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H I G H L I G H T S

Accurate PV and WP forecasting aids grid management, sustainability, and low impact.
Traditional methods face privacy, centralised, and data sharing challenges, needing upgrades.
Paper explores FL in PV/WP forecasting, detailing methods and encryption for challenges.
Paper reviews methods, comparing non-FL and FL forecasting for renewable integration.
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A B S T R A C T

Renewable energy sources, particularly photovoltaic and wind power, are essential in meeting global energy de-
mands while minimising environmental impact. Accurate photovoltaic (PV) and wind power (WP) forecasting
is crucial for effective grid management and sustainable energy integration. However, traditional forecasting
methods encounter challenges such as data privacy, centralised processing, and data sharing, particularly
with dispersed data sources. This review paper thoroughly examines the necessity of forecasting models,
methodologies, and data integrity, with a keen eye on the evolving landscape of Federated Learning (FL) in PV
and WP forecasting. Commencing with an introduction highlighting the significance of forecasting models in
optimising renewable energy resource utilisation, the paper delves into various forecasting techniques and
emphasises the critical need for data integrity and security. A comprehensive overview of non-Federated
Learning-based PV and WP forecasting is presented based on high-quality journals, followed by in-depth
discussions on specific non-Federated Learning approaches for each power source. The paper subsequently
introduces FL and its variants, including Horizontal, Vertical, Transfer, Cross-Device, and Cross-Silo FL,
highlighting the crucial role of encryption mechanisms and addressing associated challenges. Furthermore,
drawing on extensive investigations of numerous pertinent articles, the paper outlines the innovative horizon
of FL-based PV and wind power forecasting, offering insights into FL-based methodologies and concluding with
observations drawn from this frontier.

This review synthesises critical knowledge about PV and WP forecasting, leveraging the emerging paradigm
of FL. Ultimately, this work contributes to the advancement of renewable energy integration and the
optimisation of power grid management sustainably and securely.
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1. Introduction

The persistent advancement of technology has precipitated a dra-
matic surge in energy demand, leading to the rapid depletion of conven-
tional energy reservoirs. This trend not only aggravates environmental
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Fig. 1. Map representation depicting the top countries leading in solar and wind annual power generation during the year 2023; Measured in terawatt-hours. [Figure created using
WORLD MAP online software].
degradation but also engenders significant socio-economic repercus-
sions, accentuating the exigent for an expeditious transition towards
cleaner and sustainable energy modalities. Within this context, re-
newable energy emerges as a pivotal remedy, promising multifaceted
advantages [1]. Solar energy, notably, has ascended to preeminence
as the most economically viable source of carbon-neutral energy on a
global scale [2], with further potential for cost reductions through tech-
nological advancements and economies of scale [3]. Photovoltaic (PV)
and wind power (WP), as stalwarts of the renewable energy paradigm,
offer compelling solutions to the dual imperatives of climate mitigation
and societal progress including the proliferation of gainful employment
opportunities across the energy value chain. These renewable sources
also encourage the move towards improved local energy autonomy and
a decentralised energy infrastructure [4,5].

In the pursuit of sustainable energy solutions, examining recent
achievements is essential. The year 2022 witnessed significant advance-
ments, with several countries setting benchmarks in solar and wind
power generation. As depicted in Fig. 1, the top ten countries leading
in annual solar and wind power generation in 2023 include China, the
United States, and Germany, which generated 1470.02, 663.35, and
198.85 terawatt-hours respectively. This underscores their commitment
to harnessing renewable energy sources. Additionally, Fig. 2 provides
a geographical representation of countries ranked by annual solar and
wind power generation per capita, highlighting Denmark, Sweden, and
Australia as leaders with 3812, 3505, and 3027 kiloWatt-hours per
person in 2023. Further emphasising this progress, Fig. 3 identifies
the top ten countries achieving the highest integration of solar and
wind energy within their national grids. Luxembourg, Denmark, and
Lithuania lead this category with integration levels of 67.5%, 67%, and
57.2% respectively, a feat facilitated by their relatively small geograph-
ical areas. In contrast, larger countries such as the USA, China, and
Canada achieve notable integration levels of 15.6%, 15.5%, and 7.2%
respectively, reflecting the challenges larger nations face in scaling
renewable energy integration across vast areas. Russia, however, has
not surpassed 0.5% renewable energy integration, indicating significant
room for improvement [6].

The paradigm shift in energy sources has therefore gained signifi-
cant academic attention, particularly emphasising the seamless integra-
tion strategies of renewable energy sources into the global electrical
infrastructure [7–9]. Analysing this growing phenomenon highlights
2 
various impacts related to the inherent intermittency of these sources
on the power system, affecting voltage regulation, protection mecha-
nisms, frequency stability, angular stability of generators, harmonics,
flexibility, and overall stability requirements [10,11]. This intermit-
tency complicates the alignment of real-time consumption with grid
production [12,13]. For example, the frequency of the current grid
is directly affected by the rotational speed of traditional synchronous
generators [14–16], which are controlled to maintain the frequency
within the prescribed limits set by the National Grid Electricity System
Operator [17]. Consequently, the kinetic energy produced by these gen-
erators is essential in constraining the initial rate of frequency control
during load-generation instabilities. In contrast, PV technology does
not include rotating machinery, which traditionally provides inherent
inertial support. This, coupled with solar variability, results in a higher
rate of frequency change (ROCOF) [14], power generation losses [18],
and an increased complexity control process [19].

Therefore, the integration of large-scale PV and wind power plants
into the power transmission grid necessitates the provision of additional
frequency support services to ensure grid stability, as proposed in [20–
22], and is contingent upon the ability to predict and manage its fluctu-
ations [11,23,24]. Such forecasts and predictions are indispensable for
ensuring system stability, reserve allocation, mitigating market risks,
optimising energy distribution, and catering to the diverse needs of
stakeholders ranging from power plant operators to policymakers [25–
27]. For instance, in the event of a forecast predicting optimal weather
conditions, reliance on non-renewable energy sources can be scaled
back, maximising the input from renewable systems. Conversely, during
anticipated periods of low renewable output due to suboptimal weather
patterns, backup energy reserves can be readied proactively.

Beyond operational logistics, forecasting has profound implications
for the economic dynamics of the energy market. In a domain where
financial equilibrium is intrinsically tied to the ebb and flow of supply
and demand, a surge in predicted yields from renewables could catal-
yse a drop in energy prices. Such predictive acumen enables energy
traders to strategise effectively, potentially curtailing significant finan-
cial repercussions [28]. Moreover, system stability, which is paramount
for the seamless integration of intermittent renewable sources, stands
to gain immensely from precise forecasting. By tuning in to forecasted
outputs, the robustness of the grid can be enhanced, curtailing potential
disturbances. This proactive approach ensures a consistent electricity
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Fig. 2. Map representation highlighting regions that lead in solar and wind generation per capita; Measured in kilowatt-hours per person, during 2023.[Figure created using
WORLD MAP online software].
Fig. 3. Line plot visualising the trend of the top ten countries that lead in the integration of solar and wind energy within their respective national electricity grids from 2003 to
2023. This visualisation underscores the steady or accelerated growth rates in certain nations, indicating proactive policy implementations and technological adoption.
supply, an aspect deemed indispensable in our modern world. With
nations globally setting forth stringent renewable energy benchmarks,
the effective harnessing of PV and wind energy takes centre stage.
Besides, in some electricity markets, solar producers can face penal-
ties when deviations between targeted and produced energy exceed a
tolerance band [29]. As these benchmarks evolve from broad aspira-
tions to granular, quantifiable targets, the indispensability of accurate
forecasting becomes even more pronounced. In essence, within the
overarching narrative of renewable energy proliferation, forecasting
is not just beneficial, but essential [30]. As global discourse pivots
3 
increasingly towards eco-friendly energy alternatives, the imperative
for pinpoint forecasting methodologies becomes all the more salient.

Plenty of reviews related to the role of machine learning in fore-
casting methods can be found in the literature. For instance, R. Ahmed
et al. [8] presented contemporary forecasting techniques and stan-
dardised comparisons of different forecast models by focusing on data
length, quality, and resolution. They have been able to impart insights,
especially using hybrid artificial neural networks and evolutionary
algorithms. Voyant et al. [31] summarise all the methods of solar
irradiation forecasting using machine learning approaches. The study
of Akhtar et al. [32] provides a systematic and critical review, focusing
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mainly on metaheuristic and machine learning methods for PV power
forecasts. The characteristics of each technique are described based on
historical data along with forecasting horizons and input parameters.
The reviews by Wang et al. [33], and Mellit et al. [34] present tax-
onomy research on the existing solar power forecasting models based
on AI algorithms, the challenges, as well as the future trends. In wind
forecasts, Liu et al. [35] give a broad literature survey of the intelligent
redictors, including both shallow and deep learning-based categories.
he paper by Marugan [36] presents the state-of-the-art artificial neural

networks (ANN) applied to wind energy systems, as well as an extensive
compilation of methods, algorithms, and models. More reviews of
V and Wind forecasts from specialised journals, including Elsevier,
pringer, IEEE, Wiley, and MDPI, are listed in Table 1.

Surprisingly, federated learning (FL) has not been cited or has not
eceived as much attention in current studies. This lack of focus is

worrying, especially considering the distributed nature of renewable
nergy systems and the growing importance of data privacy and se-
urity today. FL, which allows decentralised datasets to collaborate in
achine learning, presents a valuable approach to address modern data
rivacy challenges. This manuscript addresses an important gap in the
xisting literature, spotlighting the potential and complexities of FL
ethodologies specifically tailored for PV and WP forecasting. At its

ore, our research seeks to unravel the myriad advantages, inherent
hallenges, and evolving trajectories of federated learning within the
mbit of renewable energy forecasting.

