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Abstract: Thedivergence from the unstable fixed point of the fractional difference logistic map is
investigated in this paper. In contrary to the classical logistic map, the memory horizon of the
fractional difference logistic map reaches the initial condition. And though higher order orbits do
not exist in the fractional difference logistic map, a trajectory started at the unstable fixed point may
continuously remain at the fixed point as the number of iterations tends to infinity. Such an effect is
well known for the classical logistic map, but less so in the fractional difference logistic map. It appears
that this effect depends on the accuracy of the floating point arithmetic. It is demonstrated that the
divergence from the unstable fixed point of the fractional difference logistic map is a completely
computational artifact. Using double precision, approximately 32% values of a from the interval
2.7 < a ≤ 3.7 diverge from the unstable fixed point.
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1. Introduction

Computer simulations of complex nonlinear systems often raise questions about the
origin of the observed numerical effects. Are those effects the artifacts of the simulation
algorithms, or do they reflect the inherent physical properties of the modeled systems?

Chaotic dynamics is indeed an integral feature of many nonlinear systems. How-
ever, numerical precision and rounding errors may affect the outcomes of simulations of
chaotic systems [1–5]. In particular, numerical methods used for the simulation of frac-
tional systems must account for the non-local nature of fractional derivatives, which may
significantly increase the computational complexity [6–8].

One of the paradigmatic mathematical models capable of exhibiting complex chaotic
dynamics is the classical logistic map [9]. It is used in a myriad of applications, ranging
from computer science (encryption, random number generation) [10,11], physics (chaos
theory, phase transitions) [12,13], biology (population dynamics, epidemiology) [14,15], to
medicine (cardiac dynamics and neuroscience) [16,17].

The fractional difference logistic map utilizes Caputo differences rather than classical
differences [18–20]:

xn+1 = x0 +
n+1

∑
j=1

Gµ
j−1

(
axn−j+1

(
1 − xn−j+1

)
− xn−j+1

)
, j = 0, 1, . . . , (1)

where Gµ
0 = 1, Gµ

j =
(

1 − 1−µ
j

)
Gµ

j−1, j = 1, 2, . . . . The parameter µ ∈ (0, 1] describes the
fractionality of (1), and setting µ = 1 results in the classical logistic map.

The key feature of the fractional maps lies in their ability to represent the memory
effects [21,22]. In fact, the memory horizon of the fractional difference logistic map (1)
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extends all the way back to the initial condition, making it well-suited for applications
where the system’s historical evolution significantly influences its future dynamics [23,24].

The fractional difference logistic map possesses a number of important features. For
example, it is shown that the iterations necessary to avoid transients must be in the order
of thousands and not hundreds [23]. While this is not unique to fractional maps (see [2,25]),
this is nonetheless essential to acknowledge when considering such systems. Moreover,
it has been shown in [26] that the convergence times to an unstable fixed point prior to
bifurcations may exponentially depend on initial conditions.

Peculiarities of the chaotic behavior of the fractional difference logistic map are in-
vestigated in [27–29]. The cascade of bifurcations in the fractional difference logistic map,
including the analysis of parameter values at which period-doubling bifurcations occur,
has been investigated in [30]. Trajectories in which a cascade of bifurcations occurs—not as
a result of a change in a system’s parameter, but on a single attracting trajectory during its
time evolution—are noted and explored in fractional maps in [30]. Chaos control of the
fractional difference logistic map is discussed in [31,32].

It is entirely natural that all reported numerical simulations of the fractional difference
logistic map are conducted using floating-point arithmetic. This raises the question: do the
numerical algorithms used for identifying specific trajectories and the stabilization of the
fractional map accurately reflect the dynamics of the system or are the observed features
of the fractional difference logistic map just numerical artifacts? For example, will setting
the initial condition to the unstable fixed point of the fractional difference logistic map
always yield a fixed trajectory during its time evolution? Some of these questions may
seem elementary; however, further investigation reveals that the apparent simplicity of the
problem is misleading.

