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Abstract: Compression therapy can be successfully applied to the treatment of amputated limbs.
Compression is known to speed healing and reduce the appearance of complex scars. This is
particularly relevant as the number of amputations increases, especially during times of war, such as
the current war in Ukraine. For the research presented in this article, compression knits of two pattern
repeats and twelve structural variations each were created. We investigated how the compression
generated by the knit is influenced by the main factors which theoretically could have an effect:
knitting pattern, density of loops, speed of the wheel supplying elastomeric inlay-yarn into the
knitting zone, and elongation resulting from the difference between the knitted limb cover and limb
circumference. It was found that in the area of low elongations (up to 50%) of the investigated
elastomeric knits, the speed of supply of the inlay-yarn does not have a significant influence on
the compression. However, the effect of loop density and knitting elongation on the generated
compression is significant and manifests linearly. In addition, the established equations can be used
for compression prediction and knitting design according to the required compression class.

Keywords: compression cover; compression therapy; knitted structure; medical application

1. Introduction

The concept of medical textiles is very broad, including textile products with various
purposes and different levels of complexity and structure [1–4]. A large part of medical
textile products consists of products intended for compression therapy. This group includes
compression stockings for the prevention and treatment of varicose veins, orthopedic
compression supports or bandages for the treatment and prevention of joint injuries and
diseases, compression covers for the treatment of wounds and scars, etc. [1,5,6]. Compres-
sion pressure is defined as the normal force that acts on the surface area of a body. This force
appears due to the difference in the circumferences of the compression product and the
body, i.e., due to the fact that the compression product is worn in a stretched state [5,7,8].

One of the fields where compression therapy can successfully be applied is the treat-
ment of amputated limbs. There is a wide range of reasons for limb amputation, like traffic
accidents, industrial and home injuries, gunshot injuries, burns, diabetes, etc. During
war, common injuries are gunshot wounds, which often result in limb amputations when
amputation is the only way to save patients’ lives and prevent further development of
disease. Since 2014, the war in Ukraine has touched almost every family and has caused
an increase in the number of people with amputated limbs regardless of the field of em-
ployment: soldiers or medics, rescuers or volunteers, teachers, farmers, etc. It has been
established that the causes of traumatic limb amputation in this context are as follows:
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78.4%—mine-explosive injuries, 11.7%—explosive wounds, 5.9%—gunshot wounds. Al-
most 84.3% of military personnel have lost one, 13.7% lost two, and 2% lost three limbs.
According to the data of the Military Medical Clinical Center of the Western Region for the
period of February–September, 2022, 63.3% of wounded soldiers suffered a combat limb
injury, and among them, 17.8% were injured by firearms, 10.4% by shrapnel, and 68.1%
by mine-explosion, while 5.8% of the victims were treated for amputated stumps [9]. In
contrast to the non-traumatic type of amputations, the age of injured military personnel
varies from 19 to 60 years. The frequency of amputation of different segments of the upper
limb is as follows: 29.0%—shoulder segment, 40.3%—elbow segment, and 30.6%—hand.
The frequency of amputation of the femoral (42.6%) and tibial (41.1%) segments of the
lower limb is higher than that of the foot (16.3%) [9,10]. These statistical data should be
taken into account when determining the need for prosthetics of limbs. Pre-prosthetic
rehabilitation involves compression therapy, scar massage, stump hygiene, and phantom
pain management. Swelling is a big problem during this period. Compression therapy is
the method for its prevention. At the same time, the purpose of this therapy is to correct
stump formation (keloids and hypertrophic scar formation [11]), to repair the scars, and to
reduce phantom pain. When constant compression, higher than the pressure of capillary
vessels, is applied to the treatment of amputated limbs, it affects the formation of keloids
and significantly prevents their hypertrophy. Scars heal faster and more evenly. Prolonged
pressure slows down metabolism and decreases the number of fibroblasts [12]. A variety of
compression covers for amputated limbs are described in detail in [1].

