
Received 25 November 2024, accepted 14 December 2024, date of publication 18 December 2024,
date of current version 30 December 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3519715

Computational Cost and Implementation Analysis
of a Wavelet-Based Edge Computing Method for
Energy-Harvesting Industrial IoT Sensors
JAROMIR KONECNY 1, (Senior Member, IEEE), JAN CHOUTKA 1, RADIM HERCIK 1,
JIRI KOZIOREK 1, DANGIRUTIS NAVIKAS 2, DARIUS ANDRIUKAITIS 2, (Member, IEEE),
AND MICHAL PRAUZEK 1, (Senior Member, IEEE)
1Department of Cybernetics and Biomedical Engineering, VSB—Technical University of Ostrava, 708 00 Ostrava, Czech Republic
2Department of Electronics Engineering, Kaunas University of Technology, 44249 Kaunas, Lithuania

Corresponding author: Jaromir Konecny (jaromir.konecny@vsb.cz)

This work was supported in part by the project ‘‘Development of Algorithms and Systems for Control, Measurement and Safety
Applications X’’ of Student Grant System, VSB—Technical University of Ostrava (VSB-TU Ostrava), under Project SP2024/021; in part
by European Union through the REFRESH—Research Excellence For REgion Sustainability and High-tech Industries project via the
Operational Programme Just Transition under Grant CZ.10.03.01/00/22_003/0000048; in part by European Regional Development Fund
for the Research Centre of Advanced Mechatronic Systems Project, through the Operational Programme Research, Development and
Education, under Grant CZ.02.1.01/0.0/0.0/16_019/0000867; and in part by the Research Council of Lithuania (LMTLT) under Grant
S-A-UEI-23-1.

ABSTRACT The rapid advancement of Industrial Internet of Things (IIoT) has heightened the need for
efficient data processing and transmission, particularly in energy-constrained environments. This study
introduces a novel wavelet-based edge computing methodology designed specifically for low-power IIoT
sensors using energy harvesting. Unlike existing implementations that rely on computationally complex
instructions, this approach optimizes the wavelet transform (WT) for resource-limited microcontrollers
(MCUs) without sacrificing data quality. By leveraging a lightweight assembly-level WT implementation,
the proposed solution significantly reduces computational costs and energy consumption. A comprehensive
analysis performed on ARM Cortex-M7 MCU on an industrial vibration dataset demonstrates energy
savings of assembly language (ASM) up to 87% with discrete wavelet transforms (DWT) and 32.1% with
fast wavelet transforms (FWT), compared to C-based implementations. This work is distinct in its ability
to dynamically adjust data transmission levels based on available energy, ensuring robust operation in
batteryless IIoT environments. Moreover, the method offers flexibility in signal reconstruction, supporting
scalable compression ratios and facilitating long-term predictive maintenance applications, making it a
pioneering step in sustainable industrial monitoring.

INDEX TERMS Edge computing, energy harvesting, Industrial Internet of Things, implementation
optimization, wavelet transform.

I. INTRODUCTION
Predictive maintenance is an essential feature in the concept
of Industry 4.0 and enables optimal performance and
reliability in industrial equipment [1]. The success of
predictive maintenance strongly depends on the information

The associate editor coordinating the review of this manuscript and

approving it for publication was Patrizia Livreri .

obtained from diagnosed equipment [2]. For this reason,
Industry 4.0 smart factories must be fitted with various
sensor types (temperature, pressure, optical, vibration, etc.)
[3]. Therefore, applying Industrial Internet of Things (IIoT)
technologies provides diagnostic data which enables early
detection of equipment malfunctions, anomalies [4], reduces
maintenance costs, and avoids production losses due to
unexpected equipment failures [5]. The main challenge

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 193607

https://orcid.org/0000-0002-0496-2915
https://orcid.org/0009-0004-5210-5784
https://orcid.org/0000-0001-8292-225X
https://orcid.org/0000-0002-7138-887X
https://orcid.org/0000-0001-7071-7566
https://orcid.org/0000-0002-9862-8917
https://orcid.org/0000-0003-1348-1328
https://orcid.org/0000-0001-8599-0418

J. Konecny et al.: Computational Cost and Implementation Analysis of a Wavelet-Based EC Method

FIGURE 1. IIoT sensors displaying different energy storage states,
transmitting collected data to the cloud with varying levels of
compression.

in such large-scale measurement processes is in the huge
quantity of data generated by the array of sensors in predictive
maintenance monitoring systems [6].

Edge Computing (EC) principles provide solutions to
several technical challenges, including data reduction and
satisfaction of resource constraints in IIoT sensors [7].
EC techniques solve problems with extensive data streams
by performing data analysis or compression closer to the
source and offloading cloud processing demands to local IIoT
devices. The second feature of EC methods is a significant
reduction in transmission demands, leading to lower energy
consumption, potentially longer operating times, and reduced
outages in energy harvesting devices [8].
Batteryless IIoT sensors apply energy harvesting tech-

niques that demonstrate stochastic behavior. The research
challenge lies in dynamically controlling the IIoT node’s
operation to avoid device failure due to energy outages and
ensuring that data is immediately online in the cloud. The
proposed solution is illustrated in Fig. 1. The goal of this
EC method is to transmit data with different compression
levels. These levels are represented by various line styles in
the scheme. The compression level is selected based on the
charge available in the device. This method also allows the
transmission of missing information when the stored energy
is at a sufficient level. The advantage of this approach is
immediate uploading of rough collected data to the cloud
and detailed information subsequently transmitted with an
acceptable delay [9]. Rough data can be used for immediate
monitoring, while detailed data can be stored in the cloud for
long-term analysis.

The challenge lies in managing the vast data streams
generated by sensors while maintaining energy efficiency in
battery-constrained environments. The proposed lightweight
Wavelet Transform (WT) method addresses this by reducing
computational complexity, optimizing data transmission
for edge computing, and minimizing energy consumption
through efficient data compression tailored to resource-
limited settings.

WT offers unique properties that make it particularly
suitable for addressing the challenges of data compression
in energy-constrained IIoT environments. Unlike traditional
compression methods, WT allows for multi-resolution analy-
sis, enabling the decomposition of signals into both coarse
and fine details. This capability supports the dynamic
scaling of compression ratios, allowing systems to adapt to
fluctuating energy availability—a critical consideration for
energy harvesting technologies where harvested energy is
distributed unequally. Additionally, WT retains the ability
to transmit specific details of the original data for future
processing, bridging the gap between immediate data reduc-
tion and the need for preserving information integrity. The
presentedmethodology leverages these uniqueWTproperties
to propose a lightweight, flexible compression technique that
aligns with the requirements of IIoT applications, addressing
a critical gap in prior works.

Advancements have been made in Industrial Internet of
Things (IIoT) systems and energy-efficient data transmis-
sion. However, a critical issue remains. It is challenging
to balance energy consumption with computational effi-
ciency. This is especially true for batteryless and energy-
harvesting devices. This study bridges that gap by introducing
a novel WT-based data compression and transmission
method, optimized for microcontrollers in IIoT systems,
enabling perpetual operation without compromising data
integrity.

Current research lacks methods that offer lossless com-
pression while prioritizing information density during data
transmission. Building on the previous work by [9], this
study emphasizes the potential of WT. WT enables scalable
compression ratios and allows for dynamic signal quality
adjustment. It achieves this by progressively transmitting
detailed information. While earlier research explored the
Energy-Constrained (EC) method, this work presents a novel
lightweight WT implementation designed specifically for
low-power microcontrollers (MCUs) in IIoT devices.