2. Non-federated learning based PV/wind forecasting methods: an
overview

The accuracy of forecasting is challenged by the unpredictable
nature of solar and wind behaviour, as well as weather unpredictability.
Addressing these challenges has encouraged the development of a
lethora of methodologies, each of which has advantages and disad-

vantages [7,27,37]. Table 2 offers a concise spectrum of forecasting
methodologies pertinent to PV and WP. Dominating the heart of such
forecasts are physical models, with a particular focus on Numerical
Weather Prediction (NWP). These models, rooted in mathematical for-
mulations, emulate atmospheric behaviours by integrating variables
like pressure, temperature, and humidity to forecast forthcoming at-
mospheric conditions. For solar power forecasting, the anticipated
presence or absence of sunlight is paramount. Consequently, cloud fore-
casts, which significantly influence solar power output, are an essential
component of these physical models. For WP, the emphasis shifts to
predicting wind velocities at heights relevant to wind turbines. NWP are
generally reserved for long-term predictions due to their computational
demands [38].

Conversely, statistical models may be limited in their ability to cap-
ure the complicated non-linearities inherent in weather patterns [7]. It

is within this context that artificial intelligence, especially deep learn-
ing, has carved a niche, given its adeptness at managing complex and
non-linear interactions [7,26,53]. Concurrently, the field of statistical
and machine learning (ML) has witnessed a suite of methodologies that
are fundamentally grounded in historical datasets. Drawing from past
records approaches like neural networks (NN), support vector machines
(SVM), and linear regression (LR) are fine-tuned to predict future
energy outputs. The expanding significance of ML and Deep Learning
(DL) in this domain stems from their proficiency in decoding non-linear
data correlations and their inherent ability to enhance predictions
through continuous data assimilation. Beyond standalone physical and
tatistical models, there is growing interest in hybrid forecasting. These
odels seek to amalgamate the virtues of both physical and statistical
aradigms, aiming to furnish forecasts that harness the strengths of
oth, potentially culminating in heightened accuracy.

Centralised machine learning models require the collection of a
arge amount of data on a central server. They present distinct benefits,
otably in their simplicity, uniformity, and direct governance over data
4 
Table 1
A comparative analysis of previous reviews on photovoltaic (PV) and wind power (WP)
forecasting.

Citation Year ML/DL Wind Solar Federated Learning

[31] 2017 ✓ X ✓ X
[36] 2018 ✓ ✓ X X
[32] 2019 ✓ X ✓ X
[33] 2020 ✓ X ✓ X
[34] 2020 ✓ X ✓ X
[8] 2020 ✓ X ✓ X
[39] 2020 ✓ ✓ X X
[40] 2021 ✓ X ✓ X
[41] 2022 ✓ ✓ ✓ X
[42] 2022 ✓ ✓ X X
[43] 2022 ✓ ✓ ✓ X
[44] 2022 ✓ X ✓ X
[45] 2022 ✓ X ✓ X
[46] 2023 ✓ ✓ X X
[47] 2023 ✓ X ✓ X
[48] 2023 ✓ X ✓ X
[49] 2023 ✓ X ✓ X
[50] 2024 ✓ X ✓ X
[51] 2024 ✓ X ✓ X
[52] 2024 ✓ X ✓ X

Our paper 2024 ✓ ✓ ✓ ✓

and processes. On the other hand, decentralised machine learning refers
o the preservation of local client data and training on-site instead

of being shared with a central server, which can enhance privacy
and security but often increases the complexity of algorithms and
reduces overall efficiency due to the need for coordination between
distributed clients [54]. Fig. 4 illustrates the fundamental differences
between centralised and decentralised learning, focusing on five crit-
cal parameters: data location, algorithmic complexity, data privacy,
fficiency, and security. As the renewable energy sector deliberates
etween decentralising or maintaining centralised forecasting strate-
ies, Federated learning emerges as a promising solution to preserve all
ocal clients’ data and the forecasting model’s robustness. This section
ffers an exhaustive examination of non-federated learning models,
heir methods, effectiveness, and pertinence in the current dynamic
nergy context.

Table 3 addresses key forecasting aspects documented in the liter-
ature such as the horizon, which defines the temporal step ranging
rom ultra-short (1 s to 1 min minute ahead) to medium and long
erm (several hours to several days or months). The data distribution
istinguishes between continuous data (e.g., time series) and discrete
ariables (e.g., images). The preprocessing stage represents the first
tep following data collection and involves removing aberrant values

and outliers, as well as performing scale adjustments, particularly
hen different units are used (a process known as normalisation). In

ertain deep learning algorithms, this step may also include preliminary
iltering to retain only meaningful data through feature selection. A
orecasting technique refers to the practical application of algorithms
uch as Artificial Neural Networks (ANNs), Long Short Term Memory

(LSTM), Support Vector Machines (SVM), Convolutional Neural Net-
works (CNN), and Decision Trees. On the other hand, an approach
defines how uncertainty is addressed in predictions: deterministic ap-
proaches produce fixed outcomes, while probabilistic approaches incor-
porate uncertainty, providing a confidence interval around the forecast.

ptimisation algorithms are employed to determine the optimal solu-
ion for achieving accurate predictions. Finally, evaluation techniques
re used to assess the accuracy of the forecast by comparing it against
eal-world outcomes.

2.1. Non-federated learning-based PV power forecasting

Photovoltaic solar energy, with its significant capability to harness
solar power, has become an indispensable pillar in the pursuit of sus-
tainable energy solutions. Due to the variable and intermittent nature



F. ElRobrini et al. Energy and AI 18 (2024) 100438 
Table 2
Modelling in PV and WP forecasting.

Modelling in PV
and WP
Forecasting

Physical
Models

These Models are built upon the principles of
physics. They describe the physical process
governing the behaviour of systems.

Numerical Weather Prediction
(NWP)

Wake Models (For Wind)

Radiative Transfer Learning (For
Solar)

Statistical
Models

These models make predictions based on historical
data, finding patterns or relationships in past
observations. They encompass both traditional
models, such as ARIMA and linear regression, as
well as advanced artificial intelligence techniques,
including machine learning and deep learning
algorithms.

Time-Series Analysis (ARIMA,
Exponential Smoothing)

Regression Models
(Linear/Logistic Regression)

Stochastic Models (Randomness)

ANN, SVM, RNN, LSTM, GRU,
CNN, GA, etc.

Hybrid
Models

Combines the principles of physical and statistical
models to leverage the strengths of both
approaches

Physical–Statistical Models

Machine Learning Enhanced
Physical Models

Model Stacking or Ensembling
Fig. 4. Main differences between Federated Learning and Centralised Learning.
of solar irradiation, precise forecasting is essential for the seamless
integration of PV systems into the electricity grid. Traditional non-
federated learning models, relying on vast centralised data sets, have
been at the forefront of PV forecasting, offering accurate predictions.
This section delves into the progress and enhancements realised in non-
FL PV forecasting, laying the foundation for exploring the potential
of emerging decentralised methodologies. A summary of the research
undertaken in this arena to date is presented in Table 4.

Renewable energy systems’ mathematical modelling is an active
research area, with considerable attention given to artificial neural net-
works (ANNs). ANNs have consistently shown superior solar forecasting
capabilities when compared to traditional statistical methods [75]. Par-
ticularly in noisy data scenarios, the Long Short-Term Memory (LSTM)
model has surpassed the Autoregressive Integrated Moving Average
model (ARIMA) in accuracy [76]. Deep learning algorithms, primarily
due to their adaptability through supervised learning, excel in classi-
fication and regression tasks [77]. Extensive research has explored the
prediction and optimisation of artificial intelligence (AI) methods in the
5 
renewable energy sector [78]. Modern AI techniques are increasingly
applied in modelling and simulating solar energy systems [79].

This review emphasises the primary methodologies and neural mod-
els used, highlighting ANNs’ pivotal role in forecasting environmental
variables and assessing various alternative energy systems [80]. Recent
developments spotlight LSTM’s dominance in short-term wind speed
forecasting within ANNs [77,81]. LSTM’s capabilities were investigated
in 24-hour wind farm scenarios, outshining Multi-Layer Perceptron
(MLP), deep MLP, and traditional methods in accuracy [82]. For so-
lar radiation tasks, neural network-based deep learning techniques
are predominantly applied. Evaluations show that the MLP model
outperformed decision trees and linear regression in solar energy es-
timation, with outstanding coefficient of determination indicators (𝑅2

at 97.7) and Root Mean Squared Error (RMSE) at 0.033 [83]. The
SVM model, using a direct approach, also demonstrated impressive
results [84]. An MLP network, when combined with iterative strategies,
provided a robust mechanism for long-term forecasting. LSTMs, with
their capacity to manage extensive data and strong generalisation
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Table 3
Fundamental concepts and general overview of photovoltaic and wind power forecast-
ng techniques.
Forecasting Techniques Categorisation

Horizon

UltraShort [55]

Short [56]

Medium [57]

Long [58]

Data Distribution

Satellite Images

Spatial

Time Series

Meteorological

Wind Speed [59]

Wind Power [60]

Solar Irradiance [61]

Solar Power [8]

Preprocessing

Normalisation MinMax

Standard

Cleaning Data Imputation

Outliers Treatment

Changing Resolution

Transformation /Augmentation

Clustering

Correlation Analysis

Feature Selection

Forecasting Models Machine Learning

ARIMA [62]

ARMAX [63]

FBPROPHET [64]

CNN [65]

RNN - LSTM [65]

RNN - GRU [66]

Approach
Deterministic Multistep [67]

One step [68]

Probabilistic Multistep [69]

One step [69]

Optimisation

Hyperparameter Tuning [70]

Parameter Adjustments [70]

Overfitting [71]

Enhanced Training

Evaluation Techniques

Metrics [72]

Runtime [70]

Statistical Testing [70]

Benchmark Testing [73]

Input time steps [74]

Data Fusion [74]

capabilities, surpassed SVM-based models [85]. LSTM-RNN has been
endorsed for accurately predicting annual solar PV system outputs [86].
Comparisons with MLR, Bagged Regression Trees (BRT), and traditional
NNs showed LSTM networks to have lower prediction errors. LSTMs,
when employed, showcased superior mid and long-term forecasting for

ind and solar power, with error rates significantly below SVM and
ersistence models [58]. In place of conventional solar irradiation mea-

surement techniques, ANNs have been validated as effective. The MLP
tructure is the most common neural network, with an MLP approach
ecommended for forecasting solar radiation in the subsequent 24 h
sing real-time data from Italy [87,88].

