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Abstract: Pantograph-based electrical current transmission systems are used in electric traction
vehicles. The contact surface between the pantograph and the catenary wire experiences mechanical
and thermal effects during the train’s movement. Typically, this contact surface on the pantograph is
covered by a segmented carbon or copper rod, attached to an aluminum base. Railways implement
organizational measures for pantograph condition monitoring, based on scheduled inspections.
Constitutionally, the option to replace contact elements or individual segments of the pantograph
exists if wear is detected. Many scientific publications describe ideas for pantograph visualization and
automated condition monitoring. These ideas are based on analyzing mechanical vibrations generated
by the pantograph, acoustic vibration signal analysis, 3D geometric data of the pantograph surface
captured by laser scanning, and combinations of several methods. However, in these publications,
mechanical vibration analysis is limited to signal shape and spectral analysis. The possibility of
treating the vibration signal as a random process using statistical methods has not been utilized. This
study describes the possibility of evaluating classified mechanical pantograph vibrations using the
signal’s autocorrelation transformation. A laboratory experiment confirmed the proposed method for
evaluating informative signal classification features. The proposed method can distinguish between
signals generated by a defective pantograph surface and identify different types of defects.

Keywords: train pantograph; classification features; Mel spectrograms; convolutional neural
networks

1. Introduction

Analyzing the evolution of pantograph diagnostics and visualization ideas in elec-
tric trains reveals a trend of changes in solutions and technologies used. In publica-
tions [1–7], pantograph diagnostics involved analyzing acoustic or mechanical vibration
signals. Later [8,9], methods based on the analysis of captured 2D pantograph images
(photos) were proposed, and later publications suggested supplementing visualization
and condition evaluation systems with 3D laser scanning analysis [9,10]. This evolution in
technical tools was driven by advances in hardware performance: the computer analysis
of 3D image data would have taken an impractically long time, but now results can be
obtained faster, allowing timely responses to detected damage, such as unscheduled pan-
tograph inspections or even immediately halting a train if a defect is deemed dangerous.
Later publications, such as one in 2014 [11], analyze the curve of the pantograph surface
shape captured by a 3D laser scanner, using various mathematical transformations to detect
informative features indicating the pantograph’s condition. This development in diagnostic
methods suggests revisiting earlier attempts to analyze mechanical–acoustic vibrations.
While vibrations do not directly correspond to the 3D shape of the pantograph’s surface,
diagnostic signals may still provide features indicating pantograph condition. Notably,
the ideas from 2005 to 2007 only involved evaluating the vibration signal’s shape, with
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spectrum analysis as the sole transformation. However, a 2017 study [3] used other mathe-
matical transformations, including mutual correlation and autocorrelation functions. The
autocorrelation function is known to be effective in classifying diagnostic signals, especially
when the signal is non-stationary and has a complex shape. This study aims to determine
whether the analysis of pantograph-generated vibrations can identify classification features
with sufficient accuracy to detect not only the presence of defects but also their nature.

In a 2024 publication [12], an in-depth analysis of high-speed train pantograph vi-
brations was presented. Although it was not aimed at solving diagnostic issues, the
experimental data curves may contain signals potentially useful for condition diagnostics.
The study by Guangning Wu [13] discussed pantograph system diagnostics in terms of
contact wire condition, temperature monitoring, visual surveillance, 3D modeling tools,
and even electromagnetic diagnostics. This paper also mentions the idea of using acoustic
vibrations for diagnostics, which can be compared to the principles of mechanical vibration
diagnostics. However, these studies are still limited to spectrum analysis, possibly due to
this limitation, yielding insufficient results. It is crucial to investigate whether additional
signal transformations could yield more accurate diagnostic features. This paper aims to
analyze the mechanical vibrations generated by the pantograph to derive features suitable
for diagnostics. The innovation lies in the fact that only the vibration signal’s waveform
or spectrum analysis is used for diagnostics. This type of vibration signal analysis has
not been conducted before, and the obtained results indicate that it is possible to enhance
the effectiveness of existing diagnostic systems, aiming to avoid the use of complex and
expensive video or laser diagnostic systems.

