, including Skforecast, 
XGBoost, LightGBM, CatBoost, LSTM, and RNN, were employed to 
forecast energy demand. While gradient boosting models performed 
well, LSTM showed superior accuracy in capturing long-term patterns. 
These models are crucial for anticipating energy demand fluctuations, 
especially during unforeseen events such as the COVID-19 pandemic. 
The use of Digital Twins enabled real-time monitoring, proactive 
maintenance, and decision-making, significantly improving energy 
efficiency and resilience. This research underscores the importance of 
interdisciplinary collaboration and the integration of advanced 
technologies in building management. The findings advocate for a 
holistic, human-centric approach to energy management that prioritises 
adaptability, resilience, and sustainability in the face of ongoing and 
future challenges.
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1. Introduction

Contemporary energy consumption is a pressing global concern with significant implications for 
both society and the environment. A large portion of our energy comes from combustion processes 
that rely on non-renewable resources and emit harmful greenhouse gases (GHGs) into the atmos
phere. This multifaceted issue has spurred global efforts such as the ‘Go green’ movement (Rathor 
and Saxena 2020), the Low Carbon Transition Programme in China (Wang et al. 2020), and Eur
ope’s Nearly Zero Building Strategy 2020 (Li et al. 2019), among others. These initiatives aim to 
enhance energy efficiency and drive energy conservation to mitigate negative impacts.

Rapid urbanisation and population growth have increased the complexity of energy require
ments in cities. Existing systems are evolving to offer comprehensive solutions through an opti
mised approach. In the context of IoT-enabled smart cities, it is crucial to establish an optimised 
operational framework and deploy efficient sensors to meet increasing demands (Selvaraj, Kuthadi, 
and Baskar 2023). The building sector assumes a substantial role, accounting for nearly 40% of total 
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energy consumption, 40% of greenhouse gas emissions, and a whopping 70% of electricity usage in 
industrialised nations (Minoli, Sohraby, and Occhiogrosso 2017). Buildings surpass both the trans
port and industrial sectors in terms of energy consumption, primarily due to heating, cooling, light
ing, and electrical appliances. Legislation in many countries mandates that a significant portion of 
energy consumption by 2025 must come from renewable and carbon-neutral sources, spurring 
investments in smart grid technologies designed to minimise overall energy costs.

Governments worldwide have introduced various policies and action plans to combat green
house gas emissions and enhance energy efficiency in buildings. The International Energy Agency 
(IEA) introduced the Net Zero by 2050: A Roadmap for the Global Energy Sector, which empha
sises a 50% reduction in building-related CO₂ emissions by 2030 through retrofitting, efficient 
appliances, and electrification (IEA 2021). The United Nations Environment Programme 
(UNEP) promotes the Global Alliance for Buildings and Construction (GlobalABC), fostering 
international collaboration to decarbonise buildings, particularly in developing nations (UNEP 
2022). In the European Union, the Energy Performance of Buildings Directive (EPBD) serves as 
a cornerstone policy, requiring nearly zero-energy buildings (NZEBs) for all new constructions 
and mandating energy performance certificates for existing buildings (European Commission 
2021). In Japan, the Definition of ZEB and Future Measures Proposed by the ZEB Roadmap Exam
ination Committee outlines a strategy for a gradual increase in net-zero energy buildings in the resi
dential and non-residential sectors by 2030 (METI 2016). Furthermore, Australia’s National 
Construction Code 2022 introduces mandatory energy efficiency measures for new buildings, high
lighting the global trend toward stringent regulatory frameworks for sustainable construction (Aus
tralian Building Codes Board 2022).

Achieving carbon neutrality in the built environment requires not only the adoption of energy- 
efficient technologies but also the implementation of comprehensive assessment tools that measure 
a building’s smart readiness (Chatzikonstantinidis, Giama, Fokaides, et al. 2024). However, opti
mising these technologies to improve building energy performance remains an open challenge 
(Giama et al. 2024).

Another pivotal challenge resides in the proliferation of alternative energy sources, exemplified 
by photovoltaic cells, wind turbine parks, geothermal installations, and tidal wind turbines. These 
alternatives must harmonise their coexistence with conventional energy sources such as oil, coal, 
nuclear, or hydraulic power. Energy flexibility is a critical aspect of modern building management, 
particularly in regions with distinct seasonal variations such as the Mediterranean. This flexibility 
allows buildings to adapt their energy consumption in response to external conditions, which is 
essential for optimising energy use and reducing costs (Chantzis, Giama, Papadopoulos 2023). 
Economic imperatives further compel stakeholders to explore avenues for minimising the costs 
associated with energy consumption. Over the years, energy strategies on the consumer front 
have centred on automation and control optimisation, epitomised by the incorporation of Building 
Automation Systems (BAS) and Home Automation. Demand response has emerged as a pivotal 
tool for decarbonisation, especially during energy transitions, highlighting the role of smart tech
nologies in managing energy resources efficiently (Chantzis, Giama, Nižetić, et al. 2023). Technol
ogy has bestowed upon us the means to construct a coherent framework for research and 
development, fostering innovation in energy efficiency and operational cost reduction.

Effectively researching smart energy requires profound insights into both energy systems and 
Information and Communications Technologies (ICT). This synergy leverages digital transform
ation opportunities. ICT advancements, including the Internet, Ubiquitous Computing, Big 
Data, Wireless Sensor Networks, and microservices, enable new functionalities in energy manage
ment systems (EMS). Artificial intelligence is pivotal in smart energy, contributing to tasks such as 
monitoring, analysis, and decision-making. Smart energy objectives must be balanced with goals of 
improving quality of life and service quality, ushering in the era of a ‘smart environment.’ Common 
‘smart scenarios’ include ‘smart buildings,’ ‘smart homes,’ ‘smart health,’ and ‘smart cities,’ viewed 
as interconnected ecosystems (Aguilar et al. 2021).
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In smart buildings, the integration of Digital Twins (DT) stand as a cornerstone innovation, fun
damentally transforming energy management, especially in times of crisis. DTs, sophisticated digi
tal replicas of physical buildings, enable unprecedented monitoring, analysis, and prediction, 
facilitating real-time decisions that optimise energy use and operational efficiency. Their impor
tance cannot be overstated, particularly when swift adaptive measures are needed in response to 
sudden changes in occupancy patterns, energy supply, demand, or environmental conditions. 
Through continuous data collection and analysis, DTs offer a dynamic, holistic view of a building’s 
performance, allowing stakeholders to identify inefficiencies, predict future trends, and implement 
preventive maintenance strategies. This proactive approach is invaluable during crises like the 
COVID-19 pandemic, where traditional energy management practices may fall short. Furthermore, 
DTs serve as essential tools for scenario planning, enabling the simulation of various crisis impact 
scenarios and testing different energy management strategies without risking actual building oper
ations. By leveraging DTs, smart buildings can navigate crisis-induced challenges, becoming more 
resilient, efficient, and aligned with sustainability goals. This approach heralds a new era of smart 
building operation, prioritising adaptability and resilience (Billey and Wuest 2024).