The study of the influence of computational errors on nonlinear dynamical systems
is a classical topic, with the most common problem being determining how integration
(iteration) steps interact with system parameters. However, in this paper, a completely
different problem is considered: rather than studying the influence of computational errors
on the iterations of the map, we analyze the effect that standard floating-point computation
systems (such as a finite number of significant digits) on the behavior of the unstable fixed
point, which can only be represented in finite precision due to floating-point limitations.
Addressing these questions is the primary objective of this paper.

The paper is structured as follows. Section 2.1 investigates the unstable equilibria of
the classical logistic map. Section 2.2 clarifies the classification of the values of the parameter
a . Sections 2.3–2.5 discuss the brute force and Monte Carlo methods for classifying unstable
period-1 and period-2 orbits. Section 3 examines the unstable fixed point of the fractional
difference logistic map. Finally, concluding remarks are provided in the last section.

This structure is tightly related to the methodology applied in this study: firstly, the
Types of different a values with respect to the divergence/convergence properties of the
fixed point are defined for a given floating-point precision. Next, and algorithm to evaluate
the type of any a value is developed and then simplified to a single step. Subsequently,
it is proven that this algorithm is also applicable to the fractional difference logistic map
and the Monte-Carlo method is used to evaluate proportions of a value Types for high
floating-point precision.

2. Unstable Equilibria of the Classical Logistic Map
2.1. Preliminaries and the Motivation of This Study

Consider the classical logistic map [9]:

xn+1 = axn(1 − xn), n = 0, 1, . . . , (2)

where the parameter of the logistic map a ∈ [0, 4], and the initial condition x0 ∈ [0, 1].
For 1 < a ≤ 3, the map has a single stable equilibrium point representing a period-1

orbit. Thus, representing the value of a inaccurately does not significantly impact the
evolution of the map, since all initials converge towards the same period-1 fixed point.
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Suppose that a > 3 in (2). Then, the equilibrium,

x∗ = 1 − 1
a

, (3)

representing the period-1 orbit, is unstable. However, x∗ remains the equilibrium. There-
fore, from the analytical point of view, the initial condition x0 = 1 − 1

a should lead to a
period-1 orbit x0 = x1 = x2 = · · · = x∗.

However, in floating-point arithmetic this is not always the case. The representation
of x∗ is not always completely accurate in floating-point arithmetic. As a result, the initial
condition x0 = x∗ does not always lead to a period-1 orbit and diverges from the fixed
point x∗ (at a > 3).

The main objective of this section is to explore when the initial conditions set to the
equilibrium points of the unstable orbits does (or does not) yield those unstable orbits
when the computations are performed in floating-point arithmetic.

2.2. The Classification of the Values of the Parameter a

Consider a floating-point system that can represent numbers with exactly N significant
digits. Throughout the remainder of the text, numbers denoted with a tilde such as x̃1 will
indicate a value computed using the floating-point arithmetic with N significant digits.
Without loss of generality, all further analytical and numerical derivations are performed
in decimal numeral system, and standard rounding rules are applied.

Since it is well-known that the results may depend on the rounding mode [33] and
order of operations [34], a particular order of operations has been used throughout all
numerical experiments. All variables are saved using the double variable type; the numbers
are rounded to N significant digits after each arithmetic operation, while the order of
computational steps follows general mathematical rules.

It appears that the numerical values of the parameter of the logistic map a can be
classified into three different Types.

Type-1: The analytical value of x∗, corresponding to the chosen value of the parameter a,
is accurately represented in floating-point arithmetic.
Example 1. Let N = 5 and a = 0.32000 × 101. The analytical value of x∗ is
0.6875 according to (3). This value of x∗ is accurately represented by
x̃∗ = 0.68750 × 100 in floating-point arithmetic at N = 5.
The initial condition x0 = x̃∗ and the parameter value a yield x1 = 0.6875 accord-
ing to (2). The computation of x1 yields the same value x̃1 = 0.68750 × 100

in the floating-point arithmetic at N = 5. Further iterations can be repeated
indefinitely and the trajectory of the logistic map remains fixed at x̃∗.
Such values of a are denoted as Type-1 values of the parameter a.

