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ABSTRACT Edge computing, using battery-powered devices, presents a viable solution for the real-time
data processing for smart agriculture solutions. This paper explores the application of edge computing
acceleration for smart agriculture, focusing on the use case of resonant ultrasound spectroscopy (RUS)
for grape leaf analysis and monitoring. A methodology for estimating the utilization and performance of
both edge and cloud data processing devices is proposed here. The effectiveness of edge and cloud data
processing systems is analyzed in terms of data processing waiting time, cost, and battery life of edge
devices as a function of intensity of data processing requests and load distribution in various scenarios. The
analysis considers such factors as data processing capabilities, equipment cost, and energy consumption to
provide insights into the optimal deployment of edge and cloud resources for smart agriculture applications,
considering critical waiting and battery time criteria.

INDEX TERMS Smart agriculture, edge, cloud, data processing, monitoring.

I. INTRODUCTION
Smart and precision agriculture was propelled by the rapid
advancement of IoT and cloud computing technologies [1],
[2], [3], [4]. Integration of IoT and cloud computing strategies
can enhance agricultural practices [5]. Development of new
architectures for data acquisition, transmission and process-
ing is aimed for the improvement of quality of experience [5],
[6], [7]. Main trends and challenges regarding the adoption of
cloud-based IoT applications in the agricultural sector for the
benefit of sustainability in climate-smart agriculture can be
found in [7].
Initially, IoT nodes were dedicated for collection of data,

but processing and storage were carried out by a cloud plat-
form [6], [8]. Many of applications are sufficient with this
type of architecture. However, a bottleneck occurs in case of
a more intense data flow from primary sources, especially if
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unprocessed data is transmitted to cloud [8], [9]. Also, delays
are increased in case of the large number of data processing
requests for high computation demand algorithms of machine
learning or artificial intelligence [9], [10].

Then a concept of edge computing was introduced. It was
driven by the need for high computational performance to
handle the complexity of data processing algorithms such
as filtering, data aggregation, and machine learning [11],
[12], [13], [14], eventually advancing to deep learning [1].
The so-called edge layer is composed of communication
infrastructure equipment, which has some extra computa-
tional capacity suitable for cloud structure offloading [6],
[8], [15], [16], [17], [18]. Edge devices are typically geo-
graphically closer to the data source and end user. Data
networks enable to deliver the acquired data directly to the
cloud [19], [20], [21], [22]. Edge devices may act as inter-
mediate nodes for processing and forwarding data to cloud
servers [23]. Processing is done in cloud and obtained results
can be sent back for the inspection to the user. The balanced
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relationship between edge and cloud computing is essen-
tial for achieving sustainability in smart agriculture. Edge
computing handles immediate, resource-efficient tasks, like
monitoring soil moisture or crop health, while cloud com-
puting facilitates broader, more complex analyses, such as
predicting weather patterns or optimizing resource allocation
across the entire range of farming operations. This synergy
between edge and cloud enables a more sustainable IoT
ecosystem, reducing energy consumption, minimizing envi-
ronmental impact, and supporting precision agriculture.

However, if processing results are required immediately,
then the latency of the response becomes a critical disad-
vantage. Since application service providers may need to
serve thousands of user requests simultaneously, ensuring the
low response latency becomes a significant challenge [10],
[24], [25]. The straightforward approach, increase of dedi-
cated cloud resources (network capacity, number of server
processor cores, memory), is not economically justifiable.
Response time can be improved if resources available on
the edge are exploited. Edge servers reduce communication
delays by pre-processing sensor data locally, allowing for
more efficient field monitoring and decision-making in irri-
gation and fertilization [2]. In large-scale operations, like
subsoiling and tillage process monitoring, edge devices sig-
nificantly enhance processing efficiency by collecting and
analyzing tractor-mounted sensor data [26]. Smart phones,
tablets, embedded systems, single board computers, portable
FPGA accelerators [4], [27], [28], [29], etc. are candidates for
such implementation, but these are a battery powered edge
devices.

