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Abstract: Background/Objectives: This study investigates the classification of Major Depressive
Disorder (MDD) using electroencephalography (EEG) Short-Time Fourier-Transform (STFT) spec-
trograms and audio Mel-spectrogram data of 52 subjects. The objective is to develop a multimodal
classification model that integrates audio and EEG data to accurately identify depressive tendencies.
Methods: We utilized the Multimodal open dataset for Mental Disorder Analysis (MODMA) and
trained a pre-trained Densenet121 model using transfer learning. Features from both the EEG and
audio modalities were extracted and concatenated before being passed through the final classification
layer. Additionally, an ablation study was conducted on both datasets separately. Results: The
proposed multimodal classification model demonstrated superior performance compared to existing
methods, achieving an Accuracy of 97.53%, Precision of 98.20%, F1 Score of 97.76%, and Recall of
97.32%. A confusion matrix was also used to evaluate the model’s effectiveness. Conclusions: The
paper presents a robust multimodal classification approach that outperforms state-of-the-art methods
with potential application in clinical diagnostics for depression assessment.

Keywords: multimodal fusion; EEG; deep learning; depression; speech

1. Introduction

Depression and anxiety are mental disorders that affect a person’s ability to perform
daily routine tasks effectively with symptoms including sleep disorder, continued sadness,
bad eating habits, general cognition problems, suicidal thoughts, etc. [1–3]. Depression and
anxiety are often comorbid conditions, with anxiety symptoms frequently preceding the
onset of Major Depressive Disorder (MDD). Studies suggest that up to 60% of individuals
diagnosed with MDD also experience some form of anxiety disorder. This comorbidity is
so common that clinicians often find it challenging to distinguish between the two. Both
disorders affect an individual’s cognitive and emotional regulation, and their co-occurrence
complicates diagnosis and treatment [4,5]. According to the World Health Organization’s
(WHO) report, more than 350 million people are affected by the disease worldwide [6].
Depression has emerged as the foremost cause of disability and a significant global health
concern [7]. A person experiencing minor or mild depression is emotionally struggling,
which can negatively influence their relationships with family, coworkers, and their ability
to perform tasks effectively [8,9]. Prolonged mild depression can lead to MDD that can
cause extreme mood swings, severe physiological issues, and health concerns [10]. Thus,
diagnosis and prognosis of depression are crucial for it to be treated timely [11].

Diagnosing MDD involves structured clinical interviews by psychiatrists, focusing
on individual moods, thoughts, behaviors, and symptoms. Also, tools like the Hamilton
Depression Rating Scale (HDRS), Beck Depression Inventory (BDI), and Depression Rating
Scale (DRS) are used [2]. The HDRS is a clinician administered questionnaire designed
to assess depression severity, focusing on cognitive and somatic symptoms. Conversely,
the BDI allows for self-assessment of mood and physical changes related to depression,
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offering a patient-centric view. Moreover, the American Psychiatric Association (APA) has
established diagnostic criteria known as the Diagnostic and Statistical Manual of Mental
Disorders (DSM-V), which is commonly used for diagnosing MDD. The DSM-V’s criteria
are used globally for clinical diagnosis, research, and treatment planning for depressive
disorders, ensuring consistency and standardization in the identification of mental health
conditions [5].

The diagnosis of depression is inherently influenced by subjective analysis and state-
ments from both the individual and the psychiatrist, which are subject to various factors
that differ among individuals [12,13]. These factors encompass differences in symptoms,
their severity, and their variability in intensity, all of which significantly affect the diagnostic
process. However, despite its widespread use, the DSM-5 criteria have notable downsides.
They heavily rely on subjective symptom reporting, potentially leading to variability in
diagnosis among clinicians and failing to capture the full spectrum of depressive symp-
tomatology. Neurobiological factors in MDD include dysregulation in neurotransmitters
such as serotonin, norepinephrine, and dopamine, which are crucial in mood regulation.
Alterations in neural connectivity, especially in areas such as the prefrontal cortex and
limbic system, are also implicated in the pathophysiology of depression. The HDRS, DRS,
BDI, or DSM-5 do not adequately account for the heterogeneity of depression symptoms
or address potential biological markers or underlying physiological processes associated
with depression [14,15]. These limitations hinder the accurate diagnosis of depression and
underscore the need for further refinement of diagnostic criteria in the field.

Electroencephalography (EEG) stands as a principal technique for real-time recording,
analysis, and study of brain function, owing to its ability to capture neural activity with
high temporal resolution [16]. This versatility has significantly influenced the understand-
ing and treatment of various neurological disorders as EEG’s non-invasive nature allows
for monitoring brain activity in real-time and across extended periods [17,18]. The EEG
device consists of one or many electrodes that are placed over the scalp at specific locations
to measure electrical activity in the brain. These electrodes are positioned according to
standardized protocols to ensure accurate recording of brain signals [19]. These electrodes
sense the activity of different parts of the brain, capturing the changes in the voltages,
between pairs of electrodes. EEG has proven to be useful in diagnosing neurological,
cognitive, and psychological disorders [20]. Moreover, EEG equipment is relatively easy
to maintain and less expensive compared to other modalities used for studying brain
activity. This makes it particularly beneficial in settings where access to expert physicians
and psychiatrists is limited [21]. EEG can be comparatively portable, adaptable to condi-
tions and situations, and cost effective in comparison to competing imaging modalities;
however, understanding an EEG recording for diagnosing a neural disorder or disease
can be challenging, time-consuming, and prone to error [22]. That is attributed to the
presence of noise, the intricate nature of brain electrical activity, and variances among those
who operate the EEG equipment, such as specialists in the field. While the diagnosis of
MDD typically requires input from psychiatrists and clinical psychologists, automated EEG
analysis using ML models may offer a preliminary diagnostic tool in areas where access to
mental health professionals is limited. This technology could assist in flagging potential
depressive symptoms for further clinical evaluation.

Human speech is another modality that can be used for the identification of depression
symptoms [13]. Speech alterations in individuals with MDD often manifest as slower speech
rates, monotone prosody, and increased pauses, reflecting psychomotor retardation and
cognitive slowing. These linguistic features have been used in recent studies as biomarkers
for automated diagnosis of depression [23,24]. Using speech and EEG data, we suggested a
framework for effortlessly diagnosing depressed patients. We have enhanced the diagnostic
performance by fusing speech and EEG features at different levels and using Densenet-121
to the resulting spectra [25]. The primary findings that this study adds are as follows:
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(1) A DL based classification framework for diagnosis of depression using functional
brain network analysis in speech and resting-state EEG.

(2) Fusion of features extracted from the time-frequency representation of EEG and the
audio spectrogram.

Further, Section 2 reviews the relevant literature. The methods are explained in
Section 3. Section 4 presents experiments, experimental setups, and their results. Section 5
describes the results, and Section 6 presents a discussion. Finally, Section 7 offers the
conclusions and limitations of this study.

2. Background

Depression is classified as a mood disorder, primarily characterized by temporary
or persistent feelings of sadness, reduced pleasure, and decreased self-esteem. It is also
accompanied by disorders in sleep and eating habits, difficulties in concentration, and
feelings of fatigue. These symptoms may endure over an extended period, resulting in
chronic and recurrent episodes that can impede an individual’s capacity to participate in
daily activities. The timely identification of depression using machine learning is crucial,
but it is difficult due to constraints in medical technology and skills. In the literature,
numerous approaches for detecting depression are discussed, such as social media, EEG,
audio and video data, and virtual reality [2,10,26].

Recently, significant advancements have been made in the field of automated early-
stage depression diagnosis. These advancements leverage various data sources, including
social media interactions, speech patterns, EEG readings, and other similar modalities.
However, it is essential to critically evaluate these methods and their implications for
diagnosis and treatment. Before proceeding, it would be beneficial to introduce some
publicly available datasets related to depression disorder. Cavanagh et al. [22] described
an EEG dataset with 46 MDD patients and 75 healthy controls. EEG data were collected
from subjects aged 18–25 using a 64-electrode cap. To collect EEG data, the participants
and physicians were given a probabilistic job to complete, which is more demanding as
regards time and effort than collecting data when the subjects are at rest. Furthermore,
Cai et al. [27] presented an EEG dataset of 24 MDD patients and 29 healthy controls. A
128-electrode cap was used to capture EEG data in the resting state, with eyes closed. The
participants were 16–56 years old, including 33 men and 20 women. Wu et al. [28] recorded
32-channel EEGs. The MDD and healthy control dataset includes over 400 people. The
average age of MDD patients was 52.85 and 54.90 years for women and men, whereas
healthy patients were 49.87 and 54.59 years old. Mumtaz et al. [29] created a public database
of 19-channel EEG recordings from 34 MDD patients and 30 healthy persons, with suitable
gender, age, and class distribution. The data contain both eyes-open and eyes-closed
resting-state data, with the MDD and healthy groups having mean ages of 40.3 ± 12.9 and
38.3 ± 15.6 years, respectively.

