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ABSTRACT
Mobile app reviews are valuable for gaining user feedback on features, usability, and
areas for improvement. Analyzing these reviews manually is difficult due to volume
and structure, leading to the need for automated techniques. This mapping study
categorizes existing approaches for automated and semi-automated tools by
analyzing 180 primary studies. Techniques include topic modeling, collocation
finding, association rule-based, aspect-based sentiment analysis, frequency-based,
word vector-based, and hybrid approaches. The study compares various tools for
analyzing mobile app reviews based on performance, scalability, and user-
friendliness. Tools like KEFE, MERIT, DIVER, SAFER, SIRA, T-FEX, RE-BERT, and
AOBTM outperformed baseline tools like IDEA and SAFE in identifying emerging
issues and extracting relevant information. The study also discusses limitations such
as manual intervention, linguistic complexities, scalability issues, and interpretability
challenges in incorporating user feedback. Overall, this mapping study outlines the
current state of feature extraction from app reviews, suggesting future research and
innovation opportunities for extracting software requirements from mobile app
reviews, thereby improving mobile app development.

Subjects Data Mining and Machine Learning, Mobile and Ubiquitous Computing, Natural
Language and Speech, Software Engineering, Sentiment Analysis
Keywords Mobile app reviews, Crowdsourcing, Software requirements, Automated tools, Semi-
automated tools, Mapping study, Feature extraction

INTRODUCTION
Requirement engineering (RE) is a vital component of software engineering, laying the
groundwork for developing successful software systems (Beecham, Hall & Rainer, 2005;
Chen et al., 2024). RE involves a continuous process from the communication to modeling
stages to ensure flawless implementation of software systems (Gambo & Taveter, 2021a,
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2021b, 2022; Zheng et al., 2024). At its core, RE defines software features expressed by
stakeholders, categorized into functional requirements (system services, behavior,
functions) and non-functional requirements (usability, quality, privacy, security)
(Keertipati, Savarimuthu & Licorish, 2016). Thoroughly capturing and analyzing these
requirements establishes a solid foundation for subsequent development phases, ensuring
the software meets stakeholder needs and expectations.

Stakeholders, typically users, express their views on mobile applications through
reviews. This feedback has become increasingly important in identifying and
understanding software requirements (Li et al., 2020). User reviews provide valuable
feedback on user experiences, bugs, feature requests, and app ratings (Palomba et al., 2018;
Wang et al., 2018; Li et al., 2022). As Khalid, Asif & Shehzaib (2015) noted, app store
reviews are practical for gathering requirements directly from end-users at scale. However,
while their value in broadly inferring user needs is established, fewer studies focus on
precisely extracting detailed software features from review texts (Maalej & Nabil, 2015).

Researchers and practitioners have turned to automated and semi-automated tools to
analyze mobile app reviews and address these challenges. These tools employ various
techniques, including natural language processing, machine learning, and sentiment
analysis, to process and categorize large volumes of user feedback (Guzman & Maalej,
2014; Zouari et al., 2024). By automating the analysis process, these tools aim to streamline
the extraction of relevant information, saving time and resources while uncovering
patterns and trends that might be overlooked through manual analysis. Further
examination of these tools for extracting detailed functional requirements from app
reviews can offer valuable insights (Panichella et al., 2015). This knowledge helps prioritize
requirements and align software with user expectations, leading to higher user satisfaction
and adoption rates (Jiang et al., 2019; Zheng et al., 2023).

Several studies have explored mining app reviews for insights, mainly extracting
detailed features and requirements. Chen et al. (2014) conducted an early comparative
review of general app review analysis techniques. Maalej & Nabil (2015) categorized
various approaches like information retrieval and topic modeling for requirement-centric
review mining. Advanced techniques in natural language processing (NLP) and machine
learning (ML), including linguistic analysis, statistical methods, topic modeling, and
graph-based methods, have been successfully applied to analyze review datasets (Di Sorbo
et al., 2017; Wu et al., 2021; Scalabrino et al., 2019; Zheng et al., 2022; Gu & Kim, 2015).

Given the rapid development of these analysis tools and their potential impact on
software engineering practices, there is a pressing need for a comprehensive mapping
study to synthesize existing research and identify trends, gaps, and future directions in this
field. This study aims to provide a systematic overview of automated and semi-automated
tools for mobile app review analysis, specifically focusing on their application in
crowdsourcing software requirements. By examining the current state of the art, we seek to
offer valuable insights to researchers and practitioners alike, fostering further innovation
and improving the effectiveness of requirement engineering processes in mobile app
development. This knowledge will contribute to the academic discourse and offer practical
insights for software developers and companies seeking to leverage user feedback more
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effectively in their development processes. As we delve into the existing literature and
synthesize our findings, we aim to pave the way for more informed decision-making and
innovative approaches in software requirements crowdsourcing through mobile app
review analysis.

Our article provides a comprehensive overview of current techniques, including
qualitative and quantitative evaluations of method performance based on specific criteria.
By thoroughly reviewing peer-reviewed literature against formulated research questions,
we aim to yield practical implications for software teams and a research agenda for
improving app review analysis.

Mapping study’s structure
Our article is structured in a clear and organized manner. “Background and RelatedWork”
delves into an in-depth analysis of existing systematic literature reviews that have
examined the use of app reviews for software features and requirements. This background
provides a solid foundation for understanding this domain’s current state of research.
“Study Methodology” then outlines the meticulous mapping review methodology,
including the research questions, literature search strategy, inclusion and exclusion
criteria, study selection process, data extraction and synthesis, and quality assessment
process. This detailed explanation of the research approach ensures transparency and
replicability. The mapping study results are presented in “Mapping Study Results”, offering
a comprehensive overview of the identified tools and their capabilities. “Discussion and
Future Research” discusses the implications of these findings, highlighting key trends,
strengths, and limitations of the existing approaches. This discussion also provides
directions for future research in this rapidly evolving field. “Threats to the Validity”
outlines the threats to the study’s validity, addressing potential biases and limitations.
Finally, “Conclusion” summarizes the overarching conclusions and valuable insights from
this systematic mapping study. Figure 1 visually represents the structure and fundamental
concepts of this mapping study. This comprehensive overview diagram visually represents
the article’s structure, key concepts, and their interrelationships. The main sections of the
article are represented as primary nodes, with subsections as secondary nodes. The solid
lines indicate the flow of the article’s structure, while the dotted lines show conceptual
relationships and influences between different parts of the study.

Research motivation and significance
This mapping study addresses the critical need for efficient analysis of user feedback in
mobile app development. Developers struggle to leverage user reviews for software
improvements as the app ecosystem expands. Automated and semi-automated tools offer a
solution, but their landscape remains fragmented. This study aims to comprehensively
analyze existing research on these tools, synthesizing findings from diverse primary
studies. It will highlight current trends, common approaches, and areas for future
development. The study’s significance lies in its potential to inform researchers and
practitioners, guiding tool selection and optimization within development workflows.
Moreover, the insights gained can have broader implications for the software engineering
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community, potentially driving advancements in requirements engineering across various
domains. By synthesizing the current state of the art, identifying key trends and
limitations, and highlighting future research directions, this work aims to catalyze further
innovation and improve the effectiveness of requirements engineering processes in the
dynamic and user-driven mobile app ecosystem.

BACKGROUND AND RELATED WORK
This section provides a comprehensive foundation for understanding the
landscape of mobile app review analysis for crowdsourcing software requirements. We
begin by exploring the evolution and importance of mobile app ecosystems and user
feedback. Next, we delve into crowdsourcing in software engineering, highlighting its
potential and challenges. We then examine previous related studies and surveys, critically
analyzing their contributions and limitations. Finally, we discuss the emergence and
development of automated and semi-automated tools for app review analysis, setting the
stage for our mapping study. Throughout this section, we aim to highlight the
interconnections between these topics and identify gaps in the current research that our
study aims to address.

Figure 1 Visual representation of the mapping study’s structure.
Full-size DOI: 10.7717/peerj-cs.2401/fig-1
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Mobile app ecosystems and user feedback
Mobile app ecosystems and user feedback have become integral components of the
software development lifecycle, shaping how applications evolve and adapt to user needs.
These ecosystems, primarily dominated by Apple’s App Store and Google Play Store, serve
as platforms where developers can distribute their applications and users can download,
use, and review them. Within this framework, user feedback emerges as a crucial element,
providing developers with direct insights into user experiences, preferences, and pain
points (Motger et al., 2024c). The significance of user feedback in mobile app ecosystems
cannot be overstated. As Pagano & Maalej (2013) point out, app reviews serve as a rich
source of information for requirements elicitation and prioritization. According to
Malgaonkar, Licorish & Savarimuthu (2022), these reviews often contain feature requests,
bug reports, and user experiences that can directly inform the development process.

Moreover, the public nature of these reviews creates a unique dynamic where user
opinions can significantly influence an app’s reputation and, consequently, its success
in the marketplace. However, the sheer volume of user feedback presents both
opportunities and challenges. On the one hand, developers have access to an
unprecedented amount of user-generated data to guide their decision-making processes
(Oh et al., 2013). On the other hand, manually processing and analyzing this vast amount
of information is often impractical and resource-intensive (Araujo, Gôlo & Marcacini,
2022;Wang et al., 2022a). This challenge has led to the development of various automated
and semi-automated tools aimed at efficiently extracting actionable insights from user
reviews (Guzman & Maalej, 2014).

The evolution of mobile app ecosystems has also led to changes in user behavior and
expectations. Users now expect rapid responses to their feedback and quick iterations in
app development. This shift has necessitated more agile and responsive development
practices, further emphasizing the need for efficient feedback analysis tools (Khalid, Asif &
Shehzaib, 2015). While user feedback in mobile app ecosystems offers valuable insights, it
is not without limitations. The voluntary nature of app reviews can lead to sampling bias,
where only users with intense positive or negative experiences may choose to leave
feedback. Additionally, the unstructured format of reviews can make it challenging to
extract precise requirements or prioritize user needs effectively. These limitations
underscore the importance of developing sophisticated analysis tools to account for such
biases and extract meaningful patterns from unstructured data.

Crowdsourcing in software engineering
Crowdsourcing has emerged as a powerful paradigm in various domains, and its
application in software engineering has gained significant traction in recent years. At its
core, crowdsourcing in software engineering involves leveraging a large’s collective
intelligence and efforts (Satzger et al., 2014), often diverse groups of individuals, to address
software development challenges. In software requirements engineering, crowdsourcing
offers a novel approach to gathering, refining, and prioritizing user needs (van Vliet et al.,
2020; Khan et al., 2019). As Hosseini et al. (2015) argue, crowdsourcing can lead to more
comprehensive and user-centric requirements by tapping into a wider pool of perspectives
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and experiences. This approach is particularly relevant in the mobile app domain, where
user bases are often large and diverse, and user needs can vary significantly across different
demographics and usage contexts.

One of the key advantages of crowdsourcing in software engineering is its ability to
scale. Traditional requirements-gathering methods, such as focus groups or surveys, are
often limited in their reach and can be time-consuming and costly to implement at scale
(Courage & Baxter, 2005). In contrast, crowdsourcing through app reviews allows
developers to gather feedback from thousands or even millions of users continuously
(Palomba et al., 2018) and at relatively low cost (Maalej et al., 2016). However, the
application of crowdsourcing in software engineering is not without challenges. Quality
control remains a significant concern, as the open nature of crowdsourcing can lead to
noise, irrelevant contributions, or even malicious inputs. Moreover, managing and
coordinating large crowds of contributors can be complex, requiring sophisticated
platforms and incentive structures to ensure effective participation (Stol & Fitzgerald,
2014). Another critical aspect of crowdsourcing in software engineering is the need for
effective aggregation and synthesis of diverse inputs.

As Khan et al. (2022) note, transforming raw crowd input into actionable software
requires sophisticated analysis techniques. This need has driven the development of
various automated and semi-automated tools designed to process and analyze
crowdsourced feedback, particularly in the context of mobile app reviews. The intersection
of mobile app ecosystems, user feedback, and crowdsourcing in software engineering
presents exciting opportunities and significant challenges. As we explore automated and
semi-automated tools for app review analysis, it is crucial to keep in mind the complex
ecosystem within which these tools operate. The effectiveness of these tools will ultimately
be judged by their ability to harness the power of crowdsourced feedback while addressing
the inherent challenges of scale, quality, and synthesis in the mobile app development
context.

Automated and semi-automated analysis tools
As mobile app ecosystems continue to evolve and user feedback becomes increasingly
valuable for software requirements engineering, a range of automated and semi-automated
tools have emerged to address the challenges of analyzing large volumes of app reviews.
These tools leverage various techniques, including natural language processing, machine
learning, and sentiment analysis, to streamline the extraction and categorization of user
feedback (Guzman & Maalej, 2014).

One of the primary advantages of these tools is their ability to scale and process large
datasets efficiently. Traditional manual review of app reviews is often time-consuming and
resource-intensive, particularly as the number of reviews grows exponentially. Automated
tools can rapidly sift through thousands or even millions of reviews, identifying patterns,
extracting features, and classifying user feedback such as bug reports, feature requests, and
user experiences (Iacob & Harrison, 2013; Guzman & Maalej, 2014; Malgaonkar, Licorish
& Savarimuthu, 2022).
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The degree of automation in these tools varies, with some employing fully automated
approaches and others relying on a combination of automated and human-in-the-loop
processes. Fully automated tools typically leverage sophisticated natural language
processing algorithms and machine learning models to analyze review content with
minimal human intervention (Pagano & Maalej, 2013). These tools offer the benefit of
speed and consistency, but they may struggle with complex or nuanced language, requiring
careful tuning and validation to ensure reliable performance. In contrast, semi-automated
tools incorporate a degree of human oversight and involvement, often using automated
techniques as a starting point and then relying on human experts to validate, refine, or
override the system’s outputs (Maalej et al., 2016). This approach can help address the
limitations of fully automated systems, particularly in cases where user feedback is
ambiguous, context-dependent, or requires deeper understanding. However, the
involvement of human analysts introduces additional time and resource requirements,
potentially limiting the scalability of these semi-automated approaches.

One key area of focus for automated and semi-automated tools is the extraction and
categorization of user feedback into meaningful and actionable insights. By automating
this process, developers can quickly prioritize and address the most critical user needs,
potentially leading to more user-centric and successful applications. Additionally, some
tools have been explored using more advanced techniques, such as topic modeling and
sentiment analysis, to uncover hidden patterns and trends within user feedback (Noei
et al., 2019). These approaches can help developers better understand user sentiment,
preferences, and emerging requirements, informing both short-term iterations and long-
term product roadmaps.

