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1. INTRODUCTION 

 In the current studies thiocyanate-containing metal complexes are considered 

to be the most investigated systems because of their diverse structures and 

applications in the field of materials science [1–6]. In agreement with the hard soft 

acid base (HSAB) theory, the pseudohalide thiocyanate (SCN
–
) ion is a versatile 

ligand that shows a propensity to coordinate either to hard or soft transition metal 

ions by the nitrogen or/and the sulfur donor-atom, respectively [7–10]. Various 

binding modes of the SCN
–
 ligand are expected to afford a number of homo- and 

heterometallic discrete one-, two- and three-dimensional structural assemblies with 

specific structural features and optical and magnetic properties. Simultaneous 

presence of two different metal centers can potentially give rise to useful physico-

chemical properties and lead to attractive novel topologies and intriguing 

frameworks [11, 12]. 

 The complexes of mercury(II) and iron(III) ions are of interest since they are 

involved in many analytical processes. Thiocyanate-based mercury(II) and iron(III) 

complexes are widely found in the aqueous solutions employed for the 

determination of chloride ions in clinical and industrial laboratories [13] or obtained 

during mercury determination procedures in laboratories using titrimetric analysis 

[14]. Moreover, due to characteristic features of the iron(III)-thiocyanate complex, it 

is applicable to a range of quantitative analysis of lipid containing materials which 

are important for biomedicine (determination of pharmaceuticals), food and other 

industry (e.g. solvent extraction of gold from thiocyanate solutions) [15–19].  

 Dealing with the intrinsic view of certain molecule in the solution, it is well 

known that the changes of spectroscopic and structure properties are the issues of the 

coordination chemistry. The coordination mode of SCN
–
 ligand is influenced by the 

nature of the central atom, steric factors, symbiosis of ‘hard and soft’ ligands in the 

coordination sphere [10, 20], solvent effects [21–23], metal charge, and other 

coordinated ligands, especially when metal ion belongs to the group of transition 

metal [10]. Most of transition metal ions form complex ions with water molecules 

which behave as a ligand set [24]. The knowledge of the number of water molecules 

occupying the first coordination sphere of a metal ion is of paramount importance in 

understanding the nature and reactivity of metal complexes in solution [25]. Hereby, 

the powerful analytical tool commonly used to characterize transition metal 

complexes is vibrational spectroscopy. This technique provides an insight on 

frequency variations, leading to the detailed information on the structure of 

complexes [26, 27]. However, the interpretation of the vibrational spectrum is not 

straightforward, and in general cannot be accomplished without the high level of 

computational modeling. The employment of the modern density functional theory 

(DFT) methods for the molecular systems has revolutionized computational 

chemistry, especially for the transition metals [28, 29]. Moreover, the time-

dependent density-functional theory (TD-DFT) theory emerges as one of the most 

practical tools that can be used to predict the electronic properties of transition metal 

complexes [30].  
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 With all these data in mind and due to missing studies on iron(III) and 

mercury(II) thiocyanate systems, the detailed molecular level knowledge on the 

structure, electronic properties and vibrational characteristics of [Fe(NCS)n]
3–n

 

(where n = 1–6) and [Hg(SCN)n]
2−n

 (where n = 2–4) complexes are required. In this 

work the thorough experimental analysis of vibrational and electronic spectra of all 

[Fe(NCS)n]
3–n

 and [Hg(SCN)n]
2−n

 complexes in the acidic aqueous media, 

supplemented by the extensive DFT calculations on the particular complexes, were 

carried out. The calculations are based on the evaluation of effects of different 

solvation models and different arrangement of SO4
2–

 vs. NCS
–
 ligand in the case of 

iron(III) monoisothiocyanate complex. 

 

The aim of this research was to improve knowledge on the molecular 

structure and interactions of iron(III) and/or mercury(II) ions with the thiocyanate 

ion in the aqueous solution at the pH ~ 2 ± 0.1 and to select the most appropriate 

method and functional for geometry optimizations, electronic and vibrational spectra 

calculations.  

 

The main tasks of this research were as follows: 

1. to characterize and make assignments of the iron(III) monoisothiocyanate in 

aqueous acidic solution using Raman spectroscopy, isotopic substitution, 

and quantum chemistry calculations; 

2. to evaluate the influence of different solvation models and different position 

of SO4
2–

 ligand vs. NCS
–
 ligand upon iron(III) monoisothiocyanateʼs 

vibrational frequencies and electronic spectra using DFT calculations; 

3. to perform excited state analysis of iron(III) monoisothiocyanate using DFT 

calculations and to establish the influence of different calculation methods 

and functionals used on the geometry optimizations and electronic spectra 

calculations, respectively; 

4. to characterize and make assignments of the mercury(II) thiocyanates in 

aqueous acidic solution using Raman spectroscopy, isotopic substitution and 

quantum chemistry calculations; 

5. to determine the effect of different solvation models on the molecular 

structure, vibrational and electronic spectra of mercury(II) thiocyanates by 

means of theoretical modeling;  

6. to investigate peculiarities of simultaneous complex formation in the acidic 

aqueous media in the presence of iron(III), mercury(II), and thiocyanate 

ions. 

 

The novelty and significance of the work. A combined experimental and 

theoretical study on the molecular structure, vibrational and electronic spectra of 

[Fe(NCS)]
2+

 and [Hg(SCN)n]
2−n

 (where n = 2–4) complexes in the aqueous solution at 

the pH ~ 2 ± 0.1 have been performed. Molecular modeling of the complexes was 

accomplished by the density functional theory (DFT) method. The influence of 

different solvation models upon geometry, vibrational frequencies and UV spectrum 
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of titled complexes have been estimated. In case of iron(III) monoisothiocyanate the 

effect of different position of SO4
2–

 ligand vs. NCS
–
 ligand for structure, vibrational 

and electronic properties have been evaluated. The effect of H2O/D2O isotopic 

substitution on the experimental and calculated Raman spectra of iron(III) 

isothiocyanates and mercury(II) thiocyanates has been examined. It has been 

demonstrated that at the pH value ~ 2, the NCS
–
, SO4

2–
 ions and H2O molecules are 

found as ligands in the first coordination sphere of the six-coordinated Fe(III) ion as 

well as four-coordinated Hg(II) complexes with SCN
–
 and (or) H2O ligands were 

formed. Detailed vibrational assignments for the investigated metal-thiocyanates were 

proposed here for the first time. It was found that the Hg–S vibrational mode of the 

all analyzed mercury complexes and C≡N mode of [Hg(SCN)3H2O]
−
 complex has 

the double-peak character. Based on the excited state analysis of iron(III) 

monoisothiocyanate, the vast majority of electronic transitions were characterized as 

ligand-to-metal (LMCT) charge transfers.  
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2. LITERATURE REVIEW 

 

2.1. Chemistry of transition metals 

The chemical elements in the periodic table are arranged together in the blocks 

according to their outer electronic configurations. The elements with a half-filled or 

fully-filled outer s orbital or p orbital comprise the s-block or p-block elements. 

Together the s- and p-block elements comprise the main group elements. Between 

these two blocks of elements are two further blocks (that is between the groups 3 

and 12 in the periodic table) containing transition elements (Table 2.1). Strictly 

speaking, the term “transition element” applies that elements have at most two 

electrons in the outermost s orbital, and incompletely filled d and f subshell next to 

outermost orbital. These elements, which form a group of elements ten-wide and 

four-deep in the Periodic Table, are associated with filling the d orbitals and called 

as d-block elements [31–34]. A transition element may be defined as element which 

possesses partially filled d-orbitals in its penultimate shell. This definition is used to 

recognize a transition element merely by looking at its electronic configuration. 

However, this definition excludes zinc, cadmium and mercury from the transition 

elements as they do not have a partially filled d-orbital. Even so, they are also 

considered as transition elements, because of the similar properties to transition 

elements [31]. The d-block elements are generally referred to as the transition 

metals. The elements from scandium to copper are often refered to as the first 

transition series or first-row transition metals, those from yttrium to silver form the 

second transition series or second-row and those from lanthanum to gold form the 

third series or row within the d-block. The f-block elements are commonly known as 

inner transition elements which appear, firstly after lanthanum and secondly after 

actinium, in the Periodic Table. The elements from cerium to lutetium are known as 
the lanthanides and, because of its chemical similarity to these elements, lanthanum 

is usually included with them. The second series of f-block elements, from thorium 

to lawrencium, is known as the actinide series and again it is usual to consider 

actinium together with this series [32–35]. 
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Table 2.1. The Periodic Table emphasizing the transition series d-block and inner 

transition series f-block elements [35]  

 
a
 Atomic numbers Z are shown beneath the element symbol for the d- and f-block elements; International Union of 

Pure and Applied Chemistry (IUPAC) symbols are shown in parantheses for the fourth row of the d-block 
b This numbering system for groups has traditionally been used in the USA 
c This numbering system for groups has traditionally been used in Europe 
d This numbering system for groups has been aproved by IUPAC and is one used throughout this text [35] 

The certain features of complexes (formed from metal ions having incomplete 

filling of the d and f orbitals) that are not observed in other complexes, are exploited 

in a remarkable variety of applications [35, 36]. Some metals are used in very large 

quantities, particularly iron in structural materials, while others are used in only 

small quantities for specialized applications such as the synthesis of fine chemicals 

[35].  

The first and most obvious feature is the great variety of colors observed in 

these complexes – even in the simplest complex ions, the hydrated ones [36]. The 

colours associated with some transition metal compounds make them useful as 

pigments. In some cases it is the absence of colour which is important. In other cases 

it is the ability of an excited metal ion to emit light of a particular frequency which is 

useful. The lanthanide elements in particular show strong luminescence of the type 

needed in the cathode ray tubes of colour television sets [35]. Additionally, the 

recent surge of interest is the use of d-block complexes as sensitisers for lanthanide-

based near-infrared (NIR) region luminescence [37].  

A second unique feature is the magnetic properties of transition metal ions – 

they may have unpaired electrons, which result in the magnetic property called 

paramagnetism [36]. A common place example is provided by magnetic recording 

media such as hard discs and magnetic recording tapes, the coating of which 

contains metal oxides. Small high-intensity permanent magnets are important in the 

construction of compact powerful electric motors, such as those used to power 
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windows in cars. A quite different exploitation of the magnetic properties of metal 

ions is provided by the use of lanthanide ions [35].  

A third important feature is the large number of possible oxidation states 

which (in contrast with elements in the p-block) may differ by only one electron 

therefore zero or negative oxidation states are possible.  

A fourth feature is that the d-block metal ions may bond well with certain 

types of ligands such as carbonyl ligand, that very seldom bond to p-block elements 

[36]. The special chemical reactivity of the transition metals can be exploited in a 

variety of catalytic processes. As well as having electrical conductivity, the 

transition elements can be used in the production of electrical energy through their 

chemical reactivity. Perhaps the most immediately familiar example is the ‘dry cell’ 

battery. Any of a number of chemical reactions may be exploited in this context. As 

a consequence, manganese, nickel, zinc, silver, cadmium or mercury may be found 

in dry cells [35]. Some d- or f-block elements are also applicable in organic 

synthesis [35, 38, 39]. Lastly, transition elements also tend to be used in diagnostic 

medicine [35]. 

 

2.2. Thiocyanate-based transition metal systems 

Design and synthesis of transition metal complexes with structural diversities 

as far as dimensionality and topology of the species have become a fascinating area 

of contemporary research in the field of supramolecular chemistry and crystal 

engineering [40–42]. Pseudohalides, especially thiocyanate ions, have attracted 

much attention because of their versatile coordination binding modes, which results 

in the formation of complexes with various dimensionalities. Scientists are 

interested in the possible applications of hybrid inorganic-organic materials in 

various fields such as catalysis [40, 42, 43], synthesis of light emitting materials 

[42], and photochemical sensing [44], biochemistry and pharmacology [41, 45–47], 

molecular magnetism [43, 48–50].     

 

2.2.1. Coordination chemistry of the thiocyanate group 

The chalcogenocyanate ion, SCN
–
, is a linear triatomic anion, usually 

classified as pseudohalide. SCN
–
 is a highly versatile ambidentate ligand with two 

donor atoms. It can coordinate through either the nitrogen or the sulphur atom, or 

both, giving rise to linkage isomers or polymers [45, 51, 52]. Hence, linkage 

isomerism has been one of the most interesting and significant phenomena observed 

in coordination chemistry [44]. The first example of thiocyanate linkage isomers 

was reported in 1961 [53]. The resonance structures of SCN
–
 ligand are: 

 
–
S–CN (A) ↔ S=C=N

–
 (B) ↔ 

+
SC–N

2–
 (C) 

 

The relative importance of the resonance structures follows the trend A ˃ B ˃˃ C 

[51]. According to Kawaguchi [54], the π-electron structure of the thiocyanate ion 

may be represented as shown in Figure 2.1. The numbers written over the atoms 
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shows electron densities on the atoms, and the numbers written under the bonds are 

the π -bond orders. 

 

 

Figure 2.1. π-electron structure of the thiocyanate ion [54] 

The difference in the charge densities on the N and S atoms is not very large. 

This may be the reason why the thiocyanate anion exhibits a variety of coordination 

modes [53] as will be discussed in more detailed in the following 2.2.2 section. The 

coordination modes of the SCN
–
 ligand can be classified as terminal or bridging 

(Fig. 2.2). 
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Figure 2.2. Coordination modes of an ambidentate ligand [51] 
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2.2.1.1. Terminal modes 

There are two types of terminal coordination of SCN
–
 ligand: S-coordinated 

SCN
–
 (M–SCN) which is termed thiocyanate (type Ia, Figure 2.2) and N-coordinated 

SCN
–
 (M–NCS) which is called isothiocyanate (type Ib, Figure 2.2). Metal 

thiocyanates, M–S–CN, are usually bent with M–S–C angle of 100° (in the range 

of 80–110°) whereas in metal isothiocyanates, M–NC–S, the M–N–C angles are 

variable, though commonly with a M–N–C angle of around 150° (in the range of 

110–180°) [49, 51, 55]. Thiocyanate typically bonds terminally via the nitrogen with 

the first row transition metals and M–S bonds are formed with the metals of second 

and third row [45, 49, 56]. 

 

2.2.1.2. Bridging modes 

According to the three possible resonance structures of SCN
–
 discussed above, 

there are theoretically thirteen multidentate bridging modes, ranging from bi- to 

hexadentate, of the ambidentate SCN
–
 ligand, as is shown in Figure 2.2. Here the 

highly unfavorable quadruple bridging modes of four atoms by either the S or the N 

atom are eliminated. Moreover, not all of these bridging modes have been observed 

in scientific researches. The most commonly observed bridging modes are the 

bidentate and the tridentate coordinations presented in the Figure 2.2 as II a–c and 

III a, b, respectively. Combinations of these coordination modes give rise to a 

variety of interesting metal thiocyanate structures with different properties [51]. The 

coordination modes such as IIa, IIIa, IIIb and IIb, IIc, IIIc, IIId, and etc. are called 

end-to-end and end-on fashion, respectively [45]. 

 

2.2.2. Metal thiocyanate coordination 

The modes of metal thiocyanate coordination are best understood in terms of 

the HSAB theory. In agreement with the HSAB concept, the SCN
−
 ion coordinates 

to hard acids (i.e. Mn
2+

, Co
2+

 , Ni
2+

, Mg
2+

, Fe
3+

, Na
+
) through nitrogen atom, which 

is described as a hard base. The uncoordinated sulphur atom is involved in hydrogen 

bonds and sometimes involved in S-S interactions. If the transition metal center is 

soft acid (i.e. Cd
2+

, Cu
+
, Hg

2+
), then SCN

−
 ligand binds to central ion through 

sulphur atom which is described as a soft base [7–9, 51, 53, 57]. The examples of 

hard and soft metal ions and ligands (Lewis acid/base), respectively, are given in the 

Table 2.2. 
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Table 2.2. Classification of ions and ligands under hard/soft formalism [58, 59] 

Ligands or bases  

Hard H2O, ROH, R2O, OH–, OR–, NO3
–, RCO2

–, SO4
2–, CO3

2–, C2O4
2–, 

PO4
2– (donors through O) 

NH3, NR3, NHR2, NH2R, Cl–, F– 

Soft R2S, RSH, RS–, SCN–, S2O3
2–, (S donors) R3P, R3As, I–, CN–, H–, R–, 

C2H4  

Borderline C6H5NH2, C5H5N, Br–, N3
–, SO3

2–, NO2
– 

Metal ions or acids  (charges are formal only) 

Hard Mn2+, Cr3+, Fe3+, Co3+, Ti4+, VO2
+, VO2+, Zr4+, MoO3+, H+, all s 

element ions, M3+ for M=Al, Ga, In, Sc, Y, Ln 

Soft Cu+, Cd2+, Ag+, Au+, Hg2
2+, Hg2+, Pd2+, Pt2+, Pt4+, Ti+, Ti3+ 

Borderline Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Ru2+, Os2+, Rh3+, Ir3+, Sn2+, Pb2+, Sb3+, 

Bi3+ 

 
Here it should be noted that, the N-bonded thiocyanate ligand is harder and is 

most usually found in thiocyanate complexes of the first row transition metals [59]. 

However, sometimes HSAB concept has exceptions. As an example is soft acid Cd
2+

 

ion, which tends to link the SCN
−
 ligand exhibiting both S and N bonding modes as 

well as a variety of coordination numbers [51, 60–62]. Generally, it is agreed that 

interactions between hard acids and hard bases are based on ionic bonds, whereas 

those between soft acids and soft bases involve covalent bonds [57]. Furthermore, it 

has already been identified that for the bonding properties of thiocyanate ligand the 

whole system of three atoms is responsible. This feature is not characteristic in the 

cases of other ligands containing S- and N-donor atoms [63]. Speaking about 

stabilities of the metal thiocyanate complexes, the same tendency remains. Soft 

ligands form stable complexes with soft metal ions, as well as hard ligand–hard ion 

complexes are also stable. Mixtures of hard ion–soft ligand or soft ion–hard ligand 

are less stable [59]. When considering reactions in aqueous solution, it should be 

taken in to account that the solvent itself is both a powerful Lewis acid and Lewis 

base. Water molecules mask many effects in solution and the mistakes in 

interpretion of the thermodynamics of complex in aqueous solution only in terms of 

factors related to M–L bond formation could occur [58]. 

Since the ambidentate thiocyanate ligand displays a great variety of its 

coordination modes, the coordination numbers (CN) can range from 1 up to 12. The 

most common coordination numbers for transition metal thiocyanate complexes are 

6 and 4, while coordination numbers such as 5, 3, 2 (low coordination) or 7, 8, 9, 10, 

11, 12 (high coordination) are less common, but also prominent [35, 51, 64]. Some 

most common coordination numbers for several transition metal ions and the 

geometric arrangement of the ligands for each coordination number are shown in 

Table 2.3. 
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Table 2.3. The geometry of some transition metal complexes [64] 

Coordination 

number 

Geometric arrangement of 

ligands 

Transition metal ions 

2 Linear  Cu+, Ag+, Au+  

4 Tetrahedral Co2+, Ni2+, Mn2+ 

4 Square planar Cu2+, Ni2+, Pt2+, Au3+ 

6 Octahedral  Fe2+, Fe3+, Cr3+, Co2+, Co3+, Ni3+, Mn2+, 

Mn3+, Ti3+, Pt4+ 

  

The regular coordination geometries of transition metal complexes visually are 

shown in Figures 2.3, 2.4, and 2.5. Generally, the most common CN for d-block 

transition metal ions is 6, usually with octahedral geometry. Additionally, d
6
 metal 

ions tend to form 6-coordinated octahedral complexes where the formation of either 

N-bonded or S-bonded complexes is possible (Fig. 2.3) [35, 51]. Complexes with 

CN of 4 are fairly common for certain d-block metals. There are two types of 4-

coordination as listed in Table 2.3. The square-planar and tetrahedral shapes (Fig. 

2.3) are generally found in d
8
 and d

10
 metal complexes, respectively. The 2-

coordinated metal thiocyanate complexes are generally linear, not bent (Fig. 2.3) 

[35, 51, 64]. A CN of 1 is very unusual, although not unknown. Its formation 

depends upon the presence of a very bulky ligand which prevents the binding of 

additional ligands [35].   

Less common metal complexes with CN of 5 can adopt either the trigonal 

bipyramidal or the square pyramidal structure (Fig. 2.3). This 5-coordinated 

structure is unusual among transition element complexes and, in complexes which 

are purely ionically bonded, would be unstable with respect to disproportionation 

into CN 4 and 6 species. The 3-coordinated metal complexes exhibit distorted 

trigonal planar structure (Fig. 2.3). Metal complexes with higher CNs such as 7-

coordinated (pentagonal bipyramidal), the 8-coordinated (cubic) and 9-coordinated 

(tricapped trigonal prism) are unusual for d-block metals, although some examples 

exist among the complexes of the early second- and third-row metals (Fig. 2.4 and 

2.5). The higher CNs of ≥ 9 are generally adopted by the f-block elements (rare-

earth) [35, 51].     

In general, the d-block metal complexes have a trigonal planar coordination 

geometry rather than the T-shaped or pyramidal structures encountered with p-block 

elements [35]. Moreover, sometimes the same transition metal ion can exhibit two or 

more coordination numbers or arrangements in different compounds (Table 2.2) 

[64]. 
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Figure 2.3. The structures for coordination numbers 1–6 [35] 
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Figure 2.4. The structures for coordination numbers 7–8 [35] 

 

Figure 2.5. The structures for coordination numbers 9–12 [35] 
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Based on literature data there is a number of studies which confirm that the 

coordination mode of transition metal thiocyanate complexes is strongly influenced 

by the surrounding environment. Firstly, according to Shurdha et. al. [49] and 

Homanen et. al. [65], the electronic structure and the steric hindrance (the main one 

from steric effects) are being most important on the final bonding mode. When a 

thiocyanate anion is N-bonded to a metal atom, the M–NCS arrangement is 

essentially linear, whereas the M–S–C angle is bent for the M–SCN bonding. Thus, 

the S-bonding has a higher steric demand than the N-bonding, and is disfavored by 

adjacent bulky ligands. In case of the square-planar complexes, both the electronic 

and steric effects are important for the determination of the coordination geometry 

and thiocyanate bonding mode. Electronic effect comes from the competition for π-

bonding orbitals on the metal and it favors the S-bonding mode unless steric effects 

are large. When steric effects become larger, the N-coordinated bonding mode of 

thiocyanate group becomes favored rather than the electronically favored S-bonding 

[51, 54]. Additional important factor on the bonding mode of thiocyanate group is 

the nature of central metal ion [10, 20, 66, 67]. It was found the mutual relations 

between the bonding properties of SCN
−
 ion and the number of the positive charge 

on central atom, e. g. copper atom. In this case, the decrease of the effective positive 

charge increases the tendency of the formation of S-coordinated thiocyanate group 

and vice versa. The size of the effective positive charge itself could be influenced by 

the basicity of the N-donor ligands due to the varying π-bonding properties, 

inductive effect of substituents, different number of ligands and thiocyanate groups 

in the coordination sphere of the central atom [66].  

Other relevant factors for coordination modes are the nature of other 

coordinated ligands (especially if they refer to the organic molecules) [49, 68, 69] as 

well as the presence of counter ions [69, 70]. According to Lawrance et. al. [24], 

dealing with ionic salts that are water-soluble, most of transition metal ions form 

complex ions with water molecules which behave as a ligand set. This is a common 

starting point for initiating other coordination chemistry. Most first row transition 

metals in the two commonest oxidation states form a stable complex ion with water 

as a ligand. However, water is a weak-field ligand and such complexes are prone to 

substitution reactions, when water molecules are successively replaced with other 

ligands. Due to the fundamental role of substitution reactions in many chemical, 

biological, and catalytic processes, they were investigated in many coordination 

chemistry mechanistic studies [28]. According to Supkowski et. al. [25], the 

knowledge of the number of water molecules occupying the first coordination sphere 

of a metal ion is of paramount importance in understanding the nature and reactivity 

of metal complexes in solution. They provided the example with proteins or nucleic 

acids which contain metal ion binding sites. In that case, the information about the 

number of coordinated water molecules allows one to deduce how many 

macromolecule-supplied ligating groups are present at the binding site.         

Dealing with the intrinsic view of transition metal complexes in the solution an 

equally important aspect on the complex formation is the strong influence of solvent 

effects (or, more precisely, the solvation effects) [21, 23, 49]. Solvation effects have 
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the influence on the chemical reactivity [71] or equilibria in the solution [23], thus 

the behavior of transition metal complexes in solution is of great importance in 

coordination chemistry. Specific solvent interactions result in solvent molecules 

being placed at specific locations relative to the solute and can even evoke possible 

chemical effects such as charge transfer with the solvent. This is a reason why 

specific solvation effects are very important for inorganic complexes and, generally, 

for any system involving significant charge transfer [71]. Metal ions are solvated in 

the aqueous media and if the system contains any other molecules, such as bulky 

functional groups, those molecules that are simultaneously bound to the metal ion 

will be the subject to consequential steric interactions (already discussed above) 

through space. The molecular structure of a solvent, particularly, that of any 

functional groups in the vicinity of the coordinating atom to the metal ion, plays a 

key role in the solvation steric effects [72]. According to Ishiguro et. al. [72] in the 

case of six-coordinated transition metal(II) ions, the weak solvation steric effects 

induce a distorted octahedral structure, while the strong solvation steric effects 

decrease the solvation number (the number of solvent molecules simultaneously 

bound to a metal ion). The solvation steric effect itself is a decisive factor in reaction 

thermodynamics and kinetics of the metal ion. Additionally, it is well known that the 

solvation effect has influence on spectroscopic properties of molecules in solution 

[73, 74]. The solute-solvent interaction affects the soluteʼs Raman spectrum [75, 76] 

and electronic absorption spectrum (this phenomenon is reffered to as 

solvatochromism) [74]. The onset of intramolecular interactions often leads to gross 

changes in band positions, intensity and shape, which can be explained in terms of 

changes in force constants, normal coordinates and electron redistribution due to the 

interaction [75, 76]. The influence of solvent effects in terms of changes of 

spectroscopic properties are discussed in more detail in following 2.2.4 section. 

