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Meškinis, Š. Synthesis and

Characterization of Boron Nitride

Thin Films Deposited by High-Power

Impulse Reactive Magnetron

Sputtering. Molecules 2024, 29, 5247.

https://doi.org/10.3390/

molecules29225247

Academic Editors: Sake Wang,

Nguyen Tuan Hung and

Minglei Sun

Received: 10 September 2024

Revised: 22 October 2024

Accepted: 25 October 2024

Published: 6 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Synthesis and Characterization of Boron Nitride Thin Films
Deposited by High-Power Impulse Reactive Magnetron Sputtering
Vytautas Stankus * , Andrius Vasiliauskas , Asta Guobienė , Mindaugas Andrulevičius
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Abstract: In the present research, hexagonal boron nitride (h-BN) films were deposited by reactive
high-power impulse magnetron sputtering (HiPIMS) of the pure boron target. Nitrogen was used
as both a sputtering gas and a reactive gas. It was shown that, using only nitrogen gas, hexagonal-
boron-phase thin films were synthesized successfully. The deposition temperature, time, and nitrogen
gas flow effects were studied. It was found that an increase in deposition temperature resulted in
hydrogen desorption, less intensive hydrogen-bond-related luminescence features in the Raman
spectra of the films, and increased h-BN crystallite size. Increases in deposition time affect crystallites,
which form larger conglomerates, with size decreases. The conglomerates’ size and surface roughness
increase with increases in both time and temperature. An increase in the nitrogen flow was beneficial
for a significant reduction in the carbon amount in the h-BN films and the appearance of the h-BN-
related features in the lateral force microscopy images.

Keywords: hexagonal boron nitride; reactive high-power magnetron sputtering; Raman; X-ray
photoelectron spectroscopy; AFM

1. Introduction

Two-dimensional (2D) nanomaterials, such as graphene, boron nitride (BN), and
molybdenum disulfide (MoS2) nanosheets, have many unique properties that can be useful
for various applications, such as composites, nanoelectromechanical systems, and sens-
ing, optoelectronic, and electronic applications. BN can form several different allotropes
with either sp2 or sp3 bonding. The sp2-bonded BN crystallizes in a hexagonal (h-BN)
or rhombohedral (r-BN) phase, and sp3 BN crystallizes in a cubic (c-BN) or wurtzite
(w-BN) phase [1]. Hexagonal boron nitride (h-BN) is a layered 2D nanomaterial that
is structurally analogous to graphene [2]. It has excellent physical properties, such as
an ultra-wide bandgap (~5.96 eV) [3], a high breakdown field (11.8 MV cm−1) [4], high
thermal conductivity (1000 W m−1K−1) [5], good thermal and chemical stability [6], and
piezoelectricity [7]. BN nanostructures also present excellent mechanical properties [8]. The
atomically thin layer can be assembled with various other 2D layers to create tunneling-
based devices, vertical or in-plane heterostructures, and bistable memory devices [9–11].
In particular, graphene and h-BN share very similar hexagonal crystal lattice parameters,
enabling epitaxial growth of low-defect-density graphene on boron nitride [12]. There-
fore, graphene/h-BN heterojunctions and multilayer-based microelectronic and photonic
devices are intensively studied [9]. In addition, hBN itself is a promising material for
such applications as ultraviolet-light emitters [13], single-photon emitters [14], gas barrier
films [14], and tunnel magnetic resistance devices [15]. Boron nitride thin films are synthe-
sized using various deposition techniques. Chemical vapor deposition is the most widely
used method for the large-scale production of h-BN layers at a low cost [16–18]. However,
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this technique uses transition metals (Cu, Ni, Fe, Pt, and Ir) as substrates, and a transfer pro-
cess from metal substrates to a suitable surface (generally a dielectric substrate) is required
for most device applications, which probably induces impurities and mechanical damage,
thereby degrading the performance of h-BN-based devices. The h-BN films deposited by
metalorganic vapor-phase epitaxy [19–21] and molecular beam epitaxy [22,23] are usually
grown on sapphire, which requires high substrate temperatures (>1000 ◦C) to compensate
for this substrate’s poor catalytic activity. Furthermore, h-BN has been synthesized at lower
temperatures by applying physical vapor deposition methods such as radio frequency (RF)
magnetron sputtering [24]. However, RF magnetron sputtering is known for low power
efficiency, high cost, and constraints in terms of scaling to large surface areas [25]. Thus, the
development of other physical-vapor-deposition-based hexagonal boron nitride deposition
methods is necessary.

