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Abstract: Research on brain–computer interfaces (BCIs) advances the way scientists understand how
the human brain functions. The BCI system, which is based on the use of electroencephalography
(EEG) signals to detect motor imagery (MI) tasks, enables opportunities for various applications in
stroke rehabilitation, neuroprosthetic devices, and communication tools. BCIs can also be used in
emotion recognition (ER) research to depict the sophistication of human emotions by improving
mental health monitoring, human–computer interactions, and neuromarketing. To address the low
accuracy of MI-BCI, which is a key issue faced by researchers, this study employs a new approach
that has been proven to have the potential to enhance motor imagery classification accuracy. The basic
idea behind the approach is to apply feature extraction methods from the field of emotion recognition
to the field of motor imagery. Six feature sets and four classifiers were explored using four MI classes
(left and right hands, both feet, and tongue) from the BCI Competition IV 2a dataset. Statistical,
wavelet analysis, Hjorth parameters, higher-order spectra, fractal dimensions (Katz, Higuchi, and
Petrosian), and a five-dimensional combination of all five feature sets were implemented. GSVM,
CART, LinearSVM, and SVM with polynomial kernel classifiers were considered. Our findings
show that 3D fractal dimensions predominantly outperform all other feature sets, specifically during
LinearSVM classification, accomplishing nearly 79.1% mean accuracy, superior to the state-of-the-art
results obtained from the referenced MI paper, where CSP reached 73.7% and Riemannian methods
reached 75.5%. It even performs as well as the latest TWSB method, which also reached approximately
79.1%. These outcomes emphasize that the new hybrid approach in the motor imagery/emotion
recognition field improves classification accuracy when applied to motor imagery EEG signals, thus
enhancing MI-BCI performance.

Keywords: electroencephalogram; emotion recognition; motor imagery; EEG feature extraction;
brain–computer interface

1. Introduction

To explore the complexity of the human brain in terms of electrical signals emitted
during cerebral activity, the measurement and monitoring of cerebral activity are performed
using several approaches. In this study, we start by providing an overview of brain activity
measurement techniques. First is functional magnetic resonance imaging (fMRI), which
uses electromagnetic fields to track changes in blood flow, blood volume, and oxygen levels
during brain activity imaging; however, its suitability for fast BCI systems is not great, and
head movements easily affect the tracking technique [1]. Second is functional near-infrared
spectroscopy (fNIRS), which tracks brain metabolism; this technique uses infrared light,
but it is limited to the outer layers of the brain due to the light penetration depth [2]. The
most important technique involves electroencephalography (EEG) signals; during brain
neural activation, electric currents are emitted. EEG is used to detect electrical brain activity,
but signals can sometimes be affected by other electrical currents in the body [3].
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The brain–computer interface system captures EEG signals through sensors and
electrodes integrated into the device. These signals are then digitized and stored in a
format suitable for research-ready explorations [4]. The technique commonly used by
scientists and neurologists nowadays is EEG. It has essential advantages, which is why it is
popular among researchers in this field of study: its non-intrusive nature, the fact that it
does not necessitate a surgical procedure, its low cost compared to the other approaches
mentioned above, and the fact that it operates entirely through a brain–computer interface
placed on the subject’s scalp [5].

The importance of the emotion recognition (ER) field is significantly increasing with
the number of electronic devices used by individuals; people are spending more time on
social media, playing online video games, shopping online, and using other electronic
products [6]. The capability of processing human emotions and comprehending them is
crucial for studying and investigating emotional recognition procedures with different
emotion states (i.e., valence, arousal, happiness, and sadness) and how they influence the
subject’s interaction with their surroundings and even their decision-making abilities [7].

The motor imagery (MI) field introduces numerous potential applications to improve
lives; it helps patients regain the ability to perform tasks they lost due to a debilitating
illness, a brain injury, or even a severe accident. Detecting abnormal brain activity in clinical
diagnosis can help with epilepsy or seizures, help people restore vision, or even allow a
person with physical disabilities to perform motor imagery tasks (such as the imagination
of movement, considering the right and left hands, feet, and tongue) and control a complex
external device using their brain [8].

There are several challenges facing scientists in the motor imagery field, including
some limitations regarding current feature extraction and classification methods in MI tasks.
First is the low signal-to-noise ratio (SNR) due to the noisy characteristics of EEG signals (i.e.,
muscle movements, eye blinks, and electrical interference), making the hunt for valuable
features that reflect MI tasks, considering brain activity, hard to discern [9]. Second is the
use of traditional features (i.e., power spectral densities and band power), which often face
difficulties in capturing the most significant information needed to differentiate between
motor imagery tasks, causing lower accuracy [10]. Finally, advanced feature extraction
methods and performance classifiers can be computationally demanding, making them
difficult to use effectively for motor imagery tasks.

This is where our research can be used in practice, as this study’s main idea is the cross-
application of both techniques from emotion recognition (ER-EEG) and motor imagery
(MI-EEG) tasks, leveraging ER feature extraction techniques to improve MI classification.
Our main focus is on EEG signal analysis for motor imagery classification, and any im-
provements in the classification accuracy have important implications for brain–computer
interface (BCI) applications, as BCIs depend on the precise detection of MI tasks to facilitate
control over external devices. By improving motor imagery classification accuracy, this
study contributes to the BCI field, showing improvements for more reliable and effective
BCI systems that can be used by researchers in the field in further explorations.

The current work primarily aims to train and evaluate various machine learning
classifiers in addition to feature extraction techniques from the emotion recognition field
applied to the motor imagery field using electroencephalography signals. The specific goals
are grouped into three parts: first, to adapt emotion recognition feature extraction methods
for motor imagery data; second, to assess the performance of these features with various
classifiers; finally, to compare the results with traditional motor imagery approaches.

The novelty of the current work is the introduction of ER-based feature extraction
to MI tasks. Given the impact and potential to enhance motor imagery classification
accuracy, this study benefits brain–computer interface applications for individuals with
physically disabilities.
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2. Related Work

This section will discuss the classification methods commonly applied in the emotion
recognition and motor imagery fields. Additionally, it will cover the feature extraction
techniques and preprocessing steps that are typically employed. Then, it will discuss the
related work in the motor imagery field, highlighting the key issues tackled in this study.

Commencing with the preprocessing techniques in [7], the ground truth is established
by converting the ER-EEG datasets into self-report scales. All the data from the latter went
through a four-sequence preprocessing phase: a notch filter, a high-pass filter, downsam-
pling, and the implementation of a common average reference (CAR) montage. Then,
the feature extraction techniques were applied. Following the preprocessing phase, the
reference article digests five main feature extraction methods: statistical, wavelet, fractal di-
mensions, Hjorth parameters, and higher-order spectra (HOS), in addition to a combination
of all of the latter simultaneously. Finally, regarding performance classifiers, this study em-
ployed two primary algorithms: the Gaussian radial basis function support vector machine
(GSVM) and the classification and regression tree (CART). As the mentioned study only
utilized the binary valence–arousal (positive and negative) plane, the findings indicated
that the CART classifier outperformed the GSVM in recognizing emotions from EEG data.
Moreover, the fractal dimensions feature set, which includes the Katz [11], Petrosian [12],
and Higuchi [13] algorithms, achieved the highest performance classifier accuracy.

After interpreting the motor imagery field, regarding dataset usage, the considered
research article [14] underlines one prominent motor imagery-related EEG dataset: the BCI
Competition IV 2a set [15]. This dataset involved motor imagery tasks, with four event
types representing cues for left-hand, right-hand, foot, and tongue movements. Runs four
through nine focused on these motor imagery tasks, while runs one to three were dedicated
to recording eye movement. Nine subjects participated in the study, each completing nine
runs. The data were sampled at 250 Hz using 25 electrodes, 22 of which recorded EEG
signals, while the remaining 3 were used for electrooculography (EOG). Applying feature
extraction techniques underscores a pipeline of two main feature extraction methods:
common spatial patterns (CSP) with multiscale temporal and Riemannian covariance
methods. Regarding classifiers, the support vector machine (SVM) was used with linear,
rbf, and poly sub-kernels. The results showed that the multiscale CSP features reached
an average classification accuracy of 73.70%, which is better than the current leading
method, which achieved 70.60%. During the usage of the Riemannian covariance features,
it performed better than CSP, with an accuracy of 74.27%; with more time windows, the
accuracy jumped to 75.47%. The latter outcomes were achieved across all nine subjects
using all four classes from the BCI Competition IV-2a dataset [14].