Type-2: The analytical value of x∗, corresponding to the chosen value of the parameter a,
cannot be accurately represented in floating-point arithmetic at the provided N
value, but the trajectory of the logistic map remains fixed at x̃∗.
Example 2. Let N = 5 and a = 0.30846 × 101. The analytical value of x∗
according to (3) is x∗ = 10423

15423 = 0.675808856 . . . . The computation of x∗ in the
floating-point arithmetic yields x̃∗ = 0.67581 × 100 at N = 5.
The initial condition x0 = x̃∗ and the parameter value a yield x1 = 0.675807617 . . .
̸= x̃∗ according to (2). However, the computation of x1 in the floating-point
arithmetic at N = 5 yields x̃1 = 0.67581 × 100 = x̃∗. Further iterations can be
repeated indefinitely, with the trajectory of the logistic map remaining fixed at x̃∗.
The trajectory remains fixed at x̃∗ even though the values x̃∗ = 0.67581 × 100

and a = 3.0846 do not formally satisfy (3). This is an effect induced by the finite
representation of floating-point numbers. Such values of a are denoted as Type-2
values of the parameter a.
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Type-3: The analytical value of x∗, corresponding to the chosen value of the parameter a,
cannot be accurately represented in floating-point arithmetic at given N, and the
trajectory of the logistic map diverges away from x∗.
Example 3. Let N = 5 and a = 0.34567 × 101. The analytical value of x∗
according to (3) is x∗ = 24567

34567 = 0.710706743 . . . , while the computation of x∗ in
the floating-point arithmetic at N = 5 yields x̃∗ = 0.71071 × 100.
Note that the Type-4 value of the parameter a (x∗ is accurately represented in
floating-point arithmetic and the trajectory diverges from x∗) does not exist. The
existence of a Type-4 value of the parameter a would contradict the definition of
the fixed point.
The initial condition x0 = x̃∗ and the parameter value a yield x1 = 0.710701999 . . .
̸= x̃∗ according to (2). Moreover, the computation of x1 in the floating-point
arithmetic at N = 5 yields x̃1 = 0.71070 × 100 ̸= x̃∗. The following iterations
produce a sequence diverging from x̃∗. Such values of a are denoted as Type-3
values of the parameter a.

The definitions and derivations presented above are illustrated in Table 1.

Table 1. The computational illustration of the three different types of the parameter a (at N = 5). The
three values of a have been selected arbitrarily to represent each different Type of point. The Type-1
value of a yields the values of x∗, x̃∗, x1, and x̃1 represented exactly in the floating point arithmetic.
The values of x∗ and x1 cannot be exactly represented in the floating point arithmetic for the Type-2
value of a. However, the floating-point arithmetic (at N = 5) yields x∗ = x̃1 = x̃2 = . . . . The Type-3
value of a yields a diverging trajectory from x̃1.

Type a x∗ x̃∗ x1 x̃1

Type-1 0.32000 × 101 0.6875 0.68750 × 100 0.6875 0.68750 × 100

Type-2 0.30846 × 101 0.675808856 . . . 0.67581 × 100 0.675807617 . . . 0.67581 × 100

Type-3 0.34567 × 101 0.710706743 . . . 0.71071 × 100 0.710701999 0.71070 × 100

2.3. Type-1 Values of a for the Unstable Period-1 Orbit

Note that for 3 < a ≤ 4, the initial condition is bounded in 2
3 ≤ x∗ < 3

4 . Therefore,
the leading digit before the decimal point for x∗ is always 0. The value of a in the decimal
system can be expressed analytically as:

a =
A

10N =
α

β
, gcd

(
α, β

)
= 1, (4)

where A is an integer from the interval
(

3 · 10N , 4 · 10N
]
; α, β ∈ N represent the numerator

and the denominator of the fraction A
10N . Now,

x∗ = 1 − 1
a
=

B
10N =

α − β

α
, B ∈

[
2.5 · 10N−1, round(3.3 · 10N−1)

)
. (5)

Note that it is required that β = 2l15l2 ; l1, l2 ∈ N for (4) to hold true. If A and 10N do not
share common factors, β = 2N5N . If A and 10N do share common factors, then the powers
of 2 and 5 in the integer factorization of β are reduced.