While numerous studies analyze energy efficiency [19],
[30], [31], [32], [33], network latency of IoT [20], [34], [35],
[36], balancing between edge and cloud computing [8], [15],
[34], [37], [38], [39], [40], [41], [42], [43] or cost [9], [44],
[45], [46] there is a lack of methodology that effectively
considers a multiple critical factors simultaneously – such as
data processing request rates, processing times in both edge
and cloud environments, costs, edge battery life, and load
distribution.

The particular task considered is when measurements are
taken in the field [21], [22] and final result is obtained only
after complex data processing [1], [3], [4], [47], [48], [49]
that takes time. In such case data transmission latency is
negligible compared to processing time [24], [41]. If practical
implementation is considered, configuration must be optimal
in a sense of response latency, cloud resources cost and
edge energy capacity. Another problem is that number of
parameters and their combinations considered is wide. Then,
event-driven and network-driven simulation takes significant
time and resources. Analytical model based on queuing the-
ory, described in [50] was used to reduce the optimization
time.

Proposed methodology fills this void by providing a
systematic approach that integrates multiple parameters,
enabling a more holistic view of resource allocation. Fur-
thermore, the use of analytical models ensures that the

computation is fast, allowing for real-time estimations and
adjustments. It may enhance the efficiency of IoT systems
and contribute to more sustainable operational practices in
data-intensive environments.

An analysis of three use case scenarios is presented:
i) estimation of the optimal number of edge and cloud data
processing devices for a given tasks intensity, ii) analysis how
the intensity of data processing requests may be increased if
additional edge devices were added to the system, iii) anal-
ysis how load balancing determines the system performance
parameters. The performance criteria are processing latency,
battery discharge and cloud cost.

II. EVALUATION METHODOLOGY
The proposed methodology utilizes quantitative research
methods, which follows the positivist paradigm [51]. Study
involves experimental measurements (e.g., processing time in
IoT edge devices and cloud servers) and analytical modeling
of scenarios (e.g., estimation of waiting time in queues as
a function of data processing request rate). These require
the collection of quantitative data, which can be statistically
analyzed, fitting into quantitative research.

Quantitative research focuses on objective measurement
and the analysis of numerical data. By experimenting and
modeling various data processing request rates and load dis-
tribution between edge devices and cloud servers, the study
aims to generalize findings based on observed data.

The use of analytical mathematical models to analyze
how factors like load distribution affect performance places
the research within empirical quantitative methods, which
emphasize numerical and statistical evaluation [51].

A. SYSTEM MODEL
A cloud-connected data acquisition and processing system
considered in this research is shown in Fig. 1.

FIGURE 1. Cloud-connected data acquisition and processing system
model.

A set of acquisition devices are operated in the field by a
user aiming to collect the measurement data from plants. The
local wireless link to the smart phone is implemented using
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Bluetooth communication. The smart phone ensures wide
area network connectivity to the centralized cloud services
for data storage and processing. The concept of edge layer
denotes that some computational resources are provided in
a vicinity of the user and has a fast direct link to the smart
phone. In addition to users operating in the field cloud ser-
vices provide connection from computers connected to the
internet for the users authorized to access the stored and
processed data at the time of demand. Locations of data acqui-
sition, data communication and data processing are indicated
in the Fig. 1, too.

Criteria for optimization of cloud-connected systems in
most of the cases include: i) latency, ii) power consumption,
iii) implementation cost or profit.

The definition of latency and its acceptable limit should
be considered in respect to purpose of the system. In some
agriculture related applications an instant response is not
demanded, and it is acceptable that information obtained
from the collected data is delivered within hours or even
days. In this case centralized cloud-based system suites very
well. However, situations when a user is sampling data in the
field and needs to verify the measurement results to decide
if to collect more data or to check whether the data looks
reasonable are probable as well. An example of such a system
explored later in this research is the resonant ultrasound
spectroscopy (RUS) for grape leaf status monitoring. In this
application a user is expected to walk in the vineyard with a
hand-held sensor and using a smart phone deliver raw ultra-
sound signal records to the edge devices or cloud servers for
processing. Each data processing device may serve multiple
users.