All researchers in the current field of study, the MI field, have one primary concern:
enhancing MI-BCI performance. Five main improvement procedures can be followed [16]:
first is preprocessing, which can be achieved by improving or filtering the signal. The latter
can be achieved by reconstructing the signal [17,18], improving the spatial resolution [19],
or adding artificial noise [20]. Second is using channel selection by removing redundant and
non-task-relevant channels [21] and reducing the device’s power consumption [22]. Third is
using feature selection, which improves performance by finding the most optimal features.
Fourth is dimensionality reduction, which is accomplished by reducing the number of
features while retaining as much relevant information as possible. Lastly, combining all the
previously mentioned techniques and aiming for general improvement can also achieve
higher performance accuracy [16].

The present work being implemented in this study will focus on the three preprocess-
ing filters: notch filter, high-pass filter, and common average reference (CAR) montage
without downsampling. The neglect of downsampling was considered, as it would be
necessary if we needed to reduce data size for computational efficiency; however, the
adopted dataset had a sampling frequency that is sufficient for capturing relevant EEG
bands. Feature extraction used statistical features, wavelet analysis, fractal dimensions,
Hjorth parameters, higher-order spectra, and a combination of all the previously mentioned
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features. Related classifier techniques from the ER-EEG pipeline [7] included GSVM (an
SVM classifier with rbf kernel) and CART (regression tree).

An SVM classifier with a polynomial kernel and the LinearSVM classifier were intro-
duced to the MI-EEG pipeline [14] specifically only using CSP features without Riemannian
features. Lastly, this latest work utilized all four classes from the BCI Competition IV-2a
dataset (left and right hands, feet, and tongue-related classes), highlighting that there were
no additional artifact removal methods used other than the current preprocessing filtering
mentioned above.

This study introduces features from the field of emotion recognition (ER), which are
specifically designed to capture complex, non-linear brain patterns, which can address some
challenges in the motor imagery field, like the low signal-to-noise ratio (SNR) and difficulty
in distinguishing between similar MI tasks (i.e., left-hand vs. right-hand movements).

The cross-application of both domains, ER-EEG and MI-EEG, is the novel approach
that this study offers. The lack of research in applying emotion recognition (ER) feature
extraction methods to motor imagery (MI) tasks justifies the need for our current research.

3. Background and Theory

This section covers the foundational elements required to understand the methodology
and scope of the current study. Among these essential topics are machine learning classifiers,
feature extraction methods, and preprocessing techniques. Additionally, we present the
key concepts, relevant theories, and important definitions crucial for a comprehensive
understanding of this research.

3.1. Notch Filtering

The initial step in preprocessing our EEG data involves applying a notch filter [23],
which is commonly used to eliminate a targeted frequency from EEG signals. This spe-
cialized filter introduces a pronounced, narrow suppression, known as a “notch”, at a
designated frequency. By configuring this filter, we can reduce interference in the signals
being studied using factors such as the sampling rate Fs, the powerline frequency f 0,
and the quality factor Q. The transfer function H(z) represents the digital notch filter
mathematically, as expressed in Equation (1):

H(z) =
Y(z)
X(z)

=
∑M

m=0 bmz−m

1 + ∑N
n=1 anz−n

(1)

where the following apply

– bm are the feedforward coefficients (numerator);
– an are the feedback coefficients (denominator);
– M is the order of the numerator;
– N is the order of the denominator;
– X(z) is the Z-transform of the input signal;
– Y(z) is the Z-transform of the output signal.

3.2. High-Pass Filtering

The next preprocessing step for filtering our EEG data involves using high-pass
Butterworth filters (HPFs) [24], which allow higher-frequency components of EEG signals
to pass while diminishing lower-frequency components. These filters are widely used to
reduce low-frequency noise, effectively preserving target higher-frequency brain activity.
HPFs are particularly useful for mitigating artifacts, correcting electrode drifts during
recordings from scalp-based BCI systems and improving the quality of EEG data analyzed
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in this study. The mathematical expression for a Butterworth high-pass filter of order N
with a cutoff frequency ωc is generally given in Equation (2):

C(z) =
B(z)
A(z)

(2)

Let B(z) and A(z) denote the Z-transforms of the filter coefficients b and a, respectively. A
fourth-order high-pass filter is implemented, with its transfer function incorporating bi and
ai, as given by (3):

C(z) =
b0 + b1z−1 + b2z−2 + b3z−3 + b4z−4

1 + a1z−1 + a2z−2 + a3z−3 + a4z−4 (3)

To configure the filter, we compute the coefficients b and a for a fourth-order high-pass
Butterworth filter with a normalized cutoff frequency ωc. The application of this filter to
EEG data requires executing multiplication in the Z-domain, as indicated in Equation (4):

Filtered Signal(z) = C(z) · EEG Signal(z) (4)

3.3. CAR Montage Filter

The final preprocessing method applied to our EEG data is the common average
reference (CAR) montage [25]. This technique in EEG signal processing is designed to
minimize noise shared across all EEG channels. By re-referencing each channel to the
collective average of all channels, CAR enhances the clarity of brain electrical activity
relative to this average, thereby improving the signal-to-noise ratio and the overall quality
of the data. Let X denote the matrix of EEG signals, where rows represent time samples
and columns represent channels. The CAR operation is mathematically expressed in
Equation (5):

CAR = X − 1
N ∑N

i=1 Xi (5)

where the following apply:

– CAR is the EEG data matrix after the filter has been applied;
– X represents the original EEG data matrix;
– N denotes the total number of EEG channels;
– Xi corresponds to the signal from the i-th channel.

3.4. Statistical Features

The initial feature extraction approach involves statistical features [26], which are
classified as time-domain characteristics. Widely applied in EEG signal processing, these
features play a significant role in brain–computer interface applications and seizure detec-
tion. The four core measures include mean, variance, skewness, and kurtosis.

Mean ( x): This is the average value of the signal and is calculated using Equation (6):

x =
1
N ∑N

i=1 xi (6)

where N is the total number of samples, and xi represents the i-th sample in the signal.
Variance (σ2): Variance measures how much the data points deviate from the mean,

given by Equation (7):

σ2 =
1
N ∑N

i=1(xi − x)2 (7)

Skewness: This metric accesses the asymmetry of the probability distribution of a
real-valued random variable in relation to its mean. It is calculated as shown in Equation (8):

Skewnessstat =
1
N ∑N

i=1

(
xi − x
σ

)3
(8)



Appl. Sci. 2024, 14, 11323 6 of 27

where σ is the standard deviation of the signal.
Kurtosis: Kurtosis evaluates the presence of extreme values (outliers) in the tails of

a distribution, similar to skewness, in that it considers the probability distribution of a
real-valued random variable. It is determined using Equation (9):

Kurtosisstat =
1
N ∑N

i=1

(
xi − x
σ

)4
− 3 (9)

where the subtraction of 3 adjusts the kurtosis so that a normal distribution has a kurtosis
value of zero.

3.5. Wavelet Analysis Features

The second feature extraction technique is wavelet transform [27], classified as time–
frequency analysis features. These are highly effective in EEG data analysis, as they break
down signals into various frequency components while preserving temporal information.
In this study, we used the discrete wavelet transform (DWT) to derive features from our
EEG dataset. Our approach emphasizes calculating the mean absolute value of wavelet
coefficients at each decomposition level, which reflects the average magnitude of these
coefficients and serves as an indicator of the signal’s energy, as shown in Equation (10):

µ
(j)
t,c =

1
Nj

∑
Nj
k=1

∣∣∣c(j)
t,c [k]

∣∣∣ (10)

where the following apply:

– µ
(j)
t,c is the mean absolute value at level j for channel c in trial t;

– Nj is the total number of coefficients at level j;

–
∣∣∣c(j)

t,c [k]
∣∣∣ denotes the absolute value of the k − th coefficient at level j.

3.6. Higher-Order Spectra Features

The third feature extraction technique consists of Higher-Order Spectra (HOS) fea-
tures [28], which are considered frequency-domain characteristics. These features are
derived from the power spectral density (PSD), providing insights into power fluctuations
within EEG signals and aiding in examining the Euclidean distribution of electrical activity
across frequencies. In this analysis, skewness and kurtosis are selected as key HOS features.
Skewness indicates the symmetry of the PSD around its mean, while kurtosis assesses the
shape of the PSD distribution, focusing on the presence of heavy tails or potential outliers.
These features are computed using Equations (11) and (12):

SkewnessHOS =
1
N ∑N

i=1(Pxxi − Pxx)3(√
1
N ∑N

i=1(Pxxi − Pxx)2
)3 (11)

KurtosisHOS =
1
N ∑N

i=1(Pxxi − Pxx)4(
1
N ∑N

i=1(Pxxi − Pxx)2
)2 − 3 (12)

where the following apply:

– Pxxi represents the individual power spectral density values;
– Pxx represents their mean;
– N denotes the number of observations in the PSD.

