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Introduction

The use of digital representation for audio, speech,
images and video is rapidly growing with the extended use
of computers and multimedia computer applications. To
provide a more efficient representation of data, many
compression algorithms have been developed, and the
quantization is the basis of all these algorithms. The
superiority of vector or multidimensional quantization over
scalar quantization is evident from the increased freedom
in choosing the partition geometry for vector quantization
(VQ) compared to the very restrictive geometry in the case
where each vector component is scalar quantized [1] and
the resulting quantization cells are rectangles. We can say
that scalar quantization is simply a restricted special case
of VQ. Furthermore, VQ can yield smaller average mean
squared error per dimension than scalar quantization for
the case of fine quantization.

The principal goal in design of vector quantizers is to
find a codebook, specifying the decoder, and a partition of
the vector space or encoding rule, specifying the encoder,
which will maximize an overall performance. As a
measure of performance, we use statistical average of a
quantization error called distortion. Hence, in designing an
optimal vector quantizer we must minimize a predefined
distortion measure between input and output. Na and
Neuhoff [2] consider the problem of finding the optimal
maximum amplitude, so-called, support region for scalar
quantizers by minimization of the total distortion D, which
is a combination of granular (Dgy) and overload (Do)
distortion, D = Dg + Do -

In paper [3], the expressions for the optimum number
of output points are derived; however the proposed
partitioning of the multidimensional space for memoryless
Laplacian source does not consider the geometry of the
multidimensional source.

In this work we will use this minimum distortion
criterion to design a piecewise nonuniform vector
quantizer, but our focus will be the analysis of the
distortion for method for linearization of the nonuniform
characteristic of the quantizer [4]. Memoryless Laplacian
source was analyzed.
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Description vector quantizer

Joint probability density function (pdf) function of
two independent, identically distributed Laplace random
variables (x; , X, ) with zero mean and unit variance is
given with the following expression:

fi2(x1, X2)=%e_ﬁqxl\+\xz\). (1)
After applying the Helmert transformation [4]:
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In two-dimensional ru system the pdf function given
by equation (3) represents square line. This square surface
representing dynamic range of a two dimensional
quantizer, can be partitioned into L concentric domains as
shown in Fig. 1. In the case of nonuniform vector
quantization, these concentric domains are of unequal
width.

The number of output points in each domain is

denoted by N, where N = z:;l N, represents the total
number of output points. Every concentric domain can be
further partitioned into L; concentric subdomains of equal
width. Every subdomain is divided into four regions each
containing [; ; rectangular cells. An output point is

placed in the centre of each cell. Coordinates of the kth
output point in jth subregion of the ith region in ru
coordinate system are (mi’ i Ui jk )

The initial expression for granular distortion is:
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Fig. 1. Two-dimensional space partitioning

The output point coordinates are given by the
equations:

i, j+1 T 1ij . Ui jk +Uijk+
mi,j 2; and ui,j,k Zf(S)
Rectangular cell dimensions are:
A fi,j 1, j+
A=t —n, A =", Aj=—""—""—5  (6)
L Pi, |
ri,j:ri+j-Ai,i:0,...,L, j=0,...,|_i. (7)

The range of the quantizer is Iy, . To determine the

boundary values of every concentric domain, denoted as
I;, for the case of nonuniform vector quantization we will

use three different methods for linearization of the
compress function, which are described in the next section.

Before we describe these methods, we must introduce
the optimal compression function used in two-dimensional
vector quantization:

P32,
[e 4 dx _g
e 4 -1
h(r) = Moy —> =r (8)
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e 4 dx e 4™
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Method for linearization

In this method we have approached the problem of
segmentation from mathematical point of view. The best
way to linearize a function is to do a uniform segmentation
of its first derivate. This is shown in the Fig. 2, and the
explanation follows below.