Notably, high-power impulse magnetron sputtering (HIPIMS) is already success-
fully used for large-area industrial-scale coating deposition [26]. Compared to RF mag-
netron sputtering, high-power impulse magnetron sputtering ensures higher thin-film
density [27,28], much better control of the structure and stoichiometry [29], enhanced
adhesion [28], and higher stability [30]. However, there are few studies on h-BN film de-
position by HIPIMS [31–36]. In addition, in [31,32,34], LaB6 targets were used for h-BN
growth, because the pure boron target is insulating and, usually, it should be heated to
a temperature of 500 ◦C or higher to ignite the unipolar sputtering discharge [31,32,34,37].
In the case of hexagonal boron nitride deposition by boron target reactive HIPIMS, only Ar
and N2 gas flow ratio effects [36] and the influence of the boron isotope used as a sputtering
target material [33] were studied.

The aim and objectives of this research work are to investigate the synthesis of h-BN
thin films directly on noncatalytic Si(100) substrates by applying the reactive unipolar high-
power impulse magnetron sputtering (HiPIMS) technique, using a pure boron cathode and
nitrogen gas, and to investigate the influence of the deposition temperature and time and
the flow rate of nitrogen gas on the structure and composition of thin films. It was revealed
that there is no need for high-temperature heating of the boron target to ignite the sputtering
discharge, and the target temperature of 100 ◦C is enough for that purpose. Taking into
account the finding in [36] that h-BN can be grown using nitrogen gas alone instead of the
Ar/N2 gas mixture and the fact that the use of the Ar/N2 gas mixture provides no benefits,
in the present research, boron nitride films were deposited using N2 as both reactive and
sputtering gas. However, it was revealed that the nitrogen gas flow must be maximized to
minimize the concentrations of unwanted impurities, such as carbon and oxygen, in the film.
It was found that the h-BN films’ deposition temperature and time also influenced the h-BN
structure and composition. Control of the h-BN nanocrystallite size and decreased intensity
of the samples’ Raman spectra luminescence hump and background were achieved.

2. Results and Discussion

In the present research, the effects of the deposition temperature and time and the
nitrogen gas flow on the structure of h-BN films were investigated by Raman scattering
spectroscopy. Figure 1a shows the original Raman spectra of the deposited h-BN films
grown at different substrate temperatures, with a 60 min deposition time and a 152 sccm
nitrogen gas flow.

The main peak at ~1370 cm−1 is observed at all deposition temperatures. It can be
assigned as an h-BN E2g peak related to in-plane, Raman-active vibrations [38,39]. No h-
BN-related peaks were observed in the spectra of the samples grown at temperatures below
480 ◦C. In spectra of the films grown at lower temperatures, a strong luminescence hump
and luminescence background are seen, which decreases and almost disappears at higher
substrate temperatures. Figure 1b shows a view of the hexagonal boron nitride-related
peaks with a removed background and deconvoluted curves. The peak’s central position
is down-shifted with the deposition temperature. Fitted values of full width at half maxi-
mum (FWHM) and the peak’s central position are shown in Figure 1c. FWHM decreases
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from 38.01 ± 0.96 to 28.13 ± 0.96 cm−1 wavenumbers with increasing temperature, while
central position, as was mentioned above, shifts from 1371.3 ± 0.3 to 1368.8 ± 0.3 cm−1

wavenumber. Figure 1d shows crystal sizes calculated using Equations (1) and (2). The
size of the crystallites calculated using FWHM increases from 4.50 ± 0.46 to 6.50 ± 0.46 nm
with increasing deposition temperature from 480 to 1070 ◦C. A similar effect of crystallite
size depending on substrate temperature was reported for h-BN films deposited by RF
sputtering [40]. Crystallite sizes calculated using h-BN peak position rise with synthesis
temperature from 4.50 ± 1.21 to ~10.00 ± 1.21 nm. We suppose that peak position shifting
is affected by two factors—change in the crystallite sizes [41–43] and strains induced in the
film [44,45]. So, the larger size of the crystallites calculated using the h-BN peak position
can be explained by strain appearance in the films grown at higher temperatures, which
results in additional peak shifts. There are theoretical studies about the grain size and stress
relationship in BN which have established that strength, toughness, Young’s Modulus,
and energy release rate all have a declining trend along with a decrease in grain size. At
the same time, the ultimate strain increases as grain sizes decrease. These properties stem
from the heterogeneity of BN, and the effect of this heterogeneity on the behavior of grain
boundaries [46] and tensile strength and strain decreased after introducing vacancy defects
in the hBNNR structure [47]. In our case, the grain boundaries play the same role as
vacancies—the larger the crystallites, the less grain boundaries between them.
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Figure 1 shows that larger crystallite values were calculated using the peak position
compared to those obtained using the peak FWHM for samples deposited at temperatures
higher than 900 ◦C. Boron nitride tensile strain results in E2g Raman peak downshift [38]
and compressive strain—in upshift [48]. Thus, the presence of the tensile strain in boron
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nitride samples grown at temperatures higher than 900 ◦C can be supposed. That can be
explained by the thermal stress appearance during the cooling due to the different thermal
expansion coefficients of boron nitride and silicon [49,50]. Therefore, to avoid possible
adverse effects of excessive thermal stress while maximizing h-BN crystallite size, the boron
nitride growth temperature was set at 820 ◦C in subsequent experiments. Deposition time
and nitrogen gas flow effects were investigated.