Recent advancements in PV forecasting for 2022 highlight a surge in
innovative methodologies and approaches. Hybrid models combining
various techniques have gained traction. One notable method is the
6 
integration of Particle Swarm Optimisation (PSO) with deep learn-
ing, which effectively marries the strengths of swarm intelligence and
artificial intelligence [92]. There is also a growing emphasis on merg-
ing physical data with computational strategies, as seen with hybrid
physical and AI irradiance-to-power conversion models tailored for day-
ahead forecasting in PV plants [93]. In the same vein, the synergy
of LSTM with models like Nonlinear Auto-Regressive Neural Networks
with Exogenous Input (NARXNN) is paving the way for more robust
orecasting tools. A study showcasing this blend utilised hierarchi-

cal learning and the Tabu search method to create a comprehensive
forecasting system [91].

While deep learning techniques, especially LSTM, are proving in-
valuable in handling intricate data structures for solar power forecast-
ing [95], traditional machine learning approaches remain relevant. For
instance, methods such as SVM and Gaussian Process Regression (GPR)
have accentuated the importance of pivotal input variables like solar
lux and panel temperature in achieving precision [94].

Local challenges have also encouraged customised solutions. At
eakin University, researchers established a local weather station in
onjunction with their PV system to address discrepancies from remote
eather data acquisitions. Their innovative GASVM model showcased
 marked improvement in forecasting over the traditional SVM [89].

Similarly, a unique study aimed at leveraging PV power generation
and Electrical vehicles charging load output from the forecasting model
highlighted enhanced algorithm efficiency using real data from China’s
Aifeisheng PV power station and EV charging stations in the UK [90].

Lastly, geographical specificity remains a focal point in research. An
investigation centred on Alice Springs, Australia, a region known for
its abundant solar energy, deployed machine learning methodologies
to provide both short-term and long-term predictions for PV power
generation, factoring in diverse environmental variables [106].

The range of techniques presented illustrates a diverse spectrum
of non-federated learning strategies applied to PV power forecasting,
paving the way for future innovations in the sector. By integrating the
advantages of decentralised learning methods with tailored forecasts
for renewable energy, a novel perspective emerges for the industry.
Tapping into the predictive prowess of intricate AI models, such as
L, becomes imperative as the renewable energy sector continues its
xpansion. Beyond their immediate contribution to mathematical mod-
lling, these methodologies signify the synergy between technological
dvancement and sustainable growth.

2.2. Non-federated learning based wind power forecasting

Wind energy, derived from unpredictable atmospheric currents, is a
pivotal component of our renewable energy portfolio. Accurately har-
nessing this fluctuating power source requires forecasting techniques
apable of managing the intricate nature of wind patterns. Tradi-
ional non-federated learning algorithms, capitalising on centralised
ata repositories, have led the charge in predicting wind energy out-
uts. As this exploration delves into the intricacies of wind power

prediction, it will shed light on the achievements and challenges asso-
iated with non-FL wind forecasting. This sets the stage for discussions
n decentralised modelling strategies. Table 5 offers an encapsulated

view of the research progress in this domain until now.
The evolution of wind power prediction highlights the ongoing

fforts of researchers to use advanced methods for accurately under-
standing this unpredictable renewable energy source. The inclusion
of deep learning techniques has considerably amplified the capacity
of deep NNs to represent data, distil pertinent features [107,108],
and address the limitations of traditional methods—particularly their
truggle with grasping the non-stationary attributes of wind power-

related time series data [109,110]. Deep learning models, whether
ingular or hybrid, excel at recognising the nonlinearity inherent in
ind power data [111–113]. LSTM, GRU, and Bi-LSTM have been at

the vanguard of this endeavour. These RNN-based models particularly



F. ElRobrini et al.

p

a
t
R
s
i
h
h
a
a

Energy and AI 18 (2024) 100438 
Table 4
Detailed comparison of publications for non-federated PV power forecast.

Citation Year Methodology Summary

[58] 2019 LSTM Predicts medium and long-term performance of wind and solar power using LSTM

[89] 2019 GASVM Assesses the GASVM model’s forecasting accuracy based on MAPE and RMSE

[90] 2020 PFM Uses PFM’s PV power generation and EV charging to enhance GA performance

[91] 2021 LSTM-NARXNN Combines LSTM with NARXNN for a hierarchical PV power forecasting method

[92] 2022 Hybrid Deep
Learning Model
with PSO

Uses a hybrid system integrating signal decomposition, AI, and swarm intelligence
for predictions

[93] 2022 Irradiance to Power
(Physical + AI)

Proposes a hybrid irradiance-to-power conversion and compares it for 14 PV plants
in Hungary

[94] 2022 SVM and GPR Considers SVM and GPR for estimating solar PV power considering various input
variables

[95] 2022 LSTM Assesses the ability of LSTM for predicting solar power data

[96] 2022 ML deterministic
Model

Compares 24 ML models for power forecasting using datasets from 16 PV plants in
Hungary

[97] 2022 ANT colony
optimiser with ANN

Integrates ANN with data processing and other techniques to predict PV system
output

[98] 2023 LSTM with Grid
Search Algorithm

Proposes precise hyperparameters for the LSTM network for improved performance
prediction

[99] 2023 MLFFNN,NARXNN
and RNN

Applies an upscaling methodology for forecasting regional solar PV power

[100] 2023 EEMD with LSTM
and SVM

Develops an approach based on Ensemble Empirical Mode Decomposition and LSTM
model for PV power prediction minute-hour-day output

[101] 2023 TVF-EMD-ElM Uses hybrid method to deal with the fluctuation of PV power data by splitting it
into a series of more stable and constant subseries

[102] 2024 VMD-IF-FSRA-CNN Indicates that the proposed combination mechanism (Variational Mode
Decomposition, Iterative Filter, Forward stepwise regression algorithm, and
Convolutional NN) is more suitable for multi-site time series forecasting

[103] 2024 GPR-WD Presents a novel hybrid ML model that combines Gaussian process regression with
wavelet packet decomposition to fore cast PV power half an hour ahead.

[104] 2024 BiLSTM, 1D-CNN,
and GRU

Evaluates the performance of the three models for one hour ahead PV forecasts

[105] 2024 SSA-BiLSTM Proposes a short-term PV power prediction method based on meteorological
similarity day and sparrow search algorithm and Bidirectional LSTM network
combination
a

h

shine in discerning temporal dependencies—a pivotal aspect of wind
ower data. Both LSTM and GRU address a persistent challenge that

traditional RNNs grappled with: the vanishing gradient problem. They
exhibit proficiency in unravelling forward temporal nuances, with Bi-
LSTM pushing the envelope by also considering backward temporal
characteristics [114–117]. The bidirectional modus operandi of Bi-
LSTM provides it with a panoramic view of the data, both historically
nd in terms of future instances. The resultant rich contextual informa-
ion significantly bolsters the learning capacity of the neural networks.
ecent studies affirming Bi-LSTM’s superiority over LSTM in certain
cenarios underline its potential [118]. Its nascent yet notable success
n wind power prediction showcases the immense prospects the method
olds [60,112,119–124]. Simultaneously, the foray of CNNs, typically
ailed for image processing, into wind power prediction has brought
bout intriguing results. By leveraging convolutional operations, CNNs
deptly identify interrelationships across variables, focusing on more

localised features within time series data.
On the other hand, one of the most promising developments is the

introduction and fine-tuning of hybrid deep-learning models. By amal-
gamating multiple deep neural networks, these hybrid architectures
strive to encapsulate the multifaceted nature of wind power time series
data. Such a combinatorial approach is not just a redundant addition
of different networks, but rather an orchestrated attempt to exploit the
strengths of individual networks. The crux here is to extract features
optimally, and the advantage of hybrid models lies in their ability to
synergise the benefits of the individual deep neural networks they are
comprised of. To culminate, the innovative incorporation of architec-
tures like sequence-to-sequence [125] into hybrid models underlines
the ongoing experimental spirit of researchers. The horizon of wind
7 
power prediction is ever-expanding, and the relentless amalgamation of
deep learning techniques promises an era of more precise and reliable
forecasts. Hybrid deep learning models, by their synergistic combina-
tion of distinct neural networks, have ushered in a new era of enhanced
feature extraction and representation for wind power datasets. Their
multidimensional approach leverages the strengths of individual net-
works, culminating in more precise and dependable predictions. The
versatility and breadth of deep learning have been optimally harnessed
in these models, offering a richer, more nuanced understanding of the
complex dynamics governing wind power. This advancement under-
scores the transformative potential of hybrid architectures in leveraging
the full might of deep learning, resulting in an evolutionary leap in
wind power forecasting.

The combination of CNN and RNN models has been observed in
several studies. An example can be seen in the work by Liu et al. [126],
where CNN and GRU were integrated for wind speed forecasting. Sim-
ilarly, Yin et al. [111] paired CNN and LSTM to derive meteorological
nd temporal data. To offer a comprehensive wind speed prediction,

Chen et al. [109] combined the spatial feature extraction potential of
CNN with LSTM’s temporal feature extraction capabilities, bearing in
mind the spatiotemporal attributes of wind power-related data.

An intriguing approach merged the capabilities of the Discrete
Wavelet Transform (DWT), Seasonal Autoregressive Integrated Moving
Average (SARIMA), and LSTM to manage the power time series of an
offshore wind turbine [132]. The creation of an advanced short-term
wind power forecasting technique named the WD-IGFCM-LSTMS model
inged on deep learning, enriched further by Wave Division, Grey Wolf

Optimiser, and Seq2Seq models [133]. Subsequent exploration into
neural network architectures led to the conception of a comprehensive
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Table 5
Comparison of publications for non-federated wind power forecast.