Recent study on metal thiocyanate complexes [77] has revealed that the 

position of the substituents in N-donor ligands dramatically influence the stability of 

Cd-based thiocyanate complex. Moreover, researches observed that for Cd as metal 

cation the compounds with a bridging coordination are more stable than those in 

which the anionic ligand is only terminal bonded. They assumed that this finding 

might be responsible for the former observation [77]. 

In spite of the possible influence of all factors (discussed above) on the final 

transition metal thiocyanate coordination chemistry, C.-H. Hsieh et. al. [78] 

highlighted that a search in the Cambridge Crystal Structure Data Base from 1990 to 

current indicates the M–NCS form greatly predominating in almost 500 deposited 

structures. The M–SCN bonding mode is typical for the extremely thiophilic metals 

such as Hg or Cd [78].  

In general, the coordination chemistry of the thiocyanate group has been 

exploited extensively. Considerable interest involves not only the studies on 

interesting architectures and topologies which transition metal thiocyanate 

complexes could exhibit, but also the development of novel materials with useful 

chemical and physical properties.  
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2.2.3. Selected transition metal-thiocyanate complexes 

 

2.2.3.1. Iron(III) thiocyanate as inorganic bridge 

The atomic number of iron is 26 and its electronic configuration is [Ar]4s
2
3d

6
. 

Iron has 14 isotopes. Among them, the mass of iron varies from 52 to 60. Pure iron 

is chemically reactive and corrodes rapidly, especially in moist air or at elevated 

temperatures. The most common oxidation states of iron are +2 and +3. Iron(III) 

complexes are generally in octahedral in shape, and a very few are in tetrahedral also 

[79]. The ionic radius of Fe
3+

 ([Ar]3d
5
) of 74 pm is smallest compared with Fe

2+
 

([Ar]3d
6
) of 84 pm or Fe atom of 126 pm. The cation is considerably smaller in size 

because the electrons in the n = 4 level have been removed from the iron atom. 

Removing another electron to form Fe
3+

 produces a small but noticeable decrease in 

radius. Generally, the trend is as follows: the greater the positive charge on the 

cation of the same element, the smaller the ionic radius [64]. Iron(III) ion with 

electronic configuration of 3d5 which corresponds to a half-filled d- sub-shell is 

particularly most stable [79].   

First investigation into the aspects of the iron(III) thiocyanate complexation 

reaction appeared in 1931, when a spectral study (light absorption) of three different 

iron(III) thiocyanate complexes was made. It was concluded that the same species in 

each sample were responsible for the color [80]. Later investigations made by other 

researchers supplemented that assumption and proved that in the aqueous media 

iron(III) reacts with thiocyanate to give a red color complex. The appearance of red 

color is related to the formation of the [Fe(NCS)n]
(3-n)

 (n = 1–6) complexes and is 

interpreted in terms of the presence of the colored [Fe(NCS)]
2+

 complex as the main 

species at low thiocyanate concentration. At very high thiocyanate concentration the 

[Fe(NCS)6]
3–

 tends to be formed. It was established that iron(III) ion is 6-

coordinated in aqueous solution and has an octahedral structure. Additionally, 

iron(III) ion, as a hard acceptor, prefers to bond with the hard nitrogen donor [80, 

81]. Literature data indicate that early studies on the iron(III) thiocyanate as 

inorganic compound were mainly focused on the determination of kinetics [82], 

formation constants [83, 84], solvent effects [85, 86]. The follow-up studies gained 

interest in developing new molecular-based magnetic materials. In this point of view 

a promising approach for the purpose is based on a bimetallic network. Skorupa et. 

al. [87] and others [88] made a characterization of heteronuclear thiocyanate-bridged 

compounds where the iron(III) thiocyanate is bound to certain metal ions having an 

organic ligand. In order to visualize what does the iron(III) thiocyanate as inorganic 

part in complex refers, the molecular structure of (NiL)3[Fe(NCS)6]2 (where L 

=/5,6,12,13-Me4-[14]-4,11-dieneN4) is shown in Figure 2.6. In this case the complex 

[Fe(NCS)6]
3–

 anion binds through S atom of NCS ligand with Ni atom and not with 

organic ligand. In other cases, the metal-metal bonding mode could be observed. 
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Figure 2.6. Molecular structure of (NiL)3[Fe(NCS)6]2 with labeled metal atoms [87] 

Since iron is widely used in industry, several studies on the inhibition of 

metallic corrosion in aqueous solutions by inorganic anions were performed [89, 

90]. Researchers found out that thiocyanate can cause the passivation behavior of 

iron and steel in aqueous environment. The combination of cyclic voltammetry, 

Raman spectroscopy, surface-enhanced Raman spectroscopy (SERS), 

photoelectrochemical and electrochemical techniques provided informative results. 

The explored voltammograms, photoeffects, frequency shifts and coordination 

modes of SCN
–
 ion adsorbed on iron surface exhibited the electrode/electrolyte 

interface and confirmed the corrosion-passivation behavior of iron. 

In the last two decades investigations were focused on the determination of 

optimum conditions for iron(III) extraction and separation procedures [91, 92]. Ivšić 

et. al. [91] established the optimum conditions for extraction of iron(III) from 

sulphuric and hydrochloric acid solutions containing the thiocyanate ions. 

Researchers found the method to be applicable for the determination of iron(III) in 

various soil samples and the amounts of tolerated foreign ions were defined [91]. At 

the same time other researchers proposed the simple, rapid, and economical method 

in terms of liquid-liquid extraction-separation of iron(III) by ammonium thiocyanate 

H2O-n-propyl alcohol system in the presence of sodium chloride [92].       

Moreover, the application of iron(III) thiocyanate system for the indirect 

determination of particular substances was one of the main interests discussed in that 

decade [15, 16]. It was revised that due to evaluated characteristic features of the 

formed iron(III)-thiocyanate complex, it is applicable to a range of quantitative 
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analysis of lipid containing materials which are interesting for biomedicine, food 

and industry [15]. Other works demonstrated a simple and sensitive method suitable 

and convenient for the determination of six phenothiazines (a group of drugs that are 

widely used as tranquillizers antihistamines and hypnotics) using potassium 

dichromate as an oxidant and iron–thiocyanate system for measuring the unreacted 

dichromate [16].  

Despite of the fact that the effectiveness of thiocyanate for dissolving gold in 

the presence of suitable oxidizing agent was first demonstrated in 1905, the 

investigations on potential use of iron(III) thiocyanate (as leaching accelerator)  

system in the hydrometallurgy started before two decades and still continue [18, 19, 

93]. Recent studies were based on the exploration of synergistic effects on the 

dissolution of gold by adding small amounts of iodine ions and/or pure iodine to 

iron(III) thiocyanate solutions [93]. Additionally, a number of uncertainties on the 

thermodynamics of the dissolution of gold in an acidic aqueous thiocyanate medium 

using iron(III) sulphate as an oxidant were investigated. Researchers tried to found 

out the fundamental chemistry aspects of chemically complicated 

gold/thiocyanate/sulphate/water system, containing a number of Lewis acids 

(gold(I), gold(II), iron(II), iron(III) and hydrogen ions) and Lewis bases 

(thiocyanate, sulphate, bisulphate and hydroxide ions). Thermodynamic studies also 

enabled to clarify the feasibility of the system, optimum experimental parameters, 

and the factors affecting the oxidative dissolution of gold [94]. On the basis of 

research results in 2003 the application to patent technology “Precious metal 

recovery using thiocyanate lixiviant” (No. US7285256 B2) [95] was submitted. 

Latest attempts of inventors refer to the series of papers with the purpose to explore 

and further understand the gold/iron/thiocyanate system through research involving 

thermodynamic analysis, leaching kinetics, thiocyanate stability, solvent extraction 

of gold and different strategies for the recovery of gold [18, 19, 96, 97]. 

According to all discussed studies, iron(III) thiocyanate as an inorganic 

compound demonstrates useful characteristic features that could be considered for 

variety of applications. 

 

2.2.3.2. Iron(III) thiocyanate as inorganic-organic bridge 

The design and synthesis of discrete iron(III) thiocyanate-based compounds, 

where the bonding between the iron(III) thiocyanate and organic ligand is presented, 

continue to be a research area of increasing importance. Based on found literature 

data, it seems that useful properties of iron(III) thiocyanate have a potential to be 

used largely in biochemistry sciences. Starting from nineties there was stemming 

interest on iron porphyrins found in proteins, peroxidases, cytochromes and etc. in 

order to find out physical properties of coordinated Fe(III) ion. H. Nasri et. al. [98] 

synthesized and characterized spectroscopically and structurally the isothiocyanate 

Fe(III) porphyrins complex displaying molecular structure and parameters [98]. 

Additionally, it was known that several metal complexes display anti-microbial 

activity which is due either to the metallic ion or ligands. Based on that knowledge, 

considerable interest in the field of series mixed-ligand dithiocarbamates-
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thiocyanate with different transition 3
d 

metal ions was aroused.  The explored 

complexes exhibited anti-bacterial action against several chosen bacteria [99]. Later 

the interest was paid in characterization of other biologically active iron(III) 

thiocyanate-based antipyrine [100], carboxamido and other [101, 102] compounds. 

Obtained results gave a better understanding of the kinetics and mechanisms of 

iron(III) chelation processes, functionality from the points of structural and catalytic 

activities. In the follow-up studies [103, 104] a particularly interesting aspect of 

research became seven-coordinated 3
d 

metal complexes. The molecular structure of 

one such type complex explored by Sarauli et. al. [104] is shown in Figure 2.7. 

Besides, this figure illustrates the case when Fe atom has the bonding mode not only 

with the NCS ligand, but also with organic molecule. The 7-coordinated iron(III) 

thiocyanate-based organic complexes are considered to be quite unstable and 

kinetically labile species, and their solution chemistry is largely undefined. Since a 

few years it was shown that these species exhibit extremely interesting chemical 

properties and catalytic activity. They are especially interesting as excellent low 

molecular weight and fast, even faster than natural enzymes, catalysts for superoxide 

(O2
•–) dismutation (SOD), providing important therapeutic applications. Moreover, 

they also show a general potential for being interesting redox active compounds. The 

results of performed studies showed that iron SOD mimetics are more desirable 

because of their higher kinetic and thermodynamic stability compared with the 

investigated manganese complexes. Furthermore, the works elucidated the behavior, 

reactivity, ligand substitution mechanism, binding modes of 7-coordinated iron(III) 

thiocyanate-based organic complexes [103, 104]. Additional class of considered 

compounds that has recently become of interest is nitrosyl iron complexes since it is 

of great significance to human physiology. In recent studies [78] thiocyanate iron 

nitrosyl species have been proposed in studies that mimicked conditions resulting 

from human consumption of iron supplements. Authors have studied the molecular 

and electronic structure, bonding modes, effect of ancillary ligands by means of 

modern DFT analysis, X-ray diffraction (XRD), infrared (IR) spectroscopy and 

  ssbauer spectroscopy. 
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Figure 2.7. Molecular structure of {[Fe(dapsox)(NCS)2]•LiBF4}
–
 complex ion [104] 

Due to characteristic features and chemistry of the iron(III)-thiocyanate 

complex, it finds an application in pharmaceutical sciences, especially in the field of 

tranquillizer studies. Kojlo et. al. [105] reviewed the results of studies related with 

the aspects of analytical application of the reaction of phenothiazines (substituted in 

the 2 and 10 positions) with oxidants, some metal ions and their ternary and binary 

complexes. They summarized that aforesaid compound exhibit many valuable 

analytical properties. They are easily oxidized in acidic medium with a number of 

oxidants. This property enables them to be used as redox indicators for the 

determination of some metals. Phenothiazines which are presented in aqueous 

solutions as large organic cations, react with thiocyanates of certain metals, and one 

of them is iron(III). The obtained compounds are insoluble in water and can be 

quantitatively extracted using organic solvents. These properties have been used for 

the extractive-spectrophotometric determination of some metals or phenothiazines 

itself [105]. Continuing studies [17] on psychotropic drugs have reported the simple, 

rapid, accurate, and precise method for determination of doxepin (antidepressant). 

The method is based on the formation of ion-association products of doxepin with 

iron(III) thiocyanate complexes quantitatively extracted into some organic solvents. 

The significant advantage of the proposed system is that it can be applied to the 

determination of individual components in a multicomponent mixture. This aspect is 

of major interest in analytical pharmacy, since it offers distinct possibilities in the 

assay of a particular component in complex dosage formulations.  

The latest study has established a new area of application of iron(III) 

thiocyanate-based organic compounds. Bhattacharjee and co-workers [4] 

synthesized and characterized the anionic mixed-ligand complexes, [FeLX2]
n–

 (L = 
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C12H18N2O2, X = F, NCS, N3) which may be used as stabilizing agents for the 

synthesis of metal nanoparticles. 

 

2.2.3.3. Mercury(II) thiocyanate as inorganic bridge 

The electronic configuration of mercury, Hg, with filled f and d orbitals 

([Xe]4f
14

5d
10

6s
2
), makes elemental Hg somewhat similar in stability to noble gas 

elements. Weak interatomic attraction yields its vapor to be monoatomic as well as 

the liquid state of the mercury at room temperature. It is quite soluble in water (60 

µg/L at 25°C) and is oxidized to the metastable dimer Hg2
2+

, and to more stable Hg
2+

 

forms. Because of the large size and stable electronic configuration ([Xe]4f
14

5d
10

), 

Hg
2+

 is easily polarized by interacting atoms. The strong covalent character of the 

C–Hg bond is the reason for the high stability of the methylmercury (MeHg) 

molecule [106]. Similarly, the Hg
2+

 ion forms very strong covalent bonds with soft 

Lewis bases (ligands) such as halides and sulphur compounds, but relatively weak 

bonds with hard Lewis bases such as fluorine. These properties make Hg the 

“softest” of all metals. Diverse bonding modes are the consequence of large Van der 

Waals radius and spherical d
10 

configuration of Hg. Acting as heavy metal with high 

biochemical toxicity, Hg
2+

 is a favorable and fashionable building block with 

flexible coordination environments, variable CN, usually 2, 3, or 4. The linear 2-

coordination of Hg
2+

 is a very unusual structure for the metal [106, 107]. 

Currently, one of the most active fields in coordination chemistry, 

supramolecular and materials science is the research on the design and synthesis of 

crystalline coordination polymers. These compounds have gained attention as 

promising materials of the future with specifically tailored, useful properties, such as 

catalysis [108], ion-exchange [109], magnetism, electrical conductivity, non-linear 

optical (NLO) behavior, luminescence, porosity and gas storage, or drug delivery 

[11, 108–110]. The NLO materials have emerged as one of the most attractive fields 

of current research in view of its vital applications in areas like optical modulation, 

optical switching, optical logic, frequency shifting and optical data storage for 

developing technologies in telecommunications and signal processing [111]. In this 

connection it was established that organic materials possess good nonlinear 

properties whereas, lack in mechanical and thermal stability. On the other hand, 

inorganic materials are evident for their mechanical and thermal stability but shows 

low NLO properties. But the class of semiorganic materials found to show a good 

combination of NLO properties as well as mechanical and thermal stability [112, 

113]. In this point of view metal ions received great attention because of fascinating 

properties in designing new metallorganic polymers known as coordination 

polymers, metal-organic coordination networks (MOCNs) or frameworks (MOFs) or 

organic-inorganic (semiorganic) hybrid coordination polymers in which metal-

organic connectivities are combined by “inorganic bridges” [109]. The most 

frequently used bridging inorganic ligands are halide or pseudohalide ions, among 

which the SCN
–
 ligand plays a crucial role in combining the versatile ambidentate 

character with two donor atoms [11, 109].  
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Since the M[Hg(SCN)4] containing M = Zn, Cd, Cu, Ni, Co, Fe, or Mn have 

been already investigated from 1901 [11], the very recent studies have shown that 

Hg
2+

 presented in the tetrahedral anion [Hg(SCN)4]
2–

 provides an interesting design 

possibility. In dependently on a structure of cationic building block it can form 2D 

or 3D structures. Furthermore, previously studied Hg(CN)2-based coordination 

polymers represented unusual examples of mercury(II) mediating a magnetic 

interaction [114]. Based on those findings, the midst of various semiorganic NLO 

materials – bimetallic mercury thiocyanate complexes have attracted many 

researchers as will be presented in following sections. 

Based on recently published papers [11, 110, 115] it is clear that 

heterometallic thiocyanate bridged Cu(II) and Hg(II) coordination complexes or 

Cu(II) doped MHg(SCN)4 [112, 113] complexes are the main group used as 

potential building blocks for new coordination polymers. Researchers have 

characterized each synthesized complexes mainly by means of ultraviolet (UV), IR, 

Fourier transform infrared (FTIR), Raman spectroscopies, thermal and optical 

transmission analysis, XRD analysis and etc. Additionally, most of studies were 

supplemented by theoretical modeling mostly using DFT calculations. Investigations 

of heterometallic thiocyanato bridged Cu(II) and Hg(II) coordination complexes 

have contributed to the understanding that even small changes of steric and 

electronic properties in the ligand [110] as well as counter ions [11] can have a 

significant impact on the topology of coordination polymer. Generally, the type and 

topology of the coordination polymers depend on the metal element, valences and 

geometries needs of the metal ion and functionality of the ligand [115]. Based on 

results of research it was concluded that the analyzed Cu(II) and Hg(II) coordination 

complexes were found to be suitable for NLO applications as materials displaying 

good thermal stability, optical, and magnetic properties [112, 113]. The structure, 

bonding modes of explored heterometallic thiocyanate bridged Cu(II) and Hg(II) 

coordination complex are shown in Figure 2.8. 

 

 

Figure 2.8. Molecular structure (A) and 2D structure (B) of [Cu(pzH)2Hg(SCN)4]n Color 

codes of (B): orange, Cu; pink, Hg; yellow, S; purple, N; grey, C [110] 
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The second group of currently investigated heterobimetallic coordination 

structures refer to the use of Mn(II) together with Hg(II) [108, 114, 116]. Authors 

have determined the structure, magnetic behavior, electronic and NLO properties 

using combined theoretical and experimental techniques [108, 114] or only detailed 

theoretical investigations [116]. 

The Fe(II) and previously described Fe(III) appear to have useful properties 

for the application in NLO materials of the bimetal-thiocyanate family together with 

Hg(II) too [117, 118]. It was recognized [117] that incorporation of Fe
3+

 ion in the 

mercury ferric chloride tetrathiocyanate (Hg2FeCl3(SCN)4) makes this complex 

thermally stable up to ~ 234 °C. This is comparatively far better than the thermal 

stability of mercury cadmium chloride hexathiocyanate Hg3CdCl2(SCN)6 and other 

analyzed metal-organic coordination complexes. Moreover, the dielectric studies 

revealed that the sample exhibits low dielectric constant and dielectric loss at higher 

frequencies. The incorporation of Fe
2+

 ions in the heterometallic thiocyanate 

complexes displays also attractive properties. Researchers concluded [118] that in 

the case of thermal decomposition of FeHg(SCN)4 the feature of the formation of 

metal(II) sulfides can be used as the sources to obtain the low cost compound-

semiconductor thin films consisting of metal sulfides. 

  

2.2.3.4. Mercury(II) thiocyanate as inorganic-organic bridge 

A number of hybrid MOF structures have been obtained due to the 

development in coordination chemistry. It is well documented that optimal matching 

of the coordination modes of organic ligands and metal ions facilitates generation of 

desired coordination polymers [119]. Up to now, a boost on the synthesis and 

studies of metal-based mixed-ligand inorganic-organic frameworks has been given 

by the discovery of a wide variety of multidimensional crystalline phases. This 

interest is based on their encouraging properties and exceptional potential 

applications [120].   

Currently, the design and synthesis of mono-, di- and polynuclear complexes 

of Group 12 metal ions continue unabated for their application in electronic and 

optoelectronic devices [122]. In contrast to coordination polymers of transition metal 

ions, the formation of polymers with heavy metal ion such as Hg(II) seems to be 

surprisingly sparse. Until recently there have been very few reports on Hg(II) 

complexes with rigid or flexible organic nitrogen donor based ligands [121]. Hence, 

the need for knowledge of Hg(II) behavior has turned the attention of researchers 

towards the Hg(II) compounds having the inorganic and organic ligands. The 

essential prerequisites for above mentioned applications are the research based 

judicious choice of organic spacers and inorganic/organic bridges that may lead to 

directed properties [122]. In this point of view, due to advantageous properties [42, 

123] Schiff bases as chelating agents have attracted great interest and are the major 

issue in the development of metal-based coordination polymers [42, 122–126]. 

Moreover, it was established that pseudohalides, such as SCN ligand with versatile 

bridging behavior, in combination with Schiff bases may afford different 

monomeric, dimeric, polymeric MOFs [124] (Fig. 2.9) with specific structural 



 

 

 
35 

features and optical and magnetic properties [120]. The main objective of studies 

was to understand how molecules can be organized and how functions can be 

achieved. In order to achieve the purpose, a variety of mercury-based complexes 

have been synthesized using different organic molecules. Their structures and 

properties have been physically and chemically determined. Performed 

investigations showed that for the physical characterization of prepared complexes, 

most frequently used spectroscopic techniques were XRD, ultraviolet-visible (UV-

Vis), IR, FTIR, nuclear magnetic resonance (NMR) [122–125] or fluorescence [124] 

spectroscopies, as well as thermal analysis in each case. Besides, all of these studies 

were supplemented by theoretical modeling. Based on obtained data researchers 

have described molecular structures, bridging modes, thermal, magnetic, 

luminescence behavior of each synthesized material. 

 

 

Figure 2.9. Molecular structure of [Hg2(L)(SCN)4] (L = Schiff base) [124] 

The second widely discussed chelating agent group in metal inorganic-organic 

supramolecular chemistry is pyridine based organic molecules [119, 127, 128]. It 

was observed that pyridine based complexes act as efficient competitive ligands 

toward halides for coordination sites of Hg center [127] and display the 

luminescence properties stemming from the conjugated aromatic cores of these 

molecules [128]. Moreover, there has been considerable interest in terpyridine based 

complexes because of their properties as intercalating metalloreagents to nucleic 

acids as well as their intriguing spectroscopic behavior and special functional 

properties such as optics, separation, and catalysis [128]. 

Owing to the potential of application of mixed-ligand metal materials, the 

interest in investigations of various organic molecules such as pyridyl [129], 

pyrazine [121] and other [8, 107, 120] with Hg is still ongoing. Previous works have 
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shown that the organic functional groups mentioned above are very important for 

molecular based photonic, electronic, and ionic devices. Nevertheless, dealing with 

such complex system as metal inorganic-organic networks, the multifariousness of 

possibilities causes a challenge to predict accurately the nature of the compounds 

which will be obtained after synthesis. For this reason researchers have analyzed 

how the replacement of certain group [121], modification of chelating agent [8], 

molar ratio of the mixed ligands [107, 120], may influence the structure and 

properties of the prepared mercury-based polymeric network. It was concluded that 

the main factors significantly influencing the overall framework of desired complex 

is a nature of metal centers and organic ligands (e.g. variable coordination of the 

metal ions, the multiple coordination sites, binding modes of the organic ligand, as 

well as their molecular structures) [107], and inorganic counter ions and the metal to 

ligand ratio, and solvent [129]. 

 

2.2.4. Solvent effects on molecular structure and spectroscopic properties of 

transition metal complexes in aqueous environment 

The understanding of solvation phenomena is of great importance in order to 

rationalize experimental results obtained when a molecule interacts with a liquid 

environment. This is an every day need in chemistry laboratory where most 

molecular spectra are recorded in a specific solvent [130]. From the macroscopic 

point of view, it is well known that the photo-physical behavior of a dissolved 

substance depends on the nature of its environment. In this context, the intensity, 

shape, and maximum of the absorption band of substance in solution depends 

strongly on the solvent-solute interactions and solvent nature. The solvent dependant 

spectral shifts can arise either from non-specific (dielectric enrichment) or specific 

(e. g. hydrogen-bonding or bulk solvent properties) solute-solvent interactions [131, 

132]. For the molecular systems without intramolecular hydrogen bond, the spectral 

shifts are sensitive to the solvent polarity [132] which is commonly used term 

related to the capacity of a solvent for solvating a dissolved charged or neutral 

species [131]. It is already confirmed that the positions, intensities and shapes of the 

absorption bands are usually modified when absorption spectra are recorded in 

solvents of different polarity. The band changes are a result of physical 

intermolecular solute-solvent interaction forces which tend to alter the energy 

difference between ground and excited state of the absorbing species containing 

chromophore. Attempts to express it quantitatively have mainly involved 

determination of physical properties of solvent such as relative permittivity, dipole 

moment, or refractive index, but these parameters cannot effectively account for the 

multitude and specific interactions of solute-solvent on the molecular-microscopic 

level [131, 132]. Apart from these interactions, there are several other factors that 

may influence the spectra such as acid-base chemistry or charge-transfer interactions 

[132]. Generally, it is accepted that the presence of specific and non-specific 

interaction between the solvent and solute molecules are responsible for the change 

in the molecular geometry, electronic structure and dipole moment of the solute 

[133]. 
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From a microscopic point of view, solvation involves the formation of a set of 

interactions between a solute and a solvent as well as a change in the interactions of 

the solvent molecules in the vicinity of the solute. Thus, a key step in the 

understanding of solvation is the determination of the structure adopted by solvent 

molecules around the solute, since the nature and strength of the associated 

interactions is intimately connected to the macroscopic properties of the solvated 

system. Based on that, a large body of work focuses directly on elucidating the 

solvent shell structure around the solute. Particular attention should be paid to the 

structure of the hydration shell around ions and to the solvation of hydrophobic 

solutes [134]. With a reference to this approach the computation of properties of 

metal complexes by utilizing first-principles (ab initio) quantum theoretical methods 

has traditionally met with great challenges. According to Erras-Hanauer et. al. [28], 

the advent of modern DFT methods for molecular systems has revolutionized 

computational chemistry, especially for the transition metals. The accurate modeling 

of molecules in solution using quantum chemical calculations requires realistic 

models for the interaction of the solvent with the molecule.  