Figure 2a shows the original Raman spectra of the deposited h-BN films, grown at
different times (from 30 to 180 min), 820 ◦C deposition temperature, and 152 sccm nitrogen
gas flow. We see the main peak of hBN, attributed to ~1370 cm−1 of wavenumber. We
can see the increase in luminescence hump with increasing deposition time. Figure 2b
shows the high resolution of main peaks with removed background and deconvoluted
curves. The broadened and slightly shifted peaks can be seen; we also see an increase in
intensity with increasing deposition time. Fitted values of FWHM and the peak’s central
position are shown in Figure 2c, which shows that FWHM increases from 28.80 ± 0.96 to
34.50 ± 0.96 cm−1 of wavenumber with increasing deposition time, while central position,
as was mentioned above, shifts from 1371.2 ± 0.3 to 1368.9 ± 0.3 cm−1 wavenumber.
Figure 2d shows calculated crystal sizes. Using the calculation from FWHM, the crystallites’
size decreases from 6.5 ± 0.46 to 4.8 ± 0.46 nm with increasing deposition time from 30 to
180 min. Using calculations from peak center shifting, we see that crystallite sizes change
from 5.5 ± 0.96 to 2.3 ± 0.96 nm, and the inclination of dependence is different. As was
described above, the different inclinations can be explained by the strain effect appearing
in crystallites.
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Figure 3a shows the original Raman spectra of the deposited h-BN films, grown
using different nitrogen gas flows at a constant 820 ◦C deposition temperature and de-
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position time of 60 min. We see the main peak of hBN, attributed to ~1370 cm−1 of
wavenumber. A luminescence hump is clearly visible in the spectra of the sample de-
posited with 152 sccm of nitrogen gas flow. Increasing flow to 197 sccm gives the disap-
pearance of the luminescence hump and background. Figure 3b shows the high resolution
of main peaks with removed background and deconvoluted curves. An increase in in-
tensity with increasing nitrogen gas flow is observed. Fitted values of FWHM and the
peak’s central position are presented in Figure 3c, which shows that FWHM decreases
from 32.50 ± 0.96 to 31.40 ± 0.96 cm−1 with increasing gas flow. The h-BN peak posi-
tion is slightly downshifting. Figure 3d shows calculated crystal sizes. With increas-
ing nitrogen gas flow, the crystallite size calculated using FWHM values increases from
5.36 ± 0.46 to 5.65 ± 0.46 nm. The crystallite sizes estimated using h-BN peak position
raised from 4.57 ± 0.93 to 6.02 ± 0.93 nm. As was described above, the different crystallite
sizes calculated using FWHM and peak position can be explained by the strain effect
appearing in crystallites.
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Figure 4 shows AFM pictures, where (a–d) are from samples deposited at different
temperatures (at a constant deposition time of 60 min) and (e–h) are from samples deposited
at different times (from 30 to 180) when deposition temperature was constant at 820 ◦C.
Meanwhile, Figure 4i,j shows surface roughness Rq dependent on deposition temperature
and time. In (a–d), we see that deposition temperature influences the size of grains. So, at
820 ◦C, we see a fine-grained structure. It was determined by analyzing AFM images that
there are 1–2 nm high and 20–40 nm wide elements and their derivatives (Figure 4a). At
950 ◦C temperature, pits and grains are seen. The pits’ depth is 0.5 nm and the width is
25–30 nm. The height of the grains is 0.5–1 nm and the width is 25–30 nm (Figure 4b). A
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deposition temperature increase to 1000 ◦C results in 2–3.5 nm height and 130 nm width
ribbons consisting of 200 nm long segments (Figure 4c). At 1070 ◦C temperature, we can
observe interlaced grains of 50 nm width, 150 nm length, and 4–6 nm height (Figure 4d).
In Figure 4e–h, we see that deposition time influences the size of grains. A fine-grained
structure was grown after 30 min of deposition (at a constant 820 ◦C temperature). Grain
height is up to 2 nm and width is 15–20 nm (Figure 4e). After 60 min deposition, 0.5
nm depth and 25–30 nm width pits and 0.5–1 nm height and 25–30 nm width grains are
seen (Figure 4f). After 90 min, growth elements and their derivatives of 1–2 nm height
and 20–40 nm width dominate (Figure 4g). The AFM image drastically changed after 180
min deposition—structural elements of 15–20 nm height and 320–360 nm width are seen
(Figure 4h). Although the increase in grain size during the increase in time contradicts
measurements of crystallites using Raman spectroscopy, it can be explained that grains
are conglomerates that consist of nanocrystallites. That can be seen in Figure 4h, where
grains consist of smaller objects corresponding to sizes determined by Raman spectroscopy.
Figure 4i shows surface roughness Rq dependent on deposition temperature (at a constant
deposition time of 60 min). Rq increases (from 0.5 to 1.25 nm) with increasing temperature.
The effect of deposition time is similar—apart from fluctuations at 30–90 min, we see
a strong roughness increase from ~0.5 to 4.7 nm (Figure 4j).
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Figure 4. AFM images of samples deposited at (a) 820 ◦C, (b) 950 ◦C, (c) 1000 ◦C, and (d) 1070 ◦C
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In Figure 5, AFM (a) and lateral force microscopy (LFM) (b) images of the sample
deposited at 820 ◦C temperature, 60 min growth time, and 197 sccm nitrogen gas flow are
shown. We see structural elements of 10–15 nm height, 180–200 nm width, and 200–240 nm
length. Comparing the image of a sample deposited at the same conditions (Figure 4a) but
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with a different gas flow (152 sccm), we see that an increase in nitrogen gas flow strongly
influences the grain size. The image is similar to Figure 4h; only lateral force microscopy
shows (at the right) that the surface has visible hexagonal structures (marked areas). That
is typical of a pure boron nitride surface [20].
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For the surface chemical composition evaluation, the samples were analyzed using
XPS. The survey spectra for all samples were collected and compared. In Figure 6, spectra
for several samples are depicted. The spectra showed very similar patterns for all samples;
only the intensity of the main peaks for nitrogen and boron was different, according to the
calculated surface atomic concentrations (Table 1).
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Table 1. Calculated surface atomic concentrations. Samples are named T (temperature ◦C), D (deposition
time min.), and N—increased (197 sccm) nitrogen flow.

