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Abstract: We investigate the construction of a partial absorbing continuous-time Markov
chain (CTMC) using a heuristic algorithm aimed at approximate transient analysis. The
accuracy of transient state probabilities is indicated by the probability of absorbing state(s)
at the specified time moment. A key challenge is the construction of a partial CTMC
that minimizes the probability of reaching the absorbing state(s). The generation of all
possible partial CTMCs is too computationally demanding, in general. Thus, we turn to
investigation of heuristic algorithms that chose to include one state at a time based on
limited information (i.e., the partial chain that is already constructed) and without any
assumptions about the structure of the underlying CTMC. We consider three groups of
such algorithms: naive, based on state characterization by the shortest path (obtained by
Dijkstra method) and based on exact/approximate state probabilities. After introducing
the algorithms, we discuss the problem of optimal partial CTMC construction and provide
several examples. Then we compare the algorithm performance by constructing the partial
CTMCs for two models: car sharing system and a randomly generated CTMC. Our obtained
numerical results suggest that heuristic algorithms using state characterization via the
shortest path offer a balance between accuracy and computational effort.

Keywords: continuous-time Markov chain; approximate transient analysis; Dijkstra method;
car sharing system

MSC: 60J22; 65C40

1. Introduction
Continuous-time Markov chains (CTMCs) provide analytical methods to compute the

transient characteristics of models defined over a countable state space [1,2]. In practice,
the state space of CTMCs becomes very large, especially when phase-type distributions [3]
are used to model the time durations of non-exponential distributions. When an exact
evaluation of the entire model is not feasible, various approximate analysis methods can
be employed. One such approach is state aggregation [4–7]. Subsequently, transient
probabilities can be computed using the well-acknowledged uniformization method [8–11].

We address the issue of constructing a partial CTMC, specifically focusing on the
truncation problem. In a related study [12], the partial CTMC, referred to as the ‘active set’,
is iteratively updated during the computation of transient probabilities using the adaptive
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uniformization method. Alternatively, ref. [13] proposes a heuristic approach for partial
CTMC construction that employs the Dijkstra algorithm [14].

This investigation continues our work from [15] and is closely related to the study
by [13]. In our initial research [15], we explored the generation of partial CTMCs to find one
that provides the most accurate approximation of the model’s transient state probabilities.
However, the sheer number of possible partial CTMCs is too large for practical applicability,
even for small CTMCs. Consequently, we attempted to influence the order of partial CTMC
generation to select a good partial CTMC without generating all possible ones. Despite these
efforts, we were unable to achieve conclusive results or offer practical recommendations.

In this paper, we have a different criterion to evaluate the quality of constructed partial
CTMCs. In [15], we aimed to find a partial CTMC that reaches the specified absorbing
probability at the latest time moment t possible. In contrast, this paper focuses on finding
partial CTMC with the smallest absorbing probability for the specified time moment t. This
criterion requires less computational effort to evaluate. To address the practical aspects of
partial CTMC construction, we investigate heuristic algorithms ranging from naive and fast
to more complex. The first group of heuristic algorithms is straightforward to implement.
The second group constructs partial CTMCs based on edge state characterization by the
shortest path. The third group characterizes edge states based on all possible paths of fixed
or infinite length.

In the recent scientific literature, most of the results are obtained by investigating tran-
sient analysis methods for particular CTMC classes, for example, queueing models [16–18].
The specific assumptions about the Markov chain structure allow to develop very effective
analysis methods. However, in this paper we are interested in a more general approach that
could be applied to CTMCs of complex structure (for example, to CTMCs of car sharing
system). Considering that state probability evaluation is a computationally demanding
task, in an ideal situation, we would like to come up with a procedure that is able to identify
an optimal partial CTMC (i.e., with the smallest absorbing state(s) probability). Before
investigating the problem of optimal partial CTMCs, in this paper, we try to find out what
can be achieved without making assumptions about the CTMC structure and applying
heuristic algorithms, ranging from naive to computationaly demanding.

Our main result is a thorough investigation of the application of various heuristic
algorithms for partial CTMC generation. We conclude that heuristic algorithms based on
the shortest path, considering their runtime and quality of constructed partial CTMCs, are
the most useful class of algorithms to construct a good partial CTMC. However, the problem
of optimal partial CTMC identification is quite complex, which we have demonstrated in a
separate section of examples.

The rest of the paper is organized as follows: Section 2 provides general information
and notation, and Section 3 presents the heuristic algorithms for partial CTMC construc-
tion. To illustrate the problem of constructing partial CTMCs using heuristic algorithms,
we included several examples in Section 4. Section 5 describes the conducted numeri-
cal experiments and presents the results. The discussion and conclusions are given in
Sections 6 and 7.

2. Background
Let the set of full CTMC states be denoted as

S =
{⃗

s1, s⃗2, . . . , s⃗ℓ, . . . , s⃗|S |
}

, (1)

where each state s⃗ℓ is represented by a vector, and is associated with a unique index
ℓ ∈ {1, 2, . . .}. For convenience, we refer to a particular state either by its vector repre-
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sentation s⃗ℓ or its index ℓ interchangeably. We assume that the high-level implicit model
description is abstracted by a CTMC generator g, which is a mapping:

g(ℓ)→ {ℓ1, ℓ2, . . . , ℓnℓ}, (2)

where nℓ is a number of transitions from state ℓ to state ℓk (k = 1, 2, . . . , nℓ) with transition
rate λℓ,ℓk

> 0. A state s⃗ℓ is said to be absorbing if nℓ = 0, and for such a state, we have
g(ℓ)→ ∅.

If the high-level implicit model description is given by event formalism, the CTMC
generator can be realized by Algorithm 1.

Algorithm 1 Algorithm of the CTMC generator. Input parameters: ℓ—the state to explore.