Covers for amputated limbs are usually produced by using circular weft-knitting
technology. Innovative textile technologies and product design provide a wide range of
opportunities to improve, optimize, and individualize compression therapy [7,13]. One of
the essential elements of compression therapy is the selection of the required knitted struc-
ture and its technological and physical–mechanical parameters, such as the loop length,
loop density, and principle of laying of elastomeric yarns, which ensure the application
of the desired value of compression for the treatment of amputated limbs. Knitted com-
pression products are produced by using at least two different systems of yarns: ground
yarns, which ensure the thickness and stiffness of the product, and highly stretchable
inlay-yarns [1,14,15]. Elastomeric yarns with high stretch are inserted into the product
structure to create the required level of pressure on the body [1,5]. These yarns can be
inserted into the knitted structure as a plated yarn or as an inlay-yarn. If the elastomeric
yarn is used as the plated yarn, it creates conventional loops, and such a knitted structure
can be used for light-compression therapy. If the elastomeric yarn is used as the inlay-yarn,
it in turn creates floats and tucks or is laid relatively straight; a knitted structure with
elastomeric inlay-yarns enables the production of compression products with a very wide
range of compression level. Straight-laid elastomeric yarns are usually used in the structure
of orthopedic supports worn for joint fixation, when a third or fourth compression class is
required, while in the structure of compression socks or amputated limb covers, elastomer
yarns are usually laid as a tuck–float [1]. However, in each case, it is very important to
determine the most suitable repeat of the arrangement of tucks and floats, or more precisely,
the length of the float between two adjacent tucks.

It is known that the raw material and the linear density of elastomeric inlay-yarn
covering yarns do not affect the generated compression if the product is used in an area
of low and moderate elongations (up to 50% of the elongation). Furthermore, the linear
density of the elastomeric core of the inlay-yarn does not have a significant influence on
the generated compression either if the product is used in an area of low and moderate
elongations [14]. The number of elastomeric yarns in the knitted structure (i.e., their density
in the knitted structure) and the degree of bending of the elastomeric yarn, whether it is
laid relatively straight or forms knitted elements such as loops or tucks (this depends on the
knitting pattern), can have a significantly greater influence on the compression. Another
parameter that affects the tensility of a knit and theoretically could affect the compression
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is loop density. However, this must be considered in conjunction with other parameters,
such as the knitting pattern and initial pre-tension of the elastomeric yarn.

Since sources in the literature sometimes contain contradictory statements about the
influence of elastomeric inlay-yarn properties and knitting density on product compression,
it is necessary to evaluate the influence of these parameters for each specific type of
compression products separately, taking into account the required compression class and
wearing conditions. The aim of this research was to determine the main technological
parameters of knitted compression covers influencing the generated compression and
to provide recommendations on what kind of knitted structure is the most suitable for
compression covers for the treatment of amputated limbs.

2. Materials and Methods

Two types of knitting patterns, with laying repeats of elastomeric yarn of 3 × 1 and
1 × 1, three variants of course density, and four variants of elastomeric inlay-yarn were
chosen to develop weft-knitted structures of compression covers for the treatment of am-
putated limbs. In total, twenty-four variants of tubular knitted covers were developed
and produced on a circular 13E gauge weft-knitting machine with a cylinder diameter of
3.75 inches and 168 needles in the cylinder. Cotton yarn with a linear density of 20 tex
and textured polyamide yarn with a linear density of 4.4 tex and a 2.2 tex linear density
polyurethane core were used for the plated ground structure of the knits, and the same tex-
tured polyamide yarn with a 4.4 tex linear density and a 2.2 tex linear density polyurethane
core was used as the elastomeric inlay-yarn. The main structural parameters and notations
of the specimens are presented in Table 1. A principal view of the knitted structures is
presented in Figure 1.
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Figure 1. Principal view and construction of knitted specimens: (a) 1st group of specimens with the
pattern repeat 3 × 1; (b) 2nd group of specimens with the pattern repeat 1 × 1.