Mahato et al. [30] used the linear and nonlinear features for the classification of De-
pression. Hosseinifard et al. [31] used the EEG dataset of ninety people, half of whom were
healthy controls, and extracted linear and nonlinear features and correlation dimensions for
the classification. They used two algorithms, Genetic Algorithm (GA) and Support Vector
Machine (SVM), for the classification of depressed and normal subjects based on EEG data,
and the Accuracy they achieved was 88.6%. Mumtaz et al. [29] discussed the dataset and
offered an ML technique for MDD classification. They used wavelet transform (WT) to
obtain a feature matrix and decreased its dimension using rank-based feature selection.
They used logistic regression as a classifier and their proposed technique obtained 87.5%
Accuracy, 95% sensitivity, and 80% specificity for MDD classification. WT analysis can
remove unnecessary data by compressing parameters; however, this technique is subjective,
as WT studies on window functions require previous selection of frequency and time scales.
Aydemir et al. [32] also developed a classification model for MDD classification using
handcrafted features. They extracted features using melamine patterns and DWT, and
Neighborhood Component Analysis (NCA) was used to obtain the most prominent features.
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They used Quadratic Support Vector Machines (SVMs) and weighted k-Nearest Neighbors
(kNNs) were used for classification and achieved an Accuracy of 99.11% and 99.05%. As
the effectiveness of the DWT technique depends on the selection of decomposition levels,
and as the number of decomposition levels increases, the computational complexity of the
model also escalates, potentially affecting its efficiency and applicability in clinical settings.
This raises concerns about the practicality of their approach, especially in environments
with limited computational resources. Furthermore, the reliance on handcrafted features
may limit the model’s ability to generalize across diverse populations, suggesting the need
for more automated feature extraction methods to enhance robustness and clinical utility.
Erguzel et al. [33] utilized the Back Propagation Neural Network (BPNN) classification
for depression. Applying BPNN to EEG data acquired from 147 individuals with MDD
resulted in an Accuracy of 89.12%. Only six EEG channels in the delta and theta frequency
ranges were used for the MDD classification. While this approach demonstrated reasonable
Accuracy, the limitation of using a small subset of EEG channels may have reduced the
model’s ability to capture the full complexity of neural activity associated with MDD.
Mahato and Paul [34] used the dataset published by Mumtaz et al. [29] to create ML models
for MDD classification. They used SVM, logistic regression, Naive Bayes, and decision tree
classifiers. They proposed the use of different frequency bands, including alpha (8–13 Hz),
alpha1 (8–10.5 Hz), alpha2 (10.5–13 Hz), beta (13–32 Hz), and delta (0.5–4 Hz). The best clas-
sification Accuracy was attained with alpha2 power, exceeding alpha and alpha1. Among
all the classifiers, SVM performed best, reaching 88.33% Accuracy. Since they only used
eyes-closed recordings, their ML model may benefit from more input data. Cai et al. [35]
used maximum correlation and least redundancy feature selection to create a dimensionless
feature space. Four classification methods were used: SVM, KNN, DT, and ANN. KNN
achieved the maximum Accuracy of 79.27% on 92 depressed and 121 normal participants.
Moreover, they observed that the absolute power of the EEG theta wave may aid in detect-
ing depression, but the relatively low Accuracy suggests that more advanced methods, such
as deep learning, or multimodal approaches, may be required to capture the complexity
of depression symptoms more effectively. A study by Spyrou et al. [36] used an EEG
dataset published by [29]. They used synchronized analysis to estimate the properties of
the EEG signals. Various data classification methods, such as RF, random trees, multi-layer
perceptions (MLPs), and SVM, were employed. The Accuracy of these classifiers ranged
from 92.42% to 95.45%. Notably, the synchronization characteristics played a crucial role in
the development of the classification tree, with RF achieving the highest Accuracy of 95.5%.
While RF achieved the highest Accuracy the reliance on synchronization characteristics
highlights a potential limitation, as this approach may overlook other significant temporal
or spectral features within the EEG signals.

In addition, there has been a lot of interest in using deep learning models with EEG
data [34–37] as this approach offers a new means to improve the Accuracy and reliability
of diagnostic procedures. In prior studies, researchers manually selected features for
ML to diagnose depression; however, DL can automate the process of feature selection
and thus assist in the classification. Acharya et al. [37] employed a DL framework to
diagnose depression and observed that the right hemisphere of the brain exhibits less
distinct features compared to the left hemisphere in individuals with depression. They
suggested that increasing the number of EEG electrodes could enhance model Accuracy.
While their findings suggest hemisphere disparities, increasing electrode count in clinical
settings can be difficult due to expense and complexity. Sandheep et al. [38] classified
depression with Deep CNN using EEG data. They also found that the right hemisphere is
better for detecting depression, and achieved a maximum Accuracy of 99.31%. Li et al. [39]
generated the spectrograms from the EEG signals to train their proposed CNNs. They used
128-electrode EEG to classify mild depression and used both the temporal and the spatial
data of EEG. As the use of 128 electrodes is a difficult in a normal clinical environment and
costly, their proposed method needs improvements. Ay et al. [40] employed single-channel
EEG recording with LSTM and outperformed competitors; however, their model was
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overfitting, making clinical usage unclear. Dand et al. [41] used a frequency-dependent
multi-layer brain (FDMB) network and a CNN to diagnose MDD. The time–frequency
characteristics were extracted from EEG signals, with each frequency band corresponding
to a single layer of a multi-layer network. The proposed network utilized the frequency
characteristics and channel coupling of EEG signals as an input to CNN-based architecture.
They detected MDD with 97.27% Accuracy. Using three convolutional layers, performance
variation between one or two layers in the core block was lower than 0.5%. Saeedi et al. [42]
experimented with five distinct DL frameworks for the classification of healthy and MDD
subjects. They used the generalized partial directed coherence (GPDC) and direct directed
transfer function (dDTF) methods to analyze the association between EEG channels and
determine effective brain connectivity. In addition, they used a novel method to create
an image for each individual by combining sixteen connectivity methods. Based on the
experimental analysis, the 1DCNN-LSTM model surpasses all other models in terms of
performance and achieves an impressive Accuracy of 99.24%. Despite the 2DCNN-LSTM
method achieving a faster system, it was found to be less efficient than the 1DCNN-LSTM.

While the majority of researchers have focused on investigating a single modality for
the diagnosis of depression, there is growing interest in utilizing multiple modalities for
the classification of depression. According to Gupta et al. [43] a single-modality signal
only provides partial information, while multi-modality signals may provide a more
accurate model for identifying depression. Further, EEG analysis has also been used for
identifying Alzheimer’s disease [44], detecting epileptic seizure [45] and implementing
Brain–Computer Interfaces (BCIs) based on Motor Imagery [46].

This study provides a deep learning-based framework for diagnosing MDD using
a multi-modal open dataset for mental-disorder analysis (MODMA). Audio speech and
128-channel resting-state EEG datasets are used from the MODMA dataset China [27].
Selected EEG channels are transformed to a Short-Time Fourier-Transform (STFT), and
from the audio dataset, a Mel-spectrogram was obtained. Using Transfer Learning (TL)
the pre-trained densenet121 model was trained on the datasets for feature extraction.
A classification method based on feature fusion is proposed using modified Densenet-
121, which enables automated classification between MDD and healthy controls. The
proposed method is tested on a validation dataset, and the attained results on the speech
and EEG spectrum prove greatly enhanced diagnostic performance in comparison to
state-of-the-art methods.