1: function: g (ℓ)
2: E ← set of events applicable to state s⃗ℓ
3: T ← ∅
4: for each kth event e in E do
5: apply event e to state s⃗ℓ to get state s⃗ℓk

and λℓ,ℓk
6: store transition rate λℓ,ℓk
7: T ← T ∪ {ℓk}
8: end for
9: return T

10: end of function

If the state s⃗ℓk
determined in Algorithm 1, line 5 has not been previously discovered, it

is assigned an arbitrarily chosen unique index ℓk ∈ {1, 2, . . .}; the generated transition rate
λℓ,ℓk

is stored for a convenient access by other algorithm routines.
Once all transitions from the state ℓ have been explored, the rate λℓ of the exponential

distribution of the sojourn time is

λℓ =
nℓ

∑
k=1

λℓ,ℓk
. (3)

The set of partial CTMC states of size K is denoted as

P =
{⃗

sℓ1 , s⃗ℓ2 , . . . , s⃗ℓK

}
⊂ S . (4)

For a given partial CTMC P , we define its edge state set as

P =
{⃗

sℓk
| s⃗ℓk

/∈ P , ∃⃗sℓ ∈ P : λℓ,ℓk
> 0

}
. (5)

In the rest of the paper, we assume that edge state set P is implied by P and g.
Let Q be the infinitesimal generator matrix of the partial CTMC with states P ∪P ,

then the vector of state transient probabilities is

p⃗(t) =
(

pℓ1(t), pℓ2(t), . . . , pℓ|P |(t), . . . , pℓ|P |+|P |(t)
)

. (6)

Given the initial probability vector p⃗(0) with the only non-zero element pℓ1(0) = 1, the
state probability vector at time moment t is

p⃗(t) = p⃗(0)etQ, (7)

and the probability of edge states P (i.e., absorbing probability) is

p(a)(t) = ∑
ℓ∈P

pℓ(t). (8)
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3. Algorithms
The partial absorbing CTMC P with K transient states is considered optimal if it has

the smallest absorbing probability p(a)(t) for the specified time moment t. A brute-force
approach to finding the optimal partial CTMC is to generate all possible partial CTMCs
and select the one with the smallest absorbing probability. However, this approach is
impractical for two main reasons:

1. The number of possible partial CTMCs increases rapidly with the number of states
K [15];

2. The computation of probabilities of absorbing states is computationally intensive.

Therefore, instead of attempting to find an optimal partial CTMC through exhaustive
enumeration, we explore the application of heuristic algorithms. We construct a partial
CTMC sequentially by including one edge state at a time until the specified number of
states is reached, as outlined in Algorithm 2.

Algorithm 2 Partial CTMC construction by including one edge state at a time. Input
parameters: ℓ1—an initial state; K < |S |—the size of the partial CTMC.

1: function: partialCTMC (ℓ1, K)
2: P (1) ← {ℓ1} ▷ The edge state set P is implied by (5).
3: for i from 2 to K do
4: ℓi ← the chosen state from P (i−1)

5: P (i) ← P (i−1) ∪ {ℓi}
6: end for
7: return P (K)

8: end of function

The choices of edge states (line 4 of Algorithm 2) determine the final partial CTMC

and its absorbing probability p(a)(t). To characterize an edge state ℓ ∈ P (i)
, we use the

already generated partial CTMC (with states P (i) ∪P (i)
) and the specified time moment

t. Based on a criterion rule and edge state characterization, a heuristic choice is made. It
is important to note that the class of heuristic algorithms, as we defined them, does not
contain an algorithm capable of producing an optimal partial CTMC of any size K < |S | in
general (see Example 2).

To aid our discussion regarding algorithm complexity in Section 6, we introduce the
following notations. The number of edge states, after including the ith state, is denoted by

ν(i) =
∣∣∣P (i)

∣∣∣, (9)

and the number of newly introduced edge states then is

∆(i) =

{
ν(i)− ν(i− 1) + 1, i > 1,

ν(i), i = 1.
(10)

The number of transitions from state ℓi is denoted by

τ(i) = |g(ℓi)|. (11)

To begin, we consider two naive edge state choice heuristics. The first algorithm,
which chooses an edge state randomly, is referred to as RND. The second algorithm, that
chooses to include the edge states in the order they are discovered, is referred to as SRND.

For the specified time moment t, one option in the process of partial CTMC construc-
tion is to choose an edge state with the highest probability. Such an algorithm is referred to
as EXP.
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Effectively, by computing edge state probabilities, as in the EXP algorithm, the states
are characterized based on all possible paths from the initial state ℓ1. As suggested by [13],
each edge state can be characterized by a single path instead. They apply the Dijkstra
algorithm [14] for some distance measure and choose to include the edge state at the
shortest distance from the initial state ℓ1. The proposed algorithm is fast and constructs
a sufficiently good partial CTMC for reliability studies. Inspired by [13], we continue to
investigate the idea of edge state characterization by a single shortest path. We also consider
the application of the Dijkstra method. However, it might be that other shortest path graph
algorithms (like the Bellman–Ford algorithm [19]) could prove to be more efficient, if not in
general, at least for some classes of CTMCs.

Given that the process starts in state ℓ1, let the path ℓ1, ℓ2, . . . , ℓK be the most probable
path to a state ℓK, with probability

K−1

∏
k=1

pℓk ,ℓk+1
, (12)

where pℓk ,ℓk+1
= λℓk ,ℓk+1

/λℓk
is a transition probability from state ℓk to state ℓk+1 in the

discrete embedded Markov chain (DTMC). We refer to an algorithm that chooses to include
the edge state to which the most probable path (from state ℓ1) leads as P.

The expected time duration spent in each of the path states ℓ1, ℓ2, . . . , ℓK−1 is

1
λℓ1

,
1

λℓ2

, . . . ,
1

λℓK−1

. (13)

Assuming the process follows this path, the expected time duration before reaching the
state ℓK is

K−1

∑
k=1

1
λℓk

. (14)

We refer to an algorithm that chooses to include the edge state with the smallest expected
time duration before the first hit as T.