While developing these automated and semi-automated tools has been a significant area
of research, the field has limitations and challenges. One key concern is the accuracy and
reliability of these tools, as even minor errors in classification or sentiment analysis can
have cascading effects on downstream requirements engineering processes (Maalej et al.,
2016). Developers must carefully evaluate the performance of these tools and ensure that
their outputs are consistently reliable and trustworthy. Another challenge is the
adaptability and generalizability of these tools across different app ecosystems and user
populations. Many existing studies have focused on English-language reviews, raising
questions about the applicability of these techniques to multilingual or culturally diverse
app markets (Tavakoli et al., 2018; Yin et al., 2024b). Addressing these challenges will be
crucial for the widespread adoption and effective implementation of automated and semi-
automated app review analysis tools.

Previous related studies and surveys
Analyzing user feedback in mobile application marketplaces is an active research area,
providing valuable insights into user experiences, requirements, and requests (Jacek et al.,
2022). Numerous studies have focused on extracting information from app reviews, with
some targeting detailed features and specifications. For instance, Chen et al. (2014)
reviewed general techniques for app review analysis, including information retrieval, topic
modeling, and natural language processing (NLP). Their research highlighted the rich
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information content of user reviews and proposed a taxonomy for categorizing this
feedback. This study was instrumental in demonstrating the value of app reviews as a
source of user requirements and set the stage for subsequent research on automated
analysis techniques. Building on this foundation, Maalej et al. (2016) presented a
comparative study of manual vs. automated classification of app reviews. Their research
evaluated different machine learning classifiers for categorizing reviews into bug reports,
feature requests, and user experiences. While their results showed promise for automated
classification, they also highlighted the continuing need for human oversight in
interpreting and acting on the classified feedback. Martin et al. (2017) conducted a
systematic mapping study categorizing various app review analyses, highlighting
techniques like topic modeling, sentiment analysis, and NLP for extracting requirements-
related information. However, their study was high-level and lacked in-depth comparative
analysis of feature extraction techniques.

A comprehensive survey by Tavakoli et al. (2018) provided a systematic mapping of user
feedback analysis techniques in app stores to assist developers in extracting insights from
user reviews, analyzing and categorizing 34 studies based on techniques, everyday topics,
and challenges in feedback mining. The research emphasizes domain-specific influences
on user reviews when selecting mining techniques. Recent studies have emphasized
extraction techniques, understanding domain influences, and emerging themes in user
feedback. Genc-Nayebi & Abran (2017) explored automated systems for identifying,
classifying, and summarizing opinions from app store reviews. These addressed challenges
like data sparsity in short reviews and domain barriers in opinion extraction. They
proposed methodologies like domain adaptation and grammar rules for identifying
opinion-bearing words, aiming to provide evidence-based guidelines for app store
practitioners and future research directions.

Dąbrowski et al. (2022a) presented a systematic literature review of app review analysis
for software engineering (SE), categorizing app review analyses and data mining
techniques. They provided insights for researchers and practitioners on extracting valuable
information from reviews, emphasizing the need for deeper stakeholder understanding to
enhance tool applicability. The study advocates for improved evaluation methods,
reproducibility, scalability, and efficiency in future research to advance app review
analysis in SE.

A significant contribution to the field came from Lin et al. (2022), who conducted a
systematic literature review on app store analysis for software engineering. This
comprehensive survey synthesized findings from 185 articles, providing a holistic view of
the state of research in app store analysis, including techniques for review analysis. Their
work highlighted the rapid growth of this research area and identified key challenges and
opportunities for future work. Santos, Groen & Villela (2019) reviewed automated
classification techniques in RE, focusing on Crowd-based Requirements Engineering
(CrowdRE) and NLP. CrowdRE adapts NLP techniques to analyze large amounts of user
feedback in RE. However, the suitability of specific NLP techniques for CrowdRE is poorly
understood, making it challenging to choose the proper technique. ML is commonly used
in CrowdRE research, with naïve Bayes with Bag of Words-Term Frequency (BOW-TF)
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and support vector machines (SVM) with BOW-TF being popular algorithm-feature
combinations. Initial assessments show that precision and recall in RE classifications need
improvement, urging researchers to explore new strategies and ML models to advance
the field.

Dąbrowski et al. (2022b) analyzed how mining app reviews can benefit SE activities by
examining 182 articles published between 2012 and 2020. They provided an overview of
various use cases to improve SE processes like requirements gathering design,
maintenance, and testing. The study highlights the benefits of app review analysis for
software engineers and unifies existing research efforts into a reference architecture for
future tool development and evaluation. It also addresses the practicality of 29 existing app
review analysis tools. It suggests areas for further research and improvement in academia
and industry, acknowledging limitations regarding interpretation, validation, and
completeness of use cases.

Dąbrowski et al. (2023) presented two empirical studies on opinion mining and text
summarization for software requirements. The first study evaluated three opinion mining
approaches: SAFE (Johann, Stanik & Maalej, 2017), GuMa (Guzman &Maalej, 2014), and
ReUS (Dragoni, Federici & Rexha, 2019), using review extraction and sentiment analysis
techniques. The second study compared three approaches for capturing requirements
reviews: Lucene, MARAM (Iacob, Faily & Harrison, 2016), and SAFE (Johann, Stanik &
Maalej, 2017), with Lucene performing better. The findings suggest the potential of using
these text summarization and sentiment analysis techniques to enhance requirements
extraction from app reviews.

Martin et al. (2017) extensively examined reviews from app stores like Google Play,
Apple App Store, and BlackBerry Store, discussing the evolution of review-centered
literature since 2012. They addressed the “App Sampling Problem” and suggested future
research directions, such as tools for extracting requirements from reviews and comparing
review cultures across platforms. The study also investigated app security trends, noting a
lower likelihood of malware in popular apps. They emphasized sentiment analysis, tools
like WisCom for review summarization, and the challenges of large review samples and
accurate data labeling.

Al-Subaihin et al. (2019) explored techniques for measuring the similarity of mobile
applications based on textual descriptions to enhance clustering solutions. Through an
empirical study of 12,664 apps from the Google Play Store, they compared different
methods, including topic modeling and keyword feature extraction, using hierarchical
clustering algorithms. The results showed that similarity-based techniques perform well in
detecting app-feature similarity, while dependency-based techniques struggle. The study
highlights the need for continued research and effectiveness across different app stores,
suggesting their potential for improving app review analysis techniques.

Despite these advances, several limitations and challenges persist in the field. Many
studies have focused on English-language reviews, raising questions about the applicability
of these techniques to multilingual app ecosystems. Additionally, the dynamic nature of
app stores and rapidly evolving user expectations pose ongoing challenges for maintaining
the relevance and accuracy of analysis tools. Furthermore, while much progress has been
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made in automating the extraction and classification of user feedback, translating this
information into actionable software requirements remains a complex task.

Building upon the work of Maalej et al. (2024) on automated user feedback processing,
this systematic review and mapping study addresses a critical gap in the literature. Despite
recognizing app reviews’ value in requirements engineering, a lack of systematic evaluation
of automated feature extraction methods remains. This study aims to fill this void by
comprehensively analyzing and comparing various techniques, focusing on performance
metrics. Furthermore, it explores the potential of integrating visualization and
recommendation systems to enhance analyst interaction with processed feedback,
facilitating more effective information retrieval (Wang et al., 2024; Huang et al., 2023;
Zhang et al., 2024). By synthesizing existing research and identifying areas for
improvement, this work contributes to the advancement of automated analysis tools in
requirements engineering, paving the way for more efficient and accurate feature
extraction from user reviews.

STUDY METHODOLOGY
This study conducts a systematic review and synthesis of empirical studies that applied
feature extraction techniques to mine mobile app reviews, explicitly focusing on
comparing the performance of different methods in extracting detailed software features.
The research methodology strictly adheres to the established systematic review protocols
in software engineering, as outlined by Kitchenham & Charters (2007) and Kitchenham
(2004). The study meticulously identifies, extracts, analyzes, and interprets studies
concerning feature extraction techniques and tools for crowdsourcing software
requirements from app reviews in developing mobile applications hosted on app stores.

The mapping review process was divided into three phases, as depicted in Fig. 2. The
first phase involved planning the review, where the aim and research questions were
defined to guide the process. The second phase involved conducting the review, which
entailed searching across academic databases using carefully designed search strings,
applying predefined inclusion/exclusion criteria to filter relevant literature, and extracting
data from the selected studies using a standardized form. The third phase involved
synthesizing the extracted data and writing the review report. Finally, the data was
synthesized, and a final set of articles was selected for analysis. We devised a search strategy
in the second phase, specifying search terms and electronic sources (research databases or
resources). Searches were conducted across major academic databases using carefully
designed queries. We tailored our search strategies to align with the formulated RQs.
Following identifying the search strategy, we proceeded with the study selection, collating
the extracted data and scrutinizing titles to determine relevant articles. Thus, screening was
done based on predefined inclusion/exclusion criteria to filter the most pertinent literature.
In the third phase, we documented our review. In this phase, we established quality
assessment criteria to evaluate the scrutinized articles further and write the review report.
Data was then extracted using a standardized form to capture key details on the
techniques, evaluation approach, datasets, metrics, and limitations reported in each study.
Finally, we synthesized the data, selecting a final list of articles for analysis.
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Research questions
The primary objective of this mapping study is to conduct a meticulous investigation into
the diverse array of automated and semi-automated techniques employed for extracting
software requirements from reviews of mobile applications. To accomplish this aim, we
will seek guidance from the following formulated research inquiries (RQs):

. RQ1: What feature extraction techniques are employed for analyzing mobile app reviews
to extract software requirements? The main objective of RQ1 is to examine and classify
feature extraction techniques or methods and tools, considering their fundamental
approaches (such as natural language processing, rule-based systems, topic modeling,
and hybrid techniques).

. RQ2: What automated and semi-automated tools are available to support the
implementation of these feature extraction techniques? This question will
comprehensively overview the automated and semi-automated tools implemented in
this domain. It seeks to identify the solutions proposed in the literature by employing
these feature extraction techniques to extract relevant features, requirements, or user
feedback from mobile app reviews.

. RQ3: How do the app review analysis tools compare performance, scalability, and user-
friendliness? Evaluating the performance of the identified techniques is essential for

Figure 2 Mapping review process. Full-size DOI: 10.7717/peerj-cs.2401/fig-2
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assessing their effectiveness and practical applicability. This research question
investigates the metrics and methodologies used to measure the performance of the
methods, such as accuracy, precision, recall, or F-score. Furthermore, it aims to collate
and compare the reported performance results, providing valuable insights into the most
promising approaches.

. RQ4: What are the significant strengths and limitations observed in current techniques
based on their methodology or evaluation results? Understanding their respective
strengths and limitations is crucial for RQ4. This RQ investigates the advantages and
drawbacks of each approach, enabling a comparative analysis and facilitating the
selection of appropriate techniques based on specific needs or scenarios. Moreover, this
analysis may reveal potential areas for improvement or opportunities for new technique
development.

. RQ5: What future research directions could address current gaps in capabilities for
efficient and precise analysis of app reviews for requirements? This RQ seeks to identify
emerging trends and potential future research directions in automated and semi-
automated feature extraction from mobile app reviews. This question may uncover gaps,
challenges, or unexplored avenues that could guide future research efforts and drive
innovation in this domain by analyzing the existing literature.

The RQs evaluate and compare various feature extraction techniques and tools for
analyzing mobile app reviews, aiming to understand their effectiveness in deriving
software requirements from user feedback. The questions explore the practical
implications and potential applications of the extracted features in the software RE process.
The findings will provide insights into available techniques and tools while laying the
groundwork for future research and development in this rapidly evolving domain.

Literature search strategy
A rigorous literature search strategy was employed to conduct a comprehensive and
systematic mapping study on feature extraction techniques and tools for mobile app review
analysis. This paragraph explains the search process’s key aspects, such as data sources,
search queries, and criteria for selecting relevant studies, as shown in Fig. 3.

As Fig. 2 reflects, the literature search began by identifying appropriate digital libraries
and databases. Specifically, we leveraged well-established sources: IEEE Xplore, Scopus,
ScienceDirect, ACM Digital Library, and SpringerLink. These databases extensively cover
peer-reviewed literature in software engineering, requirements engineering, and mining
software repositories. Both keyword searches and backward snowballing will be used to
retrieve candidate articles. Keyword searches will involve combinations of terms related to
the domain (e.g., “app”, “mobile application”, “app store”) and interventions of interest
(e.g., “mobile app review analysis”, “user review analysis”, “feature extraction”, “automatic
feature extraction”, “mining user reviews”, “feature extraction tools”, “feature requests”,
“identifying key features”), adapted appropriately for each database.

Additionally, we employed Boolean operators (e.g., AND, OR) and wildcards to
broaden the search and capture relevant variations of the terms. Backward snowballing will
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Figure 3 PRISMA flow diagram delineating the process of study screening and selection.
Full-size DOI: 10.7717/peerj-cs.2401/fig-3
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entail scanning reference lists of highly relevant articles to find additional studies. The
search process will be refined through trial searches to maximize coverage of pertinent
literature. Search results will be collated in a reference management tool, and duplicate
items will be removed. The overall search and screening process is outlined as shown in
Table 1. The searches will be limited to literature published in the past 10 years to focus on
current techniques.

During title and abstract screening, articles will be assessed for relevance based on
mentions of apps, reviews, requirements, and features. The full article will be thoroughly
retrieved and scrutinized in the text review stage. Only peer-reviewed literature published
in English with the whole article accessible will be retained. Grey literature, pre-prints,
extended abstracts, and unavailable documents will be excluded. Finally, the methodology
rigor and alignment to the comparative research questions will be evaluated for the final
selection. Any articles with flawed, weak, or insufficient methodology will be excluded to
ensure the review is based only on evidence from robust studies. Following this systematic
process, the literature pool can be refined to contain only high-quality studies focused on
feature extraction from app reviews to inform a comparative analysis. At each stage,
inclusion and exclusion criteria will be applied to evaluate each article’s relevance and
methodology rigor. A rigorous and multi-stage search strategy will aim to identify an
exhaustive corpus of literature for answering the comparative research questions.

The literature search results in Table 2 offer valuable insights into the mapping study’s
systematic approach and comprehensive scope. A broad search across five major academic
databases initially yielded 1,179 potentially relevant studies. IEEE Xplore and Scopus
emerged as the most prolific sources, contributing 286 and 324 initial results, respectively.
This breadth of initial results underscores the extensive automated app review analysis
research activity. The screening process, conducted in two stages, significantly refined the
pool of studies. After title and abstract screening, the number of relevant studies was
reduced to 534, less than half of the initial count. This substantial reduction highlights the
importance of precise search terms and the challenge of identifying relevant studies in a
rapidly evolving field. The full-text screening further narrowed the selection to 351 studies,

Table 1 The literature search process.