2. COVID-19 and smart buildings

On March 11, 2020, the World Health Organization (WHO) declared COVID-19 a pandemic, 
marking a significant turning point in global health. As reported by the WHO, the COVID-19 pan
demic has infected nearly 625 million people and tragically claimed over 6 million lives worldwide 
(Amirzadeh et al. 2023). Beyond the high mortality rate, the pandemic has triggered ongoing chal
lenges and widespread disruptions profoundly impacting people’s lives in multifaceted ways (Shakil 
et al. 2020).

The COVID-19 pandemic has brought transformative changes to our lives, prompting extensive 
mitigation measures, including restrictions that have significantly altered societal norms and life
styles. This novel coronavirus represents the paramount global health crisis of our era, comparable 
only to the challenges posed during the Second World War. Beyond its public health repercussions, 
the pandemic has also unleashed a devastating socio-economic crisis. The World Bank reports that 
approximately 97 million people were thrust into poverty in 2020, an unprecedented surge. Further
more, the International Labor Organisation estimates that nearly 205 million people may have lost 
their jobs in 2022 (UNDP 2020).

During the pandemic, most countries imposed ‘lockdowns,’ curtailing daily activities and confi
ning individuals to their residential buildings. These measures, essential for public health, have 
unintentionally resulted in heightened energy consumption within residential buildings. Increased 
energy demand in households not only amplified energy costs for residents but also necessitated 
adjustments to electricity distribution strategies within homes. Of particular concern was the altera
tion of load patterns for distribution transformers, which could lead to potential overloads. Conse
quently, grid load reduction became imperative. Additionally, enhancing hygiene and sanitation in 
medical facilities became paramount, with hospital buildings emerging as the frontline against the 
virus. Given the potential for rapid airborne virus transmission, improving indoor air quality and 
ventilation systems within buildings gained prominence. Finding viable solutions to meet these new 
requirements became imperative. The challenges posed by the COVID-19 pandemic demand 
prompt, comprehensive, and adaptable solutions.

The COVID-19 pandemic has revealed the critical importance of integrating smart technologies 
into Building Management Systems (BMS) to ensure resilience during crises. In this context, the 
concept of ‘smart buildings’ has emerged as a fitting response. Recent research has highlighted 
how smart buildings can effectively manage water resources during lockdowns, emphasising the 
importance of real-time monitoring and adaptive management systems in mitigating the impacts 
of such unprecedented events (Chatzikonstantinidis, Giama, Chantzis, et al. 2024). Smart buildings 
leverage information technology to connect various subsystems that traditionally operate 
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independently, enabling these systems to share data and optimise overall building performance. 
The genesis of the smart building concept can be traced to the widespread use and dissemination 
of computers and the internet. These technologies facilitate the organisation and monitoring of 
buildings as digital systems (Xie, Ramakrishna, and Manganelli 2022).

2.1. Impact of COVID-19

Throughout the COVID-19 pandemic, one of the most pervasive responses to curbing the virus’s 
spread has been the imposition of ‘lockdowns’ in numerous countries, which confined individuals 
to their residential buildings and limited their daily activities. Paradoxically, this measure gave rise 
to a new challenge: a notable increase in energy consumption within residential buildings. 
Additionally, given the virus’s rapid spread through airborne particles, ensuring high indoor air 
quality within various types of buildings has become a critical concern.

These containment measures, including stay-at-home and teleworking policies, significantly 
impacted energy usage patterns. This led to notable changes in household energy profiles and con
sumption patterns worldwide, as demonstrated by several studies (Cheshmehzangi 2020; Santiago 
et al. 2021; Bielecki et al. 2021). Some of the key observations and insights from these research 
efforts are summarised below: 

. In China, a discernible surge of 40% in domestic culinary activities was observed, along with 
changes in leisure pursuits. There was a noteworthy 60% increase in the use of climate control 
systems for temperature regulation, a 40% rise in the use of lighting, and a significant increase in 
energy expenditure, with energy bills increasing by 22% to 95% during the study period.

. In Spain, there was a 13% reduction in national electricity consumption. This resulted in changes 
to the morning and evening peak electricity demand, with shifts in timing and load distribution 
among households.

. In Poland, there was no significant change in the maximum load, but the distribution of load 
profiles widened among the nearly 7,000 sampled households.

. In Australia, weekdays saw similar load profiles, but there was an increased evening peak.

. In social housing in Québec, Canada, major alterations in energy usage were observed in April 
and May, with minor changes in June and July.

One notable change was a 40% increase in household cooking during lockdown compared to the 
pre-lockdown period. However, after the lockdown, there was a significant decrease in cooking at 
home, indicating that cooking habits did not return to pre-pandemic levels but remained lower. 
People seemed to prefer recovering from months of continuous indoor cooking by seeking outdoor 
dining options during the post-pandemic recovery phase. Similar patterns were observed for home 
entertainment, which almost tripled during lockdown but reverted to normal levels afterward. The 
closure of outdoor recreational activities during lockdown prompted people to seek entertainment 
alternatives within their homes, leading to short-term increases in household energy consumption.