Sample O 1s N 1s C 1s B 1s

T331D180 18.7 26.4 16.9 38.0
T820D180 7.9 32.1 21.7 38.3
T820D30 6.1 39.0 15.9 38.9
T820D60 4.3 37.1 15.3 43.4
T480D60 5.4 40.9 15.1 38.6

T820D60N 5.85 43.65 3.29 47.2

High-resolution XPS spectra in the N 1s and B 1s regions were scanned and deconvo-
luted for chemical bond detection (Figure 7). Figure 7a shows the spectra of the sample
T820D60, deposited at 820 ◦C temperature, 60 min time, and 152 sccm nitrogen gas flow.
Figure 7b shows the spectra of the sample T820D60N, deposited at the same conditions
but with a larger nitrogen gas flow (197 sccm). In Figure 7a,b, the main peak at 397.8 eV
indicates that most of the nitrogen is bonded to boron, as described in the literature [51–53].
The low-intensity peak at 398.5 eV was attributed to N-C bonds [51–53].
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Figure 7. Deconvolution of high-resolution XPS spectra in the N 1s and B 1s regions: for the sample
T820D60, deposited at 820 ◦C temperature, 60 min time, and 152 sccm nitrogen gas flow (a,c); for the
sample T820D60N, deposited at 820 ◦C temperature, 60 min time, and 197 sccm nitrogen gas flow
(b,d). Circles—acquired spectra; red line—envelope; thin black lines—fitted peaks.

Figure 7c,d presents the deconvolution of high-resolution XPS spectra in the B 1s
region for the same T820D60 and T820D60N samples. The main peak at 190 eV indicates
that most of the boron is bonded to nitrogen, in agreement with nitrogen bonds in the N
1s region. The position of this peak corresponds to known values of B-N bonds reported
in the literature [51–53]. The low-intensity peak at 190.8 eV could be attributed to B-O
bonds [51,52] due to adsorbed atmospheric oxygen.
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3. Materials and Methods