In algorithms P and T, edge state choice is made based on a path probability or time
duration. Both of these characterizations are limited when applied separately. For example,
a choice based on a path probability neglects time spent on the path. We suggest weighting
the expected time duration by the inverse of the path probability

K−1

∑
k=1

1
λℓk

K−1

∏
k=1

pℓk ,ℓk+1

, K = 2, 3, . . . . (15)

It can be shown that characteristic (15) of a path ℓ1, ℓ2, . . . , ℓK can be efficiently obtained if
it has already been computed for a shorter path ℓ1, ℓ2, . . . , ℓK−1. The expression (15) for a
path of length K− 1 can be written as follows

K−2

∑
k=1

1
λℓk

K−2

∏
k=1

pℓk ,ℓk+1

=

K−2

∑
i=1

K−2

∏
k=1,k ̸=i

λℓk

K−2

∏
k=1

λℓk ,ℓk+1

=
a(K−1)

b(K−1)
, (16)

where a(K−1) and b(K−1) represent the enumerator and denominator. By rewriting the
expression (15) for a path of length K, we obtain the following
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K−1

∑
k=1

1
λℓk

K−1

∏
k=1

pℓk ,ℓk+1

=

K−1

∑
i=1

K−1

∏
k=1,k ̸=i

λℓk

K−1

∏
k=1

λℓk ,ℓk+1

=

λℓK−1

K−2

∑
i=1

K−2

∏
k=1,k ̸=i

λℓk
+

K−1

∏
k=1,k ̸=K−1

λℓk

K−1

∏
k=1

λℓk ,ℓk+1

=

=

λℓK−1 a(K−1) +
K−2

∏
k=1

λℓk

λℓK−1,ℓK b(K−1)
=

a(K)

b(K)
.

(17)

Therefore, the characteristic (15) for a path of length K can be evaluated recursively by
computing the values a(K) and b(K) by

a(k) = λℓk−1
a(k−1) + ck−1,

b(k) = λℓk−1,ℓk
b(k−1),

c(k) = λℓk−1
c(k−1) for k = 2, 3, . . . , K,

(18)

starting with the initial values of a(1) = 0, b(1) = 1, and c(1) = 1. The algorithm that
chooses to include the edge state with the smallest value of (15) is referred to as PT.

We summarize the shortest path-based algorithms by restating the general algorithm
given in [13]. Let dist(dℓ) be the distance from the initial state ℓ1 to state ℓ, where dℓ is a
data structure (i.e., scalar, vector, etc.) associated with the state ℓ. Then, a partial CTMC can
be constructed by choosing to include the edge states that are at the smallest distance from
the initial state ℓ1, as outlined in Algorithm 3.

Algorithm 3 Partial CTMC construction algorithm [13], based on state characterization by
the shortest path. Input parameters: ℓ1—an initial state, K < |S |—the size of the partial
CTMC, g—CTMC generator.

1: function: partialCtmcDijkstra(ℓ1, K, g)
2: P ← {ℓ1} ▷ The edge state set P is implied by (5).
3: while |P | < K do
4: ℓ← state in P with the smallest value of dist(dℓ)
5: P ← P ∪ {ℓ}
6: T ← g(ℓ)
7: for each ℓk in T \P do
8: d∗ℓk

← extend(ℓ, ℓk)

9: if dist
(

d∗ℓk

)
< dist

(
dℓk

)
then

10: dℓk
← d∗ℓk

11: end if
12: end for
13: end while
14: return P
15: end of function

The distance data d∗ℓk
of the path from state ℓ1 through the included state ℓ to state

ℓk ∈ g(ℓ) is computed by a function extend(ℓ, ℓk). The already known distance data dℓk
(of

the shortest path) to state ℓk is replaced by d∗ℓk
, in case

dist
(

d∗ℓk

)
< dist

(
dℓk

)
. (19)

The implementations of functions dist(. . .) and extend(. . .) depend on the specific algorithm
and are given in Table 1. For a newly discovered state ℓ, its distance data dℓ is initialized
with the default value, as shown in Table 1.
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Table 1. The implementation details of state distance data for algorithms D, P, T, and PT.

Alg. Distance
Data, dℓ

Initial
Dist. Data

Default
Dist. Data

Distance,
dist(dℓ)

Extension,
extend(ℓ, ℓk)

D (iℓ) iℓ1 ← 0 iℓ ← +∞ iℓ i∗ℓk
← iℓ + 1

P (qℓ) qℓ1 ← 1 qℓ ← 0 1
qℓ

q∗ℓk
← qℓpℓ,ℓk

T (dℓ) dℓ1 ← 0 dℓ ← +∞ dℓ d∗ℓk
← dℓ +

1
λℓ

PT (aℓ, bℓ, cℓ)

aℓ1 ← 0

bℓ1 ← 1

cℓ1 ← 1

aℓ ← +∞
bℓ ← 1
cℓ ← 0

aℓ
bℓ

a∗ℓk
← λℓaℓ + cℓ

b∗ℓk
← λℓ,ℓk

bℓ
c∗ℓk
← λℓcℓ

The EXP algorithm computes exact edge state probabilities by considering all possible
paths from state ℓ1. The actual precise edge state probabilities are not that important as
long as a state with the highest probability is selected; therefore, we suggest making a
choice based on an approximate state probability that is obtained by considering paths
from ℓ1 of finite length. Such an approximation of edge state probabilities can be computed
in the corresponding discretized Markov chain (DTMC), as shown in Algorithm 4, which
we refer to as DSC.

Algorithm 4 A partial CTMC construction algorithm based on CTMC discretization. Input
parameters: ℓ1—an initial state, K < |S |—the size of the partial CTMC, g—CTMC genera-
tor, t—the specified time moment, m—the factor for the number of discretization steps.