Although wavelet-based EC methods for IIoT have
filled certain gaps in the research, data processing remains
challenging in terms of computational power and energy
requirements. This article contributes the following:

• Amethodology for lightweightWT implementation that
avoids computationally expensive instructions.

• A comprehensive analysis comparing the computational
costs on an MCU, with and without hardware support
for floating-point instructions.

• A case study using an industrial vibration dataset,
demonstrating the levels of data loss at various compres-
sion rates.

The article is organized into seven sections: Section I
introduces the study’s innovation; Section II addresses related
works and related review; Section III describes the theoretical
background for WTs, the use of digital signal processors
(DSP) and various compiler settings, and also their effects
on compression time; Section IV describes the experiment’s

193608 VOLUME 12, 2024

J. Konecny et al.: Computational Cost and Implementation Analysis of a Wavelet-Based EC Method

design and setup; Section V presents the results; Section VI
discusses the results in the context of the study’s innovative
approach; Section VII concludes the paper and outlines
possible future work.

II. RELATED WORKS
This section addresses the literature review. The related
reviews concerning with energy harvesting are introduced
and the overview of IIoT solution that are using EC
techniques and data compression is analyzed.

The Table 1 presents related reviews to IoT systems
powered by energy harvesting techniques. The table presents
modern trends closely related to the topic of this study, as it
introduces a novel methodology dedicated to energy harvest-
ing systems. Sanislav et al. [10] provide a comprehensive
overview of energy harvesting technologies and assess their
potential energy outputs. Zeadally et al. [11] offer a study
that elaborates on energy harvesting systems for IoT, detailing
the specific components that comprise these devices. Ashraf
Virk et al. [12] provide a taxonomy and critical review of
various energy harvesting techniques to guide engineers in
selecting effective solutions. Kucova et al. [13] explore the
possibilities of thermoelectric generators as alternative power
sources, highlighting the integration of machine learning
algorithms to manage and predict energy, which reveals their
suitability for low-power applications despite low energy
efficiency. Chen et al. [14] address indoor photovoltaic
technology for energy harvesting by generating electricity
from light energy, a promising technique for IIoT devices.
He et al. [15] focus their research on piezoelectric energy
harvesters, examining their structural designs, fabrication
techniques, performance factors, and strategies for improving
efficiency. This study highlights advancements in flexible
and stretchable devices for wearable technologies and
environmental monitoring.

The related reviews highlight the importance of energy
harvesting in IoT systems and the need for efficient solutions
to manage available energy effectively. To the best of
our knowledge, no study has considered the compression
of transmitted data. To fill this gap, this study proposes
a methodology for lightweight compression specifically
designed for IIoT systems.

EC in combination with remote monitoring is used
in many industrial application areas. Table 2 provides a
summary of related state-of-the-art (SOTA) studies which
have investigated IIoT solutions for EC and compression.
Vibration monitoring for structural health monitoring is
one of the applications of IIoT. This is discussed in the
work by Zhang et al. [17]. Since vibration monitoring
typically generates a significant amount of data, compression
techniques can be considered to reduce data transmission.
The authors in [17] also deal with vibration monitoring
and explore an edge-cloud collaborative framework to
integrate edge, cloud infrastructures to support efficient
artificial intelligence-based data compression and reconstruc-
tion with quantized deep compressed sensing (QDCS) in

IIoT networks. QDCS network is designed for both linear
and nonlinear measurements to improve the performance of
industrial data compression and reconstruction.

Other studies have applied EC techniques to maintain
image compression. In [18], the authors present a lossless
image processing algorithm that uses atomic functions which
aims to reliable protection features with convenient image
representation. An important parameter to consider in IIoT
monitoring is the Age of Information. In [19], the authors
demonstrate computational efficient image compression
algorithm suitable for resource-constrained industrial IoT
applications. In [20], the authors present both lossless
and lossy LoRaWAN data compression, which allows for
enhanced data throughput without signal downsampling,
aiming to optimize network efficiency by minimizing the
average Age of Information. Chen et al. [21] introduces a
deep reinforcement learning-based data compression method
for IoT-generated data in smart railroad management,
addressing challenges in storage, processing, and transmis-
sion. Serhii and Vasyl [22] presents an innovative approach
to improving data compression in IoT systems by using
edge technologies and a neural network-based compression
algorithm, significantly reducing data transmission volume,
enhancing transmission speed, and lowering costs, while
simultaneously improving scalability, reducing transmis-
sion errors, and strengthening data security within the
network.

A review of related works shows that most EC methods
are based on data compression or extraction of information
without considering the transmission of raw data for future
processing. These methods are not fully aligned with
energy harvesting technologies, which distribute harvested
energy unequally. To fill this gap the methodology for
lightweight WT implementation for IIoT is presented. None
of previous papers considers the compression which is able
to dynamically scale the compression ratio and consequent
transmission of the details.

III. METHODS
This section introduces the methods applied in the current
study, describing the WTs, compiler optimization and
execution of signal instructions.

A. WAVELET TRANSFORM
The proposed approach uses either the discrete wavelet
transform (DWT) or fast wavelet transform (FWT) for data
compression. The wavelet transform (WT) of an input signal
x(t) in L2(R) space is defined as:

WT {x(t)} =
1

√
|a|

·

∫
∞

−∞

x(t) · ψ

(
t − b
a

)
dt, (1)

where ψ(t) is the mother wavelet, a ∈ R \ 0 is the dilation
parameter, and b ∈ R is the translation parameter.
TheDWT/FWTdecomposes the input signal into awavelet

spectrum, which consists of approximation coefficients am
and detail coefficients d1, d2, . . . , dm. These coefficients are

VOLUME 12, 2024 193609

J. Konecny et al.: Computational Cost and Implementation Analysis of a Wavelet-Based EC Method

TABLE 1. Related reviews concerning with IoT systems powered by energy harvesting techniques.

TABLE 2. Overview of IIoT solutions designed for EC and data compression techniques.

computed by convolving the input signal with low-pass filter
H(n) for the approximation and high-pass filter G(n) for the
detail coefficients:

a1(n) =

∑
k

H(k − 2n)x(k), (2)

d1(n) =

∑
k

G(k − 2n)x(k). (3)

The choice of mother wavelet significantly affects com-
pression performance. A closer match between the wavelet
and the signal shape leads to better compression results [23].
The proposed EC approach allows flexibility in data

transmission, where detail coefficients can be omitted or
added later, enabling gradual signal refinement in resource-
constrained environments.

At the first level of decomposition, the output vector con-
sists of both approximation and detail coefficients. If needed,
the approximation coefficients can be further decomposed
to achieve a deeper level of decomposition. When all
approximation and detail coefficients are transmitted, the full
signal can be reconstructed without loss. However, if detail
coefficients are omitted—such as in low-energy scenarios—
they are replaced with zeros, leading to some data loss.
The proposed energy-constrained (EC) approach allows these

193610 VOLUME 12, 2024

J. Konecny et al.: Computational Cost and Implementation Analysis of a Wavelet-Based EC Method

TABLE 3. GCC compiler optimization levels.

detail coefficients to be transmitted later, enabling signal
refinement in the cloud when energy permits.

B. COMPILER OPTIMIZATION
High-level programming languages allow abstraction of
the assembly language (ASM) to support more complex
operations and efficient design in applications. However,
a drawback of the compiling process is that the compiled
program is not always as efficient as possible in terms of
computational cost.