Following the same reasoning, the numerator of a must be α = 2k15k2 (the same
number is the denominator of x∗). Also, the number must be fully represented with N + 1
significant digits.

Thus, for x0 = x∗ to result in a trajectory that remains at this point as n → +∞, the
value of a must be expressed in the following form:

a =
2k15k2

2l15l2
, (6)
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k1, k2 ∈ N. Now let us consider four cases:

Case 1: Let k1 < l1 and k2 < l2. Then a =
1

2l1−k15l2−k2
< 3, which is out of bounds, since

a ∈ (3, 4].
Case 2: Let k1 > l1 and k2 > l2. Then a = 2k1−l15k2−l2 > 4, which is out of bounds, since

a ∈ (3, 4].

Case 3: Let k1 ≤ l1 and k2 ≥ l2. Then a =
5k2−l2

2l1−k1
.

Case 4: Let k1 ≥ l1 and k2 ≤ l2. Then a =
2k1−l1

5l2−k2
.

The above cases show that there are only 4 possible values of a which are Type-1
values of a. These values, along with respective x∗ and their decimal representations are
given in Table 2.

Table 2. Type-1 values of a and the corresponding values of the unstable fixed points x∗ in analytic
and decimal representations.

Value of a 25
8

16
5

125
32 4

Decimal form of a 3.1250 3.20 3.906250 4.0

Fixed point x∗ 17
25

11
16

93
125

3
4

Decimal form of x∗ 0.680 0.68750 0.7440 0.750

The above points are the only Type-1 values of a that exist only for a sufficiently high
value of N. For N ≥ 6, all four Type-1 values of a do exist because the longest decimal
representation of a or x∗ uses at most 6 significant digits.

2.4. Unstable Period-1 Orbit; 3 < a ≤ 4
2.4.1. The Brute Force Approach

In this and all subsequent sections, floating-point computations are performed using
exactly N significant digits for each arithmetical operation.

The brute force approach is based on the computational classification of all possible
values of 3 < a ≤ 4 at given N ≥ 2. Firstly, all possible floating-point representations of
3 < a ≤ 4 are generated at a given value of N. The set of these floating-point values of
a is denoted as Sa(N). Next, for each value a ∈ Sa(N), the corresponding value of x̃∗ is
computed. Subsequently, an initial condition of x0 = x̃∗ is set and one iteration x̃1 of the
logistic map is calculated. If x̃1 ̸= x0, then the respective value of a is considered a Type-3
value; otherwise, if a is not one of the Type-1 values listed in Table 2, then it is considered a
Type-2 value.

The values of a, x̃∗ and x̃1 for the case of N = 2 are given in the Table 3 as an example
of the computations outlined above. Table 3, though simple, is not elementary. For example,
it appears that the number of red rows in Table 3 is much larger than the number of green
rows. Furthermore, red rows do not form a compact set.

