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Abstract: Objectives: Subarachnoid Hemorrhage (SAH) is a serious neurological emergency case with
a higher mortality rate. An automatic SAH detection is needed to expedite and improve identification,
aiding timely and efficient treatment pathways. The existence of noisy and dissimilar anatomical
structures in NCCT images, limited availability of labeled SAH data, and ineffective training causes
the issues of irrelevant features, overfitting, and vanishing gradient issues that make SAH detection a
challenging task. Methods: In this work, the water waves dynamic factor and wandering strategy-
based Sand Cat Swarm Optimization, namely DWSCSO, are proposed to ensure optimum feature
selection while a Parametric Rectified Linear Unit with a Stacked Convolutional Neural Network,
referred to as PRSCNN, is developed for classifying grades of SAH. The DWSCSO and PRSCNN
surpass current practices in SAH detection by improving feature selection and classification accuracy.
DWSCSO is proposed to ensure optimum feature selection, avoiding local optima issues with higher
exploration capacity and avoiding the issue of overfitting in classification. Firstly, in this work, a
modified region-growing method was employed on the patient Non-Contrast Computed Tomography
(NCCT) images to segment the regions affected by SAH. From the segmented regions, the wide range
of patterns and irregularities, fine-grained textures and details, and complex and abstract features
were extracted from pre-trained models like GoogleNet, Visual Geometry Group (VGG)-16, and
ResNet50. Next, the PRSCNN was developed for classifying grades of SAH which helped to avoid the
vanishing gradient issue. Results: The DWSCSO-PRSCNN obtained a maximum accuracy of 99.48%,
which is significant compared with other models. The DWSCSO-PRSCNN provides an improved
accuracy of 99.62% in CT dataset compared with the DL-ICH and GoogLeNet + (GLCM and LBP),
ResNet-50 + (GLCM and LBP), and AlexNet + (GLCM and LBP), which confirms that DWSCSO-
PRSCNN effectively reduces false positives and false negatives. Conclusions: the complexity of
DWSCSO-PRSCNN was acceptable in this research, for while simpler approaches appeared preferable,
they failed to address problems like overfitting and vanishing gradients. Accordingly, the DWSCSO
for optimized feature selection and PRSCNN for robust classification were essential for handling
these challenges and enhancing the detection in different clinical settings.
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1. Introduction

The sudden breaking of an aneurysm resulting in bleeding inside the subarachnoid
space around the spinal cord and brain is called Subarachnoid Hemorrhage (SAH), where
this space is generally filled with the colorless and clear fluid named cerebrospinal fluid [1,2].
Based on the cause, the SAH can be categorized into two types, traumatic and spontaneous.
Spontaneous SAH causes 20% of acute cerebrovascular disorders due to hypertension,
intracranial aneurysms, and spinal/brain arteriovenous malformations [3–5]. Spontaneous
SAH is usually caused by the rupture of an intracranial aneurysm and by a diversity of
other conditions like meningitis, malignant tumors, moyamoya disease, issues related to
anticoagulation therapy, encephalitis, homological abnormalities, and brain vasculitis [6,7].
Traumatic SAH is the existence of blood in the subarachnoid space caused by a traumatic
head/brain injury and is usually accompanied by a brain contusion. Arterial dissection,
increase in intravascular pressure, damage in small arteries or veins, and direct blood
extravasation are the major causes of traumatic SAH [8–10].

The computed tomography imaging modality is effective in the detection of SAH com-
pared to other medical techniques like ultrasound, magnetic resonance imaging, positron
emission tomography, etc. The NCCT images are effective in detecting bleeding in brain
regions. In relation to other imaging techniques, the NCCT images are highly interactive
and effectively find the bleeding, even when the leaked blood amount is small [11,12].
In SAH detection, the NCCT images include benefits like higher sensitivity to blood and
less scanning time. The clinician’s diagnosis of SAH is based on the properties of lesions
in the NCCT images [13–15]. However, it is difficult to obtain an accurate estimation
of bleeding volume in the patients, particularly in the NCCT images. To overcome this
problem, several automated models are designed related to machine learning and deep
learning (DL) models [16,17]. The existing research faces many challenges such as failure
to extract an appropriate feature, existence of irrelevant features, and ineffective train-
ing during the detection of the SAH grade. The addressing of aforementioned issues is
considered a motivation of this research. Therefore, three pre-trained models such as
GoogleNet, VGG-16, and ResNet50 were used for the effective acquisition of a wide range
of patterns and irregularities, fine-grained textures and details, and complex and abstract
features. Next, an optimum feature subset from an extracted feature was discovered using
DWSCSO which aided in reducing the time and classifier’s complexity. The classification
stability of PRSCNN was enhanced by avoiding the vanishing gradient issue based on the
incorporation of PReLU.

In order to estimate the amount of leaked blood, i.e., the hemorrhage region, in a
more acceptable time interval, a novel automated DL approach with feature selection was
designed in the present article.

The major contributions are pointed out as follows:

• Proposed a modified region-growing for segmenting the regions affected by SAH.
Modified region-growing is a simple and efficient segmentation method. The seed
points were not positioned precisely in the conventional region-growing method when
the background had similar color and texture to the object of interest. It was overcome
in the modified region-growing by selecting the seed points based on the orientation
and intensity threshold values.

• Integrated three pre-trained models (GoogleNet, VGG-16, and ResNet50) for extracting
features from the segmented images. In that, GoogleNet, VGG-16, and ResNet50 were
used to extract the wide range of patterns and irregularities, fine-grained textures and
details, and complex and abstract features to enhance the SAH grade classification.
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• The use of high-level (semantic content and visual patterns) and low-level (color,
texture, contrast, and edges) features decreased the semantic space between the vectors,
which increased the success rate of SAH grade classification.

• DWSCSO was developed for reducing the dimensions of extracted features; this
enabled a significant reduction in the training time and complexity of the classifier.
The water waves dynamic factor (WWDF) and wandering strategy were included in
the DWSCSO for an effective adaptation to the complex operations and for increasing
the exploration capacity.

• The Parametric Rectified Linear Unit (PReLU) Stacked Convolution Neural Network
model was used for stable SAH grade classification by avoiding the vanishing gradient
issue. This PReLU was chosen because it offers smoother gradient flow by backpropa-
gation that used to achieve stable training by avoiding the vanishing gradient issue.

The present article is organized in this manner: the papers related to the topic “SAH
detection” are surveyed in Section 2. The detail about DWSCSO-PRSCNN-based grade
classification of SAH, outcomes, and the conclusion are specified in Section 3, Section 4,
and Section 5, correspondingly.

2. Literature Survey

The existing articles related to SAH detection are briefly reviewed in this section.
Mansour, R.F and Aljehane, N.O [14] developed the DL-based intracranial hemorrhage
(ICH) approach for optimal segmentation with the Inception Network. The segmenta-
tion over the CT images was accomplished by using Kapur’s thresholding with Elephant
Herd Optimization (EHO). The features from the segmented portions were obtained using
DL-based Inception v4 network while multilayer perceptron was used to perform the
classification. The identification of optimum threshold using EHO enhanced the segmen-
tation. The redundant features were included in the overall feature set subjected to affect
the classification performances. Wang et al. [18] used XGBoost model with the ‘xgboost’
package from R version 3.6.1 to predict the outcomes of aneurysmal SAH patients. The
early prediction performed by the XGBoost assists physicians in strengthening the clinical
care and therapeutic strategies for aneurysmal SAH patients. In this study, the input data
were collected from 351 aneurysmal SAH patients, who were admitted to a hospital in
West China. From the collected data, 70% was utilized for model training and the residual
30% was utilized for model testing. When compared with logistic regression, the XGBoost
obtained better results, but this model was quite sensitive to the outliers. Furthermore,
Mohammed et al. [19] presented three systems for ICH detection with different methods
and materials. In the first system, the low-dimensional vectors were extracted from the
CT images by employing two global descriptors. The extracted low-dimensional vectors
from the Gray Level Co-occurrence Matrix (GLCM) and Local Binary Pattern (LBP) were
integrated with the high-level vectors from AlexNet, ResNet-50, and GoogleNet. Further,
the feature dimensions were minimized by implementing the Principal Component Analy-
sis (PCA) technique. In the second system, AlexNet, ResNet-50, and GoogleNet models
were initially employed to extract vectors from the CT images, which were further given
to the Support Vector Machine (SVM) to classify the feature maps. The third system was
developed by employing only AlexNet, ResNet-50, and GoogleNet. Different evaluation
measures revealed that the presented systems attained more promising results in ICH
detection than the existing systems. However, the use of only pre-trained models increased
the computational cost of the system.