3. Material and Methods
3.1. Dataset

In this research work, experiments were conducted using the MODMA dataset pro-
vided by Lanzhou University Second Hospital in Gansu, China [27]. The dataset consists
of full-brain 128-electrode resting-state EEG recording, pervasive 3-electrode EEG record-
ing, and audio data of depressed and normal subjects. The dataset also comprehends
the statistically collected data according to the criteria of the Diagnostic and Statistical
Manual of Mental Disorders IV (DSM-IV) and other scales. In this study, we used only
two modalities: (i) 128-electrode full-brain resting-state EEG data; and (ii) audio data. Both
data are defined below.

The EEG equipment used in the study was the HydroCel Geodesic Sensor Net
(HCGSN). The electrodes were Ag/AgCl, and the EEG data were collected using Net
Station acquisition software version 4.5.4. The impedance of the electrodes was maintained
below 50 kΩ. Full-brain 128-electrode EEG data consist of a total of 53 participants, out of
which 24 are MDD patients, with 13 males and 11 females aged 16 to 56 years. The control
group consists of 20 males and 9 females of ages 18–55. The EEG data were recorded for
5 min; the participants were instructed to close their eyes, be awake, and not move. The
sampling frequency for recording was 250 Hz and all the electrodes were referenced to
the Cz-channel as shown in Figure 1. The impedance of each electrode was kept below
50 k Ohm to ensure good contact.
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In the experiment for the audio data, 52 participants were recorded, out of which
23 were diagnosed with MDD. Out of the MDD diagnosed patients, 16 were males and
7 were females aged 16–56 years. The normal controls were 20 males and 9 females with
ages of 18–55 years. The recorded audio is in the Chinese language and the experiment
was conducted in the presence of psychiatrists. The experimental tasks conducted in
the audio study involved participants engaging in several activities, including reading,
picture description, and a question–answer session, to capture natural speech and cognitive
responses. For the reading task, the participants were asked to read the short story The
North Wind and the Sun in the Chinese language as a standard text used for acoustic
analysis; also, three sets of words categorized by emotional valence (positive, neutral,
and negative) from a Chinese affective word corpus were used. The picture description
task involved four images: three facial expressions from the Chinese Facial Affective
Picture System (CFAPS) depicting positive, neutral, and negative emotions, and one image
from the Thematic Apperception Test (TAT). During the Q&A session, the participants
responded to 18 interview questions adapted from the DSM-IV, covering topics ranging
from positive experiences, e.g., “Describe your ideal vacation.” to emotionally neutral
topics, e.g., “Describe one of your friends.”, and negative experiences, e.g., “What makes
you feel hopeless?”. The entire experiment lasted approximately 25 min for each participant,
including the time for all three tasks.

3.2. Data Processing

In this study, EEG and audio datasets were used for the classification of MDD and
healthy subjects. The EEG and audio signals obtained from the source dataset were not in
the T-F-Spectrogram format. For that reason, EEG data were transformed to Short-Time
Fourier-Transform (STFT) and the audio data were transformed to the Mel-spectrogram.
To obtain noise-free EEG signals, two primary preprocessing techniques were applied.
Firstly, a notch filter centered at 50 Hz was applied to eliminate power line interference.
Second, a band-pass filter with a low cutoff frequency of 0.4 Hz and high cutoff frequency
of 45 Hz was used to select the specific band of EEG frequencies (awake) and to remove
low-frequency and high-frequency noise, such as muscle activity. To compensate for slow
baseline drifts, a sliding-window baseline correction method is utilized, where the local
mean of the signal was calculated and subtracted within a moving window. No further
artifact removal methods, such as Independent Component Analysis (ICA), etc., were used
in the preprocessing steps. ICA is a widely recognized method for removing artifacts such
as eye blinks and muscle noise in EEG data [47].
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EEG signals are considered time-varying and demonstrate dynamic changes in fre-
quency components. The STFT permits researchers to decompose the EEG signal into its
frequency components, as there is variation over time. Despite presenting the complete
signal in the frequency domain, it provides the time-dependent spectrogram, allowing us to
analyze how the frequency components vary across different segments of EEG data. As the
EEG signals exhibit a non-stationary and transient behavior such as outliers, measurement
errors, and unusual noise, STFT appears useful in analyzing transient events. By converting
EEG data to STFT, more detailed information about the temporal dynamics and frequency
characteristics of neural activity can be extracted, aiding in the interpretation and analysis
of the EEG signals. The mathematical definition of STFT can be provide as follows:

X(M, w) = ∑∞
s=−∞ x(n)ω(n − m) exp−ιωn, (1)

where X(M, w) is the STFT of the signal at time index m and frequency index ω. x(n) is the
input discrete signal. ω(n) is the window function. ι is the imaginary unit. The remaining
STFT coefficients are as follows:

S(r, w) = |S(r, w)|ω=2Πk/N , (2)

where the “N” represents the total number of discrete frequency components. The EEG
spectrogram image may be represented in time–frequency as follows:

Spec(r, k) = |S(r, k)|2, (3)

For the transformation of EEG signals to STFT, the sampling rate was set to 250, the
window size was set to 1024 and the hop length was set to 512. This resulted in a frequency
range of 0 to 125 Hz with a frequency resolution of 0.244 Hz per bin, and a time resolution
of 2.048 s per bin. Based on the findings of Hussain et al. [48], only 29 EEG channels were
chosen out of 128 in this study, and the STFT spectrograms were obtained. The frontal,
temporal, and parietal lobes, influence emotional and cognition processes [48,49]. The
authors’ research focused on these specific regions to improve their analysis while reducing
data complexity to capture and quantify important brain activity related to depression.
Their research finds that the channels in these areas are more linked to MDD and cognitive
function. Mel-spectrogram is the short-term power spectrum representation of an audio
signal in the Mel-frequency domain and it is extensively used in audio signal processing. It
can be obtained by applying the Mel-filter-bank to the squared magnitude of the Discrete
Short-Time Fourier-Transform (DSTFT), as shown in the equation below:

Sm [m] = ∑ω
|X(m, ω)|2·Hm[ω], (4)

where Sm [m] is the Mel-spectrogram coefficient for the m-th filter at time index m, and ω
represents the frequency index. Hm[ω] is the triangular Mel-filter centered at frequency
index ωm and ωm is the center frequency index of the m-th filter.

The Mel-coefficients are treated as features, having essential information about the
spectral content of the audio signal. The use of the Mel-filter-bank results in nonlinear
warping of the frequency scale, converting Hz to the Mel-scale. The warping mimics the
nonlinear characteristics of human hearing, that is, it is more sensitive to changes at lower
frequencies. We took into consideration spectrogram-based low-level characteristics from
audio data for a depression diagnosis in this experiment since recent research has shown
that spectrum features performed better for speech recognition tasks. The spectrogram was
extracted from the audio signal by applying the STFT on overlapping window segments.
The frequency y-axis is transformed to log scale and amplitude to the color dimension
to generate the spectrogram. To create the Mel-spectrogram, we translate the y-axis onto
the Mel-scale. The sampling frequency of 44 KHz was used with a depth of 24 bits and
the number of Mels selected was 128, while the window size was set to 1024 and the hop
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length was set to 512. This resulted in a frequency range of 0 to 22.05 kHz with a frequency
resolution of 43.07 Hz per bin and a time resolution of 11.61 milliseconds per bin. Librosa
was used in both the STFT and Mel-spectrogram cases. Librosa is an open-source Python
library used for audio data analysis and processing. It can generate Mel-spectrograms of
the audio data, which represent the STFT of audio signals on the Mel-frequency scale used
in this study.

The EEG-to-STFT spectrograms present a fundamental tradeoff between temporal and
frequency resolution. Achieving a balance between these two aspects requires a careful
selection of STFT parameters, such as window size and overlap between consecutive
windows. A smaller window size improves temporal resolution but compromises frequency
resolution, making it difficult to distinguish between closely spaced frequency components.
Conversely, a larger window size enhances frequency resolution but reduces the ability to
capture rapid temporal changes. Also, the generation of Mel-spectrograms has a trade-off
between temporal and frequency resolution. Mel-spectrograms provide a perceptually
meaningful frequency axis for speech analysis. However, window size, hop length, and
Mel-filter-bank count can greatly affect audio signal representation. A larger number of Mel-
filter-banks enhances frequency resolution, allowing for finer tone element discrimination,
while a smaller window size and shorter hop length improve temporal resolution. In this
study, the parameters were carefully selected to ensure that critical features relevant to
detecting depression are preserved. Harmony between temporal and frequency resolution
can be helpful for improved classification.