3.7. Hjorth Features

The fourth feature extraction approach involves Hjorth parameters [29,30], classified
as time-domain features. These statistical metrics characterize time-domain signals through
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three key aspects: activity, mobility, and complexity. Together, they offer meaningful
insights into the signal’s energy, frequency composition, and degree of irregularity.

Activity Parameter A: quantifies the variance of the EEG signal and is calculated
using (13):

A = Var(x(t)) =
1
N ∑N

i=1(xi − x)2 (13)

where the following apply:

– xi represents the signal samples;
– x represents the mean value of the signal;
– N denotes the total number of samples.

Mobility Parameter M: measures the standard deviation of the first derivative of the
EEG signal normalized by the activity. It is given by (14):

M =

√
Var(∆x(t))

A
=

√
1

N−1 ∑N−1
i=1 (∆xi)

2

A
(14)

where the following apply:

– ∆x(t) denotes the first derivative of x(t);
– ∆xi = xi+1 − xi represents the first differences between consecutive signal samples.

Complexity Parameter C: the ratio of the mobility of the first derivative of the signal
to the mobility of the signal itself, expressed as (15):

C =
M∆x(t)

M
=

√
Var(∆2x(t))
Var(∆x(t))

M
(15)

where the following apply:

– ∆2x(t) represents the second derivative of x(t);
– ∆2xi = ∆xi+1 − ∆xi represents the second differences in the signal.

3.8. Fractal Dimension Features

The fifth and final feature extraction method is based on fractal dimension features,
which fall under time–frequency analysis characteristics. In this study, we applied several
fractal dimension algorithms commonly utilized in EEG analysis, specifically the Katz,
Petrosian, and Higuchi methods. Fractal dimensions offer insights into the self-similarity
and complexity of the signal.

The Katz fractal dimension [11] assesses signal complexity by examining how the
signal’s structure occupies space as it scales. This method evaluates deviations from
smoothness by considering both the total length of the signal path and its spatial extent, as
expressed in Equation (16):

FDKatz =
ln(n)

ln(n) + ln
(

d
L

) (16)

where the following apply:

– ln denotes the natural logarithm;
– n is the total number of observations (data points) in the time series;
– L is the total length of the signal path;
– d is the maximum distance from the first point to any other point in the signal.
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Petrosian fractal dimension [12] measures the irregularity or self-similarity within a
signal by calculating the number of sign changes in its first derivative. It is defined by
Equation (17):

FDPetrosian =
log10(n)

log10(n) + log10

(
n

n+0.4·Nδ

) (17)

where the following apply:

– log10 is the base-10 logarithm;
– n is the total number of observations (data points) in the time series;
– Nδ represents the number of sign changes in the derivative, providing insights into

the signal’s frequency content and waveform complexity.

The Higuchi fractal dimension [13] assesses the roughness or complexity of a signal
by examining its variation as it undergoes successive downsampling, represented by
Equations (18)–(20):

HFD = −slope(log(x), log(L)) (18)

Lk =
1
k ∑k−1

m=0

(
N − 1

k(N − m − 1)∑
⌊ N−m

k ⌋
i=1 |data[m + ik]− data[m + (i − 1)k]|

)
(19)

x = [1, 2, . . . , kmax] (20)

where the following apply:

– HFD is the Higuchi fractal dimension resulting from the computation;
– Lk is the average length over k sets;
– k is an integer defining the time interval for calculating Lk;
– kmax is the maximum No. of k, defining different scales at which the time series

is analyzed;
– N is the total No. of data points;
– m ranges from 0 to k − 1;
– Lm, k denotes the length of the curve for a particular scale k and starting point m;
– i indexes the sum over N − m data points;
– data refers to the actual EEG time series being analyzed;
– x is a list of integers from 1 to kmax, which are used alongside L to compute the slope.

3.9. GSVM Classifier (SVM with RBF Kernel)

The initial supervised machine learning classifier used in this study is the Gaussian
radial basis function (RBF) support vector machine (GSVM) [31], a variant of the traditional
SVM. This approach incorporates the radial basis function, also known as the Gaussian
kernel, within the support vector machine framework. It is especially well suited for
handling non-linearly separable data, a common scenario in EEG signal processing. The
Gaussian RBF kernel is defined in Equation (21):

K
(
x, x′

)
= exp

(
−γ

∣∣∣x − x′|2
)

(21)

where the following apply:

– K is the RBF kernel function;
– x are feature vectors in the input space;
– x′ are other feature vectors in the input space;
– γ is a parameter that defines how much influence a single training example has.

The decision function of SVM in this kernel-induced feature space is expressed as
follows in (22):

f (x) = ∑N
i=1 αiyiK(x, xi) + b (22)

where the following apply:
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– N is the number of support vectors;
– αi are Lagrange multipliers obtained by solving the SVM optimization problem;
– yi are the class labels of the training examples;
– b is the bias term.

3.10. CART Classifier

The second supervised machine learning classifier applied here is the classification and
regression tree (CART) [32], which uses decision trees for both classification and regression
tasks. In EEG signal analysis, CART is often employed to classify various mental states or
detect patterns related to specific neurological conditions. The algorithm can be outlined
using the following pseudo-code:

Given a set of EEG features X and a target variable Y, the following procedure applies:

1. Start with the root node containing all instances.
2. If all instances have the same value for Y, stop. Otherwise, proceed.
3. Select feature xi and threshold θ to split:

xi, θ = argmin
x,t

Impurity(X, Y, x, t)

4. Split the node into two child nodes:

Xleft = {x ∈ X|xi ≤ θ}

Xright = {x ∈ X|xi > θ}

5. Repeat steps 2–4 recursively for Xleft and Xright.
6. Stop if a maximum tree depth is reached or if further splitting does not improve

impurity measures significantly.

where the following apply:

– X is the set of input variables (EEG features);
– Y is the target variable (e.g., type of brain activity);
– xi is a feature from the EEG features;
– θ is the threshold value used for splitting a node;
– Impurity(X, Y, x, t) is a measure of the homogeneity of the target variable within the

nodes after the split (it can be Gini impurity, entropy, or another suitable metric);
– Xleft is a subset of the data where the value of xi is less than or equal to θ;
– Xright is a subset of the data where the value of xi is greater than θ;
– argmin

x,t
is the argument of the minimum, the values of x and t that minimize

the impurity.

3.11. Linear SVM Classifier

The third supervised machine learning classifier being used is the linear support
vector machine (SVM) [33]. In EEG, it aims to find the hyperplane that maximizes the
margin between two classes. The margin is the distance between the hyperplane and the
nearest data points from each class, known as support vectors. The decision function of a
LinearSVM is defined as (23):

f (x) = w⊤x + b (23)

where the following apply:

– x is the input feature vector derived from EEG signals;
– w is the weight vector perpendicular to the hyperplane;
– b is the bias term.
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3.12. SVM with Polynomial Kernel Classifier

The fourth supervised machine learning classifier is the support vector machine (SVM)
with a polynomial kernel [33]. In EEG, it is beneficial when the relationship between input
features and target classes is non-linear. The polynomial kernel allows the SVM to project
the input data into a higher-dimensional feature space where a linear separator can be
found. This kernel function is defined as (24):

K
(
x, x′

)
=

(
γ x⊤x′ + r

)d
(24)

where the following apply:

– K(x, x′) is the kernel function measuring similarity between two feature vectors;
– x & x′ are input feature vectors derived from EEG signals;
– γ is a scaling factor that adjusts the influence of the features (kernel coefficient);
– r is a constant that controls the trade-off between higher-order and lower-order terms;
– d is the degree of the polynomial, determining the complexity of the decision boundary.

The decision function for the SVM with a polynomial kernel is expressed as (25):

f (x) = ∑N
i=1 αiyiK(xi, x) + b (25)

where the following apply:

– N is the number of support vectors selected during training;
– αi are Lagrange multipliers obtained by solving the SVM optimization problem;
– yi are the class labels of the training samples;
– xi are the support vectors from the training data;
– b is the bias term or intercept.

3.13. Cross-Validation Metrics

The cross-validation accuracy was used to evaluate the model’s performance [34]. This
method helps determine how well a machine learning model is likely to perform. The
process involves splitting the dataset into k parts or folds. For example, let us say we have
a dataset D, divided into k folds, with each fold labeled as Di, where i ranges from 1 to k.
For each fold, the model is trained on the rest of the dataset, excluding Di, and then tested
on Di to calculate a performance score, Si. The overall performance is then determined by
averaging the scores across all folds, as shown in the formula below (26):

CV =
1
k ∑k

i=1 Si (26)

where the following apply:

– CV is the cross-validation score;
– k is the number of folds;
– Si is the performance score obtained when using the fold Di as the test set and the

remaining k −1 fold as the training set (Si can be accuracy, which is used in this study,
precision, recall, F1 score, mean squared, etc.).