In the context of SAH detection, Rau et al. [20] used a decision tree classifier for
predicting isolated traumatic SAH patients with high mortality risk, but the traditional
machine learning classifier (decision tree) includes two major issues, i.e., outliers and
overfitting. Malik, P [21] presented the stacked deep model classifier which has numerous
layers of neural networks where every layer was developed to obtain appropriate levels of
features. These features were used to obtain an improved representation learning during
the classification. However, an existence of inadequate features was subjected to affect the
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classification. Additionally, Lee et al. [22] developed an efficient deep learning classifier
for detecting acute ICH and classifying the subtypes of ICH (no hemorrhage, epidural,
subdural, intra-ventricular, and intra-parenchymal hemorrhages) in the CT images. The
developed system not only showed comparable performance in ICH subtype classification
but also in ICH detection (while aggregating various hemorrhages). Imran et al. [23] used
U-Net for detecting the subtypes of ICH. In that literature, the U-Net model’s efficacy was
validated utilizing evaluation measures like recall, F1-score, and precision. The results
confirmed that the U-Net model achieved superior results in ICH subtypes classification
compared with the comparative models (logistic regression, stacked CNN, and SVM).
However, a huge number of parameters in the U-Net model leads to an overfitting problem.

A new architecture (combination of CNN with a Recurrent Neural Network (RNN))
was created by Liu et al. [24] for detecting and classifying the subtypes of ICH in the CT
images. A new loss function was utilized in the developed architecture to neglect the
label dependencies that help in resolving the problem of imbalanced data distribution.
The experiments performed on a benchmark dataset showed the efficacy of the developed
architecture over the traditional models. However, training the CNN-RNN model is a
complex task and it leads to vanishing gradient problems while using a standard activation
function. Kärkkäinen et al. [25] presented an unsupervised framework based on mixture
models for classifying the healthy and hemorrhaged tissues. The performance of the pre-
sented framework was validated on a public dataset, which has different hemorrhage types
with various intensities and sizes. In this study, the presented framework’s results were
compared with different supervised and unsupervised models. The outcomes confirmed
that the developed framework significantly improved more than the existing methods by
means of dice score. Furthermore, Sage and Badura [26] implemented a double branch
ResNet-50 model for detecting the subtypes of ICH. Compared with the random forest
and SVM classifiers, the double-branch ResNet-50 model achieved higher classification
results in light of detection accuracy and F1-score, but the double-branch ResNet-50 model
had high complexity. Correspondingly, Barros et al. [27] presented a stacked CNN model
for effective SAH segmentation in the CT images. Initially, trivial background voxels and
trivial voxels were excluded from the collected CT images, and then new hemorrhage
patches were generated with a sagittal plane by performing flipping. The generated hemor-
rhage patches were passed to the stacked CNN model to exclude the background patches
with lower classification errors. One of the main drawbacks of the CNN model in SAH
segmentation was the need for an enormous number of labeled images to effectively train
the model, which was a time-consuming process and computationally expensive.

An automated model was implemented by Li et al. [28] for the effective segmentation
and detection of SAH. Firstly, the posterior intersection points, brain boundaries, and
anterior intersection points were computed from the CT images. Secondly, vectors were
extracted concerning the computed points, and further, the feature vectors were passed to
the Bayesian decision model to classify the grades of SAH. Generally, the Bayesian decision
model generates an enormous number of parameters during the computationally expensive
classification. In addition to this, Shahzad et al. [29] developed an effective deep-learning
framework for detecting and segmenting aneurysms in SAH patients on the CT images. The
developed framework has obtained only comparable segmentation performance on the CT
images with artifacts. Sun et al. [30] presented a Deformable Attention U-Shaped Network
(DAUN) for precise segmentation of SAH. A region boundary-aware loss optimizer was
utilized in the DAUN to improve the accuracy of segmentation on the smaller lesions and
uneven edges. Additionally, a supervised learning approach was used for training the
DAUN to balance the position and semantic information of every pixel. The experiments
carried out on the Monuseg dataset demonstrate the effectiveness of the DAUN over
traditional models, but it has a high processing time.
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Nagaraju, S et al. [31] implemented a Transfer Learning Ensemble (TLE) framework
which was used to detect and classify the intracranial hemorrhage. The developed TLE
was developed by incorporating different classifiers, such as XceptionNet, InceptionV3,
Resnet50, VGG19, Desnet121 and VGG16. Subsequently, a voting classifier was utilized
for identifying the best classifier with enhanced accuracy. However, appropriate features
were required to be extracted for further enhancement of the classification performances.
Korra, S et al. [32] developed a fully connected separable convolutional network which
helped the clinician at the preliminary stage of the treatment process by obtaining the
discriminative feature vectors from various layers. This research considered various data
augmentation approaches such as shifting, brightness adjustment, scaling, horizontal
flipping, and rotation for generating the numerous image variations that improve the
generalization capacity during the classification. The optimum feature subset was essential
for avoiding the irrelevant features, because it was subjected to cause misclassification.

SS [33] presented the deep learning classifier to perform the detection and classifica-
tion of intracranial hemorrhage based on the stacked generalization ensemble approach.
The ensemble approach was designed based on five transfer learning classifiers such as
InceptionResNetV2, EfficientNetB0, NASNetMobile, InceptionV3, and MobileNetV2. Sub-
sequently, soft voting was used to add the evaluated probabilities from the individual
classifier. The developed ensemble approach used a meta-learning algorithm to learn
how to effectively combine the estimations from the deep learning classifiers. The deep
learning classifiers in the ensemble approach were used to learn the feature hierarchies, i.e.,
both the low- and high-level features. However, this stacked generalization ensemble ap-
proach failed to consider the optimum feature subset, because the features with redundant
information were subject to affect the performances.

Taking into account the considered models and their features, a novel automated deep
learning method/model is proposed in this article for comparably precise and efficient
SAH segmentation and classification of SAH grades.

The issues found from the existing research are mentioned as follows: inadequate
feature extraction, existence of irrelevant features, and inefficient training during the
classification. The aforementioned issues are addressed in this research based on the
following strategies: The combination of GoogleNet, VGG-16, and ResNet50 were used
to obtain different level of features including a wide range of patterns and irregularities,
fine-grained textures and details, and complex and abstract features. Irrelevant features
were removed by DWSCSO, which helps to reduce dimensions of extracted features to
enhance classification. Further, the smoother gradient flow obtained by backpropagation
of PReLU in PRSCNN helped to avoid the vanishing gradient issue during classification.

3. Methods

The proposed automated SAH detection model includes five phases such as NCCT
image collection (from clinical data sources, where various artifacts persist), region segmen-
tation (applying modified region-growing method), feature extraction (using ResNet50,
VGG-16, and GoogleNet), feature optimization (applying DWSCSO algorithm), and SAH
grade classification (using the PRSCNN model). The automated SAH classification using
DWSCSO and PRSCNN is represented in Figure 1.

3.1. Data Description

This research was analyzed in two different datasets: collected dataset and CT
dataset [34].

3.1.1. Collected Dataset

The NCCT brain images of 49 SAH patients were acquired from two distinct university
hospitals in Lithuania. Patient inclusion criteria were: older than 18 years, diagnosed
cerebral aneurysm rupture, initial NCCT scans performed routinely at patient admission.
In order to increase the sample size, the collected NCCT brain images are augmented and
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can be used to mark regions of interest, specifically highlighting areas indicative of SAH.
The image augmentation was performed by employing flipping, shifting, and random
rotation techniques to generate more training images, as performing calculations with
limited data samples in the deep learning models leads to overfitting problems. The use
of image augmentation techniques reduces data overfitting, prevents data scarcity, and
improves the model’s efficiency in image segmentation and classification. In total, 1400
NCCT images were generated, of which 1120 images were used in a training set, and the
remaining 280 images were used in a testing set. The sample-acquired NCCT images are
given in Figure 2.
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3.1.2. CT Dataset

The CT dataset for hemorrhages was acquired from the Near East Hospital in Cyprus.
This dataset had 7032 CT images collected from 18 patients who had cerebral hemor-
rhages and 27 people who did not have cerebral hemorrhages. Accordingly, the dataset
had 4343 healthy images and 2689 hemorrhagic images. The acquired images from the
dataset were processed under the modified region-growing method to obtain the region of
hemorrhage.