The compiling process can be executed with various
parameters, especially to optimize computational cost or
program size. Optimization tools can be used to reduce the
number of steps and cycles or increase the number of cycles
to minimize the number of instructions stored in program
memory.

Table 3 shows the optimization variants of the GNU
Compiler Collection (GCC). The GCC compiler’s default
setting is O0, which does not apply any optimization
procedure. The advantage of this setting is fast compiling.
The next settings are O1 and O2, both which reduce the size
of the code and its computational costs. Compared to O1,
setting O2 use additional tools to reduce size and execution
time, but the compiling process is longer. Setting 03 achieves
the most comprehensive optimization of execution time,
using time-space optimization tools in addition to the tools
of setting O2. The final optimization option is Os, which
primarily decreases code size.

C. SIGNAL INSTRUCTION EXECUTION
WTs are computationally intensive operations that rely
heavily on convolutions, requiring a significant number
of multiply–accumulate (MAC) operations [24]. Efficient
processing of MAC operations is critical to achieving
high performance in applications involving WTs. Modern
hardware solutions, such as digital signal controllers (DSCs),
digital signal processors (DSPs), and system-on-chip (SoC)
platforms, are specifically designed to optimize these oper-
ations. These systems often include dedicated instruction
sets and hardware acceleration features for signal processing
tasks, enabling faster execution of MAC operations. WTs
can be implemented as two nested loops of MAC operations,

FIGURE 2. Compilation of the floating-point operation z += x * y; in
three scenarios: A) Compiled C program without FPU; B) Compiled C
program with FPU but without optimization; C) Compiled C program with
O2 (or higher) optimization enabled.

where the inner loop performs the convolution, and the
outer loop iterates over the signal segments, therefore, the
efficient MAC instruction processing is crucial. Additionally,
since WTs typically operate on real numbers, floating-
point arithmetic is preferred for maintaining numerical
accuracy and precision. The choice of hardware significantly
affects overall performance. Its ability to efficiently handle
floating-point MAC operations is crucial. This is especially
important for applications that require real-time or large-scale
signal processing.

Fig. 2 illustrates three variations of compiling the C lan-
guage expression float z += x * y;. Fig. 2A depicts
a block diagram of disassembled codewhen signal processing
support is not present. The compiler uses two libgcc subrou-
tines (AEABI_FMUL and AEABI_FADD). Each subroutine
contains several instructions for processing in the loop.
This approach is the most time consuming. Fig. 2B depicts
the disassembly of compiled C code without optimization.
Floating point instructions are used, and the results are
accumulated into register S0 (generally SX). Fig. 2C depicts
the disassembled compiled C code with O2 (or greater)
optimization. The optimization routine recognizes that two
floating point instructions can be replaced with VMLA,
a single MAC instruction. This approach is also used in ASM
implementations.

IV. EXPERIMENT
This section describes the DWT and FWT algorithms
optimized in both C and ASM, the optimized convolution
calculation, and the experimental procedure for performance
analysis. WT performance was analyzed at the first level
of decomposition; higher levels are linear in time and were
calculated from first decomposition level values.

A. IMPLEMENTATION
This subsection describes the FWT and DWT algo-
rithms optimized in both C and ASM. The source

VOLUME 12, 2024 193611

J. Konecny et al.: Computational Cost and Implementation Analysis of a Wavelet-Based EC Method

codes of the proposed solution is available on GitHub:
(https://github.com/CHO0178/FastWaveletTransform).

The implementation was debugged and verified against
the FWT and DWT implementations available in Matlab
software. The algorithms produced exactly the same results.
To evaluate the correctness of the implementation, both
white-box and black-box testing methods were used. Addi-
tionally, the implementation was validated according to the
mathematical definition of the WT.

The mathematical definition of a WT is a convolution.
Processing a convolution is generally time consuming,
however the mother wavelet is a sparse matrix and allows this
calculation to be optimized.

Algorithm 1 Wavelet Decomposition Algorithm for Execu-
tion in C
1: if FWT then
2: out_len =

in_len
2

3: else if DWT then
4: out_len =

in_len
2 +

WL_len
2 − 1

5: end if
6: for id = 0 to out_len − 1 do
7: low_out[id] = 0, hi_out[id] = 0
8: for iWL = 0 to WL_len − 1 do
9: if FWT then

10: addr = (2 · id + iWL) mod in_len
11: else if DWT then
12: addr = dS(2 − WL_len + 2 · id + iWL , in_len)
13: end if
14: low_out[id]+ = data[addr] · H[iWL]
15: hi_out[id]+ = data[addr] · G[iWL]
16: end for
17: end for

Algorithm 1 describes the execution in C of the DWT
and FWT. It produces output data separated into two
vectors (lowout and hiout). To calculate a convolution, the
wavelet decomposition algorithm applies two nested loops.
To optimize computational costs, the inner loop iteration
count is limited to a number of non-zero coefficients of the
mother wavelet matrix. However, the appropriate non-zero
coefficient address must be calculated differently because
they are different in each algorithm (DWT and FWT).

The idea behind optimization is for the convolution to be
calculated only with non-zero mother wavelet coefficients.
The indices of these coefficients are generally not consecutive
and should therefore be individually calculated but not
be time consuming. For the FWT variant, the address is
calculated from the equation

addr = (2 · id + iWL) % inlen, (4)

where addr is the input data address, id is the output data
iteration iWL mother wavelet iteration, and inlen is the input
data length.

The DWT algorithm requires a more complex input data
address calculation process than the FWT, thus significantly

affecting computational costs. For the DWT calculation,
extension of the input data is also required:

dataext =

DWLlen−3, . . . ,D0,

D0, . . . ,DN−1,

DN−1, . . . ,DN−WLlen+2

 , (5)

where WLlen is the mother wavelet length, Di are input data,
and N is the data length. For mother wavelets with two
coefficients, data extension is not required. The result of data
extension is that the input data are mirrored both before and
after input. Data extension can be performed by copying the
input data or virtually by extending the input address space
which refers to the original input data. The calculation which
converts the virtual data indices (negative indices and indices
greater than the data length) to physical indices within the
input data is expressed as

dS(pos, dl) =

∣∣∣(⌊pos
dl

⌋
% 2

)
· (dl − 1)− pos% dl

∣∣∣ , (6)

where pos is the virtual position, dl is the input data length,
and the dS function returns a physical address.

Algorithm 2Wavelet decomposition Algorithm Executed in
ASM
1: Initialize (and save) registers
2: Initialize P = WL_len − 3
3: Initialize addr = P
4: for id = 0 to out_len − 1 do
5: Calculate offset P address from id
6: for iWL = 0 toWL_len − 1 do
7: Clear FPU
8: Calculate data address from id , iWL, and P
9: Copy current input sample into FPU
10: Copy current H value and G value into FPU
11: Perform FPU MAC instruction into AccA
12: Perform FPU MAC instruction into AccB
13: end for
14: Copy AccA from FPU to low_out[id]
15: Copy AccB from FPU to hi_out[id]
16: end for
17: (restore registers)

This subsection describes the DWT and FWT algorithms
executed in ASM. Algorithm 2 describes wavelet decom-
position (in ASM), and as with Algorithm 1 executed in
C, calculates a convolution with non-zero mother wavelet
coefficients only. Execution in ASM also uses an floating
point unit (FPU) and thus MAC instructions. However, Cor-
tex M7 does not support the modulo instruction, therefore (6)
cannot be used, and the addresses should be calculated in
another way. In addition to the modulo function, address
calculation involves time consuming subtraction, addition,
multiplication and division operations, and therefore another
type of instruction (e.g., shift instruction) is useful.