It is interesting to observe what the ratio between green rows and red rows is in Table 3
at different values of N. Let us denote this ratio as:

ρ(N) =
|S(1,2)

a (N)|
|Sa(N)| · 100% (7)

where S(1,2)
a (N) is the set of all values of the parameter a that are either Type-1 or Type-2 at

a given N, and the standard modulus sign denotes the cardinality of the set.
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Table 3. The classification of the parameter values of a at N = 2. Red rows denote diverging
trajectories (Type-3 values of a). Green rows denote trajectories remaining at the unstable period-1
orbit (Type-1 and Type-2 values of a). Note that one time-forward iteration is sufficient to determine
the type of a.

a x̃∗ x̃1 Type

3.1 0.68 0.67 Type-3

3.2 0.69 0.68 Type-3

3.3 0.70 0.69 Type-3

3.4 0.71 0.70 Type-3

3.5 0.71 0.73 Type-3

3.6 0.72 0.73 Type-3

3.7 0.73 0.73 Type-2

3.8 0.74 0.73 Type-3

3.9 0.74 0.75 Type-3

4.0 0.75 0.75 Type-1

Table 4 depicts the relation between N and ρ(N). It can be observed that ρ(9) ap-
proaches 28.77%. Note that the brute force approach at larger values of N becomes infeasible
due to the vastness of |Sa(N)|.

Table 4. The relationship between N and ρ(N).

N 1 2 3 4 5 6 7 8 9

ρ(N) 0 20 27 29.30 28.47 28.66 28.69 28.75 28.77

2.4.2. The Monte-Carlo Approach

Without loss of generality, let us fix N = 15. A Monte-Carlo method is used to
evaluate the proportion of Type-2 values of parameter a. This classical technique is based
on random uniform sampling of parameter a values and checking their type. This allows
the drawing of conclusions based on the smaller sample rather than all a values, which
would be unfeasible to check by brute force [35].

A random number generator is used to uniformly sample the values of a from the
interval (3, 4]. Let us fix the number of trials to 107 (|Sa(15)| = 107). All further computa-
tions are based on the computations explained in the preceding section. It appears that
ρ(15) = 28.77% (Figure 1). In other words, every fourth randomly chosen value of a (in
(3, 4]) yields a trajectory which remains at the unstable period-1 orbit.

It is interesting to observe how ρ changes at different sub-intervals of (3, 4] (at fixed
N = 15). The interval (3, 4] is divided into 100 equal sub-intervals. Let Sak (15) denote all
values of a belonging to the k-th sub-interval of (3, 4]. Then:

Sa(15) =
100⋃
k=1

Sak (15). (8)

Now, the ratio of Type-1 and Type-2 values of a in the k-th sub-interval is denoted
as ρk(15). The distribution of ρk(15) in (3, 4] is shown in the form of 100 black horizontal
lines in Figure 1. It is interesting to note that the values of ρk(15) are larger at the left-hand
side, and smaller at the right-hand side of the interval (3, 4] (Figure 1). This effect could be
explained by the fact that the period-1 orbit (i.e., the fixed point x∗) is stable for a < 3.
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Figure 1. Black dashes depict ρk(15), k = 1, . . . , 100. The red horizontal line represents
ρ(15) ≈ 28.77%. All computations are performed at N = 15.

2.5. Unstable Period-2 Orbit; 1 +
√

6 < a ≤ 4

A similar classification can be organised for the unstable period-2 orbit of the classical
logistic map. Note that the period-2 orbit {x∗U ; x∗L} becomes unstable following the second
period-doubling bifurcation at a = 1 +

√
6 (Figure 2), as shown in [36]:

x∗U =
a + 1 +

√
a2 − 2a − 3

2a
; x∗L =

a + 1 −
√

a2 − 2a − 3
2a

. (9)

Note that Type-1 values of a do not exist for the unstable period-2 orbit. The classifica-
tion is now only performed between Type-2 and Type-3 values of a.

Figure 2. The bifurcation diagram of the classical logistic map. The blue line denotes the unstable
period-1 orbit (3 < a ≤ 4). The red lines denote the unstable period-2 orbit (1 +

√
6 < a ≤ 4). Note

that the a-axis is shown in the logarithmic scale.

