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Abstract: In this paper, an improved hybrid genetic-hierarchical algorithm for the solution of the
quadratic assignment problem (QAP) is presented. The algorithm is based on the genetic search
combined with the hierarchical (hierarchicity-based multi-level) iterated tabu search procedure. The
following are two main scientific contributions of the paper: (i) the enhanced two-level hybrid
primary (master)-secondary (slave) genetic algorithm is proposed; (ii) the augmented universalized
multi-strategy perturbation (mutation process)—which is integrated within a multi-level hierarchical
iterated tabu search algorithm—is implemented. The proposed scheme enables efficient balance
between intensification and diversification in the search process. The computational experiments
have been conducted using QAP instances of sizes up to 729. The results from the experiments with
the improved algorithm demonstrate the outstanding performance of the new proposed approach.
This is especially obvious for the small- and medium-sized instances. Nearly 90% of the runs resulted
in (pseudo-)optimal solutions. Three new best-known solutions have been achieved for very hard,
challenging QAP instances.

Keywords: combinatorial optimization; heuristic algorithms; genetic algorithms; tabu search;
quadratic assignment problem

MSC: 68T20

1. Introduction

The quadratic assignment problem (QAP) [1] can be stated as follows: Given two
positive-integer quadratic matrices A =

(
aij
)

n×n, B =
(
bij
)

n×n, and a set Πn of all possible
permutations of the integers from 1 to n, find a permutation p ∈ Πn that minimizes the
following function:

z(p) =
n

∑
i=1

n

∑
j=1

aijbp(i)p(j). (1)

The quadratic assignment problem was firstly introduced by Koopmans and Beck-
mann [2] in 1957 but still attracts the attention of many researchers. There are many actual
practical applications that can be formulated as quadratic assignment problems, including
office assignment, planning a complex of buildings, design (construction) of electronic de-
vices, finding the tightest cluster, the grey-pattern problem, the turbine-balancing problem,
the arrangement of microarray layouts, configuration of an airport, scheduling parallel
production lines, and assigning runners in a relay team. (A more detailed description of
these particular applications can be found in [3].)

One of the concrete examples of the applications of the QAP is the placement of
electronic components on printed circuit boards. In this case, the entries of the matrix A are
associated with the number of connections between the pairs of components. Meanwhile,
the entries of the matrix B correspond to the distances between the fixed positions on
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the board. The permutation p = (p(1), p(2), . . . , p(n)) can then be interpreted as a
configuration for the arrangement of components in the positions, where the element
p(i) indicates the number of the position to which the i-th component is assigned. Then,
z can be thought of as the total weighted length/cost of the connections between the
components when all n components are placed into the corresponding n positions.

The QAP is also an important theoretical mathematical task. It has been proven that the
QAP is NP-hard [4]. The quadratic assignment problem can be solved exactly by using the
exact solution approaches (like branch and band algorithms [5], reformulation-linearization
techniques [6,7], or semidefinite programming [8]), but only in the cases where the problem
size is quite limited (n < 30). For this reason, the heuristic and metaheuristic algorithms
(methods) are widely applied for the approximate solution of the QAP.

Historically, the local search (LS) (also known as neighbourhood search) principle-
based algorithms were the first heuristic algorithms that were examined on the QAP in the
early 1960s [9,10]. Later, several efficient improvements of the LS algorithms for the QAP
were proposed (see, for example, [11–13]). It seems that the most efficient enhancement of
LS algorithms is breakout local search [14,15].

The other neighbourhood search principle-based class of heuristics includes the sim-
ulated annealing [16] and tabu search algorithms [17–21]. In particular, the robust tabu
search algorithm proposed by Taillard in 1991 [17] is still one of the most successful heuristic
algorithms for the QAP in terms of efficacy, simplicity, and elegance.

The population-based heuristic algorithms include many algorithms that operate
on sets of solutions, rather than single solutions. And this fact seems to be of crucial
importance for the QAP. Within this category of algorithms, genetic algorithms have been
shown to be among the most powerful heuristic algorithms for the QAP. This is especially
true for the hybrid genetic (memetic) algorithms [22–33].

Distribution algorithms and differential evolution algorithms have been estimated,
while population-based algorithms have been used to try to solve the QAP [34–36].

Several other types of heuristic algorithms (known as nature-/bio-inspired algorithms)
have also been examined: the ant colony optimization [37], particle swarm optimization [38],
artificial bee colony algorithm [39–41], hyper-heuristic method [42], electromagnetism-like
optimization [43], cat swarm optimization [44], biogeography-based optimization [45],
slime mould algorithm [46], firefly optimization algorithm [47,48], flower pollination algo-
rithm [49], teaching–learning-based optimization [50], golden ball heuristic [51], chicken
swarm optimization [52], optics-inspired optimization [53], antlion optimization algo-
rithm [54,55], water-flow algorithm [56], crow search algorithm [57], artificial electric field
algorithm [58], and Harris hawks optimization algorithm [59].

Also, some specific tailored heuristic approaches can be mentioned, e.g., [60–66].
The following are some of the actual articles related to the (meta)heuristic algorithms

for the QAP: [27,28,32,57,59,67–69].
In [27], the authors suggest a new original principle for parent selection in genetic

algorithms, which is inspired by natural biological evolutionary processes. The essence is
that parents of one gender choose mates with certain characteristics favoured over others.
This rule is quite simple, delicate, and can be utilized in many variants of genetic algorithms.

The authors of [28] propose the hybrid genetic algorithm that combines a so-called
elite genetic algorithm and tabu search procedure. The algorithm employs two sorts of elite
crossover procedures (two-exchange mutation and tabu search-based crossover), which
help balance exploitation and exploration during the search process.

In [32], the researchers investigate a special hybrid heuristic algorithm, which blends
three well-known metaheuristics, namely the scatter search, critical event tabu search, and
random key-based genetic algorithm. This scheme results in a highly competitive algorithm,
which is especially efficient for large-scale problems, providing many well-known solutions
for such problems.
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Then, [57] introduces the accelerated system for solving the QAP, which uses CUDA
programming. A program is executed on both a CPU and a graphics processing unit (GPU).
The task is divided between a CPU and a GPU. The CPU program calls the program that
runs on a GPU, where many instructions are run simultaneously.

In [59], a so-called Harris hawk optimization algorithm is proposed, which is a na-
ture (bio)-inspired heuristic optimization algorithm. Such algorithms are also known as
metaphor-based since they use various metaphors, rather than the direct, definite names.
For example, the Harris hawk optimization algorithm has its source of inspiration in the
hunting behaviour of cooperative birds (hawks). The behaviour is imitated by adopting
the corresponding mathematical formalism. In addition, the algorithm uses the classical
tabu search procedure to enhance the performance of the algorithm.

One of the most recent and effective algorithms is the so-called frequent pattern-based
search, which, in fact, is based on the breakout local search and, in addition, exploits the
information of the frequent patterns (fragments) of the solutions [67].

In [68], a greedy genetic-hybridization approach is presented. In the proposed algo-
rithm, an initial population is obtained using the best solution of the greedy algorithm.
Standard genetic operators are then applied to the population members. The resulting
solution is used as an initial assignment of the greedy algorithm. The algorithm is also
applicable to the optimal network design.

We also mention [69], which investigates the heuristic evolutionary optimization
algorithm. The algorithm is based on the data-mining ideas. The algorithm efficiently mines
the itemsets composed of frequent items and also exploits the pseudo-utility characteristic.
The algorithm balances local and global searches.

In addition, one can point out some nature-inspired algorithms (including mathematics-
inspired algorithms), which, although not straightforwardly linked to the QAP, still pos-
sess certain potentialities to be applied to this problem by employing some transforma-
tion/discretization mechanisms (transfer functions) (see, for example, [70–75]).

For more thorough discussions on the heuristic algorithms for the QAP, the reader is
referred to [76–78].

In this work, our main ambition is to further improve the performance of the genetic-
hierarchical algorithm presented in [29] by further capitalizing on the principle of hierarchy
and, at the same time, universalizing and enhancing the perturbation (mutation) mech-
anism. On top of that, we are trying to fight against the most severe drawbacks of the
heuristics algorithms, namely the slow convergence speed and stagnation of the search
processes. Overall, our genetic algorithm incorporates ideas heavily based on hierarchical
principles. Hence, this algorithm is called a “hierarchical algorithm”. (Notice that, gen-
erally, the concept of “hierarchy”—but within some other various backgrounds—is not
fundamentally new and is considered in a few works (see, for example, [79–83]).)

The scientific contribution of the paper is twofold:

• The enhanced two-level (two-layer) hybrid primary (master)-secondary (slave) ge-
netic algorithm is proposed, in particular, in the context of the quadratic assign-
ment problem;

• The augmented universalized multi-strategy perturbation (mutation process)—which
is integrated within a multi-level (k-level) hierarchical iterated tabu search algorithm
(HITS)—is implemented.

In particular, in the first stage, the outstanding quality population (super population)
is created by means of a cloned primary genetic algorithm—a secondary (slave) algorithm.
Then, in the second phase, the created population is improved by a primary (master) genetic
algorithm, which adopts the hierarchical iterated tabu search algorithm combined with the
universal, versatile, and flexible perturbation procedure.
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The paper is organized as follows. Section 2 covers the description of the improved
hybrid genetic-hierarchical algorithm (IHGHA) and its components (parts). Section 3
presents the results of the computational experiments. Section 4 completes the paper with
concluding comments.

2. An Improved Hybrid Genetic-Hierarchical Algorithm for the QAP
2.1. Preliminaries

Before describing the principle of functioning of our improved genetic-hierarchical
algorithm, we provide some (basic) definitions for the sake of more clarity.

Let p (p ∈ Πn) be a permutation and also let p(v) (v = 1, . . . , n) and p(w) (w =
1, . . . , n, v ̸= w) be two elements in the permutation p. Then, we define pv,w as follows:

pv,w(i) =


p(i), i ̸= v, w
p(v), i = w
p(w), i = v

; i = 1, . . . , n. A two-exchange neighbourhood function Θ2:

Πn → 2Πn assigns for each p ∈ Πn a set of neighbouring solutions Θ2(p) ⊆ Πn. Θ2(p)
is defined in the following way: Θ2(p) = {p′ : p′ ∈ Πn, δ(p, p′) = 2 }, where p ∈ Πn and
δ(p, p′) denote the (Hamming) distance between the solutions p and p′.

The solution pv,w can be obtained from the existing solution p by accomplishing the
pairwise interchange move ϕ(p, v, w): Πn × N × N → Πn , which swaps the vth and wth
elements in the particular solution. Thus, pv,w = ϕ(p, v, w).