Calculation of the input data address and the helper
variable offset address P are discussed below. Data extension

193612 VOLUME 12, 2024

J. Konecny et al.: Computational Cost and Implementation Analysis of a Wavelet-Based EC Method

for ASM execution is expressed by following:

dataext =

dataL :

{
DWLlen−3, . . . ,D0,

}
data : {D0, . . . ,DN−1, }

dataR :
{
DN−1, . . . ,DN−WLlen+2

}
 , (7)

where dataL is the input data left extension and dataR is the
input data right extension.

Algorithm 3 Calculation of the Offset P
1: if P = 1 then
2: P = 0
3: else if id ≤

WL_len
2 − 1 then

4: P = P− 2
5: else
6: P = P+ 2
7: end if

TheWT decomposition algorithm generally has four cases
according to the mother wavelet length and algorithm type
(FWT and DWT):

1) For FWT with a mother wavelet length equal to two,
the offset P is initiated at zero and incremented by two
in each iteration. The address (addr) starts at P in the
outer loop iteration and is incremented by one in the
inner loop iteration.

2) For DWT with a mother wavelet length equal to two,
the calculation is the as same as in the first case.

3) For FWT with a mother wavelet length greater than
two, the calculation is the same as the first case, but
when the address exceeds the data length, it is reset to
zero and the algorithm continues.

4) For DWT with a mother wavelet length greater than
two, the offsetP is calculated according to Algorithm 3;
calculation of the address is described below.

To calculate an address, it is necessary to determine the
membership of the P offset in the data set:

P is odd : dataL
P is even and inlen − WLlen + 2 < id : dataR
Else : data. (8)

The edge number E is then calculated according to the
equation

E =

P ∈ dataL : WLlen − (id + 1) · 2

P ∈ dataR : WLlen −

(
id + 1 −

inlen
2

)
· 2

.

(9)

Finally, an address (addr) is calculated from the rules

addr[iWL = 0] = 0

P ∈ dataL and E = iWL : addr[iWL] = addr[iWL−1]

P ∈ dataL and E > iWL : addr[iWL] = addr[iWL−1] + 1

P ∈ dataL and E < iWL : addr[iWL] = addr[iWL−1] − 1

P ∈ dataR and E = iWL : addr[iWL] = addr[iWL−1]

FIGURE 3. Block diagram of the experimental setup: the i.MXRT1010
platform executing wavelet-based computations.

P ∈ dataR and E > iWL : addr[iWL] = addr[iWL−1] − 1

P ∈ dataR and E < iWL : addr[iWL] = addr[iWL−1] + 1

P ∈ data : addr[iWL] = addr[iWL−1] + 1 (10)

Determining the address is a crucial calculation that
significantly affects the entire algorithm’s performance.
The algorithm therefore uses only primitive operations
instead of complex instructions such as division, modulo
or multiplication. Multiplication and division by two is
therefore executed by shifting the register, which is also much
faster than multiplication or division. Frequently repeated
expressions are also processed only once and stored in a
temporary register.

B. EXPERIMENTAL SETUP
This section describes the experimental setup for comparing
execution in ASMandC. The experiment uses the ‘arm-none-
eabi-gcc’ compiler, which is part of the MIMXRT1011xxxxx
Software Development Kit (SDK). This compiler config-
uration was selected to meet the requirements of ARM
MCU and processors. The compilation process is managed
through the ‘gnu make builder.’ The toolchain used in the
subsequent experiments is ‘NXPMCU Tools,’ specifically
designed to provide dedicated support for NXP’s ARMMCU
platforms. In addition, no operating system was employed,
and MCUXpresso IDE v11.6.1_8255 was used.

Fig. 3 illustrates the experimental setup. All WT processes
were performed on the NXP MIMXRT1010-EVK hardware
development kit, which includes an ARM Cortex-M7 MCU
clocked at 500Mhz, 128 kB RAM, and 64 kB flash memory.
This type of MCU supports signal instruction processing
and includes MAC instructions on the FPU. This platform
allowed testing of all the scenarios described in this study.

All versions of the FWT and DWT were tested in
binary executable code prepared on a computer and flashed
to the target i.MXRT1010 platform through a debugging
interface. The flashed programs operated with input data
copied to RAM through a serial port. The computational
cost performance of the FWT and DWT algorithms was

VOLUME 12, 2024 193613

J. Konecny et al.: Computational Cost and Implementation Analysis of a Wavelet-Based EC Method

independent of the data characteristics, therefore synthetic
data was sufficient for application in this setup.

The testing procedure also measured time and energy
consumption for the purposes of estimating the effect on
computational cost. All measurements were performed with
a high-definition, 10-bit Keysight MSOS104A oscilloscope
with voltage and double-ranged current probes. Time was
measured by changing the logical level on a general
purpose I/O peripheral. The presented algorithms are fully
deterministic and it is expected that each run provides the
same results. To increase measurement accuracy, the program
was run for 100,000 iterations, and the results were calculated
according to the average time per program run, which exactly
corresponds with the actual one run time. Current and voltage
were measured with the oscilloscope in all tested scenarios.
Energy consumption was calculated by multiplying voltage
and current over the measurement period.

V. RESULTS
This section provides an analysis of the computational costs
of the WTs executed in both C and ASM, comparing two
types of WT algorithms (FWT and DWT) which used
four mother wavelets and various non-zero coefficients.
Ten variants of C language compiling parameters were
also incorporated. Furthermore, this section presents a
comparison of data loss analysis performed on real-life
industrial data.

Table 4 compares the computation times of the FWT and
DWT algorithms according to wavelet type. Four sections
indicate the mother wavelet type. Each mother wavelet was
evaluated with three variants of input data length (inlen). The
columns represent the execution type and compiler settings.
C language was compiled with a GCC compiler with FPU
support, no FPU support, compiler optimization (O1, O2, O3
and OS), and no compiler optimization (O0).

Fig. 4 graphs the executions in C and ASM of the FWT
and DWT algorithms. The coloured bars represent variants of
these executions (ASM, C language, with an FPU, without an
FPU), and hashed bars represent input data length. Execution
in C language is presented without compiler optimization
for the purpose of comparing the computational costs of the
default algorithms without any additional optimizations.

The results indicate that execution in ASM achieved faster
processing times than any configuration compiled in C.
In terms of performance according to the algorithm type,
processing time with ASM by the DWT was approximately
33% longer than with the FWT. The results also indicate
that WT complexity was strongly dependent on the mother
wavelet’s size and input data length. The reasons for
the higher computational cost of the DWT algorithm are
straightforward: calculating the address is more complexwith
the DWT than with the FWT, and data expansion results in a
longer output vector and a larger number of concurrent outer
loop iterations. The only exception was the Haar wavelet
with size two, where no data expansion was performed,
achieving similar results with the DWT and FWT both

FIGURE 4. Comparison of computational time across three
implementations for wavelets using ASM, C with FPU (O0 optimization),
and C without FPU (O0 optimization): (a) FWT and (b) DWT.

executed in ASM. Execution in C, however, performed with
a higher computational cost because of its different method
of calculating addresses.