While there were no statistically significant findings suggesting long-term transitions in energy 
use, the substantial increases in household energy demand for activities like cooking and home 
entertainment during lockdown challenged conventional assumptions and expectations (Li, Guo, 
and Kauffman 2015). Seasonal variations were also evident, with an estimated 60% increase in cool
ing and heating, as well as a 40% increase in lighting between January and February 2020 alone 
(Xinye and Wei 2019). This surge in domestic energy use reflected higher consumption patterns, 
increased usage of household appliances, and greater energy consumption for cooling, heating, 
and lighting (Chen et al. 2020).

Furthermore, it is imperative to acknowledge the profound ramifications of the COVID-19 pan
demic on energy provisioning and electrical supply networks, encompassing the entirety of the con
tinuum from power generation to end-user consumption. The cessation or partial curtailment of 

4 K. CHATZIKONSTANTINIDIS ET AL.



industrial operations precipitated a conspicuous reduction in the requisites for electrical power and 
energy resources. On a global scale, economically developed nations witnessed a noteworthy 
decrease in both energy and electricity requisition, quantifying at a range of 5% to 6%. Notably, 
the United States and European Union member states were the most significantly impacted, regis
tering reductions of 9% and 11% respectively in their energy and electricity demands (Zhongming 
et al. 2020). This overall reduction, coupled with growing interest in low-carbon energy sources and 
decreased demand in coal, gas, and oil industries, contributed to an 8% reduction in global carbon 
emissions (Norouzi et al. 2020).

2.2. Challenges during the COVID-19 lockdown on energy management

As mentioned before, the COVID-19 lockdown brought about significant changes in energy and 
water demand and imposed several challenges in terms of occupancy and patterns of use of build
ings. These challenges have had significant implications for both residential and commercial build
ings, leading to changes in the way spaces are used and managed (Selvaraj, Kuthadi, and Baskar 
2023; Wang, Huang, and Li 2022). In the context of managing resources, especially during crises, 
it is crucial to identify the challenges and have robust risk assessment and mitigation strategies in a 
holistic manner, particularly in the face of emerging global challenges (Zafeiriou et al. 2024). Some 
main of the key challenges and their consequences that arose during the COVID-19 lockdowns are 
presented below: 

(1) Reduced Commercial and Industrial Energy Demand: A substantial portion of the com
mercial and industrial landscape witnessed temporary closures or scaled-down operations 
in response to lockdown measures and social distancing protocols. Consequently, this engen
dered a marked reduction in energy demand emanating from these sectors.

(2) Modified Working Patterns: The prevailing modus operandi of the workforce underwent 
transformation, with remote work gaining prevalence as the standard practice. This metamor
phosis in conventional office work paradigms resulted in unoccupied or partially occupied 
office spaces, thereby diminishing the necessity for office-related amenities and resources 
such as climate control, lighting, and sanitation services. One of the key challenges during 
the COVID-19 pandemic was the effective management of building spaces to adapt to the 
widespread adoption of teleworking. DT technologies have demonstrated significant potential 
in optimising space utilisation and ensuring operational efficiency in such scenarios. As high
lighted in the Lazio Region Headquarters case study, DT models enabled real-time data col
lection and analysis, allowing building managers to monitor occupancy patterns and adjust 
space allocation dynamically. This approach not only enhanced energy efficiency but also 
ensured compliance with safety guidelines, such as maintaining social distancing in shared 
spaces (Piras, Muzi, and Tiburcio 2024). In the Architecture, Engineering, Construction, 
and Operations (AECO) sector, space management has become a critical component for bal
ancing smart working needs with operational goals. By leveraging DT platforms, the sector 
has embraced innovative strategies to address the demands of flexible working environments, 
ensuring that buildings are not only efficient but also resilient to future disruptions. These 
findings underline the importance of integrating advanced technologies into smart building 
frameworks to support sustainable and adaptive practices in the post-pandemic era.

(3) Increased Residential Energy Demand: The widespread adoption of remote work and 
remote learning routines by numerous individuals and households precipitated a surge in 
residential energy utilisation. Residences served a multifaceted role, functioning not merely 
as abodes but also as workplaces and educational spaces, leading to heightened electricity 
usage for illumination, temperature regulation, and the operation of electronic devices.

(4) Shift in Peak Energy Demand: The customary diurnal apexes in energy demand, typically 
linked to commercial and industrial undertakings, underwent displacement. Instead of 

INTERNATIONAL JOURNAL OF SUSTAINABLE ENERGY 5



traditional daytime peaks, utility providers experienced more equitably distributed and pro
tracted peaks across the day, reflective of the augmented residential energy demand.

(5) Impact on Renewable Energy: The overarching attenuation in total energy demand exerted 
discernible repercussions on the economic dynamics of renewable energy ventures. Particular 
renewable energy sources, such as wind and solar power, confronted challenges given their 
reliance on grid demand and pricing fluctuations.

(6) Safety and Health Concerns: Building occupants and management faced concerns regarding 
indoor air quality, sanitation, and virus transmission. Buildings needed to adapt by implement
ing enhanced cleaning protocols, improving ventilation, and ensuring adequate spacing to 
meet safety guidelines. Investments in air filtration and touchless technology became a priority.

(7) Challenges in maintaining energy supply for critical facilities: Maintaining energy supply 
for critical facilities like hospitals during the COVID-19 pandemic posed challenges due to 
increased demand for continuous operation, the need for reliable backup power systems, 
and ensuring fuel supply and regulatory compliance. Hospitals had to carefully allocate 
resources and develop comprehensive emergency plans to ensure uninterrupted patient 
care while managing energy-related risks.

(8) Supply Chain Disruptions: The integrity of supply chains suffered disruptions that reverber
ated throughout the availability of essential building materials and maintenance requisites. The 
resultant delays in maintenance and repair activities, precipitated by scarcities in materials, 
engendered the potential for escalated operational expenses and safety apprehensions.

(9) Energy Management Challenges: The administration of energy resources assumed a heigh
tened degree of complexity, necessitating building operators to navigate the delicate equili
brium between energy efficiency and the preservation of secure and comfortable indoor 
environments. Certain buildings bore witness to fluctuations in energy consumption, typified 
by heightened energy utilisation in residential precincts and diminished energy use in com
mercial edifices. Consequently, adjustments to heating, cooling, and illumination systems 
became imperative.