Let p and pv,w be two neighbouring solutions. Then, the difference in the objective
function values ∆z(p, pv,w)—which is obtained when the two elements p(v) and p(w) of
the current permutation have been interchanged—is calculated according to this formula
(also see [84]):

∆z(p, pv,w) = z(p v,w)− z(p) = (avv − aww)
(

bp(w)p(w) − bp(v)p(v)

)
+

(avw − awv)
(

bp(w)p(v) − bp(v)p(w)

)
+

∑n
k=1,k ̸=v,w

[
(avk − awk)

(
bp(w)p(k) − bp(v)p(k)

)
+ (akv − akw)

(
bp(k)p(w) − bp(k)p(v)

)]
.

(2)

Furthermore, one can use memory (RAM) to store the values ∆z
(

p, pi,j) (i, j = 1, . . . , n),
as proposed by Frieze et al. (1989) [84] and Taillard (1991) [17]. Note that, after the
exchange of the elements p(v) and p(w), the values ∆z

(
p, pi,j) must be updated (new

values ∆′z
(

p, pi,j) are obtained) according to the following formula:

∆′z
(

p, pi,j) = ∆z
(

p, pi,j)+(
aiv − aiw + ajw − ajv

)(
bp(i)p(w) − bp(i)p(v) + bp(j)p(v) − bp(j)p(w)

)
+(

avi − awi + awj − avj
)(

bp(w)p(i) − bp(v)p(i) + bp(v)p(j) − bp(w)p(j)

)
.

(3)

If i = v, or i = w, or j = v, or j = w, then the previous formula must be applied. Thus,
the complexity of recalculating of all the values ∆z

(
p, pi,j) is O

(
n2).

Moreover, if matrix A and/or matrix B are symmetric, then formulas become simpler.
Assume that only matrix B is symmetric. Then, one can transform the asymmetric matrix
A to the symmetric matrix A′ by summing up the corresponding entries in A, i.e., a′ ij =
aij + aji, i = 1, . . . , n, j = 1, . . . , n, i ̸= j, a′ ii = aii [20,85]. The simplified formula is
as follows:

∆z(p, pv,w) = ∑n
k=1,k ̸=v,w

(
a′vk − a′wk

)(
bp(w)p(k) − bp(v)p(k)

)
. (4)
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In a similar way, Formula (3) also becomes simpler [20,85]:

∆′z
(

p, pi,j) = ∆z
(

p, pi,j)+(
a′iv − a′iw + a′jw − a′jv

)(
bp(i)p(w) − bp(i)p(v) + bp(j)p(v) − bp(j)p(w)

)
.

(5)

If i = v, i = w, j = v, j = w, then Formula (4) must be applied.
An additional time-saving trick can be used. Suppose that we dispose of three-

dimensional matrices A′′ = (a′′ lmr)n×n×n and B′′ = (b′′ stu)n×n×n. Also, let a′′ lmr = a′lr −
a′mr, and let b′′ stu = bsu − btu, l, m, r, s, t, u = 1, . . ., n. As a result, we can apply the
following effective formula for calculation of the difference in the values of the objective
function (∆z) [20,29]:

∆z(p, pv,w) = ∑n
k=1,k ̸=v,w a′′ vwkb′′ p(w)k(v)p(k). (6)

Similarly, the formula for the recalculation of the difference in the objective function
values, ∆z

(
p, pi,j), also becomes much more compact and faster [20,29]:

∆′z
(

p, pi,j
)
= ∆z

(
p, pi,j

)
+
(
a′′ ijv − a′′ ijw

)(
b′′ p(i)p(j)p(w) − b′′ p(i)p(j)p(v)

)
. (7)

2.2. (General) Structure of the Algorithm

Essentially, our genetic algorithms consist of two main parts: the primary genetic algo-
rithm (master genetic algorithm) and secondary genetic algorithm (slave genetic algorithm),
which is de facto operationalized as a clone of the primary (master) algorithm. Each of
them, in turn, incorporates the hierarchical iterated tabu search algorithm integrated with
the perturbation (mutation) procedure. The principal idea of the used algorithm is similar
to that of the hybrid genetic algorithm [29], where global explorative/diversified search is
in cooperation with the local exploitative/intensified search. The exploitative search, in par-
ticular, is performed by the iterated hierarchical tabu search procedure (see Section 2.7), and
the diversification is ensured through the enhanced perturbation (mutation) mechanism
(see Section 2.7.2).

In our genetic algorithm, the solution (permutation) elements p(1), p(2), . . . , p(n)
are directly linked to the genes of individuals’ chromosomes, so no encoding is required.
Meanwhile, the objective function value z is associated with the fitness of individuals. The
population of individuals, P, in our algorithm has a three-tuple list-like representation, i.e.,
it is organized as a structured list of size PS, where PS is the population size:

P =



〈
p(1), z(1), Ξ(1)

〉
...〈

p(k), z(k), Ξ(k)
〉

...〈
p(PS), z(PS), Ξ(PS)

〉


PS

. (8)

Every member of the population (i.e., the element of the list) appears as a triplet in
the form

〈
p(k), z(k), Ξ(k)

〉
, where k = 1, . . . , PS, p(k) (p(k) =

(
p(k)(1), . . . , p(k)(n)

)
) is the

kth solution of the population, z(k) (z(k) = z(k)
(

p(k)
)

) denotes the kth value of the objective

function corresponding to p(k), and Ξ(k) is the kth matrix that contains the pre-computed
differences in the objective function values (i.e., Ξ(k)(i, j) = ∆z

(
p(k), p(k)i,j

)
, i = 1, . . . , n− 1,

j = i + 1, . . . , n). Storing differences Ξ(k)(i, j) directly in the RAM memory ensures faster
execution of the genetic algorithm because there is no longer the need to re-compute
the difference matrix from scratch every time. So, even if the construction of the initial
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population occurs at O
(
n3) time, the resulting time complexity of the remaining genetic

algorithm is nearly proportional to O
(
n2). (Notice that memory complexity is, in our

algorithm, proportional to O
(

C× PS× n2
)

, where C denotes the initial population size
factor (coefficient), and PS is the population size (see Section 2.3). This fact raises no issues
for modern computers.)

The basic components of the genetic algorithm are as follows: (1) construction of initial
population; (2) parent selection; (3) crossover procedure; (4) improvement of the offspring
by the hierarchical iterated tabu search algorithm; (5) population replacement.

The top-level pseudocode of the genetic algorithm is provided in Algorithm 1.
Remark. If there is no population change, then the current generation is recog-

nized as an idle generation. And if the number of consecutive idle generations ex-
ceeds the predefined limit, Lidle_gen, then the genetic algorithm is restarted from a
new population.

Algorithm 1 Top-level pseudocode of the hybrid genetic-hierarchical algorithm

Hybrid_Genetic_Hierarchical_Algorithm;
// input: n—problem size, A, B—data matrices
// output: p

1 
 

p  

 

p ; 

p  ⋲ 

    if z( p       ) < z(p      ) then p ← p ; // the best found solution is memorized 

    if idle generations detected then restart from a new population 

    else obtain new population P from the union of the existing parents’ 
         population and the offspring P ∪ {p } (such that |P| = PS) 

 

 

  

 

—the best found solution
// parameters: PS—population size, G—total number of generations, DT—distance threshold, Lidle_gen—idle
generations limit,
// CrossVar—crossover operator variant, PerturbVar—perturbation/mutation variant
begin

create the initial population P of size PS;
p

1 
 

p  

 

p ; 

p  ⋲ 

    if z( p       ) < z(p      ) then p ← p ; // the best found solution is memorized 

    if idle generations detected then restart from a new population 

    else obtain new population P from the union of the existing parents’ 
         population and the offspring P ∪ {p } (such that |P| = PS) 

 

 

  

 

← GetBestMember(P); // initialization of the best so far solution
for i← 1 to G do begin // main loop

sort the members of the population P in the ascending order of the values of the
objective function;
select parents p′, p′′ ∈ P for crossover procedure;
perform the crossover operator on the solution-parents p′, p′′

and produce the offspring p′ ′ ′;
apply improvement procedure Hierarchical_Iterated_Tabu_Search
to the offspring p′ ′ ′, get the (improved) offspring p

1 
 

p  

 

p ; 

p  ⋲ 

    if z( p       ) < z(p      ) then p ← p ; // the best found solution is memorized 

    if idle generations detected then restart from a new population 

    else obtain new population P from the union of the existing parents’ 
         population and the offspring P ∪ {p } (such that |P| = PS) 

 

 

  

 

;
if z(p

1 
 

p  

 

p ; 

p  ⋲ 

    if z( p       ) < z(p      ) then p ← p ; // the best found solution is memorized 

    if idle generations detected then restart from a new population 

    else obtain new population P from the union of the existing parents’ 
         population and the offspring P ∪ {p } (such that |P| = PS) 

 

 

  

 

) < z(p

1 
 

p  

 

p ; 

p  ⋲ 

    if z( p       ) < z(p      ) then p ← p ; // the best found solution is memorized 

    if idle generations detected then restart from a new population 

    else obtain new population P from the union of the existing parents’ 
         population and the offspring P ∪ {p } (such that |P| = PS) 

 

 

  

 

) then p

1 
 

p  

 

p ; 

p  ⋲ 

    if z( p       ) < z(p      ) then p ← p ; // the best found solution is memorized 

    if idle generations detected then restart from a new population 

    else obtain new population P from the union of the existing parents’ 
         population and the offspring P ∪ {p } (such that |P| = PS) 

 

 

  

 

← p

1 
 

p  

 

p ; 

p  ⋲ 

    if z( p       ) < z(p      ) then p ← p ; // the best found solution is memorized 

    if idle generations detected then restart from a new population 

    else obtain new population P from the union of the existing parents’ 
         population and the offspring P ∪ {p } (such that |P| = PS) 

 

 

  

 

; // the best found solution is memorized
if idle generations detected then restart from a new population
else obtain new population P from the union of the existing parents’

population and the offspring P ∪ {p

1 
 

p  

 

p ; 

p  ⋲ 

    if z( p       ) < z(p      ) then p ← p ; // the best found solution is memorized 

    if idle generations detected then restart from a new population 

    else obtain new population P from the union of the existing parents’ 
         population and the offspring P ∪ {p } (such that |P| = PS) 

 

 

  

 

} (such that |P| = PS)
endfor;
return p

1 
 

p  

 

p ; 

p  ⋲ 

    if z( p       ) < z(p      ) then p ← p ; // the best found solution is memorized 

    if idle generations detected then restart from a new population 

    else obtain new population P from the union of the existing parents’ 
         population and the offspring P ∪ {p } (such that |P| = PS) 

 

 

  

 

end.