Citation Year Methodology Summary

[127] 2019 ML Models Proposes an accurate forecasting strategy based on ML

[128] 2019 Q-Learning Uses a deterministic Q-learning technique for specific farms estimates

[109] 2019 CNN-LSTM Combines CNN’s spatial feature with LSTM’s temporal extractions

[125] 2020 AGRU Uses a sequence-to-sequence model using the Attention-based GRU

[107] 2021 DNN Highlights the increased data representation and feature extraction capabilities of
deep neural networks

[129] 2021 Genetic LSTM Employs LSTM for feature learning and GA to optimise window size and number of
neurons

[130] 2022 probabilistic lidar Advects an observer-based power forecast of individual and aggregated offshore wind
turbines

[131] 2022 MSIN Proposes a Multi-step Informer network to forecast wind power generation

[132] 2022 DWT, SARIMA,
LSTM Hybrid

Uses a hybrid model on a power time series of a wind turbine in Scotland

[133] 2022 WD-IGFCM-LSTMS Integrates Wave division, enhanced grey wolf optimiser, and Seq2Seq model

[134] 2022 Deep Learning with
Attention
Mechanism

Proposes a forecasting system with multiple modules including self-attention

[135] 2022 Hybrid
Attention-based
Deep Learning

Suggests a hybrid attention-based technique

[136] 2022 AMC-LSTM Advocates a multi-dimensional model, AMC-LSTM

[137] 2022 Ensemble Learning
with ES Models

Explores ensemble learning models and various predicting performances of
hyperparameters

[138] 2023 CNN-MMoE Combines a CNN-WaveNet with a multigate mixture-of-experts architecture

[139] 2023 NWP/Reconciliation Implements a spatial hierarchy for one day-ahead forecasts

[140] 2023 MCC Adopts a Maximum Correntropy Criterion for forecasts optimisation

[141] 2023 ANN-k-means-PSO Introduces a novel hybrid forecasting model for wind power generation.

[142] 2024 Bagged-CNN Combines the strengths of the Bagging ensemble technique and CNN

[143] 2024 BiLSTM-GAN-
VMD/CNN-BiGRU

Suggests a novel two-stage hybrid forecasting approach

[144] 2024 XGBoost-LSTM Offers an ultra-short-term forecasting relying on feature engineering
t
o
t
c

wind power forecasting system encompassing modules for feature de-
composition, self-attention, forecasting, optimisation, and performance
evaluation [134]. An innovative stride was the formulation of a hybrid
ttention-centric deep learning method, underscoring the importance
f attention mechanisms in augmenting prediction precision [135].

The advent of the AMC-LSTM, or multi-dimensional extended features
fusion model, further signals progress in LSTM-centric wind power
forecasting techniques [136]. Contrasting the prevailing deep learning
trend, ensemble learning models, particularly boosted and bagged trees,
were employed to probe the predictive proficiencies of machine learn-
ing techniques such as GPR, SVR, and Bayesian optimisation [137].
Collectively, these methods showcased a centralised data processing
and model training approach, inherent to non-federated learning strate-
gies. The overarching theme from these investigations underscores the
symbiotic relationship between deep learning and machine learning in
efining wind power forecasting methodologies.

In the study presented by Niu et al. [125], a groundbreaking
equence-to-sequence model is introduced, which employs the

Attention-based Gated Recurrent Unit (AGRU) to bolster forecasting
procedures. This model facilitates the connection of various forecasting
stages via concealed GRU block activations. To further refine the
model’s accuracy, an attention mechanism serves as a feature selec-
tion technique, identifying pivotal input variables for the forecasting
process. In another investigation by Demolli et al. [127], five distinct
machine learning techniques are employed to predict long-term wind
ower based on daily wind speed data. This research proposes a
ethodology centred on machine learning algorithms for enhancing

he accuracy of wind power forecasts. Sun et al.’s work [128] integrates
a Q-learning enhanced method aimed at generating deterministic wind
ower predictions for designated wind farms. The core of this approach
 i

8 
is a joint distribution model founded on copula theory, which mirrors
the spatiotemporal correlation between individual wind farms and the
cumulative wind power output. To sculpt the marginal distributions of
both the genuine consolidated wind power and the projected power
from the member wind farms, Gaussian mixture models are utilised.

Centralised learning methodologies have unmistakably echoed
throughout the domain of renewable energy forecasting, spanning from
photovoltaic solar to wind power. Sophisticated neural networks and
hybrid deep learning models have emerged as pivotal instruments in
navigating the intricacies of these renewable energy forms, thereby
enhancing predictive capabilities. Employing these strategies, forecast-
ing protocols have been devised that not only uphold precision but
also exhibit adaptability to the dynamic nature of renewable energy
resources.

In the centralised model’s workflow that is shown in Fig. 5, the
process starts with data collection, where data from various sensors
that belong to one specific power station is gathered. This raw data is
then subjected to preprocessing, involving cleaning and transforming it
into a suitable format for analysis. Following preprocessing, the data is
divided into training and testing sets. The training set is utilised to train
the models, allowing them to learn patterns and relationships within
the data. Once trained, the models are evaluated using the testing set
to assess their predictive performance, ensuring they generalise well
to unseen data. Finally, validation techniques are applied to refine the
models and enhance their accuracy.

Recognising these centralised forecasting frameworks sheds light on
he burgeoning innovation within this sphere, poised at the threshold
f a renewable renaissance. While their milestones warrant commenda-
ion, the pursuit for increasingly efficient, decentralised, and privacy-
entric models persists, heralding the commencement of a new epoch
n renewable energy prediction.
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Fig. 5. Work flow of centralised models (including traditional and DL-based models).
3. Federated learning: A descriptive presentation

3.1. Upholding data integrity and security in forecasting

In the specific field of PV and PW forecasting, maintaining data
integrity and ensuring robust security are paramount. Data integrity
guarantees the consistent accuracy and reliability of data throughout its
life cycle. For PV and wind forecasting, this signifies safeguarding me-
teorological and energy generation data from unwarranted alterations.
Preserving such integrity translates into dependable and accurate fore-
casts, which in turn pave the way for optimised energy production,
financial prudence, and minimised operational hazards. However, any
compromises in data integrity could lead to flawed storage and dis-
patch strategies, resulting in considerable financial and operational
repercussions.

As the digital transformation progresses, PV and wind forecasting
systems increasingly intertwine with vast interconnected networks.
This interconnectivity, while enhancing operational efficiency, inad-
vertently amplifies system vulnerabilities. Unguarded systems can be-
come susceptible to cyber-attacks, jeopardising not only the accuracy
of the forecasts but also risking precious operational, financial, and
strategic datasets. Such breaches could potentially destabilise exten-
sive energy infrastructures. Given these profound risks, an unwavering
commitment to robust data security is imperative. This calls for the
implementation of stringent security measures, encompassing advanced
encryption standards, multi-level authentication schemes, and regular
security assessments. These measures fortify not just the confidentiality
and availability of data, but also its integrity, reinforcing the resilience
of the forecasting systems against potential adversities. In essence,
the focus on data integrity and security in PV and wind forecasting
surpasses the mere accuracy of predictions. It represents a cornerstone
of public confidence in renewable energy initiatives and supports the
global stride toward a sustainable energy future.

As observed in Table 6, the diversity of approaches in forecasting
for renewable energy is vast. While some papers focus on traditional or
physical models, others delve into advanced computational techniques.
This variance underscores the richness of research in this domain
and highlights the numerous strategies employed by researchers. The
table serves not only as a comparative tool but also as an indicative
roadmap for researchers and professionals aiming to gain insights into
the current state of forecasting techniques in renewable energy.
9 
3.2. Federated learning approach

Distributed across an expansive network of servers or devices, FL
emerges as a pivotal tool in domains such as PV/WP forecasting,
where data accrues from diverse locales. This methodology sidesteps
the pitfalls of centralisation and honours the regional nuances inherent
in each dataset [157,158]. By doing so, it promises a more nuanced
and accurate prediction model that delivers discerning insights while
meticulously observing data protection regulations. With the rapid
advancement of FL [159], its deployment in the PV/WP sector has been
demonstrated to achieve comparable success to traditional centralised
models, with the added advantage of preserving data confidential-
ity, as illustrated in Fig. 4. Such a capability proves invaluable in
a domain where real-time adjustments, informed by substantial data
volumes, significantly influence predictions and energy efficiency. The
mechanism of an FL process can be summarised as follows [160–162]:

• Initialisation: From a coordinating body, or a central grid man-
ager, each participating wind farm or PV installation receives a
preliminary model.

• Localised Training: Each installation uses its local data to train
and improve its model rather than transferring sensitive or large
amounts of raw data. This might involve modifications depend-
ing on regional weather patterns, machinery efficiency, or other
regional characteristics impacting the generation of PV and wind
energy.

• Model Aggregation: After compiling these locally trained mod-
els, the central server updates the models, creates an updated
global model using this compiled information, and then dis-
tributes it to each user or installation. This model is an improved
version that takes into account observations from all involved
parties without ever having access to the specific data. In this con-
text, the optimal global model, 𝜃, is achieved by minimising the
aggregated loss function, 𝑓𝑎(𝜃𝑎), across all participating clients:

minimise 𝜃

(𝐶×𝐴
∑

𝑘=1

𝑛𝑎
𝑛
𝑓𝑎(𝜃𝑎)

)

(1)

with:

– 𝐶 : Indicates the participation ratio, indicating the assump-
tion that not every local client engages in each round of
model updates. This summation calculates the cumulative
data samples from all participating clients, giving the total
number of data samples involved in a particular round of
FL.
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Table 6
Reviewed paper analysis.