(10) Remote Building Management: Building operators found themselves compelled to remotely 
oversee and supervise building systems, ensuring optimal efficiency and safety. The indispensa
bility of remote building management solutions prompted investments in technological infra
structure and training initiatives to ensure the continued security and functionality of buildings.

3. Materials and methods

This section outlines the methodological approach adopted in this study to investigate energy manage
ment in smart buildings during the COVID-19 pandemic, with a particular focus on the application of 
DTs as an optimisation tool for sustainable urban environments. The chapter details the selection of 
the case study, the development of the DT, data collection processes, and the setup for predictive mod
elling. These methods form the backbone of the study, providing the necessary tools and data to 
explore how smart buildings can adapt to crisis-induced changes in energy consumption.

The selection of a representative case study was a critical step in this research. The chosen site, a 
residential complex in Larnaca, Cyprus, was selected due to its ability to provide a microcosm of the 
broader urban energy landscape during the COVID-19 pandemic. The complex consists of multiple 
residential units with varying occupancy levels, making it ideal for analysing the impact of the pan
demic on energy consumption. The diversity in unit types and occupancy patterns allowed for a 
comprehensive examination of how different residential behaviours influenced energy usage 
under lockdown conditions.

The residential case study was chosen to investigate how smart building technologies can address 
common challenges in energy efficiency, occupant comfort, and environmental sustainability in the 
residential sector. Residential buildings represent a significant portion of energy consumption, 
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making them a critical area for implementing and evaluating smart solutions. The findings of this 
case study are intended to provide insights into the potential of smart technologies for broader 
applications across other building typologies.

Larnaca was specifically chosen for its Mediterranean climate, characterised by hot summers and 
mild winters, which requires significant energy usage for heating, cooling, and ventilation. This cli
mate provided a rich dataset for examining seasonal variations in energy consumption, particularly 
under the constraints imposed by the pandemic. Additionally, the availability of historical energy 
consumption data for the complex allowed for a comparative analysis, contrasting energy usage pat
terns before, during, and after the lockdown periods.

The development of a DT for the Larnaca residential complex was central to this study’s meth
odology. A DT is a virtual replica of a physical asset, in this case, the residential buildings, which is 
used to simulate, monitor, and optimise real-world performance. The DT was developed using 
advanced Building Information Modelling (BIM) software, which allowed for the precise modelling 
of the complex’s structural, mechanical, and electrical systems.

The adoption of DT technology in this study was driven by its ability to provide a real-time, 
dynamic representation of the physical environment. DTs not only allow for continuous monitor
ing but also enable predictive maintenance by simulating various operational scenarios. This capa
bility is crucial in crisis situations, such as during the COVID-19 pandemic, where energy 
management must be both proactive and responsive. The integration of real-time sensor data 
into the DT presented some challenges, particularly in ensuring data accuracy and system inte
gration, but these were overcome through careful calibration and testing.

To create the DT, comprehensive data were collected from the physical buildings, including 
architectural plans, HVAC system specifications, and electrical layouts. This data were then used 
to construct a detailed BIM model, which served as the foundation of the DT. The DT was further 
enhanced by integrating real-time data feeds from sensors installed throughout the complex. These 
sensors were strategically placed to monitor critical aspects of energy consumption, including elec
tricity usage, HVAC operations, and lighting.

The BIM model developed in this study provided a detailed representation of the structural and 
mechanical systems of the residential complex. Unlike standard 3D models (e.g. DWG, DXF), 
which primarily capture geometric and visual information, BIM integrates metadata, including 
material properties, energy performance, and system specifications. This integration enables 
dynamic simulations and data exchange, forming the foundation for the DT.

A significant distinction between BIM and a Digital Twin lies in their operational scope. While 
BIM is static and primarily used in the design and planning phases, a DT evolves dynamically, inte
grating real-time sensor data to provide continuous monitoring and predictive analysis. In this 
study, the DT was enhanced with real-time data from IoT-enabled sensors deployed throughout 
the complex. The integration of HVAC systems into the DT was achieved through sensors that col
lected temperature, humidity, and airflow data from strategically placed sensors. These inputs 
allowed the DT to simulate energy demands, optimise system performance, and adjust HVAC oper
ations dynamically, improving both energy efficiency and occupant comfort.

The integration of sensor data into the DT allowed for real-time monitoring and analysis of 
energy consumption patterns. The DT provided a dynamic platform for simulating various scen
arios, such as changes in occupancy or external temperature, and their impact on energy use. 
This capability was particularly valuable during the pandemic, as it allowed for the modelling of 
different lockdown scenarios and their potential effects on energy demand.

Figures 1 and 2 provide visual representations of the physical complex and its corresponding DT. 
Figure 1 shows the layout of the buildings within the complex, while Figure 2 illustrates the digital 
model created in BIM software. These figures underscore the complexity and detail involved in 
developing a DT that accurately reflects the real-world performance of the residential complex.

Data collection was a crucial component of this study, as it provided the empirical foundation for 
analysing energy consumption patterns. The data collection period spanned from June 2021 to June 
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2022, covering multiple phases of the COVID-19 pandemic, including strict lockdown periods, gra
dual easing of restrictions, and the return to more typical conditions.

Energy consumption data were continuously collected using the sensors installed throughout the 
complex. These sensors captured detailed information on electricity usage, including data from 
HVAC systems, lighting, and other electrical appliances. The data were transmitted in real-time 
to a central database, where they were stored and later analysed.

Data collected from the sensors required extensive preprocessing to ensure accuracy and reliability. 
This included handling missing data, correcting anomalies, and ensuring synchronisation across differ
ent data streams. Given the variability in energy usage patterns due to the pandemic, special attention 
was paid to maintaining the temporal integrity of the data, allowing for accurate time-series analysis.

To ensure the robustness of the analysis, the collected data were divided into three sets: training, 
validation, and testing. The training set comprised the majority of the data and was used to develop 

Figure 1. Examined complex of buildings.