2.5.1. The Brute Force Approach

All possible floating-point representations for 1 +
√

6 < a ≤ 4 are generated at a given
value of N. The set of these floating-point values of a is denoted by Sa(N). Next, for each
value a ∈ Sa(N), the corresponding values of x̃∗U , x̃∗L are computed. Subsequently, the
initial conditions of x0U = x̃∗U and x0L = x̃∗L are set, and two iterations of the logistic map
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are performed for each of the initial conditions, resulting in x̃2U , x̃2L. If these values do not
correspond to their respective initial conditions, then they are considered Type-3 values,
otherwise they are considered Type-2 values.

Let S(2)
aU (N) and S(2)

aL (N) denote the sets of all Type-2 values of the parameter a for the
upper and lower branches of the period-2 orbit, respectively. Then, the ratios of Type-2
values of the parameter a for the upper and lower branches of the period-2 orbit at given N
are denoted as:

ρU(N) =
|S(2)

aU (N)|
|Sa(N)| · 100%; ρL(N) =

|S(2)
aU (N)|

|Sa(N)| · 100%. (10)

Table 5 depicts the relationship between ρU(N), ρL(N), and N. It can be observed
that ρU(9) approaches 11.00%, while ρL(9) approaches 4.89%. Note that the brute force
approach at larger values of N becomes unfeasible due to the vastness of |Sa(N)|.

Table 5. The relationship between ρU(N), ρL(N), and N.

N 1 2 3 4 5 6 7 8 9

ρU(N) 0 14.29 10.71 10.33 9.99 11.15 10.97 11.00 11.00

ρL(N) 0 0 1.79 5.43 4.49 5.04 4.93 4.93 4.89

2.5.2. The Monte-Carlo Approach

Without loss of generality, let us fix N = 15. A random number generator is used to
uniformly sample the values of a from the interval [1 +

√
6, 4]. Let us fix the number of

trials to 107 (|Sa(15)| = 107). Note that all values of a are represented by N = 15 significant
digits. While it is possible to repeatedly sample the same values, the likelihood of this is
negligible. All further computations are based on the approach presented in the previous
section. It appears that ρU(15) = 8.95% and ρL(15) = 5.07% (Figure 3).

Figure 3. Black dashes depict ρkU(15) (part (a)) and ρkL(15) (part (b)), k = 1, . . . , 100. The red
horizontal lines represents ρU(15) ≈ 8.95% (part (a)) and ρL(15) ≈ 5.07% (part (b)). All computations
are performed at N = 15.

It is interesting to observe how ρ changes at different sub-intervals of [1 +
√

6, 4] (at
fixed N = 15). The interval [1 +

√
6, 4] is divided into 100 equal sub-intervals. Let Sak (15)

denote all values of a belonging to the k-th sub-interval of [1 +
√

6, 4].
Now, the ratios of Type-2 values of a in the k-th sub-interval are denoted as ρkU(15)

and ρkL(15). The distributions of ρkU(15) and ρkL(15) in [1 +
√

6, 4] are shown in the form
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of 100 black horizontal lines in Figure 3. It can be observed that ρkU(15) has a general
decreasing trend as a increases, while ρkL(15) does not match this exactly: at around
a = 3.82 it appears to jump up and then continue to decrease. Such effects can be attributed
to regularity windows around otherwise chaotic regimes.

3. The Fractional Difference Logistic Map

It is well known that the fractional difference logistic map does not have periodic
orbits, except for fixed points [37]. However, this fact does not rule out the existence of a
fixed point (the period-1 orbit).

Let us consider the fixed point of the classical logistic map: x∗ = 1 − 1
a (3). Then,

setting x0 = x∗ yields (according to (1)):

x1 = x∗ + Gµ
0 (x∗ − x∗) = x∗;

x2 = x∗ + Gµ
0 (x∗ − x∗) + Gµ

1 (x∗ − x∗) = x∗;

...

(11)

Therefore, the classification of the parameter a values for the unstable period-1 orbit
of the fractional difference logistic map is identical to the classical logistic map, except
for the fact that the fixed point x∗ becomes unstable already at a = 2µ + 1, as shown in
Equation (46) of [38] which, in this case, corresponds to approximately a ≈ 2.7.