Citation Horizon/Forecasting Model Solar Wind ML DL FL Non-FL RF

[58] Medium/Long term ✓ ✓ ✓

[89] Short term ✓ ✓ ✓

[90] ✓ ✓ ✓

[91] ✓ ✓ ✓

[92] Short term ✓ ✓ ✓

[93] Physical Model ✓ ✓

[94] Short/Medium/Long term ✓ ✓ ✓

[95] Short/Medium/Long term ✓ ✓ ✓

[96] Deterministic Model ✓ ✓ ✓

[97] Short term ✓ ✓ ✓

[127] Long term ✓ ✓ ✓

[128] Deterministic Model ✓ ✓ ✓ ✓

[109] ✓ ✓ ✓

[125] Short term/Multi Step ✓ ✓ ✓

[107] Long term ✓ ✓ ✓

[132] Short term ✓ ✓ ✓ ✓

[133] Short term ✓ ✓ ✓

[134] ✓ ✓ ✓

[135] ✓ ✓ ✓

[136] Short term ✓ ✓ ✓

[137] Short/Medium/Long Term ✓ ✓ ✓

[145] Short term ✓ ✓ ✓

[146] ✓ ✓ ✓

[147] Medium/Short term ✓ ✓ ✓

[148] ✓ ✓ ✓

[149] Short term ✓ ✓ ✓

[150] ✓ ✓ ✓

[151] Short term ✓ ✓ ✓

[152] Image Based ✓ ✓ ✓

[153] ✓ ✓ ✓

[154] Short term ✓ ✓ ✓ ✓

[155] Short term ✓ ✓ ✓

[156] ✓ ✓ ✓
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– 𝑘 : Is the index associated with each client.
– 𝑛𝑎 : Denotes the size of local data.
– 𝑛 : Is the total number of sample pairs across all clients,

given in Eq. (2) :

𝑛 =
𝐶×𝐴
∑

𝑘=1
𝑛𝑎 (2)

– 𝑓𝑎(𝜃𝑎): Represents the local loss function, given in Eq. (3):

𝑓𝑎(𝜃𝑎) = 1
𝑛𝑎

𝑛𝑎
∑

𝑖=1
𝑙(𝑥𝑖, 𝑦𝑖; 𝜃𝑎) (3)

– 𝑙 : Stands for the loss function.
– 𝑥𝑘 : Shows the data feature.
– 𝑦𝑘 : Symbolises the data label.

• Iteration: This cycle repeats until the model reaches an ideal state
or the required number of iterations has been reached. Reduced
communication overhead is a benefit of the client–server design,
which is fundamental, for large-scale renewable energy networks.
The FL approaches may be illustrated as shown in Fig. 6.

A deeper exploration into its diverse categories can be undertaken
fter a thorough understanding of the foundational concepts underlying

FL. Yang et al. [163], Liu et al. [164], and Kaur et al. [165] classified
FL into three distinct types, determined by the manner in which data
is distributed among the participating clients:

1. Horizontal FL
2. Vertical FL
3. Transfer FL
10 
3.3. Types of federated learning

3.3.1. Horizontal federated learning
In datasets from multiple renewable energy sources or locations

ith limited user (or source) overlap but substantial feature overlap,
orizontal federated learning (HFL) has been identified as particularly
romising for PV/WP predictions. This characteristic is essential in

the renewable energy domain, as data can be categorised by source
r location yet display common features, such as wind speed or solar
rradiance levels. Consider the scenario of two energy corporations
arnessing wind energy in distinct geographical areas. Even though the
ata may be sourced from various wind farms, the features recorded,
uch as wind speed, humidity, and temperature, might exhibit simi-
arities. An option for these corporations is to engage in collaboration
ia an HFL platform, which allows for the joint training of a unified
odel using the amalgamated datasets. It has been observed that this

ollective strategy can markedly improve forecasting accuracy. In a
ypical HFL process, local gradients are computed and forwarded by
ach participating entity (in this context, each energy company or
ind farm). These gradients are subsequently integrated by a central

erver to establish a comprehensive global forecasting model. While
his decentralised method offers advantages, concerns regarding en-
rgy data privacy arise. Smooth and secure gradient exchanges have
een facilitated by methods such as homomorphic encryption [166],

differential privacy [167], and secure aggregation [168].
In 2016, a data federated modelling scheme was proposed by Google

for updates to Android phone models [169–171]. In this scheme, when
an Android phone is used by an individual, the model parameters
are continuously updated locally. These parameters are then uploaded
to the Android cloud, enabling data owners with matching feature
dimensions to form a federated model. Safe aggregation and differential

167], marking a
privacy techniques are employed in this system [
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Fig. 6. Federated Learning-based Design Architecture for Photovoltaic and Wind Energy Units.
standard application of horizontal federated learning. Drawing a paral-
lel, the methodology introduced by Google can be applied to PV/WP
forecasting. An HFL system, where local forecasting models at each
wind farm or solar PV installation are updated based on real-time data,
could serve as a representative model for this concept in renewable
energy. Through these localised updates, a federated forecasting model
encompassing the insights of all participating entities can be formed
when data is relayed to a centralised cloud system.

When adapted to PV/WP scenarios, the BlockFL approach by Kim
et al. [172] could allow individual energy installations to autonomously
update their local forecasting models over a blockchain network. Simi-
larly, a system akin to MOCHA [173] could enable multiple energy sites
to collaborate, aiming to enhance forecasting accuracy while ensuring
data integrity. Research [159,174] that segments data specific to indi-
vidual energy installations has been contextualised in the renewable
energy realm. By transmitting only the requisite gradient data to a
centralised entity for holistic model adjustments, the confidentiality of
proprietary energy data is ensured.

3.3.2. Vertical federated learning
When datasets exhibit minimal feature overlap yet considerable user

similarity, vertical federated learning (VFL) is considered an appro-
priate method for exploration. In VFL, data is segmented vertically
according to user attributes. Consequently, while the identity of each
user remains consistent across all data fields, the attributes associated
with each user are distinct. Such a process has been observed to
augment the feature dimension of the training data. Take, for in-
stance, a bank and an online shopping platform operating within
the same region. The local population might constitute a significant
portion of the user bases for both entities, yet the nature of their data
varies considerably. E-commerce platforms are known to document cus-
tomer behaviours, such as browsing patterns and purchasing histories,
whereas banks generally record financial profiles, encompassing as-
pects like income, expenditure, and credit scores. The potential of VFL
is realised here: by integrating these diverse variables in an encrypted
format, the predictive capacity of the resultant model is enhanced.

The diversity of data across various sources is increasingly observed
in sectors such as PV/WP forecasting. Such information might be
derived from multiple sensors, instruments, or platforms, each reg-
istering distinct attributes of the same entity, be it a wind turbine
or a solar panel. In this context, VFL is recognised as crucial for
amalgamating these varied features into a holistic dataset, which is
11 
fundamental for accurate prediction. For the generation of robust pre-
diction models in PV/WP forecasting, the inherent data structure often
necessitates sophisticated partitioning strategies. The vertical splitting
of data has been facilitated by numerous machine-learning methodolo-
gies. Techniques such as classification [175], statistical analysis [176],
gradient descent [177], secure linear regression [178,179], and data
mining [180] have been employed successfully for vertical data delin-
eation. Such methods are posited to discern intricate patterns within
PV/Wind energy data streams, contributing to enhanced prediction ac-
curacy. Certain models are recognised for their significant contributions
to the broader field of VFL. For instance, SecureBoost [170] represents
a pivotal VFL system that amalgamates numerous user attributes, with
the objective of enhancing decision-making precision through its loss-
less training approach. The methodology it employs is posited to be
invaluable for the integration of diverse data streams originating from
varied renewable energy sources.

Notable contributions to the field also come from specialised mod-
els, such as that introduced by Hardy et al. [181]. A profound em-
phasis is placed on privacy preservation in their VFL-based logistic
regression model, a consideration of paramount importance given the
sensitive nature of energy grid information. Distributed logistic regres-
sion and pipelined entity analysis, underpinned by Paillier additive
homomorphic encryption [182], are incorporated in their model. Such
an approach is believed to not only bolster data confidentiality but
also enhance classifier precision, thereby positioning it as essential
for secure and accurate PV/Wind energy production forecasting. It is
inferred that VFL presents a promising avenue for the burgeoning realm
of PV/WP forecasting, facilitating comprehensive data representation
while safeguarding data privacy and security.

3.3.3. Transfer federated learning
Owing to the non-overlapping characteristics of user attributes

across multiple datasets, a challenge is observed in certain scenarios
within the renewable energy sector, especially in PV/WP forecasting.
This challenge manifests when datasets are sourced from regions with
distinct geographical or climatic conditions, diminishing the effec-
tiveness of traditional learning methods. In such contexts, Federated
Transfer Learning (FTL) is considered an appropriate solution [183].
Envision datasets of wind and PV electricity derived from Scandina-
vian coastal areas and a dry region in the Middle East. Given the
geographical variations and inherent differences in the data features
tied to their specific renewable energy sources, the user groups (or data
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providers) from these regions exhibit distinct attributes. The overlap
of features between these datasets might be minimal. To address this
disparity and generate a cohesive forecasting model, transfer learning
s employed, bridging the data divide and enhancing the predictive
odel’s accuracy. Such a technique proves beneficial when the aim

is to augment a model’s efficacy with limited specific data [184]. For
llustration, in a hospital’s radiology department facing challenges in
massing sufficient X-ray scans to develop a dependable diagnostic
ool, the method of transfer learning, which shifts knowledge from
ne domain to another – such as from general image recognition to
adiological diagnostics – becomes pertinent. In the realm of PV/WP
orecasting, FTL is posited to mitigate the scarcity of specialised data,
acilitating the application of models from related domains to primary
orecasting tasks, all while preserving data privacy.

Federated learning comes in different types, each offering unique
benefits based on specific algorithms. HFL improves prediction accu-
racy by using similar features from different datasets without needing
to centralise the data. It employs secure aggregation and differential
rivacy techniques to protect sensitive energy information during col-

laboration. VFL enhances the feature set by merging different data
sources. This allows for the development of comprehensive models
from datasets that share common user identities but have different
eatures, such as weather sensors and regional power output data, all
hile ensuring data privacy. FTL enables knowledge transfer between
eographically or climatically diverse datasets. This helps in optimising
enewable energy forecasting in situations where data is limited or
ragmented, as it improves model performance by applying learned
nowledge from one region to another. Collectively, these types of
ederated learning offer tailored solutions for the challenges of de-

centralised and privacy-sensitive energy forecasting, each with specific
advantages based on the available data.