The first derivate of the compress function is:

NG e 4
h(ry=-= 9
() 7 (max 5 )
4 max_l

The main idea is to divide the range from h’(0) to

h'(rp.x) into L equal segments:
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in our case, we have

A' _ rmax
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Fig. 2. Segmentation of the first derivate

When substituted into the formula for the inverse
function of h'(r) denoted as h'~!(h), this values for h/

r:

will give us the wanted values for I;

V2

rmax
4 _
= () =—2v2 1| —2v2n & T 2

max

The illustration of this method is given in Fig. 3. In
Table 1 we have presented the obtained values for r; for
described method; values for ry,, are calculated for the
case of minimal distortion and L=8. The results of our

calculating we can check as we compare values for rg and
Imax. Those values must be identical.
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Fig. 3. Segmentation with first derivate segmentation method



Table 1. Numerical results

R 4 5 6 7 8
Imax 4.2662 5.5629 6.9084 | 8.2634 | 9.6418
A' 0.18854 | 0.24585 | 0.30531 |0.36519 | 0.42611
h'(0) | 1.93693 | 2.28671 | 2.67507 |3.08783 | 3.52551
i 0.4286 | 0.31993 | 0.23258 |0.16628 | 0.11662
(rmax)
h' 1.74839 | 2.04086 | 2.36976 |2.75564 | 3.0994
h,' 1.55985 | 1.79501 | 2.06445 |2.35745 | 2.67329
hy' 1.37131 | 1.54916 | 1.75914 |1.99226 | 2.24718
hy' 1.18277 | 1.30331 | 1.45383 |1.62707 | 1.82107
hs' 0.99423 | 1.05746 | 1.4852 |1.26188 | 1.39496
he' 0.80569 | 0.81161 | 0.84321 |0.89669 | 0.96885
h,' 0.61715 | 0.56576 | 0.5379 | 0.5315 | 0.54274
hg' 0.42860 | 0.31991 | 0.23259 |0.16631 | 0.11663
n 0.28966 | 0.32171 | 0.34277 | 0.356 0.3643
r, 0.6124 | 0.68477 | 0.7329 | 0.7634 | 0.7827
rs 0.9768 | 1.10139 | 1.1855 | 1.2394 | 1.2738
ry 1.39511 | 1.59016 | 1.7247 | 1.8121 | 1.8685
rs 1.88626 | 2.1814 2.3914 [2.53107 | 2.6224
I 2481 2.9298 3.2655 | 3.4974 | 3.6534
ry 3.235 3.9505 4.537 | 49767 | 52924
rg=rmax | 4.2662 5.5629 6.9084 | 8.2634 | 9.6418

We derive Ligy from [4]

1o (N?
641(i)

The functions 14(i) and 1(i) are defined as [5]:

(13)

Liopt = (Fis1 — )4

fis1

1(i)= [r-3/g(r)dr a4

and function g(r) is defined as

IOG):rTr‘QOjdr

g(r)=e™ (15)
The function N; we define as [5]
RN 72
N =N L[' 7 100) e (16)
St
where
N=22R.
Performance

For a comparison of these methods, we will show
performance of nonuniform two-dimensional vector
quantization, given with total distortion. The expression for
total distortion for one dimension is given by

Dot :%(Dg + D). (17)

where are Dy granular distortion and D, overload
distortion.
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Granular distortion is given by [5]:
2
1

0, ~gu bRl . aw

where (i) and 1(i) are defined in (14).
We can calculate the overload distortion as
-2 2
Do = m € fmax [(2rax + 2hnax +1- 4mL,L|_ Tmax ~
2
2mL¢L
3T],

2
_2mL’|_L +2mL’LL)+ 0
L,L

(19)

where my_ | is the output point coordinates of last region
and it is given by

mL,||_ = rmax _ALL (20)

r —In_
and A :—maXL L1

L
represents number of subdomains in the last Lth domain.
The optimum number of cells p; j is defined in [5] and

where is L =Lpgy, and

optimum number of cells in the last region P L, is given

by
Ni'“gLLﬂgh“gLLLh
4 I(L) '
From calculated values for both methods, we obtain

their distortions. In Table 2 we have presented the obtained
values for total distortion.
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Table 2. Numerical results for distortion