3.2. Region Segmentation

The region-growing method is one of the most efficient region-centric-based segmen-
tation methods. It is also known as a pixel-based segmentation that involves seed point
selection. In this case, the regions of seed pixels were grown by adding similar neighbor-
hood pixels [35]. In conventional region-growing, the seed points are selected based on an
intensity threshold value. The deviation in the intensity or noise causes over-segmentation
or holes. To overcome the above-stated concern in the modified region-growing method,
the seed points are selected based on the intensity and orientation threshold values [36,37].
In this segmentation, cross validation was utilized in the training set to fine-tune the
threshold values. A various candidate threshold was analyzed by performing the regions
of interest’s segmentation, and the segmentation performance was computed using the
Dice Similarity Coefficient (DSC) and Jaccard Index (JI). The respective threshold values,
which returned a higher DSC and JI, were taken as optimal thresholds. Additionally, the
bootstrapping method was used to generate confidence intervals in the selected thresholds,
confirming that the chosen values were statistically reliable and reproducible over diverse
datasets. This helped to lessen over-segmentation and confirmed a reliable performance.
The morphological operation was utilized in segmentation to avoid issues related to the
unwanted regions. The steps involved in the modified region growing method are pointed
out below, as follows:

• Initially, the image gradients were computed using the sobel operator. Here, the
gradient states the rate of change in pixel values in NCCT images. In the context of
region growing, the sobel operator utilizes two convolution kernels to identify the
variations in both the vertical and horizontal directions. These two kernels compute
the gradient magnitude and direction for every pixel in an NCCT image. The region
growing criteria were defined according to the gradient magnitude, and the gradient
direction was used to guide the direction of region expansion.

• Then, the NCCT images were segmented into different grids, Si, based on the orienta-
tion threshold, Oth, and intensity threshold, Ith. Here, the sobel operator and histogram
analysis were used to identify the Oth and Ith, respectively. The sobel operator was
used to identify the edges by evaluating the pixel’s gradient magnitude and orienta-
tion. Generally, it was used to discover the image intensity variation. This operator
computed the level of intensity variation (magnitude) and direction of orientation.
Equations (1) and (2) are used to compute the gradient

(
Eij

)
by the sobel operator.

Eij =
eij

emax
(1)

eij =
√

G2
x + G2

y (2)

where emax = max
(
eij
)
, and the gradient value of components at x and y directions are

represented as Gx and Gy, respectively.

• The process is followed with respect to grids Si, until the total number of grids is
similar to the number of grids in the NCCT images. This is conducted as follows:

1. In the grids Si, compute the histogram value Lh of every pixel;
2. Select the frequency histogram value Fh of the Sth

i grid;
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3. Select a pixel based on the frequency histogram value Fh and assign a respective
pixel as the seed point containing the orientation value Op and intensity value Ip;

4. Then, consider the adjacent pixels containing the orientation On and intensity In;
5. Finally, determine the differences in orientation and intensity of the pixels n and

p using Equations (3) and (4). The sample-segmented images are graphically
presented in Figure 3, where the red area denotes the segmented portions.

dforientation =
∥∥On − Op

∥∥ (3)

dfintensity =
∥∥In − Ip

∥∥ (4)
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The process of segmentation using modified region-growing is important, because
it mainly impacts the capacity of feature extraction and classification because the poor
segmentation causes noise or irrelevant details which affect classification. A precise seg-
mentation separated the hemorrhagic regions from the images and confirmed that only
appropriate areas were transferred to feature extraction. This helped in extracting the
significant features that lead to the enhancement of the capacity of classifying the SAH
grade. After performing the segmentation, the isolated portions were given as input to
the feature extraction where the pre-trained models were utilized to extract appropriate
features.

3.3. Feature Extraction

In this section, the feature extraction was performed utilizing three pre-trained models:
ResNet50 [38], VGG-16 [39], and GoogleNet [40] to extract high-level and low-level vectors
from the segmented regions. Specifically, the inception modules and pooling operations of
GoogleNet were used to obtain the wide range of patterns and irregularities that exist in
the NCCT images that were helpful in identifying the delicate irregularity. The VGG-16
extracted the fine-grained textures and details using its convolutional filters and deep layers.
Further, the complex and abstract features were obtained using the residual connections of
ResNet50.

ResNet50: It includes 50 CNN layers (1 average-pool layer, 1 max-pool layer, and
48 convolutional layers) for feature extraction. The residual neural network is an Artificial
Neural Network (ANN), which creates networks by stacking several residual blocks.

VGG-16: It has 3 dense layers, 5 max-pool layers, and 13 convolutional layers to extract
vectors from the segmented NCCT images. The VGG-16 sums up to 21 layers, but only
16 weighted layers are utilized for learning the parameters.

GoogleNet: It has 22 deep layers, and it works based on the so-called inception module.
The GoogleNet model uses inception modules, and it allows the network to choose between
several convolutional filter sizes in every block.
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By utilizing the feature-averaging technique, the feature vectors from the ResNet50,
VGG-16, and GoogleNet are combined. In total, 8728 vectors were obtained from segmented
NCCT images, which were processed with the SCSO algorithm for optimizing the extracted
vectors.

3.4. Feature Optimization

The feature vectors extracted from the NCCT images were passed to the DWSCSO
algorithm for optimization. In that, the WWDF of dynamic factor was incorporated to
effectively adapt to the complex operations and enhance the possibility of discovering
optimum solution. The wandering strategy included a triangle walk scheme and Lévy
flight (LF) was used to improve the robustness of exploration capacity. Currently, the SCSO
is an efficient metaheuristic-based optimization algorithm, which works on the concept of
swarm intelligence and mimics the sand cat’s hunting behavior [41,42]. The wild sand cat
searches or attacks the prey based on the prey’s sound frequency, because every sand cat is
impressible to sound frequency. In this algorithm, the initialization matrix was generated
based on the size of the extracted vectors.

3.4.1. Exploration Phase (Searching for Prey)

The sand cat’s position is represented as Pos, and it even senses the prey below
2 kHz frequency. In conventional SCSO, a rG linearly decreases from 2 to 0, however it
does not adapt well to the difficult multivariate functions. Hence, the WWDF factor is
used for considering the advantage of water wave dynamics, thus it adapts to complex
operations and enhances the capacity of discovering the optimum solution. The utilization
of water wave’s dynamics supports the population for searching over the extensive area,
minimizing the blindness of remaining individuals, improving data exchange and learning
among populations, population diversity maintenance, and avoiding local optima issue.
Meanwhile, the control factor k is included for handling the magnitude decrement of rG and
it is expressed in Equation (5). The parameter R in Equation (6) controls the exploitation
and exploration ability of the DWSCSO algorithm [43].

rG = 2 × s × exp
(
−t
T

)k
× r (5)

R = 2 × rG × rand(0, 1)− rG (6)

where the random integer is denoted as s; random function is r ∈ [0, 1]; k ∈ [1, 3]; maximum
number of iterations is denoted as T; the present iteration number is stated as t; and the
value of SM = 2.

While searching a prey, every sand cat identifies a new position within its sensitivity
range r, and it contributes to the exploitation and exploration algorithms. The parameter r
is different for every sand cat that avoids falling into the local minima trap, and parameter
r is represented in Equation (7). The parameter rG is used for guiding the parameter r.

r = rG × rand(0, 1) (7)

The sand cat searches the prey position based on the parameter r, the current position
Posc(t), and optimal candidate position Posbc, and it is represented in Equation (8).

Pos(t + 1) = r × (Posbc(t)− rand(0, 1)× Posc(t)) (8)

A triangle walk scheme is included for the sand cat to move around as it reaches its
prey. The distance L1 is computed among the sand cat and its prey and computes the range
of step size L2. Accordingly, it determines the walking direction of the sand cat using the
Equations (9)–(13).

L1 = Posbc(t)− Posc(t) (9)
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L2 = rand()− L1 (10)

β = 2 × π × rand() (11)

P = L2
1 + L2

2 − 2 × L1 × L2 × cos(β) (12)

Posnew = Posbc(t) + r × P (13)

where the location obtained via the walking scheme is denoted as Posnew.

3.4.2. Exploitation Phase (Attacking Prey)

The distance Posrnd between the prey and sand cat is computed utilizing Equation
(14) for simulating the process of attacking prey. Let us consider that the sand cat’s range
of sensitivity is a circle, and the direction of motion utilizes the Roulette Wheel Selection
(RWS) scheme for selecting the random angle α. The random angle is chosen among 0◦

and 360◦ and its value ranges between −1 and 1. Further, the prey is attacked based on
Equation (15).

Posrnd =|rand(0, 1)× Posbc(t)− Posc(t)| (14)

Pos(t + 1) = Posbc(t)− r × Posrnd × cos(α) (15)

LF is an enhanced approach that adds randomness to the exploitation phase. LF
provides a random wandering method with a step length supporting the Lévy distribution.
Sometimes, the LF has higher step length, so for making it consistent with the behavior of
the sand cat, it is multiplied by the constant (C = 0.35). This makes the sand cat walk as
near as possible. The walking strategy using LF is expressed in Equation (16).

Posnew = Posbc(t) + (Posbc(t)− Posc(t)) + r × P (16)

By regulating the parameters R and rG, the algorithm controls the exploitation and
exploration capability. If R is less than or equal to one, the prey is attacked by the sand cat,
otherwise, the sand cat searches for the prey. This scenario is mathematically presented in
Equation (17), and DWSCSO ends once it reaches the maximum iterations.