Figure 2. Visualised iModel of the Larnaca pilot buildings.
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initial predictive models. The validation set was used to fine-tune these models, ensuring that they 
could accurately predict energy consumption under different conditions. Finally, the testing set was 
used to evaluate the performance of the models, providing an independent assessment of their accu
racy and reliability.

In addition to energy consumption data, supplementary data on weather conditions and occu
pancy levels were also collected. Weather data, including temperature, humidity, and solar radiation, 
were obtained from local meteorological stations, while occupancy data were estimated based on sur
veys and occupancy sensors. These additional data streams were essential for understanding the exter
nal factors influencing energy consumption and for improving the accuracy of the predictive models.

To forecast energy consumption and identify potential issues before they arise, several predictive 
models were employed. The predictive modelling process began with the use of the Skforecast 
library, which integrates seamlessly with Scikit-learn regression models. Skforecast was chosen 
for its ability to handle time-series forecasting, a crucial requirement given the temporal nature 
of the energy consumption data. The models were trained using the historical data collected 
from the sensors, with particular attention paid to identifying and incorporating significant lag vari
ables. These lags represented previous time steps in the data, which were expected to influence 
future energy consumption.

To further enhance the predictive capabilities of the models, gradient boosting techniques were 
employed. Models such as XGBoost, LightGBM, and CatBoost were selected due to their robustness 
in handling large datasets and their ability to incorporate non-linear relationships between vari
ables. These models were particularly well-suited for the complex and multifaceted nature of energy 
consumption data, which can be influenced by a wide range of factors, from external weather con
ditions to internal occupancy patterns.

The choice of predictive models, including Skforecast and various gradient boosting techniques 
was guided by their proven effectiveness in handling complex, non-linear data patterns typical of 
energy consumption datasets. These models were selected to provide a comprehensive analysis, 
with each bringing unique strengths in handling different aspects of the data, such as time-series 
forecasting or the incorporation of exogenous variables.

Each model underwent a rigorous hyperparameter tuning process, utilising grid search methods 
to identify the optimal configuration for each set of data. This process involved testing various com
binations of parameters, such as the number of trees in the model or the learning rate, to maximise 
the accuracy of the predictions. The models were then validated using the validation dataset, ensur
ing that they could generalise beyond the training data.

Exogenous variables, including weather data and occupancy levels, were incorporated into 
the models to improve their predictive performance. These variables provided additional con
text, allowing the models to account for external factors that could impact energy consump
tion. The inclusion of these variables was particularly important during the pandemic, as 
changes in occupancy and unusual weather patterns had significant effects on energy usage.

Data visualisation was employed throughout the study to facilitate the interpretation and com
munication of the results. The visualisations were created using a variety of tools, including Python 
libraries such as Matplotlib and Seaborn, which allowed for the creation of detailed and informative 
plots. The visualisations focused on illustrating key trends and patterns in the energy consumption 
data. Time-series plots were used to show changes in energy usage over the course of the study 
period, highlighting the impact of the pandemic on consumption patterns.

4. Results

This chapter presents the results obtained from the study, focusing on the energy consumption pat
terns of the residential complex in Larnaca, Cyprus, during the COVID-19 pandemic. The analysis 
is carried out through various predictive models, including Skforecast, XGBoost, and deep learning 
approaches like LSTM and RNN. Each section includes a detailed examination of the figures, 
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explaining the significance of the results and how they contribute to the overall findings of the 
study.

4.1. Forecasting time series with Skforecast, Scikit regression model

Skforecast, is a library that contains necessary functions and classes adapting with any Scikit-learn 
regression model to forecast problems. Based on the Scikit-learn regression model, a forecast model 
was implemented using data from Onset sensors located in our complex of buildings in Larnaca. 
The dataset consists of the total energy consumption (kWh) from 2021-06-16 to 2022-06-15. 
Data are divided into 3 sets: training, validation, and test, as shown in Figure 3.

This figure illustrates the fluctuating energy consumption in the complex, with clear seasonal 
variations. The highest peaks occur during the summer months, which is consistent with the 
increased use of air conditioning in response to higher temperatures. The data indicates that exter
nal temperature is a major driver of energy consumption in the building. The seasonal pattern 
observed here underscores the need for energy management strategies that account for tempera
ture-related demand. This could involve the integration of renewable energy sources like solar 
power, particularly during peak summer months, to offset increased energy consumption and 
enhance sustainability.

Figure 4 compares the actual total power consumption with the predicted values generated by 
the Skforecast model. The close alignment between the observed and predicted values indicates 
the model’s accuracy in forecasting energy consumption based on historical data. This figure com
pares the actual energy consumption with the values predicted by the Skforecast model. The close 
alignment between the observed and predicted values demonstrates the accuracy of the model, with 
a percentage error of 3.025%. The Skforecast model shows robustness in its predictions, making it a 
reliable tool for anticipating energy needs in smart buildings. This accuracy is particularly crucial 
for planning and optimising energy resources during periods of fluctuating demand, such as during 
the pandemic.

Figure 3. Total power consumption of the building [kWh].
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Following the optimisation of lags and hyperparameters, the model’s prediction accuracy 
improved, reducing the error margin to 2.864%. This figure demonstrates the enhanced alignment 
between the actual and predicted energy consumption after the model was fine-tuned. The 
improvement in prediction accuracy highlights the importance of model optimisation in predictive 
analytics. By fine-tuning the model, it becomes better equipped to handle the complexities of real- 
world energy consumption data, leading to more accurate and actionable insights.

Figure 5 introduces prediction intervals, providing a range within which the actual consumption 
is expected to fall. These intervals offer a measure of the model’s uncertainty, allowing for more 
nuanced planning and decision-making. The inclusion of prediction intervals is a significant 
enhancement, as it allows building managers to prepare for potential variations in energy demand. 
This is particularly useful in crisis situations, where demand can be unpredictable.

4.2. Forecasting time series with XGBoost

The XGBoost model was also employed to forecast energy consumption, offering a different 
approach to handling the data. Figures 6–9 present the results of this model. XGBoost library con
tains the XGBRegressor class which follows the scikit learn API. It is compatible with skforecast. 
According to the XGBoost library, a forecast model was implemented using data from Onset sen
sors located in our case study. The dataset consists of the total energy consumption (kWh) from 
2021-06-16 to 2022-06-15.

