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Abstract: - This paper presents and compares several algorithms for selecting optimal averaging intervals for short-term power 

measurements in low-voltage AC networks. These intervals are crucial in reducing the statistical variance of power estimates, which 

is essential for the remote calibration of wattmeter’s and the accuracy of smart sockets. The research focuses on minimizing 

fluctuations in power consumption data, which are influenced by various network-connected loads. By analyzing different power 

averaging interval selection algorithms, the study provides a methodology to enhance the reliability and accuracy of remote 

calibration processes for wattmeter’s in dynamic power quality conditions. 

The research presents results that demonstrate the effectiveness of different algorithms in minimizing power estimate variance. The 

findings indicate that specific algorithms are better suited for certain types of power quality conditions, leading to more accurate 

power measurements. These results support the feasibility of using the proposed methods for remote calibration and provide 

guidelines for selecting appropriate averaging intervals in practical scenarios. 

Keywords: calibration, electrical grid, power measurement, smart electricity meter, watthour meters. 

 

I.  INTRODUCTION 

The advent of smart electricity meters has significantly impacted energy management across Europe. With over 

450.000 consumers participating in various pilot projects, smart meters have demonstrated the potential to reduce 

electricity consumption by 5% to 8.7%, depending on the scope of the project. Not only do these devices enable 

more efficient electricity use, but they also allow distribution network operators to remotely monitor and address 

illegal electricity consumption in real-time. This capability simplifies grid maintenance, optimizes investments, and 

reduces costs associated with meter maintenance and reading. Smart meters, which record electricity consumption 

at 15 minute intervals, also foster market competition by enabling independent suppliers to offer better services, 

prices, and innovative solutions. This increased competition is beneficial to both consumers and the national 

economy. 

In the context of low-voltage alternating current (AC) networks, the concept of remote calibration of wattmeter’s 

has gained attention. This approach allows for the verification and adjustment of meters directly at their installation 

sites, under dynamic power quality conditions. The term "calibration" in this paper refers to instrument gain 

adjustment rather than precise metrological calibration, as defined by the International Vocabulary of Metrology 

(VIM3). The focus is on gain adjustment of electrical watt-hour meters and smart sockets, which can also serve as 

a step towards remote verification of wattmeter’s. This developed calibration method involves calibrating a 

wattmeter (CW) with a wattmeter of remote metering (WRM) [1]–[9]. 

This paper discusses the development and implementation of this remote calibration method, highlighting its 

significance in maintaining the accuracy and reliability of smart meters in today's evolving electrical distribution 

networks. They are spaced apart, but at the same time they can measure temporarily increased load energy 

consumption is shown in Fig. 1. 
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Fig. 1. Remote calibration of wattmeter. 

The article contributes to the field of power measurement and calibration by introducing and evaluating a set of 

algorithms designed to optimize the averaging intervals used in power measurements. These algorithms help to 

minimize fluctuations in power data, which directly impacts the reliability and accuracy of remote calibration 

processes for wattmeter’s. Additionally, the research provides a methodology that can be applied to improve the 

performance of smart meters and related devices, particularly in terms of energy monitoring and management in 

low-voltage networks. The work also lays the groundwork for future advancements in remote calibration techniques, 

contributing to the overall efficiency and accuracy of electrical measurement systems. 

II. ANALYSIS OF WATTMETER CALIBRATION 

Several references propose methods for the remote monitoring of the calibration status of electrical energy 

meters, including revenue meters and smart sockets. A common aspect of these methods is the connection of the 

meters under calibration to the same electrical grid as a reference or summation meter. These methods are designed 

to facilitate the simultaneous calibration (or adjustment) of all meters connected to the network. According to these 

methods, the meters undergoing calibration are remotely linked to a reference instrument via the electrical 

distribution grid, typically on a single phase. The characteristics of the interconnecting medium, such as losses, 

reactive components, and power consumption fluctuations due to load activity, may vary over time [1]–[9]. 

This paper examines the impact of the interconnecting medium on the performance of the proposed method. The 

sequence diagram of the method is presented in Fig. 2. According to this diagram, a gain adjustment estimate is 

obtained by simultaneously collecting power samples at both the WRM and the CW wattmeter’s for each power 

injection location: behind the CW (switch position 1 in Fig. 1) and in front of the CW (position 2 in Fig. 1). 