4. Materials and Methods

This section describes the evaluation strategy adopted in the research and outlines the
experimental setup used for testing the system. Additionally, it explains the implementation
of the proposed pipeline and provides a detailed description of the architectural design.
Moreover, an overview of the dataset utilized in the study is presented to offer context
for the subsequent analysis. Lastly, this section outlines the specific parameters that were
fine-tuned during the study, explaining how these adjustments contributed to the overall
performance and outcomes.
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4.1. EEG Dataset

The dataset considered has an original general data format for biomedical signals
(GDF); those files contain the training and evaluation data for each subject in question.
However, we use the latter’s .mat (MATLAB R2022a files) equivalents. The dataset name
is the BCI Competition IV 2a dataset [15]. Each subject’s data contain several event types,
with the most significant being the start of a trial and the cues for different motor imagery
tasks: left hand (class 1), right hand (class 2), foot (class 3), and tongue (class 4). Each
subject and session are represented by a single MAT file. The motor imagery tasks follow a
specific structure, as illustrated in Figure 1.
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Figure 1. The timing diagram for the motor imagery tasks.

Each session begins with a sequence of runs, starting with the first run of 2 min with
eyes open, then a second run of 1 min with eyes closed, and concluding with a third run of
1 min involving eye movements. Across the two sessions, each contains six runs comprising
288 trials, with durations ranging from 2016 to 2304 s. On average, each trial lasts between
7 and 8 s, with nine runs in total, each consisting of 48 trials, resulting in durations between
336 and 384 s per run.

Given that the first 22 channels are allocated for EEG recordings, we excluded the
final 3 channels, which were originally designed for monopolar electrooculography (EOG)
applications in visual research studies. The EEG data, recorded using 25 channels at a
sampling rate of 250 Hz, underwent a bandpass filter between 0.5 Hz and 100 Hz, with an
additional 50 Hz notch filter applied to eliminate line noise.

4.2. Embraced Pipeline

The adopted pipeline integrates both ER-EEG and MI-EEG, as illustrated in Figure 2.
This study utilizes 24 Jupyter Notebooks adopting six distinct feature sets and four clas-
sifiers. Each classifier–feature set combination is applied across nine subjects, with four
classes (left hand, right hand, foot, and tongue) considered for analysis. The classifiers
implemented are SVM with rbf kernel (GSVM), CART regression tree, LinearSVM, and
SVM with a polynomial kernel. These were taken from [7,14].

This section introduces a detailed justification of the preprocessing steps, the feature
extraction methods’ relevance, and the justification for classifier selection.
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Figure 2. The embraced ER/MI hybrid pipeline.

The preprocessing pipeline begins with a notch filter [23] to remove powerline noise,
which is a prevalent artifact in EEG signals. Removing this interference early in the
sequence prevents the latter from affecting subsequent filtering and spatial transformations.
A high-pass filter [24] follows the notch filter to remove the low-frequency drifts from
the signal, which helps stabilize the baseline by removing unneeded fluctuations. To
reduce common noise, a CAR montage [25] is applied to improve the signal-to-noise ratio
factor. We included the initial reference channel in the CAR computation, ensuring the
preservation of the data’s full rank [35]. To verify this, the calculation of the rank of the
EEG data before and after applying the CAR montage was applied, and we found that
the rank remained unchanged. The next preprocessing stage is the implementation of the
common spatial pattern (CSP) [36] to identify the filters that maximize variance between
different motor imagery tasks. Following CSP, spatial filtering [37] is applied to highlight
any task-relevant regions in the EEG signals. Lastly, a band-pass filter [38] is applied at the
end of the preprocessing pipeline to focus on the main specific rhythms.



Appl. Sci. 2024, 14, 11323 13 of 27

Regarding the relevance of feature extraction techniques, the statistical features [26]
capture basic distribution properties of the EEG signal, such as mean, variance, skewness,
and kurtosis. In MI tasks, the latter provide information about the amplitude changes and
its variability. Wavelet analysis [27] provides a time–frequency decomposition of the EEG
signal, enabling the detection of momentary task-related patterns. Higher-order spectra
(HOS) [28] features capture non-linear interactions in the EEG signal by analyzing higher-
order statistics like skewness and kurtosis of the power spectral density. Hjorth [29,30]
parameters, such as activity, mobility, and complexity, summarize the EEG signal’s structure,
capturing both amplitude and frequency characteristics. Fractal dimensions (Katz, Higuchi,
Petrosian) [11–13] measure the EEG signal’s complexity and self-similarity, which can
benefit MI tasks by capturing the varying structural complexity inherent in motor imagery.
Lastly, the combined feature set integrates statistical, wavelet, Hjorth, HOS, and fractal
dimension features to offer a full representation of the EEG signals. This combination
introduces noise but still increases the chances of capturing meaningful patterns across
different aspects of the EEG signals in the study.

The four classifiers used, LinearSVM, CART, GSVM, and SVM with a polynomial
kernel, were selected to provide a detailed comparison of both linear and non-linear
approaches to EEG classification. LinearSVM was chosen because it is well-known for
handling high-dimensional data effectively, as supported by EEG studies [33]. CART,
a decision tree method, provides flexible decision making for non-linear patterns but
can sometimes be overfitted with highly dimensional EEG features [32]. GSVM [31] and
polynomial SVM [33] build on SVM’s strengths by capturing non-linear relationships,
making them useful for modeling complex connections between EEG channels.

4.3. Experimental Setup

The development environment this study adopted relied on several essential python
packages, including numpy for managing EEG signals and multidimensional arrays, scipy
for applying high-level mathematical functions to these arrays, pandas for handling data
in the form of data frames, matplotlib for creating advanced line plots, seaborn for creating
statistical visualizations like heatmaps, and sklearn for implementing various supervised
machine learning algorithms. To manage the environment and streamline the workflow for
testing and training procedures, we utilized Conda. This package management comes in
both a graphical user interface (GUI), named Anaconda, and a command line tool (CLI),
named mini-forge Conda. During our experimentation, the CLI version was used. This
system facilitated the installation, execution, and updating of necessary packages and
their dependencies, ensuring smooth operation throughout the study. The interactive
coding environment was provided by Jupyter Notebook and Jupyter Lab, which supported
Python and allowed for the inclusion of rich text elements such as Markdown and LaTeX
and dividing the Python codebase into cells, which enhanced the development of the
workflow. As everything is running locally, the speed of code execution is noticeable. This
interactive environment proved vital in developing and testing our code dynamically and
flexibly. The code was written in Python 3.9.16 and developed using Visual Studio Code
1.93.1 (Universal), a widely used integrated development environment (IDE). Visual Studio
Code offers features such as local build automation (instead of the use of notebooks on
the Google Collab servers), version control system integration (used for rolling back or
switching code branches), and debugging tools (coding line-by-line interpretation), which
enhanced the efficiency of the development process. All these tasks were performed on
a MacBook Air powered by the M1 Apple Silicon Chip with 16 GB of RAM (Apple Inc.,
Cupertino, CA, USA), which provided sufficient computational power for our custom
pipeline implementation.

4.4. Evaluation Strategy

To ensure our model’s robustness, we implemented a k-fold cross-validation [34]
strategy with k = 5. Cross-validation is especially valuable in EEG-based studies because
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of the high variability between subjects and sessions, which is the case regarding our BCI
IV 2a dataset. This strategy allows us to assess different classifiers’ performance across
different data segments, targeting a minimization of the risk of overfitting and offering a
more consistent estimate of each model’s accuracy, whether it is GSVM, CART, LinearSVM,
or SVM with a polynomial kernel.

As our hybrid pipeline utilizes k-fold cross-validation, it provides robust accuracy es-
timates across multiple data segments. Specifically, we apply 5-fold cross-validation, which
ensures that approximately 80% of the data is used for training and 20% for evaluation per
fold. This split allows each data point to be part of the evaluation set on one side and the
training set on the other; this will reduce the risk of overfitting while taking into account a
balanced generalization approach.

4.5. Tweaked Parameters

The parameters used in this research were tweaked to extract the most out of each use
case experiment. The parameter overview is presented in Table 1.

Table 1. The list of tweaked parameters.