2. Materials and Methods

It is known that many objects emit signals during operation that could be applied to
diagnostics. These could be mechanical or acoustic vibrations, temperature changes, or
other parameter fluctuations that depend on the object’s condition. Sometimes, objects
do not emit such signals during regular operation, but they can be induced using specific
stimuli. The pantograph of an electric train has both mechanical and electrical contact with
the catenary wire. During train movement, mechanical effects and sparking cause mechani-
cal vibrations. Additionally, the contact point on the pantograph surface changes position
cyclically, moving back and forth along the pantograph’s length. This movement generates
vibrations and acoustic noise in the surrounding environment. However, acoustic signal
detection is complicated by other noises generated by the moving train. Distinguishing
diagnostic signals from pantograph-specific ones acoustically is challenging. This study
focuses on analyzing mechanical vibrations captured by a piezoelectric sensor. Properly
attached to the pantograph or supporting structures, the piezoelectric sensor can detect
pantograph-induced vibrations with a stronger signal than ambient mechanical noise. Al-
though the sensor attachment method is not new, studies on captured signals have been
limited to signal shape and spectral analysis. A laboratory setup was developed for this
study to record pantograph-induced vibrations in a controlled environment. The setup
included a stretched catenary wire segment between stands, with a piezoelectric sensor
attached to the wire’s support structures.

A flowchart of research ideas and experimental methods of this article is presented in
Figure 1.

In creating the experimental conditions, the train’s speed was selected at which the
vibration signals were recorded. According to the catenary system design, the current
transmission wire is suspended at a small angle relative to the track axis, and this angle
changes at each support structure that contains wire suspension elements. Therefore,
as the train moves from one support structure to the next, the contact point of the wire
on the pantograph surface sequentially shifts from one edge of the pantograph’s contact
surface to the other, and then, after passing the support, the contact point moves back in
the opposite direction. During the experiment, the process of contact point movement
was simulated, and mechanical vibrations caused by irregularities in the pantograph’s
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surface were recorded during this movement. To determine the contact point’s movement
speed during the experiment, it is necessary to select the train’s speed and evaluate the
relationship between the pantograph’s contact point with the wire and the train’s speed.
It is understood that the induced vibrations can vary depending on the train’s speed;
therefore, the experiment was limited to a train speed corresponding to a situation where
the train is traveling between stations at cruising speed. In real situations, this speed may
change depending on traffic conditions and the train schedule. For this experiment, the
assumption was made that the mechanical vibrations being examined are from a train
traveling at a speed of 24 km/h as the average speed of the train approaching a station
checkpoint lies between 20 and 40 km/h. The length of the pantograph’s contact surface
was noted in reference materials as 1120 mm. The distance between supports was assumed
to be 60 m. Thus, when the train has traveled 60 m, the contact point can move up to
1.12 m. In real conditions, the distances between supports may vary slightly, and the
contact wire may not touch the pantograph along the entire surface length but only part
of it. Nevertheless, for the experiment, the assumption was made that these parameters
remain consistent during the train’s movement. Therefore, with the train moving at a speed
of 24 km/h, the pantograph’s contact point movement speed was 0.448 km/h or 0.124 m/s.
The simulated train speed was within the range of 20 to 40 km/h during the laboratory test.
Contact surfaces simulating a healthy surface and various levels and types of mechanical
damage, from indentations to protrusions, were used during the experiment, and images
of these surfaces are shown in Figure 2.
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The most common pantograph surface deformation defects described in the literature
have been replicated in the segments of the pantograph’s contact surface. The literature
analysis revealed that there are not many types of pantograph defects. Several defect types
are mentioned in the literature, which are most commonly encountered when operating
electric traction vehicles. The vast majority of defects manifest as wear of the pantograph
material on its contact surface. Most often, these are one or several nearby indentations
on the pantograph surface (defects 1, 2, 3). Another defect mentioned in the literature
is the formation of a protrusion on the copper pantograph surface, which occurs due
to the thermodynamic properties of the pantograph surface—defect 4. To simulate a
defective pantograph, imitation copper plates were created, replicating the known defective
pantograph surface shapes. Automated object diagnostic systems are typically based on
the principle of signal feature classification. The creation of the system starts with a set of
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signal features from healthy (defect-free) objects. Later, the features of the tested signal are
compared with the features of the healthy objects’ signals. If the features do not match,
the object being tested is classified as defective. If it is desired that the system not only
distinguish a defective object from a healthy one but also identify the type of defect (or
even the level of risk it poses), classifier training is performed during the system’s setup. In
total, 128 pantograph-generated mechanical vibration signals were collected: 22 signals
from a healthy pantograph, 23 from defect type 1, 23 from defect type 2, 25 from defect
type 3, and 25 from defect type 4. To register the vibrations, industrial vibration sensor RS
PRO, 10 kHz, ±1 dB, was used [14].
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Figure 2. Simulated surface shapes for (a) “no defect”; (b) “defect 1”; (c) “defect 2”; (d) “defect 3”;
(e) “defect 4”.