3.3. Proposed Multimodal Depression Diagnostic Framework

In this section, we proposed a framework based on EEG and Audio Data to diagnose
depression. This proposed model utilizes audio speech and resting-state EEG data acquired
from the MODMA dataset. More precisely, specific EEG channels are transformed to
STFT spectrograms, whereas the audio dataset is used to generate Mel-spectrograms. TL
is utilized to extract features from both the audio and EEG datasets using a pre-trained
DenseNet-121 model. Once the pre-trained DenseNet-121 model is loaded, the weights
of its convolutional layers are frozen. During training, the parameters of these layers
remain unchanged. By freezing these layers, we are able to preserve the acquired features
and prevent any modifications on them while training. A custom classification layer
is added on top of the frozen convolutional base. This additional layer is capable of
being trained, and its purpose is to establish a connection between the extracted features
and the particular categories that are significant for the given classification task, in our
case, categorizing EEG and Mel-spectrogram images. Only the parameters of the custom
classification layer are updated during the training process. The frozen convolutional layers
serve as unchanging feature extractors, generating significant representations of the input
images. The model acquires the ability to categorize the images by utilizing these extracted
characteristics, while the custom classification layer adjusts its weights through the process
of backpropagation and gradient descent. Mathematically, a layer in Dense Net can be
represented as follows:

xl = H1([x0, x1, . . . , xl−1]), (5)

where xl is the output of layer l, H1 are composite function consisting of batch normalization,
rectified linear unit (ReLU) activation, and convolutional operations, and [x0, x1, . . . , xl−1]
denotes the concatenation of feature maps from all previous layers up to l.

For our multimodal classification, we modified the pre-trained network and replaced
the last fully connected layer fc with a custom layer for classification with two classes,
including MDD and HC. Mathematically, W is the weight matrix and b is the bias vector of
this fully connected layer. The output Out can be expressed as follows:

Out = fc(x) = W·x + b, (6)
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where x is the concatenated feature vector from the preceding layers. The TL technique was
used for both the datasets to extract features separately. These features are concatenated
to form a fused representation, combining the information from both modalities, and are
passed through the custom fully connected layer for classification.

Data augmentation and preprocessing are essential for improving machine learning
model performance and robustness. This can be achieved by cleaning, transforming,
and standardizing data, which enables models to handle diverse datasets and enhance
performance across various tasks. For that very reason, we applied three basic data
augmentation methods on all STFT EEG spectrograms and Audio Mel-spectrograms.

First, the input data were resized to 224 × 224 pixels; this step ensures uniformity
in the input size across all images in the dataset. The resize operation can be defined
as follows:

Resize : (H, W, C) = (224, 244, 3), (7)

where H, W and C represent the height, width, and number of channels of the input
image, respectively.

Secondly, the resized images were transformed into tensors. This reshapes the im-
age data into a numerical format so that the neural network can easily process it. This
transformation typically scales the pixel values to the range [0, 1].

Normalization ensures the consistent scale of input data that can improve the con-
vergence and generalization of the neural network. We used “mean” and “Standard
Deviation” for normalization of our data. Normalization works channel wise and it can be
mathematically defined as follows:

TNormalize =
TOrignal − Mean/Standard Deviation (8)

3.4. Transfer Learning

A popular deep learning technique called TL makes it possible to apply a trained
model to a difficult research problem. One major advantage of using TL is that it requires
less input data to achieve outstanding results. It aims to transfer information from a source
domain to a targeted domain, where the source domain is a huge dataset of pre-trained
models, and the targeted domain is the suggested problem with few labels. The source
domain typically uses a large high-resolution image dataset with billions of images and
1000 label categories are available. Using our datasets, the proposed Densenet121 model is
retrained using the TL technique. TL is mathematically defined as follows:

Zs =
{
(ms

1, ns
1), . . .
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ms

j , ns
j

)
, . . . , (ms

z, ns
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where (x, y) represents training size data, where y ≪ x, indicating that the target domain
has fewer labeled examples compared to the source domain.

(
mt

j, and nt
j

)
are the labels

for training data in the source and target domains, respectively.
The pre-trained model is trained on the target datasets according to these mathematical

equations, inferring that the model’s parameters are fine-tuned to the target domain using
the available labeled data.

In our proposed model, transfer-learning was used to extract prominent features from
the dataset. The DenseNet-121 convolutional base was used as a fixed feature extractor.
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After loading the pre-trained model, the weights of the convolution layer were frozen so
that the parameters of these layers were not updated during the training process. This
allowed the model to extract meaningful features from EEG and Mel-spectrogram images
without changing pre-trained layer weights. After that, a custom fully connected layer
was added to the pre-trained model to classify EEG and Mel-spectrogram images. Only
this custom classification layer’s parameters were updated during training, allowing the
model to map extracted features to desired output classes while preserving DenseNet-121
knowledge. This method used the pre-trained model’s knowledge to improve training and
generalization, especially with a small dataset.

4. Experiments
4.1. Experimental Setup

This study investigates the Accuracy of the proposed approach for MDD recognition
using the MODMA dataset. The labeled data were divided randomly into two parts: 80%
for training the model and 20% for validating it. This split was made to ensure that the
model was trained and evaluated according to the established ratio. The learning rate
selected was 0.01 using the Adamax function as an optimizer. The number of Epochs was
30 and the batch size selected for image loader was 16 during the training phase of the
model. Stratified cross-validation was used to conduct the experiments. The simulations
were run on Ubuntu with an 11th Gen Intel(R) Core i7-11700, a 2.50 × 16 processor, 32 GB
of RAM, and a trained network using an NVIDIA GeForce RTX 3080 GPU. Python 3.10.12
was used with PyTorch and Keras 2.13.0, the tool used was Jupyter Notebook 6.4.8, which
runs on Linux.

4.2. Evaluation Metrics

The F1 score, Recall, Accuracy, and Precision are used as performance metrics. The
following is a synopsis of the assessment criteria utilized in this study.

Accuracy is the ratio of correct predictions to total predictions, which reflects the
Accuracy of the classifier in making correct predictions.

Accuracy =
TN + TP

TN + FP + TP + FN
(11)

The equation above represents an Accuracy equation that quantifies the ratio of cor-
rectly classified data instances to all other data instances. When dealing with an unbalanced
dataset, it is important to consider that Accuracy may not be a suitable metric. This is be-
cause the negative and positive classes have varying numbers of data instances.

Precision is the ratio of expected positives that are found to be true positives.

Precision =
TP

FP + TP
(12)

The Precision model can be found in Equation (2). It is ideal for a good classifier to
have a Precision of 1, indicating a high level of Accuracy. Precision becomes 1 only when
the numerator and denominator are equal, or when TP = TP + FP. This also means that FP
is zero. When the false positive rate increases, the Accuracy value decreases because the
denominator becomes larger than the numerator.

Recall is the ratio of correctly identified true positives.

Recall =
TP

FN + TP
(13)

The Recall equation is presented in Equation (3), where the ideal Recall for a good
classifier is 1 (high). Recall reaches a value of 1 only when the numerator and denominator
are the same, such as in the case of TP = TP + FN. This also means that FN is zero. As the
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value of FN increases, the denominator surpasses the numerator, resulting in a decrease in
the Recall value.

The F1 score is calculated as the harmonic mean of Recall and Precision.

F1 Score = 2 ∗ Precision ∗ Recall
Precision + Recall

(14)

The equation for the F1 score is displayed in Equation (14). When the Precision and
Recall values are both 1, the F1 score will also be 1. When both Precision and Recall are strong,
the F1 score can increase. Another metric that is often preferred over Accuracy is the F1 score,
which calculates the harmonic mean of Recall and Precision.

4.3. Proposed Multimodal DenseNet121

Our proposed methodology is established around leveraging the power of TL by in-
corporating a pre-trained DenseNet121 model as shown in Figure 2. The dataset, consisting
of EEG and Mel-spectrogram data collected under controlled experimental conditions,
undergoes preprocessing, including resizing and standardization.
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Figure 2. Workflow of the proposed methodology.