3.4. Cross device federated learning

In contexts such as PV/WP forecasting, where data is often sourced
rom an array of sensors, IoT devices, and monitoring systems span-
ing diverse geographical landscapes, the need for cross-device FL is

underscored. Devices ranging from solar irradiance sensors to wind
speed meters generate a plethora of real-time data points. Considering
the vast array of devices in play, challenges associated with efficient
client selection become more pronounced, ensuring that only the most
relevant and informative devices contribute to the model’s learning
process. Techniques like client selection and incentive designs, as ref-
erenced in [185], are employed to guarantee proactive and efficient
participation from these disparate devices. Through these methods,
onsistent and premium data inputs from devices are encouraged, while
lso ensuring the most representative data is incorporated in each FL
ycle. By adopting this approach, it is posited that Cross-Device FL can

augment the accuracy and reliability of PV/WP forecasting models, all
the while ensuring data remains decentralised.

3.5. Cross silo federated learning

In scenarios where the integration and processing of data from a
imited set of significant entities, such as major energy utility providers
r renewable energy farms, are required, the relevance of cross-silo FL
s accentuated. In such contexts, each entity, be it a PV or wind farm,
ight possess a wealth of data and participate consistently throughout

he iterations. Depending on the features and user attributes, data in
hese systems can be federated in either a horizontal or vertical manner.
his type of FL is posited to be instrumental in the domain of PV/WP
orecasting, especially when multiple energy entities, each safeguarding
heir distinct data trove and insights, collaborate to refine forecasting
recision without revealing the underlying raw data. Such an approach

ot only ensures data privacy but also elevates the collective predictive o

12 
models. Demonstrated success in employing the cross-silo FL method-
ology can be found in studies such as [186], where models are crafted
by integrating concepts from diverse entities without compromising the
anctity of individual data sets.

Cross-Device and Cross-Silo FL offer unique benefits for forecasting
enewable energy at different operational levels. Cross-Device FL is best

suited for situations with various IoT devices and sensors. It effectively
manages large amounts of real-time data while keeping the information
ecentralised. Methods such as efficient client selection and incentive
tructures help incorporate high-quality, relevant data, improving the
ccuracy and speed of forecasts. On the other hand, Cross-Silo FL is
dvantageous for a smaller number of large organisations, like energy

utility companies or significant renewable energy farms. This approach
allows these organisations to work together to create models without
entralising their data, thus maintaining privacy and security. By shar-
ng data across silos, Cross-Silo FL enhances forecasting models while
especting proprietary data limitations. Together, these methods offer
trong solutions for both large-scale and specialised renewable energy
orecasting challenges, ensuring privacy and accuracy in decentralised
ettings.

3.6. Federated learning specifications and requirements

3.6.1. Encryption mechanism
In the realm of PV/WP forecasting, the protection of data privacy

ecomes paramount due to the decentralised nature of data collec-
tion. A vast array of sensors and IoT devices continuously contribute
data. A primary advantage of FL for predicting renewable energy is
ighlighted: data can be retained privately by companies, while only
odel knowledge is exchanged to enhance the collective prediction
odel [187]. There exists a potential risk that certain details in the

shared model information could inadvertently disclose private details.
This is especially concerning in the energy sector, where revealing
specific data might expose proprietary methods or technologies. Despite
these concerns, there are measures in place to ensure the privacy of
such data. Techniques such as model aggregation [168], homomorphic
encryption [166,188], and differential privacy [167] are commonly
mployed to bolster federal privacy.

Several encryption techniques have gained popularity in order to
strengthen data security in PV/WP forecasting:

• Model Aggregation: Model aggregation, recognised as a pivotal
element of federated learning, ensures that contributions to a
comprehensive model in PV/WP forecasts can be made with-
out transmitting raw data. This technique is deemed valuable,
particularly when data from multiple geographic regions is amal-
gamated to predict overarching trends without revealing specifics
from individual data sources.

• Homomorphic Encryption: While conventional encryption
methods might render encrypted data unsuitable for computation,
homomorphic encryption permits calculations on the encrypted
data itself. This capability is considered vital for immediate anal-
yses, ensuring that the security of the foundational data remains
uncompromised.

• Differential Privacy: As the renewable energy sector evolves to
be more reliant on data, inadvertent disclosure of details pertain-
ing to installations, technological advancements, or strategies via
aggregate statistics remains a concern. Differential privacy miti-
gates this concern by confirming that the presence or absence of
specific data points, for instance, the output of a particular wind
farm, does not influence the comprehensive statistical results.
While this approach facilitates the observation of overarching
trends, it also safeguards against potential threats attempting to
pinpoint the origins of specific data inputs.

In the PV/WP forecasting sector, the harmonisation of federated
earning’s collective advantages with stringent data privacy measures
an be achieved through the deployment of these encryption method-
logies.
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Table 7
Comparison of publications in FL-based PV power forecasting.

Citation Year Methodology Summary Privacy-
Preserving

[145] 2022 CNN-LSTM with FL Proposes a semi-asynchronous FL framework for forecasting
short-term solar power using CNN-LSTM

✓

[146] 2022 STANN with FL Introduces a distributed solar forecasting framework using a spatial
and temporal attention-based neural network in conjunction with
federated learning

✓

[147] 2023 BTM-FL FL method for PV power forecasting, training a unified model on
data from several BTM sites

✓

[148] 2023 FedZero Describes an FL system powered by renewable excess energy and
spare compute infrastructure capacity

✓

[149] 2023 FL-EncoderDecoder Presents a paradigm for interpretable deep learning using FL to
estimate short-term residential load

✓

[189] 2023 LSTM-BPNN Uses a hybrid prediction model based on FL ✓

[190] 2023 RNN Explores regression models in the FL ✓

[191] 2024 HFF-SA-CNN-LSTM Constructs a hybrid Horizontal Federated Framework, Self-Attention
mechanism, CNN, and LSTM to assess model performance under
different conditions

✓

[192] 2024 Orchard-optimized
Conv-SGRU

Accentuates the performance of the predictive model using hybrid
FL-CNN with Stacked GRU and an orchard gardening optimiser

✓

[193] 2024 FL-CNN Proposes a global solar radiation forecasting approach tested for
eight regions located in Iran

✓
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4. Federated learning based PV/WP forecasting: A new frontier

In the domain of PV and WP forecasting, the rise of FL is observed as
a reflection of the sector’s commitment to innovation and adaptability.

eing a decentralised machine learning approach, FL is seen to surpass
raditional boundaries defined by centralised training models. The
raining of algorithms across multiple devices or nodes is facilitated,
everaging localised data while ensuring privacy and minimising data

transfer overheads. Given the unique challenges presented by PV and
ind energy generation – from source variability to the extensive
eographical distribution of installations – an avenue for leveraging
etailed, location-specific data without centralising this information is

provided by FL. In this section, a deep exploration into the nuances of
L-based forecasting in the renewable energy sector is undertaken, de-

tailing its methodologies, benefits, potential hurdles, and the profound
influence it is anticipated to bring to the field of PV and WP predictions.

4.1. Federated learning-based PV power forecasting

Given the distributed nature of PV systems, the decentralised de-
sign of FL is believed to ensure model robustness without sacrificing
data privacy. The objective of this section is to scrutinise significant
ontributions to FL-based PV power forecasting. Although numerous
tudies exist, the focus is directed toward fundamental works that
re deemed to provide a comprehensive overview of the approach,
ts advancements, and its efficacy in addressing the unique challenges
osed by PV power forecasting. A comparative analysis of literature in
his domain is also presented in Table 7.

A semi-asynchronous FL framework for short-term solar power fore-
asting has been proposed [145], with the framework’s efficacy eval-

uated using a CNN-LSTM model. It is believed that the proposed
federated forecasting solution incorporates a personalisation method
and a semi-asynchronous aggregation mechanism for enhanced effi-
ciency. Comprehensive evaluations using a real-world dataset suggest
that the semi-asynchronous aggregation and personalisation technique
might enhance the resilience of the forecasting framework in practi-
cal situations. Furthermore, these evaluations indicate that federated
models might outperform purely local models in forecasting accuracy
while safeguarding data privacy. A flexible distributed solar forecasting
framework, based on a novel spatial and temporal attention-based
neural network (STANN) in tandem with FL approach, has been pre-
sented [146]. This framework aims to address the deficiencies observed
13 
in AI forecasting models, focusing on multi-horizon forecasting scenar-
ios ranging from 5 to 30 min. Within the proposed structure, the STANN
model comprises a feature extractor and a forecaster, both of which
are trained on distinct local datasets for improved localisation. These
components are updated through global parameter aggregation to fur-
ther elevate forecasting precision. The effectiveness of the proposed
approach has been evaluated using comprehensive tests on real-world
datasets and juxtaposed against other notable forecasting techniques.

Given that a majority of distributed PV plants operate behind the
eter (BTM) and remain undetected by utilities, forecasting their col-

lective output encounters three challenges. Firstly, standard centralised
prediction algorithms, which were employed in earlier research, might
be deemed inappropriate due to privacy concerns. As a result, decen-
tralised forecasting techniques, such as FL, have been identified as
essential to ensure data privacy. Secondly, the delicate balance between
prediction accuracy and data privacy has not been thoroughly explored,
and no comparative studies between localised, centralised, and de-
centralised forecasting methods for BTM PV generation are currently
available. Lastly, the computational duration of data-driven prediction
methodologies remains unexamined. An FL power forecasting approach
for PVs, which employs FL as a decentralised collaborative modelling
technique, has been introduced in this research [147]. By training a
single model utilising data from multiple BTM locations, this approach
proposes a solution for BTM PV forecasting. A multi-layered percep-
tron machine learning network was utilised in the development of
this FL-based BTM PV forecasting model, ensuring data security and
privacy.