Pos(t + 1) =

{
r × (Posbc(t)− rand(0, 1)× Posc(t)) |R| > 1; exploration

Posb(t)− Posrnd × cos(α)× r |R| ≤ 1; exploitation

}
(17)

In this algorithm, the accuracy from K-nearest neighbor (KNN) is considered as the
fitness function for selecting the important features, and the time complexity is based on
the sand cat’s population size and number of iterations. The DWSCSO’s time complexity is
presented in Equation (18).

O(DWSCSO) = O(defined parameters) + O(location update)
+O(population initialization)

(18)

The parameters considered in the DWSCSO are listed as follows: size of population
was 100, RWS was [0, 360], SM was 2, and total iterations were 100. From the extracted 8728
vectors, the DWSCSO algorithm selected 5290 vectors, which were passed to the PRSCNN
model for SAH grade classification. The pseudocode and flowchart of the DWSCSO-based
feature optimization is depicted in Algorithm 1 and Figure 4.
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Algorithm 1 Pseudocode of the DWSCSO algorithm

//Step 1: Initialization
Input: Maximum iterations T, population size N, fitness function F, WWDF, α, r, rG
//Initialize population P of N search agents (feature vectors)
For each search agent i in P do search solution space

Solution space states the range of probable feature values for every agent.
End
//Step 2: Estimate the Initial Fitness
For every search agent i in P do

Calculate fitness Fi for agent i using the fitness function F
Fi = Accuracy(knn_classifier(X_train, y_train))

End
//Step 3: Main Loop—Iterate over Maximum Iterations T
For iteration t = 1 to T do

//Step 3.1: For every search agent, accomplish exploration or exploitation
For every search agent i in P do

//Step 3.1.1: Select a random angle α for direction of movement (0◦ ≤ α ≤ 360◦)
α = random_angle() //Randomly selected using RWS.

//Step 3.1.2: Identify if exploration or exploitation is to be executed
If |rG| > 1 then //Exploration phase

//Step 3.1.2.1: Exploration—Move to a new position using Triangle Walk Scheme
new_position_Xi = Xi + WWDF ∗ r ∗ cos(α) ∗ random_step()

Else //Exploitation phase
//Step 3.1.2.2: Exploitation—Move using LF
new_position_Xi = Xi +levy_flight() ∗ (best_position − Xi)
//LF generates a random step based on Lévy distribution.

End
//Step 3.1.3: Verify if new position is valid
If new_position_Xi is invalid (e.g., NaN, Inf, out-of-bounds) then

//Reset the agent’s position to a valid random location in the search space
new_position_Xi = random_valid_position()

End
//Step 3.1.4: Evaluate the fitness of the new position
new_fitness_Xi = evaluate_fitness(new_position_Xi)
//Fitness function estimates the new feature vector for classification accuracy.
//Step 3.1.5: Update agent’s position and fitness if the new position is better
If new_fitness_Fi > current_fitness_Fi then

Xi = new_position_Xi//Update the agent’s position
Fi = new_fitness_Fi //Update the agent’s fitness

Else
Retain current position Xi and fitness Fi

End
End

//Step 3.2: Convergence Check—Monitor improvement
If no substantial improvement in fitness after X consecutive iterations then

//Enhance the step size in LF to escape local optima and encourage exploration
WWDF = WWDF ∗ 1.5 //enhance an exploration factor to cover more search space

End
//Step 3.3: Adjust parameters dynamically

Adjust r and rG based on the iteration number t
End
//Step 4: Return the best feature vector
Determine an agent with greatest fitness score
Return best_position (best feature vector) and corresponding fitness
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3.4.3. Error Handling and Edge Case Considerations

The handling of error and edge case considerations are used for confirming the
robustness and common applicability of the optimization algorithm. DWSCSO is developed
with the following strategies for addressing the convergence issues, local minima traps,
and invalid inputs.

Convergence Issues

The WWDF dynamically adjusts in the iterative process to eliminate inactivity during
the optimization, which was used to confirm that the population remains to explore differ-
ent areas of the solution space. The WWDF factor improves the adaptability of DWSCSO
in difficult and higher dimensional search spaces. Moreover, the LF is used for incorporat-
ing randomness to the exploitation to avoid premature convergence. Therefore, dynamic
alteration avoids the inactivity and confirms the convergence towards the global optimum.
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Local Minima Traps

The DWSCSO developed with the triangle walk scheme and LF was used to avoid the
local minima risk. Premature convergence was avoided by avoiding the repetitive patterns
using the triangle walk scheme. Moreover, the risk of local optima is additionally reduced
by continuously altering the angle of approach and attack using RWS.

Invalid Inputs Handling

The DWSCSO verifies the input ranges for confirming that the given inputs are in
the boundaries or not. If the values are not set based on requirements, the default values
are allocated in the optimization. The fitness function computes the feature vector quality
chosen in the optimization process. Moreover, if a population faces an invalid position,
the agent position is returned to a randomly chosen valid position in the search space.
The fitness estimation function is also developed for handling an edge case by confirming
all values are constrained within satisfactory boundaries. The fitness function evaluates
the updated position. Next, the fitness function eliminates the errors that interrupt the
optimization to confirm that the inputs transferred to the fitness function are valid. If
any location returns to NaN or Inf, the population is initialized again utilizing a random
position in exploration.

Outlier Detection and Robustness

The fitness function integrates outlier detection by evaluating the fitness values over
the population. The DWSCSO considers the probability of either invalid input or local
minima trap when the outlier is identified, i.e., fitness of population is lesser or higher
than the average of population. In these situations, the exploration is enabled, making the
affected population set its location based on random searches in a wide area of solution
space. This confirms that the DWSCSO is robust even in the presence of corrupted or
noisy data.

Therefore, regarding the incorporation of error-handling mechanisms and edge case
considerations, the DWSCSO is developed to make it robust and adaptable in an extensive
range of optimization tasks. Subsequently, the selected features from the DWSCSO are
given as an input to the PRSCNN to accomplish SAH grade classification.

3.5. SAH Grade Classification

The selected 5290 vectors were given to the PRSCNN for SAH grade classification. The
PRSCNN model was designed with distinct layers such as an input layer, convolutional
layer, PReLU activation layer, pooling layer, and flattened/fully connected layer [44–46].
The incorporated PReLU had smoother gradient flow due to the backpropagation process.
This smoother flow of gradient leads to stable and effective training which helps to avoid
the vanishing gradient issue. The PReLU has the ability to allow the negative values in the
training process, which helps to offer a better depiction of the data. Accordingly, it was
used to enhance the generalization of unseen data. A brief description of the layers are
discussed below, as follows:

Input layer: The selected 5290 vectors are fed to the input layer, and it is represented
as a three-dimensional matrix. The dimension is W × H × D, where W is represented as
width, H is denoted as height, and D is indicated as depth, where the depth corresponds to
the color channels.

Convolutional layer: The convolutional layer computes the output of the nodes, which
are interconnected to the local regions of the matrix. Here, the dot product is computed
between the values related to an input: local region and a set of weights (filter).

PReLU activation layer: The PReLU function represented in Equation (19) is used
to avoid the issue of dying ReLU and it performs well with the negative inputs as well
as allows backpropagation. The incorporation of negative parts as input offers reliable
predictions. Moreover, it helps to avoid the vanishing gradient issue.
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f (xi) =

{
xi, i f xi > 0
αixi, otherwise

(19)

where xi denotes only one element from vector x; input vector is denoted as x; and learnable
parameter is denoted as αi.

Pooling layer: Uses down-sampling technique to reduce the height and width of the
convolved features.

Fully connected or flattened layer: The convolved features are fed to the flattened
layers here. The class probabilities are calculated and outputted in a three-dimensional
array with dimensions of 1 × 1 × K, where K is the number of classes (four grades). Grade
I is depressed consciousness level or focal deficit, grade II is mild alteration, grade III is
severe headache, and grade IV is mild headache.

The parameters of the PRSCNN model are the initial learning rate, which is 0.001, the
loss function is log loss, the drop factor of learning rate is 0.2, the drop period of learning
rate is 5, the maximum epochs is 100, the minimum batch size is 500, the activation function
is ReLU, the optimizer is Adam, and the momentum rate is 0.9.

4. Results and Discussion

The proposed modified region-growing method and DWSCSO-PRSCNN model are
simulated using Python 3 on a system with the specifications of a windows operating
system, Intel core i10 12th-generation processor, Santa Clara, CA, USA, and 64 GB random
access memory. The modified region-growing method’s effectiveness was analyzed using
evaluation measures like the Jaccard Index (JI), Dice Similarity Coefficient (DSC), PA, and
MPA. Correspondingly, the classification model’s (DWSCSO-PRSCNN) effectiveness was
analyzed using evaluation measures like accuracy, Matthews Correlation Coefficient (MCC),
and F1 score on a collected dataset where an 80:20 ratio is considered for training and
testing purposes.