The red dots in Figure 4 indicate such values of a (in the interval 2.7 < a ≤ 3.7) where
the trajectory remains at the fixed point (Type-2 values of a) at N = 15 and µ = 0.8. The
computationally reconstructed value of ρ(15) is 32%. In other words, almost every third
randomly chosen value of a from the interval 2.7 < a ≤ 3.7 yields a trajectory which always
remains at the fixed point x̃∗. The other two thirds of values of a yield trajectories diverging
from x̃∗ (Figure 5).

Figure 4. The bifurcation diagram of the fractional difference logistic map. The red dots indicate
values of a in the interval 2.7 < a ≤ 3.7, where the trajectory remains at the fixed point (Type-2 values
of a) for N = 15 and µ = 0.8. Note that the a-axis is shown on the logarithmic scale.

Although it has been reported in the literature that periodic orbits of order higher than
period-1 do not exist in fractional difference maps (see Theorem 5 in [39]), it is worthwhile
to note that, in the case of finite-precision computations, every non-chaotic trajectory of the
fractional difference logistic map will eventually enter a periodic regime. This behaviour is
due to a general property of finite-precision implementations [40].
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Figure 5. The trajectory starting from x̃∗ = 1 − 1/0.340685989097371 × 101 remains indefinitely
at x̃∗ (panel (a)). In contrast, the trajectory starting from x̃∗ = 1 − 1/0.340574069915659 × 101

diverges from x̃∗ (panel (b)). All computations were performed with N = 15 and µ = 0.8.

The reported effects induced by finite numerical precision may have significant im-
plications in various applications. A typical example is the stabilization of the unstable
fixed point of the nonlinear map presented in [41]. Further investigation into the limita-
tions imposed by numerical precision could provide additional insights into the results
presented in [41], particularly if the model would be implemented using experimental
electronic circuits.

4. Concluding Remarks

What would happen if the initial condition of the fractional difference logistic map
is set exactly to the unstable fixed point (corresponding to the period-1 orbit)? Would the
map stay indefinitely at the unstable fixed point, or would it diverge from it?

The answer to this question appears to depend on the accuracy of the floating point
arithmetic used in the computational simulation of the investigated fractional difference
logistic map.

Insights into the complexity of the issue can be gained by considering the classical
logistic map, where the memory horizon is a single backward iteration. It seems that
there are three distinct types of parametervalues a which predetermine the behavior of the
unstable orbits of the classical logistic map.

The situation is different for the fractional difference logistic map. Firstly, the memory
horizon of the fractional difference logistic map reaches the initial condition. Secondly,
higher-order orbits do not exist in the fractional difference logistic map. Therefore, the
discussion regarding the behavior of the unstable orbits for the fractional difference logistic
map is limited only to the fixed point.

It is important to note that we do not make any adjustments to the initial conditions
or system parameters. We choose the parameter value that should (theoretically) lead to
an unstable orbit and compute the corresponding initial condition (using the available
precision). Therefore, we do not make any adjustments, whatever small they could be. All
the “adjustments” are automatically and uniquely predetermined by the accuracy of the
finite-precision system.
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Note that for parameter a values that correspond to a stable period-1 fixed point, the
different types of values defined in the paper still exist. While Type-1 and Type-2 values
can be observed, Type-3 values act differently: if, for a given a, the analytical value of x∗
cannot be represented accurately with a given precision, the system initially diverges away
from the approximate value x̃∗, however, since x∗ is stable, the map settles into an orbit
that eventually becomes periodic near the fixed point x∗. Due to these effects, the paper
mainly considers values of a for which the period-1 fixed point is unstable.

By definition, an unstable fixed point is still an equilibrium. Theoretically, an initial
condition that coincides exactly with the unstable fixed point would yield a trajectory that
remains at this unstable fixed point forever. One of the major results of this manuscript is
that this effect can still hold true in a finite-precision system; however it appears that the
underlying reasons for this effect may differ.