Two main approaches exist to estimate solvent effects: implicit (or continuum) 

and explicit models. In the implicit model the solvent is considered implicitly and 

the effect of the polarizable environments on the electronic structure of the solute is 

characterized. This works very well for rigid molecules and allows to calculate 

solvation free energies or other properties very efficiently, which depend on the 

electrostatic solvent response only (e.g. electronic exited states). The implicit 

solvation model has been found to be successful in a large number of applications. 

Its major difficulty is that the implicit solvation lacks a description of the specific 

solute-solvent interactions (e.g. hydrogen bonds, ion pairing, π-interactions). 

Moreover, in the implicit solvation models, the solute-solvent border needs to be 

correctly polarised.  

The extension of the implicit solvation model is the inclusion of solvent 

molecules explicitly in order to get a better grip on the specific interactions like 

hydrogen bonding. This model is more accurate, but also more demanding of 

computer resources [130, 135–138]. According to Wang et. al. [138] explicit solvent 

models have a far greater capacity to capture the physical details of the solvent. As 

an example, authors described the classical water model, which not only correctly 

reproduces the zero-frequency dielectric constant of water, but it also decribes the 

fine-grained structure of water and hydrogen bonding effects empirically using a 

combination of electrostatic point charges and van der Waals interactions. Finally, 

there are a number of studies which summarized that the inclusion of explicit water 

molecules is a key factor for obtaining reliable computational results in comparison 

with experimentally obtained [139–142]. Nevertheless, Autschbach [29] showed that 

in computational modeling of heavy metal NMR parameters a reasonable 

description of the experimental trends requires to include at least one explicit 

solvation shell in case the metal has open coordination sites, and at least the implicit 

solvation model to estimate the effects of a second, third and so on solvation shells. 

In complement, it was demonstrated [130] that both solvation models are important 
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for the evaluation of electronic excitations. Considering solvation effects on 

electronic properties, the solute-solvent interactions affect the internal (nuclear and 

electronic) degrees of freedom of a solute and as a consequence the changes of 

electron distribution may be expected. These changes alter the chemical properties 

of solute, such as lengthening in the dipole moment, the change in the molecular 

electrostatic potential, the variation in the molecular volume, and even the spin 

density. In general, the theoretical methods can provide insight into the effects of the 

solvent on the solute charge distribution. Herewith, the impact of a solvent on the 

spectroscopic characteristics of a solute is the subject of an intense research effort. 

The effect of solvation on electronic transitions in the ultraviolet or visible range can 

be explained by considering the differential solvation of the ground and excited 

states, which depends on the change in the solute charge distribution in these two 

states. Since electrons are expected to be less tightly held in the excited state, the 

solute’s charge separation should decrease upon its transition from the ground to an 

excited state, and the solute-solvent electrostatic interactions are thus generally 

expected to cause a blue shift in the spectra. On the other hand, dispersion effects 

tend to favor the excited state, since it is usually more polarizable than the ground 

state, and this tends to produce red shifts upon solvation. Overall, the direction of 

solute’s spectral shift upon solvation depends on relative polarity of the solute in 

both its ground and excited states as well as on the solvent’s polarity and 

polarizability. The extreme velocity of photoexcitation precludes any large-scale 

solvent reorganization during this process. Therefore, for an absorption process, the 

excited state of the solute “fits” into the cage structure which the solvent molecules 

adopted to accommodate the ground-state charge distribution of the solute. 

Currently, in order to describe these processes theoretical modeling is a valuable 

tool. 

There are also notable solvent effects on vibrational spectra which depend on 

the magnitude of both nonspecific and specific, i.e., hydrogen bond, solute-solvent 

interactions. Theoretical representation of these effects is especially difficult, since it 

is necessary to separate the inertial and non-inertial portions of the solvent response, 

and this requires a careful evaluation of both the nature of the solute vibrations and 

the properties of the surrounding medium [134]. 

 

2.2.5. Application of vibrational and absorption spectroscopies for the 

characterization of transition metal complexes 

According to Schmidt et. al. [27], the vibrational spectroscopic techniques are 

powerful analytical tools, which provide information on the physical/structural and 

chemical composition of a sample without a priori knowledge. The main feature of 

vibrational spectroscopy is its intrinsic chemical sensitivity that provides 

unambiguous information on the molecular and structural composition of a sample 

with an intense absorption band at the excitation wavelength used. Besides, the 

radiation used does not harm the sample, and no extrinsic labeling or staining which 

may perturb the system under investigation is necessary [27]. Furthermore, 
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vibrational spectroscopy is commonly used to characterize transition metal 

complexes [26]. 

Raman spectroscopy is similar to the IR spectroscopy, but the theory of Raman 

scattering is more complex than the theory of IR absorption. IR arises from a direct 

resonance between the frequency of the IR radiation and the vibrational frequency of 

a particular normal mode of vibration. The property of the molecule involved in the 

resonant interaction is the change in the dipole moment of the molecule with respect 

to its vibrational motion. IR absorption is a one-photon event. The IR photon 

encounters a molecule, the photon disappears, and the molecule is elevated in 

vibrational energy by the energy of the photon at the frequency of vibrational 

resonance. Simply speaking, IR measures the absorption of infrared light by the 

sample as a function of frequency. The molecule absorbs ΔE = hv from the IR at 

each vibrational transition. By contrast, Raman scattering is a two-photon event. In 

this case, the property involved is the polarizability of the molecule with respect to 

its vibrational motion. The interaction of the polarizability with the incoming 

radiation creates an induced dipole moment in the molecule, and the radiation 

emitted by this induced dipole moment contains the observed Raman scattering. 

This light scattered by the induced dipole of the molecule consists of both Rayleigh 

scattering (is strong and has the same frequency as the incident beam, ν0) and Raman 

scattering (is very weak ~ 10
-5

 of the incident beam and has frequencies ν0 ± νm, 

where νm is a vibrational frequency of a molecule. The ν0 – νm and ν0 + νm lines are 

called the Stokes and anti-Stokes lines, respectively). Rayleigh scattering 

corresponds to the light scattered at the frequency of the incident radiation, whereas 

the Raman radiation is shifted in frequency, and hence energy, from the frequency of 

the incident radiation by the vibrational energy that is gained or lost in the molecule. 

All these aspects apply that polarizability consists of two components: one is 

associated with the incident photon and the other with the scattered photon. Thus, in 

Raman spectroscopy, the vibrational frequency (νm) as a shift from the incident 

beam frequency (ν0) [143, 144]. The differences in mechanism between Raman and 

IR spectroscopies are shown in Figure 2.10. The observation of a vibrational band in 

the Raman spectrum depends on the presence of an accompanying change of the 

amplitude of the induced dipole moment. The intensity depends on the magnitude of 

this change. In general, in the case of a diatomic molecule, this change is less 

sensitive than the change of dipole moment to the environment of the vibrating 

group. As a result, a group of vibration intensities is more accurately transferable 

from one molecule to another and from one phase or solvent to another, in the 

Raman spectrum than they are in the infrared spectrum [145]. 

In order to record Raman spectra there are two types of equipment used: 

dispersive and Fourier transform (FT-Raman) spectrometers. Here, a laser is used 

for the excitation. The selection of laser depends on the type of a sample. For the 

inorganic sample analysis simple and cheap laser beam of 632.8 nm or 532 nm 

wavelengths is used. If the sample consists of organic compounds the laser beam of 

785 nm or 1064 nm wavelengths is applicable. The advantages and disadvantages of 

each type spectrometer are listed in Table 2.4 [146]. 
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Figure 2.10. Differences in mechanism of Raman vs. IR spectroscopies [144]  

Table 2.4. Comparison of the dispersive and FT-Raman spectrometers [146] 

Type of 

spectrometer 

Advantages   Disadvantages 

Dispersive λL
* varies between 220 nm and 785 nm Applicable not for all samples 

(because of fluorescence)  

 High sensitivity  Resolution is diverse in the entire 

spectrum  

 The RR** experiments are possible It is compulsory to calibrate the axis 

of frequencies 

 Moving parts are not necessary  

FT-Raman There is no fluorescence effect Limited sensitivity 

 It is possible to use λL > 1000 nm, usually 

it is λL = 1064 nm 

Large output of laser radiation 

 Automatic calibration of frequency axis in 

each measurement 

Water absorption 

 Designed libraries of spectra  
* λL – the wavelentgh of laser beam 

** RR – resonance Raman scattering occurs when the sample is irradiated with an exciting line whose energy 
corresponds to that of the electronic transition of a particular chromophoric group in a molecule. Under these 

conditions, the intensities of Raman bands originating in this chromophore are selectively enhanced by a factor of 

103 to 105 [146]. 

For the characterization purpose of any given substance, Raman spectra are 

interpreted by the use of known group frequencies and thus it is possible to 

characterize the substance as one containing a given type of group or groups. 

Although group frequencies occur within “narrow” limits, interference or 

perturbation may cause a shift of the characteristic bands due to either the 
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electronegativity of neighboring groups or atoms, or the spatial geometry of the 

molecule. Functional groups sometimes have more than one characteristic 

absorption band associated with them. Additionally, two or more functional groups 

often absorb in the same region and can usually only be distinguished from each 

other by other means. One of the most common alternative ways of removing the 

interference of other group modes is deuteration (isotope effect). For isotopic 

molecules, i.e. molecules that differ only by the mass of one or both of the nuclei 

(for example H/D) but not by their atomic number (for example H
35

Cl and H
37

Cl) 

the vibrational frequencies are obviously different [141, 147]. In the context of 

characterization using Raman active group frequencies, the SCN
–
 ligand should be 

emphasized. This ligand serves as ideal candidate for a systematic experimental and 

theoretical examination of vibrational dynamics and has historically been employed 

as a descriptor of numerous inorganic complexes having this anion. The linear SCN
–
 

anion has only three normal modes: ν1 (CS stretching at the ca. 750 cm
-1
), ν2 (SCN 

bending at the ca. 470 cm
-1
) and ν3 (CN stretching at the ca. 2190–2020 cm

-1
), which 

are both active in the IR and Raman spectra. It is highlighted, that due to large 

oscillator strength of the CN stretching vibration, as well as its position in the 

spectrum, which is relatively free of interferences, it has long been used as a 

diagnostic measure of thiocyanate-based complexes [148–151].        

Currently, it is well known that because of extended vibrational coupling and 

the influence of ionization of ending groups, the adequate prediction and 

interpretation of the vibrational spectra requires the use of quantum chemical 

calculations [152, 153]. The benefit of such calculations is not so much in the 

calculated frequencies themselves, which after all are easily gained from the 

experimental spectrum. But the calculations yield additional information about the 

mode symmetries and the movements of the atoms involved in the particular 

vibrations. These can be used to understand changes in frequencies or other features 

of the experimental spectrum, like peak intensity or broadening that result from 

changes in pressure, temperature, or chemical composition. Furthermore, deviations 

from the ideal structure and its expected spectrum can be identified, and the 

presence of impurity phases can be spotted [154]. Generally, there are two ways to 

interpret a theoretical vibrational spectrum of a molecule: a visualization of the atom 

movement, and potential energy distribution (PED) analysis. The first is simple, but 

trivial and deceptive. First of all because of overestimation of hydrogen atoms 

movements, which are visible but often, engage negligible energy of the mode. This 

is especially striking for large molecules in which some normal modes are extended 

over entire molecule. The PED analysis is more accurate and enables to 

quantitatively describe the contribution of movement of a given group of atoms in a 

normal mode. Nevertheless, the PED analysis also has a limitation originating from 

ambiguity of the solutions. Therefore, a correct PED interpretation requires 

spectroscopic knowledge and thoroughness of the interpreter [155]. 

In complement, an important role is played by Raman spectra subtraction 

procedures in order to perform assignments of fundamental vibrational modes 

properly. For instance, s systematic noise in the solute spectra can be eliminated by 
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subtraction of the pure solvent spectrum, which contains the same systematic noise 

pattern [156]. 

Beautiful colors and rich excited state (ES) behavior are prominent features of 

transition metal coordination chemistry. These colors are a visual manifestation of 

quantum mechanics and are determined by the electronic structure of the compounds 

[157, 158]. Understanding of the structure and dynamics of electronically ESs is an 

important goal of current spectroscopic, photophysical, photochemical and 

theoretical research. As it was mentioned in the 2.2.4 section, besides their 

fundamental importance, these studies are increasingly driven by various 

applications of transition metal compounds [136, 158]. In order to characterize the 

structure and bonding of molecules in the electronic ground-state (GS) or ES, the 

most commonly used technique is UV-Vis spectroscopy [157]. The recorded UV-

Vis spectrum refers to a various electronically ESs (metal-to-ligand charge transfer, 

MLCT; ligand-to-metal charge transfer, LMCT; ligand-to-ligand charge transfer, 

LLCT; metal-centered, MC). Namely, the presence of electronic states of different 

nature, localization, dynamics and reactivity in a limited domain of energy gives 

unconventional photophysical and photochemical properties to this class of 

molecules and explains the versatility and the richness of their photochemistry. 

Moreover, these specific properties responsible for the occurrence under irradiation 

of fundamental physico-chemical processes such as electron/energy transfer, bond 

breaking/formation, isomerization, radical formation, and luminescence can be 

tailored chemically and more recently controlled by shaped laser pulses [159]. In 

particular, it is necessary to understand the redistribution of electron density brought 

by optical excitation and the ensuing structural response of both the excited 

molecule and its immediate environment. As it is seen, the understanding of the GS 

and ES is demanding, but certainly can be complicated. Anyone, dealing with the 

photochemical calculations of the ES knows that they are usually intricate, time 

consuming and very involved. However, there is a fascination in computing of the 

ES. The possibilities that a molecule has after electronic excitation are plenty and 

the disentangling of these mechanisms has thrilled computational chemists [158, 

160]. According to González et. al. [160], the understanding and controlling of 

photoexcited systems will be crucial for future research in many branches of optics 

and photonics. Therefore, the interrelated problems of characterization of ES and 

understanding their dynamics can be addressed by combining experimental and 

theoretical approaches. Twinning experimental ES studies with quantum-chemical 

calculations provides a deep insight into the ES character, dynamics and relaxation 

pathways, well beyond experimental observations [158]. However, the interpretation 

of the recorded spectra as well as unveiling the molecular stages experienced by the 

photoactive molecule requires a strong synergy between spectroscopists and 

theoreticians [160]. Today, the time-dependent DFT (TD-DFT) theory emerges as 

one of the most practical tools that can be used to predict the electronic properties of 

transition metal complexes. This method based on the linear response theory is the 

subject of recent and promising theoretical developments. The treatment of 

molecular properties by means of the linear response of the charge density to an 
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applied field is based on a well founded formalism that allows direct computation of 

polarizabilities, excitation energies and oscillator strengths within the framework of 

the DFT [159]. Usually, the agreement between the experimental and TD-DFT 

theoretical absorption spectra depends strongly on the choice of the functionals and 

basis sets, and on the importance of the surrounding effects which may vary from 

one molecule/solvent system to another one [159, 161]. Nevertheless, for the time 

being, the TD-DFT may be the only way to study absorption properties of 

molecules. Promising functionals and methods have been developed in the last years 

[160] and the calculation of an absorption profile as a sum of calculated shaped 

bands appears to be a useful and simple procedure to estimate even low-resolution 

absorption spectra of transition metal complexes [162]. 
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3. METHODOLOGY 

 

3.1. Methods 

The characterization of iron(III) and mercury(II) thiocyanates was done using 

the following techniques: 

1. Raman spectroscopy (Raman spectra of aqueous mixtures at the pH values 

~ 2 were recorded); 

2. UV-Vis spectroscopy (UV-Vis spectra of aqueous mixtures at the pH 

values ~ 2 were recorded); 

3. Theoretical modeling.  

 

3.1.1. Raman spectroscopy 

Raman spectra were recorded in the Department of Organic Chemistry, Center 

for Physical Sciences and Technology by dr. Ieva Matulaitienė and dr. Zenonas 

Kuodis. The Echelle type spectrometer RamanFlex 400 (PerkinElmer, Inc. USA) 

equipped with thermoelectrically cooled (–50 
o
C) charge-coupled device (CCD) 

camera and fiber-optic cable for excitation and collection of the Raman spectra was 

used. The 785-nm beam of the diode laser was used as the excitation source. Spectra 

were collected with an integration time of 10 s. Each spectrum was recorded with 

accumulation of 30-50 scans, yielding total acquisition time of 300-500 s. The 

wavenumber axis was calibrated using the polystyrene standard (ASTM E 1840), 

yielding ±1 cm
-1

 absolute wavenumber accuracy for well defined narrow bands. 

Intensities were corrected by the intensity standard (SRM 2241) of National Institute 

of Standards and Technology (NIST). All experiments were performed at least in 

triplicate.  

Parameters of overlapped bands were determined by fitting the experimental 

contour with Lorentzian-Gaussian form components by using the Grams/AI 8.0 

software (Thermo Scientific, Inc. USA) [163]. For the visualization of vibrational 

spectra the Chemcraft graphical program was used [164]. Detailed assignments of 

fundamental Raman active vibrational modes were made by isotopic exchange and 

Raman spectra subtraction procedures. pH/pD measurements of the prepared 

samples were performed using the pH meter HI 9321 (HANNA Instruments, Inc. 

USA). The analysis of Raman spectra was performed in collaboration with dr. O. 

Eicher-Lorka (Department of Organic Chemistry, Center for Physical Sciences and 

Technology). 

 

3.1.2. UV-Vis spectroscopy 

UV spectra of the samples were recorded in the Department of Organic 

Technology of Kaunas University of Technology. The spectra were acquired on 

Lambda 35 UV spectrometer (PerkinElmer, Inc. USA) using 2-mm quartz cuvette at 

wavelengths ranging from 200 nm to 700 nm. All experiments were performed at 

least in triplicate. pH measurements of the prepared samples were performed using 

the pH meter HI 9321 (HANNA Instruments, Inc. USA). The analysis of spectra 
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was performed by using the Grams/AI 8.0 software (Thermo Scientific, Inc. USA) 

[163]. The visualization of electronic spectra was done using the Chemcraft 

graphical program [164]. The analysis of electronic spectra was performed in 

collaboration with dr. O. Eicher-Lorka (Department of Organic Chemistry, Center 

for Physical Sciences and Technology). 

 

3.1.3. Theoretical modeling 

Theoretical modeling and calculations were performed in collaboration with 

dr. O. Eicher-Lorka (Department of Organic Chemistry, Center for Physical 

Sciences and Technology) using Gaussian for Windows package version G03W 

[165]. 

 

3.1.3.1. Optimization of molecular structure 

The geometry optimizations of iron(III) monoisothiocyanate were 

accomplished with the DFT method, using the unrestricted Becke three-parameter 

hybrid functional combined with Lee–Yang–Parr correlation functional (B3LYP) 

[166, 167] and hybrid functional of Perdew, Burke and Ernzerhof (PBE1PBE) [168] 

functionals in the sextet high spin state (S=5/2) [169]. For all atoms except the Fe, 

which was treated with pseudopotentials, the 6-31++G(d,p) [170] basis set was used. 

The Stuttgart relativistic effective core potential (ECP) 10MDF basis set [171] for 

the Fe atom was applied. To take into account the solvent effect, some calculations 

were done using the polarizable continuum model (PCM), specifically integral 

equation formalism (IEF) model, further referenced as IEFPCM [172]. The 

geometry optimizations of mercury(II) thiocyanates ([Hg(SCN)n]
2−n

, where n = 2–4) 

were accomplished with the DFT method, using the B3LYP functional. Almost all 

calculations except Hg, which was treated with pseudopotentials, were done using 6-

311++G(d,p) basis set. For the Hg(II) atom Stuttgart relativistic ECP 78MWB basis 

set [173] was used. IEFPCM model was used for the solvent effect calculations. For 

the calculations involving the simulation of solvent effect, the SURFACE=WDW, 

ALPHA=1.21 and TSNUM=70, instead of the default settings in order to avoid the 

oscillatory behavior often encountered during optimization, was set. Several starting 

geometries failed to converge, and a number of trial structures were required before 

convergence was achieved.  

In order to elucidate the most reliable structure of analyzed iron(III) and 

mercury(II) thiocyanates, the calculations with explicitly (the water molecules are 

placed around the simulated solute molecule) or/and implicitly (the solvation effects 

are calculated by extra terms of the force fields), added water molecules in the first 

coordination shell were carried out. 

For the visualization of optimized geometries the Chemcraft graphical 

program was used [164]. 
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3.1.3.2. Theoretical modeling of Raman spectra 

The frequency calculations of iron(III) monoisothiocyanate were performed 

with the unrestricted B3LYP and PBE1PBE functionals. The detailed assignments 

of vibrational modes were based on the potential energy distribution (PED) analysis, 

which was performed using the software VEDA 4 [174]. 

The frequency calculations of mercury(II) thiocyanates ([Hg(SCN)n]
2−n

, where 

n = 2–4) were performed with the B3LYP functional. Only the calculated 

frequencies of CN bond were scaled by the 0.9688 scale factor and other were left 

unchanged [175]. 

Vibrational spectra were processed and managed using the Grams/AI 8.0 

software (Thermo Scientific, Inc. USA) [163]. For the visualization of electronic 

spectra the Chemcraft graphical program [164] was employed. 

 

3.1.3.3. Theoretical modeling of UV-Vis spectra 

The electronic spectra of iron(III) monoisothiocyanate complex were 

calculated with the B3LYP, Coulomb-attenuated B3LYP functional (CAM-B3LYP) 

[176] PBE1PBE and the gradient-corrected correlation functional of Perdew, 

Burke and Ernzerhof (PBEPBE) [177] methods using TD-DFT approach on 

optimized geometries. The calculations using CAM-B3LYP functional were 

performed by dr. Juozas Šulskus (Vilnius University, High Performance Computing 

Center) using Gaussian09 version [178]. 

The electronic spectra of mercury(II) thiocyanates ([Hg(SCN)n]
2−n

, where n = 

2–4) were calculated with the B3LYP, PBE1PBE and PBEPBE methods using TD-

DFT approach on optimized geometries. Electronic spectra were processed and 

managed using the Grams/AI 8.0 software (Thermo Scientific Inc. USA) [163]. The 

visualization of electronic spectra was done by the Chemcraft graphical program 

[164]. The obtained intensities were broadened using Lorentzian shape functions 

with a constant half-width, which was adjusted manually in the range of ~ 20–30  

cm
-1

 to match the corresponding experimental spectrum. 

The nature of the main electronic transitions was characterized by the analysis 

of the natural transition orbitals (NTO). The NTO were obtained using the output 

files of Gaussian software with appended additional commands. 

 

3.1.3.4. Isotopic substitution and ligand arrangement 

In order to perform the assignments of fundamental vibrational modes of each 

analyzed iron(III) and mercury(II) thiocyanate complex properly, the isotopic 

substitutions for the experimental and theoretical studies were applied. For this 

purpose the H2O/D2O isotopic substitution was made. 

In the case of iron(III) monoisothiocyanate, the influence of different position 

of SO4
2–

 ligand vs. NCS
–
 ligand upon its geometry and vibrational frequencies was 

evaluated by means of theoretical modeling. In the first case the SO4
2–

 ligand was 

placed beside the NCS
–
 ligand, in the other case the SO4

2–
 ligand was placed on the 

opposite of the NCS
–
 ligand. Additionally, the experimental Raman spectra analysis 
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on the vibrational band changes of iron(III) monoisothiocyanate influenced by the 

presence of additional anions (Cl
–
, SO4

2–
, NO3

–
) was performed. 

 

3.2. Chemicals and solutions for experimental study  

  

3.2.1. Chemicals 

All chemicals (Table 3.1) were of analytical-reagent grade, purchased from 

Sigma Aldrich and used without further purification. Acidified distilled water and 

heavy water (deuterium oxide D2O) were used as the solvents throughout the 

solution preparation in order to avoid the hydrolysis of iron(III) and mercury(II) 

salts. 