Parameter Related to Value

notch_filter_fs Notch Filter 250.0
notch_filter_powerline_freq Notch Filter 50

notch_filter_q Notch Filter 30.0
high_pass_filter_fs High-Pass Butterworth Filter 250
high_pass_cutoff High-Pass Butterworth Filter 0.5

car_montage_filter_axis CAR Montage Filter 1
car_montage_filter_keep_dims CAR Montage Filter True

wavelet_value Wavelet Analysis db4
wavelet_level Wavelet Analysis 5

hos_fs Higher-Order Spectra 250.0
hos_nperseg Higher-Order Spectra 256
hos_noverlap Higher-Order Spectra 128

fd_higuchi_k_max_value Fractal Dimension: Higuchi 10
filter_bank_type Filters Bank with Butterworth Filter butter
filter_bank_order Filters Bank with Butterworth Filter 2

filter_bank_max_freq Filters Bank with Butterworth Filter 40
time_windows_flt Filters Bank with Butterworth Filter [2.5, 3.5]...[2.5, 6]

bw Bandwidth of Filtered Signals [2, 4, 8, 16, 32]
no_csp Number of CSP Features 24

cart_max_depth CART Classifier 10
cart_random_state CART Classifier 1

cart_criterion CART Classifier gini
cart_splitter CART Classifier best

cart_min_samples_split CART Classifier 2
cart_min_samples_leaf CART Classifier 1

linear_svc_c LinearSVM Classifier 0.1
linear_svc_intercept_scaling LinearSVM Classifier 1

linear_svc_loss LinearSVM Classifier hinge
linear_svc_max_iter LinearSVM Classifier 1000
linear_multi_class LinearSVM Classifier ovr
linear_svc_penalty LinearSVM Classifier l2

linear_svc_random_state LinearSVM Classifier 1
linear_svc_tol LinearSVM Classifier 0.00001

svc_w_poly_kernel_c SVM with Polynomial Kernel Classifier 0.1
svc_w_poly_kernel_type SVM with Polynomial Kernel Classifier poly
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Table 1. Cont.

Parameter Related to Value

svc_w_poly_kernel_degree SVM with Polynomial Kernel Classifier 10
svc_w_poly_kernel_gamma SVM with Polynomial Kernel Classifier auto

svc_w_poly_kernel_coef0 SVM with Polynomial Kernel Classifier 0.0
svc_w_poly_kernel_tol SVM with Polynomial Kernel Classifier 0.001

svc_w_poly_kernel_cache_size SVM with Polynomial Kernel Classifier 10000
svc_w_poly_kernel_max_iter SVM with Polynomial Kernel Classifier −1

svc_w_poly_kernel_decision_fx SVM with Polynomial Kernel Classifier ovr
gsvm_c SVM with RBF Kernel (GSVM) Classifier 20

gsvm_kernel_type SVM with RBF Kernel (GSVM) Classifier rbf
gsvm_degree SVM with RBF Kernel (GSVM) Classifier 10
gsvm_gamma SVM with RBF Kernel (GSVM) Classifier auto

gsvm_coef0 SVM with RBF Kernel (GSVM) Classifier 0.0
gsvm_tol SVM with RBF Kernel (GSVM) Classifier 0.001

gsvm_cache_size SVM with RBF Kernel (GSVM) Classifier 10000
gsvm_max_iter SVM with RBF Kernel (GSVM) Classifier −1

gsvm_decision_fx SVM with RBF Kernel (GSVM) Classifier ovr
fs Sampling Frequency 250.0

no_channels Number of EEG Channels 22
no_subjects Number of Subjects 9
no_classes Number of Classes 4
no_splits Number of Folds in Cross-Validation 5

The fine-tuning process required many attempts to find the most suitable parameters
for this study. The approach started with optimizing the preprocessing filters, feature sets,
and the performance of the classifiers used.

The first step was preprocessing filters from the ER pipeline. The Notch filtering used
a powerline frequency, f 0, of 50 Hz, which describes the center frequency to be removed,
and a quality factor value, Q, of 30, which controls the bandwidth of the notch. Second, the
high-pass filter used a cutoff frequency, ωc, of 0.5 Hz, the lowest frequency retained. Third,
the CAR montage used a filtered axis value of 1 and kept the dimension parameter set to
true. This ensures that the CAR montage is correctly applied across channels and preserves
the data structure.

This was followed by the preprocessing filters from the MI pipeline. The total number
of CSP filters across all classes and time windows is 24. The filter bank type is butter, the
adopted order is 2, and the maximum frequency is 40 Hz. The bandwidth of filtered signals,
bw, are grouped in the following list [2,4,8,16,32] in Hz. The latter provides band-specific
filtering for the EEG signal, capturing distinct frequency bands like alpha and beta. Lastly,
the time windows (start and end time) are set and then scaled by the current sampling
frequency, 250 Hz, which allows the CSP filters to operate over multiple temporal windows,
capturing time-specific features across different parts of the EEG signal.

Next, the optimization of each feature set with a parameter to be fine-tuned is disclosed,
which includes wavelet analysis, higher-order spectra, and the fractal dimension’s Higuchi.
First, in wavelet analysis, the selected wavelet type to be used in the decomposition is db4,
and the selected decomposition level is 5. Second, for higher-order spectra, the selected
number of segments for calculating the power spectral density (PSD), nperseg, is 256, and
the number of overlaps between segments, noverlap, is 128. Third, for fractal dimension’s
Higuchi, the maximum number of intervals, kmax, is 10, which defines the maximum
scaling factor for constructing the needed subsequences.

Finally, the performance of the classifiers used, GSVM, CART, LinearSVM, and SVM
with a polynomial kernel, is tweaked, and 5-fold cross-validation is applied. First, the
GSVM classifier has a C value of 20, an rbf kernel type, a degree of 10, an auto gamma
value, a coef0 of 0.0, a tol of 0.001, a cache size of 10000, a max iteration of −1, and a decision
function of ovr. Second, the CART classifier has a max depth of 10, a random state of 1,
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and a criterion of gini. A best splitter is considered, the minimum sample split is 2, and the
minimum sample leaf is 1. Third, LinearSVM has a C value of 0.1, a scaling interception
value of 1, a hinge loss, a maximum iteration of 1000, an ovr multi-classification, a penalty
of l2, a random state of 1, and a tol of 0.00001. Lastly, LinearSVM with a polynomial kernel,
a C value of 0.1, a poly kernel type, a kernel degree of 10, an auto gamma, a coef0 of 0.0, a tol
of 0.001, a cache size of 10000, a maximum iteration of −1, and an ovr decision function.

5. Results

In this section, we present the results obtained in detail, along with a thorough
discussion of their significance.

5.1. Statistical Features

The results of the statistical method indicate 11,440 total features. Subject No. 1
achieved the highest accuracy with LinearSVM at 83.12%; however, GSVM’s accuracy was
moderate, yielding 71.77%. Subject No. 2 had a poor overall score across all classifiers, with
the highest being LinearSVM, at 68.14%. Subject No. 3 showed excellent performance with
LinearSVM, at 89.62%; GSVM had a reduced accuracy in comparison: 52.59%. Subject No. 7,
on the other hand, showed consistently high performance across all classifiers: 90.40% for
LinearSVM and 85.64% for CART.

We deduce that the lowest average success rate is related to SVM with a polynomial
kernel (52.25%). GSVM is slightly better (55.68%), but CART outperforms it (59.30%), and
LinearSVM has the highest accuracy (77.10). The results of applying statistical methods for
feature extraction are presented in Table 2.

Table 2. The results of the statistical features.

Classifier LinearSVM CART GSVM SVM (Kernel = “Poly”)

Subject No. 1 83.12 66.01 71.77 67.01
Subject No. 2 68.14 41.48 49.62 41.48
Subject No. 3 89.62 72.59 52.59 56.66
Subject No. 4 63.70 38.92 53.70 48.07
Subject No. 5 77.89 54.20 66.05 48.13
Subject No. 6 47.85 32.83 31.05 33.79
Subject No. 7 90.40 85.64 69.38 61.62
Subject No. 8 86.70 64.41 54.16 59.11
Subject No. 9 86.46 77.62 52.76 54.40

Avg. Success Rate 77.10 59.30 55.68 52.25

5.2. Wavelet Analysis Features

The results of the wavelet analysis method indicate 11,484 total features. Subject No. 1
performed remarkably well across all classifiers, with the highest being 83.48% for general
LinearSVM. Subject No. 2 showed lower performance across all classifiers, with LinearSVM
being the most optimal, at 68.51%. Subject No. 3 attained excellent results, with LinearSVM
reaching 89.62% and GSVM slightly close behind (85.55%). Subject No. 7 also showed high
performance, with LinearSVM at 90.03%. Subject No. 6 still showed low accuracy, with
LinearSVM reaching 50.16% and CART being the lowest, at 31.93%.

Regarding the classifiers’ overall average success rate, the lowest classification was
attributed to CART (58.95%). SVM with a polynomial kernel is better, reaching 71.44%
accuracy; GSVM scores reach 75.25%; and the highest success rate is reached with Lin-
earSVM (77.25%). The results of applying wavelet analysis methods for feature extraction
are presented in Table 3.
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Table 3. The results of wavelet analysis features.