The frequency of the registered pantograph vibration signal was 0 to 10 kHz, with
a signal level of 32,767 corresponding to 1 V, or vice versa, where 1 digit corresponds to
3.05181 × 10−5 V. One example of such a healthy signal (a) and the first defect type (b) is
shown in Figure 3.
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Figure 3. Vibrations generated by a healthy pantograph (a) “no defect” and (b) “defect 1”.

Although these individual signals are quite different, as can be seen from the graphical
representation of all recorded signals in Figure 4, the difference between the healthy contact
surface (a) and defect 1 (b) was no longer as apparent, thus requiring more detailed analysis
to distinguish such signals. Each color in Figure 4 represents a different pantograph
signal for the same defect. The purpose of using different colors was to distinguish each
measurement as separate; if all measurements were represented in a single color, they
would appear as one unified measurement. It was necessary to display all measurements
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on a single graph to highlight the difference compared to the graph in Figure 2b, showing
that the peak from “Defect 1” could occur at any moment.
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Figure 4. All vibration signals are generated and plotted in the same coordinates by a healthy
pantograph (a) “no defect” and (b) “defect 1”.

3. Results

Various classification algorithms exist, and the required number of features to ensure
reliable classifier performance was determined. This study tested a CNN classifier and
proposed a method for extracting features from pantograph-induced vibrations. These
features must be detectable in the vibration signal and quantified.

3.1. Statistical Signal Analysis

Based on the signal forms in Figure 3, it is difficult to directly draw conclusions about
any drive characteristics. The most appropriate way to analyze such signals is to begin
with basic statistical parameter evaluations, such as mean, standard deviation, variance,
and kurtosis, with the results presented in Figure 5.
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As can be seen from the results in Figure 4, calculating the mean standard deviation
and variance allows one to easily distinguish the signal from a healthy contact surface
from that of defective signals. However, distinguishing between different defects using
this information alone is impossible, as their signals overlap. Calculating the mean value
of the signals or the kurtosis index also does not clearly differentiate even the vibration
signal generated by a healthy surface. Additional studies using other statistical metrics,
such as skewness, RMS, and the peak-magnitude-to-RMS ratio, were also conducted, but
the results were similar.

3.2. Mel Spectrograms and CNN Signal Analysis

As shown by the literature analysis, Mel spectrograms and CNN (convolutional neural
networks) models trained on them are often used for sound signal analysis. Therefore,
for further signal analysis, it was decided to use Mel spectrograms, as they allow the
identification of frequency components that may indicate defects not visible in the time
domain. The Mel scale better reflects small frequency changes that can be important for
identifying wear or other structural defects. Additionally, the spectrogram shows how the
signal frequency changes over time, allowing for more efficient classification of defects
based on their size and nature. An example of a Mel spectrogram for each signal type is
provided in Figure 6.
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Mel spectrograms as images were used to train and test CNN. The classification of the
signals’ Mel spectrograms was carried out using a CNN with a ReLU activation function.
The entire structure of the CNN used for classification is presented in Figure 7.
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As seen in Figure 8, the healthy pantograph signal is classified with an accuracy of
85.7%, while the overall average classification accuracy for all classes is 68.6%. Blue color
represents correct classification results, red – incorrect classification results. The obtained re-
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sults essentially reflect those achieved using basic statistical evaluations (standard deviation
and variance), meaning that the healthy signal is classified most accurately, while defects
of different levels are mixed together. Considering that the successful training of CNN
methods is typically based on large datasets, and in our case, training with approximately
15 samples yielded an average recognition accuracy of 68.6%, it is likely that accumulating
a larger dataset could significantly improve this classification accuracy.

3.3. Stochastic Signal Analysis

Furthermore, stochastic signal analysis tools were employed to analyze these signals,
along with additional mathematical functions that allow the signal to be transformed into
a more deterministic form. The most common of these transformations is the Fourier
transform:

f (x) =
∫ ∞

−∞
F(k)e2iπkxdx, (1)

also known as spectral signal analysis.
The signal spectrum would reveal the frequency characteristics of the signal, and the

classifier could operate by comparing the predominant harmonics of the signal. Addition-
ally, there are methods for signal transformation based on other mathematical functions,
such as the correlation function:

R f (τ) =
∫ ∞

−∞
f (v + τ) f (v)dv, (2)

The autocorrelation function, the signal cepstrum:

x̂ =
1

2π

∫ ∞

−∞
log

[
X
(

ejω
)]

ejωndω, (3)

and more.
In order to identify the characteristic features that enable an accurate evaluation of

the drive’s vibration signal, the aforementioned transformations were performed using the
MATLAB software package.