Compression was calculated according to the theory of Laplace’s law [7,16], according
to which a cylindrical model of a human limb was used to design a compression garment
with the required compression level:

P =
2πF

S
, (1)

where P is the compression in Pa; F is the tensile force in N; S is the product area in mm2.
The perimeter of the cylindrical compression cover was calculated by measuring the

width of the folded product and multiplying it by two.
A tensile test was performed in the transverse (course) direction corresponding to the

deformation of the compression cover during wear. The tensile force was measured using
the universal testing machine ZWICK/Z005 (Figure 2) according to Standard LST EN ISO
13934-1:2013 [17]. The tensile testing machine uses a 200 N force sensor. The constant rate
of displacement of the moving clamps was 100 mm/min. The area of the tested specimens
was 100 mm × 80 mm. The specimens were stretched up to a fixed elongation—20%, 30%,
40%, and 50%. The obtained data were analyzed by using the testxpert® software. Five
elementary tests were performed in each case.
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Table 1. Main structural characteristics and technical indicators of knitted specimens.

Sample Code

Speed of Wheel
Supplying
Elastomeric
Inlay-Yarn v,

min−1

Wale
Density

Pw, cm−1

Course
Density
Pc, cm−1

Area
Density,
M, g/m²

Loop Length
of Plating

Cotton Yarn,
mm

Loop Length of
Textured

Elastomeric
PA-EL Ground

Yarn, mm

Average Length
of Textured
Elastomeric

PA-EL
Inlay-Yarn per
One Wale, mm

1st group of specimens with the pattern repeat 3 × 1

3 × 1/11/50 50 11

11

481.2

6.1 5.5

0.9
3 × 1/11/70 70 10 461.6 1.0
3 × 1/11/90 90 9.5 450.4 1.1
3 × 1/11/110 110 9 450.0 1.2

3 × 1/10/50 50 11

10

483.6

6.7 6.1

1.0
3 × 1/10/70 70 10 480.8 1.1
3 × 1/10/90 90 9.5 462.0 1.2
3 × 1/10/110 110 9 456.8 1.3

3 × 1/9/50 50 11

9

482.4

7.3 6.7

0.9
3 × 1/9/70 70 10 443.6 1.0
3 × 1/9/90 90 9.5 428.4 1.1

3 × 1/9/110 110 9 417.6 1.2

2nd group of specimens with the pattern repeat 1 × 1

1 × 1/11/50 50 11

11

410.8

5.6 5.2

0.9
1 × 1/11/70 70 10 410.2 1.0
1 × 1/11/90 90 9 409.2 1.0
1 × 1/11/110 110 8.5 402.4 1.1

1 × 1/10/50 50 11

10

414.4

6.2 5.8

0.9
1 × 1/10/70 70 10 404.0 1.0
1 × 1/10/90 90 9 390.8 1.1
1 × 1/10/110 110 8.5 397.6 1.2

1 × 1/9/50 50 11

9

423.2

6.8 6.4

0.8
1 × 1/9/70 70 10 416.0 0.9
1 × 1/9/90 90 9 403.2 1.0

1 × 1/9/110 110 8.5 400.8 1.1
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All experiments were carried out in a standard atmosphere for testing according to
Standard LST EN ISO 139:2005: (20 ± 2) ◦C ambient temperature and (65 ± 5) % relative
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humidity [18]. The structure parameters of the knitted specimens were analyzed according
to Standard LST EN ISO 14971:2006 [19].

3. Results and Discussion

During the knitting of the experimental specimens, two main parameters that can
theoretically influence the compression properties of knitted fabric were changed for each
knitting pattern repeat (first group of specimens with the pattern repeat 3 × 1 and second
group of specimens with the pattern repeat 1 × 1): loop density Pc and the feeding speed
of the elastomeric yarn v. The results of the measured tensile force and compression,
calculated according to Formula (1) at different elongation levels, are presented in Table 2.
The average values of the compression presented in the Table 2 were calculated from five
tests and, in all cases, the relative error did not exceed 5%. Characteristic stress–strain
curves of the first and second groups of specimens are presented in Figure 3.

Table 2. Tensile force and compression of knitted specimens at different elongations.