It is crucial that the power consumption, as measured by the reference wattmeter (Fig. 1), caused by all loads 

(excluding the injected load) in the grid remains constant. Power fluctuations occur not only due to the switching of 

loads on and off but also over short time scales (on the order of seconds). The short-term fluctuations of an AC 

power grid have not yet been studied in detail. The widespread adoption of switching, nonlinear, and power 

consumption-regulating loads has led to the emergence of distorted power and current profiles in the network, 

introducing a wide spectral content in the measured power consumption profile (time series). The average power 

estimated over the time interval [tn, tn+1] is expressed as: 

𝑃Av =
1

𝑡𝑛+1−𝑡𝑛
∫ (𝑃0 + 𝑃inj + 𝑃F(𝑡) + 𝑛(𝑡)) 𝑑𝑡,

𝑡𝑛+1

𝑡𝑛
      (1) 

where P0 and Pinj are power and injected power that are constant during the acquisition time interval (T1, T2, T3 

in Fig. 2), n(t) is Gaussian noise of measurements, and PF(t) is fluctuating power in the interval [tn, tn+1]. The issue 

of unknown and time-varying disturbance rejection presents a significant challenge in this context. Extending the 

integration period can mitigate the variance caused by Gaussian noise components. However, the power fluctuation 

PF(t) spectrum is dominated by harmonics, and the variance is further reduced when the integration interval is an 

integer multiple of the fundamental harmonic period. Since the method relies on average power calculations, it is 

not necessary for the time intervals T1=T2=T3 to be identical. 

To ensure accurate calibration of smart meters, it is essential that all loads connected to the power grid maintain 

a constant power consumption during the calibration period (lasting a few seconds). By understanding the nature of 

power fluctuations in the grid, it is possible to predict intervals of stable power consumption. This necessitates an 

analysis of power fluctuation behavior, which can identify and exploit favorable time intervals for data transmission 
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and meter calibration operations [10]–[18]. For the remote wattmeter calibration method, the ability to predict short-

term stable power consumption is also required. Therefore, a tracking algorithm designed to determine the optimal 

power integration period is essential. The necessity for online tracking arises from the vast diversity of electrical 

loads connected to the grid, leading to unpredictable short-term power fluctuation profiles that can not be forecasted 

during the design phase [19], [20]. Given that the WRM is exposed to a larger set of loads compared to the CW, the 

power profile acquired by the WRM is expected to exhibit more significant fluctuations. Consequently, the optimal 

averaging period tracking procedure should be performed at the WRM. The optimal averaging period (number of 

samples) determined by the WRM must then be communicated to the CW to ensure that both wattmeter’s collect 

the same number of power samples corresponding to the same time interval. 

The research methodology includes the following steps: 1. Experimental acquisition of active power 

consumption profiles in various types of buildings: private dwellings, offices, multi-apartment buildings, and 

factories. 2. Implementation of averaging interval selection algorithms using Matlab modeling. 3. Comparative 

evaluation of the algorithms' ability to track the optimal power averaging interval by processing the acquired power 

consumption data. 

 
Fig. 2. Remote wattmeter calibration method implementation diagram. 

Although the remote calibration procedure involves power integration over three intervals (as shown in Fig. 2), 

the subsequent research focuses on optimizing the averaging interval selection by minimizing the variance between 

two neighboring average power estimates. Experimental results indicate that the optimal interval is not significantly 

different whether it is determined by minimizing the squared distance between two neighboring samples or three 

neighboring samples. 

III. EXPERIMENTAL SETUP AND RESULTS 

In the experimental setup, active power and AC were employed as primary variables. The update interval was 

configured to 0.1 seconds, aligning with five cycles of the AC grid's fundamental frequency. The measurement 

period was defined as the duration between the initial and final zero-crossings (either rising or falling) within each 

data update interval. 

The results from the experimental measurements of active power consumption profiles were obtained for three 

distinct settings: 1. a private dwelling (Site No.1), 2. an office (Site No.2), and 3. a multi-apartment building (Site 

No.3). These results are mathematically summarized in Table I. 