The data processing is considered as time consuming and
involves an inverse solution technique [21], [47]. Because the
cloud server needs to process data simultaneously acquired
by many users the latency of processing and sending results
back may become annoyingly long. In this case, edge devices
can be used to accelerate the computation time or to decrease
the load on cloud server.

Both sensors and edge devices powered by a battery need
to be optimized in terms of power consumption seeking
to endure the operation before replacing or recharging the
battery. The higher performance is achievable at the cost
of higher power consumption. In certain applications as for
example grapes leaf status monitoring [21], [22], [47], at least
full workday operation without battery recharging in the field
is preferable.

Finally, the overall cost of the system is composed of the
cost of edge device (higher performance and better energy
efficiency most probably will result in higher cost), the
number of edge devices in the system, and cloud server
resources.

B. SYSTEM LATENCY
The latency describes a period between the task trigger and
delivery of the results to the user.

Considering the system model shown in Fig. 1 the latency
can be described as

TL = TA + TAP+T PTTW +TDT , (1)

where TA is sample acquisition duration, TAP is the latency
of data transmission to the smart phone, TPT is the latency
of data transmission to the processing unit, TW is the waiting
due to processing latency and queueing in the processing unit,
TDT is the latency of processed data transmission to the user
end equipment.

TW = T P +TQ, (2)

where TP is processing latency and TQ is queueing time.
The sample acquisition duration TA is application depen-

dent and includes delays of all hardware like sensors and
analog-to-digital converters, excitation signals generation,
recording samples to the buffering memory. TA also accounts
for the number of samples (length of the signal) necessary to
deliver to the processing unit to start block type processing.

The latency of data transmission to the processing unit
TPT is dependent on the location of the processing unit: i)
if processing is scheduled in the smart phone, then TPT can
be neglected, ii) if processing is scheduled in a separate edge
device, then TPT has to account for the data delivery to the
edge device and the processed results delivery back to the
smart phone, iii) of processing is performed in the cloud
server, then TPT has to account for the latency of data delivery
to the cloud server, which is responsible for data processing.

The processing latency TP is dependent on the computa-
tional load of the algorithms used and the performance of
either smart phone, edge device, or cloud server.

The time of waiting in queue TQ is modeled as described
in the next chapter and basically characterize the time a user
task for data processing is postponed due to the non-available
computational resources on unit dedicated to processing (for
example edge device or cloud server).

The latency of the processing results delivery to the user
TDT describes the time it takes to deliver processing results
from processing unit (smart phone, edge device or cloud
server) to the user’s end device. The end device most often
will be user’s smart phone or computer.

C. PROCESSING AND WAITING TIME
This chapter introduces a model used to estimate the waiting
time in the system’s queues of processing units, to evaluate
the utilization of edge devices and cloud servers. The model
will be utilized to evaluate the influence of edge devices on
the system performance criteria [35], [52].

The model of requests queueing and their distribution
among edge devices and cloud servers is shown in Fig. 2.

Users who perform measurements create the flow of data
processing requests, which intensity is λ requests per h. The
generated flow of data processing requests can be distributed
among edge and cloud data processing devices by a load
balancer according to a particular probability or priority. Each
such data processing device can be estimated by a queueing
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model that evaluates waiting time in queue and processing
time.

The total intensity of data processing requests is:

λ = NA · λA, (3)

where NA is the number of all users’ requests for data acqui-
sition and processing, λA is the average intensity of single
user’s requests per time unit:

λA= 1/TA, (4)

where TA is the mean time between requests of a single user.
The intensities of user requests forwarded to the i-th edge

device and j-th cloud server are respectively:

λ
(i)
E = λ·PE · p(i)E , (5)

λ
(j)
C = λ·PC · p(j)C , (6)

wherePE is probability of data processing request forwarding
to an edge device, and PC is the probability of data processing
request forwarding to cloud server.

FIGURE 2. Queueing model of data processing system.

