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Abstract: This paper addresses the challenge of accurately estimating bee orientations on beehive
landing boards, which is crucial for optimizing beekeeping practices and enhancing agricultural
productivity. The research utilizes YOLOv8 pose models, trained on a dataset created using an
open-source computer vision annotation tool. The annotation process involves associating bounding
boxes with keypoints to represent bee orientations, with each bee annotated using two keypoints:
one for the head and one for the stinger. The YOLOv8-pose models demonstrate high precision,
achieving 98% accuracy for both bounding box and keypoint detection in 1024 × 576 px images.
However, trade-offs between model size and processing speed are addressed, with the smaller nano
model reaching 67 frames per second on 640 × 384 px images. The entrance ramp detection model
achieves 91.7% intersection over union across four keypoints, making it effective for detecting the
hive’s landing board. The paper concludes with plans for future research, including the behavioral
analysis of bee colonies and model optimization for real-time applications.

Keywords: convolutional neural network; YOLOv8-pose; keypoint detection; beehive; entrance ramp
detection; bee orientation

1. Introduction

Beekeeping is a vital component of modern agriculture, playing a significant role in
crop pollination and maintaining overall ecosystem health [1,2]. As global agricultural
productivity demands rise, the need for efficient and precise methods to monitor bee
behavior becomes increasingly critical [3]. Monitoring bee activities at hive entrances
offers valuable insights that can help optimize hive productivity and ensure sustainable
agricultural practices [4]. Despite various efforts to improve hive monitoring, there remains
a gap in systems that can automatically detect, track, and analyze bee behavior in a
detailed and scalable way at the hive entrance. Specifically, current approaches have
limitations in accurately estimating bee orientations and detecting key areas such as the
hive’s entrance ramp.

This paper addresses this gap by proposing a key component of a bee behavior identifi-
cation system that integrates keypoint-based bee orientation estimation and ramp detection
at the hive entrance. Leveraging advanced computer vision techniques, particularly key-
point detection models, this research aims to enhance the accuracy and efficiency of moni-
toring bee activities. The ability to precisely estimate bee orientations can support more
refined observations of hive health, bee traffic, and foraging behavior, thereby contributing
to better hive management and research [5]. Additionally, by automatically detecting hive
entrance ramps, this system provides a novel solution for analyzing bee behavior without
manual intervention, offering insights for real-time hive monitoring applications.
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Detecting and tracking bee orientations on beehive landing boards serve multiple
critical functions in beekeeping and scientific research. By observing bee movements and
directions at hive entrances, beekeepers can assess hive strength, foraging efficiency, and
overall health [6,7]. This information is essential for making informed hive management
decisions, such as feeding schedules or honey harvesting [8]. Tracking orientations also
provides insights into the foraging patterns of bees, helping researchers identify preferred
foraging locations and optimize hive maintenance strategies based on the availability of
resources [9,10].

Beyond its contributions to hive management, bee orientation estimation plays a
critical role in understanding foraging behavior, insect coordination, and environmental
impacts. Studying how bees land at hive entrances [11] or respond to changes in weather,
temperature, or resource availability can provide valuable data for ecological research [12].
Additionally, by monitoring unusual bee orientation patterns, beekeepers can detect early
signs of health issues or pest infestations such as Varroa mites [13,14]. This level of observa-
tion is key for ensuring hive sustainability and minimizing colony losses [15].

To bridge the current gaps in hive monitoring systems, we propose a method that uses
two keypoints per bee, one on the head and one on the stinger, to estimate bee orientation.
In addition, we present the first known research on detecting hive entrance ramps using
keypoint-based approaches. This system is capable of localizing entrance ramps, tracking
bee movements, and estimating orientations, even in scenarios where bees are partially
occluded. Our approach is designed to be scalable and adaptable across different hives,
which is critical for real-world beekeeping applications.

The contributions of this research are as follows:

• We collected, annotated, and publicly provided dataset [16] for the following:

– Bee direction estimation based on keypoint detection: 400 images from eight bee-
hives.

– Landing board detection: 156 images of 15 entrance ramps.

• We presented the first known research on localizing beehive entrance ramps using
keypoint detection. This key component of the machine vision-based system can
automatically recognize the shape of the landing board, enabling further analysis of
bee traffic specifically within the zone of interest.