Table I. Active Power Consumption Profiles 

Name Time (s) 0 50 100 150 200 250 300 350 400 450 500 

No.1 Pa (W) 685 533 405 507 595 695 455 403 667 538 411 

No.2 Pa (W) 2000 2250 2465 2175 2385 2135 2205 2475 2500 2345 2485 

No.3 Pa (W) 4050 3895 4300 4270 3745 3680 4070 3865 3605 3995 4250 

Three representative, long-term power consumption patterns (up to 500 seconds) were analyzed across different 

buildings. Table I illustrates the active power consumption profiles recorded during the evening of a typical working 

day and during peak load conditions. The active power supply network analyzed is a single-phase system servicing: 

a private dwelling, an office, and a multi-apartment building comprising ten apartments. 
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Power consumption spectrograms, as illustrated in Fig. 3, demonstrate that short-term power fluctuations within 

the frequency range of several hertz can exhibit both temporal variability and relative constancy despite significant 

changes in long-term power consumption (on the order of hundreds of seconds). Both long-term and short-term 

power consumption profiles can display considerable variability. Consequently, it is essential to determine the 

power averaging interval that minimizes variance between adjacent averaged estimates dynamically during 

operation. 

 
a)         b) 

Fig. 3. Spectrogram of power consumption in: (a) office, (b) multi-apartment. 

Short-term power fluctuations stay within some selected range during some selected time interval. In Table II 

there are presented probabilities pr(Tw) (%), that standard deviation of power fluctuations in the interval of length 

Tw does not exceed threshold power. This means that the relative level e (%) of active power oscillation is expressed 

as a percentage of the average active power value in the range Tw. In Table II constant order moving averaging 

filtering (5’th order and 10’th order in Table II) was applied prior to the estimating histograms. 

Table III. Relative Ammount of Time Intervals and Range of Power Fluctuations Defined by Threshold Value 

moving averaging filter order N=5 

Tw (s) 0 0.5 1 1.5 2 2.5 3 

A (%) 97 94.5 93 90.5 89 86.5 85 

B (%) 94 91.5 90 87.5 86 83.5 82 

C (%) 91 87 83 79 75 71 67 

D (%) 73 67 61 55 49 43 37 

moving averaging filter order N=10 

Tw (s) 0 0.5 1 1.5 2 2.5 3 

A (%) 99 97.5 94 92.5 91 89.5 88 

B (%) 98 96.5 95 93.5 90 88.5 87 

C (%) 96 92 88 84 80 76 72 

D (%) 90 82 76 70 64 58 52 

Here A - pr(Tw), when e = 1%, B - pr(Tw), when e = 0.75%, C - pr(Tw), when e = 0.5%, and D - pr(Tw), when e 

= 0.25%. In the implementation of the remote active power calibration method, it is anticipated that the likelihood 

of observing constant power consumption will progressively increase. However, probabilistic functions alone can 

not identify the optimal averaging interval for power consumption at any given moment. To address this, it is 

necessary to enhance the probability of selecting the optimal averaging interval by determining it dynamically in 

real-time. 

IV. POWER AVERAGING INTERVAL SELECTION ALGORYTHMS 

The paper classifies power averaging period selection algorithms designed to minimize variance between 

neighboring averaged power estimates into the following categories: 

1. Time-based Selection: 

1.1. Constant Interval (Algorithm A1): Utilizes a fixed averaging interval; 

1.2. Random Averaging Interval (Algorithm A2): Employs a randomly varying averaging interval. 

2. Adaptive Selection (Tracking): 
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2.1.  Current Interval Search (Algorithms A31 and A32): Adjusts based on an active search within current 

averaging intervals; 

2.2.  Historical Reference: 

2.2.1.  Standard Deviation Tracking (Algorithm A4): Monitors the standard deviation of previous averaged 

samples; 

2.2.2.  Spectral Analysis (Algorithm A5): Derives the interval from the frequency spectrum of previous 

samples. 