Notes. 1. The subroutine GetBestMember(·) returns the best solution for the particular
population. 2. The crossover operator is performed considering the crossover variant
parameter CrossVar. 3. The hierarchical iterated tabu search procedure is executed with
regard to the perturbation (mutation) variant parameter PerturbVar. 4. The population
management is organized bearing in mind the distance threshold value DT.

2.3. Initial Population Creation

The genetic algorithm starts with a pre-initialization stage, i.e., the construction of the
pre-initial (“primordial”) population Pp of size PS× C, where C (C ≥ 1) is a predefined
parameter (coefficient) that controls the size of the pre-initial population. Every solution
of the “primordial” population is created by using a secondary/slave genetic algorithm
(cloned master genetic algorithm) in such a way that the best-evolved solution of the slave
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algorithm becomes the current incumbent solution in the initial population. The idea of
doing so is simply to generate a superior-quality starting population.

The slave genetic algorithm uses, in turn, the greedy randomized adaptive search
procedure (GRASP) [86] for the creation of the starting solutions. These solutions are
created one at a time, such that every solution appears unique due to the random nature
of GRASP. In addition, every solution created by GRASP is subjected to improvement by
the hierarchical iterated tabu search algorithm. The process continues until

∣∣Pp
∣∣ = PS× C

solutions are constructed and improved.
After the pre-initial population is improved, the truncation (culling) of the obtained

population is performed. In particular, (C− 1)PS worst members of the primordial popu-
lation are discarded, and only PS members survive for future generations. This approach
is similar to that proposed in [87,88].

There is a special trick. In particular, if the improved solution (p

1 
 

p  

 

p ; 

p  ⋲ 

    if z( p       ) < z(p      ) then p ← p ; // the best found solution is memorized 

    if idle generations detected then restart from a new population 

    else obtain new population P from the union of the existing parents’ 
         population and the offspring P ∪ {p } (such that |P| = PS) 

 

 

  

 

) is better than the
current best-found solution, then the improved solution replaces the best-found solution.
Otherwise, it is checked if the minimum mutual distance (min

p∈P

{
δ
(

p

1 
 

p  

 

p ; 

p  ⋲ 

    if z( p       ) < z(p      ) then p ← p ; // the best found solution is memorized 

    if idle generations detected then restart from a new population 

    else obtain new population P from the union of the existing parents’ 
         population and the offspring P ∪ {p } (such that |P| = PS) 

 

 

  

 

, p
)}

) between the

new solution p

1 
 

p  

 

p ; 

p  ⋲ 

    if z( p       ) < z(p      ) then p ← p ; // the best found solution is memorized 

    if idle generations detected then restart from a new population 

    else obtain new population P from the union of the existing parents’ 
         population and the offspring P ∪ {p } (such that |P| = PS) 

 

 

  

 

and the current population solutions is greater than the predetermined
distance threshold, DT. If this is the case, then the new solution joins the population.
Otherwise, the new solution is discarded and a random solution is included instead.

Remark. The distance threshold DT is connected to the size of the problem, n, through
the following equation: DT = max{2, ⌊ϑn⌋}, where ϑ is the distance-threshold factor
(0 < ϑ ≤ 1), which is up to the user’s choice.

2.4. Parent Selection

In our genetic algorithm, the solutions’ parents are selected using a rank-based selec-
tion rule [89].

2.5. Crossover Operator

In our algorithm, the crossover operator is applied to two selected parents to produce
one offspring, which is subject to improvement by the HITS algorithm. The crossover
operator occurs at every generation; that is, the crossover probability is equal to 1. We
dispose of two types of permutation-oriented crossover operators: cohesive crossover [22]
and universal crossover [90]. The first operator is problem-dependent and adopts problem-
specific information, while the second one is of pure general nature. The parameter
CrossVar is to decide which crossover operator should be used. The computational time
complexity of the crossover operators is proportional to O

(
n2) and does not contribute

much to the overall time budget of the genetic algorithm. More details on these crossover
operators can be found in [22,90].

2.6. Population Replacement

We have, in particular, implemented a modified variant of the well-known “µ + λ”
update rule [91]. Our rule respects not only the quality of the solutions but also the distances
between solutions. The idea is to preserve the minimum distance threshold, DT, between
population members. The new replacement rule is formally denoted as “µ + λ, ε”, where
ε = DT. (This rule is also used for the initial population construction (see Section 2.3)). So, if
the minimum (mutual) distance between the newly obtained offspring and the individuals
in the population is less than DT, then the offspring is omitted. (The exception is the
situation where the offspring is better than the best individual population.) Otherwise, the
offspring enters the current population, but only under the condition that it is better than
the worst population member. The worst individual is removed in this case. Also, if the
new offspring is better than the best population individual, then the offspring replaces,
in particular, the best individual population. This replacement strategy ensures that only
individuals who are diverse enough survive for further generations.
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2.7. Improvement of Solutions—Hierarchical Iterated Tabu Search

Every produced offspring is subject to improvement by the hierarchical iterated tabu
search, which can also be thought of as a multi-layered tabu search procedure where the
basic idea is the cyclic (multiple) reuse of the tabu search algorithm. A similar idea of
the multi-reuse of iterative/local searches was utilized in some other algorithms (like
the hierarchical iterated local search [79], iterated tabu search [92], and multilevel tabu
search [93]).

The k-level (k-layer) hierarchical iterated tabu search algorithm consists of three main
ingredients: (1) call of the (k− 1)-level hierarchical iterated tabu search procedure; (2) selec-
tion (acceptance) of the solution for perturbation; (3) perturbation of the selected solution.
The “edge case” is k = 0, which means the self-contained and autonomous TS algorithm.
In most cases, k = 1 or k = 2 are enough.

The perturbed solution serves as an input for the (k− 1)-level TS procedure. This
procedure returns an optimized solution, and so on. The solution acceptance rule is very
simple: We always accept the recently found improved solution.

The overall iterative process continues until a predefined number of iterations have
been performed (see Algorithm 2). The best-found solution in the course of this process is
regarded as the final solution of HITS. The resulting time complexity of HITS is proportional
to O

(
n2), although the proportionality coefficient may be quite large. The overall com-

plexity of the IHGHA algorithm can be formulated as O
(
C× PS× n3 + G×Q× τ × n2),

where G × Q × τ ≫ C × PS; C is the initial population size factor, PS is the popula-
tion size, G is the number of generations, Q is the number of iterations of hierarchi-
cal iterated tabu search, and τ is the number of iterations of the self-contained tabu
search procedure. (The concrete values of C, PS, G, Q, and τ can be found in Table 1
in Section 3.1.)

Algorithm 2 Pseudocode of the multi-level (k-level) hierarchical iterated tabu search algorithm

Hierarchical_Iterated_Tabu_Search;
// input: p—current solution
// output: p

1 
 

p  

 

p ; 

p  ⋲ 

    if z( p       ) < z(p      ) then p ← p ; // the best found solution is memorized 

    if idle generations detected then restart from a new population 

    else obtain new population P from the union of the existing parents’ 
         population and the offspring P ∪ {p } (such that |P| = PS) 

 

 

  

 

—the best found solution
// parameter: k—current level (k > 0), Q⟨k⟩, Q⟨k− 1⟩, . . ., Q⟨0⟩—numbers of iterations
begin

p

1 
 

p  

 

p ; 

p  ⋲ 

    if z( p       ) < z(p      ) then p ← p ; // the best found solution is memorized 

    if idle generations detected then restart from a new population 

    else obtain new population P from the union of the existing parents’ 
         population and the offspring P ∪ {p } (such that |P| = PS) 

 

 

  

 

← p;
for q⟨k⟩ ← 1 to Q⟨k⟩ do begin

apply k − 1-level hierarchical iterated tabu search algorithm to p and get p∇;
if z(p∇) < z(p

1 
 

p  

 

p ; 

p  ⋲ 

    if z( p       ) < z(p      ) then p ← p ; // the best found solution is memorized 

    if idle generations detected then restart from a new population 

    else obtain new population P from the union of the existing parents’ 
         population and the offspring P ∪ {p } (such that |P| = PS) 

 

 

  

 

) then p

1 
 

p  

 

p ; 

p  ⋲ 

    if z( p       ) < z(p      ) then p ← p ; // the best found solution is memorized 

    if idle generations detected then restart from a new population 

    else obtain new population P from the union of the existing parents’ 
         population and the offspring P ∪ {p } (such that |P| = PS) 

 

 

  

 

← p∇; // the best found solution is memorized
if q⟨k⟩ < Q⟨k⟩ then begin

p← Candidate_Acceptance(p∇, p

1 
 

p  

 

p ; 

p  ⋲ 

    if z( p       ) < z(p      ) then p ← p ; // the best found solution is memorized 

    if idle generations detected then restart from a new population 

    else obtain new population P from the union of the existing parents’ 
         population and the offspring P ∪ {p } (such that |P| = PS) 

 

 

  

 

);
apply perturbation process to p

endif
endfor

end.

Note. The tabu search procedure (see Algorithm 3) is in the role of the 0-level (i.e., the
self-contained) tabu search algorithm.
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Algorithm 3 Pseudocode of the tabu search algorithm

Tabu_Search;
// input: n—problem size,
// p—current solution, Ξ—difference matrix
// output: p•—the best found solution (along with the corresponding difference matrix)
// parameters: τ—total number of tabu search iterations, h—tabu tenure, α—randomization coefficient,
// Lidle_iter—idle iterations limit, HashSize—maximum size of the hash table
begin

clear tabu list TabuList and hash table HashTable;
p• ← p; q← 1; q′ ← 1; secondary_memory_index← 0; improved← FALSE;
while (q ≤ τ) or (improved = TRUE) do begin // main cycle

∆′min ← ∞; ∆′′min ← ∞; v′ ← 1; w′ ← 1;
for i← 1 to n − 1 do

for j← i + 1 to n do begin // n(n − 1)/2 neighbours of p are scanned
∆← Ξ(i, j);
forbidden← iif(((TabuList(i, j) ≥ q) or (HashTable((z(p) + ∆) mod HashSize) = TRUE) and

(random() ≥ α)), TRUE, FALSE);
aspired← iif(z(p) + ∆ < z(p•), TRUE, FALSE);
if ((∆ < ∆′min) and (forbidden = FALSE)) or (aspired = TRUE) then begin

if ∆ < ∆′min then begin ∆′′min := ∆′min; v′′ := v′; w′′ := w′; ∆′min := ∆; v′ := i; w′ := j endif
else if ∆ < ∆′′min then begin ∆′′min := ∆; v′′ := i; w′′ := j endif

endif
endfor;

if ∆′′min < ∞ then begin // archiving second solution, Ξ, v′′, w′′

secondary_memory_index← secondary_memory_index + 1; SM(secondary_memory_index)← p, Ξ, v′′, w′′

endif;
if ∆′min < ∞ then begin // replacement of the current solution and recalculation of the values of Ξ

p←ϕ(p, v′, w′);
recalculate the values of the matrix Ξ;
if z(p) < z(p•) then begin p• ← p; q′ ← q endif; // the best so far solution is memorized
TabuList(v′, w′)← q + h; // the elements p(v′), p(w′) become tabu
HashTable((z(p) + ∆′min) mod HashSize)← TRUE

endif;
improved← iif(∆′min < 0, TRUE, FALSE);
if (improved = FALSE) and (q − q′ > Lidle_iter) and (q <τ − Lidle_iter) then begin

// retrieving solution from the secondary memory
random_access_index← random(β × secondary_memory_index, secondary_memory_index);

p, Ξ, v′′, w′′ ←SM(random_access_index);
p←ϕ(p, v′′ , w′′ );
recalculate the values of the matrix Ξ;
clear tabu list TabuList;
TabuList(v′′, w′′)← q + h; // the elements p(v′′), p(w′′) become tabu
q′ ← q

endif;
q← q + 1

endwhile
end.