The following figure shows data divided into training and test. Figure 7 distinguishes between 
the data used for training the model and the test data used to evaluate its predictive performance. 
The training data covers a majority of the timeline, while the test data represents a smaller, more 
recent period. The separation of training and test data is essential for validating the model’s 

Figure 4. Total and predicted power consumption of the building [kWh].
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Figure 5. Total and predicted (intervals) power consumption of the building [kWh].

Figure 6. Total power consumption of the building [kWh], train and test dates.
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predictive capability. By focusing on the model’s performance on the test data, the study ensures 
that the results are generalisable and not just a reflection of overfitting to the historical data.

Figure 7 compares the actual energy consumption with predictions made by the XGBoost model. 
Here, the XGBoost model’s predictions are plotted against the actual energy consumption data. The 
figure demonstrates the model’s performance, showing how well it can predict energy consumption 
using advanced machine learning techniques. XGBoost’s ability to handle non-linear relationships in 
the data makes it particularly effective in capturing the complex patterns of energy consumption in a 
smart building environment. The model’s performance, with a slightly higher error margin than the 
optimised Skforecast model, suggests that while XGBoost is powerful, it may require further tuning 
or the inclusion of additional exogenous variables for enhanced accuracy. While XGBoost effectively 
captures non-linear relationships in the data, it may benefit from additional optimisation or the 
inclusion of more exogenous variables to improve accuracy. This model’s performance suggests 
that different algorithms may be better suited to different aspects of energy consumption prediction.

Figures 8 and 9 highlight specific days where the model’s predictions were either most accurate (Feb
ruary 27, 2022) or least accurate (June 2, 2022). These figures show the best and worst-performing days 
of the model’s predictions. The best day shows excellent alignment with the actual consumption, while 
the worst day exhibits significant deviations. By analysing these outliers, the study can gain insights into 
the conditions or factors that lead to model inaccuracies. The significant difference in model perform
ance between the best and worst-predicted days could be due to unforeseen events or extreme weather 
conditions that were not fully accounted for in the model. Understanding these outliers is crucial for 
improving the model’s robustness, especially in environments with highly variable energy demands.

4.3. Forecasting time series with gradient boosting, Skforecast, XGBoost, LightGBM, 
CatBoost

Gradient boosting models stand out within the machine learning community for best results. As a 
result, they achieve in a multitude of use cases, both regression and classification. Based on gradient 

Figure 7. Total and predicted power consumption of the building [kWh].
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boosting models, XGBoost, LightGBM and CatBoost, forecast models were implemented using data 
from Onset sensors located in the complex. The dataset consists of the total energy consumption 
(kWh) from 2021-06-16 to 2022-06-15.

Figure 10 presents the predictions from various gradient boosting models. The results from 
XGBoost, LightGBM, and CatBoost are compared against actual energy consumption. The com
parison of different gradient boosting models provides valuable insights into which model is best 
suited for this type of data. The slight variations in prediction accuracy highlight the strengths 
and weaknesses of each model. Among the models, CatBoost shows the lowest error margin, 
suggesting it is particularly well-suited for this dataset, especially in handling categorical variables 
such as calendar effects.

Figure 8. June 2, 2022 – Worst Predicted Day.

Figure 9. February 27, 2022 – Best predicted day.
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4.3.1. XGBoost
XGBoost is an optimised distributed gradient boosting library that contains machine learning 
algorithms under the Gradient Boosting framework. As a first approach, an autoregressive 
model is trained. Model uses past values (lags) of the response variable itself as predictors. Given 
the high number of hyperparameters that gradient boosting models have, a grid search strategy 
combined with back-testing is used to identify the configuration resulting in the best predictions.

Once the best combination of hyperparameters has been identified using the validation data, the 
predictive capacity of the model is evaluated when applied to the test set. In order to simulate the 
prediction process (every 36 hours), the backtesting_forecaster function is used. The percentage 
error of the back test is 21.579%.

Figure 11 reiterates the results from the XGBoost model but includes additional context, such as 
the impact of incorporating exogenous variables. The use of exogenous variables such as tempera
ture and calendar effects significantly improve the model’s accuracy, as seen by the reduction in 
prediction error. This finding underscores the importance of a holistic approach in predictive mod
elling, where external factors are considered alongside historical consumption data.

4.3.2. Exogenous variables
Furthermore, to using autoregressive predictors obtained from the past of the response variable 
itself, it is possible to add other exogenous variables. In this case, information on the calendar 
(month, day of the week, time, holidays, etc.) as well as weather variables (temperature) is available.

Figure 12 illustrates how categorical data, such as day of the week or holidays, was stored and 
used in the models. Such data types are essential for capturing recurring patterns in energy con
sumption. The integration of categorical data enhances the model’s ability to predict energy con
sumption more accurately. By considering the cyclic nature of energy use (e.g. weekdays vs. 
weekends), the models can better anticipate demand fluctuations, leading to more effective energy 
management strategies.

Figure 10. Total power consumption of the building [kWh].
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By including exogenous variables as predictors, the prediction error has been decreased. The 
percentage error of the back test is 19.928%.

4.3.3. LightGBM
LightGBM is a gradient boosting framework that uses tree-based learning algorithms. It is 
developed by Microsoft. An autoregressive model is trained. Model uses past values (lags) of 
the response variable itself as predictors. Given the high number of hyperparameters that gra
dient boosting models have, a grid search strategy combined with back-testing is used to ident
ify the configuration resulting in the best predictions. The percentage error of the back test is 
21.737%.

Figure 11. Total and predicted power consumption of the building [kWh].

Figure 12. Stored data as category type.
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4.3.4. CatBoost
CatBoost is a high-performance open-source library for gradient boosting on decision trees devel
oped by Yandex. It is a readymade classifier in scikit-learn’s conventions terms that would deal with 
categorical features automatically. Using CatBoost model, the percentage error of the back test is 
17.157%.