The performance of each algorithm is evaluated based on criteria such as variance in averaged estimates, 

computational cost (related to real-time processing capabilities), and implementation complexity. 

Algorithm (A1) is the simplest in terms of implementation and requires no computational resources for real-

time execution. However, its effectiveness in minimizing variance is limited, especially in the presence of initially 

unknown power fluctuation characteristics. Algorithm (A1) serves as a baseline for evaluating the improvement 

potential of other methods. For calibration speed considerations and the sampling period of power consumption, the 

sample range for averaging in Algorithm (A1) is between 5 and 15, corresponding to a time interval of Tmin = 0.5 s 

to Tmax = 1.5 s. 

Algorithm (A2) introduces variability by altering the averaging interval according to a predefined random 

sequence generated by a reference instrument. This method, inspired by spread spectrum techniques in 

communication theory, aims to reduce variance in averaged estimates by increasing resistance to constant but 

unknown disturbances. The use of a broad spectrum of averaging intervals allows for better rejection of the unknown 

and slowly varying primary harmonic of short-term fluctuations compared to a fixed interval determined at design 

time. To ensure comparability with Algorithm (A1), the random averaging interval in Algorithm (A2) is also 

constrained within the range of 0.5 to 1.5 seconds. 

V. ADAPTIVE AVERAGING SIZE TRACKING PROCEDURES 

1. Based on Search in Current Averaging Intervals: According to this procedure, the selected and equal number 

of active power samples are acquired for both averaging intervals correspondingly from tm to tm+Tmax (first interval) 

and from tm+Tmax to tm+2Tmax (second interval). Then the first and the second optimal averaging time intervals: 

[tm+s1opt(tm)Ts, tm+(s1opt(tm)+nopt(tm))Ts] and [tm+Tmax+s2opt(tm)Ts, tm+Tmax+(s2opt(tm)+nopt(tm))Ts] are determined by 

solving the optimization problem is: 

min
𝑛,𝑠1,𝑠2

(𝑃Av (𝑡𝑚, 𝑛, 𝑠1) − 𝑃Av(𝑡𝑚 + 𝑇max, 𝑛, 𝑠2)),       (2) 

subject to: nmin ≤ n ≤ nmax; 0 ≤ s1 ≤ smax; 0 ≤ s2 ≤ smax; where (nmax = Tmax) / Ts and (nmin = Tmin) / Ts are 

correspondingly the largest and the least accepted number of samples to average, smax = (Tmax − Tmin) / Ts and Ts is 

power sampling period. In the following modeling nmin = 5 and nmax = 15 samples were accepted. Averaged power 

is expressed as: 

𝑃Av (𝑡𝑚, 𝑛, 𝑠) =
1

𝑛
∑ 𝑝(𝑡𝑚 + (𝑘 − 𝑠 − 1𝑛

𝑘=1 )𝑇s),       (3) 

A less computationally demanding version (lite version) of the procedure assumes that s1opt = 0 and s2opt = 0 

solving optimization problem (2) only for the variable n. 

2. Referring to Previous (historic) Averaged Samples: 

a) Standard deviation feature tracking: The problem of tracking of optimal number of measured power samples 

to average at a discrete time moment tm and nopt(tm) is defined as: 

min
𝑛𝑖

(𝜔𝑖 ∙ 𝜎𝑝
2(𝑡𝑚, 𝑛𝑖)),          (4) 

𝑖 = 1, 𝐾 subject to: ni = (n1, n2, ...., nK). Standard deviation of averaged power estimate is: 

𝜎𝑝
2(𝑡𝑚, 𝑛𝑖) =

1

𝑁
∑ (𝑃Av(𝑛𝑖 , 𝑡𝑚 − 𝑇s ∙ 𝑛𝑖 ∙ (𝑗 − 1)) − −𝑀(𝑃Av(𝑛𝑖 , 𝑡𝑚

𝑁
𝑗=1 )))2,    (5) 

where averaged power sample at the discrete time moment tm is: 

𝑃Av (𝑡𝑚, 𝑛𝑖) =
1

𝑛𝑖
∑ 𝑝(𝑡𝑚 − (𝑘 − 1

𝑛𝑖
𝑘=1 )𝑇s),       (6) 

and average of previous N averaged power samples is: 
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 𝑀(𝑃Av(𝑛𝑖, 𝑡𝑚)) =
1

𝑁
∑ (𝑃Av(𝑛𝑖 , 𝑡𝑚 − 𝑇s ∙ 𝑛𝑖 ∙ (𝑗 − 1)),𝑁

𝑗=1      (7) 

where N is number of averaged power estimates that are used to calculate standard deviation according to (5). 