Computational cost should have a linear dependence on
the wavelet length and input data length. However, before
the convolution is calculated, an initialization is performed to
prepare the data, and therefore the results for various wavelet
lengths and input data lengths are not strictly linear. The
results indicate four types of mother wavelet according to
wavelet length. The first three (Haar, Symlet 2 and Symlet 4)
had wavelength powers of two, which potentially simplifies
WT calculations. However, some mother wavelets did not
fulfil this assumption, for example Coiflet 1. TheWTmethod
proposed here therefore allows the use of wavelets with

193614 VOLUME 12, 2024

J. Konecny et al.: Computational Cost and Implementation Analysis of a Wavelet-Based EC Method

TABLE 4. Comparison of overall computation time (µs) (↓) of the FWT and DWT algorithms according to wavelet type.

various lengths. As mentioned in Section III-A, selecting the
appropriate mother wavelet is crucial. From the point of view
of the proposed approach, only wavelet length and input data
length impact the computational cost.

Fig. 5 shows the average performance improvements
of various C language compiler optimization levels. The
biggest performance improvement was achieved by the
FWT with FPU optimization: the compiler recognized that
MAC instructions can be applied instead of two floating
point operations, which are used by compilers with no
optimization. The advanced compiling levels (O2 and O3)
also increased performance, although it was minor compared
to O1.

The optimization process was able to increase the compu-
tational performance in three cases: both FWT configurations
and the DWT with an FPU. The DWT configured without an
FPU and O2 and O3 produced a decrease in performance,
likely caused by the time-space trade-off optimization tools,
which reduce code size at the expense of speed.

The performance optimizations of the FWT and DWT
algorithms configured with an FPU clearly indicate a sig-
nificant difference. In Algorithm 1 described in Section IV,
address calculation for the FWT is significantly simpler than
the calculation for the DWT and has a major benefit on
computational performance.

Fig. 6 compares the best performing implementations,
which were the FWT and DWT executed in ASM with
FPU support and optimization with O3. Of these, the
fastest configuration was FWT executed in ASM; the DWT

FIGURE 5. Comparison of average performance improvements across
various levels of compiler optimization. A 100% performance
improvement indicates the optimized code runs twice as fast as
unoptimized code, while a −50% performance change means the
optimized code runs at half the speed of the unoptimized code.

ASM and FWT C configured with an FPU also achieved
satisfactory results. However, the DWT executed in C
had much higher computational costs than the other three
configurations.

Table 5 provides a breakdown of the experimentally
measured energy consumption and computational costs of the
FWT andDWT calculations in anArmCortex-M7MCU. The
table shows the estimated power consumption for executions

VOLUME 12, 2024 193615

J. Konecny et al.: Computational Cost and Implementation Analysis of a Wavelet-Based EC Method

TABLE 5. Energy consumption analysis for executions in ASM and C, with/without an FPU and O3 compiler optimization for various wavelets and input
data lengths.

FIGURE 6. Comparison of computation time for different wavelet
implementations: FWT in ASM, DWT in ASM, FWT in C with FPU (O3
optimization), and DWT in C with FPU (O3 optimization).

in ASM and C optimized with O3, with/without an FPU,
by the FWT and DWT algorithms. Executed in ASM, FWT
saved up to 32.1% energy and DWT even up to 87%.
The difference in energy consumption between the FWT
algorithm executed in ASM with an FPU and the FWT
algorithm executed in C with optimization but no FPU was
88.7%; for the DWT algorithm, this difference was 93.8%.
Fig. 7 presents a comparison of energy consumption between
the ASM implementation and the C implementation, which
uses the FPU and is optimized with O3 optimization. It is
evident that the ASM implementation achieves significantly
lower power consumption, particularly for the DWT imple-
mentation.

Table 6 presents a comprehensive analysis of the signal
quality at different compression levels in comparison to the
original, uncompressed signal. The signal was decomposed
(and composed) in 32-sample frames. The compression
level, denoted as L, corresponds to the decomposition
level achieved using the WT. At level zero, the signal is
decomposed using WT, and all coefficients are transmitted
without any loss of data. At level one, the detailed coefficients

(d1) are excluded from transmission, while at level two, both
d1 and d2 are omitted. For level three, only the approximation
coefficients (a3) are transmitted. It is worth noting that data
decomposed using the FWT algorithm maintains the same
length as the original data. However, in the case of DWT,
the length of decomposed data can exceed that of the original
data when the choice of mother wavelet is inappropriate. This
makesDWT-based compression unsuitable for uncompressed
signal transmission since it necessitates the transmission of a
higher volume of data than the original signal. Compression
variants unsuitable for this purpose are indicated in italic
style.

In this study, an accelerometer dataset acquired from
real-life measurements on an industrial washing machine
was employed as the input data. Overall, the Haar wavelet
emerges as the most suitable choice for the analysis of
this particular dataset. Results show, that in case of haar
wavelet, there is no discernible distinction in terms of data
loss between the FWT and the DWT. However, the results
also demonstrated that DWT exhibits a more favorable
performance, characterized by lower RootMean Square Error
(RMSE) and a higher Goodness of Fit (GoF) when employing
the db2, db4, and coif1wavelets. Notably, the diminished data
loss for these wavelets in conjunction with DWT is associated
with the decomposition process, which yields larger data
sizes and consequently mitigates data loss.

VI. DISCUSSION
The current study introduces several areas for discussion.
The first covers the use of WTs in data transmission for
predictive maintenance purposes; the second introduces the
key parameters of the proposed solution; the last deals with
a comparative performance analysis of the proposed methods
executed in C and ASM and their performance potential in
MCUs.

Industrial monitoring using IIoT, for example for pre-
dictive maintenance purposes, needs high quality data to
ensure a sufficiently reliable output for predicting potential
failure. Deterioration in data quality adversely impacts this
expected reliability, therefore lossless mechanisms instead

193616 VOLUME 12, 2024

J. Konecny et al.: Computational Cost and Implementation Analysis of a Wavelet-Based EC Method

TABLE 6. Comparison of compressed signal quality at a specific level (L) with the uncompressed (original) signal. Italics indicate unsuitable variants
where the data length after the WT exceeds that of the original signal.

TABLE 7. Comparison of key parameters between the proposed solution
and SOTA EC methods.

of lossy compression are more appropriate solutions for
data transmission. A promising solution is the use of WTs
for compression scaling. WTs allow rough data to be
transmitted with a certain level of data loss, followed by
detailed data once sufficient energy is available for that
process. Rough data and detailed data together contain
the original information without any compromise in its
quality.

Table 7 compares key parameters of the proposed solution
with state-of-the-art (SOTA) energy consumption (EC)
methods. The proposed approach processes data in the cloud,
allowing the use of low-cost microcontrollers (MCUs) at the
measurement nodes [25]. There is a trade-off between the
node price and the quality of the collected data. However,
this solution offers several advantages: all data are stored in
the cloud, which simplifies the adaptation of next-generation
prediction models and facilitates long-term industrial process
analysis [26]. Additionally, the low computational cost at the
node enables the use of energy-efficient devices and supports
energy harvesting [27]. The parameters in the table show
that the proposed approach allows for optimal transmission
control, significantly reducing the power consumption of
IIoT nodes. While reducing the amount of transmitted
data during energy shortages may impact the immediate
quality of the information, it can be enhanced later when

sufficient energy is available. Moreover, the transmission
of approximation coefficients ensures data immediacy, even
under limited energy conditions.

For IIoT nodes, it is possible to use either low-cost MCUs
or MCUs that support signal processing instructions. Natu-
rally, MCUs lacking support for signal processing instruc-
tions handle the wavelet transform (WT) less efficiently
than those with such support. Executing data processing
in assembly (ASM) with signal processing instructions or
in C with compiler optimizations are both viable options.
However, for a low-cost MCU without signal processing
support, ASM is not ideal unless a simplified algorithm is
employed, such as one using fixed-point numbers. While
fixed-point calculations introduce inaccuracies, execution in
C allows for concurrent optimization of both the algorithm
and the compiler.