To effectively reduce operating carbon emissions from training to
zero, FedZero, an FL system, is proposed to operate solely on renewable
excess energy and surplus compute infrastructure capacity [148]. The
patiotemporal availability of excess energy is utilised by FedZero, with
lients being selected based on energy and load estimates to ensure
apid convergence and equitable participation. In a study presented
n [149], a paradigm for interpretable deep learning combined with

FL is proposed for short-term residential load forecasting. A novel
automated relevance determination network for feature interpretation
is introduced to achieve interpretable multi-step load prediction. This
network is designed to work in tandem with an encoder–decoder
architecture. The adopted training method, underpinned by FL, avoids
sharing the original data within the edge computing network, thereby

maintaining data privacy.
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The rapid growth in the renewable energy market has underscored
he pressing need for enhanced forecasting methods. An examination
f FL-based PV power forecasting reveals the transformative potential
f decentralised prediction methodologies, especially within the pho-

tovoltaic domain. The essence of FL, which prioritises retaining data
at its source while crafting comprehensive models, aligns seamlessly
with the distributed, detailed nature of PV systems. From this analysis,
it can be inferred that the shift towards federated learning-based PV
power forecasting is more than a fleeting academic trend; it represents
 genuine endeavour to integrate sustainability with technological ad-
ancement. The innovations showcased in the aforementioned research
olster the belief that PV power forecasting will embrace greater accu-
acy, decentralisation, and privacy in the forthcoming years. Continued
efinement, evaluation, and expansion of the understanding of FL’s
ole in this pivotal industry are imperative as this future trajectory is
ursued.

4.2. Federated learning-based wind power forecasting

Federated Learning allows for the adaptation to the evolving de-
ands of wind power forecasts by facilitating training on decentralised
ata, all while maintaining data privacy. There is a rich body of
iterature detailing the intricacies of FL as applied to wind power. This
ection delves into an in-depth analysis of pertinent seminal papers,
ighlighting the evolution of FL-based methodologies, their achieve-
ents, and the challenges addressed in the realm of WP forecasting.
 comparative review of these works can be found in Table 8.

Forecasting wind power is crucial for managing fluctuations, en-
uring supply–demand balance, and enhancing system reliability. The
patial and temporal interdependence of numerous wind farms ne-
essitates sharing comprehensive datasets to derive models that offer

enhanced accuracy and generalisability. However, complex regulatory
procedures, stiff industry competition, and data privacy and security
concerns hinder data aggregation across wind farms dispersed nation-
ally. The paper by Ahmadi et al. [150] introduces an FL-based approach
or wind energy forecasting. This decentralised collaborative method
acilitates training a unified model on data from multiple wind farms
ithout compromising data security or privacy. It achieves this by

ecurely exchanging local model parameters, obviating the need to
ransfer sensitive data.

In the study by Zhang et al. [151], a CNN-Attention-LSTM model
is presented, leveraging federated learning as a means to forecast
the multi-energy load of IEMs. This approach seeks to enhance data
variety, strengthen model generalisation, and ensure data privacy. The
global model relies on the CNN-Attention-LSTM structure for feature
extraction. Through FL, IEMs can train the forecasting model in a
decentralised manner without the need to share their local datasets. The
research rigorously evaluates four distinct FL methodologies, contrast-
ing them with individual, centralised, and federated models. Further-
more, the study delves into the potential vulnerabilities of FL to fake
data injection attacks (FDIA), given its reliance on communication tech-
nologies. The results underscore that federated models while surpassing
individual models in accuracy, can achieve a performance akin to the
centralised model. Notably, FedAdagrad emerged as the top-performing
prediction methodology.

Centralised forecasting methods have historically raised concerns
regarding data privacy and potential data isolation. In response to these
hallenges, Li et al. [154] introduced the federated deep reinforcement

learning (FedDRL) approach, which marries federated learning with
deep reinforcement learning (DRL) to address ultra-short-term WP
forecasting. This work utilises the deep deterministic policy gradient
DDPG) method to enhance forecasting precision. By integrating the
DPG forecasting model within the federated learning framework, the

tudy achieves accurate predictive modelling in a decentralised fashion.
rucially, this approach prioritises the exchange of model parameters

ver raw data, sidestepping sensitive privacy issues.

14 
Recent research emphasises the application of FL in the WP forecast-
ing domain, especially in regions with distinct geographic and climatic
patterns like Iran. In one such effort, Moayyed et al. [152] proposed
 cyber-resilient hybrid model combining FL and CNN. Notably, this
odel is designed for generalisability, data independence, the ability to

orecast in regions without prior training data, and, crucially, to ensure
ata confidentiality and privacy. A different approach is presented by
ang et al. [155], who introduced the VMD-FK-SecureBoost method.

This method fuses variational mode decomposition (VMD), federated
k-means clustering, and SecureBoost. By first decomposing the raw
data into multiple sub-sequences via VMD, it allows for characteristic
extraction and individual sub-sequence forecasting, thereby enhancing
prediction accuracy. Following this, the federated k-means clustering
groups the sub-sequences based on shared attributes. SecureBoost, in
its final step, implements FL, ensuring privacy protection based on the
clustering results.

Furthermore, Liu et al. [153] delved into a nuanced scenario where
distributed power estimation is derived from disparate external fea-
tures. Their innovative hybrid federated learning framework, grounded
n XGBoost, addresses situations characterised by features scattered
cross localised, heterogeneous entities and samples distributed across
arious geographic regions. The fusion of horizontal and VFL with
he introduction of boosted trees presents a commendable advance-
ent in enhancing both model accuracy and interpretability. Jenkel

t al. [156] underscore the efficacy of enhanced normal behaviour mod-
els, especially for turbines with minimal representative training data,
through the lens of federated fleet-wide learning. The research further
ccentuates that, in scenarios where the monitored target variable is
poradically distributed across the fleet, adapting the global feder-
ted model to individual turbines proves optimal for fault detection
ccuracy.

Fl approach, as showcased by the selected studies, emphasises that
he future of WP forecasting lies in decentralised learning combined
ith rigorous data privacy. In essence, FL emerges as a transformative

tool for WP forecasting, promising enhanced accuracy while respect-
ing data sanctity. As the renewable sector evolves, embracing such
innovative techniques will be paramount.

4.3. Conclusions from FL-based forecasting for PV and wind systems

Photovoltaic and wind power sources are at the vanguard of the
orld’s shift to renewable energy, which is accelerating. They are cru-

ial to contemporary energy matrices, which emphasises how important
ood forecasting is. This examination of forecasting using FL for the
V and wind energy industries provides enlightening insights into the
ignificant changes in predictive approaches.

• PV Power Systems: About PV power systems, the decentralised
nature of the energy systems and FL algorithms perfectly syn-
ergises to provide reliable forecasting models that are sensitive
to the intricacies of the actual world. Through the studies men-
tioned, it is clear that FL skillfully tackles the two issues of
data privacy and the irregular nature of PV generation. FL-based
models not only increase forecasting accuracy but also protect
sensitive data by placing an emphasis on local data storage and
allowing model training across many platforms.

• Wind Power Systems: The complex dynamics of wind patterns
on the frontier of wind energy demand sophisticated forecasting
methods. The research discussed highlights the several benefits
of using FL to forecast wind generation. The FL decentralisation
concept offers a suitable response to the problems that come up
naturally in WP forecasts, such as data islands and privacy issues.
FL provides a potential method for comprehensive WP forecasting
that takes into consideration the various geographical and tem-
poral aspects of wind farms through collaborative, decentralised
modelling.
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Table 8
Comparison of publications in FL-based wind power forecasting.

Citation Publication
Year

Methodology Summary Privacy-
Preserving

[150] 2022 Hybrid DL
using FL

Presents FL-based wind energy forecasting, enabling model training
on multiple wind farm data without compromising data privacy

✓

[151] 2022 CNN-
Attention-
LSTM with
FL

Proposes a FL-based CNN-Attention-LSTM model to anticipate
multi-energy load of IEMs, ensuring data privacy

✓

[152] 2022 FL-CNN Introduces a hybrid, cyber-resilient forecasting approach combining
FL and CNN

✓

[153] 2022 FL-XGBoost Recommends an FL architecture using XGBoost to predict
distributed power from live external characteristics

✓

[154] 2023 DDPG with
FeDRL

Presented federated deep reinforcement learning (FedDRL), a
forecasting method for ultra-short-term WP forecasting

✓

[155] 2023 VMD-FK-
SecureBoost

Combines variational mode decomposition, federated k-means
clustering, and SecureBoost into the VMD-FK-SecureBoost method

✓

[156] 2023 Federated-
Fleet-Wide
Learning

Suggests that federated fleet-wide learning can enhance accuracy
for turbines with limited training data

✓

[194] 2024 FL-TL Proposes two-stage framework consisting of FL-based pre-training
and personalised fine-tuning

✓

[195] 2024 FL-BiLSTM Merges a hybrid FL-BiLSTM with a Geometric median-based
federated aggregation scheme

✓

c

m

i

Federated Learning emerges as a beacon of innovation in renewable
energy forecasting. Its application in both PV and wind energy sectors
xemplifies its transformative potential, particularly in ensuring data
rivacy. As we look to the future, it is evident that renewable energy
orecasting will lean more toward federated techniques rather than
urely centralised or localised methods. As access to datasets grows
nd technology evolves, the role of FL in PV and WP forecasting will
nly become more vital, heralding a new epoch of efficient and secure
enewable energy management.

5. Necessary tools for federated learning applications

5.1. Online free data

Having reliable and diverse datasets is crucial, particularly for feder-
ated learning (FL) in the domain of renewable energy. To complement
the practical side of this review, a glossary of relevant websites and
ublicly available datasets focused on photovoltaic (PV) and wind
nergy is presented and organised in Table 9. Each data source listed
ffers essential information such as geographical location, weather
ata, recording period, granularity, and system capacity. These datasets
over a wide range of parameters, making them invaluable for re-
earchers and analysts working in this field. By accessing the datasets
ia the provided hyperlinks, users can easily compare and validate
heir findings, enhancing the robustness and reliability of FL models
n energy-related applications.

This glossary serves as a foundational resource for advancing the
evelopment of FL in renewable energy. It offers a gateway for data
cquisition that can lead to more accurate and diverse model training,
riving forward the frontier of FL research and implementation in PV
nd wind energy systems.

5.2. Evaluation metrics

Several independent variables affect the precision of power genera-
ion predictions. The forecasting error arises from a complex function
hat integrates these various elements. Although formulating a precise
athematical expression for this function is challenging, examining the

nfluence of specific variables on the magnitude of the error is possible.
t is within this context that different evaluation metrics, also called
15 
performance metrics, are essential for evaluating the accuracy and
reliability of the predictive models. In machine learning, performance
metrics are crucial for understanding how well a model generalises to
new data and optimises its performance. These metrics also enable fore-
casters to compare models quantitatively and make informed decisions
based on their performance.