Weights wi in (4) are intended to assign some priority levels to averaging over ni samples. Therefore, two cases were 

investigated first, when weights are equal to 1, and second, when they are linearly increasing for larger ni values. 

Results of sampled and averaged power calculated according from (4) to (7) are shown in Table III. 

Table IIIII. Averaged Power Profiles 

Time (s) 1 2 3 4 5 6 7 8 9 10 

Pa (W) 2145 2143 2141 2142 2146 2155 2210 2190 2170 2145 

Time (s) 11 12 13 14 15 16 17 18 19 20 

Pa (W) 2151 2159 2163 2265 2268 2270 2271 2265 2270 2275 

Weights wi and number or N of averaged power samples must be selected before its solution (2). This 

optimization method involves calculating all possible values and then choosing the smallest one. 

b) Spectrum analysis-based tracking: 

In this approach, optimal averaging period nopt(tm) is selected according to the equation: 

𝑛opt(𝑡𝑚) = 𝑟𝑜𝑢𝑛𝑑( (
1

𝑇s∙𝑓spmax
) ,         (8) 

restricted by condition: 

𝑇min

𝑇s≤𝑛opt(𝑡𝑚)
≤

𝑇max

𝑇s
,          (9) 

where fspmax is frequency corresponding to the peak of power consumption profile spectrum in the range from 

1/Tmax to 1/Tmin. 

VI. TESTING OF AVERAGING INTERVAL SELECTION ALGORYTHMS 

Mean of squared differences between neighboring averaged samples M(∆PAv(nopt, tm))2 is chosen as a 

performance criteria (PC) of optimal averaging interval tracking procedure: 

𝑀(∆𝑃Av(𝑛opt, 𝑡𝑚))2 =
1

𝐿
∑ (𝑃Av(𝑛opt(𝑡𝑚), 𝑡𝑚) − −𝑃Av(𝑛opt(𝑡𝑚−1), 𝑡𝑚−1))2𝐿−1

𝑚=1 ,   (10) 

where L is the total number of power estimates obtained by tracking and averaging procedure. Average power 

estimate at the time moment tm is calculated by averaging nopt(tm) previous raw power samples. 

The worst and the best improvement of performance criteria in percentage are defined correspondingly: 

𝐺min =
min(𝑀(∆𝑃Av(𝑛𝑖,𝑡𝑚))2−𝑀(∆𝑃Av(𝑛opt,𝑡𝑚))2)

min(𝑀(∆𝑃Av(𝑛𝑖,𝑡𝑚))2)
∙ 100%,      (11) 

𝐺max =
max(𝑀(∆𝑃Av(𝑛𝑖,𝑡𝑚))2−𝑀(∆𝑃Av(𝑛opt,𝑡𝑚))2)

max(𝑀(∆𝑃Av(𝑛𝑖,𝑡𝑚))2)
∙ 100%      (12) 

where 

𝑀(∆𝑃Av(𝑛𝑖 , 𝑡𝑚))2 =
1

𝐿𝑖
∑ (𝑃Av(𝑛𝑖, 𝑡𝑚) − 𝑃Av(𝑛𝑖 , 𝑡𝑚−1))2,

𝐿𝑖
𝑗=1      (13) 

where 𝑖 = 1, 𝐾 and Li is the total number of power estimates obtained by averaging procedure that utilizes fixed 

ni to calculate each averaged power estimate PAv(ni, tm). Negative value of Gmin indicates not an improvement but 

downgrading of the performance criteria. 