Power for autonomous devices is supplied by energy
harvesting systems that produce limited energy. Therefore,
a critical factor in autonomous operation is energy con-
sumption. To ensure reliable functioning, the device must be
energy neutral, meaning that the energy harvested must meet
or exceed the energy consumed. Efficient data processing
significantly contributes to minimizing energy consumption.
In this experiment, GCC compiler optimization reduced
computation time by up to 71% for the fast wavelet transform
(FWT) and 31% for the discrete wavelet transform (DWT).
Additionally, ASM execution saved 31% more energy with
FWT and 87% more with DWT compared to the fully
optimized GCC-compiled code.

The case study presents the results of data compression
applied to an industrial vibration dataset, where compression
using the Haar wavelet method produced the lowest data
loss. These outcomes depend heavily on the characteristics
of the dataset. The cluster size (32 samples in this case)
can be adjusted based on data characteristics, sampling
frequency, and required transmission periods. Larger clusters
enable higher levels of decomposition, resulting in greater
compression efficiency.

VOLUME 12, 2024 193617

J. Konecny et al.: Computational Cost and Implementation Analysis of a Wavelet-Based EC Method

FIGURE 7. Comparison of energy consumption between ASM and C with
FPU (O3 optimization) for: (a) FWT and (b) DWT.

Our method demonstrates substantial reductions in energy
consumption, with savings of up to 87% when using
DWT and 32.1% with FWT compared to traditional
C-based implementations. These results suggest that indus-
tries adopting this approach could extend the lifespan of
IIoT sensors, reduce operational costs, and enhance system
reliability, particularly in energy-sensitive applications like
predictive maintenance.The main difference between FWT
and DWT lies in computational efficiency and flexibility.
FWT is an optimized, faster implementation of DWT,
designed to reduce computational complexity. However, this
speed can come at the cost of accuracy and flexibility.
DWT, on the other hand, offers more precise decomposition

of signals, allowing for a finer analysis across multiple
decomposition levels, and provides greater flexibility in
choosingwavelet functions, which can be crucial for handling
specific signal characteristics. This makes DWT better
suited for applications requiring detailed signal analysis,
such as noise reduction or pattern recognition, where
precision is critical, whereas FWT prioritizes speed over
detail.

While deep learning-based methods may achieve superior
compression ratios, they come with significantly higher
computational requirements, making them less suitable for
the low-power environments targeted in this study. For
instance, Zonzini et al. [16] propose an Autoregressive
Model with Moving Average that processes 2565 samples
in 129 seconds on an STM32L5 platform. Zhang et al. [17]
introduce a quantized deep compressed sensing technique,
which compresses 20,000 samples in 14.02 seconds with a
compression ratio of 1/128. Li et al. [19] present an image
compression algorithm that compresses a 128 × 128 RGB
image in approximately 50 milliseconds using a GPU. It is
clear that our proposed solution offers a distinct advantage in
terms of computational cost.

In practical terms, the energy savings demonstrated by our
method could have a significant impact on industries that rely
on IIoT for long-term monitoring, such as manufacturing,
energy, and transportation. By reducing the frequency of
battery replacements or the need for external power sources,
industries can lower maintenance costs and improve opera-
tional sustainability. Furthermore, the method’s adaptability
to varying energy inputs and flexible data transmission
make it ideal for applications requiring continuous data
monitoring, even with intermittent energy availability—
such as in remote environmental monitoring or smart city
infrastructure.

The trade-offs between data compression levels and
resulting data loss have significant practical implications,
particularly in predictive maintenance applications. Higher
compression levels reduce the data volume transmitted,
which is crucial for energy-constrained IoT devices like
those powered by energy-harvesting systems. However,
increased compression often introduces data loss, potentially
degrading the accuracy of predictive algorithms. In predic-
tive maintenance, this could result in delayed or missed
detection of critical fault conditions, compromising system
reliability and leading to unplanned downtime or safety
hazards.

As highlighted in the referenced study, the proposed
method balances this trade-off by dynamically adjusting
the compression level based on available energy and data
priority. The method prioritizes the transmission of high-
information-density approximate coefficients, ensuring that
essential data reaches the cloud with minimal latency.
Detailed coefficients, which refine the accuracy of predic-
tive models, are transmitted later when energy conditions
improve, mitigating the risk of significant information loss.
This approach enables adaptive data management tailored

193618 VOLUME 12, 2024

J. Konecny et al.: Computational Cost and Implementation Analysis of a Wavelet-Based EC Method

to the operational constraints of IoT sensors, enhancing
their practical deployment in predictive maintenance without
sacrificing critical system functionality [9].

The proposed methodology demonstrates potential for
generalizability across various data types and IoT applica-
tions beyond predictive maintenance. By leveraging a modu-
lar and adaptable wavelet transform framework, this method
supports scalable compression ratios and dynamic adjust-
ments based on energy availability. These characteristics
make it suitable for diverse IoT applications such as environ-
mental monitoring, where real-time data on air quality, soil
conditions, or weather patterns requires both immediate and
deferred data transmission. Additionally, the method’s ability
to operate on resource-limited microcontrollers enhances its
applicability in smart agriculture, where it could manage
data from soil moisture sensors, temperature sensors, and
irrigation control systems. In smart cities, this methodology
could optimize data from energy-harvesting sensors in public
infrastructure, such as structural health monitoring of bridges
or traffic flow management. The lightweight implementation
tailored for ARM Cortex-M microcontrollers further ensures
compatibility with other MCU families after suitable opti-
mization, allowing deployment in numerous IoT scenarios
requiring high energy efficiency. The flexibility of wavelet
transform in capturing and reconstructing features in different
signal types underscores its utility across varied domains,
from audio and image processing to biomedical signal
analysis, demonstrating the method’s broad applicability in
IoT ecosystems.

The study has several limitations. The implementation
is designed specifically for ARM Cortex-M MCUs, and
the ASM implementation would need to be adjusted for
different instruction sets used in other core types. Another
potential drawback could be the cluster size. The signal
needs to be clustered according to a specific cluster size,
and it is not appropriate to compress clusters of different
sizes. Additionally, the method allows for dynamic changes
in the compression level, which may result in a signal
with varying compression levels over time, potentially
causing a disadvantage. Another limitation could be the
energy consumption of the proposed solution. The additional
energy required for compression must be considered as a
trade-off between reducing the data size and the energy
overhead introduced by the compression process. Striking
a balance between these factors is critical, particularly in
energy-constrained environments, where the benefits of data
reduction need to outweigh the cost of increased energy
consumption.

VII. CONCLUSION
The study introduced an implementation methodology suit-
able for IIoT solutions with limited energy and computational
resources, providing the option to customize the level of
information loss during data transmission. It demonstrated
an analysis of the computational costs on an MCU with
and without hardware support for floating-point instructions

and presented a case study on an industrial vibration dataset
illustrating data loss.

A computational cost analysis was performed to compare
the execution of the code in C and ASM, as well as
the performance of the DWT and FWT algorithms. GCC
compiler optimization tools were also incorporated. The
results of the experiment showed that execution of the FWT
in ASM saved up to 32.1% energy, while execution of the
DWT in C saved up to 87%.