 

Table 3.1. Chemicals used for the experimental studies 

Chemical substance Properties  Formula CAS 

Iron(III) sulphate hydrate 399.88 g/mol, 97% Fe2(SO4)3 • xH2O 15244-10-7 

Iron(III) chloride hexahydrate 270.30 g/mol FeCl3 • 6H2O 10025-77-1 

Iron(III) nitrate nonahydrate 404.00 g/mol, ≥98% Fe(NO3)3• 9H2O 7782-61-8 

Mercury(II) sulphate 296.65 g/mol, ≥99% HgSO4 7783-35-9 

Potassium thiocyanate (fixanal) 0.1 mol/l KSCN 333-20-0 

Sulphuric acid  98.03 g/mol 1.84 kg/dm3 H2SO4 7664-93-9 

Hydrochloric acid 36.46 g/mol 1.18 kg/dm3 HCl 7647-01-0 

Nitric acid  63.01 g/mol 1.39 kg/dm3 HNO3 7697-37-2 

Deuterium oxide  99.8% D2O 7789-20-0 

Potassium sulphate 174.26 g/mol, ≥99%  K2SO4 7778-80-5 

 

3.2.2. Procedures  

 

3.2.2.1. Raman spectroscopic analysis 

The working solutions of [Fe(NCS)n]
3–n

, where n = 1–6, mixtures (the overall 

complexation reaction can be defined as Eq. (1) [80]), in the level of 10
-1

 M were 

prepared by mixing the stock solutions of iron(III) salts (Fe2(SO4)3, FeCl3) and 

KSCN. The working solution of [Fe(NCS)]
2+

, in the level of 10
-1

 M, was prepared 

by mixing the stock solution of Fe(NO3)3 and KSCN. For the dilution to a required 

volume distilled water was used. The pH of aqueous working solutions was adjusted 

to ~ 2 ± 0.1 by controlled addition of sulphuric acid, hydrochloric or nitric acid, 

respectively. 

 

   )()()(
)3(3 aqSCNFeaqnSCNaqFe

n

n

                                  (1) 

 

For isotopic exchange analysis the working solutions of [Fe(NCS)n]
3–n

 (where 

n = 1–6) mixtures, at the same concentration level, were prepared from the stock 

solutions of Fe2(SO4)3 and KSCN using the D2O as a solvent. The pH of deuterated 

aqueous [Fe(NCS)n]
3–n

 working solutions was adjusted to ~ 1.6 ± 0.1, because pD ≈ 

pH read + 0.44 ≈ 2.04 ± 0.1 [179]. 
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Additionally, two working solutions of [Fe(NCS)]
2+

 mixtures by mixing the 

stock solutions of Fe2(SO4)3 and KSCN with pH and pD values ~ 0.7 ± 0.1 (in 

distilled water) and 0.3 ± 0.1 (in heavy water), respectively, were prepared. The pH 

and pD of these mixtures was adjusted by controlled addition of sulphuric acid. 

For Raman spectra subtraction analysis the working solution of K2SO4, in the 

level of 10
-1

 M was prepared. The pH of aqueous working solution was adjusted to ~ 

0.7 ± 0.1 by controlled addition of sulphuric acid. 

The solutions of [Hg(SCN)3]
−
, [Hg(SCN)4]

2−
 complexes, both in the level of 

10
-2

 M, and the solution of Hg(SCN)2, in the level of 10
-3

 M (the overall 

complexation reaction can be defined as Eq. (2) [180]), were prepared by mixing the 

necessary volumes of stock solutions of HgSO4 and KSCN. Distilled water for the 

dilution of mixtures to a required volume was used.  

 

   )()()(
)2(2 aqSCNHgaqnSCNaqHg

n

n

                                (2) 

 

For isotopic exchange analysis heavy water was used as a solvent for the 

preparation of Hg(SCN)2, [Hg(SCN)3]
−
 and [Hg(SCN)4]

2−
 solutions, at the same 

concentration level. 

The properties of all prepared solutions for experimental Raman spectroscopic 

analysis are shown in Table 3.2.   

 

Table 3.2. Properties of solutions used for experimental Raman spectroscopic 

analysis 

Solutions Solvent pH pD Salt Acid Concentration, M 

[Fe(NCS)n]
3–n 

(where n = 1–6) 

H2O ~ 2 – Fe2(SO4)

3 

H2SO4 10-1 

[Fe(NCS)n]
3–n 

(where n = 1–6) 

H2O ~ 2 – FeCl3 HCl 10-1 

[Fe(NCS)]2+ H2O ~ 2 – Fe(NO3)3 HNO3 10-1 

[Fe(NCS)n]
3–n 

(where n = 1–6) 

D2O – ~ 1,6 Fe2(SO4)

3 

H2SO4 10-1 

[Fe(NCS)]2+ H2O ~ 0,7 – Fe2(SO4)

3 

H2SO4 10-1 

[Fe(NCS)]2+ D2O – ~ 0,3 Fe2(SO4)

3 

H2SO4 10-1 

K2SO4 H2O ~ 0,7 – K2SO4 H2SO4 10-1 

[Hg(SCN)3]
− and 

[Hg(SCN)4]
2− 

H2O ~ 2 – HgSO4 H2SO4 10-2 

[Hg(SCN)3]
− and 

[Hg(SCN)4]
2− 

D2O – ~ 1,6 HgSO4 H2SO4 10-2 

Hg(SCN)2 H2O ~ 2 – HgSO4 H2SO4 10-3 

Hg(SCN)2 D2O – ~ 1,6 HgSO4 H2SO4 10-3 
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3.2.2.2. UV-Vis spectroscopic analysis 

The solution of [Fe(NCS)]
2+

 complex with the metal(III)-ligand molar ratio of 

1 : 1, all in the level of 10
-4

 M, was prepared by mixing the necessary volumes of the 

stock solutions of Fe2(SO4)3 and KSCN. Distilled water for the dilution of mixture to 

a known volume was used. The pH of aqueous working solution was adjusted to ~ 2 

± 0.1 by controlled addition of sulphuric acid. 

The solutions of [Hg(SCN)n]
2−n

 complexes with the metal(II)-ligand molar 

ratios of 1 : 2, 1 : 3 and 1 : 4, all in the level of 10
-4

 M, were prepared by mixing the 

necessary volumes of the stock solutions of HgSO4 and KSCN. Distilled water for 

the dilution of mixtures to a known volume was used. 

The properties of all prepared solutions for experimental UV-Vis 

spectroscopic analysis are shown in Table 3.3.  

 

Table 3.3. Properties of solutions used for experimental UV-Vis spectroscopic 

analysis 

Solutions Solvent pH pD Salt Acid Concentration, M 

[Fe(NCS)]2+ H2O ~ 2 – Fe2(SO4)3 H2SO4 10-4 

[Hg(SCN)n]
2−n 

(where n = 2–4) 

H2O ~ 2 – HgSO4 H2SO4 10-4 
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4. RESULTS 

 

 It is well known that iron(III) and mercury(II) salts are pH dependent. At least 

at neutral pH of solution, these salts are prone to hydrolyze. For that reason in 

analytical procedures, such as mercury or chloride determination, the pH of 

experimental aqueous solutions is acidic [13, 14]. In the acidic aqueous solutions the 

ionic compounds such as H
+
 ion and certain anions (SO4

2–
, Cl

–
, and etc.) are present. 

The anions are potential species being introduced as additional ligands in the 

complex formation processes. Based on this aspect, the acidic aqueous solutions (pH 

~ 2) of iron(III) and mercury(II) thiocyanates, acidified with H2SO4 acid, are 

analyzed in this study. 

This chapter is divided into two main parts: investigations of iron(III) and 

mercury(II) thiocyanates by means of theoretical and experimental studies.  

The characterization of iron(III) isothiocyanates ([Fe(NCS)n]
3–n

, where n = 1–

6) includes: 

1. analysis of ligand binding in the presence of different additional 

anions (Cl
–
, NO3

–
, SO4

2–
) by means of Raman spectroscopy; 

2. assignments of fundamental vibrational modes of iron(III) 

isothiocyanates presented in the aqueous solution of sulphuric acid. 

Assignments are based on the analysis of experimental and calculated 

Raman spectra; 

3. analysis of the performance of different methods and different classes 

of functionals used for the geometry optimization and calculation of 

the UV-Vis spectra of iron(III) monoisothiocyanate ([Fe(NCS)]
2+

), 

respectively. Additionally, the nature of the excited states of 

[Fe(NCS)]
2+

 is determined. 

  The characterization of mercury(II) thiocyanates ([Hg(SCN)n]
2−n

, where n = 

2–4) includes: 

1. assignments of fundamental vibrational modes of mercury(II) 

thiocyanates presented in the aqueous solution of sulphuric acid. 

Assignments are based on the analysis of experimental and calculated 

Raman spectra; 

2. analysis of the performance of different classes of functionals used for 

the calculation of the UV-Vis spectra. 

 

4.1. Spectroscopic and structural investigations of iron(III) isothiocyanates. A 

comparative theoretical and experimental study 

 
4.1.1. Ligand binding analysis 

Contribution of ligands to the structure and stability of metal complexes may 

differ substantially depending on the nature of anions and metal ions. Vibrational 

spectroscopy provides the unique insight into the ligand binding, because the 

parameters of vibrational bands depend on the ligand binding mode and interaction 

strength [181–183]. Here the results of experimental Raman spectroscopic analysis 
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on the vibrational band changes of iron(III) monoisothiocyanate influenced by the 

use of different additional anions (Cl
–
, NO3

–
, SO4

2–
) are presented. 

 

4.1.1.1. The anion effect on the Raman spectra 

All characteristic vibrational assignments for the three analyzed additional 

anions are gathered in the Table 4.1. Experimentally determined C=N and 

δN=C=S values are in good agreement with the values for isothiocyanates (in the 

range of 2150–1990 cm
-1

 and 490–450 cm
-1

, respectively) listed in the literature 

[150]. Since the broad or low-intensity peaks in Raman spectra were obtained, the 

assignments of C=S and Fe–N vibrations were difficult except the solution with 

NO3
–
 ion. Moreover, assignments of frequencies observed in the range of 310–220 

cm
-1

 are complicated, because of the possible mixing of Fe–N and Fe–O 

vibrations in this region. The C=S vibration was clarified by recording Raman 

spectra of complexes with higher coordination number. Moreover, the Fe–N 

frequencies were identified, assuming that the emerging band with the stable peak at 

295 cm
-1

 for the [Fe(NCS)6]
3–

 complex cannot be associated to Fe–O vibrations. 

Experiments conducted with the added different additional anions resulted in the 

changes of C=N vibrations by 2–11 cm
-1

. This indicates that formed complex 

results from the metal-ligand interaction with participation of both SCN
–
 and 

additional anion (Table 4.1). Changes of other vibrations were also observed, but 

they were less substantial comparing with the C=N vibration. 

 

Table 4.1. Characteristic vibrational assignments of iron(III) monoisothiocyanate 

depending on the additional anion presented 

Anions Assignments, cm-1    

 C=N C=S δN=C=S Fe–N 

Cl‒ 2065 750a 440 296a 

NO3
‒ 2056 749 445 306 

SO4
2‒ 2067 750a 446 295a 

a determined in complexes with higher CN 

Abbreviations: stretching, δ – deformation   

Initial data on the ligand binding were followed by the detailed vibrational 

assignments of fundamental vibrational modes of the iron(III) monoisothiocyanate. 

It is known that at the pH values of about 2, the sulphate (SO4
2–

) ions are the main 

species, while hydrogen sulphate (HSO4
–
) ions might be found in the small amount 

[184]. Based on the previous findings on metal-ligand interaction, the presence of 

frequencies of the bound SO4
2–

 ion in iron(III) isothiocyanate complex was assumed. 

Moreover, the presence of peaks related to the free SO4
2–

 and HSO4
–
 ion was not 

discounted. In the view of these facts, the assignments of fundamental vibrational 

modes of the [Fe(NCS)]
2+

 complex were carried out using the Raman spectra 

subtraction analysis supplemented by the experiments of isotopic H2O/D2O 

substitution (Fig. 4.1, Table 4.2). 
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Figure 4.1. Comparison of difference spectra obtained by subtractions in the 1200–850 cm
-1

 

region: a – the spectrum of aqueous 0.33 M [Fe(NCS)]
2+

 solution, b – difference spectrum 

obtained by subtracting the spectrum of acidified K2SO4 solution (pH ~0.7) from the 

spectrum of aqueous 0.33 M [Fe(NCS)]
2+

 solution, c – the spectrum of deuterated aqueous 

0.33 M [Fe(NCS)]
2+

 solution 
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Table 4.2. Main vibrational band assignments of [Fe(NCS)]
2+

 (acidified with sulphuric acid) according to Raman spectra 

subtraction procedure in the entire 2100–200 cm
-1

 region 

Case Analyzed spectra Assignments, 

cm–1 

       

  C=N  asS=O*   

(bound 

SO4
2–) 

S=O  

(free 

HSO4
–) 

sS=O**  

(bound 

SO4
2–) 

sS=O  

(free SO4
2–) 

C=S δN=C=S Fe–N  

Case 1 0.33 M 

[Fe(NCS)]2+ pH ~ 

2 

2067 s 1139 w, b 1042 s 982 s 750 

vw 

446 m ─ 

Case 2 0.33 M 

[Fe(NCS)]2+ pH ~ 

2 (subtracted 

spectra of H2O )  

2067 s 1139 w, b 1042 s 982 s 750 

vw 

446 m ─ 

Case 3 0.33 M 

[Fe(NCS)]2+ pH ~ 

2 (subtracted 

spectra of 

acidified K2SO4 

solution (pH ~ 

0.7))  

2067 s 1141 w, b ─ 1039 s 982 s 750 

vw 

448 m ─ 

Literature 

data 

 2150─1990 

[150] 
1142─1148 

[185] 
around 

1047 

[186, 

187] 

1007─1011 

[185] 
980 [186]  490–450 

[150] 
220─520 

 ─ligand  [188, 

189]  

Abbreviations used: s – strong, m – medium, vw – very weak, b – broadband  
*assignment made according to PED analysis 

** assignment made according to PED analysis

5
3
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For the Case 1 (Table 4.2) main vibrational bands in the recorded spectrum 

were assigned. Each assignment of the vibrational band is based on the literature 

data, performed DFT calculations, and PED analysis which will be discussed in the 

following section. Raman spectrum of pure complex without the potential water 

overlapping (Case 2) was obtained after subtraction of water spectrum from the one 

obtained in Case 1. More complete information was obtained from the subtraction of 

spectra of the acidified K2SO4 solution at the pH ~ 0.7 (Table 4.2 – Case 3 and Fig. 

4.1 – b spectra). It allowed to ascertain the C=S vibration due to increased intensity 

of the band and discern the vibrational mode of bound SO4
2–

 ion. As shown in 

Figure 4.1, it is obvious that the bands at 1053 cm
-1

, 982 cm
-1

 and 892 cm
-1

 have 

disappeared and the band at 1039 cm
-1

 became narrower comparing with the band in 

the spectrum a. The absence of peaks specifies the presence of signals from free 

SO4
2–

 and HSO4
–
 ions. Based on this and literature data [186, 187], the clear peak at 

982 cm
-1

 was assigned to the sS=O vibration of free SO4
2–

 ion. The peaks at 892 

cm
-1

 and 1053 cm
-1

 were attributed to the fundamental vibrations of free HSO4
–
 ion 

(sS=O). This assignment is based on the cavity formed in the b spectrum in the 

940–840 cm
-1

 region and the shift of peak to the higher frequencies in the c spectrum 

in D2O experiment. The results of performed subtractions imply that the peak 

positioned at 1039 cm
-1

 (b spectrum) corresponds to the specific symmetric 

stretching mode of bound SO4
2–

 ions (due to remained signal). This assumption was 

affirmed by the H2O/D2O exchange experiment (Fig. 4.1 – c spectra). The difference 

spectrum c shows a stable position of main peak at 1039 cm
-1

 and the shift of weak 

shoulder at 1057 cm
-1

 (vibrational mode of free DSO4
–
 ion). These accurate 

assignments were made using the Gaussian fitting. As shown in Figure 4.1, the weak 

and broad, but observable peak at 1139 cm
-1

 remained after subtractions in the 

difference spectra a and c. The absence of changes indicates that the peak belongs to 

the vibration which is not sensitive to H2O/D2O exchange experiment. Based on this 

and literature data [185], also on PED analysis (Annexes 1 and 2), it can be 

affirmed, that the peak at 1139 cm
-1

 refers to the asymmetrical stretching mode of 

bound SO4
2–

 ion. Besides, according to Myhre et. al. [186], the low intensity band of 

asymmetrical vibration of the free SO4
2–

 ion exists at 1122 cm
-1

. For this reason the 

Raman spectrum subtraction in the Case 3 (Table 4.2) gave adjusted assignment of 

the bound SO4
2–

 ion. The small shift from 1139 cm
-1

 (difference spectra a, c) to 1141 

cm
-1

 (difference spectrum b) was obtained.  

The comparison of literature data and experimentally observed Raman spectra 

revealed other important finding. According to the well-known spectroscopic data 

[150], the twisting, rocking and wagging vibrational modes of bound water 

molecules are found in the 880–530 cm
-1

 region and cannot occur in lattice water 

molecules. Additionally, the M–O stretching or bending vibrations can be detected 

at wavenumbers lower than the 900 cm
-1

. The experimental and calculated Raman 

spectra obtained in this work showed Raman active bands in the mentioned spectral 

region. These results confirm the presence of M–O(H2O) bond in the investigated 

iron(III) monoisothiocyanate complex. In order to clarify the assumption of bound 

H2O molecules, the experiments with isotopically substituted H2O/D2O molecules 
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along with Raman spectra subtraction analysis were performed. The obtained 

difference spectra are shown in Figure 4.2.  

 

 

Figure 4.2. Comparison of aqueous solution Raman spectrum and difference spectra 

obtained by subtractions in the 650–200 cm
-1

 region: a – the spectrum of aqueous 0.33 M 

[Fe(NCS)]
2+

 solution, b – difference spectrum obtained by subtracting the spectrum of 

deuterated aqueous 0.33 M [Fe(NCS)]
2+

 solution from the spectrum of aqueous 0.33 M 

[Fe(NCS)]
2+

, c – difference spectrum of (a – b) 

It is obvious that the main stable band with the peak maximum at 608 cm
-1

 (in 

all obtained spectra) falls in the 880–530 cm
-1

 region, which is inherent to 

vibrational modes of the bound H2O. Other important assignments encompass the 

500–400 cm
-1

 region. The spectrum of [Fe(NCS)]
2+

 solution (spectrum a) displayed 

a broad peak in this region and an overlapping of signals was considered. In order to 

ascertain the nature of mentioned band, the valuable information was obtained from 

the difference spectrum b (Fig. 4.2). The background subtraction allowed to obtain 

the Raman band arising from the bound water molecules. As a result, the shifted and 

narrower peak (due to the effect of D2O) was obtained near 465 cm
-1

 and assigned to 

the bound H2O vibrations. This assignment was supported by PED analysis 

(Annexes 1 and 2), where the band of bound H2O molecules in the range of 454–420 

cm
-1

 and 463–409 cm
-1

 by B3LYP and PBE1PBE, respectively, was presented. The 

subtraction of signals of the bound H2O molecules (Fig. 4.2 difference spectrum c) 

enabled for the detection of the adjacent frequencies originated from the deformation 

vibrations of the NCS
–
 group with the peak maximum at 422 cm

-1
. Additionally, this 

subtraction exposed Raman signals related with the mixing of Fe–N and Fe–O(SO4) 

vibrations in the 300–200 cm
-1

 region. A merged band profiles were observed in 

each Raman spectra in the 300–210 cm
-1

 region (Fig. 4.2 a, b, c spectra), but the 

peak positions were not clearly separated. However, literature data [188, 189] and 
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the performed calculations suggest that M–O and M–N vibrations are expected to be 

observed in the mentioned spectral region. All the data imply the presence of bound 

water molecules in the explored complex and allow to assign their vibrational 

motions correctly. 

In summary, the performed initial experiments (isotopic substitution, spectra 

subtraction) and comparison with literature data allowed the characterization of the 

reliable structure of iron(III) monoisothiocyanate. In the next chapter, a detailed 

insight into the approximately elucidated structure and vibrational modes of the 

[Fe(NCS)]
2+

 complex is provided based on the comparison of experimental and 

theoretical study followed by PED analysis. 

 

4.1.2. Structure modeling and Raman spectra of [Fe(NCS)]
2+

 complex in the 

aqueous solution  

  

4.1.2.1. Geometry optimization 

In order to determine the most reliable structure of the [Fe(NCS)]
2+

 complex in 

aqueous solution in the presence of SO4
2–

 ligand, the geometry optimizations of the 

[Fe(NCS)]
2+

 complex were performed using different SO4
2–

 ligand position in the 

complex. Additionally, the structural changes of complex influenced by different 

solvation models (hypothetical cases): with explicit (the water molecules are placed 

around the simulated solute molecule) or explicit and implicit (the solvation effects 

are calculated by extra terms of the force fields) water molecules in the first 

coordination shell were evaluated. The optimized structures of each examined 

hypothetical case along with the calculated bond distances by B3LYP and 

PBE1PBE methods are shown in Figures 4.3 and 4.4, respectively.  
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Figure 4.3. Energy-minimized structures of [Fe(NCS)]
2+

 complex using B3LYP method. a 

[Fe(NCS)]
2+

 explicitly solvated, with SO4
2–

 ligand beside the NCS
–
 ligand, b [Fe(NCS)]

2+
 

explicitly-implicitly solvated, with SO4
2–

 ligand beside the NCS
–
 ligand, c [Fe(NCS)]

2+
 

explicitly solvated, with SO4
2–

 ligand on the opposite of the NCS
–
 ligand, d [Fe(NCS)]

2+
 

explicitly-implicitly solvated, with SO4
2–

 ligand on the opposite of the NCS
–
 ligand 

 

Figure 4.4. Energy-minimized structures of [Fe(NCS)]
2+

 complex using PBE1PBE method. 

a [Fe(NCS)]
2+

 explicitly solvated, with SO4
2–

 ligand beside the NCS
–
 ligand, b [Fe(NCS)]

2+
 

explicitly-implicitly solvated, with SO4
2–

 ligand beside the NCS
–
 ligand, c [Fe(NCS)]

2+
 

explicitly solvated, with SO4
2–

 ligand on the opposite of the NCS
–
 ligand, d [Fe(NCS)]

2+
 

explicitly-implicitly solvated, with SO4
2–

 ligand on the opposite of the NCS
–
 ligand 
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To date there are no published studies concerning the structure of titled 

complex. Results of the optimization studies show the shortening of Fe–N (slightly), 

Fe–2O(SO4), and Fe–3O(H2O) bonds when the SO4
2–

 ligand is on the opposite site 

of the NCS
–
 ligand (Fig. 4.3). Besides, it is clear that the Fe–2O(SO4) bonds are 

influenced unequally. The other bond distances such as C=N, C=S, and S=O were 

almost not influenced by the arrangement of SO4
2–

 ligand. The same tendency was 

observed on the energy-minimized structures using the PBE1PBE method (Fig. 4.4). 

More detailed data on the bond length and angle of the examined complex along 

with literature data are listed in Table 4.3. 

 

Table 4.3. Selected bond lengths (Å) and angles (°) for the [Fe(NCS)]
2+

 complex in 

different hypothetical cases using B3LYP and PBE1PBE methods: 1 - [Fe(NCS)]
2+

 

explicitly solvated, with SO4
2–

 ligand beside NCS
–
 ligand, 2 - [Fe(NCS)]

2+
 

explicitly-implicitly solvated, with SO4
2–

 ligand beside NCS
–
 ligand, 3 - [Fe(NCS)]

2+
 

explicitly solvated, with SO4
2–

 ligand on the opposite of NCS
–
 ligand, 4 - 

[Fe(NCS)]
2+

 explicitly-implicitly solvated, with SO4
2–

 ligand on the opposite of 

NCS
–
 ligand 

Complex  

Literature 

data 

 B3LYP PBE1PBE  

Explicit 
Explicit-

implicit 
Explicit 

Explicit-

implicit 
Explicit 

Explicit-

implicit 
Explicit 

Explicit-

implicit 

1 2 3 4 1 2 3 4 

Bond 

Length, 

Å 

         

Fe–N 1.90 1.95 1.90 1.95 1.89 1.95 1.89 1.95 2.03 [191], 
*1.97 [78] 

*Fe–

O(SO)4  

1.98 2.05 2.01 2.05 1.97 2.03 1.99 2.03 1.94 [192], 
*2.01 [193] 

*Fe–

O(H2O)  

2.22 2.14 2.19 2.13 2.19 2.12 2.16 2.11 *2.01 [194], 
**2.27 [195] 

N=C 1.20 1.19 1.20 1.19 1.20 1.19 1.20 1.19 1.15 [191], 
*1.17 [78]  

C=S 1.59 1.61 1.59 1.61 1.59 1.61 1.58 1.60 1.63 [191], 
*1.62 [78]  

Angles, °          

Fe–N=C 176.0 177.6 178.6 176.9 176.7 179.2 178.8 177.4 176.0 [191], 
*177.2 [78]  

N=C=S 179.5 179.8 179.9 179.9 179.5 179.9 179.9 179.9 179.6 [191], 
*178.9 [78]  

* Average value 
** Calculated value 

Calculated Fe–N bond distances are shorter by 0.02–0.14 Å compared with the 

found experimental values. It should be noted that all values of experimentally 

determined bond distances taken from literature are determined for crystal structures 

mostly having an organic part. Nevertheless, it is clear that explicit-implicit 
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solvation induces elongation of bond between Fe and N atoms compared with 

explicitly solvated complex. Calculated length of Fe–O(SO4) and Fe–O(H2O) bonds 

of each optimized structure is in the range of experimentally identified bond length 

given by other authors (Table 4.3). Comparing the calculated Fe–O bond distances it 

was observed that different solvation models cause the opposite effect on changes of 

Fe–O(SO4) and Fe–O(H2O) bonds. The Fe–O(SO4) bond becomes weaker when the 

explicit-implicit solvation is used, while the Fe–O(H2O) bond always experiences 

bond strengthening. The tendency is the same for N=C and C=S bonds. The explicit-

implicit solvation slightly strengthens N=C bond, while the C=S bond is slightly 

weakened. Calculated values of N=C and C=S bond distances are close to 

experimental. Moreover, it can be seen that the calculated Fe–N=C and N=C=S 

angles correlate well with the listed experimental values. The optimized structure of 

[Fe(NCS)]
2+

 complex in all hypothetical cases show that the NCS
–
 ligand is nearly 

linear. The bond angles of N=C=S in each case also do not fluctuate markedly and 

are in the range of 179.46–179.94° (by both B3LYP and PBE1PBE calculations). 