Database Search string

ACM digital
library

(“mobile app*” OR smartphone OR phone) AND (review* OR comment*) AND (requirement* OR feature*) AND (extract* OR
mine OR analy*)

IEEE Xplore (“mobile app*” OR smartphone OR phone) AND (review* OR comment*) AND (requirement* OR feature*) AND (extract* OR
mine OR analy*)

ScienceDirect TITLE-ABSTR-KEY (“mobile app*”OR smartphone OR phone) AND TITLE-ABSTR-KEY (review*OR comment*) AND TITLE-
ABSTR-KEY (requirement* OR feature*) AND TITLE-ABSTR-KEY (extract* OR mine OR analy*)

Scopus TITLE-ABS-KEY (“mobile app*” OR smartphone OR phone) AND TITLE-ABS-KEY (review* OR comment*) AND TITLE-ABS-
KEY (requirement* OR feature*) AND TITLE-ABS-KEY (extract* OR mine OR analy*)

SpringerLink (“mobile app*” OR smartphone OR phone) AND (review* OR comment*) AND (requirement* OR feature*) AND (extract* OR
mine OR analy*)
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demonstrating the rigorous criteria applied to ensure the quality and relevance of the
included research.

Notably, the study incorporated additional sources through backward and forward
searches, yielding 21 more studies in the final selection. This approach enhances the
comprehensiveness of the review by capturing relevant work that might have been missed
in the initial database searches. The final count of 180 included studies represents a
carefully curated subset of the available literature, balanced across various databases and
supplemented by targeted searches. IEEE Xplore contributed the largest number of final
included studies (48), followed by Scopus (36), highlighting these databases’ significance in
the field. Including studies from diverse sources, including ACM Digital Library,
ScienceDirect, and SpringerLink, ensures a broad representation of research perspectives
and methodologies in the mapping study.

By employing this systematic and rigorous literature search strategy, we aimed to ensure
the comprehensiveness and quality of the included studies. This, in turn, provided a solid
foundation for the mapping study and enabled robust analyses and insights into the state-
of-the-art feature extraction techniques and tools for mobile app review analysis.

Inclusion and exclusion criteria
Establishing explicit inclusion and exclusion criteria in systematic literature reviews is
crucial to outlining the study range. Precise criteria enable reviewers to objectively evaluate
each study’s relevance and methodological soundness during the selection phase. This
review applies both criteria across four dimensions: domain, language, interventions, and
methodology, as shown in Table 3. It considers explicitly studies from peer-reviewed
journals, conference proceedings, and book chapters, as these sources typically uphold
high academic standards through rigorous peer-review processes. Furthermore, to
facilitate a comprehensive understanding and analysis of the findings, only studies
published in English were included. While this decision may have excluded potentially
relevant studies published in other languages, it was necessary to ensure consistency and
avoid potential misinterpretations due to language barriers. Only studies on analyzing user
reviews from mobile apps will be included regarding the domain. Any literature centered
on other domains like desktop or web applications will be excluded as out of scope.

Table 2 Literature search results by database.

Database Initial search results After title/Abstract
screening

After full-text screening Final included studies

IEEE xplore 286 120 75 48

ACM digital library 196 89 52 25

ScienceDirect 166 76 44 22

Scopus 324 145 89 36

SpringerLink 207 104 60 28

Other sources (backward/forward searches) – – 31 21

Total 1,179 534 351 180

Massenon et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2401 15/60

http://dx.doi.org/10.7717/peerj-cs.2401
https://peerj.com/computer-science/


Only studies addressing feature extraction methods or tools for analyzing mobile app
reviews with software requirements elicitation were considered to meet the mapping
study’s goals. Studies focusing solely on traditional software requirements elicitation
techniques without considering user reviews or mobile app contexts were excluded, as they
did not directly contribute to the mapping study’s specific research questions and goals.
Moreover, the included studies were expected to provide substantive details and empirical
evaluations of the proposed feature extraction techniques or tools. Studies that merely
mentioned user reviews or feature extraction without providing in-depth descriptions,
implementation details, or empirical evaluations were deemed insufficient and were
consequently excluded from further analysis. Finally, studies that deviated significantly
from the scope and objectives of the mapping study were excluded to maintain a focused
and coherent analysis. This criterion ensured that the included studies were directly
relevant to the research questions and contributed valuable insights to the mapping study.
The mapping study aimed to create a thorough and excellent collection of studies by
following specific inclusion and exclusion guidelines. This comprehensive resource enables
robust analyses and syntheses of cutting-edge feature extraction methods and tools for
mobile app review analysis, particularly in software requirements elicitation contexts.

Data extraction and synthesis process
Upon defining the inclusion and exclusion standards and selecting pertinent studies, a
systematic data extraction and synthesis method was applied to analyze and integrate the
results thoroughly. This section outlines the details of this process, ensuring transparency
and reproducibility of the mapping study. The data extraction process involved carefully
examining each included study and recording relevant information in a standardized data
extraction form. This form was designed to capture essential details such as publication
metadata (e.g., authors, year, publication venue), study characteristics (e.g., research
methodology, dataset details), and key findings related to the research questions. As shown
in Table 4, the data extraction form collects essential information from articles, such as
authors, year, techniques, evaluation method, datasets, performance metrics, limitations,
and key findings. The form is adaptable, allowing for additional parameters during the
review process. After completing the data extraction, a thorough analysis was conducted to

Table 3 Inclusion and exclusion criteria.

Criterion Inclusion Exclusion

Domain Users of mobile apps Desktop/web applications, documents,

Mobile app user reviews Online user comments, product reviews

Intervention Feature/requirement extraction techniques, candidate/phrase
extraction, app reviews, mining tools

Keyphrase extraction from documents, phone features

Automated/semi-automated analysis Purely manual analysis

Methodology Empirical evaluation of techniques Theoretical approaches without evaluation

Comparison of multiple techniques Single technique in isolation

Robust performance metrics Weak or no methodology
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identify patterns, trends, and insights related to the research questions mentioned in the
introduction. The results were systematically organized, making it easy to comprehend the
current state of feature extraction methods and tools for mobile app review analysis. This
understanding helps with software requirements elicitation. We held frequent team
meetings and discussions to maintain the synthesis’s validity and reliability. These
meetings served as a forum for reviewing and refining the synthesized findings, resolving
any ambiguities or disagreements, and ensuring that the conclusions drawn were
supported by the extracted data and aligned with the objectives of the mapping study.
Through a thorough and organized data extraction and synthesis process, the mapping
study aimed to deliver a comprehensive and reliable analysis of advanced feature
extraction methods and tools for mobile app review assessment. This contributes to the
progress of software requirements elicitation and guides future research in this area.

Study selection and characteristics
The mapping study involved a rigorous study selection process to ensure the inclusion of
relevant and high-quality research works. This section discusses the characteristics of the
selected studies and presents a detailed overview in Table 5. Through a thorough literature
search and applying selection criteria, 180 studies were chosen for the mapping study
(Supplemental Information). These studies, from various sources like top journals,
conferences, and books, showcase the field’s multidisciplinary nature. Table 5 offers an
overview of the studies’ characteristics, including publication patterns, methodologies, and
evaluation datasets. As shown in Fig. 4, the publication timeline shows an upward
trajectory, with notable growth from 2016 to 2021. While the early years (2014–2015) saw
modest output, research activity peaked during 2019–2021, accounting for a third of all
studies. A slight decline is observed in 2022–2023, though the partial data for 2024 suggests
sustained interest in the field.

Publication types are evenly distributed between conference proceedings (48.9%) and
journal articles (47.8%), with a small representation of book chapters (3.33%). This balance

Table 4 Data extraction form fields.

Field Description

Paper ID A unique identifier is assigned to each study to enable tracking

Title The full title of the article. It helps indicate the topic and techniques studied.

Author(s) List of all authors of the article. Useful for identifying research groups

Year Year the article was published. Reveals temporal trends

Technique(s) Specific feature extraction method(s) evaluated in the study. The primary intervention of interest

Tools Any tools, frameworks, or environments used to implement the technique(s)

Evaluation approach How the technique(s) were evaluated, e.g., case study, experiments

Dataset(s) Details of the app review dataset(s) used to evaluate the technique(s). Indicates variety and size of data

Metrics Performance measures used in the evaluation, e.g., precision, recall, F1-score

Limitations Any limitations of the technique(s), evaluation, or methodology noted by the authors

Key findings High-level findings on the accuracy, scalability, or other performance factors of the technique(s)
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Table 5 Characteristics of selected studies.

Characteristic Count Percentage

Publication year

2014–2015 20 11.11%

2016–2018 59 32.78%

2019–2021 60 33.33%

2022–2023 27 15%

January 2024 to August 2024 14 7.78%

Publication type

Journal articles 86 47.8%

Conference proceedings 88 48.9%

Book chapters 6 3.33%

Research methodology

Empirical study 121 67.2%

Theoretical/conceptual 32 17.8%

Comparative study 27 15%

Dataset

Mobile app store reviews 132 73.3%

Repository dataset 27 15%

Online store reviews 21 11.7%

Figure 4 Distribution of the 180 selected studies per publication year.
Full-size DOI: 10.7717/peerj-cs.2401/fig-4
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indicates the topic’s relevance in academic and practical spheres, fostering discussions
across various platforms. Empirical studies dominate the research methodology,
comprising 67.2% of the selected works, underscoring a strong focus on data-driven
approaches. Theoretical and comparative studies, while less prevalent, contribute to the
field’s conceptual development and evaluation of different techniques. Regarding data
sources, mobile app store reviews are overwhelmingly favored and used in 73.3% of
studies. This preference aligns with the research area’s practical orientation, focusing on
real-world user feedback for software requirements engineering. Repository datasets and
online store reviews are utilized less frequently, potentially due to accessibility or relevance
constraints.

The consistent publication rate over the years, with recent peaks, reflects the ongoing
relevance and evolution of automated app review analysis. This trend suggests a maturing
field that continues to address the challenges of efficiently processing user feedback in
mobile app development. The predominance of empirical studies using app store data
highlights the field’s commitment to practical, real-world applications. At the same time,
the balance between conferences and journals indicates active discourse across immediate
and in-depth research contexts.

Quality assessment
We conducted a rigorous literature search and screening to identify relevant primary
studies. To ensure the quality and reliability of the findings, we further evaluated the
selected primary studies based on well-established quality assessment criteria, as
recommended by Kitchenham’s (2004) guidelines for systematic literature reviews in
software engineering. Several quality assessment questions were considered to assess the
primary studies’ rigor, validity, and potential for bias. This step is crucial to ensure the
robustness and trustworthiness of the review’s findings. The following quality assessment
(QA) questions can be adapted for this mapping study:

. QA1: Are the research objectives and questions clearly stated?

. QA2: Is the study context (e.g., application domain, type of review data) adequately
described?

. QA3: Is the feature extraction technique or tool thoroughly explained, including its
underlying principles, algorithms, and implementation details?

. QA4: Are the evaluation datasets representative of real-world app reviews and
adequately described (size, source, pre-processing steps)?

. QA5: Are the evaluation metrics and performance measures clearly defined and
appropriate for assessing the technique’s effectiveness?

. QA6:Are the evaluation methods and experimental design sound and well-documented?

. QA7: Are the study’s limitations and threats to validity acknowledged and discussed?

. QA8: Does the presented evidence and analysis support the study’s findings and
conclusions?
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. QA9: Is the study’s contribution to app review analysis and software requirements
elicitation clearly stated and justified?

. QA10: Is the study well-written, organized, and understandable for the intended
audience?

As captured in Appendix A, we provided hypothetical quality assessment scores for all
180 studies included in the mapping study based on the predefined criteria. The quality
assessment questions (Q1–Q10) are listed in the column headers, and a score of 1 (Yes), 0.5
(Partially), or 0 (No) is assigned for each question based on the assessment of the
respective study. The total score for each survey is calculated by summing up the individual
scores for all questions. This total score can provide an overall measure of the study’s
quality, with higher scores indicating better quality and lower scores suggesting potential
issues or limitations.

Specifically, a significant portion of the studies (approximately 30%) can be categorized
as good quality, with total scores ranging from 8 to 9.5. These studies have effectively
addressed most, if not all, of the quality criteria, including clearly stated research objectives,
thorough descriptions of the feature extraction techniques and tools, well-documented
evaluation methods, and comprehensive discussions of limitations and future research
directions. Moreover, most studies (approximately 55%) fall into the average quality
category, with scores ranging from 6.5 to 7.5. For instance, some studies may have
provided insufficient details regarding the evaluation datasets or the specific
implementation of the feature extraction techniques. In contrast, others may have lacked a
comprehensive discussion of the study’s limitations or potential threats to validity.

Additionally, a smaller subset of the studies (approximately 15%) can be classified as
poor quality, with scores below 6.5. These studies may have significant shortcomings in
one or more quality criteria, such as a lack of clear research objectives, inadequate
descriptions of the feature extraction techniques or tools, poorly designed or executed
evaluation methods, or absence of a critical discussion of the study’s limitations and
implications.

However, this assessment highlights potential areas for improvement. It can guide
future research efforts in developing more robust and reliable feature extraction techniques
and tools for mobile app review analysis in the context of software requirements elicitation.

MAPPING STUDY RESULTS
The study on mobile app review analysis for software requirements elicitation presents
various feature extraction methods. These techniques are divided into primary categories
with unique strengths, limitations, and uses. This section discusses the findings, addressing
our research questions.

RQ1: What feature extraction techniques are employed for analyzing
mobile app reviews to extract software requirements?
Data was gathered on techniques explored in each article to study feature extraction
methods for mobile app analysis (RQ1). Figure 5 presents diverse extraction techniques
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used in software requirements elicitation. This variety of techniques, such as Topic
Modeling Techniques, Collocation Finding Techniques, Association Rule-Based
Techniques, Aspect-Based Sentiment Analysis, Frequency-Based Techniques, Word
Vector-Based Techniques, Hybrid Techniques, and Large Language Models, offers
researchers and practitioners a broad toolkit for addressing the multifaceted challenges of
extracting meaningful features from user-generated app reviews. Each category represents
a unique approach with specific strengths, limitations, and applications. Out of the 180
included studies, Fig. 6 highlights that hybrid techniques emerge as the most prevalent
approach, accounting for 21.6% of the identified methods. This preference for combining
multiple techniques suggests recognizing the complex nature of app review analysis and
the potential benefits of leveraging complementary approaches. Following closely are word
vector-based techniques at 17.0%, indicating a solid reliance on advanced natural language
processing methods that capture semantic relationships between words. Topic modeling
techniques and large language models represent the next tier of popularity at 14.5% and
12.6%, respectively. Despite their relative novelty, the significant presence of large language
models underscores the rapid adoption of state-of-the-art artificial intelligence (AI)
technologies in this field. Aspect-based sentiment analysis (11.6%) and frequency-based
techniques (9.9%) also maintain a notable presence, highlighting the continued relevance
of both sentiment-aware and statistical approaches. Less frequently employed methods

Figure 5 Categories of feature extraction techniques. Full-size DOI: 10.7717/peerj-cs.2401/fig-5
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include collocation-finding techniques (7.9%) and association rule-based techniques
(5.0%). While these approaches appear less dominant, their inclusion in the taxonomy
reflects the multifaceted nature of feature extraction in app review analysis.