The proposed implementation methodology offers prac-
tical advantages in industrial settings by seamlessly inte-
grating with cloud-based edge computing platforms. Its
dynamic data compression adapts to energy availability,
ensuring essential information is transmitted promptly while
detailed data is deferred for later. Optimized for low-
cost microcontrollers, the method significantly reduces
energy consumption and computational demands, making
it ideal for energy-harvesting IIoT systems. This hybrid
approach supports real-time monitoring and long-term ana-
lytics, enhancing predictive maintenance capabilities while
enabling scalability and sustainability in diverse industrial
applications.

The main benefit of this study is that the lightweight
WT implementation was evaluated on a particular ARM
Cortex-M7 central processing unit, indicating that the results
can be transferable to other microcontrollers (MCUs) in
the ARM Cortex-M family. A limitation, however, is that
for other central processing unit families, such as RISC-V,
only the C implementation is directly transferable due to the
different architecture of the instruction set. Even though the
C implementation can be used, the compilation process will
produce different assembly code, which may result in varying
computational performance.

Future research could explore implementation on the
RISC-V architecture, which uses a different instruction set,
potentially combined with hardware accelerators such as
digital signal processing (DSP) engines, direct memory
access (DMA) acceleration, or System on Chips (SoCs) with
Field Programmable Gate Array (FPGA) integration, where
part of the algorithm could be realized at the hardware
level. This would further enhance performance and energy
efficiency, making the method even more adaptable for
different use cases.

Additionally, the approach could be integrated into systems
using machine learning, where the signal variability is criti-
cal. These systems could be designed to adjust dynamically
to the incoming information, ensuring that signal processing
adapts to changing conditions in real-time.

This research has a major impact on systems that use
energy harvesting, as it allows for dynamic data trans-
mission. IoT sensors can schedule transmissions based on
the available energy, optimizing operational efficiency and
extending the lifespan of the sensors in energy-constrained
environments.

The study also opens up future research possibilities,
such as examining the impact of data loss on monitoring

VOLUME 12, 2024 193619

J. Konecny et al.: Computational Cost and Implementation Analysis of a Wavelet-Based EC Method

quality, particularly for predictive maintenance applications.
Another direction for research could involve exploring state-
of-the-art or future MCUs with specialized computational
units that enable faster processing and reduced energy
consumption.

DECLARATION OF GENERATIVE AI AND AI-ASSISTED
TECHNOLOGIES IN THE WRITING PROCESS
During the preparation of this work, the authors used GPT-4
for language correction. After using this tool, the authors
reviewed and edited the content as needed and take full
responsibility for the content of the published article.

REFERENCES
[1] A. Bousdekis, K. Lepenioti, D. Apostolou, and G. Mentzas, ‘‘A review

of data-driven decision-making methods for industry 4.0 maintenance
applications,’’ Electronics, vol. 10, no. 7, p. 828, Mar. 2021.

[2] A. Jimenez-Cortadi, I. Irigoien, F. Boto, B. Sierra, and G. Rodriguez,
‘‘Predictive maintenance on the machining process and machine tool,’’
Appl. Sci., vol. 10, no. 1, p. 224, Dec. 2019.

[3] S. Namuduri, B. N. Narayanan, V. S. P. Davuluru, L. Burton, and
S. Bhansali, ‘‘Review—Deep learning methods for sensor based predic-
tive maintenance and future perspectives for electrochemical sensors,’’
J. Electrochemical Soc., vol. 167, no. 3, Feb. 2020, Art. no. 037552.

[4] H. Nizam, S. Zafar, Z. Lv, F. Wang, and X. Hu, ‘‘Real-time deep
anomaly detection framework for multivariate time-series data in
industrial IoT,’’ IEEE Sensors J., vol. 22, no. 23, pp. 22836–22849,
Dec. 2022.

[5] S. F. Ahmed, M. S. B. Alam, M. Hoque, A. Lameesa, S. Afrin, T. Farah,
M. Kabir, G. Shafiullah, and S. M. Muyeen, ‘‘Industrial Internet of
Things enabled technologies, challenges, and future directions,’’ Comput.
Electr. Eng., vol. 110, Sep. 2023, Art. no. 108847. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0045790623002719

[6] R. Sahal, J. G. Breslin, and M. I. Ali, ‘‘Big data and stream
processing platforms for industry 4.0 requirements mapping for a
predictive maintenance use case,’’ J. Manuf. Syst., vol. 54, pp. 138–151,
Jan. 2020.

[7] T. Hafeez, L. Xu, and G. Mcardle, ‘‘Edge intelligence for data
handling and predictive maintenance in IIOT,’’ IEEE Access, vol. 9,
pp. 49355–49371, 2021.

[8] F. Calabrese, A. Regattieri, M. Bortolini, M. Gamberi, and F. Pilati,
‘‘Predictive maintenance: A novel framework for a data-driven, semi-
supervised, and partially online prognostic health management application
in industries,’’ Appl. Sci., vol. 11, no. 8, p. 3380, Apr. 2021.

[9] J. Konecny, M. Prauzek, and M. Borova, ‘‘Fuzzy controlled wavelet based
edge computing method for energy harvesting IoT sensors,’’ IEEE Internet
Things J., vol. 10, no. 21, pp. 18909–18918, Nov. 2023.

[10] T. Sanislav, G. D. Mois, S. Zeadally, and S. C. Folea, ‘‘Energy
harvesting techniques for Internet of Things (IoT),’’ IEEE Access, vol. 9,
pp. 39530–39549, 2021.

[11] S. Zeadally, F. K. Shaikh, A. Talpur, and Q. Z. Sheng, ‘‘Design
architectures for energy harvesting in the Internet of Things,’’ Renew.
Sustain. Energy Rev., vol. 128, Aug. 2020, Art. no. 109901.

[12] M.-U.-R. Ashraf Virk, M. F. Mysorewala, L. Cheded, and A. Aliyu,
‘‘Review of energy harvesting techniques in wireless sensor-based pipeline
monitoring networks,’’ Renew. Sustain. Energy Rev., vol. 157, Apr. 2022,
Art. no. 112046.

[13] T. Kucova, M. Prauzek, J. Konecny, D. Andriukaitis, M. Zilys, and
R. Martinek, ‘‘Thermoelectric energy harvesting for Internet of Things
devices using machine learning: A review,’’ CAAI Trans. Intell. Technol.,
vol. 8, no. 3, pp. 680–700, Sep. 2023.

[14] X. Chen, H. Hu, J. Zhou, Y. Li, L. Wan, Z. Cheng, J. Chen, J. Xu, and
R. Zhou, ‘‘Indoor photovoltaic materials and devices for self-powered
Internet of Things applications,’’Mater. Today Energy, vol. 44, Aug. 2024,
Art. no. 101621.

[15] Q. He and J. Briscoe, ‘‘Piezoelectric energy harvester technologies:
Synthesis, mechanisms, and multifunctional applications,’’ ACS Appl.
Mater. Inter., vol. 16, no. 23, pp. 29491–29520, Jun. 2024.

[16] F. Zonzini, V. Dertimanis, E. Chatzi, and L. D. Marchi, ‘‘System identifi-
cation at the extreme edge for network load reduction in vibration-based
monitoring,’’ IEEE Internet Things J., vol. 9, no. 20, pp. 20467–20478,
Oct. 2022.

[17] M. Zhang, H. Zhang, C. Zhang, and D. Yuan, ‘‘Communication-efficient
quantized deep compressed sensing for edge-cloud collaborative industrial
IoT networks,’’ IEEE Trans. Ind. Informat., vol. 19, no. 5, pp. 6613–6623,
May 2023.