Notes. 1. The immediate function iif(x, y1, y2) returns y1 if x = TRUE, otherwise
it returns y2. 2. The function random() returns a pseudo-random number uniformly
distributed in [0, 1]. 3. The function random(x1, x2) returns a pseudo-random number in
[x1, x2]. 4. The values of the matrix Ξ are recalculated according to the formula (7). 5. β
denotes the random access parameter (we used β = 0.8).



Mathematics 2024, 12, 3726 10 of 25

2.7.1. Tabu Search Algorithm

The 1-level HITS algorithm (the ITS algorithm) uses a self-contained tabu search (TS)
procedure. It is this procedure that is wholly responsible for the direct improvement of
a particular solution and is in the role of the intensification of the search process. Briefly
speaking, the TS procedure analyses the whole neighbourhood of the incumbent solution
and accepts the non-tabu (i.e., non-prohibited) move that most improves (least degrades)
the objective function. In order to avoid the cycling process, the return to the recently
visited solutions is forbidden for some time (tenure).

Going into more detail, the tabu list (list of prohibitions), T, is operationalized as
a matrix of size n × n, where n is the problem size. Suppose that in the course of the
algorithm, the v-th and w-th elements in the permutation p have been interchanged. Then,
the tabu list (matrix) entry tvw memorizes the current iteration number, q (q ≥ 1), plus
the tabu tenure, h (h ≥ 1), i.e., the number of the future iteration starting at which the
corresponding elements may again be interchanged. (Thus, tvw = q + h. Of course, initially,
all the values of T are equal to zero. The value of h depends on the problem size, n (we have
used the values between h = ⌊0.05n⌋ and h = ⌊1.0n⌋).) We also use the hash table, HT. So,
the formalistic tabu criterion, TC, can specifically be defined as provided in this expression:

TCij =

{
TRUE,

(
tij ≥ q

)
OR

(
HT
((

z(p) + ∆z
(

p, pi,j) MOD HTS
))

= TRUE
)

FALSE, otherwise
, where p

is the current solution, i, j are the element indices (i = 1, . . . , n− 1, j = i + 1, . . . , n), and
HTS denotes the hash table size. It should be noted that, in our algorithm, the tabu
status is disregarded at random moments with a (very) small probability. This strategy
enables an increase in the number of non-prohibited solutions and does not suppress the
search directions too much. In this case, the modified tabu criterion, TC‡, is defined in the

following way: TC‡
ij =

{
TRUE,

(
tij ≥ q

)
AND (ς ≥ α)

FALSE, otherwise
, where ς is a uniform random

real number within the interval [0, 1], α (α ∈ (0, 1)) denotes the randomization parameter
(we used α = 0.01).

The aspiration criterion, AC, is used alongside the tabu criterion. This means that
the tabu status is ignored if the predefined condition is satisfied. In particular, the cur-
rently attained solution appears better than the best solution found so far. The formal-
ized aspiration criterion, AC, is defined according to the following equation: ACij ={

TRUE, z(p) + ∆z
(

p, pi,j) < z∗

FALSE, z(p) + ∆z
(

p, pi,j) ≥ z∗
, where z∗ denotes the best value of the objective func-

tion found so far.
Having the tabu criterion and aspiration criterion defined, a move

(acceptance) criterion, MC, is defined as follows: MCij ={
TRUE,

((
z(p) + ∆z

(
p, pi,j) < z•

)
AND

(
TC‡

ij = FALSE
) )

OR
(

ACij = TRUE
)

FALSE, otherwise
,

where z• denotes the minimum value of the objective function found at the current it-
eration. (At the beginning, z• = ∞(max integer).)

The best move is determined by the use of the following formula: (v, w) =
argmin

i,j

{
MCij = TRUE

}
, where p is the current solution, i = 1, . . . , n− 1, j = i + 1, . . . , n.

More to this, our TS algorithm utilizes an additional memory—a secondary memory,
SM (a similar approach is used in [94]). The purpose of using this memory is to archive
high-quality solutions, which, although they are evaluated as very good, are not selected.
Thus, if the best solution stays unchanged for more than Lidle_iter = ⌊γτ⌋ iterations, then
the entire tabu list is wiped out and the search is reset to one of the “second” solutions
in SM. (Here, τ denotes the number of iterations of the TS algorithm, and γ is an idle
iterations limit factor such that 1 ≤ ⌊γτ⌋ ≤ τ.)

The pseudo-code of the tabu search algorithm is shown in Algorithm 3.
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Remark 1. The TS procedure is finished as soon as the total number of TS iterations, τ, have
been executed.

Remark 2. After finishing the tabu search procedure, the obtained solution is subjected to perturba-
tion, which is described in the next section.

2.7.2. Perturbation (Mutation) Process

Roughly speaking, the perturbation is a stochastic, smaller, or larger move, or con-
secutive moves within a particular neighbourhood. The well-known examples of per-
turbations include classical random swap moves (shuffling) and complex destruction
(-reconstruction) moves.

It is strongly believed that the perturbation component of the iterative heuristic al-
gorithms has a very significant impact on the overall efficacy of these algorithms. This
component constitutes one of the crucial factors in revealing new, undiscovered regions
and directions in the solution space during the course of the search process, and this fact
is acknowledged in several important research works in prestigious sources [95–106]. For
example, in [96], it is ascertained that “perturbation is an effective strategy used to jump
out of a local optimum and to search a new promising region”. In [97], it is confirmed that
perturbations can really help escape traps in (deep) local optima, which can occur in tabu
search algorithms. A combination of several perturbation schemes was also tried [99–104].
For example, authors of [102,103] use both weak perturbations and strong perturbations
because it was observed that weak perturbations are not sufficient for the algorithms to
continue their search successfully. Therefore, the authors propose employing strong per-
turbations to jump out of local optima traps and bring the search to unexplored, distant
regions in the search space. In [105], the authors use another term (“shake procedure”) for
the perturbation procedure, but the essence remains the same.

The perturbation is characterized in terms of a strength (mutation rate) parameter—denoted
as ξ—which may be static or dynamic, and which can be defined as the number of moves
during the perturbation process. This parameter is, in fact, the most influential quantitative
factor in the perturbation process, and the size of perturbation strength, ξ, greatly affects
the search progress. The larger the value of ξ, the larger number of elements is affected in
the perturbation process (the more disrupted element becomes the solution, and the larger
element is the distance between an unaffected solution and a permuted one), and vice
versa. However, perturbation strength that is too large will cause the random–restart-like
search. Meanwhile, perturbation strength that is too small will not be able to jump out of
local optima, or will simply fall into a cyclic process [106].

Our perturbation process is, therefore, adaptive. It is adaptive in the sense that the
perturbation strength depends on the particular problem (instance) size. That is, instances of
different sizes will have different perturbation strengths. In order to adapt the perturbation
strength to the instances of different sizes, the actual perturbation strength, ξ, is set to
max{2, ⌊ωn⌋}, where ω (0 < ω ≤ 1) is the perturbation strength factor. It is obvious that
2 ≤ ξ ≤ n.

Regarding the formal definition of the perturbation procedure, it can be described
by using a two-tuple operator ϕ(p, ξ): Πn × N → Πn , such that, if p∼ = ϕ(p, ξ), then
p∼ ∈ Πn and p∼ ̸= p. So, ϕ(p, ξ) transforms the incumbent solution p into a new solution
p∼ from the neighbourhood Θξ(p), such that δ(p, p∼) = δ(p, ϕ(p)) = ξ.

In our genetic algorithm, the perturbation process is integrated within the hierar-
chical iterated tabu search algorithm. In particular, the perturbation is applied to a
chosen—improved—solution, which is picked in accordance with the predetermined
candidate solution-acceptance rule. (In our algorithm, we used two rules: (1) accept every
new (last) improved solution; (2) accept the best-so-far-found solution.) The permuted
solution serves as an input for the tabu search procedure.

We dispose two main sorts of perturbation procedures: (1) random perturbation,
(2) quasi-greedy (greedy-random) perturbation. In turn, two types of random perturba-
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tions are proposed: (i) uniform (steady) random perturbation; (ii) Lévy perturbation. In
both cases, the perturbation process is based on the random pairwise interchanges of
the elements of the permutation. So, in the first case, the value of the perturbation rate
factor ω is fixed (immutable) (ω = const). Meanwhile, in the second case, the perturba-
tion rate factor ω follows the Lévy distribution law [107,108]. In this case, the factor ω

is as follows: ω(i) = wrap
(

ω(i−1) + L(η)
)

, where i denotes the current iteration number,

ω(i) refers to the perturbation rate factor at ith iteration, ω(0) is from the interval (0, 1] ,
and the function (operator) wrap(·) “wraps” the particular number within the interval
(0, 1] . L(η) (step size) is calculated using Lévy distribution. It can be evaluated using
the following formula: L(η) = u

v1/η , where u and v are zero mean Gaussian random

variables of variances σ and 1. Here, σ =

(
Γ(1+η)sin( ηπ

2 )
Γ
(

1+η
2

)
η2(η−1)/2

)1/η

, where η is a parameter

(we used η = 1.5) [109,110]. Γ(·) is a Gamma function that can practically be expressed

as Γ(x) ≈
√

2π
x

(
1
e

(
x + 1

12x− 1
10x

))x
[111]. Note that all random perturbations are quite

aggressive and vigorous and introduce a considerable extent of diversification to the
search process.