Therefore, as seen in the preceding cases, including exogenous variables as predictors can greatly 
improve predictive performance. CatBoost gradient boosting model yields substantially better 
results than the other two libraries in this situation.

4.4. Time series forecasting with long-short term memory (LTSM) deep learning model

Long short-term memory (LSTM) is an artificial recurrent neural network (RNN) architecture 
used in the field of deep learning. Based on Long-Short Term Memory (LTSM) deep learning 
model, a forecast model was implemented using data from Onset sensors located in the 
buildings. The dataset consists of the total energy consumption (kWh) from 2021-06-16 to 
2022-06-15.

Figures 13 and 14 present the results from the LSTM model, a deep learning approach designed 
to handle sequential data. The figures show the actual vs. predicted energy consumption. The LSTM 
model’s performance demonstrates the potential of deep learning techniques in energy forecasting, 
particularly for capturing long-term dependencies in the data. The model’s ability to adapt to 
changes in energy consumption patterns over time makes it a valuable tool for dynamic environ
ments like smart buildings.

Figure 13 shows the energy consumption predictions made by the LSTM model, which 
is designed to capture long-term dependencies in sequential data. The LSTM model effectively 

Figure 13. Total power consumption of the building [kWh].
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handles the temporal nature of energy consumption data, making it a strong candidate for long- 
term energy forecasting in dynamic environments like smart buildings.

Figure 14 compares actual consumption with LSTM predictions, highlighting the 
model’s ability to adapt to changing patterns over time. The LSTM model’s performance is 
particularly strong in scenarios with significant historical influence, such as during the 
COVID-19 pandemic when past occupancy and behaviour patterns greatly influenced energy 
use.

4.5. Predicting energy consumption using recurrent neural network (RNN) and long-short 
term memory (LTSM)

A recurrent neural network (RNN) is a class of artificial neural networks where connections 
between nodes form a directed or undirected graph along a temporal sequence. According on 
both deep learning models, forecast models were implemented using data from Onset sensors 
located in the complex of buildings.

Figures 15 and 16 compare the predictions from RNN and LSTM models, highlighting 
their respective strengths in handling time-series data. While both RNN and LSTM models are 
designed for sequential data, LSTM typically outperforms RNNs in capturing longer 
dependencies and avoiding issues like vanishing gradients. The results suggest that LSTM is better 
suited for predicting energy consumption in scenarios where historical data significantly influences 
future trends.

Figure 14. Total and predicted power consumption of the building [kWh].
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4.5.1. RNN model

4.5.2. LSTM model
Figure 17 synthesises the predictions from both LSTM and RNN models, providing a direct com
parison of their performance. The comparison reveals that LSTM generally produces more accurate 
predictions, particularly in capturing the nuances of energy consumption patterns over extended 
periods. This insight is critical for future studies focusing on improving predictive accuracy in 
smart building environments.

Figure 15. Predictions made by RNN model.

Figure 16. Predictions using LSTM model.
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5. Discussion

The COVID-19 pandemic posed unprecedented challenges, fundamentally altering the dynamics of 
energy management in buildings during crises. This study delved into the intricate interplay 
between smart building technologies, energy management strategies, and the exigencies of crisis 
situations. A multifaceted approach was undertaken, encompassing a thorough literature review, 
in-depth analysis of real-world case studies, and the application of advanced technologies such 
as DTs. These methodologies aimed to illuminate pivotal strategies and innovative solutions for 
optimising energy resources in smart buildings during crises.

The pandemic served as a catalyst, highlighting the need for resilient and adaptable smart build
ing technologies. The research demonstrated a paradigm shift in energy consumption patterns 
within residential buildings, driven by lockdown measures and the resulting changes in occupancy 
rates. The findings indicate that smart buildings, equipped with IoT sensors, BEMS, and data ana
lytics, are indispensable tools for adapting to these dynamic circumstances.

One of the key innovations explored in this study was the integration of DTs into the energy 
management framework of smart buildings. By creating virtual replicas of physical buildings, 
DTs allow for in-depth analysis and simulation of energy usage under various scenarios, includ
ing unexpected ones like a pandemic-induced lockdown. This technology proved invaluable in 
providing insights into how changes in occupancy and usage patterns impact energy demand. 
It also allowed for real-time optimisation of systems, enhancing efficiency and reducing costs. 
Moreover, the predictive capabilities of DTs facilitated proactive maintenance, identifying poten
tial issues before they escalated into major problems, ensuring that energy systems operated at 
peak efficiency.

The case study of a residential complex in Larnaca exemplified the dynamic interplay between 
external crises and resource consumption within urban settings. The substantial rise in energy con
sumption during the lockdown period, especially within residential buildings, underscored the mul
tifaceted role homes played during the pandemic. Residences transformed into living spaces, 

Figure 17. LSTM and RNN – Total and predicted power consumption of the building [kWh].
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workplaces, and educational hubs, driving up electricity usage for lighting, temperature control, and 
electronic devices. Seasonal spikes in energy consumption during the holiday season and hot sum
mers further reinforced the need for adaptable energy management practices in smart buildings.

A critical component of this research was the implementation of various predictive models to 
forecast energy consumption within smart buildings. These models included traditional machine 
learning approaches like Skforecast, XGBoost, LightGBM, and CatBoost, as well as advanced 
deep learning models such as Long-Short Term Memory (LSTM) and Recurrent Neural Networks 
(RNN). Each of these models provided unique insights into the complex, non-linear relationships 
that drive energy consumption.

The LSTM and RNN models were particularly effective in capturing the temporal dependencies 
within the energy consumption data. These models are designed to handle sequential data, making 
them well-suited for time-series forecasting where past values have a significant impact on future 
outcomes. The LSTM model demonstrated its ability to accurately predict energy consumption 
over longer periods, accounting for both short-term fluctuations and long-term trends. This capa
bility is crucial in dynamic environments like smart buildings, where energy demand can vary sig
nificantly based on occupancy, weather conditions, and other external factors. The RNN model, 
while also effective, showed slightly less accuracy compared to LSTM, which can be attributed to 
its simpler architecture and susceptibility to issues like vanishing gradients in longer sequences.