4.1. Evaluation Measures

The explanation about the undertaken evaluation measures (JI, DSC, PA, MPA, accu-
racy, MCC, and f1 score) is detailed in this subsection. The JI is determined as the area of
intersection between the ground truth region and segmentation region and divided by the
area of union between the ground truth region and segmentation region. Additionally, the
DSC efficiently calculates the overlap among the ground truth and segmentation region
by performing intersection over union between two sets, where A indicates a segmented
region by performing the modified region-growing method and B represents ground truth
region. The mathematical formulas of JI and DSC are depicted in Equations (20) and (21).

JI =
TP

TP + FP + FN
=

|A ∩ B|
|A ∪ B| (20)

DSC =
2TP

2TP + FP + FN
=

2|A ∩ B|
|A|+|B| (21)

Similarly, the PA is determined as the ratio of precisely segmented pixels divided by
the total pixels. For instance, the PA of K + 1 classes (background and K foreground classes)
is mathematically denoted in Equation (22). PA can be treated as a semantic segmentation
metric, which represents the percentage of pixels which are precisely classified in an image.
In addition, the MPA is determined as the ratio of precisely segmented pixels divided by
the average of total pixels, and it is mathematically specified in Equation (23).

PA =
∑K

i=0 pii

∑K
i=0 ∑K

j=0 pij
(22)
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MPA =
1

K + 1

K

∑
i=0

pii

∑K
j=0 pij

(23)

The evaluation measure: Accuracy estimates how many times a classification model
(DWSCSO-PRSCNN) made a correct prediction in the entire collected dataset. F1 measures
a classification model’s (DWSCSO-PRSCNN) accuracy by combining the recall and preci-
sion. Additionally, the Matthews correlation coefficient (MCC) considers all four values
(True Negative (TN), True Positive (TP), False Positive (FP), and False Negative (FN)) in
the confusion matrix to estimate the efficacy of the classification model. The MCC ranges
between −1 and 1, where −1 represents completely wrong multiclass classification and 1
indicates correct multiclass classification. The expressions to compute accuracy, F1 score,
and MCC are represented in Equations (24)–(26).

Accuracy =
TP + TN

TP + TN + FP + FN
× 100 (24)

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
× 100 (25)

F1 Score =
2TP

FP + 2TP + FN
× 100 (26)

4.2. Quantitative Analysis Related to Segmentation

The simulation results of different segmentation methods for collected and CT datasets
are depicted in Tables 1 and 2. The FCM clustering, Otsu thresholding, K-means clustering,
superpixel clustering and region-growing are considered for the evaluation of modified
region-growing, because all these approaches are parameter sensitive. Viewing the tables
shows that the modified region-growing method achieved precise segmentation results on
a collected dataset with a JI of 0.94, DSC of 0.95, PA of 0.93, and MPA of 0.90, which are
better than comparative segmentation approaches like Fuzzy C Means (FCM) clustering,
Otsu thresholding, K-means clustering, and the region-growing method. The clustering
based approaches mainly depend on the predefined clusters and initialized centroids.
Accordingly, the clustering based segmentation returns the less defined edges, due to
the complexity in the identification of fine details and edges. On the other hand, the
modified region-growing approach is effective for the images with indefinite textures and
intensities, therefore it adaptively enlarges the region according to the pixel similarity
instead of depending on the predefined clusters. Consequently, the developed modified
region-growing leads to precise delineation of structures even with the complex images.
Therefore, an integration of contextual information from adjacent pixels helps to obtain
more effective segmentation than the clustering approaches.

Table 1. Simulation results of different segmentation methods for collected dataset.

Segmentation Methods JI DSC PA MPA

FCM clustering 0.72 0.78 0.74 0.69
Otsu thresholding 0.73 0.79 0.78 0.73

K-means clustering 0.81 0.88 0.84 0.77
Superpixel clustering 0.92 0.93 0.89 0.84

Region-growing 0.89 0.92 0.92 0.87
Modified region-growing 0.94 0.95 0.93 0.90
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Table 2. Simulation results of different segmentation methods for CT dataset.

Segmentation Methods JI DSC PA MPA

FCM clustering 0.75 0.80 0.77 0.72
Otsu thresholding 0.79 0.82 0.83 0.77

K-means clustering 0.83 0.92 0.88 0.82
Superpixel clustering 0.94 0.95 0.92 0.88

Region-growing 0.91 0.94 0.95 0.92
Modified region-growing 0.96 0.96 0.95 0.93

If the original NCCT images have clear edges, the modified region-growing method
provides good segmentation results. Additionally, the modified region-growing method
precisely separates the regions, which have similar properties, compared with the tradi-
tional segmentation methods. The modified region-growing method consumed a minimal
processing time of 6.32 s for region segmentation in the collected dataset. The comparative
segmentation methods—FCM clustering, Otsu thresholding, K-means clustering, and the
region-growing method—consumed processing times of 11.32 s, 10.11 s, 15.44 s and 8.20 s
in the collected dataset, respectively.

4.3. Quantitative Analysis Related to Feature Extraction

This section provides an analysis about the combination of all models, i.e., GoogleNet,
VGG-16, and ResNet50 used in the feature extraction with the individual model’s compari-
son to know the effectiveness of the combined model. Additionally, some state-of-the-art
approaches such as VGG-19 and SqueezeNet developed using Python 3.7, Keras 2.3 and
TensorFlow 1.5 were used for analysis. The combined model was the CNN model, so the
aforementioned CNN models were used in the comparison. Tables 3 and 4 provide the
results analysis of feature extraction approaches for collected and CT datasets, respectively.
Moreover, the GoogleNet, VGG-16, VGG-19, SqueezeNet, ResNet50, and a combined model
(GoogleNet + VGG-16 + ResNet50) utilized the computational time of 8 ms, 15 ms, 16 ms,
13 ms, 10 ms, and 33 ms per image of collected dataset. This analysis demonstrated that
the combination of all three models provides a more enhanced performance in SAH grade
classification than the individual models. The computational time of the combined model
was higher when it was analyzed with individual model. However, the combination of
GoogleNet, VGG-16, and ResNet5 helps to obtain the wide range of patterns and irregulari-
ties, fine-grained textures and details, and complex and abstract features for enhancing the
SAH grade classification. The reason for not selecting a less resource-intensive method like
SqueezeNet is that it offers less computational costs, but it does not obtain the fine-grained
details and complex abstractions that are required for effective SAH detection.

Table 3. Simulation results of different feature extraction methods for collected dataset.

Feature Extraction
Methods Accuracy (%) MCC (%) F1 Score (%) Sensitivity (%) Specificity (%) AUC

GoogleNet 95.27 94.12 94.67 93.64 96.12 0.952
VGG-16 96.35 95.18 95.84 94.21 97.06 0.961
VGG-19 96.81 95.67 96.33 94.76 97.53 0.963

SqueezeNet 94.00 92.85 93.40 91.71 95.19 0.940
ResNet50 97.42 96.25 96.81 96.31 98.22 0.975

GoogleNet + VGG-16 +
ResNet50 99.48 99.53 99.48 98.56 99.47 0.996
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Table 4. Simulation results of different feature extraction methods for CT dataset.

Feature Extraction
Methods Accuracy (%) MCC (%) F1 Score (%) Sensitivity (%) Specificity (%) AUC

GoogleNet 95.67 95.69 94.91 93.50 96.85 0.957
VGG-16 96.92 96.96 96.02 94.75 97.10 0.963
VGG-19 97.30 97.35 97.15 95.00 97.80 0.965

SqueezeNet 95.42 94.18 94.50 92.70 96.30 0.946
ResNet50 98.44 97.26 97.71 96.75 98.80 0.980

GoogleNet + VGG-16 +
ResNet50 99.62 99.73 99.51 98.80 99.70 0.997

An important trade-off when considering the combination of GoogleNet, VGG-16, and
ResNet50 is the increase in computational complexity that causes a higher memory usage,
training time, and processing time in both the training and inference phases. However, the
obtained performance enhancement from this combined model in clinical task justifies the
trade-off in computational time. The developed DWSCSO in feature selection minimizes
the overall feature dimension by around 40% and that helps to minimize the training time
and complexity.