A fundamental 80–20 train–validation split facilitates effective model learning, while
data loaders efficiently handle data, leveraging batch sizes of 16. This not only optimizes
memory usage but also expedites the learning process. The model includes DenseNet121,
which is recognized for its dense connectivity, allowing each layer to receive input from all
preceding layers. Its fully connected layer is modified and tailored to the number of classes
in our datasets that are MDD and HC in both the EEG and audio datasets, then fusing
the acquired features through concatenation. Training employs the “Adamax” optimizer
with a learning rate of 0.001 across 30 epochs, minimizing cross-entropy loss. At the end
of each epoch, the model’s performance is evaluated on the validation set using standard
classification metrics, including Accuracy, Precision, recall, and F1 score. The confusion
matrix is presented in Figure 3. The confusion matrix assigns the label “class 0” to healthy
controls and “class 1” to those with MDD. 97.53%, 98.20%, 97.76%, and 97.32%.

4.4. Ablation Study

In this section, we performed an ablation study and used several pre-trained CNN
Networks. The modified pre-trained networks for the classification of MDD and HC are
shown in Figure 4.

In the first study, the EEG STFT dataset was utilized for classification, Resnet34,
densenet121, ResNext50, GoogleNet, and MobileNetv2 were modified and used for classifi-
cation. In this study, the data were split into 8:2 for training and validation, respectively.
The data loader technique was utilized to load the spectrogram in batches, with a batch
size of 32. “Admax” was used as an optimizer with a learning rate of 0.001 and the number
of epochs was 30 for every pre-trained network.
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In the second study, the audio Mel-spectrogram dataset was utilized for classification.
Modified Resnet34, Densenet121, ResNext50, GoogleNet, and MobileNetv2 were used for
classification. The data were split into 8:2 for training and validation, respectively, and the
data loader technique was utilized to load the spectrogram in batches with a batch size
of 32 instances. “Admax” was used as an optimizer with a learning rate of 0.001 and the
number of epochs was 30 for every pre-trained network.
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each model contributed to the final fused model; experiments are performed where only EEG STFT
spectrograms are used; then, only Mel-spectrograms are used for classification and the results are
compared to the proposed multi-modal model.
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5. Results

We used multiple pre-trained networks and performed the experiments in three stages.
In the first part of the experiment, we used pre-trained neural networks such as Resnet18,
Resnet34, Densenet201, Densenet121, ResNext50, Google Net, AlexNet, and Mobilenetv2.
The network architecture is depicted in Figure 3. The networks were trained using EEG
STFT spectrograms for classification. TL was employed for each model, which improved
the model’s capacity to capture complex features, particularly those that were relevant to
the given scenario (in our case, to classify MDD and healthy controls). Subsequently, the
model was subjected to the training, using the training dataset, and its performance was
evaluated by testing it on the validation dataset. The model’s classification performances
are presented in Table 1. From the results of Table 1, it can be noted that DesneNet121
outperformed the pre-trained Resnet18, Resnet34, ResNext50, Google Net, Alex Net, and
MobileNetv2. For instance, the DesneNet121 model outpaced the other models in terms of
Accuracy (97.01%), Precision (97.08%), Recall (97.08%), and F1 (97.08%) score.
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Table 1. Depression diagnosis using pre-trained EEG dataset.

Model Accuracy (%) Precession (%) Recall (%) F1 Score (%)

Resnet-18 96.75 98.37 93.80 96.03
Resnet-34 96.75 95.42 96.90 96.15

Densenet201 97.40 98.41 95.35 96.85
Densenet-121 97.40 97.08 97.08 97.08

ResNext50 96.75 96.06 96.06 96.06
Googlenet 97.73 96.92 97.67 97.30

Alexnet 74.35 74.34 62.69 68.02
Mobilenetv2 95.68 95.24 94.49 94.86

For the second part of the experiment, we utilized audio Mel-spectrograms to classify
participants as either MDD or normal individuals. In this case, multiple pre-trained
networks were utilized, employing the TL for classification. Again, the pre-trained models
underwent training using the training dataset and were subsequently validated using the
validation dataset. The findings are presented in Table 2. It can be observed that Densenet-
201 and Densenet-121 outperformed Resnet18, Resnet34, ResNext50, Google Net, Alex Net,
and Mobilenetv2 in terms of Accuracy, Precision, recall, and F1 score. Densenet-121 achieved
an Accuracy of 97.01%, Precision of 96.45%, Recall of 97.14%, and F1 score of 96.80%. From
the results of both ablation studies, it is clear that Densent-201 and Densenet-121 are good
choices for multimodal classification, but Densenet-201 is more complex and requires more
powerful hardware to perform a multimodal classification task.

Table 2. Depression diagnosis using pre-trained audio data.

Model Accuracy (%) Precession (%) Recall (%) F1 Score (%)

Resnet18 96.68 97.04 95.62 96.32
Resnet34 96.68 95.77 97.14 96.45

Densenet201 98.01 96.92 98.44 97.67
Densenet121 97.01 96.45 97.14 96.80
ResNext50 95.68 93.38 36.35 35.13
Googlenet 94.68 93.60 93.60 93.60

Alexnet 86.05 80.99 88.46 84.56
Mobilenetv2 88.70 87.92 89.12 88.51

In the third part of the experiment, the proposed Modified Densenet121 model was
trained using TL. The Densenet121 model was fed simultaneously with both EEG STFT
spectrograms and audio Mel-spectrograms. The feature vectors were obtained from both
modalities and concatenated before forwarding them the final classification layer. Once
the classification was attained, a comparison between the proposed models was made
with the already published works. As a benchmark for comparison, we employed recall,
Precision, and F1 score for assessment. It can be observed that the proposed model for
the classification of MDD and healthy individuals outpaced the other models in terms of
Accuracy (97.53%), Precision (98.20%), Recall (97.32%) and F1 score (97.76%). Furthermore, the
results of the proposed model were also analyzed using the confusion matrix, presented in
Figure 3. In the confusion matrix, “class 0” represents the healthy controls, whereas “class 1”
shows the MDD. The model successfully attained a true positive (TP) rate of 326, correctly
classifying 326 occurrences as “Healthy Controls”. Nonetheless, eight occurrences were
mistakenly categorized as “Healthy Controls” when they were in fact “MDD”, resulting in
a false negative (FN) rate. In addition, the model mistakenly characterized six occurrences
as “MDD” instead of “Healthy Controls”, resulting in false positive (FP) predictions. In
contrast, the model accurately classified 266 occurrences as “MDD”, indicating a true
negative (TN) rate. It can be observed from the confusion matrix that 2.45% of normal
people are incorrectly identified as having MDD, while 2.25% of MDD are incorrectly
classified as belonging to the normal class, showing the better performance of the proposed
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model. This analysis enables us to evaluate the model’s Accuracy in categorizing both
“Healthy Controls” and “MDD”, offering vital insights into its efficacy in our binary
classification assignment.

Also, the performance of only the EEG spectrograms and only the audio spectrograms
was compared to the fused model, which integrates both EEG and speech data. The results
of this comparison are summarized in Table 3. The EEG-only model achieved an Accuracy
of 97.33%, with a Precision and Recall of 97.34% and F1 score of 97.33%, demonstrating
strong performance based on EEG data alone. Similarly, the Mel-spectrogram-based
model achieved a slightly lower performance, with an Accuracy of 97.01%, a Precision
of 96.45%, and a Recall of 97.14%. The fused model that integrates both EEG and speech
data outperformed both individual models, achieving the highest Accuracy of 97.53%,
Precision of 98.20%, and Recall of 97.76%. This indicates that combining EEG and speech
data provides a more comprehensive analysis of the individual’s cognitive and emotional
states, leading to improved classification performance.

Table 3. Comparison of single modalities to proposed multi-modal classification model.