The integration of DTs into the energy management framework of smart buildings presented a 
transformative opportunity. By creating virtual replicas of physical buildings, DTs allowed for in- 
depth analysis and simulation of energy usage under various scenarios, including unexpected ones 
like a pandemic-induced lockdown. This technology provided invaluable insights into the impact of 
changes in occupancy and usage patterns on energy demand, allowing for real-time optimisation of 
systems, enhancing efficiency, and reducing costs. Moreover, the predictive capabilities of DTs 
facilitated proactive maintenance, identifying potential issues before they escalated into major pro
blems, ensuring that energy systems operated at peak efficiency.

The study also highlighted several challenges encountered during the pandemic, ranging from 
fluctuating occupancy levels to data anomalies and communication hurdles. In response, innovative 
solutions were proposed, such as real-time monitoring, predictive maintenance, touchless fixtures, 
and user engagement. These solutions not only optimised resource utilisation but also enhanced 
occupant safety, demonstrating the crucial role of technology in crisis mitigation.

This research has provided valuable insights into the symbiotic relationship between technology 
and crisis management in smart buildings. It underscored the importance of data-driven decision- 
making, seamless integration of building systems, and proactive emergency preparedness. More
over, the study emphasised the need for interdisciplinary collaboration, involving architects, engin
eers, data scientists, and policymakers, to foster holistic solutions.

The predictive models employed in this study, including Skforecast, XGBoost, LightGBM, Cat
Boost, LSTM, and RNN, each contributed unique strengths to the forecasting of energy consump
tion during the COVID-19 pandemic. The LSTM model stood out for its superior performance in 
capturing long-term dependencies in the data, making it particularly valuable for forecasting energy 
use in dynamic environments. Its ability to maintain accuracy over extended periods provided a 
robust framework for anticipating energy demand fluctuations. The RNN model, while also effec
tive, was somewhat less accurate in comparison, highlighting the importance of model selection 
based on the specific characteristics of the data being analysed.

The success of these models, particularly the deep learning approaches, demonstrates the poten
tial for advanced predictive analytics in optimising energy management within smart buildings. By 
leveraging these models, building managers can make informed decisions that enhance energy 
efficiency, reduce costs, and improve overall building resilience during crises.

Despite the promising results obtained in this study, the integration of DT technologies into 
building EMS revealed several technical challenges. Interoperability issues between DT platforms 
and existing BMS were a significant limitation, particularly for legacy infrastructures with 
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proprietary data exchange protocols. To address this, custom middleware solutions were required, 
increasing the complexity and cost of implementation. Real-time data processing demands also 
posed challenges, as the computational resources required for dynamic modelling and simulation 
were substantial, potentially limiting scalability for larger systems. Moreover, sensor inaccuracies 
and data inconsistencies affected the reliability of the predictive models, necessitating frequent cali
bration and validation. Modelling occupant behaviour introduced additional complexity, as human 
activity patterns are dynamic and influenced by various external factors. These limitations under
score the need for future research focused on developing standardised protocols, enhancing sensor 
technologies, and creating robust algorithms for dynamic behaviour modelling. Addressing these 
challenges will be crucial to realising the full potential of DT technologies in sustainable building 
energy management.

DTs emerged as a pivotal optimisation tool in the energy management of smart buildings during 
crises. By enabling real-time monitoring, analysis, and decision-making, DTs facilitated proactive 
resource management and enhanced the resilience of smart buildings. The study’s exploration of 
these technologies, alongside predictive models, provides a comprehensive approach to managing 
the complex challenges of energy consumption in the face of crises like the COVID-19 pandemic.

As we navigate an uncertain future, harnessing the power of technology, informed decision- 
making, and adaptive strategies will be paramount in building resilient, sustainable, and 
resource-efficient communities. The findings of this study suggest several directions for future 
research and practice. Future research should explore the broader application of DTs across various 
aspects of building management, integrating them with other smart technologies like IoT devices 
and AI to create more responsive and efficient systems. Continued refinement of predictive mod
elling techniques is necessary, particularly in incorporating more comprehensive datasets and 
improving model accuracy. Hybrid models that combine the strengths of different algorithms 
could offer more robust predictions. The insights from this study should also inform policy frame
works, industry standards, and academic curricula, fostering a collective approach toward building 
resilience in the face of unforeseen challenges.

6. Conclusions

The findings of this study highlight the transformative potential of Digital Twins (DTs) as an inte
gral component of energy management in smart buildings, particularly during crises such as the 
COVID-19 pandemic. By bridging physical and digital systems, DTs have demonstrated their capa
bility to provide actionable insights for real-time optimisation, predictive maintenance, and efficient 
resource utilisation. These technologies address critical challenges such as fluctuating energy 
demand, changing occupancy patterns, and operational inefficiencies, offering a robust framework 
for resilient and adaptive energy systems.

In conclusion, the COVID-19 pandemic has presented an unprecedented backdrop against 
which resource management in smart buildings has come to the fore. This study transcends the 
confines of traditional energy management paradigms. It not only underscores the pivotal role of 
smart building technologies in crisis scenarios but also advocates for a holistic, human-centric 
approach. By embracing innovative solutions, fostering interdisciplinary collaboration, and prior
itising occupant well-being, smart buildings can evolve into dynamic, adaptable ecosystems capable 
of navigating the complexities of our ever-changing world.

Despite the promising advancements, several technical and operational challenges remain. 
Issues such as data inconsistencies, sensor inaccuracies, and the computational intensity of 
real-time modelling highlight areas for further development. These findings suggest the need 
for continued research into hybrid predictive models, standardisation of data exchange proto
cols, and the integration of DTs with IoT and AI technologies. Addressing these gaps will 
enhance the scalability and accessibility of these systems, enabling broader adoption in diverse 
building typologies.
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The implications of this research extend beyond the realm of academia, shaping the future of 
sustainable urban living and resilient infrastructure. By leveraging the insights and methodologies 
outlined in this study, stakeholders can foster innovations that redefine the future of smart build
ings and urban ecosystems. In these turbulent times, harnessing technology, informed decision- 
making, and adaptable strategies is imperative for a sustainable and resource-efficient future.
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