1: function: partialCtmcDsc(ℓ1, K, g, t, m)
2: P ← {ℓ1} ▷ The edge state set P is implied by (5).
3: L← ∅
4: iℓ1

← 0
5: iℓ ← 1 for ℓ ∈ g(ℓ1) ▷ Initial distances to the edge states.
6: while |P | < K do
7: steps(1) ← ⌈t ·max{λℓ | ℓ ∈ P}⌉
8: steps(2) ← max

{
iℓ|ℓ ∈ P

}
·m

9: steps← max
{

steps(1), steps(2)
}

10: λ(dsc) ← steps/t
11: D ← probability matrix of discretized (with rate λ(dsc)) Markov chain P ∪P
12:

(
pℓ1

, pℓ2 , . . . , pℓ|P |+|P |

)
← Dsteps e⃗1

13: ℓ(max) ← state ℓ ∈ P with the maximum value of pℓ
14: P ← P ∪

{
ℓ(max)

}
15: L← L ∪

{
ℓ(max)

}
16: while |L| > 0 do ▷ Update the values of iℓ.
17: ℓ← any removed state from L
18: T ← g(ℓ)
19: for each ℓk in T do
20: i∗ℓk

← iℓ + 1
21: if i∗ℓk

< iℓk
then

22: iℓk
← i∗ℓk

23: L← L ∪ {ℓk}
24: end if
25: end for
26: end while
27: end while
28: return P
29: end of function
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The matrix D =
{

di,j
}

of transition probabilities of the discretized DTMC (line 11 of
Algorithm 4) has elements

di,j =


λℓi ,ℓj

λ(dsc)
, i ̸= j,

1− λℓi

λ(dsc)
, i = j.

(20)

In the line 12 of Algorithm 4 e⃗1 stands for vector of size |P |+
∣∣P ∣∣ with the first element

being one and the rest zeroes.
The advantage of the Dijkstra method (applied in Algorithm 3) is that the distance

from the included state ℓ to every state ℓk ∈ g(ℓ) needs to be updated only once. This is
a consequence of choosing to include a state ℓ reachable by the shortest path. However,
in Algorithm 4, where the distance from state ℓ1 is measured in the minimum number of
transitions, the edge state ℓ (i.e., with the highest value of pℓ) is not necessarily an edge
state reachable by the shortest path (i.e., there might exist a state ℓ̂ ∈ P , such that iℓ̂ < iℓ).
As a consequence, the distances from more than one state might need to be updated, which
is realized in lines 16–26 of Algorithm 4.

In the following sections, we include the value of m in the algorithm name; for example,
DSC2 stands for DSC algorithm with m = 2.

4. Examples
In this section, we provide several examples to elucidate the problem of partial CTMC

construction. Example 1 clarifies the distinction between the terms ‘edge state’ and ‘absorb-
ing state’. We demonstrate that a heuristic may not construct an optimal partial CTMC in
general, in Example 2. Example 3 shows partial CTMCs of various sizes constructed for
the specified time moment. Partial CTMCs of fixed size are constructed while allowing
the time moment to vary, in Example 4. We use the CTMC of Example 2 to show the first
iteration of Algorithm 4 of the DSC method in Example 5.

In order to provide a more objective evaluation of the construction of partial CTMCs
using the heuristic algorithms, we also identified the optimal partial CTMCs. For a small
CTMC, it is not overly complicated to generate all possible partial CTMCs and select the one
with the smallest absorbing probability p(a)(t). We refer to this brute-force algorithm [15]
as GEN.

Example 1. In a graphical depiction of CTMC states, we use the following color coding: white
for transient or recurrent states, gray for edge and black for absorbing states. To illustrate the
distinction between the edge and absorbing states, let us consider a full CTMC S = {1, 2, 3, 4}
given in Figure 1a. We construct a partial CTMC starting from the initial state 1, thus having

P (1) = {1} and P (1)
= {2, 3} (Figure 1b). Next, we can choose some state ℓ ∈ P (1) to be

included. Assuming we choose state 3, we obtain P (2) = {1, 3} and P (2)
= {2, 4} (Figure 1c).

Only after the inclusion of state 2 is it considered as an absorbing state in the partial CTMC
(Figure 1d).

1 2

3 4
(a)

1 2

3
(b)

1 2

3 4
(c)

1 2

3 4
(d)

Figure 1. An example of partial CTMC construction: (a) the full CTMC, (b) the initial partial CTMC,
(c,d) the partial CTMC after inclusion of states 3 and 2.
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Example 2. Starting from the initial state 1 (i.e., in CTMC P ∪P = {1, 2, 3}), the probabilities
of states 2 and 3 at time moment t = 1 are 0.397 and 0.596, respectively. The absorbing probablity
p(a)(t) for two partial CTMCs {1, 2} and {1, 3} are 0.813 and 0.929. Out of all possible partial
CTMCs of size 3, the one with the smallest value of p(a)(t) is {1, 3, 4} (Figure 2d), which is also
given by the EXP algorithm.

Thus, in the construction of a partial CTMC of size 2, the choice of the EXP algorithm to
include state 3 is incorrect, but this choice is correct for the construction of a partial CTMC of size 3.

1 2

3 4
(a)

p(a)(t) = 0.929

1 2

3 4
(b)

p(a)(t) = 0.813

1 2

3 4
(c)

p(a)(t) = 0.464

1 2

3 4
(d)

2

3 1

3

1

2

3

3

2

3 1

2

3

3

1

Figure 2. Example: (a) the full CTMC; (b) the constructed partial CTMC of size 2 by the EXP algorithm;
(c,d) the partial CTMCs of sizes 2 and 3 with the smallest absorbing probability p(a)(1).

Example 2 can be used to prove the following statement. For a general CTMC S , there
cannot exist a heuristic algorithm that follows Algorithm 2 and can construct an optimal
partial CTMC of any size K < |S |. As shown in Example 2, the EXP algorithm fails to
construct the optimal partial CTMC of size 2. If another heuristic algorithm would choose
to include state 2, it would fail to construct the optimal partial CTMC of size 3.

This observation raises the following question. Let P∗(K) be one of the optimal partial
CTMCs of size K. What are the assumptions (about CTMC S and the initial state ℓ1) under
which it could be proved that there exist the optimal partial CTMCs such that

P∗(2) ⊂ P∗(3) ⊂ . . . ⊂ P∗(|S |−1) ? (21)

Example 3. Let us examine the CTMC provided in Figure 3.