To find the transformation method, the vibration signals generated by both the healthy
and defective pantographs were analyzed. The goal was to obtain an identity function
through transformation that changes as consistently as possible and for the values of the
identity functions at those coordinate points to serve as classification features where the
influence of different defects on the transformed signal’s shape is most distinct.

From the transformations of the analyzed signals, it was observed that neither the
autocorrelation function of the signal nor the signal cepstrum, represented in Figure 9
yields the desired result: the signal remains difficult to define (non-deterministic). In such
a signal form, it is still challenging to begin searching for defining features of the signal,
making it difficult to evaluate them quantitatively. The signal spectrum, represented in
Figure 10, while also having very unstable values in each frequency range, nonetheless
has several extrema in its form, and it seems that the frequency or amplitude of these
harmonics could already be assessed as a feature reflecting the condition of the pantograph.
However, this is still not a fully suitable signal form for feature evaluation, and therefore,
combined signal processing methods were investigated. Often, when the direct cepstrum
or autocorrelation of the signal is difficult to define, a combinational transformation is
used: first, the signal spectrum is obtained, and only then is the spectrum transformation
performed. The autocorrelation function of the signal spectrum has a clearly defined
form and changes relatively consistently, as represented in Figure 11 (axes values are
dimensionless).
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After determining the appropriate signal transformation method, several samples
were examined from each of the four pantograph contact surface models exhibiting different
defects.

By plotting the transformations of the vibration signals caused by the healthy pan-
tograph and the four different defects using the spectrum autocorrelation method, it is
evident that the identity functions differ from one another, and there are specific coordinate
points where the values of the identity functions for the different defects vary.
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The results obtained reveal both the advantages and disadvantages of the method
represented in Figure 12 (axes values are dimensionless). It is clear that the features of
the vibration signal from a healthy pantograph have the lowest numerical values, making
it suitable to classify the object as either defective or healthy. However, the features of
individual defect classes, while differing to some extent, are still very close to each other.
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To investigate the repeatability of the obtained features, an experiment was conducted
using 20–25 individual signals from each defect class, assessing and plotting their features in
a metric space (Figure 13). The arrangement of these features in the metric space confirmed
that all 22 signals generated by the healthy pantograph model were very close to their
centroid, which is important because this feature-based system will qualitatively identify
a pantograph without defects. Additionally, it should be noted that the features of the
first type of defect (a notch caused by a contact wire in the pantograph) were consistently
located within a strictly defined area of the feature space from the 23 signals recorded
during the experiment, indicating that this type of defect can be reliably identified in the
diagnostic system. However, it is essential to point out that the features for defect types 3
and 4 were situated in overlapping spaces, while the arrangement of defect type 2 features
partially overlapped with the arrangements for defects 3 and 4.
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4. Discussion

This means that a study is necessary to reveal the best classifier capable of distinguish-
ing these features. In any case, there is a risk that the implementation of the separation of
classes 3 and 4 will have a certain level of error, while the features of defect type 2 will be
classified more accurately.
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Analyzing the features of defects 2, 3, and 4 in the metric space, it can be inferred that
the proposed method will not be able to distinguish them from one another. However, the
only common characteristic of these defects is that all of them are critical, involving large
deformations, and a pantograph with such defects must be serviced as quickly as possible.
Defect 1 could be classified as a “developing defect”: non-critical but the emergence of
which could alter the technical service schedule, accelerating the maintenance of the train
carrying this pantograph. Therefore, it can be concluded from the experiment that the
proposed system can sufficiently accurately differentiate between a healthy pantograph
and one with a developing defect, as well as reliably identify a pantograph that requires
immediate repair.

5. Conclusions

• Separate studies could be conducted to determine the exact values of error probability.
However, if the features of defects 2, 3, and 4 are combined into a single aggregate
defect class that could be interpreted as “defects requiring technical maintenance”,
the proposed method, which evaluates the vibrations generated by the pantograph,
would reliably distinguish between a healthy pantograph, a class of single notches,
and the “defects requiring technical maintenance” class. Under certain conditions,
this may be sufficient for the application task of the technical pantograph diagnostic
system.

• The method proposed is limited to the analysis of the signal itself or its spectrum. An
alternative approach is suggested for evaluating the characteristics of the vibration
signal for diagnostic purposes, and it has been found to be more effective than spectral
analysis.
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