• We performed a comparative evaluation of bee keypoint detection and entrance ramp
detection by training pose detection models of varying complexity to assess both
accuracy and processing speed.

This work marks a significant step towards developing an automated, long-term
monitoring system capable of extracting behavioral statistics and detecting significant
events at hive entrances. Currently, we focus on using keypoint-based approaches for bee
orientation estimation, which will later be extended to track bee directions and recognize
behavior patterns at hive entrance ramps. To ensure the system can adapt to any hive
within the investigated apiary, we trained and tested a distinct keypoint detection model to
automatically identify and localize the entrance zone of beehives.

The main objective of this research is to demonstrate that using two trackable key-
points per bee enables accurate orientation estimation, while also showing that a keypoint
detection model can effectively localize entrance ramps. The following section reviews the
state of the art in bee orientation estimation. Next, we outline the dataset, labeling process,
and algorithm for converting annotation files, followed by an evaluation of precision and
speed for bee and entrance ramp detection models.

2. Related Works

To accurately identify bee behavior, a monitoring system must track the direction
of individual bees, not just detect them. Most related works focus on aspects such as
bee tracking inside honeycombs [17], bee traffic analysis [18], bee detection [19], count-
ing [20], improving pollen-bearing bee detection on native entrance ramp [21], determining
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crowd density at hive entrances [15], and precise body parts tracking of individual sepa-
rated bees [22]. Some studies use artificial passageways with black backgrounds for bee
tracking [23] and pollen detection [10], or white backgrounds to enhance contrast for bee
segmentation [7]. All of these approaches utilize stationary mounted cameras to collect
datasets and test their algorithms. In contrast, our aim is to train a model that can detect
the region of entrance ramp in image for further analysis of bee behavior in that area in a
certain period of time, and then move to observe another hive in the apiary.

2.1. Orientation Estimation

The studies related with bee orientation estimation are summarized in Table 1. The
first four studies are based on CNN models, the last four use background subtraction, and
edge detection to segment bees or detect the barcode tag glued to the thorax of the bee.

Table 1. Comparative evaluation of the proposed methods for the estimation of bee orientation.

Year of Study Authors Proposed Method Dataset Results

2018 Bozek et al. [24] U-Net 720 images Orientation estimation
based on segmentation

2022 Rodriguez et al. [25] Modified VGG-19 270 images Pose detection based on
five keypoints

2023 Majewski et al. [9] Mask R-CNN 180 images Angle of inclination based
on segmentation

2022 Smith et al. [26] U-Net 1000 bees Barcode and pose detection
based on 12 keypoints

2023 Gernat et al. [27] Barcode and CNN 1370 bees Barcode orientation vector
2015 Wario et al. [28] Edge detection 2000 bees Barcode tag’s orientation

2008 Veeraraghavan et al. [29] Ellipse fitting 750 images Orientation estimation
based on bee’s shape model

2016 Tu et al. [7] Background subtraction 18,750 images Bee segmentation, angle
of inclination

To implement the axis orientation of the bees, the researchers use a U-Net segmentation
architecture to identify individual bees in a video sequence [24]. After filtering out irrelevant
foreground patches, they calculate the centroid and main body axis for each remaining
region, with the body axis determined by the first principal component of the segmented
bees. To predict the orientation angle, each foreground pixel is assigned the bee rotation
angle, and a loss function is defined to optimize the angle estimation. The proposed
solution effectively localizes bees and estimates their orientation in video frames with 13◦

difference on average, demonstrating robustness in densely packed scenarios.
In the bee activity tracking project [9] the angle of inclination of the bee is determined

using ResNet50 as the backbone for Mask R-CNN model trained on 143 images to detect
bees and estimate orientation on the landing board. After validation, binary masks undergo
skeletonization, and linear regression on resulting coordinates calculates the angle of
inclination. The authors achieved 94.5% average precision for bee detection.