4.4. Quantitative Analysis Related to Classification

In this research, the important contribution was to perform feature selection using the
DWSCSO. Therefore, the developed DWSCSO was analyzed with different optimization
algorithms like the Genetic Algorithm (GA), Butterfly Optimization Algorithm (BOA),
Artificial Bee Colony (ABC), Whale Optimization Algorithm (WOA), and SCSO. At first,
the optimization algorithm was analyzed with different sizes of population, such as 10,
20, 30 and 40, as shown in Figure 5 for the collected dataset. Based on Figure 5, it was
concluded that the optimization algorithm with a population size of 30 provided enhanced
classification results. On the other hand, the convergence analysis for the collected dataset
was performed as depicted in Figure 6. The developed DWSCSO had improved conver-
gence more than the GA, BOA, ABC, WOA and SCSO. The dynamic factor of WWDF was
incorporated for adapting according to the complex operations and enhanced the probabil-
ity of identifying the optimum solution. On the other hand, the wandering strategy was
utilized to enhance the exploration capacity. Therefore, both the WWDF and wandering
strategy used in the DWSCSO helped to improve the convergence.
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The simulation results of the different optimization algorithms with a PRSCNN model
were depicted in Tables 5 and 6 for the collected and CT datasets, respectively. By investi-
gating Tables 5 and 6, the combination of the DWSCSO algorithm with the PRSCNN model
achieved maximum classification results compared with the comparative optimization
algorithms. The feature dimensionality reduction or selection of discriminative vectors
reduced the training time of the PRSCNN model to 32.22 s for the collected dataset. The
DWSCSO achieved an accuracy of 99.48% for the collected dataset that was higher than
the remaining optimization algorithms. The higher accuracy over the classification was
obtained due to an effective search of the optimum features by the DWSCSO. The water
wave dynamics from WWDF was used to search over an extensive area for optimum
features and enhanced the population diversity maintenance while the LF was used to
enhance the robustness of the exploration capacity of features.

Table 5. Simulation results of different optimization algorithms for collected dataset.

Optimization
Algorithms Accuracy (%) MCC (%) F1 Score (%) Sensitivity (%) Specificity (%) AUC

GA 93.44 95.33 95.43 93.58 95.45 0.933
BOA 95.58 96.44 96.48 95.03 96.63 0.950
ABC 96.92 97.24 97.92 96.08 97.15 0.959
WOA 97.46 97.45 97.94 96.75 97.99 0.977
SCSO 98.68 98.10 98.63 97.82 98.15 0.981

DWSCSO 99.48 99.53 99.48 98.56 99.47 0.996

Table 6. Simulation results of different optimization algorithms for CT dataset.

Optimization
Algorithms Accuracy (%) MCC (%) F1 Score (%) Sensitivity (%) Specificity (%) AUC

GA 95.40 96.01 95.35 95.12 95.07 0.939
BOA 96.09 96.79 9684 95.28 95.10 0.944
ABC 96.73 95.98 96.31 96.05 96.11 0.949
WOA 97.03 97.80 96.88 97.03 96.87 0.981
SCSO 98.76 98.27 98.85 98.12 98.35 0.986

DWSCSO 99.62 99.73 99.51 98.80 99.70 0.997
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The computational complexity of the DWSCSO for the collected dataset was analyzed
in terms of computational time with GA, BOA, ABC, WOA, and SCSO, as shown in Table 7.
This evaluation demonstrated that the DWSCSO had lesser computational time due to its
improved convergence obtained by the incorporation of WWDF and wandering strategy
in the DWSCSO. Moreover, the statistical test, i.e., the Friedman test, was used for the
proposed DWSCSO with the collected dataset, as shown in Table 8. This test denoted that
the DWSCSO had better rank than the optimization methods. The p-value represents the
significant difference among the evaluated methods.

Table 7. Simulation results of computational time for collected dataset.

Optimization Algorithms Computational Time (S)

GA 110.30
BOA 101.08
ABC 81.66
WOA 83.90
SCSO 78.02

DWSCSO 70.12

Table 8. Friedman test for collected dataset.

Optimization Algorithms Friedman Rank

GA 2.43
BOA 3.98
ABC 4.37
WOA 5.78
SCSO 7.04

DWSCSO 7.63
p-value 2.0149 × 10−21

The PRSCNN is a deep learning classifier, therefore it is evaluated with some state-of-
the-art deep learning classifiers such as the decision tree, Graph Convolutional Network
(GCN), Artificial Neural Network (ANN), Autoencoder, and Convolutional Neural Net-
work (CNN). The simulation results of different classification models are presented in
Tables 9 and 10 for the collected and CT datasets, respectively. Here, the analysis is
performed for actual feature vectors and optimized feature vectors using the DWSCSO
algorithm. The parameters considered in the comparative classification models are pointed
out below, as follows:

• Decision tree (criterion is Gini, splitter is best, and maximum depth is 30);
• GCN (layer is 3, hidden size is 64 and dropout rate is 0.2);
• ANN (learning number is 13, learning rate is 0.001, and target error is 0.001);
• Autoencoder (dropout rate is 0.5, epoch is 100, batch size is 128, and learning rate

is 0.001);
• CNN and PRSCNN (layer is 7, kernel size is 3 × 3, filters/channels per layer is 128,

pooling size is 2 × 2, learning rate = 0.001, batch size = 32, num epochs = 10, and
regularization weight = 0.0001).
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Table 9. Simulation results of different classification models for collected dataset.

Actual Feature Vectors

Classifiers Accuracy (%) MCC (%) F1 Score (%) Sensitivity (%) Specificity (%) AUC
Decision tree 88.24 87.94 88.98 87.67 88.45 0.873

GCN 89.26 90.90 90.40 89.32 90.20 0.907
ANN 92.36 93.50 92.34 92.89 93.10 0.915

Autoencoder 94.27 93.88 93.54 93.48 92.12 0.939
CNN 94.81 94.01 93.99 94.77 94.89 0.944

PRSCNN 95.22 95.90 94.90 94.09 95.40 0.955

Optimized Feature Vectors

Classifiers Accuracy (%) MCC (%) F1 Score (%) Sensitivity (%) Specificity (%) AUC
Decision tree 90.30 93.28 92.28 93.45 93.81 0.902

GCN 93.90 95.02 93.82 94.91 94.80 0.930
ANN 95.38 97.38 98.33 96.84 96.99 0.966

Autoencoder 97.30 98.76 98.70 97.60 97.73 0.979
CNN 98.09 99.00 99.01 98.22 98.84 0.982

PRSCNN 99.48 99.53 99.48 98.56 99.47 0.996

Table 10. Simulation results of different classification models for CT dataset.

Actual Feature Vectors

Classifiers Accuracy (%) MCC (%) F1 Score (%) Sensitivity (%) Specificity (%) AUC
Decision tree 89.22 89.15 89.04 89.32 89.14 0.881

GCN 90.98 90.70 91.60 90.64 91.22 0.918
ANN 93.68 93.86 92.12 93.75 93.15 0.935

Autoencoder 94.66 94.53 95.06 95.14 94.57 0.947
CNN 95.77 94.47 95.15 95.83 95.50 0.954

PRSCNN 96.54 96.16 95.72 96.43 96.82 0.962

Optimized Feature Vectors

Classifiers Accuracy (%) MCC (%) F1 Score (%) Sensitivity (%) Specificity (%) AUC
Decision tree 91.27 91.62 91.87 91.26 91.20 0.929

GCN 92.81 93.22 92.85 93.40 92.91 0.940
ANN 94.78 95.02 95.47 95.71 94.82 0.956

Autoencoder 97.72 97.17 97.91 96.93 97.17 0.978
CNN 98.42 98.65 98.34 97.70 97.74 0.983

PRSCNN 99.62 99.73 99.51 98.80 99.70 0.997

The accuracy of PRSCNN over 10 multiple runs for the collected dataset was 99.45%,
99.47%, 99.48%, 99.47%, 99.49%, 99.51%, 99.46%, 99.53%, 99.49%, and 99.46% where the
standard deviation was 0.0234. Moreover, the accuracy of PRSCNN with augmentation for
the collected dataset was 99.48% while without incorporating the data augmentation, it was
96. 18%, which was lower due to the overfitting issue. By examining tables, the combination
of the DWSCSO algorithm with the PRSCNN model obtained higher classification results in
the collected dataset with a classification accuracy of 99.48%, MCC of 99.53%, and F1 score
of 99.48%, respectively. The obtained classification results were higher than the existing
classification models such as the decision tree, GCN, ANN, Autoencoder, and CNN. Next,
the analysis of PReLU with different activation functions such as the Rectified Linear Unit
(ReLU), Leaky ReLU, and Exponential Linear Unit (ELU) is given in Tables 11 and 12 for
the collected and CT datasets, respectively. This result demonstrates that the PReLU had a
better performance than the ReLU, Leaky ReLU, and ELU.
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Table 11. Simulation results of different activation functions for collected dataset.