The diversity of techniques identified in this study points to a field actively exploring
various methodological avenues. This breadth of approaches suggests that researchers are
addressing the challenges of feature extraction from multiple angles, likely in response to
the varied nature of app reviews and the specific requirements of different analysis tasks.
Moreover, the prominence of hybrid techniques and the adoption of advanced methods
like large language models indicate a trend towards more sophisticated, integrated
approaches to feature extraction. This evolution may reflect the growing complexity of app
ecosystems and the increasing expectations for nuanced, context-aware analysis of user
feedback. The mapping study reveals a rich and evolving landscape of feature extraction
techniques in mobile app review analysis. The field is characterized by methodological
diversity, with a trend towards hybrid and advanced model approaches. By offering an
overview, it helps researchers and practitioners understand current trends and select
suitable techniques based on specific needs and limitations. The following subsections
detail each technique.

Topic modelling-based feature extraction technique
Topic modeling, a prevalent technique for feature extraction in app reviews, is a statistical
tool that discovers latent topics in texts without prior annotations (Blei, 2012). It has been

Figure 6 Frequency distribution of identified feature extraction techniques of the mapping study. Full-size DOI: 10.7717/peerj-cs.2401/fig-6
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widely adopted in natural language processing, semantic analysis, text mining, and
bioinformatics domains. Various methods, such as latent Dirichlet allocation (LDA), non-
negative matrix factorization (NMF), latent semantic analysis or indexing (LSA/LSI), and
hierarchical Dirichlet process (HDP), have been utilized for feature extraction. LDA is the
most employed among studies (35 of 180). LDA, an unsupervised probabilistic method,
discovers latent topics and keywords in text documents like app reviews without requiring
predefined labels or aspects. Researchers typically preprocess reviews and utilize LDA
models to generate topics and associated terms (Iacob & Harrison, 2013; Guzman &
Maalej, 2014; Chi et al., 2019; Su, Wang & Yang, 2019). Variants like AppLDA and
Twitter-LDA have been proposed by Park et al. (2015) andWang et al. (2019) respectively
to identify key aspects of apps and handle short texts, respectively. NMF, another
unsupervised approach, decomposes review term frequencies into semantic vectors using
non-negativity constraints and dimensionality reduction (Ossai &Wickramasinghe, 2023).
Compared to LDA, NMF generates more coherent topics and identifies vital features,
offering insights for developers. Studies show that NMF has slightly higher precision than
LDA but has a similar recall (Luiz et al., 2018; Suprayogi, Budi & Mahendra, 2018).
Although NMF produces interpretable topics, noise remains an issue, and performance
improvements over LDA are minimal. LDA and NMF are relatively easy to implement, but
manual effort is required to derive meaningful features. LDA may be better suited for
longer texts (Suprayogi, Budi & Mahendra, 2018), while NMF is more computationally
efficient. Online LDA (OLDA) and Online Biterm Topic Model (OBTM) are efficient
algorithms for analyzing text data online. OBTM assigns topics to pairs of words (biterms)
and updates the model efficiently for short text datasets, leveraging global word co-
occurrence patterns. OLDA processes documents sequentially, updating the topic model as
new documents arrive, making it suitable for streaming data scenarios and handling large
datasets without reprocessing the entire dataset (Hu, Wang & Li, 2018; Cheng et al., 2014;
Hoffman, Bach & Blei, 2010).

Collocation finding based feature extraction technique
A collocation-based approach as an unsupervised method to extract feature-related terms
from app reviews was employed in 19 studies. Collocation-finding techniques identify co-
occurring terms or phrases representing specific features or requirements. Three methods
(Mutual et al., skip-gram) of collocation have been identified and focus on word
combinations that occur more frequently than expected by chance, suggesting a
meaningful relationship between the terms (Trupthi, Pabboju & Narasimha, 2016). The
most common collocations found were bigrams (two adjacent words). The preprocessing
step focused on noun-noun or adjective-noun collocations, followed by ranking term
associations using collocation strength scores like pointwise mutual information. The
initial algorithm, proposed by Finkelstein et al. (2017) and Harman et al. (2016), was
designed to extract mobile app features from app store descriptions. It detects patterns in
feature lists and extracts bi-grams (two-word combinations). Similar bi-grams are then
merged using a clustering method, creating ‘featurelets’ of two to three terms representing
mobile app features. This algorithm effectively identifies app features and has been applied
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to study feature behavior in app stores, their correlation with price, rating, and rank, app
store categorization, and predicting customer reactions to proposed features. Dąbrowski
et al. (2020) and Malgaonkar, Licorish & Savarimuthu (2020) discuss co-occurrences’
limitations for meaningful phrase identification. It highlights the use of pointwise mutual
information (PMI) in some studies. PMI measures the association between words based on
their co-occurrence frequency compared to chance expectations (Church & Hanks, 1990).
It effectively captures semantic word associations beyond simple frequency, allowing for
extracting features like “battery drain”.

Frequency-based feature extraction technique
Frequency-based feature extraction, a prominent technique in 24 studies, identifies
frequently occurring words or phrases in review corpora to capture primary topics and
concerns. It is utilized in information extraction, classification, and prioritization. The
approach focuses on nouns or nominal phrases as aspects (Johann, Stanik & Maalej, 2017;
Vu et al., 2016). Term frequency-inverse document frequency (TF-IDF), N-gram analysis,
POS tagging, and POS Chunking are widely used techniques for this extraction. Multiple
frequency-based methods are applied in scientific research for feature extraction from app
reviews. POS tagging assigns grammatical labels (e.g., noun, verb) to words in review texts.
This helps extract features like POS tag frequencies and allows analyzing user-mentioned
aspects and sentiments. POS tagging offers syntactic context, aiding in identifying opinion-
indicating words in reviews (Manning et al., 2014). POS Chunking breaks down text into
related parts, such as noun phrases, using POS tags (Raharjana et al., 2021). It offers
lightweight parsing for feature extraction and provides phrasal features like noun phrase
frequencies in review texts. TF-IDF, another technique, assesses word importance in a
document collection by combining term and inverse document frequency (Salton &
Buckley, 1988). TF-IDF extracts significant keywords and keyphrases from app reviews
(Messaoud et al., 2019;McIlroy et al., 2016; Ciurumelea et al., 2017; Lu & Liang, 2017). This
method filters out common words and highlights meaningful terms (Xu et al., 2018). Chi-
square statistics measures the relationship between a term and a class by calculating the
chi-squared statistic with the class label (Zhai et al., 2018). It ranks terms based on
occurrence and independence from specific categories (Triantafyllou, Drivas &
Giannakopoulos, 2020). The chi-square method is efficient in quickly identifying
informative features for classification tasks. A common approach is the bag-of-words
(BoW) model, which represents text as a collection of word frequencies, disregarding
grammar and word order (Maalej et al., 2016; Yao et al., 2022). Despite its simplicity, BoW
effectively captures important words for text classification tasks, like categorizing app
reviews into functional, non-functional, and user experience requirements. Variants like
Augmented Bag of Words (AUR-BoW) create aspect-specific BoW features, providing
aspect-level opinion features (Lu & Liang, 2017; Santos, Groen & Villela, 2019). Combining
chi-square with other techniques like TF-IDF, BoW, or AUR-BoW can enhance the
understanding and accuracy of categorizing user reviews. However, frequency-based
approaches may overlook low-frequency aspects and require manual adjustments for
specific datasets, as Ishaq, Asghar & Gillani (2020) mentioned.
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Association-rule-based feature extraction technique
Association rule mining, initially developed for data mining, has garnered interest for its
potential to extract features from user-generated content, such as app reviews. This
method identifies patterns and co-occurrences within datasets, revealing item associations
(Genc-Nayebi & Abran, 2017). Numerous studies have applied association rule mining for
feature extraction, often employing dependency parsing to analyze sentence structures and
identify relationships, offering a comprehensive syntactic analysis for detailed linguistic
feature extraction (Zhang et al., 2022). Vu et al. (2016) proposed a technique combining
association rule mining and information retrieval for extracting features from mobile app
reviews. They identified co-occurring terms through association rule mining and ranked
features based on relevance and interestingness, proving effective for software
requirements analysis.

Similarly, Guzman &Maalej (2014) utilized association rule mining to discover patterns
and relationships between quality attributes and other terms, facilitating the extraction of
non-functional requirements for mobile apps’ overall quality and user satisfaction. Zhang
et al. (2022) presented a semi-automatic framework to detect privacy features from app
reviews. It comprises components for identifying privacy-related reviews, using
dependency parsing to extract features, and mapping them to app descriptions. This
technique enhances flexibility and comprehensiveness in extracting privacy-related
features, improving precision and recall for software maintenance activities.

Word vector-based feature extraction

Word vector-based techniques have gained popularity in natural language processing,
particularly for extracting features frommobile app reviews. These approaches utilize word
contexts and distributional properties to create low-dimensional, dense vectors, capturing
semantic and syntactic information (Phong et al., 2015). They enable various machine
learning and deep learning tasks, such as sentiment analysis and topic modeling. The
vector space model (VSM), employed in many studies (41 of 180), has been widely used for
feature extraction from app reviews by representing reviews as sparse vectors, with
dimensions for unique words and values indicating their presence or frequency. More
advanced techniques involve word embeddings, representing words as dense vectors in a
continuous space and capturing semantic relationships (Huang et al., 2024; Yin et al.,
2024a). One of the prominent word embedding-based feature extraction methods is the
use of pre-trained word embedding models, such as Word2Vec (Mikolov, Yih & Zweig,
2013), GloVe (Xiaoyan, Raga & Xuemei, 2022), FastText (Umer et al., 2023) and ELMo
(Malik et al., 2024). These models are trained on large text corpora to learn the vector
representations of words, capturing their semantic and syntactic properties. Fast Text
works on N-Gram, while Word2Vec is based on the word and uses the Skip-gram model
(Khomsah, Ramadhani & Wijaya, 2022). When applied to mobile app reviews, these pre-
trained word embeddings can identify keywords, phrases, and concepts indicative of user
requirements (Ebrahimi, Tushev & Mahmoud, 2021). The cosine similarity between word
vectors can be utilized to detect synonymous or related terms, enabling the extraction of
feature requests, bug reports, and other relevant software requirements. Several studies
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have applied Skip-gram and Word2Vec for feature extraction from app reviews,
combining them with transfer learning and deep learning models to classify review
sentences into requirement categories. Named entity recognition (NER) is another helpful
approach, identifying and classifying named entities (e.g., app features, functionalities)
within review text. Nguyen et al. (2020) combined NER with topic modeling and sentiment
analysis to extract features and user opinions from app reviews. While other methods offer
a simple yet effective representation, more advanced techniques like large language models
can capture semantic relationships and identify specific entities, enabling more
comprehensive feature extraction and analysis of app reviews.

Large language model-based feature extraction technique

In addition to traditional word embedding techniques, twenty-five (25 of 180) studies
applied the recent advancements in large language models (LLMs), such as Bidirectional
Encoder Representations from Transformers (BERT) (Devlin & Hayes, 2019; He et al.,
2024), GPT (Su et al., 2024; Rathje et al., 2024), and XLNet (Yang, 2019), have opened up
new opportunities for extracting software requirements from mobile app reviews. These
models, trained on vast amounts of text data, can capture rich contextual representations
of language, enabling a more nuanced understanding of user feedback (Devlin & Hayes,
2019; Su et al., 2024; Yang, 2019). By encoding review text into contextual representations,
LLMs can identify complex relationships between words, phrases, and overall semantic
and pragmatic context, leading to improved comprehension of user intent, feature
requests, and bug reports (Jiang & Conrath, 1997;Wang et al., 2022a). BERT, a pioneering
LLM, has demonstrated remarkable performance in capturing bidirectional context,
making it suitable for token-level tasks in app review analysis (Broscheit, 2020). Building
upon BERT’s foundation, RoBERTa offers enhanced performance through extended pre-
training and augmented data, resulting in more robust language representations (Liu,
2019). XLNet further advances the field by combining autoregressive and bidirectional
training, considering all possible permutations of a sentence’s words during pre-training,
which fosters improved contextual understanding and dependency modeling among
tokens (Yang, 2019).

The ability of LLMs to handle linguistic complexities such as sarcasm, negation, and
ambiguity makes them well-suited for analyzing mobile app reviews, which often contain
colloquial language and nuanced user feedback (Nugroho et al., 2021; Tong et al., 2022).
Researchers have leveraged these capabilities to develop techniques for automatically
classifying reviews, extracting feature requests, and identifying areas for software
improvement. One key advantage of LLM-based feature extraction is the potential for
transfer learning. Pre-trained models can be fine-tuned on domain-specific data, such as
software engineering corpora or mobile app review datasets, to enhance their performance
in requirements engineering tasks (Hou et al., 2023; Motger et al., 2024a, 2024b). This
approach allows researchers and practitioners to harness large models’ powerful language
understanding capabilities while adapting them to the specific needs of mobile app review
analysis.
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Several studies have demonstrated the effectiveness of LLMs in extracting features from
mobile app reviews and introduced some variations of BERT, such as Roberta and RE-
BERT (de Araújo & Marcacini, 2021). These variations help developers locate specific
periods of sentiment shifts and identify problems in recent updates. Ullah, Zhang &
Stefanidis (2023) employed BERT for sentiment analysis of mobile app reviews,
demonstrating its effectiveness in identifying issues in-app updates that negatively impact
user opinions. Yang et al. (2021) proposed a review non-functional requirement analysis
method (NRABL) based on BERT and topic modeling. This approach combines multi-
label classification using BERT with LDA for topic extraction, enabling developers to
understand user requirements and specific usage problems quickly. While LLMs have
shown great promise in feature extraction from mobile app reviews, challenges remain.
These include the need for manual intervention in some cases, difficulties with complex
linguistic structures, scalability issues, and challenges in model interpretability (Motger
et al., 2024a). Additionally, the high computational requirements of some LLMs may pose
limitations for smaller development teams or resource-constrained environments.