The orientation of the bee can be estimated by tracking bee pose [25]. The approach
considers five body parts, including tip abdomen, thorax, head, left, and right antennas,
with defined connections. The pose detector architecture employs the convolutional neural
network (CNN) with a feature extraction backbone and two branches for pose detection. In
the inference stage, a greedy approach is used to detect body-part keypoints and group
them into skeletons, providing a trajectory of bee poses over time. The average precision
of body part detection reaches 99% on a custom dataset with an artificial entrance ramp.
A similar approach for bee pose estimation inside the hive uses 12 keypoints per bee [26].
The authors reported an Object Keypoint Similarity (OKS) of 0.96 for detecting the centroid
of the anchor box and 0.33 for localizing 12 different anatomical points on a bee.

The orientation of honeybees can be monitored with tiny barcodes glued to their
thorax [26–28]. Changes in the location and orientation of an individual’s barcode are
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tracked to study the behavior of bees inside the observation hive. The research approach
combines barcode-based tracking and convolutional neural networks to efficiently identify
specific behaviors in honey bee colonies. Barcodes aid in individual identification, and the
tracking system provides continuous location and orientation data inside the observation
hive. The approach for bee identification is robust; however, challenges persist with
barcode placement, lighting conditions, and the limited number of tracked bees, as control
individuals still need to be manually labeled. To detect and decode the pattern of the
barcode, authors [28] used methods for edge detection, image binarization, morphological
operations, and ellipse fitting.

Tu et al. [7] developed a Raspberry Pi-based system to analyze the behavior of hon-
eybees at the hive entrance. The system successfully counts honeybees, determines their
positions, and tracks their in-and-out activity. Bee detection is achieved through back-
ground subtraction and statistical analysis. Angle of inclination was simulated through
ellipse fitting to the segmented contour of the bee. The system achieves an accuracy of 98.7%
for bee counting, 95.3% for measuring in-activity, and 88.8% for measuring out-activity. It
periodically saves 30-s video clips every 10 min at 5 fps and processes them offline within
567 s, resulting in a relatively low frame rate.

2.2. Entrance Monitoring

As far as we know, hive entrance ramp detection in images has not been previously
investigated. Therefore, there is a lack of references to compare the proposed keypoint-
based approach with state-of-the-art methods. However, we review several monitoring
systems, emphasizing the type of landing boards selected by other authors for analyzing
bee traffic at the hive entrance.

The monitoring system for detecting pollen-bearing honey bees utilizes a Raspberry
Pi camera mounted on a wooden sensing box positioned above the hive entrance [30,31].
It captures RGB video at 1280 × 720 resolution and 30 fps, focusing on the lower part of
each frame to mitigate lighting issues and shadows. A blue-painted flight board enhances
the segmentation of moving bees against the background. The system effectively classifies
bees as pollen-bearing or not, leveraging real-time background subtraction and color
segmentation techniques for accurate detection.

The research on bee tracking and activity monitoring [23] and pollen versus non-pollen
bearing honey bee classification [10] involves using an observation box mounted on the
front of the hive, allowing the bees to pass through the entrance hole. The image monitoring
system includes a Jetson TX2, a webcam, a red LED lighting panel, and a monotone black
passageway to improve contrast. The authors achieved a pollen classification accuracy
of 94% using the YOLOv3 algorithm. A similar bee traffic analysis unit was developed,
which is portable and connectable to a standard beehive [7]. In this system, honeybees enter
and exit the hive through a specially designed monotone white passage that enhances the
detectability of bees and prevents their overlapping, allowing for more accurate monitoring.

Another study on pollen detection achieved 98% accuracy using YOLOv5 and Faster
R-CNN with a Jetson Nano [21]. The image acquisition system was stationary, mounted
above the hive entrance to capture bees on the landing board. The dataset used for this
study includes 2051 annotated images of the native entrance ramp of a single beehive. In a
series of studies, authors monitored the native hive entrance for bee counting [20], traffic
analysis [18], and enhancing bee detection [19]. The monitoring system used a Raspberry
Pi and a stationary camera mounted above the hive entrance.

Two key inferences can be drawn from recent efforts in vision-based bee orientation
estimation and monitoring systems for beehive entrances. First, convolutional network
architectures are commonly used for bee direction estimation through segmentation [9,24],
and keypoint extraction [25] approaches. Second, all current methods employ stationary
cameras mounted above native ramps or inside observation boxes with a monotone back-
ground. However, there is a gap in research focused on entrance ramp detection, as existing
studies analyze bee traffic across the entire field of view. This work addresses the ramp
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localization problem and aims to advance portable systems for bee behavior identification
in the entrance zones of any hive within an apiary.