We have also designed three variants of the quasi-greedy (greedy-random) perturba-
tions. All of them are based on “softly” (partially) randomized tabu search, where the tabu
search process is intertwined with the random moves (the terms “tabu search-driven per-
turbation” and “tabu shaking” [98] can also be used). The tabu-based perturbation is very
similar to the ordinary tabu search procedure. Two solutions—the best available non-tabu
solution and the second-best non-tabu solution—are found by exploring the whole neigh-
bourhood of the current solution. After this, only exactly one of these solutions is accepted
with the probability, called switch probability, Ps (Ps ∈ (0, 1)), where the precise value of Ps
is assigned by the user. The following are the three distinct particular variants: (1) Ps = 0.1
(quasi-greedy perturbation 1); (2) Ps = 0.5 (quasi-greedy perturbation 2); (3) Ps = 0.9
(quasi-greedy perturbation 3). Notice that the tabu-based perturbations are rather weak
and allow for a small amount of diversification. Still, they are quite promising because they
take the solutions’ quality into consideration by avoiding too much deterioration of the
solutions.

All the above-mentioned five perturbation procedures can be juxtaposed in many
different ways to achieve the most relevant balance between exploration and exploitation
in the search process. We argue that these procedures are among the most influential and
sensitive factors for the efficiency of our genetic algorithm (as can be seen in the next section).
The top-level pseudocode (in Backus–Naur-like syntax form) of the perturbation process
is presented in Algorithm 4, which is a template for a family of multi-type perturbation
procedures. It can be perceived that there altogether exists at least 92 different potential
variations of Algorithm 4: 5 + 2× 3 + 3× 2 + 2× 3× 2 = 29 variations if Nperturb = 1
and 3 + 2× 3 + 2× 3 + 3× 2 + 3× 2 + 2× 3× 2 + 2× 3× 2 + 2× 3× 2 = 63 variations
if Nperturb > 1 (also see Table A1 in Appendix A). So, this indeed offers a very large
degree of flexibility and versatility to the perturbation process, and the researchers can
choose a variation that suits their individual demands to the highest level. Note that such
an approach is in connection to what is known as multi-strategy algorithms [112] and
automatic design of algorithms (see, for example, [113,114]).
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Algorithm 4 High-level (abstract) pseudocode of the universalized multi-type (multi-strategy) perturbation procedure

Universalized_Multi-Type_Perturbation;
// input: p—current solution
// output: p ∼—(best) obtained perturbed/reconstructed solution
// parameters: ω—perturbation strength (mutation rate) factor, Nperturb—number of perturbation iterations
// PerturbVar—perturbation variant
begin

p

1 
 

p  

 

p ; 

p  ⋲ 

    if z( p       ) < z(p      ) then p ← p ; // the best found solution is memorized 

    if idle generations detected then restart from a new population 

    else obtain new population P from the union of the existing parents’ 
         population and the offspring P ∪ {p } (such that |P| = PS) 

 

 

  

 

← EMPTY_SOLUTION;
[apply uniform random perturbation|Lévy perturbation; get permuted solution p∼;

p← p∼;]
for i← 1 to Nperturb do begin

[apply uniform random perturbation|Lévy perturbation; get permuted solution p∼;
p← p∼;]

[apply quasi-greedy perturbation 1|2|3; get permuted solution p∼;
memorize best permuted solution as p

1 
 

p  

 

p ; 

p  ⋲ 

    if z( p       ) < z(p      ) then p ← p ; // the best found solution is memorized 

    if idle generations detected then restart from a new population 

    else obtain new population P from the union of the existing parents’ 
         population and the offspring P ∪ {p } (such that |P| = PS) 

 

 

  

 

;]
[apply uniform random perturbation|Lévy perturbation; get permuted solution p∼;

p← p∼]
endfor;
[apply uniform random perturbation|Lévy perturbation get permuted solution p∼;]
if p

1 
 

p  

 

p ; 

p  ⋲ 

    if z( p       ) < z(p      ) then p ← p ; // the best found solution is memorized 

    if idle generations detected then restart from a new population 

    else obtain new population P from the union of the existing parents’ 
         population and the offspring P ∪ {p } (such that |P| = PS) 

 

 

  

 

is not EMPTY_SOLUTION then p∼← p

1 
 

p  

 

p ; 

p  ⋲ 

    if z( p       ) < z(p      ) then p ← p ; // the best found solution is memorized 

    if idle generations detected then restart from a new population 

    else obtain new population P from the union of the existing parents’ 
         population and the offspring P ∪ {p } (such that |P| = PS) 

 

 

  

 

end.

Notes. 1. The uniform random perturbation and Lévy perturbation procedures
are applied to the incumbent solution p considering the particular perturbation strength
(mutation rate) factor ω. Remark. 2. All the scenarios of Algorithm 4 are managed by using
the switch parameter PerturbVar.

3. Computational Experiments
3.1. Experiment Setup

The improved hybrid genetic-hierarchical algorithm is coded by using C# program-
ming language. The computational experiments have been conducted using a x86 series
personal computer with Intel 3.1 GHz 4 cores processor, 8 GB RAM, and 64-bit MS Win-
dows operating system. No parallel processing is used, and only one core is assigned to a
separate algorithm.

In the experiments, we have used the test (benchmark) data instances from the elec-
tronic public library of the QAP instances—QAPLIB [115,116], as well as the papers by
De Carvalho et al. (2006) [117] and Drezner et al. (2005) [118] (see also [119]). (The best-
known solutions are from QAPLIB and [26,27,32,119–123].) Overall, 140 data instances
were examined. The sizes of the instances vary between 10 and 729.

As the main algorithm quantitative performance criteria, we adopt the average de-
viation (θ) of the objective function and the number of best-known (pseudo-optimal)
found solutions (Nbest). The average deviation is calculated by the following formula:
θ = z−BKV

BKV × 100[%], where z is the average objective function value and BKV denotes
the best-known value of the objective function. The average deviation and the number
of best-known solutions are calculated over R independent runs of the algorithm (where
R = 10).

At every separate run, the algorithm with the fixed set of control parameters is applied
to the particular benchmark data instance. Each time, the genetic algorithm is starting from
a new, distinct random initial population. The execution of the algorithm is terminated if
the total number of generations, G, has been reached, or if the best-known (pseudo-optimal)
solution has been found.

The particular values of the control parameters used in the genetic algorithm are
shown in Table 1.
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Table 1. Values (ranges of values) of the control parameters of the improved hybrid genetic algorithm
used in the experiments.

Parameters Values Remarks

Population size, PS [2, 40]
Initial population size factor, C [2, 4] C ≥ 1

Number of generations, G [1, 100]
Distance threshold, DT max{2, ⌊0.5n⌋} 2 ≤ DT ≤ n

Idle generations limit, Lidle_gen max{2, ⌊0.05G⌋}
Total number of iterations of hierarchical iterated tabu search, Q [1, 1000] Q = Q(1) ×Q(2) × . . .

Number of iterations of tabu search, τ [1, 500]
Tabu tenure, h [⌊0.1n⌋, ⌊1.0n⌋] h > 0

Randomization coefficient for tabu search, α 0.01 0 ≤ α < 1
Idle iterations limit, Lidle_iter max{3, ⌊0.5τ⌋} 0 < Lidle_iter ≤ τ

Perturbation (mutation) rate factor, ω [0.1, 0.9] 0 < ω ≤ 1
Switch probability, Ps 0.1|0.5|0.9 0 < Ps < 1

Perturbation variant (variation), PerturbVar 1.92
Number of runs of the algorithm, R 10

3.2. Main Results: Comparison of Algorithms and Discussion

The results of the conducted experiments are presented in Table 2. In this table, we
provide the following information: BKV—best-known value of the objective function,
θ—average deviation of the objective function, Time—the average time (CPU time) per one
run of the algorithm.

These results were taken by properly adjusting the most suitable variations of the
perturbation process (the sensitivity of results on the variations of perturbation procedure
obtained in the preliminary experiments can be observed in Figure A1 in Appendix A—the
represented results indicate that the performance of IHGHA heavily depends on pertur-
bation process). Only the best-attained selected results are presented in Table 2, while the
results of preparatory experimentation are omitted for convenience and brevity’s sake. It
can be viewed that the results from Table 2 evidently demonstrate the excellent performance
and reliability of the proposed genetic algorithm from both the quality of solutions and the
computational resources point of view.

Table 2. Results of IHGHA for the set of 140 instances of QAPLIB [115–117,119].

Instance BKV ¯
θ Time (s) Instance BKV ¯

θ Time (s)

bl36 3296 0.000 7.608 sko100b 153,890 0.000 217.000
bl49 4548 0.000 649.900 sko100c 147,862 0.000 347.800
bl64 5988 0.000 1650.000 sko100d 149,576 0.000 346.500
bl81 7532 0.000 50,470.000 sko100e 149,150 0.000 315.700
bl100 9256 0.099 60,740.000 sko100f 149,036 0.000 591.900
bl121 11,396 0.126 125,300.000 ste36a 9526 0.000 0.245
bl144 13,432 0.229 178,300.000 ste36b 15,852 0.000 0.048

chr25a 3796 0.000 1.744 ste36c 8,239,110 0.000 0.078
ci36 168,611,971 0.000 1.175 tai10a 135,028 0.000 0.003
ci49 236,355,034 0.000 4.586 tai10b 1183,760 0.000 0.002
ci64 325,671,035 0.000 46.110 tai12a 224,416 0.000 0.003
ci81 427,447,820 0.000 236.500 tai12b 39,464,925 0.000 0.003

ci100 523,146,366 0.000 4562.000 tai15a 388,214 0.000 0.006
ci121 653,409,588 0.000 117,300.000 tai15b 51,765,268 0.000 0.005
ci144 794,811,636 0.003 199,400.000 tai17a 491,812 0.000 0.008
dre15 306 0.000 0.003 tai20a 703,482 0.000 0.103
dre18 332 0.000 0.028 tai20b 122,455,319 0.000 0.008
dre21 356 0.000 0.033 tai25a 1167,256 0.000 0.226
dre24 396 0.000 0.125 tai25b 344,355,646 0.000 0.031
dre28 476 0.000 0.393 tai27e1 2558 0.000 0.114
dre30 508 0.000 0.629 tai27e2 2850 0.000 0.207
dre42 764 0.000 6.351 tai27e3 3258 0.000 0.075
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Table 2. Cont.