These values agree well with those reported for the Fe-isothiocyanates with 

coordinated γ-picoline molecules [190]. Additionally, it can be stated that the 

presence of linear N=C=S group, strong bond between N=C, and weak bond 

between C=S confirm the high-spin ground state of [Fe(NCS)]
2+

 complex [191]. 

 

4.1.2.2. Experimental and calculated Raman spectra and vibrational 

assignments 

Based on the results of ligand binding characteristics discussed in the 4.1.1 

section, a comparative experimental and theoretical (DFT calculations) Raman 

spectroscopic analysis was performed. Detailed vibrational assignments of the 

iron(III) monoisothiocyanate in both H2O and D2O using B3LYP and PBE1PBE 

methods are reported in the Annexes 1 and 2, respectively. The assignments of 

vibrational modes are based on PED analysis. The aim of comparative vibrational 

analysis was to elucidate the ligand binding character along with the identification of 

bound ligand and to establish the most reliable SO4
2–

 vs. NCS
–
 ligand position in the 

titled complex. Regarding to this, the different arrangement of ligands and 

functionals (B3LYP and PBE1PBE) in DFT calculations were considered. The 

effects of different solvation models (implicit or explicit) were also evaluated in 

order to understand how it can improve the accuracy of reproducing the 

experimental spectra. The named complex consists of 18 atoms and, according to 

PED, 16 main vibrational modes in each hypothetical case (Annexes 1 and 2). Seven 

of sixteen vibrational modes belong to the stretching vibrations. All the rest 

vibrational modes vary between an in-plane and out-of-plane vibrations, except the 

(O=S=O) bending mode, which always corresponds to the in-plane motion. Only 

in some cases an additional vibrational modes such as ((SO4)O−Fe−O(H2O)) and 

(N−Fe−2O(SO4)) were identified. 

O–H stretching and H–O–H bending modes. Raman active O−H stretching 

vibrations of the water molecule are in the 3550−3200 cm
-1

 region [150]. The 

performed PED analysis shows that the asymmetric and symmetric O–H stretching 
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vibrations are active in the range of 3900–3100 cm
-1

 and 2900–2270 cm
-1

 for H2O 

and D2O experiments, respectively, in each hypothetical case using both B3LYP and 

PBE1PBE functionals. The symmetric stretching modes of O–H group are expected 

at the lower wavenumbers. The only in-plane deformation (scissoring mode, 71–

94% by PED) of H–O–H group undoubtedly occurs in the range of 1670–1540 cm
-1

 

in water environment in all analyzed hypothetical cases. The other trend was 

observed in the lower wavenumber region. Starting from the 1015 cm
-1

, the H–O–H 

group has the out-of-plane deformation (varied wagging or twisting mode) band 

which is sometimes decoupled and/or coupled with other vibrations. Moreover, 

these wagging or twisting vibrational motions in the 629–607 cm
-1

 (by B3LYP) and 

668–618 cm
-1

 (by PBE1PBE) region originate mainly (up to 90 %) from the bound 

H2O molecules. This finding correlates well with the experimentally observed 

vibrational band at 608 cm
-1

, which was assigned to the vibrational motion of bound 

H2O. 

C=N stretching vibrations. Theoretically computed frequencies of the C=N 

were found in the range of 2064–2050 cm
-1

 and 2109–2095 cm
-1

 using B3LYP and 

PBE1PBE functionals, respectively, which were not affected by D2O experiment. 

Experimental Raman spectra of the [Fe(NCS)]
2+

 complex gave unexpected results. 

The peak maximum at 2067 cm
-1

 in H2O, which shifted to the lower wavenumber by 

6 cm
-1

 (peak maximum at 2061 cm
-1

) via H2O/D2O exchange experiment was 

observed. Such results do not correspond neither with the results of performed 

calculations on the C=N vibration in H2O and D2O nor with the results of 

performed studies on the mercury(II) thiocyanates described in the 4.3.2 section. 

Therefore, Raman spectra of the KSCN solution in H2O and D2O were analyzed. 

Experimentally observed values of the CN vibrations in H2O shifted to the lower 

wavenumber by 2 cm
-1

 via H2O/D2O exchange experiment. Calculated Raman 

signals of the explicitly solvated SCN
–
 ion also display small shift (1 cm

-1
) to the 

lower wavenumber region. On the basis of these data, it was assumed that there is an 

interaction between the strongly polarized SCN
–
 group and H2O molecules. 

Regarding to this assumption, it was presumed that the polarized NCS
–
 group 

interacts with the H2O molecules in the investigated [Fe(NCS)]
2+

 complex as well, 

and as a result the shift in D2O experiment was obtained. Since a simplified complex 

structure (without added H2O molecules to the NCS
–
 ion) in the geometry 

optimization course was used, the mentioned polarization effect on the C=N 

vibration was not estimated. Moreover, the shifts of C=N vibration in the aqueous 

and deuterated solutions are inherent not only to the [Fe(NCS)]
2+

 complex, but also 

to all complexes with higher coordination number (Table 4.4). These results 

supplement the assumption on the polarization effect. In general, based on literature 

data [196] the frequency of C=N bond relative to the free SCN
–
 speaks very much in 

favor of a coordination via N. The experimentally obtained values on C=N 

vibration in [Fe(NCS)]
2+

 complex are almost consistent with the experimentally 

observed CN vibration of the free SCN
–
 ion. 

S=O stretching vibrations of bound SO4
2–

 ion. Generally, the asymmetric and 

symmetric S=O vibrations gave clear bands and oscillations in two different 
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regions, depending on the used functionals. For the asymmetric motion vibrations in 

the 1300–1183 cm
-1

 (by B3LYP)
 
and 1350–1234 cm

-1
 (by PBE1PBE) regions were 

gained. The symmetric movements were active in the 1094–1084 cm
-1

 (by B3LYP) 

and 1140–1123 cm
-1

 (by PBE1PBE) region. The isotope substitution had no effect 

on the asymmetric vibrations and the peak shift of the symmetric vibrations 

sometimes was in the range of error (up to 5 cm
-1

) depending on the solvation model 

used. Assignments of the experimental bands for the S=O stretching modes are 

identified at 1139 cm
-1

 in both H2O and D2O for the asymmetric vibrations, and at 

1039 cm
-1

 in both H2O and D2O for the symmetric vibrations. Experimentally 

assigned bands correspond well to the calculated Raman spectra using the B3LYP 

method.  

C=S stretching vibrations. The identification of C=S vibration in the 

experimental spectra of [Fe(NCS)]
2+

 complex was complicated due to the very weak 

Raman signal. Weak Raman signal of C=S vibration of complexes with low 

coordination number has been observed for the mercury(II) thiocyanates as well 

(section 4.3.2). It was found that the signal increases with the increasing 

coordination number of the ligand. Raman spectra analysis of the [Fe(NCS)n]
3–n 

(where n = 2–6) complexes enabled to confirm the C=S vibrational band centered 

at 750 cm
-1

 as listed in Table 4.4. The position of peak is stable in all recorded 

Raman spectra and the band becomes evident due to increasing coordination 

number. According to the literature data [197] the wavenumber of C=S vibration 

should be increased and the wavenumber of C=N vibration should be decreased in 

a complex of the isothiocyanate type in comparison to the free thiocyanate ligand. 

The recorded spectrum of the aqueous free SCN
–
 ion displayed the C–S vibrational 

mode at 751 cm
-1

. The comparison of experimentally observed values of the C=N 

and C=S vibrations of investigated complex with the free thiocyanate ion indicates 

that the NCS
–
 ligand in the titled complex is bound through the N atom. However, 

compared to the experimental data obtained C=S oscillations in the calculated 

Raman spectra were observed in the higher frequency region (in the range of 954–

898 cm
-1

 and 978–920 cm
-1

 by used B3LYP and PBE1PBE, respectively). It is 

assumed that the inaccuracies are associated with the above mentioned insufficient 

use of the polarization function on the sulphur atom. 

920–805 cm
-1

 region. According to PED, the Raman band in this region arises 

from the S–O stretching vibration of bound SO4
2–

 ion (usually between 70–80%) as 

shown in the Annexes 1 and 2. This vibrational mode is weak in the calculated 

Raman spectrum and hardly identifiable experimentally. Calculated Raman spectra 

showed the splitting of this band and corresponded to the weak or medium bands in 

the spectra in each hypothetical case. Additionally, Raman bands in D2O exhibited 

the same values (± 3 cm
-1

). The PED analysis allowed assigning of the vibrational 

motion properly and making an assumption that the SO4
2–

 ion is certainly bound to 

the Fe
3+

 ion.  

578–525 cm
-1

 region. The detailed vibrational assignment by PED revealed 

that the mode identified as an out-of-plane deformation of O−S=2O or O=S−2O 

vibrations of the bound SO4
2–

 ion, was found in the wavenumber range from 578  
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cm
-1

 to 525 cm
-1

 by both functionals used for all the cases. The (O−S=2O) vibration 

tends to be situated in the higher wavenumber and the (O=S−2O) vibration in the 

lower wavenumber region. In addition, it was noticed that both these vibrations are 

the main motions (69–88%) in the case of explicit and implicit solvation model. In 

the case of explicit water solvation, the (O−S=2O) and (O=S−2O) vibrations are 

combined mainly with the wagging mode of H–O–H group. Nevertheless, these out-

of-plane motions are weak in both calculated and experimental Raman spectra. 

N=C=S deformation vibrations. As the experimentally obtained results show 

(Table 4.1), the δN=C=S deformation vibration varied in the experiments when 

different additional anions were introduced. It was previously discussed and shown 

in the Figure 4.2 that in the 500–400 cm
-1

 region the complex frequencies of the 

bound H2O molecules and NCS
–
 ligand occur (broad bands were observed). In 

relation with this data, the shift in D2O experiment could be considered and was 

identified experimentally. The results show that the H2O/D2O isotopic substitution 

has a substantial impact on the combined δN=C=S and δH–O–H vibrations. The 

band shifted to the lower wavenumber up to 26 cm
-1

 in D2O compared with the 

corresponding peak in H2O (Table 4.4). Despite of the shift, the band remained 

broad, and correct assignment of the δN=C=S vibration could not be accomplished 

without above mentioned Raman spectra subtraction procedure or PED analysis. 

PED showed that in the 490–400 cm
-1

 region the adjacent oscillations of bending 

modes of the H–O–H group (at 454–397 cm
-1

 by B3LYP, and 463–409 cm
-1

 by 

PBE1PBE, 66–84% and 66–85% PED, respectively) and deformation vibrations of 

the NCS
–
 group exist (Annexes 1 and 2). PED analysis in heavy water solution 

clearly shows that the δN=C=S vibrational mode is mixed with the bound H–O–H 

bending (twisting) modes, while in water solution the only δN=C=S deformation 

(usually between 85–96% by B3LYP and 85–100% by PBE1PBE) vibration was 

identified. Based on PED and subtraction analysis (Fig. 4.2), the band at 422 cm
-1

 

was attributed to the N=C=S deformation vibration. Additionally, experimental and 

calculated assignments of the δN=C=S vibration correspond well with literature data 

[150] for isothiocyanate complexes. 

Fe–O and Fe–N stretching vibrations (500–200 cm
-1

 region). The most 

complicated experimental and calculated Raman spectra analysis was in the 500–

200 cm
-1

 wavenumber region. According to Malek et. al. [189] the frequency region 

below 500 cm
-1

 provides information on the metal-ligand stretching vibrations. It 

was found that the increasing coordination number decreases the metal-ligand 

stretching frequency [198]. The obtained experimental Raman spectra display one 

clear and broad band in this region, which as previously discussed was attributed to 

the mixed vibrations of the bound H2O and NCS
–
 ligand. Assuming that the 

investigated complex is six-coordinated, the observation of the metal-ligand 

stretching modes below 350 cm
-1

 is expected [198]. Experimental Raman spectra of 

the [Fe(NCS)]
2+

 complex in the 350–200 cm
-1

 region were not informative due to the 

very broad peaks, indicating the overlapping between a numbers of spectra. 

Considering this fact, the valuable information from PED and experimental Raman 

spectra of complexes with the increasing number of the coordinating NCS
–
 ligands 
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was received. Experimental Raman spectra of the [Fe(NCS)6]
3– 

displayed the clear 

peak at 295 cm
-1

, while it was unclear in the case of [Fe(NCS)]
2+

 complex. It is 

assumed that the appearance of peak is related with the continuous increase of the 

Fe–N bond and equivalent decrease of the Fe–O bond number in the explored 

structure. Further PED analysis revealed that at the 350–200 cm
-1

 wavenumber 

region, a lot of vibrational motions could take part and the contribution to the 

normal modes is mainly less than 50% (except the Fe–O, when the O atom 

participates from the H2O molecule). Sometimes the Fe–O(H2O) vibration exceeds 

50% and contribution reaches 89% with B3LYP and 84% with PBE1PBE, 

respectively. It is difficult to compare such mixing of vibrational modes, but some 

tendency could be observed. PED data represented that the mixing of Fe–O(H2O) 

(contribution to the normal mode was mostly more than 50%), Fe–O(SO4), and Fe–

N vibrations in the 350–250 cm
-1

 region is possible. In this region, the symmetric 

and asymmetric Fe–O(H2O) vibrations contribute most to the normal mode 

compared with the other frequencies. Comparing both B3LYP and PBE1PBE 

methods, it was observed that the Fe–N vibration alone tends to be found in the 

370–350 cm
-1

 region for the investigated [Fe(NCS)]
2+

 complex. This assignment 

correlates quite well with the above mentioned experimentally observed peak at 295 

cm
-1

, taking into account, that it possibly corresponds to the Fe–N vibrations when 

more than one NCS
–
 ligand were introduced. The subsequent region at the calculated 

240–210 cm
-1

 provided the same mixing of mentioned three vibrational modes, but 

the contribution of Fe–O(H2O) frequencies did not exceed 50%. 

Based on comparison of calculated and experimental data on the fundamental 

vibrational assignments (O–H, S=O, δH–O–H, C=N and etc.) of the [Fe(NCS)]
2+

 

complex it is assumed that the B3LYP functional is more appropriate for the 

calculations. Besides, good correlation between the computed and experimentally 

obtained data confirms the theoretical structure prediction that six-coordinated Fe
3+

 

complex with the three different ligands, NCS
–
 and SO4

2–
, and water molecules, is 

formed. Calculated Raman spectra when the SO4
2–

 ligand was situated near the 

NCS
–
 ligand correspond better to the experimentally recorded spectra. Moreover, the 

explicit and/or implicit analysis presumably indicates that the explicit and implicit 

solvation takes part in the aqueous system of the titled complex. 

 

4.1.2.3. Experimental Raman spectra of [Fe(NCS)n]
3–n

 complexes 

Raman spectra of six aqueous solutions with the established molar ratio of the 

Fe
3+

 and SCN
−
 ion were obtained. It was noticed that the attachment of each 

additional NCS
– 

ligand to the Fe
3+

 ion causes a gradual growth of the intensities of 

C=N and C=S vibrational bands. Moreover, after each NCS
–
 ligand attachment 

the bands attributed to the δN=C=S and Fe–N vibrational modes, as well as C=N 

and C=S, became narrower and more evident. All these observations are shown in 

Figures 4.5–4.7. 

Vibrational assignments of the experimental Raman bands of [Fe(NCS)n]
3–n

 

complexes (where n = 1–6) are summarized in the Table 4.4.  
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Table 4.4. Raman vibrational assignments of experimentally obtained bands for 

iron(III) isothiocyanates with higher coordination number in acidic aqueous and 

deuterated aqueous solutions. pH ~ 2 ± 0.1 (acidified with sulphuric acid) 

Complex 

Main assignments in H2O (D2O), cm-1 

CN

bound 

asS=O 

bound 

sS=O* CS δN=C=S Fe‒N

[Fe(NCS)]2+ 

2067 

(2061) 

1139 

(1139) 

1042 

(1040) 

750 

(750) 446; 422* (420) B** 

[Fe(NCS)2]
+ 

2063 

(2060) 

1139 

(B)** 

1042 

(1040) 

750 

(750) 443; 415* (418) B** 

[Fe(NCS)3] 

2063 

(2058) ─ (─ ) 

1042 

(1040) 

750 

(750) 442; 412* (414) 

B** 

(299) 

[Fe(NCS)4]
– 

2063 

(2060) ─ (─ ) 

1042 

(1040) 

750 

(750) 437; 412* (414) 

295 

(300) 

[Fe(NCS)5]
2– 

2065 

(2063) ─ (─ ) 

1042 

(1040) 

750 

(750) 439; 413* (411) 

295 

(300) 

[Fe(NCS)6]
3– 

2065 

(2063) ─ (─ ) 

1041 

(1040) 

750 

(750) 438; 413* (411) 

295 

(300) 
*assignments after subtraction procedures discussed in the section 4.1.1.1  
** B refers to the broadband 

In the high-frequency region, the strong peaks in the 2067–2063 cm
-1

 and 

2063–2058 cm
-1

 region in H2O and D2O, respectively, were assigned to the C=N 

vibrational mode. It is obvious that the hydrogen/deuterium exchange leads to the 

red shifts by 2–6 cm
-1

 of the C=N peak of each iron(III) isothiocyanate complex. 

These results strengthen the previously discussed assumption that the polarization 

effect should be taken into account. Additionally, it is clear that the C=N vibration 

is sensitive to the number of added NCS
–
 ligands in both H2O (Fig. 4.5, Table 4.4) 

and D2O (Table 4.4) experiments. Moreover, it was found that the increasing 

number of NCS
–
 ligands in the aqueous solution shifts the C=N vibration to the 

lower wavenumber position as long as the [Fe(NCS)3] complex is formed. It 

indicates the weakening of C=N bond in the [Fe(NCS)3] complex comparing with 

the [Fe(NCS)]
2+

 and [Fe(NCS)2]
+
 complexes. Further increase of the NCS

–
 ligand 

number induces the opposite – blue shift. The trend of the shift is the same in D2O 

experiment (Table 4.4). It is supposed that the blue shift indicates the dissociation 

behavior of the investigated complexes as well as the presence of signal of the free 

SCN
–
 ion. Such feature of iron(III) isothiocyanates with higher coordination number 

was described by Ozutsumi et. al. [80]. 

 

 

 

 

 

 

 



 

 

 
65 

 

Figure 4.5. Experimentaly observedC=N stretching vibrational bands in Raman spectra of 

aqueous [Fe(NCS)n]
3–n 

solutions, with varying molar ratio of [Fe
3+

] : [SCN
–
] from 1 : 1 to 1 : 6 

 

Figure 4.6. Experimentaly observedC=S stretching vibrational bands in Raman spectra of 

aqueous [Fe(NCS)n]
3–n 

solutions, with varying molar ratio of [Fe
3+

] : [SCN
–
] from 1 : 1 to 1 : 6 
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Figure 4.7. Experimentaly observedFe–N and δN=C=S vibrational bands in Raman spectra 

of aqueous [Fe(NCS)n]
3–n 

solutions, with varying molar ratio of [Fe
3+

] : [SCN
–
] from 1 : 1 to 

1 : 6  

Based on experimental results (Table 4.4), it is clear that the weak asS=O 

vibration of the bound SO4
2–

 is identifiable only in the case of iron(III) 

monoisothiocyanate. On the contrary, the symmetric S=O vibrations of the bound 

SO4
2–

 at 1042 cm
-1

 and 1040 cm
-1

 in H2O and D2O, respectively, were clearly 

observed in each spectra. The strong signal became weaker with the increasing 

number of NCS
–
 ligands, but it did not disappear. Such observation implies that the 

dissociation of complexes with higher coordination number could take part. Another 

noticed stable band was assigned to the CS vibration, based on previously 

discussed results. The intensity of this band rises with the increasing number of 

NCS
–
 ligands (Fig. 4.6, Table 4.4).  

According to the experimental data, the changes in Δ for the δN=C=S vibration 

could not be explained properly without the additional data, such as previously 

mentioned Raman spectra subtraction or PED analysis. This is because the mixing 

of vibrations of the bound H2O molecules and δN=C=S occurs and the dissociation 

of complexes is possible. The assignments of δN=C=S vibration of all [Fe(NCS)n]
3–n

 

complexes were clarified after Raman spectra subtraction procedures (Table 4.4). 

Because of the challenges in the detection of Fe–N stretching vibrations in the 

low-intensity region (the mixing of Fe–O and Fe–N is presented) in experimental 

Raman spectra, the performed experiments of iron(III) isothiocyanates with higher 

coordination number, gave valuable results. The stable vibrational band associated 

with the Fe–N oscillations appeared more prominent with each additional SCN
–
 

ligand in H2O (Fig. 4.7, Table 4.4) and D2O (Table 4.4), respectively. The visibility 

and absence of band shifts allowed assigning of the Fe–N frequencies at 295 cm
-1

 

and 300 cm
-1

 in H2O and D2O, respectively. 
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4.2. Theoretical study of electronic absorption spectra of iron(III) 

monoisothiocyanate 

The goal of this part of the work was to perform a research on the molecular 

structure and electronic excitations of iron(III) monoisothiocyanate presented in the 

aqueous solution of sulphuric acid by means of theoretical modeling and 

experimental UV-Vis spectroscopy. The performance of the different classes of 

functionals on the calculation of the UV-Vis spectra along with different DFT 

methods used for the geometry optimization was evaluated. Moreover, the effect of 

different solvation models and different ligand arrangement on the final electronic 

spectrum was also considered.  

The results of performed calculations indicate that TD-PBEPBE approach 

applied on optimizations using B3LYP, CAM-B3LYP, and PBE1PBE methods is in 

the worst agreement with experimentally observed spectrum. As far as the visible 

region is considered, TD-PBEPBE functional experienced a red-shift of main 

absorption band going up to 30 nm. Furthermore, the second high intensity band in 

the higher wavelengths region (over 550 nm) appeared which is not reasonable for 

the experimental one. Moreover, it was found that the effect of explicit and implicit 

solvation model at the same time does not meet spectral features of experimental 

spectrum. The calculated maximum in the visible region is usually most intensive 

peak in the entire spectrum and exhibits the shift to the longer wavelengths (red-

shift) compared with experimental one. On the contrary, blue-shifted absorption 

maximum was usually observed in the UV region. Based on the simulation data it 

was found that the theoretical absorption spectra when the SO4
2–

 ligand is on the 

opposite site of the NCS
–
 ligand do not correspond to the experimental. In most 

cases the maximum of main absorption band in the visible region shifts to the longer 

wavelengths up to 70 nm. Besides, simulated spectra with such ligand arrangement 

were not able to reproduce spectral features of experimental spectrum in the region 

below ~ 280 nm. Based on these findings and omitting the results which engendered 

in quite big discrepancies, more detailed comparison between experimental and 

calculated electronic spectra when SO4
2–

 ligand is beside the NCS
–
 ligand with the 

explicit solvation model (the complex 1, Table 4.3) is presented in the following. 

In the Figures 4.8–4.10 the experimental UV spectrum together with TD-DFT 

calculated ones for complex 1 are reported. Experimental spectrum gave one 

absorption band in the visible region with the maximum at 453 nm. A much greater 

intense absorption band was observed in the near UV part with the peak maximum 

at 301 nm (Fig. 4.8). Additionally, experimental spectrum presents an intense band 

with the shoulder in the region of the spectrum extending from ~ 210 nm to 270 nm 

with the approximate maximum of 216 nm. Comparing all TD-B3LYP simulated 

and experimental absorption spectra (Fig. 4.8) with TD-CAM-B3LYP (Fig. 4.9) and 

TD-PBE1PBE (Fig. 4.10), it is clear that regardless of the method used to optimize 

geometry the TD-B3LYP functional is in worst agreement with experimental. One 

can see that the absorption maximum in the visible part is quite red-shifted with the 

deviation from the experimental maximum of about 25–40 nm (Fig. 4.8). Moreover, 

this absorption band tends to have a double-peak character with the second peak 
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maximum in the range of 490–530 nm, which is not characteristic neither for 

experimental spectrum nor for the TD-CAM-B3LYP and TD-PBE1PBE simulated 

spectra. If the UV part of the spectra is analyzed, it is clear that this part also does 

not match with the experimental absorption spectrum. 

 

 

Figure 4.8. Absorption spectra of iron(III) monoisothiocyanate calculated with TD B3LYP 

functional and different methods for geometry optimization vs. the experimental one. Inset 

shows the magnified view of experimental band in the visible region 
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Figure 4.9. Absorption spectra of iron(III) monoisothiocyanate calculated with TD CAM-

B3LYP and different methods for geometry optimization vs. the experimental one. Inset 

shows the magnified view of experimental band in the visible region 

 

Figure 4.10. Absorption spectra of iron(III) monoisothiocyanate calculated with TD 

PBE1PBE and different methods for geometry optimization vs. the experimental one. Inset 

shows the magnified view of experimental band in the visible region 
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The simulated absorption spectrum using TD-CAM-B3LYP approach on all 

three optimized structures experiences a less pronounced deviation (in the range of 

15–25 nm) from the experimental maximum in visible region compared with TD-

B3LYP (Fig. 4.9). Unlike the apparent red-shift in the visible part, caused by the 

used TD-B3LYP functional, the blue-shift using TD-CAM-B3LYP was always 

identified in the calculated spectra. If the UV region is inspected, it is clear that TD-

CAM-B3LYP functional gives absorption bands with a general shape and tendency 

that are in reasonable agreement with experimental spectrum. Actually, the third 

TD-PBE1PBE functional used for all analyzed DFT methods is in best agreement 

with experimentally obtained spectrum, even if the band shape and intensities are 

less well reproduced (Fig. 4.10). The deviation is 0 nm and 1 nm for CAM-B3LYP 

and PBE1PBE, respectively, and 10 nm for B3LYP compared with the experimental 

maximum at 453 nm. It should be noted that all TD-DFT computed absorption 

spectra (Fig. 4.8–4.10) have relatively higher intensity at the longer wavelengths 

(low-energy) and relatively lower intensity at the shorter wavelengths (high-energy). 