Classifier LinearSVM CART GSVM SVM (Kernel = “Poly”)

Subject No. 1 83.48 65.60 83.13 80.18
Subject No. 2 68.51 45.55 63.70 60.37
Subject No. 3 89.62 72.96 85.55 84.81
Subject No. 4 62.17 35.89 64.42 60.61
Subject No. 5 77.48 59.57 73.28 73.30
Subject No. 6 50.16 31.93 47.89 41.97
Subject No. 7 90.03 81.21 88.56 80.45
Subject No. 8 88.59 60.64 85.92 84.05
Subject No. 9 85.16 77.18 84.77 77.20

Avg. Success Rate 77.25 58.95 75.25 71.44

5.3. Higher-Order Spectra Features

The results of the higher-order spectra method indicate 11,396 total features. Subject
No. 1 performed well, with GSVM at 83.15% and LinearSVM at 82.03%. However, SVM
with a polynomial kernel and CART, respectively, at 74.35% and 63.79%, were less effective.
Subject No. 2 showed a moderate outcome, with LinearSVM at 68.51% accuracy. Subject
No. 3 showed strong performance, with LinearSVM at 88.88%, whilst CART was equally
good among other tree-based classifiers, reaching 74.44%. Subject No. 7 had the highest
rate for LinearSVM, 89.66%. GSVM was also good, reaching 83.40%. Subject No. 6 had
the lowest performance, with the best being LinearSVM, at 46.51%, and the rest of the
classifiers performed similarly poorly. Subject No. 9 performed well across classifiers, with
LinearSVM reaching 85.21% and GSVM reaching 85.18%, which shows strong results.

The lowest overall average success rate was attributed to CART, at 58.97%. SVM
with a polynomial kernel had better accuracy, 63.41%, followed by GSVM at 72.71%. Still,
LinearSVM outperformed all the latter, at 77.20%. The results of applying higher-order
spectra methods for feature extraction are presented in Table 4.

Table 4. The results of higher-order spectra features.

Classifier LinearSVM CART GSVM SVM (Kernel = “Poly”)

Subject No. 1 82.03 63.79 83.15 74.35
Subject No. 2 68.51 44.07 66.66 59.25
Subject No. 3 88.88 74.44 80.74 72.59
Subject No. 4 64.07 34.73 55.65 44.97
Subject No. 5 80.54 57.27 71.37 57.27
Subject No. 6 46.51 33.78 43.76 35.60
Subject No. 7 89.66 83.44 83.40 68.25
Subject No. 8 89.36 62.48 84.44 79.90
Subject No. 9 85.21 76.74 85.18 78.48

Avg. Success Rate 77.20 58.97 72.71 63.41

5.4. Hjorth Features

The results of the Hjorth method indicate 11,418 total features. Subject No. 1 showed
good performance across classifiers, with LinearSVM reaching 83.11% accuracy, and CART
and GSVM lagging behind. Subject No. 2 performed moderately well with LinearSVM,
reaching 68.88%, but GSVM, CART, and SVM with a polynomial kernel showed a lower
mark, around 50% or less for each. Subject No. 3 had strong scores, particularly LinearSVM
(88.14%), although GSVM performed poorly (52.96%). For Subject No. 7 with LinearSVM,
90.02% was reached. Subject No. 6 showed the lowest overall performance, with LinearSVM
at 48.81%, and other classifiers performed poorly, the same as the latter. Subject No. 9
performs well when using LinearSVM, reaching 84.76%; however, GSVM performed worse
(53.18%).
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The lowest average success classifier score was SVM with a polynomial kernel (52.26%).
GSVM and CART were slightly better (55.90% and 59.00%, respectively), yet LinearSVM
still dominated and had the highest score (77.19%). The results of applying Hjorth methods
for feature extraction are presented in Table 5.

Table 5. The results of Hjorth features.

Classifier LinearSVM CART GSVM SVM (Kernel = “Poly”)

Subject No. 1 83.11 64.90 71.40 66.63
Subject No. 2 68.88 45.55 50.37 41.48
Subject No. 3 88.14 74.44 52.96 57.03
Subject No. 4 64.86 38.14 53.70 48.07
Subject No. 5 78.66 53.05 65.68 48.12
Subject No. 6 48.81 31.03 31.51 34.24
Subject No. 7 90.02 84.16 69.75 60.88
Subject No. 8 87.44 62.52 54.54 59.49
Subject No. 9 84.76 77.20 53.18 54.41

Avg. Success Rate 77.19 59.00 55.90 52.26

5.5. Fractal Dimension Features

The results of the fractal dimensions (Katz, Petrosian, and Higuchi) method indicate
11,418 total features. Subject No. 1 performed well across all classifiers, with LinearSVM
at 84.96% and GSVM at 84.24%. SVM with a polynomial kernel reached 83.50%, which is
also considered vital. Subject No. 2’s results are moderate: LinearSVM and GSVM both
achieved 69.62%, while the CART score lagged behind at 45.55%. Subject No. 3 presented
strong results, with LinearSVM and GSVM both achieving an accuracy of 90.37%. Subject
No. 7 also showed strong results, with LinearSVM reaching 92.96% accuracy and GSVM
reaching 91.48%. Subject No. 6 demonstrated the lowest overall performance, with all
classifiers scoring around 50%, and SVM with a polynomial kernel was the highest (50.62%).
Subject No. 9 performed well, with LinearSVM and GSVM reaching, respectively, scores of
87.31% and 86.87%.

The lowest classification average success rate was found with CART, 59.04%. Next
was SVM with a polynomial kernel (75.31%), and GSVM was slightly better (78.11%), and
the highest score was obtained with LinearSVM (79.04%). The results of applying fractal
dimension methods for feature extraction are presented in Table 6.

Table 6. The results of fractal dimension features.

Classifier LinearSVM CART GSVM SVM (Kernel = “Poly”)

Subject No. 1 84.96 64.90 84.24 83.50
Subject No. 2 69.62 45.55 69.62 62.59
Subject No. 3 90.37 74.44 90.37 85.18
Subject No. 4 65.26 38.52 63.32 56.04
Subject No. 5 82.07 53.05 79.41 79.38
Subject No. 6 47.88 31.03 47.89 50.62
Subject No. 7 92.96 84.16 91.48 86.70
Subject No. 8 90.88 62.52 89.75 88.99
Subject No. 9 87.31 77.20 86.87 84.76

Avg. Success Rate 79.04 59.04 78.11 75.31

5.6. Combined All Features

The results of combining all the previous feature sets (statistical, wavelet analysis,
higher-order spectra, Hjorth, and fractal dimensions) indicate 11,748 total features. Subject
No. 1 performed the best, with LinearSVM reaching 82.05%, yet GSVM performed poorly
compared to the latter, reaching 53.47%. Subject No. 2 achieved moderate results. Lin-
earSVM reached 64.81%, yet the lowest accuracy was reached by GSVM (27.40%). Subject
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No. 3 achieved strong results, with LinearSVM reaching 84.07%; however, other classifiers,
including GSVM, struggled, with a score of 29.25%. Subject No. 7 achieved the highest
overall accuracy with LinearSVM (85.23%), and solid performance with CART (84.54%),
while GSVM performed poorly, reaching 49.46%. Subject No. 6 had the lowest success rate
overall, its best being LinearSVM (42.86%), and the rest of the classifiers performed poorly.
Subject No. 9 achieved relatively good results, with LinearSVM reaching 77.57% accuracy.

In terms of classifiers, the lowest overall average accuracy was reached by GSVM,
at 39.44%. SVM with a polynomial kernel had better accuracy (46.41%), followed by the
CART, reaching 59.13%. However, LinearSVM still shines and has the best score, with
a 72.94% average success rate. The results of applying all combined feature methods in
feature extraction are presented in Table 7.

Table 7. The results of the combination of all feature sets.

Classifier LinearSVM CART GSVM SVM (Kernel = “Poly”)

Subject No. 1 82.05 66.35 53.47 60.08
Subject No. 2 64.81 45.18 27.40 40.00
Subject No. 3 84.07 74.07 29.25 46.29
Subject No. 4 62.92 40.07 41.53 40.39
Subject No. 5 73.68 59.93 43.15 41.64
Subject No. 6 42.86 27.36 27.38 33.76
Subject No. 7 85.23 84.54 49.46 50.92
Subject No. 8 83.28 62.14 43.57 55.31
Subject No. 9 77.57 72.57 39.69 49.32

Avg. Success Rate 72.94 59.13 39.44 46.41

5.7. Overall MI + ER Features Comparison

By comparing the global classifiers and feature sets’ performances (see Table 8 and
Figure 3), we can deduce that LinearSVM performs the best overall, reaching an average
rate of 76.78%, achieving high accuracy across all feature sets. GSVM performs moderately
well, offering an average success rate of 62.85%, which is better when employed on wavelet
and fractal dimension features, but still struggles with statistical, Hjorth, and all combined
features. SVM with a polynomial kernel has an average success rate of 60.18%. The best
performance is achieved with fractal dimensions and wavelet analysis, but they show
weaker results on other feature sets. CART consistently underperforms compared to the
other SVM-based classifiers, with an average success rate of 59.07%, resulting in modest
variations across all six feature sets.