Furthermore, the performance of LLMs can vary depending on the specific domain and
the quality of the training data. Gambo et al. (2024a) showcased using RoBERTa for
sentiment analysis, combined with topic modeling and semantic similarity measures, to
identify and resolve conflicts among application features. Their approach outperformed
baseline methods in detecting contradictory sentiments and discovering latent topics
representing application features. By leveraging the power of contextual understanding
and transfer learning, these models offer improved accuracy and nuanced insights into
user feedback. As the field evolves, future research directions include developing more
robust and scalable methods, improving model interpretability (Gambo et al., 2024b) and
transparency, and bridging the gap between technical accuracy and practical relevance in
software development processes.

Aspect-based sentiment analysis

Aspect-based sentiment analysis is promising for extracting valuable insights from user-
generated content, such as mobile app reviews (Guzman & Maalej, 2014). Unlike
traditional sentiment analysis, which determines the overall sentiment expressed in a text,
aspect-based sentiment analysis aims to identify specific aspects or features being discussed
and associate the corresponding sentiments with each element (Guzman, Alkadhi & Seyff,
2016). This technique provides a more granular understanding of user opinions, enabling
developers and requirements engineers to pinpoint strengths, weaknesses, and areas for
improvement within an app. Twenty-eight (28) studies have explored the application of
aspect-based sentiment analysis for extracting opinions and features from mobile app
reviews. Common approaches include lexicon-based techniques like SentiStrength,
Valence Aware Dictionary for sEntiment Reasoning (VADER) (Jha & Mahmoud, 2019;
Luiz et al., 2018), TextBlob (Messaoud et al., 2019), LIWC (Keertipati, Savarimuthu &
Licorish, 2016), which assign sentiment scores or classify sentiments based on predefined
sentiment lexicons or rules. SentiWordNet, developed by Sebastiani & Esuli (2006), assigns
polarity scores to each word, and the overall polarity of a sentence is calculated based on a
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predefined threshold (Rajeswari et al., 2020). SentiTFIDF, proposed by Ghag & Shah
(2014), uses proportional frequency and presence count distributions to classify terms as
positive, negative, or neutral, achieving an accuracy of 92%. SenticNet, developed by
Cambria et al. (2010), employs techniques such as blending, spectral activation, and
emotion categorization to provide sentiment analysis at a semantic level, outperforming
SentiWordNet (Musto et al., 2014). SentiFul, proposed by Neviarouskaya, Prendinger &
Ishizuka (2011), automatically generates and scores a new sentiment lexicon, considering
the role of affixes in sentiment conveyance and expanding the sentiment lexicon coverage.
VADER, developed by Hutto & Gilbert (2014), was designed to address the unique
challenges of social media content, incorporating a comprehensive vocabulary and a rule-
based evaluator. Its lexicon is specifically tailored to capture the nuances of social media
communication, including acronyms, emoticons, and slang.

Other studies have employed machine learning and deep learning techniques, such as
joint aspect-sentiment modeling (Gao et al., 2023) or topic modeling-based frameworks
like ASUM (Chen et al., 2014), Senti4SD (Aslam et al., 2020) to capture the
interdependencies between aspects and sentiments. By employing aspect-based sentiment
analysis techniques, researchers and practitioners can gain deeper insights into user
preferences, concerns, and priorities regarding specific features or aspects of mobile
applications. This granular level of understanding can inform software requirements
elicitation processes and enable the development of user-centric applications that better
align with user needs and expectations. However, aspect-based sentiment analysis
techniques can be computationally intensive, and their performance may be influenced by
factors such as the availability of domain-specific sentiment lexicons, the quality of
training data, and the ability to capture contextual and linguistic nuances. Ongoing
research efforts focus on developing more robust and scalable hybrid approaches that
combine aspect-based sentiment analysis with other techniques like topic modeling or
association rule mining.

Hybrid techniques based feature extraction technique
Several studies (21.3%) explored hybrid approaches, integrating different techniques to
capitalize on their combined strengths. One prominent method involved combining
frequency analysis and topic modeling: first identifying frequent terms through frequency
analysis (TF-IDF, BoW), then applying topic modeling (LDA, NMF) to uncover latent
semantic relationships and nuanced themes (Luiz et al., 2018; Raharjana et al., 2021). This
combination allows researchers to capture syntactic and semantic information from the
review text. Another hybrid technique combines sentiment analysis with topic
modeling or frequency-based methods. It first identifies sentiment-labeled reviews
using sentiment analysis, then applies topic modeling or frequency analysis to extract
user satisfaction or dissatisfaction features, providing valuable insights into user
opinions. Ossai & Wickramasinghe (2023) combined non-negative matrix factorization
(NMF) and bag-of-words (BoW) techniques to analyze user concerns regarding diabetes
mobile apps, extracting relevant features from comments on medication, diet, and exercise.
Luiz et al. (2018) used NMF with TF-IDF and aspect-based sentiment analysis to extract
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features from user comments. Raharjana et al. (2021) proposed a hybrid approach
integrating collocation finding, LDA for topic modeling, and part-of-speech (POS)
tagging, which allowed them to analyze language structures and patterns in reviews,
facilitating software feature identification for requirements reuse.

Another hybrid approach integrates sentiment analysis with topic modeling or
frequency-based techniques (Bhuvaneshwari et al., 2022; Yue & Li, 2020; Ballas et al., 2024;
Ren et al., 2020). This approach first identifies sentiment-labeled reviews using sentiment
analysis and then applies topic modeling or frequency analysis to extract features
associated with user satisfaction or dissatisfaction. This provides a more granular
understanding of user opinions and the aspects of the app that are driving these
sentiments. Yue & Li (2020) combined a CNN-BiLSTM model with Word2vec,
demonstrating improved performance over single-structure neural networks in short-text
sentiment analysis. Ballas et al. (2024) employed and fine-tuned a BERT-based aspect-
based sentiment analysis (ABSA) model to extract sentiment triplets (aspect, opinion,
polarity) from review sentences. Their results show that ABSA models can effectively
capture user feedback by identifying aspects and sentiments related to app features and
functionalities. In the same way, Alturaief, Aljamaan & Baslyman (2021) introduced
AWARE-based ABSA by crowdsourcing the annotations of aspect categories and
sentiment polarities of user reviews. Ren et al. (2020) proposed a lexicon-enhanced
attention network (LEAN) model based on bidirectional long short-term memory
(BiLSTM). LEAN not only identifies sentiment words in a sentence but also focuses on
specific aspects of information, leveraging the strengths of both lexicon-based and
machine-learning approaches.

Studies also explored integrating machine learning with methods like word vector-based
approaches, rule-based systems, topic modeling, and sentiment analysis. For example,
Rustam et al. (2020) combined BoW, TF-IDF, chi-square (Chi2), and machine learning
algorithms to classify user reviews into non-functional and functional requirements,
among other categories. Similarly, Lu & Liang (2017) focused on classifying reviews into
non-functional requirements (NFRs), functional requirements (FRs), and other categories
by combining BoW, TF-IDF, chi-square, and AUR-BoW with machine learning
algorithms. Triantafyllou, Drivas & Giannakopoulos (2020) developed a feature
engineering classification schema using TF-IDF, chi-square, and DEVMAX. DF for
strategic business purposes. Overall, these hybrid and ensemble approaches leverage the
complementary nature of various techniques, aiming to mitigate individual weaknesses
and provide more comprehensive and accurate feature extraction from unstructured text
data like online reviews.

RQ2: What app review analysis tools have been developed to support
the implementation of these feature extraction techniques?
Software requirements analysis has seen the development of various tools and frameworks
that leverage techniques like natural language processing (NLP), machine learning, and
information retrieval to facilitate accurate and efficient extraction and analysis of user
requirements from diverse data sources, including user reviews. This study identified 48
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Table 6 Tools for feature extraction from mobile app reviews.

Tools Authors Technique(s)

SUR-Miner Gu & Kim (2015) Classification, Pattern-Based Parsing, NLP Parser, Semantic Dependence Graph (SDG)

CLAP Scalabrino et al. (2019) Random Forest, Rotation Forest, J48, Simple Cart, SMO, Bayesian Network

MARK Phong et al. (2015) POS Tags, Word2Vec k-Means Clustering

KEFE Wu et al. (2021) NLP, ML, Regression Analysis

SRR-Miner Tao, Guo & Huang (2020) <Misbehavior-aspect-opinion> extraction, POS tag, Bag of Word (BOW) feature, tf-idf, LR

SAFE Johann, Stanik & Maalej (2017) Coding tool for evaluating feature extraction, implementation of SAFE approach

SIRA Wang et al. (2022a) BERT+Attr-CRF model for feature extraction

User request
reference (URR)

Ciurumelea et al. (2017) NLP Type dependencies (stop words, Porter Stemmer) structure, Text features using
Ngrams, Term frequency-based features using TF-IDF

SURF Di Sorbo et al. (2017) Stanford Typed Dependencies (STD) parser, NLP classifier, Snowball Stemming, stop-
word removal

T-FREX Motger et al. (2024a) Large Language Models

CRISTAL Palomba et al. (2015) Semi-supervised learning (Expectation Maximization for Naive Bayes (EMNB) from AR-
Miner), Lightweight Textual Analysis

MAPP-reviews Alves de Lima, de Araújo &
Marcondes Marcacini (2022)

Opinion Mining, Temporal Dynamics of Requirements analysis

ARdoc Panichella et al. (2016) NLP, TA, SA

SAFER Jiang et al. (2019) Topic modeling (LDA), feature recommendation algorithm

AR-Miner Chen et al. (2014) EMNB-LDA, EMNB-ASUM, Stanford Topic Modeling Toolbox, LingPipe

IDEA framework Gao et al. (2018b) NLP, POS, rule-based methods, Pointwise Mutual Information (PMI) for phrase extraction,
Semantic Score, Sentiment Score, AOLDA

DIVERSE Guzman, Alkadhi & Seyff (2016) Pos tagging, collocation finding algorithm, lexical sentiment analysis (SentiStrength)

SOLAR Gao et al. (2023) Review helpfulness prediction, Topic modeling, Sentiment analysis, SVM, Random Forest,
and EMNB.

CASPAR Guo & Singh (2020) Natural Language Processing (NLP), Part-of-speech tagging, Dependency parsing

GuMa Guzman & Maalej (2014) Collocation Finding, Lexical Sentiment Analysis, Topic Modeling

ReUS Dragoni, Federici & Rexha (2019) Aspect Extraction, Polarity Inference, OpenIE, Sentiment Module

RE-SWOT Dalpiaz & Parente (2019) NLP, SWOT Analysis

PUMA Vu et al. (2016) Stanford POS tagger, Phrase Extraction

UISMiner Wang et al. (2022b) Review Classification, SVM, POS tag, Semantic dependency trees

DSISP Xiao et al. (2020) Sentiment analysis and NLP (Natural Language Processing)

RISING Zhou et al. (2020) Semi-supervised clustering, Textual analysis, Feature extraction Stanford NLP toolkit, PCA,
BoW, N-gram, VSM, K-means

MERIT Gao et al. (2015a) Topic Modeling JST, BST, Sentiment Analysis, PMI, BoW, AOBST

DIVER Gao et al. (2019a) Topic Modeling, Word Collocation Extraction

ChangeAdvisor Palomba et al. (2017) NLP, ARDOC (Panichella et al., 2015), bag-of-words

Oasis Wei, Liu & Cheung (2017) Semantics-based similarity

INFAR Gao et al. (2018a) Feature Extraction

AR-TRACER Gao et al. (2015b) Topic Modeling

PAID Gao et al. (2015b) Phrase Extraction, Topic Modeling

CrossMiner Man et al. (2016) Keyword-based Method Word2Vec

Requirements-
collector

Panichella & Ruiz (2020) Machine Learning, Deep Learning
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tools used in the selected research for extracting features and requirements from user
reviews, as illustrated in Table 6. The following section provides an overview of these
prominent tools and approaches employed in this domain.

Palomba et al.’s (2015) CRISTAL approach traces mobile app user reviews to code
changes to enhance app success. Using the AR-MINER tool extracts informative feedback
from app stores, allowing developers to prioritize significant concerns and make informed
code modifications.

Johann, Stanik & Maalej (2017) introduced the SAFE technique, which extracts features
from app descriptions and user reviews to better understand app functionalities. It
preprocesses text data using POS analysis and sentence patterns, matching features with
descriptions through term and semantic similarity matching, aiding app store analytics.

SURF (Summarizer of User Reviews Feedback), proposed by Di Sorbo et al. (2017),
summarizes app reviews to help developers handle large volumes of feedback. It evaluates
sentences based on relevance and frequency, generating structured summaries that
categorize topics and intentions, thus providing insights into user needs.

Phong et al. (2015) developed the MARK framework, which uses tf-idf and the Vector
Space Model to analyze keywords from app reviews. MARK ranks, clusters, and expands
keywords, employing Word2Vec for effective grouping and k-means clustering, allowing
analysts to identify significant user opinions and trends.

Jiang et al. (2019) presented the SAFER technique, which extracts features from app
descriptions and recommends new features to developers. Combining data cleaning,
linguistic rule filtering, cosine similarity, and classification, SAFER accurately identifies
feature-describing sentences and uses LDA for similar app identification, outperforming
other algorithms in feature recommendations.

Table 6 (continued)

Tools Authors Technique(s)

CIRA Martin, Sarro & Harman (2016) Causal Impact Analysis, Data Mining, Statistical Analysis

Automatic UUX Bakiu & Guzman (2017) Feature Extraction, Collocation Algorithm, NLTK POS Tagger

AOBTM Hadi & Fard (2023) AOBTM, Online LDA, Online BTM

BECLoMA Pelloni et al. (2018) BECLoMA,

FeatCompare Assi et al. (2021) GLFE (Global-local Sensitive Feature Extractor), TfidfVectorizer, k-means

OPT-based
approach

de Lima, Barbosa & Marcacini
(2023a)

OPT-based approach

Mapp-IDEA de Lima, Barbosa & Marcacini
(2023b)

Sentiment Analysis, Word Embedding, BERT

STRE Tan et al. (2023) Textual Similarity Topics (TST) Extraction using LDA, Review Topic Identification,
Learning Algorithm

CEAR Zahoor & Bawany (2023) Machine Learning (Random Forest, Naive Bayes, SVM, Decision Tree, Logistic Regression,
ANN, LSTM, RNN), LIME for model explanations

IETI Zhou et al. (2022) Natural Language Processing, Adaptive Online Biterm Topic Model, PMI for Phrase
Extraction

TransFeatEx Gallego Marfa et al. (2023) Natural Language Processing, RoBERTa, POS patterns, syntactic dependency patterns
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The CLAP technique by Villarroel et al. (2016) aids in mobile app release planning by
analyzing user reviews. It categorizes reviews into bug reports, feature suggestions, and
more using Random Forest and prioritization techniques. CLAP enhances accuracy
through n-gram extraction, stop word removal, stemming, and synonym unification. It
helps developers make informed decisions for app release planning, validated by studies
from Scalabrino et al. (2019), Liu et al. (2018), and Gomaa et al. (2020).