The boron nitride thin films were synthesized by the reactive high-power impulse
magnetron sputtering (Hippies) method. The initial vacuum pressure was 8 × 10−6 mBar.
After reaching the initial vacuum, nitrogen (or nitrogen mixture with argon) gas was
injected into the vacuum chamber. A too low or too high working pressure does not allow
ignition of plasma. The working pressure was 9 × 10−3 and 1.8 × 10−2 mBar. It should
be mentioned that, under normal conditions (room temperature), igniting the plasma was
impossible due to the high resistivity of the boron cathode. Therefore, typically, the boron
cathode is sputtered using RF magnetron sputtering systems [54–56] or impurities-added
boron LaB6 [32] and B4C [57] cathodes are used. In our case, for ignition of plasma and
carrying out the sputtering process, the boron cathode was heated with a heat lamp (at
an angle of 45◦ and a distance of 20 cm from the cathode) in a vacuum before starting the
process. The boron cathode was isolated from the cooling of the magnetron using thin
(0.5 mm) quartz plates. After heating the boron cathode to a temperature of 100 ◦C, the
resistivity of boron decreases up to 30 times (as was measured before). As a result, the
plasma ignites and the plasma discharge maintains the elevated temperature of the cathode.
An unbalanced magnetron (Milko Angelov Consulting Co., Plovdiv, Bulgaria) with a high-
purity (99.99%) boron target (Kurt J. Lesker Company GmbH, Dresden, Germany) was
used. The pulse DC power controller SPIK2000A (Melec GmbH, Baden-Baden, Germany)
was applied to generate high-power pulses. Prime-grade double-sided polished n-type
monocrystalline Si (100) wafers (Sil’tronix Silicon Technologies, Archamps, France) were
used as a substrate. The substrate was placed parallel to the plane of the cathode at
a distance of 15 cm. Impulse parameters were chosen: tOn = 17 µs, tOf = 150 µs, impulse
current I = 1.2 A. The average current was constant during all processes, about ~0.12 A,
and the average voltage was ~930 V. The pulse parameters were chosen as such because
obtaining the boron nitride phase was impossible when the toff-to-ton ratio was too low.
The deposition time was chosen from 30 to 180 min (the shorter time gives too thin a film
for Raman measurements, and growth time over 180 min results in no apparent changes
in structure). The h-BN thin films’ synthesis requires an appropriate temperature, and it
is in a relatively wide range (500~1000 ◦C) [58–61], depending on the method and other
parameters. Our purpose was to investigate the broadest possible range of temperatures
for the case of our method. Samples were deposited on substrates at different temperatures
(200 to 1050 ◦C) using different deposition times. Detailed deposition conditions are listed
in Table 2. The film thickness was determined using a laser ellipsometer Gaertner L-115
operating with a He–Ne laser (λ = 632.8 nm). Raman scattering measurements were
performed using a Raman microscope inVia (Renishaw Wotton-under-Edge, UK). The
excitation beam from a diode laser of 532 nm wavelength was focused on the sample using
a 50 × objective (NA = 0.75, Leica, Solms, Germany). Laser power at the sample surface
was 1.75 mW, integration time was 10 s or 100 s, and the signal was accumulated once.
The Raman Stokes signal was dispersed with a diffraction grating (2400 grooves/mm),
and data were recorded using a Peltier—cooled charge-coupled device (CCD) detector
(1024 × 256 pixels). The Raman setup in both Raman wavenumber and spectral intensity
was calibrated using silicon. We used the Levenberg–Marquardt method to calculate the
best-fit parameters that minimize the weighted mean square error between the observations
in Y and the best nonlinear fit. The two main parameters of the Gauss function, full width
at half maximum (FWHM) and peak center, were calculated using this method.

From the fitted Raman spectra, using two parameters (FHWM and center position
(shifting of central position from largest values of crystallites—∆)), the crystallite size La of
the hBN films can be estimated by extending the Nemanich model for hBN microcrystallites
to hBN films [41]. This method also was reported in a few other studies [62–64]. According
to the Nemanich model for hBN microcrystallites [41] from the FWHM and ∆ values:

La =
1417

FWHM − 8.70
(1)
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La =
380·10−8

∆ + 0.29
(2)