[18] V. Makarichev, V. Lukin, O. Illiashenko, and V. Kharchenko, ‘‘Digital
image representation by atomic functions: The compression and protection
of data for edge computing in IoT systems,’’ Sensors, vol. 22, no. 10,
p. 3751, May 2022.

[19] J. Li, X. Liu, Y. Gao, L. Zhuo, and J. Zhang, ‘‘BARRN: A blind image
compression artifact reduction network for industrial IoT systems,’’ IEEE
Trans. Ind. Informat., vol. 19, no. 9, pp. 9479–9490, Sep. 2023.

[20] F. M. Chache, S. Maxon, R. M. Narayanan, and R. Bharadwaj, ‘‘Effects
of lossy compression on the age of information in a low power network,’’
in Proc. IEEE 24th Int. Symp. World Wireless, Mobile Multimedia Netw.
(WoWMoM), Jun. 2023, pp. 382–387.

[21] X. Chen, Q. Yu, S. Dai, P. Sun, H. Tang, and L. Cheng, ‘‘Deep
reinforcement learning for efficient IoT data compression in smart railroad
management,’’ IEEE Internet Things J., vol. 11, no. 15, pp. 25494–25504,
Aug. 2024.

[22] U. Serhii and K. Vasyl, ‘‘Optimizing data transmission in IoT networks
through enhanced compression and edge computing techniques,’’ in Proc.
IEEE Int. Conf. Inf. Telecommun. Technol. Radio Electron., Nov. 2023,
pp. 76–79.

[23] J. Too, A. Rahim, and N. Mohd, ‘‘A comparative analysis of wavelet
families for the classification of finger motions,’’ Int. J. Adv. Comput. Sci.
Appl., vol. 10, no. 4, pp. 1–6, 2019.

[24] A. Hazarika, S. Poddar, M. M. Nasralla, and H. Rahaman, ‘‘Area and
energy efficient shift and accumulator unit for object detection in IoT
applications,’’ Alexandria Eng. J., vol. 61, no. 1, pp. 795–809, Jan. 2022.

[25] C.-H. Chen, M.-Y. Lin, and C.-C. Liu, ‘‘Edge computing gateway of
the industrial Internet of Things using multiple collaborative microcon-
trollers,’’ IEEE Netw., vol. 32, no. 1, pp. 24–32, Jan. 2018.

[26] Y. K. Teoh, S. S. Gill, and A. K. Parlikad, ‘‘IoT and fog-computing-based
predictive maintenance model for effective asset management in industry
4.0 using machine learning,’’ IEEE Internet Things J., vol. 10, no. 3,
pp. 2087–2094, Feb. 2023.

[27] F. Lauer, M. Schöffel, C. C. Rheinländer, and N. Wehn, ‘‘Exploration
of thermoelectric energy harvesting for secure, TLS-based industrial
IoT nodes,’’ in Internet of Things—ICIOT 2022 (Lecture Notes in
Computer Science), vol. 13735. Cham, Switzerland: Springer, 2023.
[Online]. Available: https://link.springer.com/chapter/10.1007/978-3-031-
23582-5_7

JAROMIR KONECNY (Senior Member, IEEE)
was born in Frýdek-Místek, Czech Republic,
in 1986. He received the bachelor’s degree in
control and information systems, in 2008, the
master’s degree in measurement and control engi-
neering, in 2010, and the Ph.D. degree in technical
cybernetics, in 2014. Since 2012, he has been
with the Department of Cybernetics and Biomed-
ical Engineering, VSB—Technical University of
Ostrava, Czech Republic, where he is currently an

Associate Professor. He has authored more than 70 articles and conference
papers and has four registered inventions. His research interests include
embedded systems, electronics, environmental monitoring systems, and
localization systems in robotics. He is an active IEEE Senior Member of
the IEEE Systems, Man and Cybernetics Society, the IEEE Computational
Intelligence Society, and the IEEE Internet of Things Community.

193620 VOLUME 12, 2024

J. Konecny et al.: Computational Cost and Implementation Analysis of a Wavelet-Based EC Method

JAN CHOUTKA was born in Moravská Třebová,
Czech Republic, in 1997. He received the bach-
elor’s degree in control and information systems,
in 2020, and the master’s degree in measurement
and control engineering, in 2022. He is currently
pursuing the Ph.D. degree in cybernetics. Since
2024, he has been with the Department of
Cybernetics and Biomedical Engineering, VSB—
Technical University of Ostrava, Czech Republic.
His research interests include embedded systems,

electronics, and environmental monitoring systems.

RADIM HERCIK was born in Ostrava, Czech
Republic, in 1987. He received the bache-
lor’s degree in control and information systems,
in 2009, the master’s degree in measurement
and control engineering, in 2011, and the Ph.D.
degree in technical cybernetics, in 2014. His
professional experience includes working as a
Developer of ultrasonic automotive sensors at
Continental Automotive Czech Republic s.r.o.,
until 2020. Since 2020, he has been with the

Department of Cybernetics and Biomedical Engineering, VSB—Technical
University of Ostrava, Czech Republic, where he currently holds the position
of an Assistant Professor. He has authored more than 20 articles and
conference papers and holds six registered inventions. His research interests
include embedded systems, automation, industrial robotics, and mobile
robotics.

JIRI KOZIOREK is currently a Full Professor
in cybernetics at the VSB—Technical University
of Ostrava (VSB-TUO), Czech Republic. Since
1998, he has been with the Department of
Cybernetics and Biomedical Engineering, VSB-
TUO, where he has also been the Head of the
Department, since 2009. He is a coordinator
of several national and international research
projects, typically in cooperation with industrial
partners. He is the author/co-author of more

than 100 scientific publications. His research interests include industrial
automation, control system design, industrial communications, digitization
of industry, and sensors. His pedagogical practice relates to his research
areas.

DANGIRUTIS NAVIKAS received the M.Sc.
and Ph.D. degrees in electronics engineering,
in 1994 and 1999, respectively. He is with the
Department of Electronics Engineering, Faculty
of Electrical and Electronics Engineering, Kaunas
University of Technology, where he is currently
the Head of the Department. His research interests
include finding solutions for the issues related to
the interactive design of microprocessor systems,
integrated information systems, and WSN.

DARIUS ANDRIUKAITIS (Member, IEEE)
received the M.Sc. and Ph.D. degrees in electron-
ics engineering, in 2005 and 2009, respectively.
He is with the Department of Electronics
Engineering, Faculty of Electrical and Electronics
Engineering, Kaunas University of Technology,
where he is currently the Vice Dean of Research.
His research interests include finding solutions for
the issues related to interactive electronic systems,
integrated information systems, and WSN.

MICHAL PRAUZEK (Senior Member, IEEE)
was born in Ostrava, Czech Republic, in 1983.
He received the bachelor’s degree in control
and information systems, the master’s degree in
measurement and control systems, and the Ph.D.
degree in technical cybernetics from the VSB—
Technical University of Ostrava (VSB—TUO),
Czech Republic, in 2006, 2008, and 2011, respec-
tively. Since 2010, he has been with the Depart-
ment of Cybernetics and Biomedical Engineering,

VSB—TUO, where he is currently a Full Professor. From 2013 to 2014,
he was a Research Postdoctoral Fellow with the University of Alberta,
Canada. He has authored more than 100 articles and conference papers
and has 11 registered inventions. His research interests include embedded
systems, data and signal analysis, control design, andmachine learning. He is
an active IEEE Senior Member in the IEEE Systems, Man and Cybernetics
Society and the IEEE Engineering in Medicine and Biology Society.

VOLUME 12, 2024 193621