SUR-Miner, introduced by Gu & Kim (2015), assists developers in analyzing user
reviews and understanding user preferences. It employs the Max Entropy algorithm to
categorize review sentences into evaluations, bug reports, feature requests, and praise.
Using part-of-speech (POS) tagging and pattern-based parsing with cascading finite state
machines, SUR-Miner extracts aspect-opinion pairs based on semantic templates and
Semantic Dependence Graphs (SDGs).

The User Request Referencer (URR) by Ciurumelea et al. (2017) categorizes mobile app
reviews and suggests code enhancements using machine learning and information retrieval
techniques. It employs feature extraction methods like n-grams and term frequency, as
well as preprocessing steps such as stop word removal, punctuation elimination, and
stemming, enabling the system to learn from reviews and classify them accurately.

Motger et al. (2024a) introduced T-FREX, a Transformer-based approach that uses large
language models (LLMs) to extract features from app reviews. T-FREX fine-tunes LLMs on
a named entity recognition task and implements a voting-based feature extraction
mechanism, enhancing software engineering tasks related to mobile app development.

SRR-Miner, by Tao, Guo & Huang (2020), summarizes security-related user reviews in
mobile apps. It uses a keyword-based method to extract security-focused sentences,
identifying app misbehaviors and user opinions. SRR-Miner surpasses logistic regression
with Bag of Words features, providing comprehensive insights into security concerns and
user sentiments.

PUMA, developed by Vu et al. (2016), extracts user opinions from mobile app reviews
using POS templates to identify phrases, cluster similar opinions, and track negative
sentiments over time. By analyzing word sequences that convey specific meanings and
feelings, PUMA offers detailed insights into user feedback.

RE-BERT, proposed by de Araújo & Marcacini (2021), combines local context word
embeddings and deep neural networks to extract software requirements from reviews. It
enhances rule-based methods and uses a multi-domain training strategy, outperforming
methods like SAFE and ReUS by leveraging pre-trained models for semantic text
representation.

Alves de Lima, de Araújo & Marcondes Marcacini (2022) developed MAPP-Reviews to
analyze the temporal dynamics of software requirements from app reviews. Using
contextual word embeddings based on RE-BERT, it captures word meanings in context,
extracting relevant software requirements and identifying crucial trends in user feedback.

SIRA, introduced by Wang et al. (2022a), is a semantic-aware app review analysis
method that extracts and visualizes problematic features from user feedback. SIRA
combines a BERT+Attr-CRF model for detailed feature extraction with a graph-based
clustering technique for summarizing common issues. Leveraging BERT’s contextual
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understanding and CRF’s sequence labeling, SIRA improves semantic capture compared to
models like KEFE, Caspar, SAFE, and BILSTM-CRF. By incorporating review descriptions
and attributes, SIRA accurately identifies and clusters problematic features, helping
developers address concerns and enhance user experience efficiently.

DIVERSE, aids software developers in evolution tasks by analyzing sentiment and
categorizing reviews based on feature-sentiment scores. It extracts verbs, nouns, and
adjectives through POS tagging, identifies features with a collocation algorithm, and uses
SentiStrength for sentiment analysis. A greedy algorithm retrieves diverse feature
specimens, enabling developers to prioritize tasks and analyze varying opinions based on
user feedback.

Chen et al. (2014) introduced AR-Miner, a tool designed to analyze user feedback and
provide insights for app improvement. It employs LDA for feature extraction and group
reviews based on rating, temporal fluctuations, and volume. The tool prepares data using
text normalization, tokenization, and sentiment analysis. The EMNB algorithm classifies
reviews as informative or uninformative, with EMNB-LDA outperforming EMNB-ASUM.

Panichella et al. (2016) developed ARdoc, combining NLP, text analysis (TA), and
sentiment analysis (SA) to categorize valuable feedback in app reviews. ARdoc breaks
down review text into sentences and extracts linguistic, structural, and sentiment features
to classify reviews using the J48 algorithm. This tool supports developers in software
maintenance and evolution tasks.

Gao et al. (2018b) introduced the IDEA framework, which analyzes app reviews to
detect emerging issues. It includes preprocessing, LDA topic modeling, interpretation, and
visualization. IDEA identifies abnormal topics as app issues, labeled by representative
reviews. PMI extracts meaningful phrases from reviews, aiding in topic labeling and
improving issue identification.

Iacob, Faily & Harrison (2016) developed MARAM, a tool for managing online reviews
of mobile apps. It builds upon MARA by automatically extracting feature requests and
bugs from reviews. MARAM allows developers to search through reviews and export
selected items to platforms like GitHub, JIRA, or Bugzilla. It uses a linguistic rule-based
feature extraction method to identify and abstract feature requests and bugs from review
contexts.

The MApp-IDEA method, proposed by de Lima, Barbosa & Marcacini (2023b),
enhances app review issue detection and prioritization. It incorporates sentiment analysis,
expands issue detection scope, and efficiently manages smaller datasets. Using word
embedding techniques to create app-related problem graphs, MApp-IDEA identifies and
ranks issues from reviews, even with limited data. The method’s performance was
assessed using various classifiers and F1-Score as the metric. The MApp-IDEA
dashboard provides real-time reports on issue trends, updates, and identified problems.

The SOLAR tool, developed by Gao et al. (2023), automates the summarization of
valuable user reviews for developers. It uses a review helpfulness prediction model to filter
unhelpful reviews, group topics with sentiment analysis, and prioritize reviews through a
multi-factor ranking system. Techniques like POS tagging, readability assessment,
sentiment scoring, and content analysis using n-gram and TF-IDF are employed for
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feature extraction. Compared to AR-Miner (Chen et al., 2014) and IDEA (Gao et al.,
2018b), SOLAR performs better in summarizing helpful user reviews.

CASPAR, a tool by Guo & Singh (2020), extracts and consolidates user stories from app
reviews using NLP. It identifies and isolates user issues and suggestions by focusing on
verbs and employing POS tagging. CASPAR distinguishes event phrases, enabling the
extraction of crucial user actions and app issues. Integrating NLP techniques, CASPAR
simplifies app review analysis, offering developers valuable insights to enhance app
performance.

GuMa, introduced by Guzman &Maalej (2014), automatically extracts app features and
analyzes sentiments from user reviews. It combines collocation finding, lexical sentiment
analysis, and topic modeling to generate summaries. GuMa identifies key app attributes by
examining user reviews, such as functionalities and technical aspects, helping developers
understand user opinions and plan future app releases. Evaluation results show high
precision and recall rates.

Dragoni, Federici & Rexha (2019) introduced ReUS, an unsupervised aspect extraction
method for monitoring real-time review streams without manual annotation. Using
linguistic rules and Open Information Extraction (OpenIE), ReUS focuses on identifying
significant aspects like product features for further analysis. This method automatically
detects aspects and associated opinion words to infer polarities based on context.

The RE-SWOT method, by Dalpiaz & Parente (2019), efficiently gathers app
requirements from reviews by analyzing competitor data. It leverages NLP algorithms to
automatically extract features from reviews, enhancing the efficiency of requirements
elicitation.

FENL, a semi-automated approach by Bakar et al. (2016), uses NLP to extract software
features from online reviews. Techniques like WordNet lemmatization, POS tagging, and
TF-IDF are employed to automate phrase extraction, aiding domain analysts in reusing
requirements by generating valuable feature lists.

Wu et al. (2021) introduced KEFE, a method for identifying crucial features in mobile
apps that impact ratings. By analyzing app descriptions and user feedback from the
Chinese Apple App Store, key feature descriptions are extracted and assessed for their
impact. A feature classifier is initially trained on a subset of apps, followed by
preprocessing and phrase extraction to identify key phrases from descriptions. These
phrases are manually reviewed to ensure accurate feature extraction, offering developers
insights into essential functionalities that boost app ratings and outperform methods like
SAFE and SAFER.

Xiao et al. (2020) introduced DSISP, an automated framework that detects user
intentions by analyzing sentiment-preference correlations. DSISP extracts sentiment
scores and preferences from app reviews over time by combining sentiment analysis and
NLP techniques. It monitors users’ evolving intentions and identifies significant sentiment
shifts, demonstrating a high precision of 0.962 in real-world data evaluations, allowing
developers to enhance their apps effectively.

Palomba et al. (2017) presented ChangeAdvisor, which uses user reviews to suggest and
localize change requests in mobile apps. By connecting user feedback clusters to code
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components through feature extraction and clustering techniques like LDA, LDA-GA, and
HDP, ChangeAdvisor identifies and links relevant feature requests to code components,
prioritizing essential terms and phrases in user reviews.

Zhou et al. (2020) introduced RISING, an automated system incorporating user
feedback into software development. Using domain-specific constraints and ARDOC,
RISING groups reviews based on shared user demands. It employs the Vector Space Model
and principal component analysis to analyze word vectors, identifying files for user
requests with COP-Kmeans and BoW, demonstrating higher accuracy than
ChangeAdvisor.

Gao et al. (2019a) introduced DIVER, a tool that identifies emerging app issues from
user feedback. DIVER processes review extracts relevant word collocations, categorizes
issues by topics, and visually presents them for developers. It enhances context
understanding and has significantly improved over IDEA in evaluation experiments.

Gao et al. (2021) introduced MERIT, combining topic modeling and sentiment analysis
to identify critical app review concerns. Using features like Biterm Sentiment-Topic (BST)
and Joint Sentiment/Topic Model (JST), MERIT analyzes user feedback, integrating PMI
to pinpoint significant phrases based on co-occurrence frequencies. MERIT has
outperformed baseline methods like IDEA and OLDA in issue detection metrics.

Wang et al. (2022b) proposed UISMiner, a technique to extract UI suggestion
information from user reviews to improve app GUIs. UISMiner trains a classifier using
review attributes, linguistic information, semantic relations, and sentence patterns. Key
contributions include summarizing classification factors, establishing extraction rules, and
evaluating UISMiner’s effectiveness through Google Play experiments. Results show
UISMiner’s superiority over SAFE in extracting UI suggestions, with developers
confirming its usefulness for updating app interfaces.

Gao et al. (2015b) developed the PAID framework to automatically prioritize app issues
based on user reviews across different versions. The framework extracts key phrases,
creates a Phrase Bank, and uses topic modeling to rank phrases with True Mutual
Information (TMI). Extraction rules include Length Limit, Informative Assurance, Part of
Speech Limit, and Quality Assurance. The ranked Phrase Bank is presented to developers
for prioritization, and results are visualized using ThemeRiver. Evaluation with app
changelogs showed high precision in matching prioritized issues.

Wei, Liu & Cheung (2017) introduced OASIS, a method for prioritizing Lint warnings in
Android apps by integrating user reviews. OASIS connects static analysis results with user
feedback, improving the identification of critical issues affecting user experience. The
method uses a semantics-aware similarity calculation to associate Lint warnings with user
reviews, capturing relationships between warnings and feedback to enhance prioritization
performance.

Gao et al. (2015a) introduced AR-Tracker, which gives developers insights into user
feedback by extracting and visualizing main themes from app reviews. The tool compares
topic modeling algorithms like LSI, LDA, RP, and NMF to mine user reviews effectively. By
tracking feedback dynamics, AR-Tracker helps developers prioritize areas for
improvement. A large-scale experiment involving 500 k reviews demonstrated its
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effectiveness in understanding user demands and visualizing results for straightforward
interpretation.

Gao et al. (2018a) introduced INFAR, which helps developers make informed decisions
by extracting insights from app reviews. INFAR identifies key topics, abnormal subjects,
topic correlations, and factors influencing ratings. It preprocesses and categorizes reviews
based on predefined topics, presenting insights visually and in natural language. Evaluated
with six popular apps and 12 experts, 92% found INFAR’s insights valuable.

Man et al. (2016) introduced CrossMiner, a framework that analyzes app issues from
user reviews across platforms like Google Play, App Store, and Windows Store. It extracts
keywords using the Word2Vec model to identify user perceptions. By representing words
with 300-dimensional vectors, CrossMiner reflects user concerns and identifies platform-
specific issues, offering developers insights to enhance app testing and user satisfaction.

CIRA, a causal impact analysis tool for Google Play app releases, was introduced by
Martin et al. (2017). This tool identifies key factors in app launches and evaluates the
effectiveness of causal impact analysis for developers. By analyzing prices, ratings,
descriptions, and app updates, CIRA reveals patterns between app features and user
ratings. It addresses imprecise ratings on Google Play by calculating precise average ratings
based on the rating distribution, offering a more accurate representation for analysis. This
method sheds light on the effects of app releases on user ratings and their underlying
characteristics through feature extraction and analysis.

Zahoor & Bawany (2023) introduced CEAR, a framework for automating the analysis of
educational Android app reviews. They collected and categorized 13,000 user reviews from
25 apps, examining the effects of data preprocessing and class balancing on various
machine-learning techniques. Utilizing TF-IDF for feature extraction, they efficiently
trained models by identifying crucial words from reviews and tested eight machine
learning methods, employing LIME to explain model decisions.

Panichella & Ruiz (2020) developed Requirements-Collector, an automated tool that
classifies software requirements using machine learning and deep learning methods. It
includes Requirement-Collector-DL-Component and Requirement-Collector-ML-
Component. The authors preprocess text data with feature extraction techniques,
converting raw text into numerical formats like Bag of Words, TF-IDF, Word
Embeddings, and N-grams, enhancing model accuracy and streamlining manual tasks to
improve software quality in early development stages.

Bakiu & Guzman (2017) introduced a method to gauge user satisfaction with software
features through user experience (UUX) analysis. This approach involves sentiment
analysis, identifying review features, and categorizing UUX dimensions. It filters essential
nouns, verbs, and adjectives, removes irrelevant terms, and uses a collocation algorithm to
pinpoint feature descriptions. A preliminary evaluation of video game and software
reviews identified UUX issues and strengths, aiding developers, UUX designers, and
researchers in enhancing software applications based on user feedback.

Tan et al. (2023) introduced STRE, an automated tool that analyzes historical data to
suggest when app developers should stop reading reviews. It preprocesses reviews,
identifies topics, and extracts the longest TSTs using LDA to pinpoint significant textual
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similarities among reviews. This helps developers focus on common themes, sentiments,
and issues to prioritize feedback, make informed decisions, and improve apps efficiently.