That is the opposite of experimentally observed spectral features. Simulated 

electronic spectra show blue-shifted maximum in the range of 260–280 nm 

compared with the peak of 301 nm in the experimental spectrum. Nevertheless, the 

characteristic spectral feature of experimental spectrum in the 200–230 nm could be 

identified in each TD-PBE1PBE calculated spectra (Fig. 4.10). It is interesting to 

note that although it was found that explicit-implicit solvation model failed to 

reproduce the absorption in visible part and lower than 280 nm, it is able correctly 

reproduce the large and intense experimental band at the 301 nm. In view of that 

fact, the valuable information was obtained from the excited state analysis. It was 

found out that the main electronic transition at about 300 nm using explicit-implicit 

solvation model corresponded to water-to-metal charge transfer. It could be assumed 

that this transition is sensitive to the implicit solvation environment and as 

consequence a good compliance with experimentally observed band was obtained.  

Generally, it can be assumed that the choice of the functional used for TD 

calculations is much more important than the choice of the method used for 

geometry optimization. The PBE1PBE and CAM-B3LYP methods used for 

geometry optimization gave very similar absorption spectra, while slightly different 

spectral tendencies using B3LYP were observed. 

Analysis of excited states. It was already mentioned in the literature review 

that electronically excited states are of key importance for photochemistry and for a 

variety of optical materials applied in the development of new technologies. Hence, 

the TD-DFT theory emerges as one of the most practical tools that can be used to 

predict the electronic properties of transition metal complexes. In this section, the 

nature of the excited states obtained from TD-PBE1PBE calculation using 

PBE1PBE level of theory since the latter functionals showed a good overall 

compliance, compared with the experimental [Fe(NCS)]
2+

 spectrum, is described. 

The wavelengths, singlet states, and molecular orbital (MO) interactions of the most 

important vertical transitions in terms of oscillator strength (greater than 0.01) are 

listed in the Table 4.5.  The classification in terms of transition character was based 
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on the composition of the occupied and virtual MOs of the dominant excitation 

(according to transition coefficients) of the excited state considered for the 

[Fe(NCS)]
2+

 complex. Some characteristic CTs (charge transfer) are visually shown 

in Figure 4.11.  

 

Table 4.5. Main electronic transition of the benchmark [Fe(NCS)]
2+

 complex 

calculated with TD-PBE1PBE//PBE1PBE 

Transition MO interaction* Transition 

type 

Wavelength, 

nm 

Oscillator 

strength ƒ 

6 HO O→LU O  LMCT 455 0.1857 

7 HOMO-2→LU O LMCT 444 0.0623 

17 HOMO-1→LU O+4 LMCT 372 0.0215 

18 HOMO→LU O+4 LMCT 368 0.0143 

27 HOMO-5→LU O+2 LMCT 270 0.0279 

28 HOMO-5→LU O+2 LMCT 268 0.0168 

32 HOMO-7→LU O+1 LMCT 252 0.0719 

34 HOMO-8→LU O LMCT 248 0.0338 

39 HOMO-5→LU O+3 LMCT 237 0.0144 

41 HOMO-5→LU O+3 LMCT 232 0.016 

56 HOMO-10→LU O+1 LMCT 212 0.0205 

58 HOMO-1→LU O+6 LLCT 210 0.0268 

66 HOMO-13→LU O LMCT 202 0.0113 

68 HO O→LU O+8 LLCT 201 0.0221 

71 HOMO-11→LU O+2 LMCT 200 0.0238 

*according to the highest transition coefficient 

 

By analyzing the main electronic transitions summarized in Table 4.5, it was 

noticed that the visible part of the spectrum refers to two ligand-to-metal charge 

transfers (LMCT). Obtained transition coefficients for HOMOs (highest occupied 

molecular orbitals) of transition 6 indicate an extremely important role of the NCS
–
 

ligand where isothiocyanate definitively acts as the principal electron donor group 

(Fig. 4.11). However, due to the participation of a small number of HOMOs, at the 

same time the SO4
2–

 ligand based LMCT transition was also found to contribute. 

Unlike the transition 6, the second excitation transition in the visible region 

(transition 7) involves lower-energy occupied MOs which are mainly centered on 

the SO4 ligand (Fig. 4.11). Here electrons are donated by all O atoms. Nevertheless, 

a small contribution from occupied MOs of NCS
–
 ligand was also fixed. It can be 

assumed that both NCS
–
 and SO4

2–
 ligands are the main ones responsible for 

appeared absorbance peak in the visible part of UV-Vis spectrum. Based on the 

obtained results, all low-lying transitions in the near UV region (200–380 nm) were 
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still characterized as LMCT. It was observed that at the intersection point of visible 

and near UV wavelengths, the electron donation from NCS
–
 ligand is prevalent 

(transitions 17 and 18). At the wavelengths lower than 370 nm the vast majority of 

HOMOs are essentially orbitals of the SO4
2–

 ligand with the charge transfer 

delocalized on metal. Here it should be emphasized that depending on the respective 

excited state, the additional HOMOs of the H2O and NCS
–
 ligands were also fixed in 

the transition. Based on transition coefficients, the pure SO4
2–

 ligand character 

highest occupied MOs are presented in the transitions 27 (Fig. 4.11), 28, 39, 41 

(Table 4.5). Concerning particular MO involved in these transitions, electrons are 

transferred from all four or three O atoms of SO4
2–

 ligand to iron. More diverse 

electronic transitions were noticed in the range of 200–250 nm. This region exhibits 

two main absorption peaks. The absorption band at the higher wavelengths 

encompasses two main transitions – 32 and 34. According to transition coefficients, 

both these excited states have NCS → Fe, SO4 → Fe, SO4 and H2O → Fe L CT 

character. The latter transition is shown visually in Fig. 4.11. However, based on 

transition coefficients, it can be seen the tendency that both transitions being much 

more delocalized over the NCS
–
 ligand. Transitions 56, 66 and 71 are typical for 

LMCT state (Fig. 4.11 transition 56 c), but the contribution of ligand-to-ligand 

charge transfer (LLCT) was also fixed. Here, the electron transfer from S to C atoms 

in the NCS
–
 ligand and from NCS

–
 ligand to H2O ligand (Fig. 4.11, transition 56 a 

and b) was identified. By analyzing the LMCT state of the transitions 56, 66 and 71 

it is clear that the excited electron density is mainly delocalized over the H2O ligand. 

As far as nearly far UV region is approached, electronic transitions 58 (Fig. 4.11) 

and 68 were assigned as LLCT transitions, in which electrons are mainly promoted 

from the NCS-based MO, to the empty MOs of the H2O ligand.  

Generally, the excited state analysis enabled to determine which of iron(III) 

monoisothiocyanate’s active substituent is significant contributor to the spectral 

properties of the complex. 
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Figure 4.11. The TD-PBE1PBE/PBE1PBE calculated singlet electron transition (illustrations) for selected transitions

7
3
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4.3. Molecular structure of mercury(II) thiocyanate complexes based on DFT 

calculations and experimental UV-Vis and Raman spectroscopic studies 

 

4.3.1. Structure modeling of [Hg(SCN)n]
2−n

 and SCN
−
 

In order to elucidate the most reliable structure of free SCN
−
 and Hg(SCN)2, 

[Hg(SCN)3]
−
 and [Hg(SCN)4]

2−
 complexes in the aqueous solution, the geometry 

optimizations of each complex using different solvation models (hypothetical cases): 

with explicit or/and implicit water molecules were performed. All the calculated and 

experimental structural data of each examined structures are gathered in Table 4.6. 

The optimized geometry of SCN
–
 ion with C–S and CN bond distances of 1.67 Å 

and 1.18 Å correlates well with the experimental values from literature (Table 4.6). 

The differences varying from 0.02 to 0.04 Å may be influenced by the K
+
 and NH4

+
 

cations present in the sample during experimental analysis by other researches. The 

optimized structures of Hg(SCN)2, [Hg(SCN)3]
−
 and [Hg(SCN)4]

2−
 complexes in all 

hypothetical cases take a bent conformation (Fig. 4.12). 
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Table 4.6. Geometrical parameters and energy of Hg(SCN)2, [Hg(SCN)3]
−
, [Hg(SCN)4]

2−
 complexes in different hypothetical 

cases 

Complex Bond Calculated 

bond 

lengths  

(average), 

Å   

Experimental 

bond lenghts 

(solvent), Å 

Angle Calculated 

bond angle  

(average), ° 

Experimental 

bond angle 

(solvent), ° 

Energy, 

kcal/mol 

Dipole 

moment 

SCN−  C–S 1.67 1.69a1, 1.63a2 S–CN 180.0  -308212.7745 1.6562 

 CN 1.18 1.15a1, 1.15a2      

SCN− solvated C–S 1.66 1.69a1, 1.63a2 S–CN 180  -308271.6987 2.3349 

 CN 1.18 1.15a1, 1.15a2      

[(SCN−)(H2O)2]
−  C–S 1.66 1.69a1, 1.63a2  S–CN 178.5  -404193.3402 1.4337 

 CN 1.17 1.15a1, 1.15a2      

[(SCN−)(H2O)2]
− 

solvated 

C–S 1.66 1.69a1, 1.63a2  S–CN 178.5  -404193.3402 1.4334 

 CN 1.17 1.15a1, 1.15a2      

Hg(SCN)2 Hg–S 2.33 2.41 (DMSO)b S–Hg–S 178.6  -616958.5051 2.7168 

 C–S 1.70  Hg–S–C 94.6 107° b (DMSO)   

 CN 1.16  S–CN 178.1    

Hg(SCN)2 solvated Hg–S 2.46 2.41b (DMSO) S–Hg–S 180.0  -617033.1889 0 

 C–S 1.68  Hg–S–C 104.1 107° b (DMSO)   

 CN 1.17  S–CN 176.9    

Hg(SCN)2(H2O)2 Hg–S 2.44 2.41b (DMSO) S–Hg–S 138.7  -712957.3253 1.0597 

 Hg–O 2.19  S–Hg–O 103.5    

 C–S 1.69  Hg–S–C 90.8 107° b (DMSO)   

 CN 1.17  O–Hg–O 97.1    

    S–CN 175.7    

Hg(SCN)2(H2O)2 

solvated 

Hg–S 2.44 2.41b (DMSO) S–Hg–S 142.6  -712968.8169 0.689 

 Hg–O 2.18  S–Hg–O 102.4    

 C–S 1.69  Hg–S–C 93.5 107° b (DMSO)   

 CN 1.17  O–Hg–O 95.9    

7
5
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7
6
 

Table 4.6. Continued 

Complex Bond Calculated 

bond 

lengths  

(average), 

Å   

Experimental 

bond lenghts 

(solvent), Å 

Angle Calculated 

bond angle  

(average), ° 

Experimental 

bond angle 

(solvent), ° 

Energy, 

kcal/mol 

Dipole 

moment 

    S–CN 178.6    

[Hg(SCN)3]
− Hg–S 2.43 2.464b (DMSO) S–Hg–S 120.0  -925225.7275 0.0039 

 C–S 1.69  Hg–S–C 99.9 107° b (DMSO)   

 CN 1.16  S–CN 176.9    

[Hg(SCN)3]
− solvated Hg–S 2.45 2.464b (DMSO) S–Hg–S 120.0  -925268.8072 0.0852 

 C–S 1.69  Hg–S–C 98.7 107° b (DMSO)   

 CN 1.17  S–CN 177.6    

[Hg(SCN)3(H2O)]− Hg–S 2.50 2.464b (DMSO) S–Hg–S 114.7  -973220.4722 3.5743 

 Hg–O 2.21  S–Hg–O 103.4    

 C–S 1.68  Hg–S–C 96.5 107° b (DMSO)   

 CN 1.17  S–CN 176.7    

[Hg(SCN)3(H2O)]− 

solvated 

Hg–S 2.50 2.464b (DMSO) S–Hg–S 115.9  -973258.1460 7.4747 

 Hg–O 2.22  S–Hg–O 101.9    

 C–S 1.68  Hg–S–C 95.8 107° b (DMSO)   

 CN 1.17  S–CN 177.7    

[Hg(SCN)4]
2− Hg–S 2.54 2.531b1, 2.547b2 

(DMSO), 2.54c 

(water) 

S–Hg–S 109.5  -1233413.0032 0.0049 

 C–S 1.68  Hg–S–C 106.3 108° b (DMSO), 

102° b (water) 

  

 CN 1.17  S–CN 175.8    

[Hg(SCN)4]
2− solvated Hg–S 2.52 2.531b1, 2.547b2 

(DMSO), 2.54c 

(water) 

S–Hg–S 109.5  -1233553.2590 0.074 
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Table 4.6. Continued 

Complex Bond Calculated 

bond 

lengths  

(average), 

Å   

Experimental 

bond lenghts 

(solvent), Å 

Angle Calculated 

bond angle  

(average), ° 

Experimental 

bond angle 

(solvent), ° 

Energy, 

kcal/mol 

Dipole 

moment 

 C–S 1.68  Hg–S–C 100.2 108° b (DMSO), 

102° b (water) 
  

 CN 1.17  S–CN 177.8    

[Hg(SCN)4(H2O)2]
2−  Hg–S 2.54 2.531b1, 2.547b2 

(DMSO), 2.54c 

(water) 

S–Hg–S 109.5  -1329394.9234 1.364 

 C–S 1.68  Hg–S–C 103.6 108° b (DMSO), 

102° b (water) 

  

 CN 1.17  S–CN 177.1    

[Hg(SCN)4(H2O)2]
2− 

solvated 

Hg–S 2.56 2.531b1, 2.547b2 

(DMSO), 2.54c 

(water) 

S–Hg–S 108.7  -1329514.7649 12.4823 

 C–S 1.68  Hg–S–C 103.5 108° b (DMSO), 

102° b (water) 

  

  CN 1.17   S–CN 178.0       
a1, a2 Taken from Ref. [47]    
b, b1, b2 Taken from Ref. [196]    
c Taken from Ref. [199] 
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Figure 4.12. Energy-minimized structures of [Hg(SCN)n]
2−n

 complexes. 1
a
 Hg(SCN)2 non-solvated, 1

b
 Hg(SCN)2 implicit solvation, 1

c
 

Hg(SCN)2(H2O)2 explicit solvation, 1
d
 Hg(SCN)2(H2O)2 explicit/implicit solvation, 2ª [Hg(SCN)3]

−
 non-solvated, 2

b
 [Hg(SCN)3]

−
 implicit 

solvation, 2
c
 [Hg(SCN)3(H2O)]

− 
explicit solvation, 2

d 
[Hg(SCN)3(H2O)]

−
 explicit/implicit solvation, 3

a
 [Hg(SCN)4]

2−
 non-solvated, 3

b
 

[Hg(SCN)4]
2− 

implicit solvation, 3
c
 [Hg(SCN)4(H2O)2]

2− 
explicit solvation, 3

d
 [Hg(SCN)4(H2O)2]

2−
 explicit/implicit solvation
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Comparing the optimization results of Hg(SCN)2 complex without the 

solvation effect and using solvation (implicit or/and explicit water molecules), it can 

be seen that there is a clear differences between the energies of non-solvated 

complex and using implicit solvation. Also the effect of each implicit or explicit 

solvation markedly changed the dipole moment (Table 4.6). According to the 

calculation results, the most polar molecule is Hg(SCN)2 in non-solvated 

environment. Comparing the calculated Hg–S bond distances it was observed that 

both the implicit and explicit solvation separately induces the elongation of bond 

between Hg and S atoms compared with non-solvated model. But the effect of both 

solvation models in tandem does not change the Hg–S bond length comparing with 

the explicit solvation effect alone. The C–S and CN bond lengths almost do not 

differ in all the cases. The main and clear changes are the energy and dipole moment 

when the solvation effects are introduced into the system. Based on the simulation 

data it was found that the complex ion [Hg(SCN)3]
−
 is the most polar of all analyzed 

complexes when both the explicit and implicit solvation models were applied. The 

bond differences between the Hg–S atoms of non-solvated [Hg(SCN)3]
−
 complex 

compared with the different solvation models do not vary significantly. 

Nevertheless, the same tendency as was discussed about the Hg(SCN)2 complex 

remains: each chemical environment promotes lengthening of Hg–S bond.  

The optimized geometric parameters of [Hg(SCN)4]
2−

 complex ion showed 

that the difference of the analyzed parameters is high comparing the complex 

presented in non-solvated environment with the implicit solvation (Table 4.6). The 

differences are also much bigger comparing with the results of Hg(SCN)2 and 

[Hg(SCN)3]
−
 complexes discussed above. The effect of explicit and implicit water 

molecules at the same time renders the complex ion [Hg(SCN)4]
2−

 more polar 

compared with rest solvation models or non-solvated [Hg(SCN)4]
2−

 complex ion. It 

was observed that the length of Hg–S bond of [Hg(SCN)4]
2−

 complex ion in each 

case is the only variable parameter while the lengths of C–S and CN bond remain 

constant. In contrast to the former discussions it was found out that the Hg–S bond 

becomes weakest when at the same time the explicit and implicit solvation is 

involved. The calculated length of Hg–S bond is in good agreement with 

experimentally identified bond length given by other authors [199] when the solvent 

is water. The deviation is ± 0.02 Å, while in the case of [Hg(SCN)4]
2−

 and 

[Hg(SCN)4(H2O)2]
2−

 ions in non-solvated environment the calculated and 

experimental values are identical. The bond angles of S–Hg–S and S–CN in each 

case also do not fluctuate markedly. However the prominent alteration of Hg–S–C 

angle was noticed. The disparity is between 0.1 – 6.1°. 

Generally there are some basic features that are characteristic for the optimized 

structures. The molecular modeling data clearly indicate the formation of four-

coordinated Hg(II) complexes with four thiocyanate and (or) water ligands. The Hg–

S–C fragment is always bent. Moreover, there is always a slight bending involved 

for the S–CN bond angle which varies between 1 and 4°. The Hg–S bond lengths 

increased with increasing the number of ligands. Consequently, the weakest bonding 

mode between metal ion and SCN
−
 ligand is for [Hg(SCN)4]

2−
 complex ion. Such 



80 

 

tendency also was noticed experimentally by other researches (Table 4.6) when the 

solvent was dimethylsulphoxide (DMSO). 

 

4.3.2. Vibrational spectra of [Hg(SCN)n]
2−n

 complexes in the aqueous solution 

The Raman spectra of aqueous solutions with the established molar ratio of 

Hg
2+

 and SCN
−
 ion were obtained. The vibrational spectral analysis was performed 

on the basis of literature and calculation data. The frequencies of the Hg–S, C–S, 

CN vibrational modes have been measured for the free SCN
−
 ion, neutral 

Hg(SCN)2 molecule, anionic [Hg(SCN)3]
−
 and [Hg(SCN)4]

2−
 complexes when the 

solvent was water. The detailed vibrational assignments of fundamental modes 

along with the calculated peak intensities are shown in Table 4.7. For visual 

comparison, the observed and simulated Raman spectra are presented in Figure 4.13. 

For the interpretation of calculated and experimentally determined Raman spectra 

the attention mainly was focused on the analysis of the Raman spectra bands arising 

from the Hg–SCN and SCN
−
 groups. Two characteristic vibration modes have been 

assigned as valuable: (Hg–S stretching mode) and CN stretching mode), 

respectively. 

The results of the performed Raman spectroscopic analysis for SCN
−
 anion are 

in good agreement with the characteristic values for the C–S, CN stretching and 

δS–CN bending modes of the thiocyanate anion listed in literature [150Error! 

Bookmark not defined.] and with the calculated Raman spectra. Three regions with 

different frequencies are attributed for free SCN
−
 ion in the vibrational spectra (460–

465 cm
-1

, S–CN bending vibration modes, 730–756 cm
-1

, C–S stretching, and 

2120–2148 cm
-1

, CN stretching vibration modes). Unfortunately, the S–CN 

deformation vibrational mode was not revealed in the experimental Raman spectra 

and also was very weak in the calculated spectra. 

The calculation data from the Table 4.7 show that the Hg–Svibration is 

sensitive to the number of SCN
−
 ligands. As the number of bound SCN

−
 ions 

increases, the effective charge on the Hg metal decreases and the Hg–S vibration 

number becomes lower. This tendency was confirmed by the Raman spectral 

analysis. The decrease of Hg–S vibration number was observed earlier by Šašić et. 

al. [73]. Additionally, the behavior of Hg–S vibration in the case of increasing 

number of SCN
−
 ligands remains when the water is changed to other solvents such 

as DMSO or dimethylformamide (DMF) [73, 75, 196]. The presence of the third 

SCN
−
 ion reduces the positive charge of Hg

2+
 and the experimental Hg–S 

downshifts by about 22–28 cm
-1

, compared with those of the corresponding solution 

of Hg(SCN)2. Attachment of fourth ligand to the Hg
2+

 ion causes a further decrease 

in the Hg–Swavenumber of about 5–12 cm
-1

 compared with the [Hg(SCN)3]
−
. The 

calculated differences of Hg–Svibrations are greater, depending on the each 

hypothetical case. 
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Table 4.7. Vibrational assignments of Hg(SCN)2, [Hg(SCN)3]
−
, [Hg(SCN)4]

2−
 complexes in the different hypothetical cases 

obtained from DFT calculations and determined experimentally 

Complex Vibrational 

assignments 

Calculated unscaled 

frequency (average) 

H2O (D2O), cm-1 

Intensity Scaled frequency  

(scale factor 0.9688) 

H2O (D2O), cm-1 

Experimental 

frequency in H2O 

(D2O), cm-1 

Experimental frequency 

according to the 

literature, cm-1 

SCN−  δS–CN 460 w    

 C–S 730 m  750 747e 

 CN 2132 s 2066 2068 2068e 

SCN− solvated δS–CN 465 vw    

 C–S 742 w  750 747e 

 CN 2120 s 2054 2068 2068e 

[(SCN−)(H2O)2]
−  δS–CN 465 vw    

 C–S 756 w  750 747e 

 CN 2148 s 2081 2068 2068e 

[(SCN−)(H2O)2]
− solvated δS–CN 465 vw    

 C–S 756 w  750 747e 

 CN 2148 s 2081 2068 2068e 

Hg(SCN)2 Hg–S 290 m  284 (281, 256) 
266a, 264b (DMSO), 271b 

(DMF), 279b (water)   

 δS–CN 434 vw  451  

 C–S 687 vw    

 CN 2253 vs 2182 2147 (2146) 2131c (DMSO) 

Hg(SCN)2 solvated Hg–S 211 vw  284 (281, 256) 
266a, 264b (DMSO),  

271b (DMF), 279b (water)   

 δS–CN 434 vw  451  

 C–S 716 vw    

 CN 2197 vs 2129 2147 (2146) 2131c (DMSO) 

Hg(SCN)2(H2O)2 Hg–S 245, 302 (245, 289) m  284 (281, 256) 
266a, 264b (DMSO),  

271b (DMF), 279b (water)   

 δS–CN 475 vw  451  

8
1
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Table 4.7. Continued 

Complex Vibrational 

assignments 

Calculated unscaled 

frequency (average) 

H2O (D2O), cm-1 

Intensity Scaled frequency  

(scale factor 0.9688) 

H2O (D2O), cm-1 

Experimental 

frequency in H2O 

(D2O), cm-1 

Experimental frequency 

according to the 

literature, cm-1 

 C–S 708 w    

 CN 2209 (2210) vs 2141 (2141) 2147 (2146) 2131c (DMSO) 

Hg(SCN)2(H2O)2 solvated Hg–S 236, 302 (237, 291) m  284 (281, 256) 
266a, 264b (DMSO),  

271b (DMF), 279b (water)   

 δS–CN 474 vw  451  

 C–S 706 m    

 CN 2204 (2202) vs 2135 (2134) 2147 (2146) 2131c (DMSO) 

[Hg(SCN)3]
− Hg–S 255 m  256 (255), 262 (261) 

242a, 246b (DMSO),  

248b (DMF), 252b (water)   

 δS–CN 422 vw  453  

 C–S 699 w   714c (water) 

 CN 2223 vs 2153 
2131 (2132), 2137 

(2138) 

2119c (DMSO). 2117c 

(water) 

[Hg(SCN)3]
− solvated Hg–S 239 m  256 (255), 262 (261) 

242a, 246b (DMSO),  

248b (DMF), 252b (water)   

 δS–CN 428 w  453  

 C–S 707 w   714c (water) 

 CN 2211 vs 2142 
2131 (2132), 2137 

(2138) 

2119c (DMSO). 2117c 

(water) 

[Hg(SCN)3(H2O)]− Hg–S 245, 282 (246, 271) m  256 (255), 262 (261) 
242a, 246b (DMSO),  

248b (DMF), 252b (water)   

 δS–CN 425 vw  453  

 C–S 717 w   714c (water) 

 CN
2189, 2219 (2188, 

2218) 
vs 

2121, 2150 (2121, 

2150) 

2131 (2132), 2137 

(2138) 

2119c (DMSO). 2117c 

(water) 

[Hg(SCN)3(H2O)]− 

solvated 
Hg–S 237, 278 (233, 271) w  256 (255), 262 (261) 

242a, 246b (DMSO),  

248b (DMF), 252b (water)   
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Table 4.7. Continued 

Complex Vibrational 

assignments 

Calculated unscaled 

frequency (average) 

H2O (D2O), cm-1 

Intensity Scaled frequency  

(scale factor 0.9688) 

H2O (D2O), cm-1 

Experimental 

frequency in H2O 

(D2O), cm-1 

Experimental frequency 

according to the 

literature, cm-1 

 δS–CN 426 vw  453  

 C–S 715 w   714c (water) 

 CN
2188, 2205 (2186, 

2206) 
vs 

2119, 2137 (2119, 

2137) 

2131 (2132), 2137 

(2138) 

2119c (DMSO). 2117c 

(water) 

[Hg(SCN)4]
2− Hg–S 206, 219 m  240 (240), 252 (252) 

235a1, 234b (DMSO),  

234b (DMF), 238b (water)   

 δS–CN 433 vw  454  

 C–S 709 vw  717 (717) 710d, 717e, 714c(water) 

 CN 2192 vs 2124 2122 (2122) 
2117d, 2117c, 2114e 

(water) 

[Hg(SCN)4]
2− solvated Hg–S 217, 232 m  240 (240), 252 (252) 

235a1, 234b (DMSO),  

234b (DMF), 238b (water)   

 δS–CN 434 vw  454  

 C–S 714 w  717 (717) 710d, 717e, 714c(water) 

 CN 2190 vs 2122 2122 (2122) 
2117d, 2117c, 2114e 

(water) 

[Hg(SCN)4(H2O)2]
2−  Hg–S 206, 223 (206, 224) m  240 (240), 252 (252) 

235a1, 234b (DMSO),  

234b (DMF), 238b (water)   

 δS–CN 405, 433 vw  454  

 C–S 708,722 w  717 (717) 710d, 717e, 714c(water) 

 CN 2199 (2197) vs 2130 (2130) 2122 (2122) 
2117d, 2117c, 2114e 

(water) 
a, a1 Taken from Ref. [196]         
b Taken from Ref. [73] 
c Taken from Ref. [75] 
d Taken from Ref. [199]  
e Taken from Ref. [200] 

Abbreviations: s – strong; m – medium; w – weak; vw – very weak; vs – very strong;  – stretching;  – deformation 

8
3
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Figure 4.13. The calculated and experimental Raman spectrum of each [Hg(SCN)n]
2−n

 

complex in the aqueous solution in a range of 200–320 cm
-1

 and 2040–2180 cm
-1

 

The calculated and experimentally observed C–S vibration modes were not 

informative in this study because the signal always was very weak or weak. 