3. Materials and Methods

Figure 1 presents a flowchart of the bee orientation and ramp detection stages. Raw
video recordings were captured at a local apiary and converted into a dataset of images.
The images were then manually annotated with bounding boxes and keypoints. YOLOv8
keypoint detection models were trained on this annotated dataset and applied for both bee
and ramp detection. Detection accuracy was evaluated using precision, recall, OKS, and
IoU metrics. A developed visualization module allows us to display results visually on
the raw images, including predicted bee orientation arrows, the predicted entrance ramp
zone, OKS levels, and numerical metric values. The images, along with the detections,
orientations, and keypoints, are saved in output files.
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Figure 1. Flowchart of pose models application for bee orientation and ramp detection.

To create the datasets, videos of hive landing boards were recorded in local apiary
in the Vilnius district in the 2018–2023 beekeeping seasons. The footage was captured at
1920 × 1080 px and 50 fps, from a height of 30 cm above eight beehive landing boards for
bee detection using a stationary mounted camera (Figure 2), and from 15 beehives for ramp
detection using both stationary and non-stationary cameras. The videos were recorded
on sunny and cloudy days, with each hive having 2 to 5 min of MP4 video captured.
Frames for annotation were extracted from the raw footage. The annotated datasets are
publicly available in the sub-folders “/pose” and “/ramp_detection” [16]. In the same
repository, we have previously shared datasets for bee detection, segmentation, tracking,
and behavior recognition.

Figure 2. Data acquisition on apiary. (1) Camera, (2) beehive, (3) entrance ramp.
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3.1. Bee Detection

Various sizes of keypoint extraction models (YOLOv8-pose) are utilized for estimating
bee direction. The dataset includes 400 images of eight beehive entrances, with 50 frames
per beehive, and an average of nine bees per frame, each bee annotated with two keypoints.
Annotations are saved in YOLO format. For fully visible bees, the first keypoint [px1, py1]
marks the head, while the second [px2, py2] marks the stinger. For partially visible bees (on
the entrance hole and on the frame border), the first point represents the front part, and the
second point marks the back side (Figure 3). This labeling enables direction estimation even
for partially occluded bees. The pose dataset annotation format is structured as follows:
[class = 0, x, y, w, h, px1, py1, px2, py2], where x, y represent the center coordinates of the
bounding box, and w, h represent its width and height, respectively.

Figure 3. Bees are annotated with bounding boxes and two keypoints for orientation estimation. The
first point marks the head, and the second point marks the stinger. If the bee is partially occluded,
the keypoints are placed on the visible body parts in front and back.

The online version of the open-source computer vision annotation tool (CVAT) [32]
was used to prepare the dataset for estimating bee direction. Several annotated frames
in CVAT are shown in Figure 3. During labeling, all bees are annotated with rectangle-
shaped bounding boxes, and two points are assigned: one for the head and one for the
stinger. If the head or stinger is not visible, the frontmost or rearmost part is marked
with a point. The annotations are exported in XML format and processed with a custom
application implemented in Python-3.9.17 to associate the bees’ bounding boxes with their
keypoints. Since users can annotate boxes and keypoints in random order during manual
labeling, and these annotations are not linked in the exported XML file, the program
merges keypoints with the nearest bounding box by calculating the distance between the
center of the keypoints and the center of the boxes. The output of the algorithm generates
annotations in YOLO format.

3.2. Ramp Detection

Detection of the entrance ramp is crucial for tracking bee behavior, allowing for
continuous monitoring of activities such as foraging, fanning, defense, and swarming.
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Ramp detection will contribute to the automation of condition tracking across multiple
hives, enabling an autonomous beekeeper support system to efficiently observe and analyze
hive entrances, gather data, and report unusual conditions. For landing board detection,
we collected and annotated a dataset of entrance ramps from 15 different beehives, which
contains a total of 156 images [16]. Eight entrance ramps were taken from the bee detection
dataset, and seven were collected from new beehives in the same apiary. The entrance
ramps are often trapezoidal, rather than rectangular, and are therefore annotated with both
rectangular bounding boxes and four keypoints at the corners (Figure 4). Compared to
bounding box-based detection, localized keypoints allow for a more precise reconstruction
of the ramp’s shape, even when the ramp in the image is rotated or distorted. This is
particularly important when the camera is moving, as it is often not perfectly aligned with
the landing board.