Instance BKV ¯
θ Time (s) Instance BKV ¯

θ Time (s)

dre56 1086 0.000 53.610 tai27e4 2822 0.000 0.089
dre72 1452 0.000 160.000 tai27e5 3074 0.000 0.072
dre90 1838 0.000 1341.000 tai30a 1818,146 0.000 0.261
dre110 2264 0.000 7458.000 tai30b 637,117,113 0.000 0.117
dre132 2744 0.000 51,840.000 tai35a 2422,002 0.000 1.392
els19 17,212,548 0.000 0.009 tai35b 283,315,445 0.000 0.492

esc32a 130 0.000 0.119 tai40a 3139,370 0.000 963.200
esc32b 168 0.000 0.009 tai40b 637,250,948 0.000 0.395
esc32c 642 0.000 0.003 tai45e1 6412 0.000 0.604
esc32d 200 0.000 0.006 tai45e2 5734 0.000 0.797
esc32e 2 0.000 0.002 tai45e3 7438 0.000 0.839
esc32f 2 0.000 0.003 tai45e4 6698 0.000 0.863
esc32g 6 0.000 0.002 tai45e5 7274 0.000 0.504
esc32h 438 0.000 0.006 tai50a 4938,796 0.000 2704.000
esc64a 116 0.000 0.019 tai50b 458,821,517 0.000 3.875
esc128 64 0.000 0.178 tai60a 7,205,962 0.000 8965.000
had20 6922 0.000 0.008 tai80a 13,499,184 0.153 68,420.000
kra30a 88,900 0.000 0.175 tai100a 21,043,560 0.201 97,600.000
kra30b 91,420 0.000 0.278 tai60b 608,215,054 0.000 4.632
kra32 88,700 0.000 0.077 tai64c 1,855,928 0.000 0.019

lipa20a 3683 0.000 0.008 tai75e1 14,488 0.000 18.710
lipa20b 27,076 0.000 0.002 tai75e2 14,444 0.000 19.480
lipa30a 13,178 0.000 0.030 tai75e3 14,154 0.000 23.590
lipa30b 151,426 0.000 0.008 tai75e4 13,694 0.000 34.270
lipa40a 31,538 0.000 0.184 tai75e5 12,884 0.000 17.400
lipa40b 476,581 0.000 0.017 tai80b 818,415,043 0.000 23.860
lipa50a 62,093 0.000 0.373 tai100b 1,185,996,137 0.000 66.760
lipa50b 1,210,244 0.000 0.050 tai125e1 35,426 0.000 1610.000
lipa60a 107,218 0.000 3.647 tai125e2 36,178 0.000 2156.000
lipa60b 2,520,135 0.000 0.137 tai125e3 30,498 0.000 1414.000
lipa70a 169,755 0.000 4.485 tai125e4 33,084 0.000 2283.000
lipa70b 4,603,200 0.000 0.212 tai125e5 37,210 0.000 2299.000
lipa80a 253,195 0.000 18.550 tai150b 498,896,643 0.000 2384.000
lipa80b 7,763,962 0.000 0.499 tai343e1 141,048 0.098 13,110.000
lipa90a 360,630 0.000 72.840 tai343e2 148,584 0.112 12,980.000
lipa90b 12,490,441 0.000 0.746 tai343e3 142,092 0.232 13,070.000
nug28 5166 0.000 0.039 tai343e4 152,966 0.134 13,440.000
nug30 6124 0.000 0.075 tai343e5 139,114 0.143 13,280.000
rou20 725,522 0.000 0.064 tai729e1 416,260 0.901 112,300.000
scr20 110,030 0.000 0.017 tai729e2 422,570 0.899 111,900.000
sko42 15,812 0.000 0.415 tai729e3 405,004 0.945 112,400.000
sko49 23,386 0.000 5.763 tai729e4 412,910 0.929 113,500.000
sko56 34,458 0.000 5.620 tai729e5 418,018 0.980 112,000.000
sko64 48,498 0.000 6.424 tho30 149,936 0.000 0.056
sko72 66,256 0.000 25.500 tho40 240,516 0.000 2.948
sko81 90,998 0.000 65.390 tho150 8,133,398 0.000 73,000.000
sko90 115,534 0.000 170.200 wil50 48,816 0.000 2.839

sko100a 152,002 0.000 254.200 wil100 273,038 0.000 548.600

Notes. Time denotes the average CPU time per one run. 123 runs succeeded in finding (pseudo-) optimal solutions
with 100% success rate.

Regarding the comparison of our algorithm and other heuristic algorithms for the
QAP, it can be seen, first of all, that our results (see Table 2) are obviously better than those
reached in the previous version of the hybrid genetic-hierarchical algorithm (see Table 9
in [29]).

We have also compared our algorithm and the other state-of-the-art heuristic algo-
rithms for the QAP, in particular, the frequent pattern-based search algorithm [67] and the
newest elaborated versions of the hybrid genetic algorithm [27,118]. The results of compar-
isons are shown in Tables 3–6. As can be seen, these results again illustrate the superior
efficacy of IHGHA. It appears that the results are seemingly in our favour with respect to
all the other competitors considered here. This is very evident in our algorithm’s run times,
especially for the small- and medium-scaled problems. (Notice that the difference in run
time between algorithms can exceed a factor of 100 for some instances; see, for example,
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the results of comparison of IHGHA and HGA for the instances tai27e∗, tai45e∗, tai75e∗,
and tai125e∗.)

In the final analysis, our main observations are as follows:

1. Based on Table 2, we were able to achieve 100% success rate for almost all examined
instances (in particular, for 123 instances out of 140). These instances are solved
to (pseudo-)optimality within very reasonable computation times, which are, to
our knowledge, record-breaking in many cases. The exception is only a handful of
instances (namely, bl100, bl121, bl144, ci144, tai80a, tai100a, tho150, tai343e∗, and
tai729e∗). Among these instances, the instances bl100, bl121, bl144, tai100a, tai343e∗,
and tai729e∗ are overwhelmingly difficult for the heuristic algorithms and still need
new revolutionizing algorithmic solutions.

2. The best-known solution was, in total, found in 1253 runs out of 1400 runs (89.5%
of the runs). We also found the best-known solution at least once out of 10 runs
for 129 instances out of 140 (92.14% of the instances). And we achieved an average
deviation of less than 0.1% for 127 instances out of 140 (90.71% of the instances). The
cumulative average deviation over 140 instances is equal to 0.044%.

3. On top of this, we were successful in achieving three new best-known solutions for
the instances bl100, bl121, and bl144, which are presented in Tables 7–9.

Overall, the results from Tables 2–9 demonstrate that our algorithm is quite successful
with respect to the three essential aspects: (i) effectiveness in obtaining the zero percentage
average deviation of the yielded solutions for most of the examined problems; (ii) ability to
reaching out for the (pseudo-)optimal or near-optimal solutions within extremely small
running times for the small- and medium-scaled instances; (iii) potential to achieving the
best-known/record-breaking solutions for the hard instances. Overall, it could be argued
that the obtained results confirm the usefulness of the proposed two-layer architecture
of the hybrid genetic algorithm and the relevance of our multi-type perturbation process,
which is integrated within the hierarchical tabu search algorithm and which seems to be
very well-suited for our hybrid genetic algorithm.

It should be noted that there is still room for further improvements. In this regard, the
parameter adjustment/calibration is one of the key factors in obtaining the increased effi-
cacy of the algorithm. In this respect, two main ways are manual and automatic calibration.

In the first case, the designer’s and/or user’s acquired experience and competence play
an extremely important role. On the other hand, the determination of the most sensitive
and influential parameters is also of the highest importance.

As a representative example, we demonstrate how, in our case, the performance of the
algorithm is increased by simply manipulating the number of iterations of the algorithm.
The results are presented in Figure A2 in Appendix A.

Regarding the automatic parameter adaptation, we believe that this could be one of
the very promising future research directions.

Last but not least, the performance of IHGHA can be improved even more by applying
an elementary, straightforward approach of parallelization in a distributed-like manner.
Where autonomous, independent clones of the algorithm are assigned to separate cores of
the computer. So, instead of running a single copy of the algorithm R times, the algorithm
is run only 1 time on R cores (with different values of the random number generator’s
seed). The anticipated effect is a decrease in the total run time by a factor of R.
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Table 3. Comparison of the results of IHGHA and frequent pattern-based search (FPBS) algorithm [67]
(part I, part II).

(I)

Instance BKV
IHGHA FPBS

¯
θ Time (s) ¯

θ Time (s)

sko72 66,256 0.000(10) 25.500 0.000(10) 288.000
sko81 90,998 0.000(10) 65.390 0.000(10) 198.000
sko90 115,534 0.000(10) 170.200 0.010(n/a) 144.000

sko100a 152,002 0.000(10) 254.200 0.000(10) 510.000
sko100b 153,890 0.000(10) 217.000 0.000(10) 348.000
sko100c 147,862 0.000(10) 347.800 0.000(10) 522.000
sko100d 149,576 0.000(10) 346.500 0.000(10) 972.000
sko100e 149,150 0.000(10) 315.700 0.000(10) 732.000
sko100f 149,036 0.000(10) 591.900 0.003(n/a) 240.000
wil100 273,038 0.000(10) 548.600 0.000(10) 984.000
tho150 8,133,398 0.000(7) 73,000.000 0.006(n/a) 3444.000

(II)

Instance BKV
IHGHA FPBS

¯
θ Time (s) ¯

θ Time (s)

tai40a 3,139,370 0.000(10) 963.200 0.037(n/a) 3150.000
tai50a 4,938,796 0.000(10) 2704.000 0.106(n/a) 4068.000
tai60a 7,205,962 0.000(10) 8965.000 0.189(n/a) 3600.000
tai80a 13,499,184 0.153(3) 68,420.000 0.467(0) 3112.000

tai100a 21,043,560 0.201(0) 97,600.000 0.390(0) 2166.000
tai50b 458,821,517 0.000(10) 3.875 0.000(10) 12.000
tai60b 608,215,054 0.000(10) 4.632 0.000(10) 24.000
tai80b 818,415,043 0.000(10) 23.860 0.000(10) 84.000

tai100b 11,185,996,137 0.000(10) 66.760 0.000(10) 174.000
tai150b 498,896,643 0.000(10) 2384.000 0.092(n/a) 2784.000

Notes. (I) Time denotes the average CPU time per one run. In parentheses, we present the number of times
that the BKS (best-known solution) has been found. (II) Time denotes the average CPU time per one run. In
parentheses, we present the number of times that the BKS has been found. The best-known value for the instance
tai100a is from [120].

Table 4. Comparison of the results of IHGHA and hybrid genetic algorithm (HGA) [118] (part I,
part II).