This paper provides novel insights into the phenomenon caused by the limitations
of finite precision systems. This effect is quantified by introducing three distinct types
of initial conditions (it is important to note again that these initial conditions are not
artificially perturbed, except for the unavoidable limitations of the finite precision system).
The distribution patterns of different types of initial conditions, in relation to the value of
the system parameter, are explored. It is demonstrated that such effects can occur well
beyond the bifurcation points of the control parameter, which is an interesting result in
itself. Moreover, this effect is also quantified with respect to the number of significant
digits in the finite-precision system. Finally, these effects are explored for both the classical
nonlinear map and its fractional counterpart.

One of the primary advantages of the presented techniques for analyzing precision-
related effects in unstable equilibria is a straightforward adaptation for any discrete map
using algebraic expressions. In practical problems such as control of fractional discrete
maps via temporary stabilization of an unstable orbit [31], knowing whether a given
equilibrium is stable or unstable is crucial. Furthermore, if an equilibrium does appear to
be unstable, it is important to deduce whether that is due to inherent physical properties of
the system or a computational artifact caused to finite precision. However, the techniques
also have disadvantages: for example, using the presented techniques for maps featuring
transcendental functions (such as the exponential function in the Gauss map [42] for
example) would require significant adaptation.

Moreover, it is worth noting that the issue has been considered for different computa-
tional precisions (given by the parameter N throughout the paper which denotes decimal
significant digits). While such effects have not been explicitly studied in non-decimal
computational bases, the principal observations remain the same, though the proportions
of Type-1, 2 and 3 points may change.

The behavior of the unstable fixed point of the fractional difference logistic map is
similar to that of the unstable fixed point in the classical logistic map (at N = 15 and
µ = 0.8). If a value of a is randomly chosen from the interval 2.7 < a < 3.7 (where the fixed
point of the fractional difference map is unstable at µ = 0.8), there is approximately a 32%
chance that the system will remain at the unstable fixed point indefinitely. Otherwise, the
trajectory starting at x̃∗ will diverge from x̃∗.

It is worth noting that the divergence from the unstable fixed point of the fractional
difference logistic map is a completely computational artifact according to the definition of
a fixed point. An ideal computer with N = ∞ would always yield trajectories that remain
at the fixed point regardless of whether the fixed point is stable or not.

The existence of Type-3 trajectories is predetermined by the finite- precision of the
computational framework. A Type-3 trajectory eventually converges to a stable periodic
(or chaotic) orbit. It is well known that the convergence to periodic orbits can be either
asymptotic or non-asymptotic [43,44]. Therefore, exploring the existence of non-asymptotic
convergence to stable orbits directly from unstable fixed points remains a clear objective
for future research.
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37. Diblík, J.; Fečkan, M.; Pospíšil, M. Nonexistence of periodic solutions and S-asymptotically periodic solutions in fractional

difference equations. Appl. Math. Comput. 2015, 257, 230–240. [CrossRef]
38. Edelman, M. Stability of fixed points in generalized fractional maps of the orders 0< α< 1. Nonlinear Dyn. 2023, 111, 10247–10254.
39. Bhalekar, S.; Gade, P.M. Fractional-order periodic maps: Stability analysis and application to the periodic-2 limit cycles in the

nonlinear systems. J. Nonlinear Sci. 2023, 33, 119. [CrossRef]
40. Li, C.; Feng, B.; Li, S.; Kurths, J.; Chen, G. Dynamic analysis of digital chaotic maps via state-mapping networks. IEEE Trans.

Circuits Syst. Regul. Pap. 2019, 66, 2322–2335. [CrossRef]
41. Sadeghian, H.; Merat, K.; Salarieh, H.; Alasty, A. On the fuzzy minimum entropy control to stabilize the unstable fixed points of

chaotic maps. Appl. Math. Model. 2011, 35, 1016–1023. [CrossRef]
42. Hilborn, R.C. Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers; Oxford University Press: Oxford, UK,

2000.
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