1 2 3

4 5 6

7 8 9

1 3

3

1

3

3

1

3

1

2

2

2 2

1

Figure 3. An example CTMC to demonstrate partial CTMC construction of sizes 2, 3, . . . , 8 for time
moment t = 1.

Starting from the initial state 1, we construct partial CTMCs of sizes 2, 3, . . . , 8 for time
moment t = 1. The state choice sequences of heuristic algorithms are given in Table 2. Meanwhile,
the optimal partial CTMC states need to be explicitly listed for each size of partial CTMC and are
provided in Table 3.

For instance, as shown in Table 2, the partial CTMC of size 5 constructed by the EXP algorithm
is {1, 5, 6, 3, 4}. Upon further analysis of the results provided in Table 2, we observe that algorithm
pairs EXP, DSC and T, D produce quite similar state choice sequences. It appears that the heuristic
algorithms (Tables 2 and 3) managed to construct an optimal partial CTMC only of size 2.
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For further comparison, we provide Table 4, where absorbing probabilities p(a)(t) are given
for optimal partial CTMCs. Additionally, we identified the heuristic algorithms that constructed
partial CTMCs with the smallest value of p(a)(t).

As indicated in Table 4, the optimal partial CTMCs (except for size 2) have smaller absorbing
probabilities. If we set this fact aside, among the heuristic algorithms, there is no single one that
constructed a partial CTMC with the smallest value of p(a)(t) for sizes 2, 3, . . . , 8. This is an evident
consequence of the fact that optimal CTMCs do not satisfy the relation (21).

Table 2. The order of state choices when partial CTMC is constructed up to a size of 8 by the heuristic
algorithms.

Alg. State Choice Sequences

P 1, 5, 6, 4, 7, 8, 9, 3
T 1, 4, 5, 3, 8, 6, 7, 9

PT 1, 5, 4, 6, 7, 3, 8, 9
D 1, 4, 5, 7, 8, 6, 3, 9

EXP 1, 5, 6, 3, 4, 2, 7, 8
DSC1 1, 5, 6, 3, 2, 4, 7, 8

Table 3. The optimal partial CTMCs of sizes 2, 3, . . . , 8 as constructed by algorithm GEN.

Chain Size Number of Chains State Choice Sequences

2 2 1, 5
3 5 1, 4, 7
4 11 1, 5, 6, 9
5 16 1, 5, 6, 9, 8
6 16 1, 5, 6, 9, 3, 2
7 11 1, 5, 6, 9, 8, 3, 2
8 5 1, 5, 6, 9, 8, 3, 2, 4

Table 4. Comparison of absorbing probability p(a)(t) of optimal partial CTMCs and the smallest
value of p(a)(t) as given by one (or several) heuristic algorithms.

Chain
Size

GEN,
Min p(a)(t)

Other Alg.,
Min p(a)(t)

Other Alg.

2 0.947 0.947 P, PT, EXP, DSC1
3 0.869 0.886 P, EXP, DSC1
4 0.731 0.799 EXP, DSC1
5 0.589 0.607 DSC1
6 0.426 0.565 EXP, DSC1
7 0.265 0.346 P
8 0.223 0.244 P, T, PT, D

Example 4. To assess the performance of the EXP algorithm in comparison with the brute-force
algorithm GEN, we generated partial CTMCs of size 5 for the various time moments. These partial
CTMCs were constructed for the CTMC illustrated in Figure 4, starting from the initial state 2.

We numerically determined approximate time intervals ( up to time moment t = 2) where the
same (optimal) partial CTMCs were identified (Table 5).

The absorbing probability p(a)(t) of each partial CTMC, obtained by algorithm GEN, is plotted
in Figure 5, in red. It is noteworthy that the smallest value of absorbing probability p(a)(t) is
obtained by different optimal partial CTMCs. The same can be said about the partial CTMCs
obtained by the EXP algorithm (Figure 6).

As illustrated in Figure 7, the EXP algorithm fails to construct an optimal partial CTMC
starting from time moment t ≈ 0.78, which is an expected outcome.
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1 2 3

4 5 6

7 8 9

1

2 2

1 3 2

2

3

1

12

2
2

3

Figure 4. An example CTMC to demonstrate the importance of time moment t for the construction of
partial CTMC with the aim to minimize absorbing probability p(a)(t).

Table 5. Time intervals (up to t = 2) of partial CTMCs as identified by algorithms GEN and EXP (the
states are ordered).

Alg. Time Interval States, P

GEN
(0.000, 0.368) 1, 2, 3, 4, 6
(0.368, 0.780) 1, 2, 3, 6, 9
(0.780, 2.000) 2, 3, 5, 6, 9

EXP
(0.000, 0.368) 1, 2, 3, 4, 6
(0.368, 1.260) 1, 2, 3, 6, 9
(1.260, 2.000) 1, 2, 5, 6, 9

time, t
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0.8 partial CTMCs, GEN
min : p(a)(t)

Figure 5. The plots of absorbing probability p(a)(t) for partial CTMCs constructed by algorithm GEN.
Each of these partial CTMCs is optimal in their specific time interval (given in Table 5).
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min : p(a)(t)

Figure 6. The plots of absorbing probability p(a)(t) of partial CTMCs constructed by the EXP
algorithm. For each time interval specified in Table 5, one of the partial CTMCs gives the smallest
value of p(a)(t).
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Figure 7. Comparison of p(a)(t) of partial CTMCs constructed by algorithms GEN and EXP.

Example 5. By using the CTMC given in Example 3 we show one iteration of the DSC algorithm
(Algorithm 4) for time moment t = 1 and starting from the initial state 1.

As show in Figure 8a, before the first iteration we have P = {1}, P = {4, 5} and the
distances (measured in the number of transitions) initialized for the edge states are i4 = 1, i5 = 1.
The rate matrix of CTMC P ∪P is

Q =

−4 1 3
0 0 0
0 0 0

. (22)

Next, we identify the minimum number (assuming m = 1) of steps: 4, and therefore the discratiza-
tion rate is λ(dsc) = steps/t = 4. Then, we obtain the probability matrix D of DTMC according to
(20) and compute approximate state probabilities as D4⃗e1

p1(t)
p4(t)
p5(t)

 ≈
0 0.25 0.75

0 1 0
0 0 1


41

0
0

 =

 0
0.25
0.75

;

p1(t)
p4(t)
p5(t)

 =

0.018316
0.245421
0.736263

.