In some implementations the probabilities may be assumed
as load distribution priorities, which are used by a load bal-
ancer. It is assumed that PE + PC = 1. Here p(i)E is the
probability of request forwarding to the i-th edge device,
where i = 1,2.. NE and

∑
i
p(i)E = 1, and p(j)C is the probability

of request forwarding to the j- th cloud server, where j = 1,2..
NC and

∑
j
p(j)C = 1. NE and NC are correspondingly numbers

of edge devices and cloud servers in the system.
The utilization (load) of edge devices and cloud servers are

respectively:

ρ
(i)
E = λ

(i)
E /µ

(i)
E , (7)

ρ
(j)
C = λ

(j)
C /µ

(j)
C , (8)

where intensities of data processing (or average number of
requests that can be processed per time unit) in the i-th edge
device and in the j-th cloud server are:

µ
(i)
E = 1/T (i)

PE , (9)

µ
(j)
C = 1/T (j)

PC , (10)

where T (i)
PE is data processing duration in the i-th edge device

and T (j)
PC is data processing duration in the j-th cloud server.

Waiting times in queues depend on distribution of time
intervals between requests and the distribution of data pro-
cessing times. For example, if requests of data processing
arrive according to Poison process (time intervals between
requests are distributed according exponential distribution),
and data processing time is constant, then waiting times in
queues of i - th edge device and j-th cloud server can be
expressed according to the analytical M/D/1 queueing model:

T (i)
QE =

ρ
(i)
E

2·µ(i)
E · (1 − ρ

(i)
E )

, (11)

T (j)
QC =

ρ
(j)
C

2·µ(j)
C · (1 − ρ

(j)
C )

. (12)

The average waiting time of data pin the i-th edge device
and the j-th cloud server can be expressed:

T (i)
E = T (i)

PE + T (i)
QE , (13)

T (j)
C = T (j)

PC + T (j)
QC . (14)

If data processing request arrival is not Poison or data pro-
cessing time is not constant, then another analytical (M/M/1,
GI/G/1 or other) or simulation models should be used.

In further analysis M/D/1 queueing model is used, also
it is assumed that all i-th edge devices are the same and
all j-th cloud servers are the same in the System, and the
load between them is evenly distributed (p(i)E = 1/NE and
p(j)C = 1/NC ).

D. CRITICAL ARRIVAL RATE OF DATA PROCESSING
REQUESTS
Waiting time in the system depend on arrival rate of data
processing requests and on the number of data processing
devices in the system. In order, to ensure that the mean
waiting time of data processing is less than desired critical
waiting time TWcr , it is necessary that either the rate of data
processing requests is below particular critical value, or the
numbers of data processing devices are sufficient. Therefore,
if the number of processing devices (NE , NC ) and critical
waiting time TWcr are given, then the critical rates of data
processing request

λEcr = NE ·
2 · µE · (TWcr · µE−1)

2 · TWcr · µE − 1
, (15)
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λCcr = NC ·
2 · µC · (TWcr · µC−1)

2 · TWcr · µC − 1
, (16)

whereµE andµC are service rates of a single edge and single
cloud server, considering that all the edge devices are the
same, and all the cloud servers are the same.

Using the same principle the critical (minimum) number of
data processing devices can be estimated:

NEcr =
λE ·(2·TWcr · µE−1)

2 · µE · (TWcr · µE−1)
, (17)

NCcr =
λC ·(2·TWcr · µC−1)

2 · µC · (TWcr · µC−1)
. (18)

The mean waiting time in the system (TE ,TC ) ≤TWcr ,
when λE ≤ λEcr and λC ≤ λCcr , or when NE≥NEcr and
NC ≥ NCcr .

E. SYSTEM COST, REVENUE AND PROFIT
Various cost models for edge and cloud-based systems are
explored in publications like [45].
To achieve the specified average system latency maintain-

ing the minimal overall system cost the optimal number of
edge devices (NE ) and optimal number of cloud servers (NC )
should be chosen. If the number of edge devices and cloud
resources are too small, then the collection and processing of
the required number of measurements will take longer than
the desired TWcr . If the number of edge devices and cloud
servers is larger than needed to collect and process the data
per desired TWcr time, then some of edge devices and cloud
servers will be used inefficiently or not at all, even though
they are paid for.