Table 8. A comparison of the results obtained considering the embraced hybrid pipeline.

Classifier LinearSVM CART GSVM SVM (Kernel = “Poly”)

Statistical 77.10 59.30 55.68 52.25
Wavelet Analysis 77.25 58.95 75.25 71.44

Higher-Order Spectra 77.20 58.97 72.71 63.41
Hjorth 77.19 59.00 55.90 52.26

Fractal Dimensions 79.04 59.04 78.11 75.31
Combined All 72.94 59.13 39.44 46.41

Avg. Success Rate 76.78 59.07 62.85 60.18
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Figure 3. Clustered column chart visualizing the results generated from the hybrid ER/MI pipeline.

LinearSVM shows the most optimal results for statistical features (77.10%). Wavelet
analysis’s best classifier is LinearSVM (77.25%). Higher-order spectra have promising
results when using LinearSVM (77.20%). Hjorth’s best accuracy comes from LinearSVM
(77.19%). Fractal dimensions, remarkably, provide the highest success rate compared to all
other feature sets, reaching 79.04%. LinearSVM performs similarly well as using GSVM
and SVM with a polynomial kernel. All combined exhibited a performance decline across
all four classifiers, with LinearSVM being the most reliable. This indicates that noise is
generated when combining all feature sets, resulting in a drop in the success rate.

Student’s t-tests were conducted to compare the fractal dimensions feature set with
other feature sets (statistical, wavelet analysis, higher-order spectra, Hjorth, and all com-
bined). No statistically significant differences were found between fractal dimensions and
any other feature set (all p-values > 0.05), indicating that fractal dimensions did not show a
significant performance advantage over the other feature sets (see Table 9).

Table 9. Student’s t-test findings for the fractal dimensions versus other feature sets.

Comparison t-Statistic p-Value

Fractal Dimensions vs. Statistical 1.8598 0.1599
Fractal Dimensions vs. Wavelet 2.6638 0.0761

Fractal Dimensions vs. HOS 1.8382 0.1633
Fractal Dimensions vs. Hjorth 1.8790 0.1568

Fractal Dimensions vs. Combined 2.0008 0.1392

The lack of significant differences between fractal dimensions and other feature sets
suggests that while fractal dimensions may offer unique features, they do not outperform
other sets statistically in terms of classification accuracy. This finding highlights that while
fractal dimensions capture complex data characteristics, other feature sets provide similarly
effective information.
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5.8. Comparison with Other Published Methods

This section presents a detailed comparison between the proposed method and other
previously published approaches in the motor imagery field. This comparison is based on
the classifiers’ mean accuracy. Comparisons include SincNet [39], HSS-ELM [40], IFNet [41],
TSLDA [42], TSFBCSP-GA [43], FBRTS [44], TWSB [45], multi-scale CSP and Rieman-
nian [14], and our novel hybrid ER/MI three-dimensional fractal dimension (Katz, Pet-
rosian, and Higuchi) pipeline. The results for each subject related to multi-scale CSP and
multi-scale Riemannian, as well as the results achieved from this current study, 3D-FD,
are rounded to the nearest tenth to fit into the comparison table, Table 10. The results
per year are presented in Figures 4 and 5, along with the other methods used in different
publications.

Table 10. The classification accuracy of our method compared to other methods on dataset 2a.

Method Year A01 A02 A03 A04 A05 A06 A07 A08 A09 Mean

TSLDA 2012 80.5 51.3 87.5 59.3 45.0 55.3 82.1 84.8 86.1 70.2
Multi-Scale CSP 2018 86.8 57.2 86.5 61.4 61.2 50.7 92.4 87.8 79.1 73.7

Multi-Scale Riemannian 2018 90.0 55.4 81.3 71.9 69.6 56.7 85.6 83.8 84.9 75.5
HSS-ELM 2019 81.1 49.9 78.0 63.3 44.0 49.4 81.1 81.5 81.4 67.8
SincNet 2021 75.2 39.5 79.4 49.1 62.7 39.3 64.4 74.9 64.1 63.1
FBRTS 2022 86.1 65.2 90.0 63.8 75.6 52.4 91.1 89.0 86.5 77.7

TSFBCSP-GA 2023 86.5 59.0 89.2 69.4 63.2 54.5 87.2 80.2 81.6 74.5
IFNet 2023 88.5 56.4 91.8 73.8 69.7 60.4 89.2 85.4 88.7 78.2
TWSB 2024 89.3 66.9 89.3 69.3 74.1 60.1 89.4 88.0 85.6 79.1

3D-FD (Katz, Petrosian,
and Higuchi) 85.0 69.6 90.4 65.3 82.1 47.9 93.0 90.9 87.3 79.1

Appl. Sci. 2024, 14, x FOR PEER REVIEW 21 of 27 
 

Table 10. The classification accuracy of our method compared to other methods on dataset 2a. 

Method Year A01 A02 A03 A04 A05 A06 A07 A08 A09 Mean 
TSLDA 2012 80.5 51.3 87.5 59.3 45.0 55.3 82.1 84.8 86.1 70.2 

Multi-Scale CSP 2018 86.8 57.2 86.5 61.4 61.2 50.7 92.4 87.8 79.1 73.7 
Multi-Scale Riemannian 2018 90.0 55.4 81.3 71.9 69.6 56.7 85.6 83.8 84.9 75.5 

HSS-ELM 2019 81.1 49.9 78.0 63.3 44.0 49.4 81.1 81.5 81.4 67.8 
SincNet 2021 75.2 39.5 79.4 49.1 62.7 39.3 64.4 74.9 64.1 63.1 
FBRTS 2022 86.1 65.2 90.0 63.8 75.6 52.4 91.1 89.0 86.5 77.7 

TSFBCSP-GA 2023 86.5 59.0 89.2 69.4 63.2 54.5 87.2 80.2 81.6 74.5 
IFNet 2023 88.5 56.4 91.8 73.8 69.7 60.4 89.2 85.4 88.7 78.2 
TWSB 2024 89.3 66.9 89.3 69.3 74.1 60.1 89.4 88.0 85.6 79.1 

3D-FD (Katz, Petrosian, and Higuchi)  85.0 69.6 90.4 65.3 82.1 47.9 93.0 90.9 87.3 79.1 

 
Figure 4. A line plot visualizing the classification accuracy of our method compared to others. 

After analyzing the subject accuracy for our method, 3D-FD, compared to the other 
approaches, the results show that 3D-FD achieves high and consistent classification accu-
racy across subjects, with six out of nine subjects showing an accuracy above 80%. The 
balanced performance, without extreme highs or lows, indicates that 3D-FD generalizes 
well across diverse subjects despite inter-subject EEG variability concerns. This stability is 
verified by the overall mean accuracy of 79.1%, which aligns with the best MI method year 
to date, the TWSB method [45]. 

Student’s t-tests were performed again to compare the 3D-FD method with various 
existing methods. A significant difference was found between 3D-FD and both HSS-ELM 
(p = 0.0212) and SincNet (p = 0.0001), with 3D-FD performing significantly better in both 
cases. No significant differences were found between 3D-FD and the other methods (all p-
values > 0.05). These results indicate that while 3D-FD shows a noted advantage over cer-
tain methods, like HSS-ELM and SincNet, its performance is comparable to other existing 
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After analyzing the subject accuracy for our method, 3D-FD, compared to the other
approaches, the results show that 3D-FD achieves high and consistent classification accuracy
across subjects, with six out of nine subjects showing an accuracy above 80%. The balanced
performance, without extreme highs or lows, indicates that 3D-FD generalizes well across
diverse subjects despite inter-subject EEG variability concerns. This stability is verified by
the overall mean accuracy of 79.1%, which aligns with the best MI method year to date, the
TWSB method [45].

Student’s t-tests were performed again to compare the 3D-FD method with various
existing methods. A significant difference was found between 3D-FD and both HSS-ELM
(p = 0.0212) and SincNet (p = 0.0001), with 3D-FD performing significantly better in both
cases. No significant differences were found between 3D-FD and the other methods (all
p-values > 0.05). These results indicate that while 3D-FD shows a noted advantage over
certain methods, like HSS-ELM and SincNet, its performance is comparable to other existing
methods (see Table 11).