As a result, the state 5 is chosen to be included in P (Figure 8b). For comparison, we have computed
the exact state probabilities by (7). Before starting the next iteration, we need to update the distances
to the edge states, which happen to be i3 = 2, i4 = 1, i6 = 2, i8 = 2. The rest of the state choices are
shown in the last row of Table 2.

The distances to the edge states need to be maintained in order to assure that the calculated
number of steps is sufficient to obtain the non-zero edge state approximate probabilities.

1

4 5

(a)

1 3

4 5 6

8

(b)

1 3 1 3 1

3

1

Figure 8. Example: (a) the partial CTMC before the first iteration; (b) the partial CTMC after the first
iteration.
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5. Results
We conducted performance comparisons of heuristic algorithms on two distinct mod-

els. The first model represents a car sharing system, constructed using the second modeling
approach detailed in [20]. In this model, travel durations are simulated using randomly
generated phase-type distributions of size 2, the client arrival rates and the routing prob-
abilities are randomly selected. For the second model, we generated a random strongly
connected CTMC using an algorithm given in [21].

In the initial part of the experimentation, we constructed partial CTMCs starting
from each state (for the specified time moment t). The average and standard deviation
of absorbing probabilities p(a)(t) are provided in Tables 6 and 7. Next, we compared the
relative performance of heuristic algorithms based on rankings. Specifically, for each initial
state, we constructed partial CTMCs (in our case, 10 of them) using each algorithm and
ranked them according to the obtained absorbing probability p(a)(t). The characteristics of
these ranks are provided in Tables 8 and 9. The same methodology was applied to compare
algorithm runtimes, with the results provided in Tables 10 and 11.

Table 6. Characteristics of the absorbing probability of partial CTMCs of size 500 constructed for
a car sharing system model with 3 zones and 3 cars. The CTMC of the model has 1771 states and
12,474 transitions (the average transition rate is 0.4532).

Alg.
Time Moment t = 1.0 Time Moment t = 2.0 Time Moment t = 3.0

Mean Std. Mean Std. Mean Std.

RND 0.35949 3.3× 10−3 0.59513 3.9× 10−3 0.73980 3.7× 10−3

SRND 0.00177 5.8× 10−5 0.02522 5.9× 10−4 0.08921 1.7× 10−3

P 0.00080 2.3× 10−5 0.00996 2.3× 10−4 0.03532 7.3× 10−4

T 0.00468 1.5× 10−4 0.04583 9.3× 10−4 0.13933 2.2× 10−3

PT 0.00065 2.0× 10−5 0.00952 2.3× 10−4 0.03612 7.8× 10−4

D 0.00268 8.7× 10−5 0.03335 7.7× 10−4 0.10935 2.0× 10−3

DSC1 0.00056 1.8× 10−5 0.00799 1.9× 10−4 0.02762 5.8× 10−4

DSC2 0.00049 1.6× 10−5 0.00754 1.9× 10−4 0.02730 5.8× 10−4

DSC4 0.00048 1.6× 10−5 0.00741 1.9× 10−4 0.02695 5.7× 10−4

EXP 0.00048 1.6× 10−5 0.00737 1.8× 10−4 0.02681 5.7× 10−4

Table 7. Characteristics of absorbing probability of partial CTMCs of size 500 constructed for
a randomly generated CTMC with 1771 states and 12,474 transitions (average transition rate is
≈ 0.4999).

Alg.
Time Moment t = 1.0 Time Moment t = 2.0 Time Moment t = 3.0

Mean Std. Mean Std. Mean Std.

RND 0.64704 2.8× 10−3 0.88974 1.9× 10−3 0.96114 1.2× 10−3

SRND 0.29933 2.2× 10−3 0.71929 2.4× 10−3 0.89558 1.6× 10−3

P 0.24178 2.0× 10−3 0.63515 2.5× 10−3 0.84265 1.8× 10−3

T 0.39175 2.6× 10−3 0.79468 2.3× 10−3 0.93183 1.4× 10−3

PT 0.23662 2.0× 10−3 0.64085 2.6× 10−3 0.85005 1.9× 10−3

D 0.30108 2.1× 10−3 0.72040 2.4× 10−3 0.89593 1.6× 10−3

DSC1 0.22856 1.9× 10−3 0.61906 2.5× 10−3 0.82786 1.8× 10−3

DSC2 0.22850 1.9× 10−3 0.61906 2.5× 10−3 0.82786 1.8× 10−3

DSC4 0.22819 1.9× 10−3 0.61908 2.5× 10−3 0.82786 1.8× 10−3

EXP 0.22799 1.9× 10−3 0.61917 2.5× 10−3 0.82810 1.8× 10−3
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Table 8. Characteristics of algorithm ranks based on the absorbing probability p(a)(t) of the con-
structed partial CTMCs for a car sharing system model.

Alg.
Time Moment t = 1.0 Time Moment t = 2.0 Time Moment t = 3.0

Mean Std. Mean Std. Mean Std.

RND 9.99887 8.0× 10−4 9.99831 9.8× 10−4 9.90344 7.1× 10−3

SRND 7.11858 1.6× 10−2 7.27216 1.3× 10−2 7.19593 1.5× 10−2

P 6.15359 1.3× 10−2 5.77527 1.3× 10−2 5.40147 1.3× 10−2

T 8.63919 1.6× 10−2 8.65500 1.4× 10−2 8.56578 1.6× 10−2

PT 4.94410 9.3× 10−3 5.05816 1.1× 10−2 5.40542 1.4× 10−2

D 8.02823 1.7× 10−2 8.05364 1.6× 10−2 7.94692 1.7× 10−2

DSC1 4.10954 8.7× 10−3 4.17504 1.2× 10−2 3.82665 1.0× 10−2

DSC2 2.99435 2.1× 10−3 2.98306 3.6× 10−3 3.00000 8.4× 10−3

DSC4 1.97177 4.2× 10−3 1.92151 6.9× 10−3 1.91078 9.8× 10−3

EXP 1.03162 4.3× 10−3 1.09373 7.5× 10−3 1.15415 9.9× 10−3

Table 9. Characteristics of algorithm ranks based on the absorbing probability p(a)(t) of the con-
structed partial CTMCs for a randomly generated CTMC.