There are many variables that determine the exact monthly
cost of a data processing system, but for the sake of simplicity,
let’s assume that the total cost per hour of the data processing
system is CS = CES + CCS , where CES and CCS are costs of
data processing in edge and cloud subsystems:

CES = NE · CE , (19)

CCS =

{
NC · CCd , dedicated cloud capacity;
NC · CCo · ρC , on − demand cloud capacity;

(20)

where CE – cost per hour for an edge device, CCd – cost
per hour for cloud server, if ‘‘dedicated capacity’’ plan is
applied, CCo – pay per hour for cloud server, if the ‘‘on-
demand capacity’’ plan is used, and ρC – utilization of cloud
server.

If such data processing system is managed by a service
provider and the revenue per single data processing is rp,
then total revenue per hour in edge and cloud processing
subsystems:

RES = λE · PEa · rp, (21)

RCS = λC · PCa · rp, (22)

where PEa and PCa – ratio (or probability) of acceptable data
processing requests. The ratios are calculated by

PEa =


λE − λEcr

λE
, λEcr ≤ λE ,

0, λEcr > λE ,

(23)

PCa =


λC − λCcr

λC
, λCcr ≤ λC ,

0, λCcr > λC ,

(24)

and the total revenue is RS = RES + RCS .
Then the profit per hour in edge and cloud processing

subsystems are

PES = RES − CES , (25)

PCS = RCS − CCS , (26)

and the total profit is PS = PES + PCS .
These formulas can be used to grade cost and profit criteria

alongside to other system features influencing the system
configuration matching user’s expectations.

F. BATTERY USAGE TIME
Battery-powered devices of the system (smart phones, edge
devices) are consuming energy [46] and discharging when
operated in a field. The obvious expectation of a user is that a
recharging period is less than a working day. The capacity of
the battery used, and energy efficiency of a device limits the
number of times NM measurement samples can be acquired
and number of times NP data processing is completed. A way
to estimate these parameters the following expressions can be
used:

NM =
CB%
C1M%

, (27)

NP =
CB%
C1P%

, (28)

where CB% is percentage of battery charge level, C1M% is
percentage of battery discharge after completing one sample
acquisition, and C1P% is percentage of battery discharge after
one data processing request. Higher value of the NP indi-
cates larger capabilities of the processing unit to serve more
requests until the need for recharge.

Considering probabilistic nature of edge devices load (7)
the battery usage time for processing:

TEB =
Np · TPE

ρE
. (29)

The TEB accounts for the energy efficiency from a user’s
perspective in terms of average edge device’s battery dis-
charge time. The more intensively a device is used for data
acquisition and processing (higher ρE ) the smaller is TEB.

III. CASE STUDY: RESONANT ULTRASOUND
SPECTROSCOPY FOR GRAPE
LEAF MONITORING
Further on, a use case of grape plants physiological status
monitoring using RUS, which is described in [21], [47],
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and [48] was considered. It is based on the thickness reso-
nance within a leaf when ultrasound is transmitted through.
Two measurements were carried out: with and without the
leaf in ultrasound path between two transducers. The obtained
transmission function was approximated by fitting the math-
ematical model for layered structure [48], [53]. The result of
such inverse solution allows to extract the mechanical proper-
ties of the leaf which later can be related to the physiological
status of the plant.

A. SYSTEM SPECIFICATION
The grape plants physiological status monitoring system is
illustrated in Fig. 3.
Measurements were taken on the grape leaves using the

RUS sensors. To obtain the results, the measured signals must
be processed. In such a way the flow of data processing
requests λ is created.

FIGURE 3. Grape leaf monitoring system.

In the analyzed case, the measured data can be processed
either by an edge device or by a cloud server. Therefore,
the measured data from the RUS sensor is transferred to a
smartphone, which itself can be used as an edge device or as a
load balancer that sends the data for processing to a dedicated
battery powered edge device in the field or to the cloud server
over LTE network.