Activation Functions Accuracy (%) MCC (%) F1 Score (%) Sensitivity (%) Specificity (%) AUC

ReLU 92.74 91.47 92.88 92.60 92.03 0.937
Leaky ReLU 95.84 94.25 94.29 94.72 94.23 0.941

ELU 96.94 97.73 96.22 97.16 96.83 0.970
PReLU 99.48 99.53 99.48 98.56 99.47 0.996

Table 12. Simulation results of different activation functions for CT dataset.

Activation Functions Accuracy (%) MCC (%) F1 Score (%) Sensitivity (%) Specificity (%) AUC

ReLU 93.45 93.54 93.56 93.51 93.91 0.942
Leaky ReLU 96.95 95.90 96.04 96.48 96.90 0.964

ELU 97.36 98.83 96.73 98.20 98.02 0.987
PReLU 99.62 99.73 99.51 98.80 99.70 0.997

In this article, the PRSCNN model efficiently captures the patterns and spatial rela-
tionships in the NCCT images. The PRSCNN model learns complex features by stacking
several convolutional and pooling layers resulting in higher classification accuracy. The
computational time of ReLU, Leaky ReLU, ELU, and PReLU are 0.1 ms, 0.2 ms, 0.5 ms, and
0.5 ms per image, respectively. However, the PReLU obtains smoother gradient flow by
backpropagation which helps to obtain stable training for mitigating the vanishing gradient
issue. The PReLU has the capacity of processing negative values which additionally helps
to obtain reliable prediction. PReLU has a better performance because it learns the negative
values during the training, offering enhanced flexibility and adaptability that helps to
discover the subtle dissimilarities in SAH grades.

The Receiver Operating Characteristics (ROC), Area Under the Curve (AUC), and
confusion matrix for the collected dataset are shown in Figures 7 and 8, respectively. In ROC
curve, the blue dashed line denotes the no-skill line that is used to evaluate the performance
of developed classifier, while orange line denotes the ROC curve of developed classifier.
The ROC curve was utilized for the classification issued in various threshold settings while
the AUC denoted the degree of separability measure. On the other hand, the confusion
matrix was utilized to summarize the identification of the classification issue. The ROC
is a probability curve which was used to determine the level of differentiating among the
classes. The ROC curve of Figure 7 represents that PRSCNN has a higher AUC, hence it
provides better classification than the other classifiers. Moreover, the confusion matrix
of PRSCNN depicts that it has lesser misclassification when compared with the decision
tree, GCN, ANN, Autoencoder, and CNN. The misclassification in PRSCNN occurred
because some samples from the collected dataset had lesser variation between the different
grade images.

Figure 9 shows the accuracy comparison of the collected dataset for all the classifiers.
Based on Figure 9, it is confirmed that the PRSCNN had better classification than the
decision tree, GCN, ANN, Autoencoder, and CNN. Moreover, the issue of overfitting in
PRSCNN was minimized by incorporating the DWSCSO-based feature selection.
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The loss graphs for the different activation functions such as ReLU, Leaky ReLU, ELU,
and PReLU are shown in Figure 10. This analysis confirms that the PReLU had a better
performance than the ReLU, Leaky ReLU, and ELU.

Additionally, the DWSCSO-PRSCNN model was analyzed using K-fold cross vali-
dations. In the context of image classification, cross-fold validations provided a robust
estimation of the DWSCSO-PRSCNN model’s performance by assessing its generalization
ability across various data subsets. This process decreased the overfitting risk to a particular
training–testing split. By inspecting Tables 13 and 14, the proposed DWSCSO-PRSCNN
model achieved high classification outcomes in five-fold cross validation (80%:20% training
and testing) than the other cross fold validations: two-fold (50:50% training and testing),
four-fold (75:25% training and testing), and eight-fold (87.50%:12.50% training and testing).



Diagnostics 2024, 14, 2417 25 of 31

Diagnostics 2024, 14, x FOR PEER REVIEW 24 of 31 
 

 

  
(a) (b) 

  
(c) (d) 

 
(e) (f) 

Figure 9. Accuracy graph for collected dataset, (a) decision tree, (b) GCN, (c) ANN, (d) Autoencoder, 
(e) CNN, (f) PRSCNN. 

The loss graphs for the different activation functions such as ReLU, Leaky ReLU, 
ELU, and PReLU are shown in Figure 10. This analysis confirms that the PReLU had a 
better performance than the ReLU, Leaky ReLU, and ELU. 

 
(a) (b) 

Diagnostics 2024, 14, x FOR PEER REVIEW 25 of 31 
 

 

 
(c) (d) 

Figure 10. Loss graph for collected dataset, (a) ReLU, (b) Leaky ReLU, (c) ELU, (d) PReLU. 

Additionally, the DWSCSO-PRSCNN model was analyzed using K-fold cross valida-
tions. In the context of image classification, cross-fold validations provided a robust esti-
mation of the DWSCSO-PRSCNN model’s performance by assessing its generalization 
ability across various data subsets. This process decreased the overfitting risk to a partic-
ular training–testing split. By inspecting Tables 13 and 14, the proposed DWSCSO-
PRSCNN model achieved high classification outcomes in five-fold cross validation 
(80%:20% training and testing) than the other cross fold validations: two-fold (50:50% 
training and testing), four-fold (75:25% training and testing), and eight-fold 
(87.50%:12.50% training and testing). 

Table 13. Different K-fold cross validation results of DWSCSO-PRSCNN for collected dataset. 

Measures K = 2 K = 4 K = 5 K = 8 
MCC (%) 94.94 95.82 99.53 97.21 

F1-score (%) 93.63 94.04 99.48 93.69 
Accuracy (%) 97.24 98.19 99.48 96.17 
Sensitivity (%) 96.34 97.33 98.56 94.67 
Specificity (%) 95.11 97.67 99.47 94.62 

AUC 0.959 0.961 0.996 0.950 

Table 14. Different K-fold cross validation results of DWSCSO-PRSCNN for CT dataset. 

Measures K = 2 K = 4 K = 5 K = 8 
MCC (%) 95.78 97.62 99.73 95.81 

F1-score (%) 96.10 98.39 99.51 95.29 
Accuracy (%) 96.66 98.58 99.62 96.28 
Sensitivity (%) 95.74 97.05 98.80 94.25 
Specificity (%) 95.53 96.33 99.70 94.72 

AUC 0.965 0.971 0.997 0.945 

Edge cases such as hemorrhages with uneven shapes or those positioned near ana-
tomical boundaries cause extra difficulties in the modified region-growing segmentation 
approach. This segmentation has the complexity in differentiating among the delicate var-
iations in intensity and cause over-segmentation of missed detections. In the scenario of 
edge cases, the model sensitivity was observed to reduce by 2.1%, mainly due to the mis-
classification of adjacent structures as hemorrhages. However, the overall performance 
still remained higher, and these situations emphasized areas for additional improvement 
in the segmentation process. 

  

Figure 10. Loss graph for collected dataset, (a) ReLU, (b) Leaky ReLU, (c) ELU, (d) PReLU.

Table 13. Different K-fold cross validation results of DWSCSO-PRSCNN for collected dataset.

Measures K = 2 K = 4 K = 5 K = 8

MCC (%) 94.94 95.82 99.53 97.21
F1-score (%) 93.63 94.04 99.48 93.69

Accuracy (%) 97.24 98.19 99.48 96.17
Sensitivity (%) 96.34 97.33 98.56 94.67
Specificity (%) 95.11 97.67 99.47 94.62

AUC 0.959 0.961 0.996 0.950

Table 14. Different K-fold cross validation results of DWSCSO-PRSCNN for CT dataset.

Measures K = 2 K = 4 K = 5 K = 8

MCC (%) 95.78 97.62 99.73 95.81
F1-score (%) 96.10 98.39 99.51 95.29

Accuracy (%) 96.66 98.58 99.62 96.28
Sensitivity (%) 95.74 97.05 98.80 94.25
Specificity (%) 95.53 96.33 99.70 94.72

AUC 0.965 0.971 0.997 0.945

Edge cases such as hemorrhages with uneven shapes or those positioned near anatom-
ical boundaries cause extra difficulties in the modified region-growing segmentation ap-
proach. This segmentation has the complexity in differentiating among the delicate vari-
ations in intensity and cause over-segmentation of missed detections. In the scenario
of edge cases, the model sensitivity was observed to reduce by 2.1%, mainly due to the
misclassification of adjacent structures as hemorrhages. However, the overall performance
still remained higher, and these situations emphasized areas for additional improvement in
the segmentation process.
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4.5. Quantitative Analysis Related to Noisy Images and Handling of Missing Values

Table 15 shows the analysis of the DWSCSO-PRSCNN with noise simulated and
noiseless images for further justifying the effectiveness. Noise in the medical images
affected the capacity of the model while obtaining the meaningful features, specifically in
NCCT images of the brain. NCCT images are vulnerable to artifacts such as low contrast,
motion blur, and scanner noise among the affected regions and healthy tissue. These
issues affect the segmented region quality that leads to the affecting of the soloing feature
extraction. The modified region-growing method generates the over-segmented or under-
segmented regions when the input has higher levels of noise. For instance, noise causes
the model to discover false positives by discovering portions that appear identical to the
hemorrhagic regions. Accordingly, an increment in the FP leads to a decrease in accuracy
from 99.68% to 97.32%.