Alg.
Time Moment t = 1.0 Time Moment t = 2.0 Time Moment t = 3.0

Mean Std. Mean Std. Mean Std.

RND 9.43986 1.2× 10−2 8.52851 1.2× 10−2 7.92547 6.8× 10−3

SRND 6.88876 1.7× 10−2 6.05082 1.8× 10−2 5.51214 1.3× 10−2

P 5.41841 1.3× 10−2 3.61491 1.4× 10−2 2.97798 4.7× 10−3

T 8.43535 1.2× 10−2 7.53811 1.3× 10−2 7.01920 6.8× 10−3

PT 4.46358 1.2× 10−2 4.45680 1.3× 10−2 3.96894 4.8× 10−3

D 7.00000 1.7× 10−2 6.02597 1.7× 10−2 5.43704 1.3× 10−2

DSC1 3.16996 1.8× 10−2 1.69509 1.7× 10−2 1.24449 1.0× 10−2

DSC2 2.90288 1.4× 10−2 1.69509 1.7× 10−2 1.24449 1.0× 10−2

DSC4 1.92264 1.3× 10−2 1.72050 1.6× 10−2 1.24675 1.0× 10−2

EXP 1.30265 1.5× 10−2 1.86392 1.9× 10−2 1.72953 1.1× 10−2

Table 10. Characteristics of partial CTMC construction runtimes and their ranks for the car sharing
system model.

Alg.
Runtime (in Seconds) Runtime Rank

Mean Std. Mean Std.

RND 0.02154 1.1× 10−5 5.38227 2.0× 10−2

SRND 0.01618 1.4× 10−5 1.13665 1.0× 10−2

P 0.02080 2.3× 10−5 4.98363 1.9× 10−2

T 0.01770 1.5× 10−5 2.78148 1.6× 10−2

PT 0.02049 2.2× 10−5 4.48899 1.9× 10−2

D 0.01727 1.7× 10−5 2.22699 1.6× 10−2

DSC1 0.32313 6.4× 10−4 7.00000 0.0
DSC2 0.35770 5.5× 10−4 8.00000 0.0
DSC4 0.44843 7.1× 10−4 9.00000 0.0
EXP 0.58833 1.7× 10−3 10.00000 0.0
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Table 11. Characteristics of partial CTMC construction runtimes and their ranks for the randomly
generated CTMC.

Alg.
Runtime (in Seconds) Runtime Rank

Mean Std. Mean Std.

RND 0.01020 9.3× 10−6 2.60305 2.5× 10−2

SRND 0.00845 6.6× 10−6 1.04856 7.9× 10−3

P 0.01139 8.4× 10−6 5.12705 2.4× 10−2

T 0.01117 1.1× 10−5 4.63185 2.4× 10−2

PT 0.01107 9.0× 10−6 4.42292 2.4× 10−2

D 0.01050 1.1× 10−5 3.16657 2.9× 10−2

DSC1 0.48800 8.3× 10−4 7.58046 1.2× 10−2

DSC2 0.48651 8.0× 10−4 7.42236 1.2× 10−2

DSC4 0.52076 4.1× 10−4 8.99718 1.3× 10−3

EXP 0.97456 2.5× 10−3 10.00000 0.0

As demonstrated in Tables 6 and 8 the EXP algorithm, even though the slowest,
consistently constructed partial CTMCs with the smallest values of absorbing probability
from nearly every initial state. Conversely, the fastest algorithm, SRND, constructed CTMCs
that ranked around the seventh place on average. Algorithm PT strikes a balance between
partial CTMC quality and construction runtime.

It is worth noting that one reason algorithms EXP and DSC are slower is due to the
fact that edge state probabilities are recomputed from scratch to determine the next edge
state to be included. In contrast, algorithms, based on the shortest path reuse or update the
known distance data of edges states.

The main algorithm performance trends observed in the case of the car sharing system
model persist for a randomly generated CTMC.

For the second part of numerical experimentation, we opted for the fastest algorithms
to construct a larger partial CTMC comprising 200,000 states. The partial CTMC was
constructed from a single initial state. As shown in Tables 12 and 13, we state the time it
took to compute absorbing probability, also.

Table 12. Characteristics of absorbing probabilities of partial CTMCs of size 200,000 constructed by
the heuristic algorithms SRND, P, and PT for a car sharing system model with 10 zones and 100 cars.
The partial CTMCs are constructed starting from the state, which represent 10 cars in the first zone.
The full CTMC of the system has (309

100) ≈ 1.49× 1083 states.

Alg.
Absorbing Probability, p(a)(t) at: Construction Evaluation

t = 1.0 t = 2.0 t = 3.0 Runtime
(in Seconds)

Runtime
(in Seconds)

SRND 0.00201 0.03831 0.14732 70.60064 6.52133
P 0.00062 0.01435 0.06765 5597.13894 16.43587

PT 0.00057 0.01406 0.06764 5234.25113 15.73841

Table 13. Characteristics of absorbing probabilities of partial CTMCs of size 200,000 constructed by
the heuristic algorithms SRND, P, and PT for a randomly generated CTMC of size 1,000,000.

Alg.
Absorbing Probability, p(a)(t) at: Construction Evaluation

t = 1.0 t = 2.0 t = 3.0 Runtime
(in Seconds)

Runtime
(in Seconds)

SRND 0.16594 0.63560 0.86841 12.71308 3.91580
P 0.10415 0.48092 0.75997 691.63537 3.47252

PT 0.09552 0.48086 0.76745 688.24140 3.45486
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Tables 12 and 13 show that the performance of algorithms P and PT is quite comparable.
The algorithm SRND stands out for its significantly smaller runtime. The runtime is affected
by the number of edge states present at the moment the choice to include an edge state
is made. To gain some insight, we plotted the number of edge states ν(i) observed after
including the ith state in Figures 9 and 10.
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Figure 9. Number of edge states observed in the case of the car sharing system model.
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Figure 10. Number of edge states observed in the case of randomly generated CTMC.