Raman scattering measurements were performed at least 3 times in different sample
places, and the average values were calculated. The luminescence hump and luminescence
background of the Raman scattering spectra of different h-BN films were estimated by
calculating the ratio of the luminescence hump maximum intensity and h-BN Raman peak
intensity, as well as the ratio of the luminescence background line slope and h-BN Raman
peak intensity. Atomic force microscopy (AFM) experiments were carried out at room
temperature using a NanoWizardIII atomic force microscope (JPK Instruments, Bruker
Nano GmbH, Berlin, Germany). At the same time, the data were analyzed using JPKSPM
Data Processing software (Version spm-4.3.13, JPK Instruments, Bruker Nano GmbH).
The AFM images were collected using an ACTA (Applied NanoStructures, Inc., Moun-
tain View, CA, USA) probe (silicon cantilever shape—pyramidal, the radius of curvature
(ROC) < 10.0 nm and cone angle 20◦; reflex side coating—Al with a thickness of 50 ± 5 nm,
force constant ~40 N m−1, and resonance frequency in the range of 300 kHz). Height,
amplitude, and lateral imaging were recorded using steps with scan sizes of 2 µm and scan
speeds of 1 Hz. The integral gain was set as 2, while the proportional gain was set as 5.
Pixels for samples and lines were 516 × 516, operating in contact mode. The film’s sur-
face composition was analyzed using the X-ray photoelectron spectroscopy (XPS) method.
An X-ray photoelectron spectrometer XSAM800 (Kratos, Manchester, UK) equipped with
a nonmonochromatic Al Ka radiation (1486.6 eV) excitation source was used for surface
atomic calculations and survey spectra. A hemispherical electron energy analyzer was
set to fixed analyzer transition (FAT) mode and 20 eV pass energy. A 0.5 eV increment of
binding energy was used to acquire the survey. The energy scale of the system was cali-
brated using the peak positions of Au 4f7/2, Ag 3d5/2, and Cu 2p3/2. The base pressure
in the analytical chamber was less than 5.8 × 10−8 Pa. Thermo Scientific ESCALAB 250Xi
spectrometer with monochromatic Al Kα radiation (hν = 1486.6 eV) excitation was used
for high-resolution spectra measurements and curve-fitting procedure. The hemispherical
electron energy analyzer pass energy value of 20 eV was used. The energy scale of the
system was calibrated with respect to Au 4f7/2, Ag 3d5/2, and Cu 2p3/2 peak positions.
ESCALAB 250Xi Avantage software V5 was used for the peak deconvolution. All spectra
fitting procedures were performed using symmetrical peaks and a 70:30 Gauss–Lorentz
function ratio, except for the graphitic carbon peak, which was fitted using an asymmetrical
peak shape and a Lorentzian–Gaussian function at a 70:30 ratio.

Table 2. Deposition conditions. Samples named T (temperature ◦C), D (deposition time min.), and
N—increased (197 sccm) nitrogen flow.

Sample N2 Gas Flow, sccm Working
Pressure, mmBar

Deposition
Temperature, ◦C

Deposition
Time, min Thickness, nm

T330D180 152 9.3 × 10−3 330 180 255 ± 15
T820D180 152 9.3 × 10−3 820 180 210 ± 40
T820D30 152 9.4 × 10−3 820 30 60 ± 10
T820D90 152 9.4 × 10−3 820 90 190 ± 20

T1000D60 152 9.3 × 10−3 1000 60 75 ± 5
T1070D60 152 9.4 × 10−3 1070 60 80 ± 20
T950D60 152 9.3 × 10−3 950 60 77 ± 7
T820D60 152 9.3 × 10−3 820 60 117 ± 3
T690D60 152 9.2 × 10−3 690 60 150 ± 10
T580D60 152 9.2 × 10−3 580 60 165 ± 15
T480D60 152 9.4 × 10−3 480 60 152 ± 12

T820D60N 197 1.8 × 10−2 820 60 107 ± 7
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4. Discussion and Conclusions

As was mentioned above, a significant luminescence hump and luminescence back-
ground was seen in the Raman spectra of most h-BN films studied in this research. In this
case, h-BN films contained at least 15 at.% of carbon. It should be mentioned that, in the
case of the h-BN films deposited by reactive magnetron sputtering, a significant amount of
carbon or oxygen impurities were found in numerous studies. Notably, the carbon content
in h-BN films grown by RF reactive magnetron sputtering was as high as 20.83 at.%, and it
decreased to about 8.98 at.% after the surface cleaning by argon ion [65]. In [66], the total
amount of oxygen and carbon in the magnetron-sputtering-deposited h-BN films was much
higher than in our study, in the 31–69 at.% range. A significant amount of carbon impurity
in h-BN films was reported in [67]. In [68], the B-O component in the B1s peak was stronger
than in our case, and the C-N fitting component area of the N1s peak was similar to that
observed in our study. Chng, S. S. et al. found a significant amount of oxygen in most
magnetron-sputtering-deposited h-BN films investigated in their study [36]. Carbon atomic
concentration in h-BN films was decreased below 5 at.% only after selecting the appropriate
additional hydrogen gas flow [69]. Thus, in the case of magnetron-sputter-deposited h-BN
films, deposition conditions must be optimized to avoid film contamination by carbon or
oxygen. In our case, the carbon amount in the films was minimized after the increase in the
nitrogen gas flow and the related significant increase in the work pressure. Thus, the effects
of the residual gas, along with the possible presence of the carbon-containing adsorbates,
can be supposed.