Table 15. Simulation results of classifiers for noisy images.

Classifiers
Accuracy (%)

Noiseless Images Noisy Images

Decision tree 91.27 86.53

GCN 92.81 86.74

ANN 94.78 88.21

Autoencoder 97.72 92.56

CNN 98.42 93.91

PRSCNN 99.62 97.32

The performance of the PRSCNN for the analysis of handling missing values simulated
for 10% of the data is shown in Table 16. Incomplete or missing data is common in real-
world clinical settings where specific images or patient information may be corrupted or
unavailable. A missing value in NCCT features affects the feature selection of DWSCSO
and leads to misclassification. Specifically, the sensitivity is affected, because the model
failed to precisely classify hemorrhagic cases.

Table 16. Simulation results of classifiers for missing data.

Classifiers
Sensitivity (%)

Without Missing Data With 10% Missing Data

Decision tree 91.26 84.56

GCN 93.40 87.35

ANN 95.71 91.42

Autoencoder 96.93 92.58

CNN 97.70 93.51

PRSCNN 98.80 95.40

4.6. Comparative Analysis

This section provides the comparative analysis for the developed DWSCSO-PRSCNN
model with a standard benchmark dataset, i.e., the CT dataset [34], where an 80:20 ratio
was considered for training and testing purposes. This comparison of DWSCSO-PRSCNN
with the CT dataset was performed with DL-ICH [14] and GoogLeNet + (GLCM and
LBP) [19], ResNet-50 + (GLCM and LBP) [19], and AlexNet + (GLCM and LBP) [19],
as shown in Table 17. The reason for choosing the aforementioned methods is that all
the methods come under the category of deep learning classifiers. It demonstrates that
the DWSCSO-PRSCNN outperforms better than the existing approaches. The enhanced
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searching capacity of DWSCSO in feature selection using the WWDF and wandering
strategy helps to select an optimum feature subset for enhancing the classification. Further,
the mitigation of the vanishing gradient issue and obtaining the stable training enhances
the SAH grade classification.

Table 17. Comparison of DWSCSO-PRSCNN.

Activation Functions Accuracy (%)

DL-ICH [14] 95.06
GoogLeNet + (GLCM and LBP) [19] 98.9
ResNet-50 + (GLCM and LBP) [19] 99.1
AlexNet + (GLCM and LBP) [19] 99.3

DWSCSO-PRSCNN 99.62

The p-value for accuracy of DWSCSO-PRSCNN was less than 0.001, representing that
there was a statistically significant difference among the accuracy of DWSCSO-PRSCNN
and other methods. This demonstrates that variation in the performance of DWSCSO-
PRSCNN and other methods is not because of random variation but denotes the actual
enhancements in the DWSCSO-PRSCNN performance. The confidence interval was com-
puted for accuracy to additionally compute the ambiguity around the mean values. For
a 95% confidence level, the intervals for accuracy of DWSCSO-PRSCNN from the results,
i.e., accuracy, were from 99.48% to 99.76%. This narrow confidence interval represents
the higher level of confidence in the stated results, denoting the reliability and robustness
of DWSCSO-PRSCNN performance. After assessing the significance via ANOVA, the
Tukey’s Honest Significant Difference was applied to perform post-hoc analysis for dis-
covering the specific groups which varied from each other. This Tukey test validated that
the DWSCSO-PRSCNN significantly improved than the other methods where p-value was
0.001 for all pairwise evaluations. This additionally represented that DWSCSO-PRSCNN
was statistically best in detecting and classifying the grade of SAH.

4.7. Discussion

As depicted in the earlier sections, the region segmentation of SAH and classification of
SAH are integral parts of this article. A modified region-growing method was proposed in
this article for precise segmentation of the regions affected by SAH. The effectiveness of the
modified region-growing method is depicted in Table 1, where the proposed segmentation
method not only improves the segmentation accuracy but also decreases the processing
time of the segmentation. Correspondingly, in the classification phase, the combination of
the DWSCSO algorithm with the PRSCNN model improved the performance of SAH grade
classification more than the traditional classification models and optimization algorithms.
The optimal high-level and low-level vectors (selected by the DWSCSO algorithm) were
passed to the PRSCNN model for SAH grade classification. The selection of optimal
high-level and low-level vectors decreased the computational time to 32.22 s and even
the model complexity to linear. The efficiency of the classification model (DWSCSO-
PRSCNN) was specified in Tables 3–17. The early detection of SAH assists clinicians in
timely treatment and efficient therapeutic intervention, which reduces the mortality rate.
Moreover, the developed DWSCSO-PRSCNN also provides better performance with the
CT dataset than the DL-ICH [14] and GoogLeNet + (GLCM and LBP) [19], ResNet-50 +
(GLCM and LBP) [19], and AlexNet + (GLCM and LBP) [19]. Therefore, it is confirmed
that the DWSCSO-PRSCNN has better generalization in both the collected dataset and
CT dataset. The developed research is clinically beneficial as it provides an automated
framework for a precise estimation of blood leakage in SAH cases, which is significant
for prompt and effective treatment. The development of rapid and precise segmentation
and classification of SAH minimizes the dependency on manual interventions which are
prone to errors and time-consuming processes. Thus, the developed research is useful in
enhancing diagnostic efficiency in emergency settings, improving decision making, and
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possibly enhancing patient progress by confirming rapid treatment, making it appropriate
for both present and upcoming clinical applications.

The DWSCSO-PRSCNN is trained and analyzed using two different datasets: the
collected dataset and CT dataset. However, the changes in the imaging equipment, patient
populations, and scanning protocols create differences in the dataset features, impacting
the generalization of the model to unseen data. These changes are being considered in
upcoming data collection. For example, the images from different hospitals show the
variation between resolution, noise level, and contrast setup that leads to the increase in
complexity during feature extraction. Furthermore, the issue creates a class imbalance
in the dataset, specifically when handling subtle representation or rare cases of SAH. In
real-world scenarios, some SAH grades are underrepresented, which makes the model
become biased towards the more frequent classes.

5. Conclusions

This research article focuses on two problems in the SAH analysis: DWSCSO-based
feature selection and the PRSCNN-based classification of SAH. A modified region-growing
method was introduced for segmenting the affected regions in the collected real-time
NCCT images. Optimum features were discovered using DWSCSO with the WWDF and
wandering strategy. The WWDF used in DWSCSO helped to search over extensive areas
for optimum features and enhanced the population diversity maintenance while the LF
enhanced the robustness of exploration capacity. Next, the PReLU obtained smoother
gradient flow by backpropagation, which helped to achieve the stable classification in the
PRSCNN by avoiding the vanishing gradient issue. Accordingly, reliable predictions were
obtained in the PRSCNN by processing the negative values. Further, the training time
and overfitting risk of the classification model were reduced by selecting the optimum
feature vectors. Compared with traditional segmentation methods (FCM clustering, Otsu
thresholding, K-means clustering, superpixel clustering, and region growing), the modified
region-growing method achieved a high JI in the collected dataset at 0.94, with a DSC
of 0.95, PA of 0.93, and MPA of 0.90. The combination of the DWSCSO algorithm with
the PRSCNN model achieved high classification results in the collected dataset, i.e., the
F1 score was 99.48%, with a MCC of 99.53% and accuracy of 99.48%, which were better
than other combinations. Additionally, the developed DWSCSO-PRSCNN also provided
better performance in the CT dataset than the DL-ICH and GoogLeNet + (GLCM and
LBP), ResNet-50 + (GLCM and LBP), and AlexNet + (GLCM and LBP), which proves the
generalizability of detection. From the ANOVA results, post-hoc analysis, and confidence
intervals, the DWSCSO-PRSCNN denoted more statistically significant enhancements than
the existing methods. These outcomes offer robust proof that the DWSCSO-PRSCNN has
better performance in SAH grade detection. However, the generalizability of the model
is limited to the variations in imaging protocols and data from different clinical settings.
Moreover, the developed PRSCNN is sensitive to noise, missing data, and class imbalance
in real-world scenarios.

As a future extension, automated hyperparameter tuning, pruning inactive features,
handling of missing data, and cross-domain adaptation can be developed for addressing
the effectiveness of the model when processed with large-scale clinical applications. In
addition, inactive feature vectors in the CNN feature extraction can be eliminated to further
enhance the performance of SAH detection.
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