B. DATA PROCESSING UNITS
A comparison of real case data processing durations achieved
by different computation devices is presented. As described
in [21] and [47], the data collected by the acquisition
device is processed using particle swarm optimization (PSO)
algorithm [49]. The fit function for the PSO algorithm com-
prises of FFT, IFFT, complex transfer function calculation
using 2K blocks of reference and sample signals [22]. The
processing algorithm was implemented in Python language
and exercised on the edge devices and cloud server featuring
parameters shown in Table 1 (the monthly cost is calculated
considering full payment in installments over 24 months).

TABLE 1. Specifications of data processing equipment.

A popular single board computer Raspberry Pi 3, state-of-
the-art smart phones (can be used in the role of edge layer
accelerators), and laptop computer were considered as Edge
devices.

In such case, the PSO processing time is much larger
if compared to data acquisition time and data transmission
delay. For example, it was already determined in [22] that
the mean delay between measurement triggering and data
delivery to gateway (smartphone) is 5.24 s, the mean data
transmission (over LTE network) latency from smartphone to
the cloud server is 1.21 s, and the mean latency of processed
data download is 0.05 s. Therefore, in further analysis of
total waiting time estimation only the PSO processing time
in cloud servers and edge devices will be considered.

Experimentally measured processing durations are sum-
marized in Table 2 together with operation modes of corre-
sponding devices.

C. SCENARIO-BASED ANALYSIS OF PERFORMANCE
CRITERIA
The selection of the optimal number of cloud servers and
edge devices will be investigated seeking to achieve the
specified waiting time and edge devices working time on
battery, by applying framework described in Chapter 3. The
framework was implemented in our developed Python pack-
age CloudEdgeAssetOptimizer [50], which GUI window is
presented in Fig. 4. The analytical mathematic models imple-
mented in the framework allow to estimate system parameters
much faster than event-driven simulation models.
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TABLE 2. Characteristics of data processing equipment.

The parameter which mainly influences user’s quality of
experience is a waiting time between a request’s trigger
moment and the results delivery to the interface of user’s per-
sonal device. The cost of the system is obviously a parameter
which both system users and provider will seek to minimize.

FIGURE 4. CloudEdgeAssetOptimizer’s GUI window.

If a handheld device is discharging and demands recharg-
ing more frequently than once per working day it makes
operating such a system inconvenient. The number of edge
devices aimed at acceleration of acquired data processing
and number if cloud servers influence waiting time and cost
of the system. In overall, criteria representing the use case
system performance are quantified with different units and
are mutually related. Therefore, selecting implementation
scenario, which meets the expectations the best and has other
criteria within some boundaries, is not straightforward.

Three scenarios (A, B and C) were analyzed to estimate
how a battery-powered edge devices may accelerate data
processing for the given use case. To compare how the results
depend on the edge device’s performance parameters two
types of devices were selected: i) Samsung A13 5G phones
and ii) MacBook Air M1 notebooks as edge devices. The
results for both edge device types are given in Table 3 and
Table 4, while the cloud server parameters were the same. The
font formatting in the tables is different for the parameters: in

bold font are the parameters that were fixed, in italic font –
the parameters that were varied, and in regular font – the
estimated parameters.

The required number of edge devices and cloud servers was
estimated by applying the following criteria: the mean wait-
ing time for data processing in edge devices (TE ) and cloud
servers (TC ) must be ≤ TWcr = 240 s, and the working time
on battery (TEB) for an edge device must be ≥ 8 h. The total
profit that a potential data processing service provider may
yield, also was considered. The revenue per processed request
is rp = 0.06 Eur, the cloud server cost CC = 0.041 Eur/h
(‘‘dedicated capacity pricing’’), the cost of type 1 edge device
is CE = 0.0105 Eur/h, and the cost of type 2 edge device is
CE = 0.0578 Eur/h.