Regarding the peculiarities of the Raman spectra of the h-BN films deposited in our
study, it should be mentioned that the Raman spectra, very similar to those of the h-BN
films grown in the present study at lower temperatures, were reported in [70]. Notably,
Raman scattering spectra of h-BN films produced by vacuum annealing of the borazine
amine polymer at 1600 ◦C temperature contained both h-BN-related sharp peak and
a very broad luminescence hump with a maximum at ~2400 cm−1 [70]. It should be men-
tioned that a very broad Raman peak without any characteristic bands was observed for
BCxN (0 < x < 2) films deposited by plasma-enhanced chemical vapor deposition in the
1000–3000 cm−1 range [61]. It was attributed to the fluorescence from the h-BN defects
without indicating the nature of those defects. A luminescence hump or luminescence back-
ground was reported for the h-BN flake implanted by high-energy Ga ions and annealed at
820 ◦C [71]. It was explained by defect migration due to the annealing at 850 ◦C and the
resulting transformation of the boron vacancies to the anti-site nitrogen vacancy complex
(NBVN) defects [71]. However, in our case, the luminescence hump and background are
more pronounced for films deposited at a temperature below 850 ◦C, contradicting the [71]
hypothesis. A broad Raman peak with a maximum in the 1150–1400 cm−1 range was re-
ported for amorphous BN films containing up to 15 at.% of carbon [72]. It should be noted
that the B-H stretching modes can be found at 2291 cm−1 and 2382 cm−1, respectively [73].
Meanwhile, positions of the N-H bond vibration-related bands seem to be beyond the lumi-
nescence hump range reported in the present study (3176 cm−1, 3251 cm−1, and 3312 cm−1

wavenumbers) [73]. Thus, the luminescence hump can be partially related to the presence
of the B-H bonds. On the other hand, in the present study, a luminescence hump was
found for samples containing >15 at.% of carbon. At the same time, it was absent for
samples containing less than 5 at.% of carbon. It is in good accordance with the studies
mentioned above, in which a luminescence hump was reported for boron nitride films
containing a significant amount of carbon [61,72]. The position of the C-C-bond-related
Raman peaks is usually below 1700 cm−1 in amorphous carbon films [74]. However, C-H
bond vibrations related to Raman peaks can be observed in the 2000–2200 cm−1 range [75].
The luminescence background can also be associated with the C-H bonds. Particularly,
the ratio of the slope of the Raman spectra luminescence background line and G peak
intensity is proportional to the bonded hydrogen amount in the diamond-like carbon
films [74,76], and even a significant luminescence background slope with no characteristic
Raman peaks was reported for hydrogenated amorphous carbon films containing >40 at.%
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of hydrogen [74,77]. The bonded hydrogen amount in the film should decrease with the
increase in deposition temperature due to the desorption of hydrogen atoms caused by the
B-H and C-H bond breakage [78–82]. That is in accordance with the present study, as seen in
Figure 8. Thus, the observed luminescence hump can be explained by the formation of B-H
and C-H bonds, and the presence of C-H bonds can explain the luminescence background.
In this case, the increase in deposition temperature results in faster hydrogen desorption
and a subsequent decrease in the h-BN luminescence-related features of the Raman film
spectra. However, the increase in nitrogen gas flow was the most effective measure result-
ing in a significant decrease in the carbon amount in the film and a disappearance of the
luminescence hump and luminescence background. The main factor can be supposed to
be the increase in work pressure, while the base pressure remained the same, causing the
residual gas to have a decreased influence on the growing film composition. Therefore,
much fewer carbon and hydrogen atoms were incorporated into the films, and the number
of C-H as well as B-H bonds was significantly decreased.
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In conclusion, hexagonal boron nitride films were deposited by high-power impulse
reactive magnetron sputtering. Too low a nitrogen gas flow resulted in the formation of
films containing a significant amount of carbon and the formation of C-H and B-H bonds.
Increased synthesis temperature resulted in hydrogen desorption, less intensive hydrogen-
bond-related luminescence features in Raman spectra of the films, and increased h-BN
crystallite size. At the same time, in boron nitride samples grown at temperatures higher
than 900 ◦C, tensile strain can be induced due to the thermal stress. The rise in nitrogen
gas flow resulted in a significantly reduced carbon amount, the disappearance of the
luminescence features in Raman scattering spectra of deposited films, and the appearance
of h-BN-related features in the lateral force microscopy images of the boron nitride films.
That was explained by decreased residual gas influence due to increased work pressure.
Thus, h-BN film deposition temperature and nitrogen gas flow must be optimized to grow
h-BN films containing fewer impurities and a more considerable amount of the h-BN phase.
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Wysmołek, A. Defects in Layered Boron Nitride Grown by Metal Organic Vapor Phase Epitaxy: Luminescence and Positron
Annihilation Studies. J. Lumin. 2024, 269, 120486. [CrossRef]