As seen in Figure 9, the number of edge states increases steadily, while in case of the
randomly generated CTMC (Figure 10), the number of edge states increase at a diminishing
rate. It is also observed that the state choices may (Figure 9) or may not (Figure 10) have
a strong influence on the number of edge states. Further, we quantify the tendencies
discussed in the above figures. The mean of newly introduced edge states (after inclusion
of ℓi state) and the mean and maximum of transitions from the included state ℓi are given
in Tables 14 and 15.

Table 14. The characteristics explaining the change in the number of edge states in the case of the car
sharing system model.

Alg. Mean ∆(i) Mean τ(i) Max. τ(i)

SRND 6.270 30.896 64
P 20.051 41.436 102

PT 18.824 40.360 102
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Table 15. The characteristics explaining the change in the number of edge states in case of randomly
generated CTMC.

Alg. Mean ∆(i) Mean τ(i) Max. τ(i)

SRND 3.792 7.029 28
P 3.786 7.001 28

PT 3.787 7.006 28

The characteristics given in Tables 14 and 15 support the previously discussed dif-
ferences in partial CTMC construction for these two models. In addition, we can see that
about half of the transitions from the included state are to previously discovered states,
on average.

6. Discussion
6.1. Complexity

The complexity of Algorithm 2 depends on a number of factors. First, it depends on
the properties of the underlying CTMC. Assuming that CTMC S (of finite or infinite size)
is such that the number of transitions from any state s⃗ ∈ S is bounded, i.e., there exists a
positive integer M that

|g(⃗s)| ≤ M, (23)

the number of edge states increase linearly (i.e., ν(i) ≤ Mi, for i = 1, 2, . . . , K), at most.
This assumption implies that complexity of CTMC generator g is O(1), which corresponds
to a finite number of possible events in the model description by the event formalism.
Second, we need to condier the complexity of choosing the ith state from ν(i) edge states.
In the case of the first group of algorithms (RND, SRND), the state choice does not require
much computation resulting in overall complexity of O(K). As for the second group of
algorithms (P, PT, D, T), based on the edge state characterization by the shortest path,
assuming that identification of edge state at the shortest distance is backed by a priority
queue (in Algorithm 3), the worst case complexity is O(MK2 log(MK)) = O

(
K2 log(K)

)
.

In the case of the third group of algorithms (EXP, DSC), the computation of edge state ex-
act/approximate probabilities involves ϕ(i) matrix-vector multiplications for each iteration
i, where matrix size is ∣∣∣P (i)

∣∣∣+ ∣∣∣P (i)
∣∣∣ = i + ν(i) ≤ K + MK. (24)

If in the EXP algorithm, edge state probabilities are computed by the uniformization [8]
method, the number of matrix-vector multiplications is determined by the stiffness [22]
of CTMC. In the case of the DSC algorithm (assuming m = 1), the number of matrix-
vector multiplications is given by the highest shortest distance (measured in the number of
transitions) from the initial state to an edge state. Without trying to go much into the details,
we assume that ϕ(i) is bounded by a positive integer L (i.e., ϕ(i) ≤ L, for i = 1, 2, . . . , K). If
the underlying CTMC is sparse (i.e., (23) holds and for a finite CTMC we have M << |S |,
as well), the complexity of edge state probability computation is O(L(K + MK)) = O(K2).
The edge state probabilities are recomputed before choosing an edge state to include,
resulting in an overal worst case complexity of O(K3). Without the assumption (23),
the order of complexity increases by several orders, depending on the group of algoritms.

As our numerical results suggest, the shortest path based algorithms can be very
efficient, considering that edge state characterization is reused through iterations and
sometimes updated, if a shorter path is found. The naive algorithm SRND can be still
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considered, due to its implementation simplicity, especially if there are resources for
constructing and evaluating a larger partial CTMC.

6.2. Limitations and Remarks

The biggest limitation of these heuristic algorithms is that they cannot find an optimal
partial CTMC (as we showed that in Example 2), in general. On the other hand, if a structure
of CTMC is simple enough, one might derive a much more efficient algorithm to identify
(even optimal) partial CTMC.

We showed by Example 4 that optimal partial CTMC depends on the time moment
t. Thus, we might expect a good heuristic algorithm to consider the time moment t in
some way, but that is carried out only by the high computational complexity algorithms
EXP and DSC. These algorithms could be considered for practical application if edge
state probabilities could be evaluated with smaller computational effort (i.e., by reusing
intermediate results from the previous iterations).

The heuristic algorithm template (i.e., Algorithm 2) implies that to identify a good
partial CTMC of size K, one of size K− 1 needs to be identified. As a result, the heuristic
algorithms try to solve a harder problem than necessary, i.e., not only which states need to
be included, but when, as well. One way to overcome this formulation issue would be to
choose to include a particular subset of edge states in each iteration.

7. Conclusions
We explored three groups of heuristic algorithms for the construction of partial CTMC

with a desired small absorbing probability. From the first group of naive algorithms (RND,
SRND), SRND stands out for its simplicity and speed. Among the algorithms in the second
group (P, T, PT, and D), which are based on characterization by the shortest path, both P
and PT constructed partial CTMCs of even smaller absorbing probabilities at the expense
of increased runtime. On the other hand, the third group of algorithms (DSC, EXP), which
are based on characterization by all paths of finite or infinite length, constructed partial
CTMCs with even smaller values of absorbing probabilities compared to P and PT, albeit
at a significantly higher runtime cost. In practical applications, the algorithms SRND, P,
and PT could prove to be usefull, especially if the structure of underlying CTMC is not well
researched and more advanced transient analysis methods are not yet available.
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