Model Accuracy (%) Precision (%) Recall (%) F1 Score (%)

EEG Only 97.33 97.34 97.33 97.33
Speech Only 97.01 96.45 97.14 96.80

Fused (EEG + Speech) 97.53 98.20 97.76 97.32

The proposed DenseNet-121 model achieved the highest Accuracy at 97.53% and out-
performed the other models tested in this study as shown in Table 4. It also demonstrated
higher Precision (98.20%), Recall (97.76%), and F1 score (97.32%), indicating that it not only
accurately identified MDD but also balanced the detection of true positives and true nega-
tives effectively. In comparison, EffNetV2m, achieved a slightly lower Accuracy (96.21%)
and a significantly lower Recall (91.14%), suggesting it may miss more positive cases of
MDD, even though its Precision remained relatively high (92.83%). MobileNet, while being
computationally efficient, underperformed with an Accuracy of 83.88%, highlighting the
trade-off between model simplicity and diagnostic Accuracy. The results of the vision
transformer are close to those of DenseNet-121, achieving an Accuracy of 97.31%, with
nearly identical F1 score (97.30%). However, DenseNet-121’s higher Precision suggests
better differentiation between MDD and healthy controls, making it more suitable for
clinical application. These findings demonstrate DenseNet-121’s feature fusion technique
between EEG and speech data, making it the most reliable automated MDD diagnostic
model. Although the presented model has shown better performance, the modest dataset
is one of the limitations of this study.

Table 4. Proposed Densenet-121 and other methods for comparisons.

Approach Accuracy (%) Precession (%) Recall (%) F1 Score (%)

Densenet121 (Proposed) 97.53 98.20 97.76 97.32
Effnetv2m (Pre-trained) [13] 96.21 92.83 91.14 93.92
Mobile-Net (Pre-trained) [13] 83.88 78.81 77.94 78.07

Vision Transformers [13] 97.31 97.21 97.34 97.30
TCN [50] 86.87 90.15 83.83 90.51

Decision Tree [51] 83.4 81.9 79.00 80.5
Multimodal + SD-Norm-Att 95.78 93.45 95.64 94.53

CNN-BLSTM [52] 81.6 - - -

6. Discussion

This paper focuses on the classification of MDD and healthy individuals. The multi-
modal MODMA dataset utilized for the classification consists of audio and resting-state
EEG data of MDD and healthy individuals. The raw EEG data of the selected frequency
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range and optimized channels responsible for depression were transformed into STFT.
The selection of EEG channels in this study was primarily based on their relevance to
the brain regions associated with MDD and cognitive functioning. Also, the audio data
were transformed into Mel-spectrograms. The proposed method utilized a pre-trained
Densenet121 model using TL for parameter fine-tuning.

While there is a huge body of research work on the diagnostic methods for MDD
detection, it can be observed that most of the studies are focused on analyzing a single
modality for the diagnosis of MDD. While EEG-based studies have reported high accuracies
in the detection of depression, particularly focused on specific brain regions such as the
frontal lobe, they often fail to capture the behavioral and speech-related symptoms, equally
important in diagnosing mood disorders. Conversely, speech-based analyses offer insights
into psychomotor retardation and cognitive slowing but do not provide direct access
to neurophysiological data. The findings of this study indicate that combining EEG and
speech data provides a more holistic view of depression symptoms, aligning with the recent
literature advocating for multimodal approaches in mental health diagnostics. By capturing
both the neural and behavioral components of depression, the proposed model addresses
limitations observed in single-modality studies, where reliance on a single modality may
lead to misclassification or reduced Accuracy in certain clinical settings.

Other studies have used various approaches; for instance, Li et al. [50] achieved
an Accuracy of 81.6% using a self-attentional CNN-BLSTM model for speech emotion
recognition, which highlights the limitations of speech-only approaches). Similarly, Xin
Chen and Zhigeng Pan used the decision tree model, which reached an Accuracy of 83.4%
for depression detection based on voice data of the MODMA dataset [51]. In contrast, the
speech-only model in this study demonstrated a higher Accuracy of 97.01%, highlighting
the better performance of DL methods. Meanwhile, EEG-based approaches have also
shown variable results. Wang et al. [52] implemented a temporal convolution network
(TCN) and achieved an Accuracy of 85.23% for EEG-based depression classification, which
is significantly lower than the Accuracy achieved in this study, suggesting that the selection
of optimized EEG channels can greatly enhance performance. Qayyum et al. [13] utilized
a multimodal approach, combining audio spectrograms with multiple EEG frequency
bands, and applying vision transformers. The authors achieved an Accuracy, Precision,
recall, and F1 score of 97.31%, 97.21%, 97.34%, and 97.30%, respectively, demonstrating
strong performance in diagnosing depression in patients at the mild stage. Their results
are comparable to those of our proposed method, where the fused model attained slightly
better results. Sabbir et al. [10] proposed a novel multimodal CNN that integrates audio,
video, text, and EEG data to detect depression, addressing missing modality issues through
a selective dropout mechanism. Their methodology incorporates attention-based feature
fusion and normalization to enhance the model’s robustness in handling incomplete data.
They used three datasets: Dvlog, DAIC-WOZ, and MODMA. They achieved good Accuracy,
Precision, recall, and F1 score with the MODMA dataset, which were 95.78%, 93.45%, 95.64%,
and 94.53%. Although their results are lower compared to others, their proposed method
highlights the effectiveness of their integrated multimodal approach and its potential to
improve MDD classification Accuracy even in the presence of missing data. All results are
provided in Table 4 for comparison.

It is equally important to also acknowledge the limitations of this work. The primary
limitation of this work is the modest sample size. Second, the speech samples for this
work were collected in a controlled setting, and it is uncertain whether the same Accuracy
could be achieved with less structured, spontaneous speech. Third, there is a limitation
related to the selection of EEG channels: although 29 channels were chosen based on prior
studies, exploring additional or alternative brain regions might further enhance diagnostic
Accuracy. Lastly, further attention can also be paid to expanding the dataset to include more
participants from various demographic backgrounds to improve the generalizability of the
model. Furthermore, future studies may enhance model Accuracy by using modalities such
as textual data, facial expression data derived from images or videos, and social media
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content to achieve improved classification outcomes. Moreover, experimenting with other
deep learning architectures, such as vision transformers or attention-based models, could
further refine the feature extraction process and potentially improve performance.

7. Conclusions

This research study is one of the efforts to propose robust and accurate DL methods
for the diagnosis of MDD by utilizing the pre-trained DenseNet-121 model. The researchers
conducted experiments on the MODMA dataset that included EEG and audio data from
52 participants, including both clinically diagnosed depressed patients and non-depressed
control subjects. Based on the conclusions of previous studies, a specific range of EEG
frequencies and specific channels responsible for depression were selected. To produce de-
scriptive features, the raw data were transformed to STFT from EEG and Mel-Spectrogram
from audio. This approach enhances the diagnostic performance by analyzing both speech
and the EEG spectrum. The proposed method has shown an Accuracy of 97.53 percent and
has outperformed the SOTA methods. Despite the limitations of this study, including the
dataset’s size, this study could be useful in clinical practices for the diagnosis of MDD.

Author Contributions: Conceptualization, R.M.; methodology, R.M.; software, M.Y.; validation, M.Y.,
R.D. and R.M.; formal analysis, M.Y., R.D. and R.M.; investigation, M.Y. and R.M.; resources, R.M.;
data curation, M.Y.; writing—original draft preparation, M.Y. and R.M.; writing—review and editing,
R.D.; visualization, M.Y.; supervision, R.M. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: In this study, we used a Multi-modal Open Dataset for Mental Disorder
Analysis (MODMA) provided by Lanzhou University Second Hospital, China, available at https://
modma.lzu.edu.cn/data/index/ (accessed on 4 April 2024).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Mario, M. When does depression become a mental disorder? Br. J. Psychiatry 2011, 2, 85–86.
2. Alireza, R.; Zahedifar, R.; Sitaula, C.; Marzbanrad, F. Automated detection of major depressive disorder with EEG signals: A time

series classification using deep learning. IEEE Access 2022, 10, 73804–73817.
3. Ernst, M.; Kallenbach-Kaminski, L.; Kaufhold, J.; Negele, A.; Bahrke, U.; Hautzinger, M.; Beutel, M.E.; Bohleber, M.L. Suicide

attempts in chronically depressed individuals: What are the risk factors? Psychiatry Res. 2020, 287, 112481. [CrossRef] [PubMed]
4. Hirschfeld, M.R. The comorbidity of major depression and anxiety disorders: Recognition and management in primary care.