Furthermore, it was noticed that the signal of C–S band gets better with the added 

number of SCN
−
 ligand. In the case of [Hg(SCN)4]

2−
 it was possible to identify the 

C–S vibration at 717 cm
-1

. There is a lack of such data in literature too. It was 

found only some experimental values of C–S vibration in water solution (Table 

4.7) and only for [Hg(SCN)3]
−
 and [Hg(SCN)4]

2−
 complexes.  

The greatest changes in Δwere identified for CN vibration according to 

the experimental and calculated data. The tendency is the same: the increased 

number of SCN
−
 ligands shifts the CN vibration to the lower wavenumber 

position. Generally, it can be stated that the more ligands are introduced in the 

complexation, the weaker Hg–S and CN bond is formed. This was confirmed by 

calculated bond length (Table 4.6). Figure 4.13 shows the Raman spectra of Hg
2+

 ion 

coordinated series in the Hg–S and CN regions. All the peaks of Hg–S and 

CN stretching modes are sufficiently well separated from the peaks of the free 

SCN
−
.  

In general the solutions containing [Hg(SCN)3]
−
 complex ion gave spectra 

which were more difficult to analyze. It is known that [Hg(SCN)3]
−
 complex ion is 
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prone to partial disproportionation to Hg(SCN)2 and [Hg(SCN)4]
2−

 species [196]. 

Such feature has been recognized during preparation procedure of the solution 

containing [Hg(SCN)3]
−
 complex ion. The solution became turbid due to the 

formation of the slightly soluble Hg(SCN)2 complex. Raman spectra of the solution, 

containing [Hg(SCN)3]
−
 complex ion, exhibited three well separated peaks at 2143 

cm
-1

, 2131 cm
-1

 and 2070 cm
-1

. The first one is very similar to CN vibrational 

mode of Hg(SCN)2 complex and the third is associated with CN vibration of free 

SCN
−
 group. In order to improve the assignment of Raman spectra of [Hg(SCN)3]

−
 

complex ion, the subtraction of the spectra of Hg(SCN)2 and [Hg(SCN)4]
2−

 

complexes from the spectrum of [Hg(SCN)3]
− 

complex was made. Difference 

spectrum displayed two peaks 2131 cm
-1

 and 2137 cm
-1

 in CN region and two 256 

cm
-1

, 261 cm
-1

 peaks in Hg–S region, respectively. This double-peak character of 

mentioned regions was also displayed in the calculation results (Table 4.7). It was 

presumed that the assignment of 2117 cm
-1

 peak to CN vibration for both 

[Hg(SCN)3]
−
 and [Hg(SCN)4]

2−
 complexes of other researches [76] is incorrect and 

the disproportionation feature of [Hg(SCN)3]
−
 complex ion was not taken into 

account. In addition, the peak of CN vibration mode of free SCN
−
 ion at 2066  

cm
-1

 in each analyzed [Hg(SCN)n]
2−n

 aqueous solution was observed. On the 

contrary, this peculiarity is not characteristic for mercury(II) thiocyanate complexes 

in DMSO solution [196]. Moreover, the calculated and experimental Raman spectra 

showed previously unnoticed splitting of Hg–S peak of [Hg(SCN)4]
2−

 complex ion 

(Table 4.7, Fig. 4.13). 

The analysis of experimental Raman spectra of Hg(SCN)2 complex was the 

most complicated due to its low solubility. Therefore, the weak signals with low 

signal to noise ratio have been obtained. Also the splitting character of Hg–S 

compared with [Hg(SCN)3]
−
 and [Hg(SCN)4]

2−
 ions in the experimental spectra was 

not recognized.     

Based on the comparison of the calculated and experimental Raman spectra of 

each mercury(II) thiocyanate complex in different hypothetical case (with implicit or 

explicit water molecules) the attempt to determine the most reliable structure of each 

complex has been made. In the case of Hg(SCN)2 and [Hg(SCN)3]
− 

 ion it can be 

seen that the calculated Raman spectra correlates well with the experimental one 

when the Hg(SCN)2 complex includes two water molecules and the [Hg(SCN)3]
− 

 

complex ion – one water molecule as the ligand. The addition of implicit water 

molecules slightly improves the results. Based on the data for [Hg(SCN)4]
2−

 

complex ion the other trend was noticed. The implicit solvation model around the 

[Hg(SCN)4]
2−

 complex ion in aqueous media represented the most probable mode 

and the calculated model with the explicitly added water molecules only impaired 

the results. These data clearly indicate the formation of four-coordinated mercury(II) 

thiocyanate complexes in the water environment. 
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4.3.3. Vibrational spectra of [Hg(SCN)n]
2−n

 complexes in the heavy water 

solution 

In order to perform the assignments of fundamental vibrational modes of each 

[Hg(SCN)n]
2−n

 complex properly as well as verify the interaction of ligands with 

Hg
2+

 ion, the isotopic substitutions were made. Presumably, if the Hg
2+

 ion in the all 

three complexes is four-coordinated, the H2O replacement with D2O will have the 

minimal influence on fundamental vibrations of [Hg(SCN)4]
2−

 complex and maximal 

on Hg(SCN)2 complex. The performed calculations with two H2O/D2O molecules 

for the [Hg(SCN)4]
2−

 complex ion showed almost identical peaks in the Raman 

spectra. In excellent agreement with the calculated spectra, the experimental spectra 

in both these cases were identical. In the case of Hg(SCN)2 the calculations showed 

that the frequency of CN stretching vibration was not sensitive to isotopic 

exchange. On the contrary, the second Hg–S vibration at 302 cm
-1

 decreased by 13 

cm
-1

 (while the first one at 245 cm
-1

 was steady) via H2O/D2O exchange modeling 

(Table 4.7). It should be noted that the vibrations at the 250–300 cm
-1

 region are 

complex vibrations of Hg–S and Hg–O stretching. Additionally, it is obvious that 

the isotopic substitution has substantial influence to the Hg–S and Hg–O 

stretching modes. This tendency was observed in the experimental Raman spectra of 

Hg(SCN)2 as well. After the isotopic exchange the CN stretching remains 

unchanged and the Hg–S stretching decreased by 3 cm
-1

. Additionally, the Raman 

spectra of Hg(SCN)2 in D2O exhibited one further Hg–Speak at 256 cm
-1

 (Fig. 

4.14). The calculated Raman spectra of Hg(SCN)2 in the D2O and H2O also 

displayed two well separated Hg–Sstretching modes. It can be assumed that the 

H2O environment hides one of Hg–S stretching modes due to weak intensity of 

signal and low solubility of Hg(SCN)2 complex in water. 

 

 

Figure 4.14. The experimental Raman Hg–S and CN stretching vibrational spectra for 

the [Hg(SCN)n]
2−n

 complexes in the heavy water solution 
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In general, the isotopic changes have played an important role in performing 

better vibrational assignments. It was possible to identify the second Hg–S 

vibrational mode in the case of Hg(SCN)2 and confirm that the Hg
2+

 ion in the all 

complexes is four-coordinated. 

 

4.3.4. UV spectra of [Hg(SCN)n]
2−n

 complexes in the aqueous solution 

The experimental electronic spectra supplemented by simulated spectra of the 

Hg(SCN)2, [Hg(SCN)3]
−
, [Hg(SCN)4]

2−
 complexes are missing. According to this 

the research in order to assess the performance of the different functionals on the 

calculation results of UV spectra was performed. Different functionals, including 

different solvation effects, in order to understand how taking into account these 

contributions the accuracy of reproducing the experimental spectra can be improved 

were considered. Starting from the optimized geometry obtained by DFT B3LYP 

calculations the electronic spectra were calculated using B3LYP, PBE1PBE and 

PBEPBE levels of theory for each hypothetical case.  

The experimental spectra of Hg(SCN)2, [Hg(SCN)3]
−
, [Hg(SCN)4]

2−
 

complexes together with the TD-DFT calculated ones are reported in the Figure 

4.15.  

The experimental spectrum of Hg(SCN)2 presents an intense and sharp 

maximum in the region of the spectrum extending from ~ 208 to 240 nm with 

maximum of 222 nm. Moreover, a much lesser intense absorption band was 

identified near the latter one centered at about 267 nm. Actually, it was observed 

that the use of PBE1PBE functional corresponds better to the experimentally 

obtained data in each hypothetical case. Indeed, the used PBE1PBE functional 

together with both explicit and implicit solvation models exhibited an absorption 

maximum and band shape in better agreement with the experimental results. In this 

case, the deviation from the experimental maximum of about 4 nm for most intense 

peak, and about 2 nm for the second one, even if the band intensities were less well 

reproduced, was obtained. The worst results were obtained using the PBEPBE 

functional. 

The experimental absorption spectra of [Hg(SCN)3]
− 

complex is similar to 

experimental spectra of Hg(SCN)2 complex. The only differences lie in the less 

intensive absorption band region. Here the hipsochromic shift with the maximum of 

262.5 nm was observed and the intensity of 222 nm peak is higher of about 0.05 

compared with the peak of 222 nm of Hg(SCN)2 complex. The computed spectrum 

using the PBE1PBE hybrid functional in common with the explicit solvation showed 

a very good agreement with its experimental counterpart over the entire spectra. 

Even spectral features with lower intensity were nicely reproduced.  

The experimental electronic spectra of [Hg(SCN)4]
2−

 complex ion do not differ 

greatly from the spectra of Hg(SCN)2 and [Hg(SCN)3]
−
 complexes. The main peak 

centers at 222 nm and the second one (identified using fitting) has maximum at 260 

nm which shows the small hipsochromic shift compared with the spectra of 

[Hg(SCN)3]
−
 complex. As was previous established for Hg(SCN)2 and [Hg(SCN)3]

−
 

complexes, the theoretical description using the PBE1PBE functional is the best for 
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[Hg(SCN)4]
2−

 complex too. However, unlike the previous discussed, the implicit 

solvation model is the most characteristic for [Hg(SCN)4]
2−

 complex. The computed 

electronic spectrum also showed a good agreement with the experiment one 

indicating that analyzed systems were treated accurately by means of TD-DFT 

method. The calculated maximum in the less intensive absorption band region as 

well as the intense and sharp one differ by 6 nm from experimentally determined 

values.  

 

 

Figure 4.15. The calculated and experimental absorption spectra of Hg(SCN)2, [Hg(SCN)3]
−
, 

[Hg(SCN)4]
2−

 complexes in aqueous solution 

The obtained TD-DFT calculation results show that the selection of the 

functional, that sometimes may be not fairly applied, can bring important differences 

on the final simulated absorption spectra. In general all the computed spectra at 

PBE1PBE level shows an almost perfect agreement with the experimental electronic 

spectra and even spectral features with lower intensity are adequately reproduced. 

Additionally, the arrangement of peaks from the lowest intensity of Hg(SCN)2 

complex to highest intensity of [Hg(SCN)4]
2−

 complex is perfectly restored too. 

Moreover, the experimental and computed data showed that the increasing number 

of SCN
−
 ligands in the analyzed complexes with Hg

2+
 ion, induces the hipsochromic 

shift in the less intense absorption band region. 
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4.4. Raman spectroscopic study of aqueous mixture of mercury(II) and 

iron(III) thiocyanates 

This section briefly illustrates the application of the obtained knowledge on the 

characteristic vibrational properties of explored complexes for the analysis of a 

series of Hg(II) thiocyanate and Fe(III) monoisothiocyanate complexes, which are 

formed simultaneously during simple titrimetric analysis.  

The formation constants between Hg
2+

 and SCN
−
 ions are larger than between 

Fe
3+ 

and SCN
−
 ions (see Eqs. (3)–(7)). The complexation mainly follows the 

reactions [180, 201, 202]: 

 

   )()()(2 aqSCNHgaqSCNaqHg
                           K1 = 2.0 x 10

8
              (3) 

)()()()( 2 aqSCNHgaqSCNaqHgSCN                         K2 = 1.0 x 10
8             (4) 

   )()()()( 32 aqSCNHgaqSCNaqSCNHg
                                     K3 = 7.0 x 10

2             (5) 

   )()()()(
2

43 aqSCNHgaqSCNaqSCNHg
                     K4 = 7.0 x 10

1
          (6) 

   )()()(
23 aqSCNFeaqSCNaqFe
                           K5 = 8.9 x 10

2
             (7) 

 

Based on the values of formation constants of complexes between Hg
2+

 and 

Fe
3+

, and SCN
−
 ions respectively, the magnitude of formation constant K2 of 

[Hg(SCN)2] in an aqueous solution, indicates that Hg
2+

 ions have a far greater 

affinity for SCN
− 

ion than does Fe
3+

 ion. K3 of [(Hg(SCN)3]
−
 and K5 of Fe(NCS)

2+
 

are the same order of magnitude. However, the K3 is a little higher than K2 and red 

[Fe(NCS)]
2+

 complex is formed, indicating the end-point of titration. According to 

Li X-G. et al., (2008) [14] the colorless [Hg(SCN)2] complex is the only speciation 

for mercury(II) in the sample at the equivalence-point. This conclusion is denied by 

the performed analysis of a number of calculated and experimentally observed 

Raman spectra of mercury(II) and iron(III) thiocyanate complexes and their 

mixtures. The obtained data indicate that at the end-point of titration when red 

[Fe(NCS)]
2+

 complex appears, the [Hg(SCN)3]
−
 complex ion is formed also. It was 

mentioned that the [Hg(SCN)3]
–
 is prone to partial disproportionation to Hg(SCN)2 

and [Hg(SCN)4]
2−

 species. This disproportionation character was confirmed by the 

in detail performed assignments of fundamental vibrational modes of each 

mercury(II)-thiocyanate and iron(III)-thiocyanate complex. Figure 4.16 presents the 

evidence of speciation visually. 
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Figure 4.16. The experimental RamanC≡N stretching vibrational spectra for the mixture of 

[Hg(SCN)n]
2−n

 and [Fe(NCS)]
2+

 complexes in the aqueous solution 

It is clearly seen that not only the characteristic C≡N vibrational band for 

[Hg(SCN)3]
−
 complex exists, but also the appearance of characteristic CN band 

for [Fe(NCS)]
2+

 complex at ~ 2065 cm
-1

 is evident. The origin of the latter could be 

perceived even when the Hg
2+

 and SCN
–
 molar ratio is 1 : 2.5, while there is no 

doubt in the case of [Hg(SCN)4]
2−

.      
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5. THE MAIN RESULTS AND CONCLUSIONS 

 

1. Detailed vibrational assignments of the fundamental vibrational modes of 

iron(III) isothiocyanates were determined by isotopic H2O/D2O exchange, 

Raman spectra subtraction analysis on experimental Raman spectra, and 

PED analysis on calculated Raman spectra. The bands near 2067 cm
-1

, 1139 

cm
-1

, 1042 cm
-1

, 750 cm
-1

, 465 cm
-1

, 422 cm
-1

, 295 cm
-1

 have been assigned 

to C=N, bound asS=O, bound sS=O, CS, δH–O–H, δN=C=S, Fe–N 

vibrations of the iron(III) monoisothiocyanate in aqueous acidic solution, 

respectively. 

2. Calculated Raman and UV spectra of iron(III) monoisothiocyanate, when 

the SO4
2–

 ligand was situated near the NCS
–
 ligand, corresponded better to 

the experimentally recorded Raman and UV spectra. The analysis of explicit 

and/or implicit solvation indicated that the explicit and implicit solvation 

model in tandem is more appropriate for the calculation of Raman spectra of 

the titled complex than explicit model alone. Experimental UV spectrum is 

better described by the explicit solvation model. 

3. Fifteen most important vertical electronic transitions in terms of oscillator 

strength (greater than 0.01) have been identified. The vast majority of 

electronic transitions are characterized as ligand-to-metal (LMCT) charge 

transfers, where the NCS
–
 and SO4

2–
 ligands act as the principal electron 

donor groups. The results of calculations using different methods and 

functionals show that the choice of the functional used for TD calculations 

is much more important than the choice of the method used for geometry 

optimization. The PBE1PBE and CAM-B3LYP methods used for geometry 

optimization gave very similar absorption spectra, while slightly different 

spectral tendencies using B3LYP were observed. 

4. Detailed vibrational assignments of the fundamental vibrational modes of 

mercury(II) thiocyanates were determined by isotopic H2O/D2O exchange, 

Raman spectra subtraction analysis on experimental Raman spectra. The 

vibrational bands at 2122 cm
-1

 (CN), 717 cm
-1 

(C–S), 454 cm
-1

 (δS–

CN), 240 and 252 cm
-1

 (Hg–S) have been identified for the [Hg(SCN)4]
2−

 

complex. The vibrational bands at 2131 cm
-1

 (CN), 453 cm
-1

 (δS–CN), 

256 and 262 cm
-1

 (Hg–S) have been attributed to the [Hg(SCN)3]
−
 

complex. The vibrational bands at 2147 cm
-1

 (CN), 451 cm
-1

 (δS–CN), 

284 cm
-1

 (Hg–S) have been assigned to the [Hg(SCN)2] complex.  

5. In the case of Hg(SCN)2 and [Hg(SCN)3]
− 

complex ions, the calculated 

Raman spectra correlates well with the experimental one when the explicit 

solvation has been used. The addition of implicit water molecules slightly 

improved the results. For the [Hg(SCN)4]
2−

 complex ion, the implicit 

solvation model represented the spectra in better agreement with the 

experimentally observed. The obtained TD-PBE1PBE calculation results 

show almost perfect agreement with the experimental electronic spectra and 

even spectral features with lower intensity were adequately reproduced. 
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6. The [Hg(SCN)2] complex ion is not the only speciation for mercury(II) in 

the sample when Fe
3+

, Hg
2+

, and SCN
–
 ions are presented. The presence of 

[Hg(SCN)3
]−

 complex ion, which prones to partial disproportionation to 

Hg(SCN)2 and [Hg(SCN)4]
2−

 species, has been established. 
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ANNEX 1. Calculated and experimental vibrational assignments of [Fe(NCS)]
2+

 complex in the different hypothetical cases 

by B3LYP method. Theoretical assignments are based on detailed PED analysis. Abbreviations:  – stretching;as – 

asymmetric stretching; s – symmetric stretching;  – deformation; sci – scissoring deformation; t – twisting deformation; 

w – wagging deformation; out-of-plane deformation 

Calculated Approximate 

description 

Experimental 

SO4
2– ligand is beside the NCS– ligand SO4

2– ligand is on the opposite of the NCS– ligand   

explicitly solvated  explicitly-implicitly 

solvated 

explicitly solvated  explicitly-implicitly 

solvated 

  

Wavenumber 

H2O (D2O), 

cm-1 

Band 

assignments 

in H2O, PED 

% 

Wavenumber 

H2O (D2O), 

cm-1 

Band 

assignments 

in H2O, PED 

% 

Wavenumber 

H2O (D2O), 

cm-1 

Band 

assignments 

in H2O, PED 

% 

Wavenumber 

H2O (D2O), 

cm-1 

Band 

assignments 

in  H2O, 

PED % 

 Wavenumber 

H2O (D2O), 

cm-1 

3882 (2848) 100 

asO−H 

3555 

(2609) 
99 asO−H 3873 

(2839) 

100 

asO−H 

3548 

(2603) 
93 asO−H bound H2O  

3856 (2824) 99 asO−H 3548 

(2603) 
99 asO−H 3868 

(2833) 

100 

asO−H 

3544 

(2601) 
92 asO−H bound H2O  

3853 (2806) 99 O−H 3545 

(2601) 
99 asO−H 3841 

(2798) 
100 O−H 3539 

(2595) 

100 

asO−H 

bound H2O  

3760 (2709) 100 sO−H 3495 

(2520) 
91 sO−H 3748 

(2703) 
100 sO−H 349 (2516) 90 sO−H bound H2O  

3721 (2685) 100 sO−H 3486 

(2512) 
99 O−H 3735 

(2695) 
100 sO−H 3482 

(2510) 
 99 sO−H bound H2O  

3194 (2326) 99 O−H 3483 

(2510) 
96 O−H 3246 

(2362) 
98 O−H 3479 

(2507) 
88 sO−H bound H2O  

2064 (2064) 88 N=C + 

11 C=S  

2059 

(2059) 
92 N=C 2057 

(2057) 
88 N=C + 

12 C=S  

2050 

(2050) 
92 N=C  NCS 2067 (2061) 

1652 (1202) 74 

sciH−O−H 

1549 

(1136) 

88 

sciH−O−H 

1658 

(1207) 

89 

sciH−O−H 

1549 

(1135) 

89 

sciH−O−H 

bound H2O  

1621 (1186) 90 

sciH−O−H 

1543 

(1132) 

88 

sciH−O−H 

1625 

(1190) 

83 

sciH−O−H 

1544 

(1133) 

92 

sciH−O−H 

bound H2O  
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ANNEX 1. continued 

Calculated Approximate 

description 

Experimental 

SO4
2– ligand is beside the NCS– ligand SO4

2– ligand is on the opposite of the NCS– ligand   

explicitly solvated  explicitly-implicitly 

solvated 

explicitly solvated  explicitly-implicitly 

solvated 

  

Wavenumber 

H2O (D2O), 

cm-1 

Band 

assignments 

in H2O, PED 

% 

Wavenumber 

H2O (D2O), 

cm-1 

Band 

assignments 

in H2O, PED 

% 

Wavenumber 

H2O (D2O), 

cm-1 

Band 

assignments 

in H2O, PED 

% 

Wavenumber 

H2O (D2O), 

cm-1 

Band 

assignments 

in  H2O, 

PED % 

 Wavenumber 

H2O (D2O), 

cm-1 

1592 (1168) 90 

sciH−O−H 

1539 

(1131) 

94 

sciH−O−H 

1610 

(1180) 

81 

sciH−O−H 

1543 

(1132) 

90 

sciH−O−H 

bound H2O  

1300 (1300) 94 asS=O 1183 

(1183) 
97 asS=O 1289 

(1289) 
100 asS=O 1186 

(1186) 
97 asS=O bound SO4

2– 1139 (1139) 

1084 (1081) 86 sS=O 1091 

(1091) 
89 sS=O 1092 

(1089) 
100 sS=O 1094 

(1093) 
88 sS=O bound SO4

2– 1039* (1039*) 

964 (707) 77 

tH−O−H   

        

947 (947) 74 C=S + 

19 Fe−N  

898 (898) 79 C=S + 

17 Fe−N  

954 (951) 41 C=S + 

10 Fe−N 

+ 33 

tH−O−H  

902 (902) 76 C=S + 

17 Fe−N 

 CS 750 (750) 

    946 29 C=S + 

47 

tH−O−H  

    

832 (830) 82 sS−O 868 (868) 82 S−O 851 (849) 76 S−O 883 (882) 79 S−O bound SO4
2–  

805 (802) 66 S−O + 

10 

O−S=2O  

833 (832) 79 S−O 805 (800) 77 S−O 829 (829) 83 S−O bound SO4
2–  

 