Sample Code
Tensile Force F, N Compression P, Pa

20% 30% 40% 50% 20% 30% 40% 50%

3 × 1/9/50 2.79 3.60 4.40 4.86 2190.15 2826.00 3454.00 3815.10
3 × 1/10/50 3.05 4.00 4.65 5.59 2394.25 3140.00 3650.25 4388.15
3 × 1/11/50 3.36 4.30 5.20 6.18 2637.60 3375.50 4082.00 4851.30
3 × 1/9/70 3.03 3.84 4.58 5.34 2378.55 3014.40 3595.30 4191.90

3 × 1/10/70 3.38 4.30 5.29 6.24 2653.30 3375.50 4152.65 4898.40
3 × 1/11/70 3.59 4.63 5.72 6.64 2818.15 3634.55 4490.20 5212.40
3 × 1/9/90 2.93 3.85 4.76 5.55 2300.05 3022.25 3736.60 4356.75

3 × 1/10/90 3.48 4.73 5.69 6.66 2731.80 3713.05 4466.65 5228.10
3 × 1/11/90 3.73 5.00 6.04 7.03 2928.05 3925.00 4741.40 5518.55
3 × 1/9/110 3.07 4.18 4.97 5.85 2409.95 3281.30 3901.45 4592.25
3 × 1/10/110 3.73 4.82 5.93 6.91 2928.05 3783.70 4655.05 5424.35
3 × 1/11/110 3.88 5.11 6.35 7.33 3045.80 4011.35 4984.75 5754.05

1 × 1/9/50 3.16 4.03 4.66 5.41 2480.60 3163.55 3658.10 4246.85
1 × 1/10/50 3.55 4.52 5.50 6.17 2786.75 3548.20 4317.50 4843.45
1 × 1/11/50 4.11 5.58 6.56 7.58 3226.35 4380.30 5149.60 5950.30
1 × 1/9/70 3.19 4.09 4.89 5.66 2504.15 3210.65 3838.65 4443.10

1 × 1/10/70 3.71 4.66 5.68 6.47 2912.35 3658.10 4458.80 5078.95
1 × 1/11/70 4.34 5.53 6.82 7.89 3406.90 4341.05 5353.70 6193.65
1 × 1/9/90 3.13 4.00 4.96 5.74 2457.05 3140.00 3893.60 4505.90

1 × 1/10/90 3.53 4.50 5.38 6.30 2771.05 3532.50 4223.30 4945.50
1 × 1/11/90 4.20 5.55 6.78 8.15 3297.00 4356.75 5322.30 6397.75
1 × 1/9/110 3.16 4.08 5.06 5.87 2480.60 3202.80 3972.10 4607.95
1 × 1/10/110 3.58 4.57 5.60 6.52 2810.30 3587.45 4396.00 5118.20
1 × 1/11/110 4.44 5.82 7.25 8.56 3485.40 4568.70 5691.25 6719.60

The target compression level is the second up to the third compression class according
to standard RAL-GZ 387/1:2008 [20]. The limits of compression classes according to this
standard are presented in mmHg (units of compression measurement); therefore, the same
units of compression measurement are presented in the following figures, demonstrating
the influence of different factors on the compression generated by elastomeric knitted
structures. It was found that at 50% elongation, the compression generated by the majority
of knitted variants was too high, i.e., it was close to the higher limit of the third compression
class or even exceeded the limit to the fourth class.

Figure 4 demonstrates the dependence of the compression generated at 50% elongation
on the speed of the wheel supplying the elastomeric inlay-yarn into the knitting zone when
three different variants of course density Pc are used. It must be underlined that only for
the knits in the first group with the pattern repeat 3 × 1 (knits with a longer float of the
elastomeric yarn) and only at the highest investigated elongation (50%) does the speed of
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elastomeric yarn supply into the knitting zone v (i.e., initial pre-tension of the elastomeric
yarn before the formation of knitting elements) have a statistically significant influence on
the generated compression P—the influence is more than 5%, i.e., it is higher than relative
error of average values of compression tests. When the elongation is lower, the factor
of the initial pre-tension of the elastomeric inlay-yarn used during the knitting plays an
insignificant role in the compression level as the influence on the limits of relative error
of average values varies, especially for the second group of knitted structures with the
pattern repeat 1 × 1. It is due to the fact that the elastomeric inlay-yarn is laid as a float and
tuck, during the stretching of the knitted specimen (in the limits of low elongation—up to
50%), the elastomeric yarn is not stretched at all or is very slightly stretched as the yarn is
taken out of the yarn segment bent into the tuck. The smaller the pattern repeat—in other
words, the shorter the float between two adjacent tucks in the pattern repeat—the smaller
the influence of the inlay-yarn’s initial pre-tension, which is determined by the speed of the
wheel supplying elastomeric inlay-yarn into the knitting zone. Similar results were found
in [12].
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Figure 3. Stress–strain curve at 50% elongation of (a) 1st group of knits with the pattern repeat 3 × 1;
(b) 2nd group of knits with the pattern repeat 1 × 1.