Prim. Care Companion J. Clin. Psychiatry 2001, 3, 244. [CrossRef] [PubMed]
5. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders; The American Psychiatric Association:

Washington, DC, USA, 2013; Volume 21, pp. 591–643.
6. Marcus, M.; Yasamy, M.T.; Ommeren, M.V.; Chisholm, D.; Saxena, S. Depression: A Global Public Health Concern; American

Psychological Association: Washington, DC, USA, 2012.
7. Smith, K.; Torres, I.D. A world of depression. Nature 2014, 515, 10–1038. [CrossRef] [PubMed]
8. Brundtland, G.H. Mental health: New understanding, new hope. JAMA 2001, 286, 2391.
9. Zhu, J.; Wang, Y.; La, R.; Zhan, J.; Niu, J.; Zeng, S.; Hu, X. Multimodal mild depression recognition based on EEG-EM

synchronization acquisition network. IEEE Access 2019, 7, 28196–28210. [CrossRef]
10. Ahmad, S.; Yousuf, A.M.; Monowar, M.M.; Hamid, M.A.; Alassafi, M. Taking all the factors we need: A multimodal depression

classification with uncertainty approximation. IEEE Access 2023, 11, 99847–99861. [CrossRef]
11. World Health Organization. Depressive Disorder (Depression). 31 March 2023. Available online: https://www.who.int/news-

room/fact-sheets/detail/depression (accessed on 25 April 2024).
12. Allsopp, K.; Read, J.; Corcoran, R.; Kinderman, P. Heterogeneity in psychiatric diagnostic classification. Psychiatry Res. 2019, 279,

15–22. [CrossRef]
13. Qayyum, A.; Razzak, I.; Tanveer, M.; Mazhar, M.; Alhaqbani, B. High-density electroencephalography and speech signal based

deep framework for clinical depression diagnosis. IEEE/ACM Trans. Comput. Biol. Bioinform. 2023, 20, 2587–2597. [CrossRef]
14. Thase, M.E. Recommendations for screening for depression in adults. JAMA 2016, 4, 349–350. [CrossRef] [PubMed]

https://modma.lzu.edu.cn/data/index/
https://modma.lzu.edu.cn/data/index/
https://doi.org/10.1016/j.psychres.2019.112481
https://www.ncbi.nlm.nih.gov/pubmed/31377008
https://doi.org/10.4088/PCC.v03n0609
https://www.ncbi.nlm.nih.gov/pubmed/15014592
https://doi.org/10.1038/515180a
https://www.ncbi.nlm.nih.gov/pubmed/25391942
https://doi.org/10.1109/ACCESS.2019.2901950
https://doi.org/10.1109/ACCESS.2023.3315243
https://www.who.int/news-room/fact-sheets/detail/depression
https://www.who.int/news-room/fact-sheets/detail/depression
https://doi.org/10.1016/j.psychres.2019.07.005
https://doi.org/10.1109/TCBB.2023.3257175
https://doi.org/10.1001/jama.2015.18406
https://www.ncbi.nlm.nih.gov/pubmed/26813206


Brain Sci. 2024, 14, 1018 17 of 18

15. Kato, T.A.; Hashimoto, R.; Hayakawa, K.; Kubo, H.; Watabe, M.; Teo, A.R.; Kanba, S. Multidimensional anatomy of ‘modern type
depression’in J apan: A proposal for a different diagnostic approach to depression beyond the DSM-5. Psychiatry Clin. Neurosci.
2016, 1, 7–23. [CrossRef] [PubMed]

16. Fingelkurts, A.A.; Fingelkurts, A.A.; Heikki, R.; Kirsi, S.; Erkki, I.; Kähkönen, S. Impaired functional connectivity at EEG alpha
and theta frequency bands in major depression. Hum. Brain Mapp. 2007, 28, 247–261. [CrossRef] [PubMed]

17. Dibeklioglu, H.; Hammal, Z.; Chon, J.F. Dynamic multimodal measurement of depression severity using deep autoencoding.
IEEE J. Biomed. Health Inform. 2017, 22, 525–536. [CrossRef] [PubMed]

18. Giannakopoulos, P.; Missonnier, P.; Gold, G.; Michon, A. Electrophysiological markers of rapid cognitive decline in mild cognitive
impairment. Dement. Clin. Pract. 2009, 24, 39–46.

19. Kumar, J.S.; Bhuvaneswari, P. Analysis of electroencephalography (EEG) signals and its categorization—A study. Procedia Eng.
2012, 38, 2525–2536. [CrossRef]

20. Olejniczak, P. Neurophysiologic basis of EEG. J. Clin. Neurophysiol. 2006, 23, 186–189. [CrossRef]
21. Acharya, U.R.; Sree, S.V.; Ang, P.C.A.; Yanti, R.; Suri, J.S. Application of non-linear and wavelet based features for the automated

identification of epileptic EEG signals. Int. J. Neural Syst. 2012, 22, 1250002. [CrossRef]
22. Cavanagh, J.F.; Napolitano, A.; Wu, C.; Mueen, A. The patient repository for EEG data+ computational tools (PRED + CT). Front.

Neurosci. 2017, 11, 67. [CrossRef]
23. Othmani, A.; Muzammel, M. An Ambient Intelligence-Based Approach for Longitudinal Monitoring of Verbal and Vocal

Depression Symptoms. In International Workshop on PRedictive Intelligence in Medicine; Springer Nature: Cham, Switzerland, 2023;
pp. 206–217.

24. Espinola, C.W.; Gomes, J.C.; Pereira, J.M.S.; Santos, W.P.D. Detection of major depressive disorder using vocal acoustic analysis
and machine learning an exploratory study. Res. Biomed. Eng. 2021, 37, 53–64. [CrossRef]

25. Gao, H.; Liu, Z.; Maaten, L.V.D.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.

26. Zhang, B.; Cai, H.; Song, Y.; Tao, L.; Li, Y. Computer-aided recognition based on decision-level multimodal fusion for depression.
IEEE J. Biomed. Health Inform. 2022, 7, 3466–3477. [CrossRef] [PubMed]

27. Cai, H.; Yuan, Z.; Gao, Y.; Sun, S.; Li, N.; Tian, F.; Xiao, H.; Li, J.; Yang, Z.; Li, X.; et al. A multi-modal open dataset for
mental-disorder analysis. Sci. Data 2022, 9, 178. [CrossRef] [PubMed]

28. Wu, C.-T.; Huang, H.-C.; Huang, S.; Chen, I.-M.; Liao, S.-C.; Chen, C.-K.; Lin, C.; Lee, S.-H.; Chen, M.-H.; Tsai, C.-F.; et al. Resting-
state EEG signal for major depressive disorder detection: A systematic validation on a large and diverse dataset. Biosensors 2021,
11, 499. [CrossRef] [PubMed]

29. Mumtaz, W.; Xia, L.; Mohd Yasin, M.A.; Azhar Ali, S.S.; Malik, A.S. A wavelet-based technique to predict treatment out-come for
majordepressive disorder. PLoS ONE 2017, 12, e0171409. [CrossRef] [PubMed]

30. Mahato, S.; Paul, S. Detection of major depressive disorder using linear and non-linear features from EEG signals. Microsyst.
Technol. 2019, 25, 1065–1076. [CrossRef]

31. Hosseinifard, B.; Moradi, M.; Rostami, R. Classifying depression patients and normal subjects using machine learning techniques
and nonlinear features from EEG signal. Comput. Methods Programs Biomed. 2013, 1109, 339–345. [CrossRef]

32. Aydemir, E.; Tuncer, T.; Dogan, S.; Gururajan, R.; Acharya, U.R. Automated major depressive disorder detection using melamine
pattern with EEG signals. Appl. Intell. 2021, 51, 6449–6466. [CrossRef]

33. TErguzel, T.; Tanl, S.O.O.; Gultekin, S. Feature selection and classification of electroencephalographic signals: An artificial neural
network and genetic algorithm based approach. Clin. EEG Neurosci. 2015, 46, 321–326. [CrossRef]

34. Mahato, S.; Paul, S. Classification of depression patients and normal subjects based on electroencephalogram (EEG) signal using
alpha power and theta asymmetry. J. Med. Syst. 2019, 44, 28. [CrossRef]

35. Cai, H.; Han, J.; Chen, Y.; Sha, X.; Wang, Z.; Hu, B.; Yang, J.; Feng, L.; Ding, Z.; Chen, Y.; et al. A pervasive approach to eeg-based
depression detection. Complexity 2018, 2018, 5238028. [CrossRef]

36. Spyrou, I.M.; Frantzidis, C.; Bratsas, C.; Antoniou, I.; Bamidis, P.D. Geriatric depression symptoms coexisting with cognitive
decline: A comparison of classification methodologies. Biomed. Signal Process. Control 2016, 25, 118–129. [CrossRef]

37. Acharya, U.R.; Oh, S.L.; Hagiwara, Y.; Tan, J.H.; Adeli, H.; Subha, D.P. Automated EEG-based screening of depression using deep
convolutional neural network. Comput. Methods Programs Biomed. 2018, 161, 103–113. [CrossRef] [PubMed]

38. Sandheep, P.; Vineeth, S.; Poulose, M.; Subha, D.P. Performance analysis of deep learning CNN in classification of depression EEG
signals. In Proceedings of the TENCON 2019–2019 IEEE Region 10 Conference (TENCON), Kochi, India, 17–20 October 2019;
pp. 1339–1344.