R |4 E 6 | 7 | 8
Linearisation Method (LM)

8.965*
Dy | 0.01803 | 0.00502 | 0.001306 | 0.0003312 10°
* *
Dy | 0.00214 | 0.0001 | 0.000012 ng% 5?8%
4.485*
Diot | 0.01009 | 0.00256 | 0.000659 | 0.000166 10°

In Table 3 we have presented the obtained values for
SQNR for linear method (L.M) and nonlinear method

(N.M); values for I

max are calculated for the case of

minimal total distortion.

Table 3. Numerical results for SQNR

R 4 5 6 7 8
Fmax 4.266 5.563 6.908 8.263 9.642
L. 19.961 25918 31.811 37.799 | 43.730
g (M
Z
g N. | 19.8227 | 25.8433 | 31.8639 (37.8845 (43.9051
M
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Z. Peric, M. Novkovic, V. Despotovic. Linearisation Method for Two-dimensional Memoryless Laplass Source // Electronics
and Electrical Engineering. — Kaunas: Technologija, 2007. — No. 1(73). — P. 41-44.

In this work we consider piecewise linear vector quantizer of two-dimensional memoryless Laplacian source. Linearization method
of the compression function is analyzed, then the effects of this linearization methods of the compression function on total distortion
(granular and overload) are presented an this method is also compared with nonlinear method. The vector space is partitioned using
rectangular cells. Ill. 3, bibl. 5 (in English; summaries in English, Russian and Lithuanian).

3. Ilepuy, M. HoBkoBuu, B. JlecnoroBuy. MeToa JMHeapU3aluy JJIsi IByMEPHBIX He3aIOMHUHAIOIINX HCTOYHHKOB Jlamnaca //
DJIeKTPOHUKA M djeKTpoTexHuka. — Kaynac: Texnosorus, 2007. — Ne 1(73). — C. 41-44.

AHanu3upyercsi JIMHEHHBI BEKTOPHBI KBaHTH3aTOp JABYMEpHBIX HE3allOMHHAIOIMX HCTOuHMKOB Jlarutaca. PaccmarpuBaercs
METOJ| JMHeapu3anuu (QYHKIMU CXKaTHsl, NMPEACTABICHBI Pe3yJbTaThl 3TUX METOIOB JIMHEApU3aLUH (YHKIUM CKATHS, HPU IMOJTHOM
uckaxeHnu (nedopmannu). ITOT METOA ObUT CPABHEH C HEJIMHEHHBIM METOIOM. BEeKTOpHOE MpOCTpaHCTBO ObLIO CErMEHTHPOBAHO C
MIOMOIIBIO MIPAMOYTONBHBIX stueek. M. 3, 6ubi. 5 (Ha aHrIMHCKOM S3bIKe, pedepaThl Ha aHTIIMHCKOM, PYCCKOM U JINTOBCKOM S13.).

Z. Peri¢, M. Novkovi¢, V. Despotovi¢. Dvimaciy nejsimenanciyjy Laplaso Saltiniy linearizacijos metodas // Elektronika ir
elektrotechnika. — Kaunas: Technologija, 2007. — Nr. 1(73). — P. 41-44.

Nagrin¢jamas dvimacio nejsimenanc¢iojo Laplaso Saltinio tiesinis intervalinis vektorinis kvantorius. Analizuojamas suglaudinimo
funkcijos linearizacijos metodas, aptariamas suglaudinimo funkcijos linearizavimo metody poveikis bendrajam iSkraipymui (nelygumui
ir perkrovos efektui). Sis metodas palyginamas su netiesiniu metodu. Vektoriy erdvé segmentuojama naudojant stadiakampius
elementus. II. 3, bibl. 5 (angly kalba; santraukos angly, rusy ir lietuviy k.).
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