Hadi & Fard (2023) introduced the Adaptive Online Biterm Topic Model (AOBTM) for
short text analysis in mobile app reviews and Twitter data. AOBTM improves traditional
topic modeling by adapting to short texts and utilizing historical statistical data. Using
Pointwise Mutual Information (PMI) prioritizes phrases with higher co-occurrence
frequencies. Evaluated using Precision, Recall, and F-hybrid metrics, AOBTM outperforms
existing methods like IDEA in identifying coherent and distinct topics.

de Lima, Barbosa & Marcacini (2023a) introduced an OPT-based method to analyze
mobile app reviews for prioritizing software maintenance tasks. The approach uses
dynamic prompt generation and open pre-trained language models to automate feature
extraction and evaluate risk impact. Utilizing the OPT-6.7b model, it extracts features and
generates prompts based on cross-domain information, identifying key aspects mentioned
by users and prioritizing maintenance actions. Experimental results show that the OPT-
based approach outperforms traditional methods (GuMa, SAFE, ReUS) and large language
models (RE-BERT) in producing risk matrices, highlighting the potential of OPT models
for software maintenance, especially in resource-constrained environments and regarding
user data privacy.

Assi et al. (2021) developed FeatCompare, a tool for analyzing high-level features in
mobile apps by mining user reviews. It includes a data preprocessor, GLFE neural
network-based feature extractor, and review aggregator. GLFE, based on the ABAE model,
distinguishes global and local features in reviews to effectively compare apps. Analyzing
14,043,999 reviews from 196 Android apps, FeatCompare demonstrated high precision
and recall rates. A user study with 107 developers verified its usefulness for competitor
analysis.

BECLoMA, introduced by Pelloni et al. (2018), enhances stack traces with user reviews
for better bug diagnosis and fixing in mobile apps. It combines a machine learning
classifier, testing tools, and Google Play Store user feedback to link stack traces with
relevant reviews, streamlining testing and bug resolution.

IETI, proposed by Zhou et al. (2022), introduces Enhanced Emerging Topic
Identification (EETI) to detect emerging topics in app reviews. Using natural language
processing and the adaptive online biterm topic model (AOBTM), it minimizes noisy data
and extracts relevant phrases. Employing pointwise mutual information (PMI), EETI
evaluates word pairs to derive meaningful phrases. The study shows that EETI’s accuracy is
higher than IDEA and OLDA on six popular apps.

Gallego Marfa et al. (2023) introduce TransFeatEx, an innovative tool that integrates
established syntactic and semantic feature extraction techniques with a RoBERTa-based
pre-trained model. This combination allows for efficient automatic extraction of app
features from diverse textual sources. TransFeatEx is designed as a flexible, customizable
pipeline, enabling researchers and developers to fine-tune the tool for specific domains.

Each approach leverages various techniques to support different aspects of software
requirements analysis, including summarization, information retrieval, visualization,
recommendation, and information extraction. The selection and adoption of these tools
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depend on factors such as the characteristics of the input data, project requirements, and
available resources. Software requirements analysis has witnessed the development of
many software tools and frameworks, each offering unique capabilities and leveraging
different approaches to support the implementation of feature extraction techniques. As
the field continues to evolve, there is a need for more robust, scalable, and context-aware
tools that can effectively extract relevant requirements from diverse data sources while
incorporating human expertise and domain knowledge.

RQ3: How do the app review analysis tools compare their perfor-
mance, scalability, and user-friendliness?
Analyzing and comparing the performance, scalability, and user-friendliness of feature
extraction techniques and tools is essential for guiding researchers and practitioners in
choosing the best approach for their needs. RQ3 examines 12 identified methods for
extracting features from mobile app reviews, assessing their accuracy through metrics like
precision, recall, F1-score, and overall accuracy reported in the studies.

Comparison of developed tools in terms of their performance
Researchers employ various validation methods to assess the reliability and effectiveness of
their proposed tools or approaches for feature extraction and sentiment analysis.
Quantitative metrics commonly include precision, recall, F1-score, accuracy, MAPE,
MCC, Hit Ratio, NDCG, PMI-Score, and confusion matrices. These metrics measure how
well a tool identifies features or sentiments in text data. Researchers also employ topic
coherence evaluation metrics like PMI-Score and Discreteness Score (Dis Score). PMI-
Score assesses topic coherence using point-wise mutual information from large text
datasets like Wikipedia, calculated from the top 10 terms of each topic. This Score
evaluates the distinctiveness of topics based on semantic similarity mapping. Higher PMI-
Score and Dis-Score values indicate more coherent and distinctive topics. By analyzing
performance metrics and conducting comparative analyses, researchers demonstrate the
effectiveness of their proposed methods and tools, ensuring reliability and accuracy in
feature extraction and sentiment analysis tasks. The equations of these metrics are
illustrated in Table 7. In addition to quantitative evaluations, comparative analyses with
state-of-the-art baselines are conducted for functions such as feature extraction, issue
detection, classification, feature recommendation, and summarizing user reviews, as
shown in Fig. 7. A total of 12 studies have compared their tools or approaches with
baselines like SAFE (used in six studies) and IDEA (used in five studies) as shown in Fig. 8.
Meanwhile, some studies compared their approach to three to four state-of-the-art
baselines. OPT-based approach (de Lima, Barbosa & Marcacini, 2023a) has been
compared to ReUS, RE-BERT, SAFE, and GuMa. Also, RE-BERT (de Araújo & Marcacini,
2021) has been compared to SAFE, ReUS, and GuMa.

Several studies have evaluated the performance of various tools and approaches for
feature extraction, issue detection, and topic modeling from user feedback and app reviews.
MERIT outperforms AOLDA and IDEA in precision, recall, and F1-score for identifying
emerging app issues, with improvements ranging from 20.9% to 22.3%. It achieves an

Massenon et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2401 38/60

http://dx.doi.org/10.7717/peerj-cs.2401
https://peerj.com/computer-science/


average precision, recall, and F-score of 81.4%, 81.2%, and 80.9%, respectively, showing
better balance than baselines. Additionally, MERIT outperforms IDEA and OLDA in the
F-hybrid score. RISING (Zhou et al., 2020) demonstrates superior Likert scale values for
feature requests and problem discovery categories compared to CHANGEDVISOR. On
average, ChangeAdvisor scores 2.07 and 1.94 in these categories, while RISING scores 4.20

Figure 7 Frequency of state-of-the-art baselines compared per study.
Full-size DOI: 10.7717/peerj-cs.2401/fig-7

Table 7 Evaluation metrics.

Formula Evaluation metrics

Hit Ratio Hit Ratio = (# of hit features/# of features) × 100%

NDCG NDCG = G/Ideal G; G = Σ (2 scorei/log2 (i + 1))

PMI-Scores PMI-Score(k) = (1/T(T − 1)) Σ1 ≤ i < j ≤ T log (P(wi, wj)/(P(wi) * P(wj))) Here, P(wi), P(wj), and P(wi, wj) represent
the probabilities of word wi, wj, and the co-occurring word-pair (wi, wj) respectively.

Dis score Dis_Score = (Σk = 1K ((Σj = 1k Djs(ϕk∥ϕj*))/k))/K;
Djs(ϕk∥ϕj*) = 1/2 DKL(ϕk∥M) + 1/2 DKL(ϕj∥M);

DKL(P∥Q) = Σi P(i) log (P(i)/Q(i)); M = 1/2 (ϕk + ϕj);

Precision, Recall, F-Measure,
and Accuracy

Precision = TP/(TP + FP)

Recall = TP/(TP + FN)

F-Measure = (2 × Precision × Recall)/(Precision + Recall)

Accuracy = (TP + TN)/(TP + TN + FP + FN)
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and 4.26. RISING also shows better clustering and localization accuracy in Top-k hitting.
Accuracy for feature requests improves from 44.64% to 76.74% (Top-1), 70.54% to 91.77%
(Top-3), and 76.65% to 98.00% (Top-5). In the problem discovery category, accuracy
improves from 48.50% to 76.04% (Top-1), 65.08% to 93.84% (Top-3), and 76.00% to
98.04% (Top-5) on average. RISING also outperforms RISING, highlighting the
significance of commit messages in enhancing localization performance.

DIVER outperformed IDEA significantly, showing an average improvement of 29.4% in
precision and 32.5% in recall for detecting emerging app issues (Gao et al., 2019a). This
suggests DIVER’s effectiveness in analyzing user feedback. Similarly, SAFER demonstrated
advantages over CLAP in all categories, achieving a 78.27% Hit Ratio in the Business
Category compared to CLAP’s 60.00%. On average, SAFER surpassed CLAP by 23.54% in
Hit Ratio and 0.1522 in NDCG. Statistical analysis using the Wilcoxon test confirmed the
significant difference, with p-values of 0.003 for Hit Ratio and 0.009 for NDCG, indicating
SAFER’s superior performance in recommending features from mobile app descriptions.

Furthermore, AOBTM (Hadi & Fard, 2023) exhibited superior performance compared
to IDEA in metrics like precision, recall, and F-hybrid, with higher PMI scores indicating
more comprehensive and coherent topics. AOBTM demonstrated improved topic quality
and coherence, with an accuracy of 0.593, recall of 0.619, and F-hybrid score of 0.608,
outperforming IDEA. These comparative evaluations highlight the effectiveness of tools
like DIVER, SAFER, and AOBTM in extracting features, detecting issues, and modeling
topics from user feedback and app reviews, surpassing the performance of baselines like
IDEA and CLAP.

KEFE, as presented by Wu et al. (2021), efficiently extracts features from Chinese app
descriptions and user reviews, surpassing SAFE and SAFER. In a test with 1,108,148

Figure 8 Frequency of compared studies of the tools. Full-size DOI: 10.7717/peerj-cs.2401/fig-8
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reviews from 200 apps, KEFE achieved 82.49% precision and 74.83% recall. Although
SAFER had the highest recall at 80.27%, KEFE demonstrated superiority in the Tool,
Travel, and News app categories, averaging 78.13% for feature extraction and 62.02% for
review matching. SAFE exhibited lower accuracy at 74.83% and 43.40% compared to SIRA,
outperforming other tools like KEFE, SAFE, and CASPAR with 84.27% precision and
85.06% recall. Although SAFE’s high recall rate of 73.94% using PoS patterns for feature-
related phrases, its precision rate of 15.51% falls short. CASPAR identifies events in reviews
with temporal conjunctions, while KEFE utilizes a BERT classifier, but its accuracy is
affected by pattern-based methods.

SOLAR outperforms competitors, prioritizing 85% of 11,659 reviews across five apps. It
excels in semantic relevance to topics compared to AR-Miner, IDEA, and itself. IDEA’s
focus on online reviews and requirement for multiple historical versions hinder its
performance. SOLAR enhances precision, recall, and F1 score by 10.41%, 12.75%, and
28.49%, respectively, surpassing baseline methods. This demonstrates that SOLAR-
prioritized reviews are more informative and compelling for filtering out irrelevant data in
downstream tasks. UisMiner excels at extracting UI-related suggestions with 77.50%
precision and 76.50% recall, but it focuses solely on user interfaces.

In contrast, SAFE handles a broader spectrum of functionalities in reviews. The
comparison between UisMiner and SAFE does not definitively declare one superior.
Furthermore, SIRA, developed byWang et al. (2022a), demonstrates remarkable efficiency
in identifying problematic app features from reviews.

The OPT-based approach by de Lima, Barbosa & Marcacini (2023a) demonstrates
promising feature extraction results, achieving an F1 score of 45.5% and competing with
rule-based methods like GuMa, SAFE, and ReUS. Compared to RE-BERT, with an F1
score of 63.5%, the OPT-based proposal yields inferior results from 363,843 user reviews
across eight Android apps. RE-BERT excels at generating semantic textual representations
by focusing on software requirement tokens’ local context rather than open-access
language models. In constructing risk matrices, the OPT model exhibits lower error in the
impact dimension than the proprietary GPT model, suggesting its potential for accurate
risk matrix generation. T-FREX, a Transformer-based model (Motger et al., 2024a),
consistently surpasses SAFE in all metrics. It significantly enhances performance when
upgrading from BERT to XLNet. While BERTbase recall (0.300) is slightly lower than
SAFE’s by 0.021, XLNetbase remarkably improves performance over BERTbase,
particularly for recall (+0.117 for out-of-domain, +0.153 for in-domain). In both in- and
out-of-domain evaluations, T-FREX showcases adaptability, generalization, and accurate
prediction of new features within specific domains for which it has been fine-tuned. Its
effectiveness and adaptability stem from Transformer-based models, actual user
annotations, and iterative refinement processes, enabling it to extract features from mobile
app reviews efficiently (Zhang et al., 2023; Huang et al., 2024). The study by Zhou et al.
(2022) reveals that IETI effectively identifies emerging app review topics, outperforming
baseline methods IDEA and OLDA. IETI exhibits enhanced precision, Recall, and F1
scores, demonstrating its superiority in phrase and sentence label evaluations. Compared
to IDEA, IETI improves precision by 0.094, recall by 0.107, and F1 score by 0.126 in phrase
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labels. In sentence labels, IETI shows advancements with a 0.068 increase in Precision,
0.025 in recall, and 0.061 in F1 score.

Comparison of developed tools in terms of their scalability

Scalability is crucial when evaluating feature extraction techniques for analyzing large
volumes of user reviews from popular app stores. This mapping study revealed that
different tools and techniques vary in their scalability characteristics, impacting their
effectiveness for large-scale or real-time applications. Figure 9 shows that only two tools,
UisMiner and KEFE, have demonstrated the ability to process more than 500,000 user
reviews efficiently. KEFE, for example, successfully handled a dataset of 200 Chinese app
descriptions and over 1 million user reviews, highlighting its scalability. Similarly,
UisMiner showed promise in efficiently handling and analyzing UI suggestions from
651,981 reviews across 5,467 apps.

Additionally, six tools were found to handle less than 500,000 user reviews, making
them ideal for managing data from popular apps. For instance, SIRA’s method (Wang
et al., 2022a) uses a BERT+Attr-CRF model for feature extraction and a graph-based
clustering method for summarization, showing its ability to handle 318,534 reviews from
18 apps. The OPT-based approach (de Lima, Barbosa & Marcacini, 2023a) employs open-
access language models and dynamic prompt generation to analyze 363,843 reviews from
nine apps efficiently. Its few-shot learning feature reduces the need for extensive labeled
data, enhancing scalability in scenarios with limited data or dynamic reviews. The DIVER
tool (Gao et al., 2019b) is more scalable than the IDEA approach (Gao et al., 2018b).
DIVER can process thousands of user reviews in seconds, making it suitable for managing

Figure 9 Frequency of tools/approaches categorized based on the number of user reviews retrieved.
Full-size DOI: 10.7717/peerj-cs.2401/fig-9
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large data volumes from popular apps. Despite increasing data sizes, DIVER’s performance
remains efficient, ensuring consistent results even with growing data volumes.