(I)

Instance BKV
IHGHA HGA

¯
θ Time (s) ¯

θ Time (s)

dre30 508 0.000(10) 0.629 0.000(10) 143.400
dre42 764 0.000(10) 6.351 1.340(n/a) 547.800
dre56 1086 0.000(10) 53.610 17.460(n/a) 1810.800
dre72 1452 0.000(10) 160.000 27.280(n/a) 5591.400
dre90 1838 0.000(10) 1341.000 33.880(n/a) 11,557.800
dre110 2264 0.000(10) 7458.000 n/a n/a
dre132 2744 0.000(10) 51,840.000 n/a n/a

(II)

Instance BKV
IHGHA HGA

θ Time (s) θ Time (s)

tai27e1 2558 0.000(10) 0.114 0.000(10) ~60.000
tai27e2 2850 0.000(10) 0.207 0.000(10) ~60.000
tai27e3 3258 0.000(10) 0.075 0.000(10) ~60.000
tai45e1 6412 0.000(10) 0.604 0.000(10) ~300.000
tai45e2 5734 0.000(10) 0.797 0.000(10) ~300.000
tai45e3 7438 0.000(10) 0.839 0.000(10) ~300.000
tai75e1 14,488 0.000(10) 18.710 0.000(10) ~2220.000
tai75e2 14,444 0.000(10) 19.480 0.339(n/a) ~2220.000
tai75e3 14,154 0.000(10) 23.590 0.000(10) ~2220.000
tai125e1 35,426 0.000(10) 1610.000 n/a n/a
tai125e2 36,178 0.000(10) 2156.000 n/a n/a
tai125e3 30,498 0.000(10) 1414.000 n/a n/a

Notes. (I) Time denotes the average CPU time per one run. In parentheses, we present the number of times that
the BKS has been found. (II) Time denotes the average CPU time per one run. In parentheses, we present the
number of times that the BKS has been found. The best-known values for the instances tai125e1, tai125e2, and
tai125e3 are from [32].



Mathematics 2024, 12, 3726 18 of 25

Table 5. Comparison of the results of IHGHA and hybrid genetic algorithm with biologically inspired
parent selection (HGA-BIPS) [27].

Instance BKV
IHGHA HGA-BIPS

¯
θ Time (s) ¯

θ Time (s)

bl36 3296 0.000(10) 7.608 0.000(10) 135.600
bl49 4548 0.000(10) 649.900 0.193(n/a) 959.400
bl64 5988 0.000(10) 1650.000 0.084(n/a) 2758.200
bl81 7532 0.000(10) 50,470.000 0.154(n/a) 7316.400

bl100 9256 0.099(3) 60,740.000 0.164(0) 24,119.000
bl121 11,396 0.126(1) 125,300.000 0.281(0) 69,892.000
bl144 13,432 0.229(1) 178,300.000 0.459(0) 189,168.000

Notes. Time denotes the average CPU time per one run. In parentheses, we present the number of times that
the BKS has been found. The best-known values for the instances bl36, bl49, and bl64 are from [121,122]. The
best-known value for the instance bl81 is from [123]. The best-known values for the instances bl100 and bl121 are
from [26]. The best-known value for the instance bl144 is from [27]. The new best-known solutions have been
achieved in this paper for the instances bl100, bl121, and bl144, which are presented in Tables 7–9.

Table 6. Comparison of the results of IHGHA and hybrid genetic algorithm with biologically inspired
parent selection (HGA-BIPS) [27].

Instance BKV
IHGHA HGA-BIPS

¯
θ Time (s) ¯

θ Time (s)

ci36 168,611,971 0.000(10) 1.175 0.000(10) 142.800
ci49 236,355,034 0.000(10) 4.586 0.000(10) 614.400
ci64 325,671,035 0.000(10) 46.110 0.000(10) 2285.000
ci81 427,447,820 0.000(10) 236.500 0.000(10) 7456.000
ci100 523,146,366 0.000(10) 4562.000 0.000(10) 22,753.000
ci121 653,409,588 0.000(10) 117,300.000 0.005(n/a) 65,011.000
ci144 794,811,636 0.003(8) 199,400.000 0.020(n/a) 177,469.000

Notes. Time denotes the average CPU time per one run. In parentheses, we present the number of times that the
BKS has been found. The best known values for the instances ci36, ci49, ci64, ci81, and ci100 are from [122]. The
best-known values for the instances ci121 and ci144 are from [123].

Table 7. History of discovering the best-known solutions for the QAP instance bl100.

Objective
Function Value Algorithm Authors Year References

9432 GA-TS J.M. Rodriguez et al. 2004 [124]
9272 HGA Z. Drezner, G. Marcoulides 2008/9 [121,122]
9264 HGA-DI Z. Drezner, A. Misevičius 2013 [123]
9256 HGA-AM Z. Drezner, T.D. Drezner 2019 [26]
9248 IHGHA A. Misevičius et al. 2024 this paper

Notes. GA-TS—genetic algorithm with tabu search, HGA—hybrid genetic algorithm, HGA-DI—hybrid genetic
algorithm with differential improvement, HGA-AM—alpha male hybrid genetic algorithm (hybrid genetic
algorithm using alpha male).

Table 8. History of discovering the best-known solutions for the QAP instance bl121.

Objective
Function Value Algorithm Authors Year References

11,640 GA-TS J.M. Rodriguez et al. 2004 [124]
11,412 HGA Z. Drezner, G. Marcoulides 2008/9 [121,122]
11,400 HGA-DI Z. Drezner, A. Misevičius 2013 [123]
11,396 HGA-AM Z. Drezner, T.D. Drezner 2019 [26]
11,392 IHGHA A. Misevičius et al. 2024 this paper

Notes. GA-TS—genetic algorithm with tabu search, HGA—hybrid genetic algorithm, HGA-DI—hybrid genetic
algorithm with differential improvement, HGA-AM—alpha male hybrid genetic algorithm (hybrid genetic
algorithm using alpha male).
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Table 9. History of discovering the best-known solutions for the QAP instance bl144.

Objective
Function Value Algorithm Authors Year References

13,832 GA-TS J.M. Rodriguez et al. 2004 [124]

13,472 HGA Z. Drezner, G.
Marcoulides 2008/9 [121,122]

13,460 HGA-DI Z. Drezner, A. Misevičius 2013 [123]
13,432 HGA-BIPS Z. Drezner, T.D. Drezner 2020 [27]
13,428 IHGHA A. Misevičius et al. 2024 this paper

Notes. GA-TS—genetic algorithm with tabu search, HGA—hybrid genetic algorithm, HGA-DI—hybrid ge-
netic algorithm with differential improvement, HGA-BIPS—hybrid genetic algorithm with biologically inspired
parent selection.

4. Concluding Remarks

In this paper, we have presented the improved version of the hybrid genetic-hierarchical
algorithm (IHGHA) for the solution of the well-known combinatorial optimization
problem—the quadratic assignment problem. The algorithm was extensively examined on
140 QAP benchmark instances of various categories.

The following are the main essential points with respect to the presented algorithm:

• Two-level scheme of the hybrid primary (master)-secondary (slave) genetic algorithm
is proposed;

• The multi-strategy perturbation process—which is integrated within the hierarchical
iterated tabu search algorithm—is introduced.

This multi-type perturbation process plays an extremely significant role in our hy-
brid genetic algorithm due to its flexibility and versatility, and we think that it will be
very interesting and helpful for researchers to contribute to furthering the progress of
heuristic algorithms.

The obtained results confirm the excellent efficiency of the proposed algorithm. The
set of more than a hundred QAP instances with sizes up to 729 is solved very effectively.
This is especially noticeable for the small- and medium-sized instances. Three new record-
breaking solutions have been achieved for the extraordinarily hard QAP instances, and
we hope that our algorithm can serve as a landmark for the new heuristic algorithms for
the QAP.

As to future work, it would be worthy to investigate the automatic (adaptive) selec-
tion/determination of the perturbation procedure variants in the hierarchical tabu search
of the genetic algorithm.
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Appendix A

Table A1. Variations of the perturbation procedure.

Perturbation Variations

1—URP 24—LP, QGP 1, URP 47—URP, MQGP 3, URP 70—M(URP, QGP 2), LP
2—LP 25—LP, QGP 1, LP 48—URP, MQGP 1, LP 71—M(URP, QGP 3), LP
3—QGP 1 26—LP, QGP 2, URP 49—URP, MQGP 2, LP 72—M(LP, QGP 1), LP
4—QGP 2 27—LP, QGP 2, LP 50—URP, MQGP 3, LP 73—M(LP, QGP 2), LP
5—QGP 3 28—LP, QGP 3, URP 51—LP, MQGP 1, URP 74—M(LP, QGP 3), LP
6—URP, QGP 1 29—LP, QGP 3, LP 52—LP, MQGP 2, URP 75—M(QGP 1, URP)
7—URP, QGP 2 30—MQGP 1 53—LP, MQGP 3, URP 76—M(QGP 2, URP)
8—URP, QGP 3 31—MQGP 2 54—LP, MQGP 1, LP 77—M(QGP 3, URP)
9—LP, QGP 1 32—MQGP 3 55—LP, MQGP 2, LP 78—M(QGP 1, LP)
10—LP, QGP 2 33—URP, MQGP 1 56—LP, MQGP 3, LP 79—M(QGP 2, LP)
11—LP, QGP 3 34—URP, MQGP 2 57—M(URP, QGP 1) 80—M(QGP 3, LP)
12—QGP 1, URP 35—URP, MQGP 3 58—M(URP, QGP 2) 81—URP, M(QGP 1, URP)
13—QGP 1, LP 36—LP, MQGP 1 59—M(URP, QGP 3) 82—URP, M(QGP 2, URP)
14—QGP 2, URP 37—LP, MQGP 2 60—M(LP, QGP 1) 83—URP, M(QGP 3, URP)
15—QGP 2, LP 38—LP, MQGP 3 61—M(LP, QGP 2) 84—URP, M(QGP 1, LP)
16—QGP 3, URP 39—MQGP 1, URP 62—M(LP, QGP 3) 85—URP, M(QGP 2, LP)
17—QGP 3, LP 40—MQGP 2, URP 63—M(URP, QGP 1), URP 86—URP, M(QGP 3, LP)
18—URP, QGP 1, URP 41—MQGP 3, URP 64—M(URP, QGP 2), URP 87—LP, M(QGP 1, URP)
19—URP, QGP 1, LP 42—MQGP 1, LP 65—M(URP, QGP 3), URP 88—LP, M(QGP 2, URP)
20—URP, QGP 2, URP 43—MQGP 2, LP 66—M(LP, QGP 1), URP 89—LP, M(QGP 3, URP)
21—URP, QGP 2, LP 44—MQGP 3, LP 67—M(LP, QGP 2), URP 90—LP, M(QGP 1, LP)
22—URP, QGP 3, URP 45—URP, MQGP 1, URP 68—M(LP, QGP 3), URP 91—LP, M(QGP 2, LP)
23—URP, QGP 3, LP 46—URP, MQGP 2, URP 69—M(URP, QGP 1), LP 92—LP, M(QGP 3, LP)

Notes. URP—uniform (steady) random perturbation, LP—Lévy perturbation, QGP—quasi-greedy perturbation,
MQGP—multiple (cyclic) quasi-greedy perturbation, M(URP, QGP)—multiple (cyclic) uniform (steady) random
and quasi-greedy perturbation, M(LP, QGP)—multiple (cyclic) Lévy and quasi-greedy perturbation, M(QGP,
URP)—multiple (cyclic) quasi-greedy and uniform (steady) random perturbation, M(QGP, LP)—multiple (cyclic)
quasi-greedy and Lévy perturbation.
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16. Misevičius, A. A modified simulated annealing algorithm for the quadratic assignment problem. Informatica 2003, 14, 497–514.