By examining the typical time series of the optimal averaging size, denoted as nopt(tm), in Fig. 4, it can be 

observed that the value of nopt changes frequently due to its heightened sensitivity to the random fluctuations within 

the raw power profile. However, this frequent adjustment does not contribute significantly to reducing the standard 

deviation of the averaged power estimates. To mitigate the fluctuations in the nopt series, the parameter K could be 

reduced (as illustrated in Fig. 4). The choice of the parameter N also influences the tracking speed; specifically, a 

larger N introduces a greater delay between the moment of a change in power profile characteristics and the 

determination of a new adapted averaging size (refer to Fig. 4). 
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The improvement factor G quantifies the effectiveness of the averaging size tracking procedure in enhancing 

the performance criteria defined in (6). For the results presented in Table IV, the tracking procedure was employed 

to select the optimal averaging size from the set ni = (5, 10, 15), as indicated in the first column of Table IV. A larger 

number K of ni options increases the computational cost of the tracking procedure. Therefore, selecting the set ni, 

𝑖 = 1, 𝐾, requires careful consideration to balance computational load against the reduction in variance of averaged 

power estimates. 

 
a)          b) 

Fig. 4. Characteristics of buildings, when 𝜔𝑖 = 0.05 ∙ 𝑛𝑖, N = 30, ni = (5, 10, 15, 20, 25, 30): (a) Std(t) and (b) nopt(t). 

As seen in Table IV, the random averaging interval selection method (A2) did not demonstrate a reduction in 

the variance of neighboring averaged power estimates compared to all constant averaging interval options. While 

random interval selection improved the performance criteria described by (10) for the least suitable averaging 

interval (see Gmax), it degraded the performance for the most suitable averaging interval among those preselected 

for testing (see Gmin). This indicates that random period selection adds complexity without guaranteeing an 

improvement in the targeted criteria, thus lacking justification. Similarly, methods denoted as (A31) and (A32) yield 

comparable results. 

Adaptive tracking methods (A4) and (A5) are more likely to achieve significant variance reduction for the least 

suitable constant averaging interval while only slightly increasing the average variance for the most suitable interval. 

Therefore, these two methods are preferred over the other methods considered. Nonetheless, method (A4) faces 

challenges related to the optimal selection of history buffer length N and weighting factors. 

To differentiate between (A4) and (A5) computational demands are of consideration. According to (4)–(7), 

method (A4) requires 2𝐾(𝑁 − 1) + 𝑁 ∑ (𝑛𝑖 − 1)𝐾
𝑖=1  sum, and K(N+2) division and K(N + 1) multiply operations 

to select the next averaging interval at any discrete time tm. In total (A4) demands arithmetic operations (AO) to 

complete: 

𝐴𝑂𝐴4 = 𝐾(4𝑁 + 1) + 𝑁 ∑ (𝑛𝑖 − 1).𝐾
𝑖=1         (14) 

Assuming the parameter set for Method (A4) as N = 50, K = 3 and ni = (5, 10, 15), the method requires 

approximately AOA4 = 1953 ≈ 2000 arithmetic operations. Without applying compiler optimization techniques, each 

arithmetic operation involves two memory read operations for the operands and one memory write operation for 

storing the result. Consequently, the total number of instructions to be executed is approximately 4AOA4 ≈ 8000. To 

compute the averaging interval according to (4)–(8), and assuming a power sampling interval of Ts = 0.1 seconds, 

an embedded microcontroller must operate at a clock speed exceeding 80 kHz. Modern embedded microcontrollers 

typically operate at clock speeds greater than 10 MHz. 

It is well known that the traditional Fast Fourier Transform requires (Nsp/2)log2Nsp multiplications and 

(Nsp)log2Nsp additions. As shown in Table IV, and assuming Nsp = 512, the total number of arithmetic instructions 

required for Method (A5) is AOA5 = 9612, which is significantly higher than the computational demands of Method 

(A4). Here, No.1 represents the power consumption PC (W2) of a house, No.2 corresponds to the power 

consumption of an office, and No.3 refers to the power consumption of an apartment. 