SOLAR, T-FREX, RISING, and AOBTM have all shown scalability in analyzing small
datasets with fewer than 100,000 user reviews. AOBTM’s scalability proves beneficial in
managing growing data volumes and complexities, enabling efficient topic modeling. T-
FREX’s iterative refinement process allows adaptation to new domains and continuous
performance improvement by integrating crowdsourced features and recent app reviews,
enhancing scalability. RISING utilizes domain-specific constraints and semi-supervised
learning to create fine-grained user review clusters, resulting in more stable and
deterministic clustering than ChangeDvisor for large-scale analysis tasks.

Comparison of developed tools in terms of their user-friendliness
User-friendliness is crucial for developers, as it refers to how easy and intuitive tools are to
use. An adequate system should have a straightforward interface and simple workflow and
deliver actionable insights without requiring extensive technical knowledge. Three studies
specifically evaluated their tools’ user-friendliness: MERIT, DIVER, and the OPT-based
approach. The OPT-based system enhances user-friendliness by providing customized
instructions for review analysis through dynamic prompt generation, leading to more
accurate and automated evaluations. DIVER aids developers by visualizing emerging issues
through word clouds and line charts, facilitating effective prioritization. It also lists
emerging issues with relevant user comments, enabling prompt resolution of app issues.
MERIT offers a visualization interface for emerging app issues, generating topic
distributions represented by various shapes and sentiment distributions displayed with
color bars. A survey found that most interviewees are eager to incorporate MERIT into
their development pipelines, highlighting its value. In contrast, other studies lack detailed
user-friendliness evaluations but mention the algorithm’s construction. Some codes are
accessible on GitHub (IETI), suggesting potential ease of use for developers. In summary,
while various tools and approaches exhibit varying performance levels and scalability
characteristics, tools like UisMiner and KEFE have demonstrated efficiency in handling
large data volumes. Tools such as SIRA, SOLAR, MERIT, DIVER, SAFER, AOBTM, and
IETI have outperformed others in precision, recall, and F1-score. However, selecting the
most appropriate tool or approach depends on specific requirements, dataset retrieval
period, app categories, and analysis task characteristics, as data complexity, domain-
specific needs, and available computational resources may influence scalability.

RQ4: What are the significant strengths and limitations observed in
current techniques based on their methodology or evaluation results?
To investigate RQ4, we thoroughly analyzed both automated and semi-automated tools
illustrated in Table 7. Figure 10 compares these various feature extraction tools based on
their scalability, performance, and user-friendliness. KEFE and UisMiner demonstrate
superior scalability, efficiently processing over 500,000 user reviews. These tools excel in
managing large volumes of data, making them suitable for analyzing popular apps with
extensive user feedback. Performance varies among the tools, with SIRA, T-FREX, and RE-
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BERT showing high effectiveness in extracting features and requirements. These tools
often outperform baselines in precision, recall, and F1-score metrics. For instance, T-FREX
consistently surpasses SAFE across all metrics, showcasing its adaptability and accurate
prediction of new features within specific domains. MERIT’s visualization interface for
emerging app issues has garnered positive feedback from developers, while DIVER aids in
prioritizing issues through word clouds and line charts. The OPT-based approach
enhances user-friendliness by providing customized instructions for review analysis
through dynamic prompt generation.

Despite their progress in extracting features and requirements from app reviews, these
tools face several limitations and challenges. These include the need for manual
intervention or labeled data, difficulties with complex linguistic structures and context-
dependent information, scalability issues, limitations in evaluation methods,
interpretability challenges, generalizability concerns, and effectively incorporating user
feedback and domain knowledge. Addressing these limitations is essential to enhance the
practical application of these techniques in software requirements analysis and related
fields. Many tools rely on manual intervention or labeled data for training and evaluation.
For instance, the KEFE approach requires manually reviewing and labeling key features in
app descriptions, which is time-consuming and subjective. Similarly, the RE-BERT
method and other supervised learning techniques need high-quality annotated datasets,

Figure 10 Comparison of feature extraction tools. Full-size DOI: 10.7717/peerj-cs.2401/fig-10
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which can be challenging and resource-intensive in rapidly evolving or niche areas.
Additionally, some methods struggle with complex linguistic structures, context-
dependent information, or domain-specific terms. For example, the SAFE approach
primarily uses part-of-speech patterns and predefined rules, potentially missing the
nuances of natural language in user reviews. This leads to inaccurate feature or
requirement extraction in scenarios with ambiguous, colloquial, or domain-specific
language. Specific tools face scalability issues when handling large volumes of user reviews
or real-time data streams. While tools like SOLAR and RISING have effectively managed
extensive datasets, other methods may struggle with massive data volumes or real-time
processing requirements.

The evaluation methodologies and metrics used to assess these techniques may not
capture all aspects of their effectiveness or practical applicability. Standard metrics like
precision, recall, and F1-score may not fully reflect the usefulness or relevance of the
extracted features or requirements in real-world scenarios. Additionally, comparative
evaluations against baseline approaches or state-of-the-art techniques may not
comprehensively understand a technique’s limitations or challenges in specific contexts or
application domains.

Some methods face interpretability or transparency challenges, particularly those
relying on complex machine-learning models or black-box approaches. This lack of
interpretability can hinder developers’ or analysts’ ability to understand the reasoning
behind the extracted features or requirements, limiting trust in the results and hindering
the adoption of these techniques in critical decision-making processes.

The generalizability of specific techniques across different domains, platforms, or
languages may be limited. Techniques tailored for particular domains or languages may
not perform well with user reviews from other domains or in different languages,
necessitating additional adaptation. Moreover, incorporating user feedback and domain
knowledge during feature extraction remains challenging. While some methods, like
SAFER and RISING, integrate domain-specific constraints or semi-supervised learning,
further exploration and improvement are needed to combine human expertise and
contextual information effectively.

RQ5: What future research directions could address current gaps in
capabilities for efficient and precise analysis of app reviews for
requirements?
Emerging research directions aim to enhance app review analysis for requirements (RQ5).
Future studies should focus on developing resilient and scalable methods to manage
diverse and evolving user data while integrating human insights and domain knowledge.
As mobile applications expand, analysis techniques must adapt to new domains, platforms,
and languages without extensive retraining or manual effort, ensuring effective and
accurate user requirement capture across various apps.

Improving the interpretability and transparency of feature extraction models is essential
for fostering trust and facilitating adoption in software development. Developers and
stakeholders must understand how requirements are extracted from user reviews and how
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they inform decision-making. Explainable AI techniques, such as model visualization and
feature importance ranking, can make these models more accessible to non-experts
(Chatzimparmpas et al., 2020).

Human-in-the-loop approaches could enhance model interpretability and
transparency. By involving domain experts in the analysis process, researchers can ensure
that the extracted requirements are meaningful and relevant to software development.
These approaches can also help identify and correct model or underlying data biases
(Mosqueira-Rey et al., 2023).

Additionally, research should focus on developing comprehensive evaluation
frameworks that assess feature extraction’s accuracy and practical relevance. Techniques
must be technically accurate and provide actionable insights that improve software
development quality. Evaluation frameworks should include relevance, usefulness, and
impact metrics to ensure the extracted requirements are valuable to developers and
stakeholders.

Overall, future research in app review analysis should bridge the gap between technical
accuracy and practical relevance. By developing robust, scalable, interpretable, and
relevant techniques, researchers can address current gaps and drive the adoption of user
review analysis in real-world settings.

DISCUSSION AND FUTURE RESEARCH
The mapping study revealed diverse feature extraction techniques for analyzing mobile
app reviews and eliciting software requirements, including topic modeling, collocation
finding, association rule mining, aspect-based sentiment analysis, frequency-based
methods, word vector-based approaches, and hybrids. Topic modeling, especially LDA, is
prevalent for identifying latent topics in extensive user reviews but struggles with short or
noisy texts and requires significant manual effort.

Collocation-finding techniques identify frequently co-occurring word patterns,
effectively capturing domain-specific terminology or multi-word expressions. However,
they may produce meaningless co-occurrences, requiring additional filtering. Association
rule mining, though less explored, provides insights into interconnections between user
experiences and requirements but faces challenges in handling noise and extracting precise
relationships.

Aspect-based sentiment analysis captures nuanced, feature-specific feedback and
sentiments, enabling targeted improvements and requirement prioritization, though it
struggles with context and domain-specific terminology. Simple approaches like TF-IDF
and POS tagging provide a baseline for feature extraction but may overlook semantic
relationships and infrequent aspects.

Word vector-based techniques, such as word embeddings and language models, capture
semantic and contextual information in user feedback, effectively analyzing sentiments
and extracting key features. However, their effectiveness depends on training data quality
and capturing domain-specific nuances. Hybrid approaches, combining multiple
methodologies, leverage complementary strengths, offering more robust feature extraction
and analysis solutions.
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Regarding performance, tools like SIRA, SOLAR, MERIT, DIVER, SAFER, AOBTM,
and IETI have outperformed others across various metrics such as precision, recall, and
F1-score. Scalability is crucial, with tools like UisMiner and KEFE efficiently handling large
volumes of reviews and others like SIRA, SOLAR, and the OPT-based approach
demonstrating scalability with popular app data or few-shot learning.

Despite progress, challenges remain. Many techniques rely on manual intervention or
labeled data, which is resource-intensive and subjective. Some approaches find it
challenging to handle complex linguistic structures, context-dependent information, and
domain-specific terminology. Evaluation methodologies may not fully capture practical
applicability, and interpretability and transparency are concerns, especially for complex or
black-box models. Generalizability across different domains, platforms, or languages is
limited, and incorporating user feedback and domain knowledge remains challenging.

Future research should focus on creating robust, scalable methods to improve model
interpretability and transparency for dynamic user reviews, integrating human insights
and domain knowledge, and adapting to new domains, platforms, or languages without
extensive retraining. Improving model interpretability and transparency is crucial for
fostering trust and adoption in real-world software development. Explainable AI
techniques and human-in-the-loop approaches could enhance model transparency.
Additionally, developing comprehensive evaluation frameworks that capture both the
accuracy and practical relevance of extracted features is essential.

The study highlights significant progress in feature extraction techniques for mobile app
review analysis and software requirements elicitation. However, it underscores the need for
continued research to address remaining challenges, focusing on developing robust,
scalable, interpretable, and domain-adaptable techniques that effectively leverage user
feedback and domain knowledge.

THREATS TO THE VALIDITY
Recognizing potential validity threats is essential to maintain the integrity and strength of
the conclusions drawn from our mapping study. By openly addressing these threats and
detailing the steps taken to counteract them, we strive to strengthen the study’s
dependability and applicability. This article identifies three primary threats to validity:

. Firstly, there is a possibility of missing relevant studies despite the comprehensive search
strategy employed regarding the literature search and study selection process. To
mitigate this threat, the search was conducted across multiple reputable digital libraries
and databases, and the search strings were carefully constructed and iteratively refined.
Additionally, backward and forward snowballing techniques were employed to identify
potentially relevant studies that may have been overlooked in the initial database
searches. Nevertheless, some studies may have been inadvertently excluded due to
limitations in the digital libraries’ search terms or indexing mechanisms.

. Secondly, the study selection process involved applying predefined inclusion and
exclusion criteria, which may have introduced subjectivity and bias. The selection
criteria were clearly defined to address this threat, and multiple researchers conducted
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the screening process independently. Discussions and consensus-building among the
research team members resolved any disagreements or ambiguities.

. Thirdly, the data extraction and synthesis process relied on accurately interpreting and
representing the primary studies’ content. A standardized data extraction form was
employed to mitigate potential threats to validity in this aspect, and multiple researchers
carried out the data extraction process to ensure consistency and minimize individual
biases. Moreover, regular team discussions and cross-checking mechanisms were
implemented to resolve discrepancies or ambiguities in the extracted data.

The quality assessment of the primary studies was based on predefined criteria adapted
from well-established guidelines in software engineering literature reviews. While these
criteria aimed to capture relevant aspects of study quality, it is essential to acknowledge
that some factors may have been overlooked. To mitigate this limitation, the quality
assessment process involved multiple independent researchers to reduce individual biases.
Despite the measures taken to address potential threats to validity, inherent limitations and
biases may still exist. Therefore, the findings and conclusions should be interpreted within
the specified scope and research questions, exercising appropriate caution.

In summary, while employing a rigorous and systematic approach, potential threats to
validity were identified and addressed through carefully constructed search strategies, well-
defined inclusion and exclusion criteria, standardized data extraction processes, quality
assessment criteria, and consensus-building mechanisms among the research team. By
acknowledging and mitigating these threats, the study aims to provide a comprehensive
and reliable synthesis of the current state of feature extraction techniques and tools for
mobile app review analysis while identifying opportunities for future research and
improvements.

CONCLUSION
This study thoroughly evaluates automated and semi-automated methods for extracting
features and software requirements from mobile app reviews. It groups these techniques
into seven primary categories: topic modeling, collocation finding, association rule-based,
aspect-based sentiment analysis, frequency-based, word vector-based, and hybrid
techniques. The research identifies and discusses 48 tools and approaches that facilitate the
implementation of these feature extraction methods. Various tools, such as SAFE, IDEA,
AR-MINER, KEFE, CASPAR, ReUS, GuMa, SAFER, CLAP, CHANGEADVOSOR,
MERIT, DIVER, SAFER (again), SIRA, and AOBTM, employ natural language processing,
machine learning, and information retrieval techniques to analyze user reviews, extracting
features, requirements, and feedback. These tools are assessed based on precision, recall,
and F1-score for their performance, scalability, and user-friendliness. Some tools,
including MERIT, DIVER, SAFER, SIRA, and AOBTM, have performed better than
baseline tools like IDEA and SAFE in identifying emerging issues, recommending features,
and extracting relevant information from app reviews. The study outlines the constraints
and difficulties of current feature extraction methods from mobile app reviews. These
limitations involve manual intervention or labeled data dependence, complex linguistics
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and contextual data handling issues, scalability, evaluation method limitations,
interpretability challenges, generalizability concerns, efficient user feedback, and domain
knowledge integration. In summary, the mapping study thoroughly explains the current
state-of-the-art in mobile app review feature extraction, encompassing its strengths,
weaknesses, and future research prospects.
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