Evaluation metrics are different kinds of statistical indicators, such
as Mean squared error (MSE), Mean Absolute Error (MAE), correlation
oefficient (r), and Skill Score (SS), etc. Each one of them can give

insightful information related to the performance of the developed
odel. Table 10 presents a set of widely used statistical metrics,

mainly conceived for analysing and interpreting the forecasting ac-
curacy by computing the differences between the reel and predicted
values through different formulas [41,196–199].

6. System challenges and research perspectives

Federated learning methodologies offer substantial advantages in
the realm of photovoltaic and WP forecasting, where rapid data col-
lection and immediate analysis are paramount. Nevertheless, this field
presents challenges. The following discussion addresses the three pri-
mary issues encountered in an FL environment, while Fig. 7 explicitly
llustrates the locations of these challenges.

• Edge devices’ dependability in renewable energy systems:
Edge devices are frequently used in PV/WP projects to monitor
and report data from the machinery [200]. These devices, when
subjected to continuous data transmission, might face fast energy
consumption, impacting their lifetime and dependability, just
like real-time communication has an impact on a smartphone’s
battery. A solar panel’s monitoring gadget, for instance, can ex-
perience data reporting delays if its battery runs out quickly from
frequent data transmission. The study of Yan, Chen, Feng, and
Qin [201] focused on reducing communication to improve energy
efficiency, a strategy that edge devices in renewable energy sys-
tems may use. To make these devices live longer in such contexts,
energy-efficient model training procedures, like the one in [202],
are essential.

• Data Unbalance in Distributed Energy Systems: Because re-
newable energy sources are decentralised, data will inevitably
be spread out unevenly among many installations [203]. For
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Table 9
Glossary of online available data.

PV Wind Weather Category Recorded year Granulation Capacity Link

All regions
X X ✓ Satellite 2004 to 2006 1 to 60 min – SoDa

All regions X X ✓ Satellite 2001- to date 1 h,1d,1M –

USA ✓ ✓ ✓ Simulated 2006 5 min – NREL

EU ✓ ✓ X Simulated PV : 1985–2016 Wind :
1980–2016

1 h – Renewables.ninja

Different Regions ✓ ✓ X Real 2010 - to date multiple variable PVoutput

Different Regions ✓ ✓ ✓ Real 2011 - to date multiple variable IEEE

China ✓ ✓ ✓ Real 2019–2020 15 min 08 PV farms: 30–130
MW 06 Wind farms:
36–200 MW

GitHub

✓ X ✓ Real 07/2018–06/2019 15 min 10 PV farms:
6.6–35 MW

PVOD

Peru ✓ X X Real 05/2019 – 01/2022 15 min 285 MW Peru

Italy ✓ X ✓ Real 2017 1 min 245 W Italy

USA ✓ X X Real 2000–2023 5 min – USA

Australia ✓ X ✓ Real 2008 - to date 5 min 38 PV farms
2 kW–26.5 kW
instance, a wind farm near the shore could record distinct patterns
than one near the mountains. The accuracy of the global model
may be negatively impacted by such inequalities, which would
cause it to favour overrepresented data while ignoring under-
represented patterns. Pre-trained networks for improved feature
extraction in less labelled data, as shown in [204], might be
useful in resolving these inconsistencies in the field of energy
forecasting.

• Communication Cost in Dispersed Installations: When several
renewable energy sources are linked to a grid, communication
between a central server and the numerous installations becomes
frequent. This can increase communication costs and cause net-
work congestion, particularly during periods of high data transfer.
PV/WP forecasting is relevant to the general concerns of com-
munication costs in FL as discussed in [205]. Federated networks
for energy forecasting may become more effective if these issues
are addressed using techniques designed for renewable energy
systems.

Combining methodological, computational, and system-level im-
provements is necessary to tackle these problems. Many of these prob-
lems are being actively addressed by researchers, and as the field
develops, it is hoped that many of them will be successfully resolved.

Conclusion

As the world struggles with the challenges of climate change and
energy sustainability, the relevance of renewable energy sources, par-
ticularly photovoltaic (PV) and wind power (WP), has never been more
profound. This research initiated a comprehensive examination of the
advancements and complexities in the domain of power forecasting
for these renewable sources. Although traditional machine learning
and deep learning techniques are effective for forecasting PV and WP,
they face concerns related to scalability and data privacy. Federated
Learning is a paradigm shift that promotes global model training and
emphasises the importance of local data privacy. While the preliminary
investigations into the applications of FL for PV and WP forecasting un-
derscore its transformative potential, it is evident that the incorporation
of FL into renewable energy is still nascent, grappling with challenges
such as data heterogeneity and communication bottlenecks.

The presented review delineates the tangible advantages and disad-
vantages of precise power forecasting, providing a pragmatic perspec-
tive on the implementation of these methodologies. These challenges
16 
Fig. 7. Key challenges in FL process.

catalyse upcoming research avenues, emphasising that technological
advancements will lead to an evolution in our proficiency in harnessing
renewable energy. In essence, despite commendable strides in PV and
WP forecasting, the journey ahead remains expansive. The prudent
amalgamation of non-FL and FL methodologies, coupled with address-
ing inherent obstacles, positions the renewable energy sector on a
promising course to meet global energy requirements in a sustainable
and efficacious manner.
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Table 10
Commonly used evaluation metrics for wind and solar power forecasts.

Metric Formulas description

Root Mean Squared
Error

RMSE =
√

1
𝑛

∑𝑛
𝑖=1(𝑦𝑖 − 𝑦̂𝑖)2 Ideal = 0 A good metric for detecting extreme error values because of

the squaring parameter: can be biased if the data is not
clean (outliers)

Mean Squared Error MSE = 1
𝑛

∑𝑛
𝑖=1(𝑦𝑖 − 𝑦̂𝑖)2 Ideal = 0 Penalises larger errors more severely

Mean Absolute Error MAE = 1
𝑛

∑𝑛
𝑖=1

|

|

𝑦𝑖 − 𝑦̂𝑖|| Ideal = 0 Estimates actual situation of forecasting error; Positive and
negative errors cannot cancel each other out because
deviations are measured absolutely.

Normalised RMSE nRMSE = RMSE
𝑦max−𝑦min

Ideal = 0 The normalisation facilitates the comparison between
datasets or models with different scales

Normalised MAE nMAE = 1
𝑛

∑𝑛
𝑖=1

(

|𝑦𝑖−𝑦̂𝑖 |
max−min

)

Ideal = 0

Mean Bias Error MBE = 1
𝑛

∑𝑛
𝑖=1(𝑦𝑖 − 𝑦̂𝑖) Ideal = 0 Used to determine if the predicted value is : underestimated

<0 or overestimated >0

Mean Relative Error MRE = 1
𝑛

∑𝑛
𝑖=1

|

|

|

𝑦𝑖−𝑦̂𝑖
𝑦𝑖

|

|

|

Ideal = 0 determines the extent of the discrepancy between forecasted
and observed values

Mean Absolute
Percentage Error

MAPE = 100
𝑛

∑𝑛
𝑖=1

|

|

|

𝑦𝑖−𝑦̂𝑖
𝑦𝑖

|

|

|

Ideal = 0 Determines the percentage error relative to the true value.
Used for comparison; Susceptible to small values appearing
in its denominator, resulting in an infinite value.

Symmetric Mean
Absolute Percentage
Error

sMAPE = 200%
𝑛

∑𝑛
𝑖=1

|𝑦𝑖−𝑦̂𝑖 |
|𝑦𝑖 |+|𝑦̂𝑖 |

Ideal = 0 Fixes the issue of the infinite upper bound present in MAPE.

Prediction Interval
Normalised Average
Width

PINAW = 1
𝑛

∑𝑛
𝑖=1

𝑈𝑖−𝐿𝑖

max(𝑦𝑖 )−min(𝑦𝑖 )
Ideal = 0 Measures the width of the PIs for a given length of the PI

Prediction Interval
Coverage
Probability

PICP = 1
𝑛

𝑛
∑

𝑖=1
𝜌𝑖

{

1 if 𝑦𝑖 ∈ [𝐿𝑖 , 𝑈𝑖]
0 otherwise

}

Ideal =

100%

Measures the PIs’ ability to cover target values. Ideal values
mean all targets are covered by PIs.

Skill Score (𝑆 𝑆𝑀 𝐴𝐸
or 𝑆 𝑆𝑅𝑀 𝑆 𝐸 )

1 − nMAEforecast
nMAEreference

or 1 − nRMSEforecast
nRMSEreference

SS = 0 : no skill using the historical average as the forecast.
SS<0 : the average is better than the forecast. SS = 1 :
perfect skill (no error in the forecast).

Coefficient of
determination

𝑅2 = 1 − ∑𝑛
𝑖=1 (𝑦𝑖−𝑦̂𝑖 )

2

∑𝑛
𝑖=1 (𝑦𝑖−𝑦̄)2

Ideal = 1 Measures how closely predicted values match target values
based on the distance to the 1:1 line. Closer points mean a
higher 𝑅2, indicating model strength.

Pearson Correlation
Coefficient

𝑟 = 𝐶 𝐶 =
∑𝑛

𝑖=1 (𝑥𝑖−𝑥̄)(𝑦𝑖−𝑦̄)
√

∑𝑛
𝑖=1 (𝑥𝑖−𝑥̄)2

∑𝑛
𝑖=1 (𝑦𝑖−𝑦̄)2

Ideal = 1 Measures the linear dependence between predicted and
actual based on distance from the best-fit line

𝑦𝑖 and 𝑥𝑖 : are actual values, 𝑦̂𝑖 and 𝑥̂𝑖 : are predicted value , 𝑦̄ : is the average of actual values 𝑛: is the number of samples, 𝜌𝑖 :Probability, 𝐿𝑖 and 𝑈𝑖: are the lower bound and
he upper bound of the PIs.
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