1
1
3
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ANNEX 1. continued 

Calculated Approximate 

description 

Experimental 

SO4
2– ligand is beside the NCS– ligand SO4

2– ligand is on the opposite of the NCS– ligand   

explicitly solvated  explicitly-implicitly 

solvated 

explicitly solvated  explicitly-implicitly 

solvated 

  

Wavenumber 

H2O (D2O), 

cm-1 

Band 

assignments 

in H2O, PED 

% 

Wavenumber 

H2O (D2O), 

cm-1 

Band 

assignments 

in H2O, PED 

% 

Wavenumber 

H2O (D2O), 

cm-1 

Band 

assignments 

in H2O, PED 

% 

Wavenumber 

H2O (D2O), 

cm-1 

Band 

assignments 

in  H2O, 

PED % 

 Wavenumber 

H2O (D2O), 

cm-1 

647  51 

tH−O−H   

  646 (699) 22 

wH−O−H 

+ 43 

tH−O−H    

633 (605) 10 

sciO−S−O 

+ 63 

tH−O−H  

  

641 (641) 52 

wO−S=O 

+ 12 

O=S−2O 

  639 (635) 45 

wO−S=O 

+ 18 

tH−O−H 

+ 10 

sciO=S=O  

    

621 (465) 23 

wH−O−H 

+ 43 

tH−O−H  

624 (455) 90 

tH−O−H   

629 (461) 38 

wH−O−H 

+ 22 

tH−O−H 

+ 15 

O=S−2O 

623 (459) 90 

tH−O−H  

bound H2O 608* 

607 (455, 

413) 

30 

wH−O−H 

+ 35 

tH−O−H  

611 (438) 72 

tH−O−H   

609 (449) 12 

wH−O−H 

+ 70 

tH−O−H  

616 (448) 81 

tH−O−H  
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ANNEX 1. continued 

Calculated Approximate 

description 

Experimental 

SO4
2– ligand is beside the NCS– ligand SO4

2– ligand is on the opposite of the NCS– ligand   

explicitly solvated  explicitly-implicitly 

solvated 

explicitly solvated  explicitly-implicitly 

solvated 

  

Wavenumber 

H2O (D2O), 

cm-1 

Band 

assignments 

in H2O, PED 

% 

Wavenumber 

H2O (D2O), 

cm-1 

Band 

assignments 

in H2O, PED 

% 

Wavenumber 

H2O (D2O), 

cm-1 

Band 

assignments 

in H2O, PED 

% 

Wavenumber 

H2O (D2O), 

cm-1 

Band 

assignments 

in  H2O, 

PED % 

 Wavenumber 

H2O (D2O), 

cm-1 

  606 (606) 57 

sciO−S−O 

+ 16 

tH−O−H 

+ 14 

sciO=S=O  

      

558 (559) 14 

Fe−O(SO4

) + 38 

O−S=2O  

588 91 

tH−O−H   

558 (560) 20 asS−O 

+ 53 

O−S=2O  

596 51 

sciO−S−O 

+ 14 

tH−O−H 

+ 13 

sciO=S=O   

  

544 51 

wH−O−H  

549 (549) 71 

O−S=2O 

547 (544) 49 

wH−O−H 

+ 25 

O=S−2O  

552 (553) 71 

O−S=2O 

  

529 (532) 23 

sciO=S=O 

+ 44 

O=S−2O    

525 (525) 88 

O=S−2O 

536 36 

wH−O−H 

+ 19 

O=S−2O  

525 (532) 79 

O=S−2O 

  

 

1
1
5
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ANNEX 1. continued 

Calculated Approximate 

description 

Experimental 

SO4
2– ligand is beside the NCS– ligand SO4

2– ligand is on the opposite of the NCS– ligand   

explicitly solvated  explicitly-implicitly 

solvated 

explicitly solvated  explicitly-implicitly 

solvated 

  

Wavenumber 

H2O (D2O), 

cm-1 

Band 

assignments 

in H2O, PED 

% 

Wavenumber 

H2O (D2O), 

cm-1 

Band 

assignments 

in H2O, PED 

% 

Wavenumber 

H2O (D2O), 

cm-1 

Band 

assignments 

in H2O, PED 

% 

Wavenumber 

H2O (D2O), 

cm-1 

Band 

assignments 

in  H2O, 

PED % 

 Wavenumber 

H2O (D2O), 

cm-1 

509 53 

wH−O−H 

+ 10 

sciO=S=O 

  503 (512) 18 

Fe−O(SO4

) + 11 

sciO−S=O 

+ 32 

sciO=S=O 

+ 12 

O=S−2O   

    

507 (514) 10 

tH−O−H 

+ 23 

sciO=S=O  

484 (484) 18 Fe−O 

+ 15 

sciO−S−O  

+ 61 

sciO=S=O  

498 (418) 11 

sciO=S=O 

+ 51 

wH−O−H    

481 (483) 16 

Fe−O(SO4

) + 16  

sciO−S−O 

+ 59 

sciO=S=O   

  

478 (486) 90 

N=C=S 

470 (472) 93 

N=C=S 

487 (493) 85 

N=C=S 

474 (476) 92 

N=C=S 

NCS 422* 

475 (482) 88 

N=C=S 

468 (470) 89 

N=C=S 

482 (486) 85 

N=C=S 

470 (467) 96 

N=C=S 

NCS  

444 (385, 

332) 

33 

wH−O−H 

+ 33 

tH−O−H   

449 (349) 84 

wH−O−H 

420 (391) 75 

tH−O−H 

+ 12 

sciO−S=O     

454 (348) 83 

wH−O−H  

bound H2O   
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ANNEX 1. continued 

Calculated Approximate 

description 

Experimental 

SO4
2– ligand is beside the NCS– ligand SO4

2– ligand is on the opposite of the NCS– ligand   

explicitly solvated  explicitly-implicitly 

solvated 

explicitly solvated  explicitly-implicitly 

solvated 

  

Wavenumber 

H2O (D2O), 

cm-1 

Band 

assignments 

in H2O, PED 

% 

Wavenumber 

H2O (D2O), 

cm-1 

Band 

assignments 

in H2O, PED 

% 

Wavenumber 

H2O (D2O), 

cm-1 

Band 

assignments 

in H2O, PED 

% 

Wavenumber 

H2O (D2O), 

cm-1 

Band 

assignments 

in  H2O, 

PED % 

 Wavenumber 

H2O (D2O), 

cm-1 

  397 (298) 82 

w(H−O−H

)  

  437 (340) 83 

wH−O−H  

  

      405 (307) 71 

wH−O−H  

  

374 (372) 71 

sciO=S−O 

362 (361) 90 

sciO=S−O 

372 (372) 64 

sciO−S=O      

362 (365) 88 

sciO=S−O 

bound SO4
2–  

366 (356) 35 Fe−N 

+ 23 

sciS−O−Fe   

352 (337) 58 

sFe−O(H2

O) + 12 

wH−O−H    

371 (362) 40 Fe−N 

+ 13 

sciS−OFe   

334 (324) 10 Fe−N 

+ 71 

sFe−O(H2

O) 

  

325 60 

Fe−O(H2

O) + 10 

S−O−Fe   

325 31 

sFe−O(H2

O) + 46 

wH−O−H     

320 (315) 57 

Fe−O(H2

O) + 13 

O−S=2O  

323 (317) 79 

asFe−O(H2

O) 

  

307 (303) 20 

Fe−O(SO4

) + 29 

Fe−O(H2

O) + 14 

O−S=2O  

320 (316) 23 Fe−N 

+ 38 

Fe−O(H2

O)  

310 (300) 89 

asFe−O(H2

O) 

306 (300) 25 Fe−N 

+ 18 

Fe−O(H2

O) + 16 

sciS−O−Fe   

  

 1
1
7
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ANNEX 1. continued 

Calculated Approximate 

description 

Experimental 

SO4
2– ligand is beside the NCS– ligand SO4

2– ligand is on the opposite of the NCS– ligand   

explicitly solvated  explicitly-implicitly 

solvated 

explicitly solvated  explicitly-implicitly 

solvated 

  

Wavenumber 

H2O (D2O), 

cm-1 

Band 

assignments 

in H2O, PED 

% 

Wavenumber 

H2O (D2O), 

cm-1 

Band 

assignments 

in H2O, PED 

% 

Wavenumber 

H2O (D2O), 

cm-1 

Band 

assignments 

in H2O, PED 

% 

Wavenumber 

H2O (D2O), 

cm-1 

Band 

assignments 

in  H2O, 

PED % 

 Wavenumber 

H2O (D2O), 

cm-1 

289 (315) 10 Fe−N 

+ 41 

sFe−O(H2

O) + 20 

S−O−Fe   

298 (291) 64 

asFe−O(H2

O) + 10 

sciS−O−Fe   

289 (278) 11 Fe−N 

+ 10 

Fe−O(SO4

) + 51 

sFe−O(H2

O)  

285 (277) 78 

Fe−O(H2

O) 

  

281 46 

tH−O−H  

276(272) 29 Fe−N 

+ 27 

Fe−O(SO4

)    

      

258 62 

tH−O−H  

241(248) 21 

tH−O−H  

250(241) 16 

Fe−O(SO4

) + 49 

asFe−O(H2

O)  

    

240 (239) 18 

Fe−O(SO4

) + 44 

Fe−O(H2

O) + 10 

O−S=2O  

  246 12      

(SO4) 

O−Fe−O(H

2O) + 54 

tH−O−H    

236 (232) 11 Fe−N 

+ 33 

FeO(SO4)    
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ANNEX 1. continued 

Calculated Approximate 

description 

Experimental 

SO4
2– ligand is beside the NCS– ligand SO4

2– ligand is on the opposite of the NCS– ligand   

explicitly solvated  explicitly-implicitly 

solvated 

explicitly solvated  explicitly-implicitly 

solvated 

  

Wavenumber 

H2O (D2O), 

cm-1 

Band 

assignments 

in H2O, PED 

% 

Wavenumber 

H2O (D2O), 

cm-1 

Band 

assignments 

in H2O, PED 

% 

Wavenumber 

H2O (D2O), 

cm-1 

Band 

assignments 

in H2O, PED 

% 

Wavenumber 

H2O (D2O), 

cm-1 

Band 

assignments 

in  H2O, 

PED % 

 Wavenumber 

H2O (D2O), 

cm-1 

233 (230) 46 

asFe−O(H2

O) + 21 

sci(SO4)O

−Fe−O(H2

O)   

238 11 Fe−N 

+ 39 

asFe−O(H2

O)  

230 10 (SO4) 

O−Fe−O(H

2O) + 35 

S−O−Fe 

+ 16 

Fe−O(SO4

)       

    

223 (222) 13 

Fe−O(H2

O) + 41 

tH−O−H 

226 42 

sciS−O−Fe 

+ 10 

tH−O−H    

224 10 

S−O−Fe 

+ 42 

(SO4)O− 

Fe−O(H2O)   

211 20 

H−O−Fe−

O(H2O) 

  

  201 23 

N−Fe−2O
(SO4) + 31 

tH−O−H     

  202 (201) 12 Fe−N 

+ 38 

sciS−O−Fe 

+ 11 

H−O−Fe−

O(H2O)    

  

*assignment according to Raman spectra subtraction procedure 

 

 

1
1
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ANNEX 2. Calculated and experimental vibrational assignments of [Fe(NCS)]
2+

 complex in the different hypothetical cases 

by PBE1PBE method. Theoretical assignments are based on detailed PED analysis. Abbreviations:  – stretching;as – 

asymmetric stretching; s – symmetric stretching;  – deformation; sci – scissoring deformation; t – twisting deformation; 

w – wagging deformation; out-of-plane deformation 

Calculated Approximate 

description 

Experimental 

SO4
2– ligand is beside the NCS– ligand SO4

2– ligand is on the opposite of the NCS– ligand   

explicitly solvated  explicitly-implicitly 

solvated 

explicitly solvated  explicitly-implicitly 

solvated 

  

Wavenumber 

H2O (D2O), 

cm-1 

Band 

assignments 

in H2O, PED 

% 

Wavenumber 

H2O (D2O), 

cm-1 

Band 

assignments 

in H2O, PED 

% 

Wavenumber 

H2O (D2O), 

cm-1 

Band 

assignments 

in H2O, PED 

% 

Wavenumber 

H2O (D2O), 

cm-1 

Band 

assignments 

in  H2O, 

PED % 

 Wavenumber 

H2O (D2O), 

cm-1 

3941 (2891) 100 asO−H 3608 (2646) 99 O−H 3930 (2880) 99 asO−H 3606 (2646) 98 asO−H bound H2O  

3910 (2863) 100 O−H 3607 (2646) 100 O−H 3926 (2876) 99 asO−H 3600 (2641) 98 asO−H bound H2O  

3910 (2847) 94 sO−H 3604 (2642) 99 asO−H 3899 (2839) 100 O−H 3592 (2634) 100 asO−H bound H2O  

3817 (2751) 100 sO−H 3549 (2560) 100 sO−H 3799 (2739) 99 sO−H 3545 (2556) 75 sO−H bound H2O  

3769 (2720) 100 sO−H 3540 (2551) 94 O−H 3789 (2732) 99 sO−H 3535 (2548) 91 O−H bound H2O  

3116 (2273) 99 O−H 3539 (2551) 96 O−H 3193 (2326) 98 O−H 3530 (2544) 92 sO−H bound H2O  

2109 (2109) 87 N=C + 

11 C=S 

2100 (2100) 91 N=C 2101 (2101) 87 N=C + 

12 C=S  

2095 (2095) 91 N=C NCS 2067 (2061) 

1660 (1208) 71 

sciH−O−H 

1556 (1141) 77 

sciH−O−H 

1666 (1213) 88 

sciH−O−H 

1558 (1141) 87 

sciH−O−H 

bound H2O  

1632 (1193) 88 

sciH−O−H 

1554 (1140) 93 

sciH−O−H 

1632 (1196) 81 

sciH−O−H 

1552 (1138) 88 

sciH−O−H 

bound H2O  

1605 (1178) 90 

sciH−O−H 

1549 (1139) 92 

sciH−O−H 

1619 (1187) 88 

sciH−O−H 

1551 (1135) 89 

sciH−O−H 

bound H2O  

1350 (1349) 94 asS=O 1234 (1234) 99 asS=O 1338 (1337) 93 asS=O 1236 (1236) 98 asS=O bound SO4
2– 1139 (1139) 
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ANNEX 2. continued 

Calculated Approximate 

description 

Experimental 

SO4
2– ligand is beside the NCS– ligand SO4

2– ligand is on the opposite of the NCS– ligand   

explicitly solvated  explicitly-implicitly 

solvated 

explicitly solvated  explicitly-implicitly 

solvated 

  

Wavenumber 

H2O (D2O), 

cm-1 

Band 

assignments 

in H2O, PED 

% 

Wavenumber 

H2O (D2O), 

cm-1 

Band 

assignments 

in H2O, PED 

% 

Wavenumber 

H2O (D2O), 

cm-1 

Band 

assignments 

in H2O, PED 

% 

Wavenumber 

H2O (D2O), 

cm-1 

Band 

assignments 

in  H2O, 

PED % 

 Wavenumber 

H2O (D2O), 

cm-1 

1123 (1118) 84 sS=O 1138 (1134) 89 sS=O 1133 (1128) 83 sS=O 1140 (1144) 87 sS=O bound SO4
2– 1039* (1039*) 

1015 (774) 76 

tH−O−H   

  994 (731) 86 

tH−O−H  

    

975 (975) 74 C=S + 

19 Fe−N 

923 (923) 78 C=S + 

16 Fe−N 

978 (979) 68 C=S + 

17 Fe−N 

927 (926) 41 C=S + 

40 S−O 

 NCS 750 (750) 

878 (877) 74 S−O 910 (910) 83 S−O 894 (893) 76 S−O 920 (920) 39 C=S + 

44 S−O 

bound SO4
2–  

857 (855) 68 S−O 875 (874) 80 S−O 857 (853) 80 S−O 876 (875) 88 S−O bound SO4
2–  

663 12 

wO−S=O 

+ 41 

tH−O−H  

639 (476) 77 

tH−O−H   

668 (475) 31 

wH−O−H 

+ 30 

tH−O−H  

651 (482) 14 

wO−S−O 

+ 72 

tH−O−H   

  

658 (658) 47 

wO−S=O 

+ 11 

O=S−2O    

633 (473) 81 

tH−O−H   

657 (653) 42 

wO−S=O 

+ 20 

tH−O−H   

638 (468) 88 

tH−O−H   

bound H2O 608* 

640 (468) 40 

wH−O−H 

+ 34 

tH−O−H  

626 (470) 28 

sciO−S−O 

+ 52 

tH−O−H  

650 (475) 49 

wH−O−H 

+ 18 

O=S−2O  

629 (458) 79 

tH−O−H   

  

 1
2
1
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ANNEX 2. continued 

Calculated Approximate 

description 

Experimental 

SO4
2– ligand is beside the NCS– ligand SO4

2– ligand is on the opposite of the NCS– ligand   

explicitly solvated  explicitly-implicitly 

solvated 

explicitly solvated  explicitly-implicitly 

solvated 

  

Wavenumber 

H2O (D2O), 

cm-1 

Band 

assignments 

in H2O, PED 

% 

Wavenumber 

H2O (D2O), 

cm-1 

Band 

assignments 

in H2O, PED 

% 

Wavenumber 

H2O (D2O), 

cm-1 

Band 

assignments 

in H2O, PED 

% 

Wavenumber 

H2O (D2O), 

cm-1 

Band 

assignments 

in  H2O, 

PED % 

 Wavenumber 

H2O (D2O), 

cm-1 

629 (427) 14 

wH−O−H 

+ 64 

tH−O−H  

618 (460) 32 

sciO−S−O 

+ 

49tH−O−

H  

626 (462) 72 

tH−O−H   

614 (625) 48 

wO−S−O 

+ 19 

tH−O−H 

+ 10 

sciO=S=O   

  

578 (580) 16 

Fe−O(SO4

) + 41 

O−S=2O  

568 (568) 72 

O−S=2O 

578 (580) 56 

O−S=2O 

571 (571) 16 

Fe−O(SO4

) + 69 

O−S=2O  

  

562 52 

wH−O−H  

  562 (430) 44 

wH−O−H 

+ 26 

O=S−2O  

    

545 (548)  25 

sciO=S=O 

+ 42 

O=S−2O       

538 (539) 82 

O=S−2O 

552 (405) 41 

wH−O−H 

+ 14 

O=S−2O  

539 (546) 79 

O=S−2O 

  

 

 

 

 



 

 

 
123 

1
2
3
 

 
ANNEX 2. continued 

Calculated Approximate 

description 

Experimental 

SO4
2– ligand is beside the NCS– ligand SO4

2– ligand is on the opposite of the NCS– ligand   

explicitly solvated  explicitly-implicitly 

solvated 

explicitly solvated  explicitly-implicitly 

solvated 

  

Wavenumber 

H2O (D2O), 

cm-1 

Band 

assignments 

in H2O, PED 

% 

Wavenumber 

H2O (D2O), 

cm-1 

Band 

assignments 

in H2O, PED 

% 

Wavenumber 

H2O (D2O), 

cm-1 

Band 

assignments 

in H2O, PED 

% 

Wavenumber 

H2O (D2O), 

cm-1 

Band 

assignments 

in  H2O, 

PED % 

 Wavenumber 

H2O (D2O), 

cm-1 

521 (529)  17 

sciO−S=O 

+ 33 

sciO=S=O 

+ 11 

sciS−O−Fe 

15 

O=S−2O       

  517 15 

Fe−O(SO4

) + 12 

sciO−S=O 

+ 25 

sciO=S=O 

+ 16 

O=S−2O       

    

520 (396) 44 

wH−O−H 

+ 28 

tH−O−H  

498 (499) 16 

Fe−O(SO4

) + 14 

tO−S−O + 

62 

sciO=S=O        

515 (316) 49 

wH−O−H 

+ 19 

sciO=S=O   

496 (499) 15 

tO−S=O + 

11 

sciS−O−Fe 

+ 61 

sciO=S=O     

  

 486 (495) 100 

N=C=S 

475 (480) 91 

N=C=S 

494 (497) 85 

N=C=S 

479 (482) 95 

N=C=S 

NCS 422* 

 483 (490) 93 

N=C=S 

474 (473) 91 

N=C=S 

489 (491) 90 

N=C=S 

475 (474) 95 

N=C=S 

NCS  
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ANNEX 2. continued 

Calculated Approximate 

description 

Experimental 

SO4
2– ligand is beside the NCS– ligand SO4

2– ligand is on the opposite of the NCS– ligand   

explicitly solvated  explicitly-implicitly 

solvated 

explicitly solvated  explicitly-implicitly 

solvated 

  

Wavenumber 

H2O (D2O), 

cm-1 

Band 

assignments 

in H2O, PED 

% 

Wavenumber 

H2O (D2O), 

cm-1 

Band 

assignments 

in H2O, PED 

% 

Wavenumber 

H2O (D2O), 

cm-1 

Band 

assignments 

in H2O, PED 

% 

Wavenumber 

H2O (D2O), 

cm-1 

Band 

assignments 

in  H2O, 

PED % 

 Wavenumber 

H2O (D2O), 

cm-1 

463 (345) 31 

wH−O−H 

+ 35 

tH−O−H  

457 (356) 79 

wH−O−H  

439 (462) 76 

tH−O−H 

+ 11 

sciO−S=O   

462 (355) 77 

wH−O−H  

bound H2O   

  451 (351) 83 

wH−O−H  

  447 (350) 81 

wH−O−H  

  

  409 (309) 85 

wH−O−H  

  420 (318) 81 

wH−O−H  

  

387 (385) 71 

sciO=S−O  

368 (368) 90 

sciO=S−O   

385 (385) 68 

sciO−S=O   

374 (377) 89 

sciO−S=O   

bound  SO4
2–  

375 (365) 33 Fe−N 

+ 24 

sciS−O−Fe  

357 (345) 84 

sFe−O(H2

O) 

381 42 Fe−N 

+ 12 

Fe−O(SO4

) + 10 

sciS−O−Fe 

+ 11 

sciO=S=O       

350 (338) 76 

sFe−O(H2

O) 
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ANNEX 2. continued 

Calculated Approximate 

description 

Experimental 

SO4
2– ligand is beside the NCS– ligand SO4

2– ligand is on the opposite of the NCS– ligand   

explicitly solvated  explicitly-implicitly 

solvated 

explicitly solvated  explicitly-implicitly 

solvated 

  

Wavenumber 

H2O (D2O), 

cm-1 

Band 

assignments 

in H2O, PED 

% 

Wavenumber 

H2O (D2O), 

cm-1 

Band 

assignments 

in H2O, PED 

% 

Wavenumber 

H2O (D2O), 

cm-1 

Band 

assignments 

in H2O, PED 

% 

Wavenumber 

H2O (D2O), 

cm-1 

Band 

assignments 

in  H2O, 

PED % 

 Wavenumber 

H2O (D2O), 

cm-1 

320 (316) 17 

Fe−O(SO4

) + 43 

Fe−O(H2

O) + 13 

O−S=2O)  

316 74 

asFe−O(H

2O) + 10 

sciS−O−Fe  

329 74 

asFe−O(H2

O) 

314 27 Fe−N 

+ 31 

sciS−O−Fe 

+ 11 

sciO=S=O

 

  

301 (291) 14 Fe−N 

+ 27 

sFe−O(H2

O) + 21 

sciS−O−Fe  

281 (277) 27 Fe−N 

+ 34 

Fe−O(SO4

)  

302 58 

sFe−O(H2

O) 

300 80 

Fe−O(H2

O) 

  

288 52 

tH−O−H   

253 60 

tH−O−H   

264 (255) 17 

Fe−O(SO4

) + 56 

Fe−O(H2

O) 

250 53 

Fe−O(SO4

) 

  

259 67 

tH−O−H  

246 (234) 23 Fe−N 

+ 13 

Fe−O(SO4

) + 36 

asFe−O(H2

O)  

251 19 

sci(SO4)O

−Fe−O(H2

O) + 45 

tH−O−H      

208 12 Fe−N 

+ 15 

sciS−O−Fe 

+ 32 

tH−O−H  
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ANNEX 2. continued 

Calculated Approximate 

description 

Experimental 

SO4
2– ligand is beside the NCS– ligand SO4

2– ligand is on the opposite of the NCS– ligand   

explicitly solvated  explicitly-implicitly 

solvated 

explicitly solvated  explicitly-implicitly 

solvated 

  

Wavenumber 

H2O (D2O), 

cm-1 

Band 

assignments 

in H2O, PED 

% 

Wavenumber 

H2O (D2O), 

cm-1 

Band 

assignments 

in H2O, PED 

% 

Wavenumber 

H2O (D2O), 

cm-1 

Band 

assignments 

in H2O, PED 

% 

Wavenumber 

H2O (D2O), 

cm-1 

Band 

assignments 

in  H2O, 

PED % 

 Wavenumber 

H2O (D2O), 

cm-1 

253 (250) 16 

Fe−O(SO4

) + 56 

asFe−O(H2

O) 

241 55 

sciS−O−Fe  

243 16 

Fe−O(SO4

) + 38 

sciS−O−Fe 

203 (203) 18 Fe−N 

+ 24 

sciS−O−Fe  

  

245 17 

Fe−O(SO4

) + 27 

Fe−O(H2

O) + 14 

sciH−O−H 

  231 40 

sci(SO4)O−

Fe−O(H2O) 

+ 11 Fe−N      

    

229  50 

tH−O−H 

        

*assignment according to Raman spectra subtraction procedure 

 

 

 

 