39. Li, X.; La, R.; Wang, Y.; Niu, J.; Zeng, S.; Sun, S.; Zhu, J. EEG-based mild depression recognition using convolutional neural
network. Med. Biol. Eng. Comput. 2019, 57, 1341–1352. [CrossRef] [PubMed]

40. Ay, B.; Yildirim, O.; Talo, M.; Baloglu, U.B.; Aydin, G.; Puthankattil, S.D.; Acharya, U.R. Automated depression detection using
deep representation and sequence learning with EEG signals. J. Med. Syst. 2019, 43, 205. [CrossRef]

41. Dang, W.; Gao, Z.; Sun, X.; Li, R.; Cai, Q.; Grebogi, C. Multilayer brain network combined with deep convolutional neural
network for detecting major depressive disorder. Nonlinear Dyn. 2020, 102, 667–677. [CrossRef]

https://doi.org/10.1111/pcn.12360
https://www.ncbi.nlm.nih.gov/pubmed/26350304
https://doi.org/10.1002/hbm.20275
https://www.ncbi.nlm.nih.gov/pubmed/16779797
https://doi.org/10.1109/JBHI.2017.2676878
https://www.ncbi.nlm.nih.gov/pubmed/28278485
https://doi.org/10.1016/j.proeng.2012.06.298
https://doi.org/10.1097/01.wnp.0000220079.61973.6c
https://doi.org/10.1142/S0129065712500025
https://doi.org/10.3389/fninf.2017.00067
https://doi.org/10.1007/s42600-020-00100-9
https://doi.org/10.1109/JBHI.2022.3165640
https://www.ncbi.nlm.nih.gov/pubmed/35389872
https://doi.org/10.1038/s41597-022-01211-x
https://www.ncbi.nlm.nih.gov/pubmed/35440583
https://doi.org/10.3390/bios11120499
https://www.ncbi.nlm.nih.gov/pubmed/34940256
https://doi.org/10.1371/journal.pone.0171409
https://www.ncbi.nlm.nih.gov/pubmed/28152063
https://doi.org/10.1007/s00542-018-4075-z
https://doi.org/10.1016/j.cmpb.2012.10.008
https://doi.org/10.1007/s10489-021-02426-y
https://doi.org/10.1177/1550059414523764
https://doi.org/10.1007/s10916-019-1486-z
https://doi.org/10.1155/2018/5238028
https://doi.org/10.1016/j.bspc.2015.10.006
https://doi.org/10.1016/j.cmpb.2018.04.012
https://www.ncbi.nlm.nih.gov/pubmed/29852953
https://doi.org/10.1007/s11517-019-01959-2
https://www.ncbi.nlm.nih.gov/pubmed/30778842
https://doi.org/10.1007/s10916-019-1345-y
https://doi.org/10.1007/s11071-020-05665-9


Brain Sci. 2024, 14, 1018 18 of 18

42. Saeedi, A.; Saeedi, M.; Maghsoudi, A.; Shalbaf, A. Major depressive disorder diagnosis based on effective connectivity in
EEG signals: A convolutional neural network and long short-term memory approach. Cogn. Neurodynamics 2020, 15, 239–252.
[CrossRef]

43. Gupta, R.; Malandrakis, N.; Xiao, B.; Guha, T.; Segbroeck, M.V.; Black, M.; Potamianos, A.; Narayanan, S. Multimodal prediction
of affective dimensions and depression in human-computer interactions. In Proceedings of the 4th International Workshop on
Audio/Visual Emotion Challenge, Orlando, FL, USA, 7 November 2014; pp. 33–40.

44. Garn, H.; Coronel, C.; Waser, M.; Caravias, G.; Ransmayr, G. Differential diagnosis between patients with probable Alzheimer’s
disease, Parkinson’s disease dementia, or dementia with Lewy bodies and frontotemporal dementia, behavioral variant, using
quantitative electroencephalographic features. J. Neural Transm. 2017, 124, 569–581. [CrossRef]

45. Varli, M.; Yilmaaz, H. Multiple classification of EEG signals and epileptic seizure diagnosis with combined deep learning.
J. Comput. Sci. 2023, 67, 101943. [CrossRef]

46. Yadav, H.; Maini, S. Electroencephalogram based brain-computer interface: Applications, challenges, and opportunities. Multimed.
Tools Appl. 2023, 82, 47003–47047. [CrossRef]

47. Kim, H.; Luo, J.; Chu, S.; Cannard, C.; Hoffmann, S.; Miyakoshi, M. ICA’s bug: How ghost ICs emerge from effective rank
deficiency caused by EEG electrode interpolation and incorrect re-referencing. Front. Signal Process. 2023, 3, 1064138. [CrossRef]

48. Husain, S.F.; Tang, T.-B.; Yu, R.; Tam, W.W.; Tran, B.; Quek, T.T.; Hwang, S.-H.; Chang, C.W.; Ho, C.S.; Ho, R.C. Cortical
haemodynamic response measured by functional near infrared spectroscopy during a verbal fluency task in patients with major
depression and borderline personality disorder. EBioMedicine 2020, 51, 102586. [CrossRef] [PubMed]

49. Kumfor, F.; Irish, M.; Hodges, J.R.; Piguet, O. Frontal and temporal lobe contributions to emotional enhancement of memory in
behavioral-variant frontotemporal dementia and Alzheimer’s disease. Front. Behav. Neurosci. 2014, 8, 55. [CrossRef] [PubMed]

50. Li, Y.; Zhao, T.; Kawahara, T. Improved End-to-End Speech Emotion Recognition Using Self Attention Mechanism and Multitask
Learning. In Proceedings of the Interspeech 2019, Graz, Austria, 15–19 September 2019; pp. 2803–2807.

51. Xin, C.; Pan, Z. A convenient and low-cost model of depression screening and early warning based on voice data using for public
mental health. Int. J. Environ. Res. Public Health 2021, 18, 6441. [CrossRef] [PubMed]

52. Wang, Y.; Liu, F.; Yang, L. EEG-based depression recognition using intrinsic time-scale decomposition and temporal convolution
network. In Proceedings of the 5th International Conference on Biological Information and Biomedical Engineering, Hangzhou,
China, 20–22 July 2021; pp. 1–6.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s11571-020-09619-0
https://doi.org/10.1007/s00702-017-1699-6
https://doi.org/10.1016/j.jocs.2023.101943
https://doi.org/10.1007/s11042-023-15653-x
https://doi.org/10.3389/frsip.2023.1064138
https://doi.org/10.1016/j.ebiom.2019.11.047
https://www.ncbi.nlm.nih.gov/pubmed/31877417
https://doi.org/10.3389/fnbeh.2014.00225
https://www.ncbi.nlm.nih.gov/pubmed/25009480
https://doi.org/10.3390/ijerph18126441
https://www.ncbi.nlm.nih.gov/pubmed/34198659

	Introduction 
	Background 
	Material and Methods 
	Dataset 
	Data Processing 
	Proposed Multimodal Depression Diagnostic Framework 
	Transfer Learning 

	Experiments 
	Experimental Setup 
	Evaluation Metrics 
	Proposed Multimodal DenseNet121 
	Ablation Study 

	Results 
	Discussion 
	Conclusions 
	References