[CrossRef]
17. Taillard, E.D. Robust taboo search for the QAP. Parallel Comput. 1991, 17, 443–455. [CrossRef]
18. Misevicius, A. A tabu search algorithm for the quadratic assignment problem. Comput. Optim. Appl. 2005, 30, 95–111. [CrossRef]
19. Fescioglu-Unver, N.; Kokar, M.M. Self controlling tabu search algorithm for the quadratic assignment problem. Comput. Ind. Eng.

2011, 60, 310–319. [CrossRef]
20. Misevicius, A. An implementation of the iterated tabu search algorithm for the quadratic assignment problem. OR Spectrum 2012,

34, 665–690. [CrossRef]

https://doi.org/10.2307/1907742
https://doi.org/10.1007/978-3-319-13111-5_13
https://doi.org/10.1145/321958.321975
https://doi.org/10.1007/s101070100255
https://doi.org/10.1287/ijoc.1110.0450
https://doi.org/10.1287/ijoc.2018.0866
https://doi.org/10.1007/s10589-017-9968-8
https://doi.org/10.1287/mnsc.9.2.294
https://doi.org/10.1016/S0166-218X(97)00129-7
https://doi.org/10.1016/j.amc.2012.10.106
https://doi.org/10.1016/j.cie.2016.11.023
https://doi.org/10.15388/Informatica.2003.037
https://doi.org/10.1016/S0167-8191(05)80147-4
https://doi.org/10.1007/s10589-005-4562-x
https://doi.org/10.1016/j.cie.2010.11.014
https://doi.org/10.1007/s00291-011-0274-z


Mathematics 2024, 12, 3726 22 of 25

21. Shylo, P.V. Solving the quadratic assignment problem by the repeated iterated tabu search method. Cybern. Syst. Anal. 2017, 53,
308–311. [CrossRef]

22. Drezner, Z. A new genetic algorithm for the quadratic assignment problem. INFORMS J. Comput. 2003, 15, 320–330. [CrossRef]
23. Misevicius, A. An improved hybrid genetic algorithm: New results for the quadratic assignment problem. Knowl.-Based Syst.

2004, 17, 65–73. [CrossRef]
24. Benlic, U.; Hao, J.-K. Memetic search for the quadratic assignment problem. Expert Syst. Appl. 2015, 42, 584–595. [CrossRef]
25. Ahmed, Z.H. A hybrid algorithm combining lexisearch and genetic algorithms for the quadratic assignment problem. Cogent Eng.

2018, 5, 1423743. [CrossRef]
26. Drezner, Z.; Drezner, T.D. The alpha male genetic algorithm. IMA J. Manag. Math. 2019, 30, 37–50. [CrossRef]
27. Drezner, Z.; Drezner, T.D. Biologically inspired parent selection in genetic algorithms. Ann. Oper. Res. 2020, 287, 161–183.

[CrossRef]
28. Zhang, H.; Liu, F.; Zhou, Y.; Zhang, Z. A hybrid method integrating an elite genetic algorithm with tabu search for the quadratic

assignment problem. Inf. Sci. 2020, 539, 347–374. [CrossRef]
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Springer: Singapore, 2021; Volume 1275, pp. 411–421. [CrossRef]

59. Dokeroglu, T.; Ozdemir, Y.S. A new robust Harris Hawk optimization algorithm for large quadratic assignment problems. Neural
Comput. Appl. 2023, 35, 12531–12544. [CrossRef]

60. Acan, A.; Ünveren, A. A great deluge and tabu search hybrid with two-stage memory support for quadratic assignment problem.
Appl. Soft Comput. 2015, 36, 185–203. [CrossRef]
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64. Öztürk, M.; Alabaş-Uslu, Ç. Cantor set based neighbor generation method for permutation solution representation. J. Intell. Fuzzy
Syst. 2020, 39, 6157–6168. [CrossRef]

65. Alza, J.; Bartlett, M.; Ceberio, J.; McCall, J. Towards the landscape rotation as a perturbation strategy on the quadratic assignment
problem. In Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO ’21, Lille, France, 10–14
July 2021; Chicano, F., Ed.; ACM: New York, NY, USA, 2021; pp. 1405–1413. [CrossRef]

66. Amirghasemi, M. An effective parallel evolutionary metaheuristic with its application to three optimization problems. Appl.
Intell. 2023, 53, 5887–5909. [CrossRef]

67. Zhou, Y.; Hao, J.-K.; Duval, B. Frequent pattern-based search: A case study on the quadratic assignment problem. IEEE Trans.
Syst. Man Cybern. Syst. 2022, 52, 1503–1515. [CrossRef]

68. Baldé, M.A.M.T.; Gueye, S.; Ndiaye, B.M. A greedy evolutionary hybridization algorithm for the optimal network and quadratic
assignment problem. Oper. Res. 2021, 21, 1663–1690. [CrossRef]

69. Ni, Y.; Liu, W.; Du, X.; Xiao, R.; Chen, G.; Wu, Y. Evolutionary optimization approach based on heuristic information with
pseudo-utility for the quadratic assignment problem. Swarm Evol. Comput. 2024, 87, 101557. [CrossRef]

70. Abdel-Basset, M.; Mohamed, R.; Saber, S.; Hezam, I.M.; Sallam, K.M.; Hameed, I.A. Binary metaheuristic algorithms for 0–1
knapsack problems: Performance analysis, hybrid variants, and real-world application. J. King Saud Univ.-Comput. Inf. Sci. 2024,
36, 102093. [CrossRef]

71. Alvarez-Flores, O.A.; Rivera-Blas, R.; Flores-Herrera, L.A.; Rivera-Blas, E.Z.; Funes-Lora, M.A.; Nino-Suárez, P.A. A novel
modified discrete differential evolution algorithm to solve the operations sequencing problem in CAPP systems. Mathematics
2024, 12, 1846. [CrossRef]

72. El-Shorbagy, M.A.; Bouaouda, A.; Nabwey, H.A.; Abualigah, L.; Hashim, F.A. Advances in Henry gas solubility optimization: A
physics-inspired metaheuristic algorithm with its variants and applications. IEEE Access 2024, 12, 26062–26095. [CrossRef]

73. Zhang, J.; Ye, J.-X.; Lin, J.; Song, H.-B. A discrete Jaya algorithm for vehicle routing problems with uncertain demands. Syst. Sci.
Control Eng. 2024, 12, 2350165. [CrossRef]

74. Zhang, Y.; Xing, L. A new hybrid improved arithmetic optimization algorithm for solving global and engineering optimization
problems. Mathematics 2024, 12, 3221. [CrossRef]

75. Zhao, S.; Zhang, T.; Cai, L.; Yang, R. Triangulation topology aggregation optimizer: A novel mathematics-based meta-heuristic
algorithm for engineering applications. Expert Syst. Appl. 2024, 238 Pt B, 121744. [CrossRef]

76. Loiola, E.M.; De Abreu, N.M.M.; Boaventura-Netto, P.O.; Hahn, P.; Querido, T. A survey for the quadratic assignment problem.
Eur. J. Oper. Res. 2007, 176, 657–690. [CrossRef]

77. Abdel-Basset, M.; Manogaran, G.; Rashad, H.; Zaied, A.N.H. A comprehensive review of quadratic assignment problem: Variants,
hybrids and applications. J. Amb. Intel. Hum. Comput. 2018, 9, 1–24. [CrossRef]

https://doi.org/10.9781/ijimai.2017.10.003
https://doi.org/10.11591/ijece.v9i3.pp2064-2074
https://doi.org/10.22105/jarie.2019.200177.1106
https://doi.org/10.1016/j.jestch.2018.11.013
https://doi.org/10.22452/mjcs.vol34no1.3
https://doi.org/10.3934/jimo.2018041
https://doi.org/10.1016/j.asoc.2020.106927
https://doi.org/10.1007/978-981-15-8603-3_36
https://doi.org/10.1007/s00521-023-08387-2
https://doi.org/10.1016/j.asoc.2015.06.061
https://doi.org/10.3390/e20100781
https://doi.org/10.1080/03155986.2019.1607809
https://doi.org/10.1016/j.tcs.2019.10.033
https://doi.org/10.3233/JIFS-189086
https://doi.org/10.1145/3449726.3463139
https://doi.org/10.1007/s10489-022-03599-w
https://doi.org/10.1109/TSMC.2020.3027860
https://doi.org/10.1007/s12351-020-00549-7
https://doi.org/10.1016/j.swevo.2024.101557
https://doi.org/10.1016/j.jksuci.2024.102093
https://doi.org/10.3390/math12121846
https://doi.org/10.1109/ACCESS.2024.3365700
https://doi.org/10.1080/21642583.2024.2350165
https://doi.org/10.3390/math12203221
https://doi.org/10.1016/j.eswa.2023.121744
https://doi.org/10.1016/j.ejor.2005.09.032
https://doi.org/10.1007/s12652-018-0917-x


Mathematics 2024, 12, 3726 24 of 25

78. Achary, T.; Pillay, S.; Pillai, S.M.; Mqadi, M.; Genders, E.; Ezugwu, A.E. A performance study of meta-heuristic approaches for
quadratic assignment problem. Concurr. Comput. Pract. Exp. 2021, 33, 1–29. [CrossRef]

79. Hussin, M.S.; Stützle, T. Hierarchical iterated local search for the quadratic assignment problem. In Hybrid Metaheuristics, HM
2009, Lecture Notes in Computer Science; Blesa, M.J., Blum, C., Di Gaspero, L., Roli, A., Sampels, M., Schaerf, A., Eds.; Springer:
Berlin/Heidelberg, Germany, 2009; Volume 5818, pp. 115–129. [CrossRef]

80. Battarra, M.; Benedettini, S.; Roli, A. Leveraging saving-based algorithms by master–slave genetic algorithms. Eng. Appl. Artif.
Intell. 2011, 24, 555–566. [CrossRef]

81. Liu, S.; Xue, J.; Hu, C.; Li, Z. Test case generation based on hierarchical genetic algorithm. In Proceedings of the 2014 International
Conference on Mechatronics, Control and Electronic Engineering, MEIC 2014, Shenyang, China, 15–17 November 2014; Atlantis
Press: Dordrecht, The Netherland, 2014; pp. 278–281. [CrossRef]

82. Ahmed, A.K.M.F.; Sun, J.U. A novel approach to combine the hierarchical and iterative techniques for solving capacitated
location-routing problem. Cogent Eng. 2018, 5, 1463596. [CrossRef]
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