Five techniques, both design-time and adaptive, were modeled to select the optimal power profile averaging 

interval, and their effectiveness in minimizing the variance between neighboring averaged power estimates was 

compared. Based on the results obtained from processing several typical power consumption profiles acquired from 

an office, a multi-apartment building, and a private residential building, it was determined that adaptive optimal 

interval tracking procedures utilizing buffered historical power samples provided the most significant improvement 

in reducing variance between neighboring averaged estimates. The application of these online tracking procedures 

shows promise for the remote adjustment of watt-hour meter gain, particularly in terms of statistically predicting 

intervals of stable power consumption within the electrical grid. 
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Table IVV. Performance Estimation of Averaging Procedures 

ni; 𝑖 = 1, 𝐾 No.1 
Gmin=Gmax 

(%) 
No.2 

Gmin=Gmax 

(%) 
No.3 

Gmin=Gmax 

(%) 

A1: Constant averaging period (ni; 𝑖 = 1, 𝐾) 

n=5 1016 -32/+17 119 -7/+7 7838 -18/+12 

n=10 1582 -19/+19 52 -29/+15 13125 -17/+17 

n=15 1608 -52/+4 75 -38/+18 19820 -23/+12 

A2: Random period 

N=rand 

(5, 15) 
1351±42 -33/+15 54.5±0.2 -6/+54 11995±50 -53/+40 

A3: Two neighbors optimal interval search 

A31 

Lite 

version 

1072 -6/+33 100 -96/+16 17476 -123/+12 

A32 

Full 

version 

229 +77/+86 32.8 +36/+72 13691 -74/+31 

A4: Tracking procedure 

N=15 

wi=1 
862 +15/+46 45.1 +11/+62 8490 -8/+57 

N=15 

wi=0.05 
1046 -3/+35 50.5 +1/+58 8207 -5/+59 

N=30 

wi=1 
759 +25/+52 45.9 +10/+61 8336 -6/+57 

N=30 

wi=0.05 
1037 -2/+35 50 +2/+58 7883 -1/+60 

N=50 

wi=1 
754 +26/+53 48.9 +4/+59 8039 -3/+59 

N=50 

wi=0.05 
1046 -3/+35 46.8 +8/+61 7696 +2/+61 

A5: Prediction from spectrum 

Nsp=256 1223 -20/+23 47 +8/+60 6269 +20/+68 

Nsp=512 1041 -2/+35 47.9 +6/+60 5919 +24/+70 

Considering the computational demands, the tracking technique (A4), which minimizes the standard deviation 

of previously averaged power samples, was identified as the most preferable method. It has also been demonstrated 

that real-time implementation of this procedure is feasible using modern embedded microcontrollers. When 

compared to fixed averaging intervals determined at design time, the (A4) procedure either enhanced the defined 

performance criteria or, at worst, did not significantly degrade it for the most optimal design-time-selected interval. 

Given that the characteristics of the power consumption profile can not be known in advance during design time, it 

is recommended that the adaptive tracking procedure (A4) be implemented. 

VII. CONCLUSIONS 

This study has successfully developed and evaluated algorithms for optimizing averaging intervals in short-term 

power measurements within low-voltage AC networks. The primary objective was to reduce the statistical variance 

in power estimates, a critical factor for the remote calibration of wattmeter’s and enhancing the performance of 

smart sockets. The findings indicate that specific algorithms can effectively minimize fluctuations in power 
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consumption data, thereby improving the accuracy and reliability of power measurements in dynamic electrical 

environments. 

The research also explored the potential for remote calibration of wattmeter’s, demonstrating that gain 

adjustments can be effectively performed even under varying power quality conditions. However, certain limitations 

were identified, including the variability in load conditions that may not be fully addressed by the proposed 

algorithms and the potential impact of remote calibration accuracy due to distance and communication 

infrastructure. 

Despite these limitations, the study provides a significant contribution to the field by offering a methodology 

that enhances the precision of power measurements and lays the groundwork for future advancements in remote 

calibration techniques. Future work should aim to broaden the scope of load conditions analyzed, refine remote 

calibration methods, and test the proposed solutions in real-world settings to ensure their robustness and 

applicability. 

In conclusion, the methodologies presented in this research have the potential to greatly improve the accuracy 

and efficiency of power measurement and calibration processes in low-voltage AC networks, contributing to more 

reliable energy management and smarter grid technologies. 
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