1) SCENARIO A
This scenario was used to estimate what is the optimal (min-
imum) number of edge (NE ) and cloud (NC ) data processing
devices as a function of PE , when λ = 1000 req./h.

If PE = 1, then NC = 0 and all the data is processed by
the edge devices. In such a case, the optimal number of edge
devices of type 1 is 197 and of type 2 is 20.

On the other hand, if PE = 0, then all the data is processed
by the cloud servers. That’s why in both cases the optimal
number of cloud servers is equal to 42.

If PE ∈(0,1), then a particular number of NE and NC must
be used. The results reveal that the exact numbers (given in
Table 3 and Table 4 ) depend on the level of load of edge
devices and cloud servers, that determines that the TE and TC
are ≤ TWcr = 240 s, and TEB ≥ 8 h.

2) SCENARIO B
Consider case when there is a data processing system that
initially has 42 cloud servers. This scenario was used to
estimate how the intensity of data processing request may be
increased if additional edge devices were added to the system.

The results depend on the edge device’s performance.
That’s why, the smaller number of type 2 edge devices may
process more requests, than the type 1. For example, if the
data processing system has 100 type 1 edge devices and
42 cloud servers, then it may process 1500 req./h. If the
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TABLE 3. System configuration and performance parameters: edge devices are samsung A13 smart phones, T PE = 200.44 s, oracle VM cloud servers
T PC = 106.9 s, T Wcr = 240 s, T EB ≥8 h.

system has 25 type 2 edge devices, then it may process
2240 req./h. In case of type 1 edge devices the λ is limited due
to TWcr requirements, and in case of type 2 edge devices – due
to TEB requirements. The greater the λ that may be processed,
the bigger is the potential profit, that data processing service
provider could gain.

3) SCENARIO C
Consider case when there is a data processing system that
initially has 42 cloud servers and 100 type 1 edge devices in
1 case, and 10 type 2 edge devices in 2 case. This scenario is
used to estimate how load balancing (PE ) determines the sys-
tem performance parameters. This scenario reveals how the
availability of edge devices and load balancing may be used
to decrease the waiting times TE and TC . By increasing the
PE , the load of edge devices ρE is increased, while the load of
cloud servers is decreased ρC . For example, by increasing the
PE from 0.1 to 0.4, it is possible to decrease TC from 200.42 s
to 136.13 s. This is limited to the fact that either the waiting
time TE ≤ 240 s criteria (in case of type 1 edge devices)
or TEB ≥ 8 h criteria (in case of type 2 edge devices) are
reached.

Spider diagrams (or radar diagrams) are well suited to
plot a multidimensional data [54], which represents many
aspects of a solution or a scenario on a two-dimensional
plane. They are used to draw the combination of difficult
to compare features in a condense manner to facilitate deci-
sion or choice. Spider diagram can be a useful tool when
discussing customer’s needs. Indeed, they represent a more
professional way to elaborate on mutual relationship between
system parameters, cost, and intensity of anticipated requests
in contrast to explaining in a style ‘‘the more you invest the
more you get’’.

Though spider diagrams in Fig. 5 and Fig. 6 are only a static
set of possible implementation scenario a calculator enabling
user to manipulate parameters could become an instrument
facilitating the decision acceptance.

By examining spider diagrams, demanding for a certain
waiting time TWcr is related to either more computational
resources on cloud or utilizing more edge devices.

FIGURE 5. Scenario C performance parameters as a function of PE, when
samsung A13 smart phones TPE = 200.4 s are used as edge devices oracle
VM cloud servers TPC = 106.9 s are used, and the following criteria are
applied TWcr = 240 s, TEB ≤ 8 h, when λ = 1000 req./h.

A service provider of the system may face the task of
optimizing the cost, waiting time and edge device’s discharge
related metrics at some expected intensity of user requests.
Since all these parameters are mutually related, the visu-
alization of typical scenarios by spider diagrams can be a
helpful reference point for making coarse decisions regarding
the number and type of edge devices, cloud servers and the
associated system costs. Fine tuning of parameters can be
done afterwards by adjusting one parameter, for example the
number of edge devices to meet the TWcr given a certain
budget.