The significant differences observed between the 3D-FD method and both HSS-ELM
and SincNet highlight that 3D-FD can offer advantages over these approaches, possibly
due to its unique feature extraction capabilities in capturing complex data patterns from
EEG signals. The lack of significant differences from other methods shows that 3D-FD
performs comparably to existing approaches. The latter highlights the robustness of 3D-FD
without significant statistical superiority.
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Table 11. Student’s t-test findings for the 3D-FD versus other methods on dataset 2a.

Comparison t-Statistic p-Value

3D-FD vs. TSLDA 2.0942 0.0696
3D-FD vs. Multi-Scale CSP 2.1535 0.0634

3D-FD vs. Multi-Scale Riemannian 1.2626 0.2423
3D-FD vs. HSS-ELM 2.8574 0.0212
3D-FD vs. SincNet 6.8718 0.0001
3D-FD vs. FBRTS 1.2607 0.2429

3D-FD vs. TSFBCSP-GA 1.6665 0.1342
3D-FD vs. IFNet 0.2899 0.7793
3D-FD vs. TWSB −0.0282 0.9782

6. Discussion

In this section, we discuss the associated results and conduct a thorough analysis of the
outcomes obtained from the study, offering insights into their significance and exploring
any possible future study areas.

The results obtained in this study benefit the field of motor imagery. The outcomes
show the efficacy of the LinearSVM classification method, which consistently delivered
the best overall performance and had the highest success rate among most feature sets in
terms of fractal dimensions and statistical features. This high performance can be linked
to the classifier’s ability to handle highly dimensional data while minimizing the risk of
overfitting. GSVM is in second place and sometimes performs better on specific feature sets,
like fractal dimensions and wavelet analysis, and sometimes struggles with others, like
statistical and all combined. The third place is attributed to SVM with a polynomial kernel.
It also performs better with fractal dimensions and wavelet analysis and lags behind other
feature sets. GSVM and SVM with a polynomial kernel show moderate performance. As
they are non-linear SVMs, they offer an easy way of capturing complex relationships in
EEG signals. However, they may be more disposed to overfitting with highly dimensional
features, and the latter can affect the consistency of the results when using different feature
extraction techniques. Lastly, CART remains the least effective classifier, with a low average
success rate across all five feature sets except statistical features. This is likely because
CART is sensitive to noise and tends to overfit with complex, highly dimensional data.
While CART is usually used for non-linear decision making, this sensitivity can lead to a
lower accuracy when applied to multi-class MI tasks, where the data can vary.

Considering the feature extraction methods used, three-dimensional fractal dimen-
sions (Katz, Petrosian, and Higuchi) outperform all other feature sets, except in the case of
use of the CART classifier, where the statistical method outperforms fractal dimensions.
Moreover, all combined features led to lower classification accuracy, suggesting that by
combining different feature sets, extra noise is generated, which makes it harder for the
classifiers to identify the differences in the EEG signals. This can highlight a potential
limitation of combining features.

The sequential preprocessing approach adopted in this study is effective for noise
reduction and feature extraction in motor imagery EEG signals, but there are alternative
techniques, such as regression-based filtering [46] and independent component analysis
(ICA) [35], which can enhance filtering artifact corrections, specifically in the case of motion
noise or muscle movements. Despite the latter, these methods may create more complexity
and computational demands, which is beyond the scope of this current research.

During our previous study [47], we only utilized the binary classification of left and
right classes using the BCI Competition IV 2a dataset and all five feature sets. Meanwhile,
a combination of only three feature sets (fractal dimensions, wavelet analysis, and Hjorth)
was implemented. However, in this latest study, all four motor imagery classes were used,
left and right hands, both feet, and tongue, and all combined (statistical, wavelet analysis,
higher-order spectra, Hjorth, and fractal dimension) features were employed. Unlike GSVM
and CART, LinearSVM and SVM with a polynomial kernel were added.
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When relating to the results obtained in the motor imagery reference paper [14], which
featured our MI pipeline, traditional feature extraction techniques such as common spatial
patterns (CSPs) and Riemannian Geometry-based approaches have been widely used
for motor imagery classification. The latter still face some limitations, like handling low
signal-to-noise ratios and capturing complex, non-linear dynamics characteristics of EEG
signals. For example, CSP is highly sensitive to noise and primarily optimized for binary
classification, making it less suitable for multi-class scenarios similar to our use case. Yet,
the ER-based features employed, fractal dimensions (Katz, Petrosian, Higuchi), wavelet
analysis, and higher-order spectra (HOS), are designed to handle these types of issues,
underlining the superior robustness, as shown by the remarkable performance gained in
this study.

Our mixed ER/MI approach using three-dimensional fractal dimensions (Katz, Pet-
rosian, and Higuchi) reached an exact accuracy of 79.04% for LinearSVM, which is even
higher than the top-of-the-line results acquired, regardless of CSP (73.70%) or Riemannian
(75.47%) [14]. Moreover, the current findings align with the emotion recognition findings
adopted from [7], as the latter stated that the best overall accuracy was achieved using the
three-dimensional fractal dimension feature set. In this study, fractal dimensions showed
promising results when applied to the motor imagery span. Furthermore, when compared
with the latest method used in the MI field, the TWSB method from [45], our results reached
approximately the same accuracy of 79.1%.

The current research presents novel findings, specifically the greater accuracy of fractal
dimension features, including Katz, Petrosian, and Higuchi. It also highlights the improved
performance of LinearSVM compared to GSVM, CART, and SVM with a polynomial kernel.
As fractal dimension features are robust to noise and capture notable structural patterns
within the EEG signals used, this leads to an enhancement in the system’s ability to classify
MI tasks with subtle signal differences. This makes this custom pipeline distinctive and
underlines a unique contribution to the classification improvements of the motor imagery
field with feature sets from the emotion recognition field.

In future research, more fractal dimension algorithms can be introduced to our em-
braced approach. By combining methods other than the Katz, Petrosian, and Higuchi
algorithms, different groupings might yield different outcomes. By extending our mixed
pipeline, comparing the latter might influence the overall accuracy precisely when different
fractal dimensions are used with the four performance classifiers utilized in the current
research: GSVM, CART, LinearSVM, and SVM with a polynomial kernel. This extension
aims for even higher accuracy and better-quality average success rates.

7. Conclusions

Our study proposes a new approach that contributes to enhancing the MI-BCI-related
domain of research. This approach combines methods from both emotion recognition and
motor imagery. As this study uses all four classes of motor imagery tasks, the analysis of
the EEG data is multi-classified instead of the use of binary classification. The addition
of a five-dimensional combination of feature sets (statistical, wavelet, HOS, Hjorth, and
fractal dimensions) showed that when merging the methods, noise was generated, leading
to less accuracy. In addition to our previous study’s classifiers, GSVM and CART, two more
were introduced: LinearSVM and SVM with a polynomial kernel. This custom hybrid
pipeline delivers noteworthy results. The fractal dimensions method, using the Katz,
Petrosian, and Higuchi algorithms, achieves superior accuracy in motor imagery tasks,
reaching ≈ 79.1%. Regarding classifiers implemented on the BCI Competition IV-2a dataset,
LinearSVM regularly accentuates better accuracy than GSVM, CART, and SVM with a
polynomial kernel. Our novel method results were confirmed by the referenced emotion
recognition and motor imagery articles, as 3D-FD combined with LinearSVM highlighted
an increase in the success rate and overall average accuracy. Overall, the findings generated
from this study can help create more robust and effective BCI systems, expanding the
possibilities for real-world applications. This emphasizes that applying feature extraction
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and classifier methods in the emotion recognition field to the motor imagery field yields
significant results.
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Abbreviations

The following abbreviations are used in this manuscript:
BCI Brain–computer interface.
CAR Common average reference.
CART Classification and regression tree.
CLI Command Line Interface.
CSP Common spatial pattern.
DWT Discrete wavelet transform.
EEG Electroencephalogram.
EOG Electrooculography.
ER Emotion recognition.
ER-EEG Emotion Recognition Electroencephalogram.
FD Fractal dimensions.
fMRI Functional magnetic resonance imaging.
fNIRS Functional near-infrared spectroscopy.
GDF General Data Format.
GSVM Gaussian support vector machine.
GUI Graphical user interface.
HOS Higher-order spectra.
HPFs High-Pass Butterworth Filters.
ICA IDE Independent component analysis. Integrated development environment.
MAT file MATLAB file.
MI Motor imagery.
MI-EEG Motor Imagery Electroencephalogram.
Poly Polynomial.
PSD Power spectral density.
RBF Radial basis function.
SNR Signal-to-noise ratio.
SVM Support vector machine.
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