20. Yang, X.; Nitta, S.; Nagamatsu, K.; Bae, S.-Y.; Lee, H.-J.; Liu, Y.; Pristovsek, M.; Honda, Y.; Amano, H. Growth of Hexagonal Boron
Nitride on Sapphire Substrate by Pulsed-Mode Metalorganic Vapor Phase Epitaxy. J. Cryst. Growth 2018, 482, 1–8. [CrossRef]

21. Li, X.; Sundaram, S.; El Gmili, Y.; Ayari, T.; Puybaret, R.; Patriarche, G.; Voss, P.L.; Salvestrini, J.P.; Ougazzaden, A. Large-Area
Two-Dimensional Layered Hexagonal Boron Nitride Grown on Sapphire by Metalorganic Vapor Phase Epitaxy. Cryst. Growth
Des. 2016, 16, 3409–3415. [CrossRef]

22. Cheng, T.S.; Summerfield, A.; Mellor, C.J.; Khlobystov, A.N.; Eaves, L.; Foxon, C.T.; Beton, P.H.; Novikov, S.V. High-Temperature
Molecular Beam Epitaxy of Hexagonal Boron Nitride with High Active Nitrogen Fluxes. Materials 2018, 11, 1119. [CrossRef]
[PubMed]

https://doi.org/10.1016/S0925-9635(97)00143-X
https://doi.org/10.1021/nn1006495
https://www.ncbi.nlm.nih.gov/pubmed/20462272
https://doi.org/10.1038/s41586-020-2375-9
https://www.ncbi.nlm.nih.gov/pubmed/32581381
https://doi.org/10.1021/acsaelm.9b00816
https://doi.org/10.1103/PhysRevLett.125.085902
https://doi.org/10.1016/j.vacuum.2014.11.009
https://doi.org/10.1002/adma.201905504
https://doi.org/10.1038/ncomms15815
https://doi.org/10.1039/C5CS00869G
https://doi.org/10.1126/science.1218461
https://doi.org/10.1038/ncomms7835
https://www.ncbi.nlm.nih.gov/pubmed/25869236
https://doi.org/10.1039/D1NR03733A
https://www.ncbi.nlm.nih.gov/pubmed/34477725
https://doi.org/10.1038/nmat1134
https://www.ncbi.nlm.nih.gov/pubmed/15156198
https://doi.org/10.1021/nn500059s
https://doi.org/10.1021/acsnano.8b01354
https://doi.org/10.1021/accountsmr.2c00061
https://doi.org/10.1016/j.nanoms.2021.03.002
https://doi.org/10.1038/s41928-022-00911-x
https://doi.org/10.1016/j.jlumin.2024.120486
https://doi.org/10.1016/j.jcrysgro.2017.10.036
https://doi.org/10.1021/acs.cgd.6b00398
https://doi.org/10.3390/ma11071119
https://www.ncbi.nlm.nih.gov/pubmed/29966333


Molecules 2024, 29, 5247 14 of 16

23. Vuong, T.Q.P.; Cassabois, G.; Valvin, P.; Rousseau, E.; Summerfield, A.; Mellor, C.J.; Cho, Y.; Cheng, T.S.; Albar, J.D.; Eaves, L.;
et al. Deep Ultraviolet Emission in Hexagonal Boron Nitride Grown by High-Temperature Molecular Beam Epitaxy. 2D Mater.
2017, 4, 021023. [CrossRef]

24. Rigato, V.; Spolaore, M.; Della Mea, G. Deposition of Boron Nitride Coatings by Reactive Rf Magnetron Sputtering: Correlation
Between Boron and Nitrogen Contents and the Flux of Energetic Ar+ Ions at the Substrate. MRS Proc. 2011, 396, 557. [CrossRef]

25. Oks, E.; Anders, A.; Nikolaev, A.; Yushkov, Y. Sputtering of Pure Boron Using a Magnetron Without a Radio-Frequency Supply.
Rev. Sci. Instrum. 2017, 88, 4. [CrossRef]

26. Vetter, J.; Shimizu, T.; Kurapov, D.; Sasaki, T.; Mueller, J.; Stangier, D.; Esselbach, M. Industrial Application Potential of High
Power Impulse Magnetron Sputtering for Wear and Corrosion Protection Coatings. J. Appl. Phys. 2023, 134, 16. [CrossRef]
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