On the other hand, the influence of loop density on compression is obvious and it
is characteristic for the knits made using both investigated knitting patterns. The linear
dependence of compression P on loop density Pc is demonstrated by the results presented
in Figures 5 and 6. The coefficient of determination R2 for an absolute majority of the
calculated curves is very high—higher than 0.9. The higher the density of the loops—that
is, the shorter the knitting elements—the higher the compression at the same elongation
level. In knitted structures with a higher loop density, the segments of yarns used for
the formation of knitting elements (loops, tucks, floats) are shorter. Therefore, when a
higher-density knit is stretched, the knitting elements straighten faster, and the effect of the
tensile force falls on the straightened parts of the yarn. A higher tensile force is required to
stretch the knit, so the knit generates higher compression.

Also, the data presented in Figure 5 demonstrate that the influence of the speed of
elastomeric inlay-yarn supply to the knitting zone of the knits of the second group is
insignificant, as was discussed earlier.

The results presented in Figures 5 and 6 clearly demonstrate that the compression
level at the same elongation can be increased by increasing the loop density of the knits.

In earlier research works [14], it was found that at low elongations, the compression
of elastomeric knits linearly depends on their elongation. This was also confirmed by this
research. The nature of the stress–strain curves of both knitting pattern specimens presented
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in Figure 3 is linear in the elongation range from 10% to 50%. The results presented in
Figure 7 clearly demonstrate that there is a strong correlation between compression P and
elongation ε (up to 50%); in all cases, the coefficient of determination R2 is higher than 0.99.
The percentage increase in compression with increasing elongation from 20% to 50% did
not demonstrate a significant dependence on the knitting pattern repeat.
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Figure 6. Dependence of compression P of 2nd group of knits with pattern repeat 1 × 1 on course
density Pc at different speeds of wheel supplying inlay-yarn (50, 70, 90, 110 min−1) at (a) 20%
elongation; (b) 30% elongation; (c) 40% elongation; (d) 50% elongation.
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Figure 8. Dependence of compression P on elongation ε and course density Pc of the 1st group of
knits with the pattern repeat 3 × 1 (a—experimental; b—theoretically calculated) and 2nd group of
knits with the pattern repeat 1 × 1 (c—experimental; d—theoretically calculated).

As can be seen from Figure 8, the experimental results give a very similar dependence
as the results calculated theoretically according to the equations determined and presented
in Figures 6 and 7. The maximum error between the experimental and equation-calculated
values within the entire range of variable factors did not exceed 3%. Therefore, it can
be said that the established equations, presented in Figures 6 and 7, can be used for
compression prediction and knitting design of these specific products according to the
required compression class by freely changing the values of both factors—elongation and
loop density.

4. Conclusions

Twenty-four variants of knitted structures were developed for compression covers for
the treatment of amputated limbs. Two main parameters that can theoretically influence
the compression properties of knits—loop density and the feeding speed of the elastomeric
inlay-yarn—were changed for each investigated knitting pattern repeat. It was found that
one of the parameters—elastomeric yarn feeding speed—is insignificant for compression
generated at low elongation (up to 50% for elastomeric knits). Therefore, this factor can be
eliminated when designing weft-knitted compression covers. However, the influence of the
second parameter—course density—on compression is significant and has a linear character.
As loop density increases, the generated compression also increases. This research also
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confirmed that, in areas of low elongation (up to 50% for elastomeric knits), compression
linearly depends on elongation, which appears to be due to the difference between the
circumferences of the compression cover and the limb. The analysis of the summarized
influence of both factors—course density and elongation—showed that equations of the
correlation between compression and course density or elongation established during this
research can be used for the prediction of compression during the knitting design, as the
maximum error between the experimental and equation-calculated values within the entire
range of variable factors did not exceed 3%.
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