The calculation results show how the usage of edge devices
influences the performance parameters. If the monthly cost
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TABLE 4. System configuration and performance parameters: edge devices are MacBook Air M1 notebooks, T PE = 28.03 s, oracle VM cloud servers
T PC = 106.9 s, T Wcr = 240 s, T EB ≥8 h.

FIGURE 6. Scenario C performance parameters as a function of PE, when
MacBook Air M1 notebooks TPE = 28.03 s are used as edge devices.
oracle VM cloud servers TPC = 106.9 s are used, and the following criteria
are applied TWcr = 240 s, TEB ≤ 8 h, when λ = 1000 req./h.

of a cloud server is greater than for an edge device, then the
more the edge devices are used, the less monthly cost will
be, because the load on cloud servers is reduced, but the TEB
are increased, because the data processing time on the edge
devices may be longer.

IV. CONCLUSION
A framework based on an analytical load-balancing model
was proposed to manage the broad diversity of application-
dependent factors and multidimensional criteria. The frame-
work was implemented in Python, and its application for
the grape status monitoring using resonant ultrasound spec-
troscopy is demonstrated.

It was demonstrated that it is a valuable decision-making
tool and can be effectively used for load balancing. It can opti-
mize system cost and waiting time by considering key system
implementation parameters such as the number and cost of

edge devices, the expense of cloud computing resources, the
energy efficiency of edge devices, the expected intensity of
user requests, and the priorities of requests’ distribution to
either edge devices or cloud servers. The upper limit for
total waiting time and minimum edge device operation from
battery time were always primary priority.

At fixed requests rate (scenario A) it was found that mean
load per processing device was the defining criteria for opti-
mal number of edge devices and profit. This scenario can be
used to estimate the required cloud and edge capacity.

At fixed cloud capacity (scenario B) it was found that
increasing requests rate can be handled with larger profit if
edge devices are more extensively used.

At fixed cloud and edge capacity and fixed requests rate
(scenario C) it was found that profit does not depend on
cloud-edge use ratio. The edge device operation from battery
time can be increased if cloud load portion is increased. The
utilization of edge devices for data processing acceleration
may decrease systemwaiting time in comparison to scenarios
where only cloud-hosted servers are used. Situations where
both edge devices and cloud servers are used for data pro-
cessing were investigated.

Themain taskwas to determine the optimal number of edge
devices and cloud servers concerning the total system cost,
assuming a designatedwaiting time limit is the primary objec-
tive. Additionally, energy efficiency of edge devices has been
included as a criterion, as users naturally expect edge devices
not to deplete their battery until the end of a typical workday.
For instance, if processing requests density 1000 req./h is
equally distributed for processing to edge and cloud, then it
is necessary to have 10 edge devices and 21 cloud servers,
when edge processing time 28.03 s and cloud processing time
106.9 s, and if total waiting time upper limit is 240 s, and
battery work before depletion minimum 8 h.

However, the current approach has limitations, such as
assuming static data processing request rates and overlook-
ing the impact of data transmission delays. Edge devices
deployed in environments with highly variable workloads
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may experience periods of overload or underutilization.
Although present analysis focuses on processing latency, the
delay in data transmission over networks, especially in low-
bandwidth or high-latency environments might also affect the
total waiting time. In certain use cases, this transmission delay
could outweigh the benefits of reduced processing latency at
the edge.

Future work can focus on improving the dynamic load esti-
mation, incorporating network latency, and refining power
consumption estimation techniques. A more elaborate mod-
els for power consumption estimation can be implemented,
that also consider a real-time workload variability, which
would provide a more precise assessment of battery usage
in edge devices. Additionally, more complex cloud pricing
scenarios can be explored, allowing for better optimization
of resource allocation costs in dynamic cloud environments.
These enhancements would further refine the system’s ability
to manage computational and financial resources efficiently.
Expanding the framework’s applicability across another IoT
use cases, like environment monitoring or healthcare, also is
possible.
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