Figure 4. Sample images of annotated entrance ramps with bounding boxes and keypoints.

Depending on the size and shape of the landing board, the area of the zone can be
represented by a polygon of various forms, not necessarily constrained to four keypoints.
Preliminary analysis of bee behavior at the hive entrance suggests that having multiple
zones, particularly above the landing board during instances of robbing or swarming, can
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be beneficial for identifying distinct patterns of behavior exhibited by bees [33,34]. In this
work, bee behavior was investigated solely within the landing board zone.

3.3. Model Description

Figure 5 presents the architecture of the pose model used for detecting both bounding
boxes and keypoints for bees and entrance ramps. The model was configured for two input
resolutions: 640 × 384 × 3 px and 1024 × 576 × 3 px. The model consists of three blocks:
backbone, neck, and head. The backbone acts as a feature extractor, utilizing convolutional
and C2f units, depicted in red and blue, respectively. The convolutional unit computes
2D convolution, normalizes the batch output, and applies the Sigmoid Linear Unit (SiLU)
activation function. The k parameter defines the size of the 2D kernel, s is the convolution
stride, and p represents the padding. The C2f unit contains multiple convolution blocks,
with the total number of convolutional layers in the C2f depending on the depth multiplier
d of the model. In this study, the nano, medium, and large models have depth multipliers
of 0.33, 0.67, and 1, respectively. In the C2f unit, the bottleneck block is executed n = 3 × d
or n = 6 × d times, with the shortcut path enabled or disabled, as shown in the C2f unit.
The backbone concludes with the Spatial Pyramid Pooling Fast (SPPF) unit, which contains
three max pooling layers and two convolutional layers [35].
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Figure 5. The architecture of the YOLOv8 pose model used for detecting both bounding boxes and
keypoints for bees and entrance ramps.

In the neck block, the number of channels is summed up using the Concat unit, while
the resolution of the feature maps remains unchanged. The Upsample unit increases the
resolution of the feature map by a factor of two to match the size of the concatenated
outputs from the C2f units. The head is the final part of the network and consists of three
pose units designed to detect objects of different sizes. Each pose unit predicts object
classes, the locations of bounding boxes, keypoints, and assigns confidence scores to each
bounding box.
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3.4. Evaluation Metrics

YOLOv8 pose models were trained on the proposed dataset for ramp detection and
evaluated using Intersection over Union (IoU) and object keypoint similarity (OKS) metrics.
The metric to evaluate the similarity of keypoints is measured by

KSi = exp

(
−d2

i
2s2(2σi)2

)
, (1)

here, di is the Euclidean distance between the ground truth and the predicted keypoint
i ∈ N = {1, 2, 3, 4} of the ramp; σi is the per-keypoint standard deviation; s is the square
root of the ground truth object segmented area.

The OKS score takes into account the visibility of each keypoint:

OKS =
∑4

i=1 KSiδ(vi > 0)

∑4
i=1 δ(vi > 0)

, (2)

here, KSi presents the keypoint similarity for the ith point; δ(vi > 0) is the Dirac-delta
function, which equals 1 if the keypoint i is visible or occluded, otherwise 0; and vi is the
ground truth visibility flag for the ith keypoint.

The IoU is a metric used to evaluate the accuracy of an object detection model by
comparing the predicted bounding box with the ground truth bounding box. It measures
the overlap between these two bounding boxes and is defined as the ratio of the area of
their intersection to the area of their union:

IoU =
Area of Overlap
Area of Union

, (3)

here, Area of Overlap is the area where the predicted bounding box and the ground truth
bounding box intersect; Area of Union is the total area covered by both the predicted and
ground truth bounding boxes, without counting the overlapping area twice.

In general, IoU is typically computed using rectangular bounding boxes. However,
in this study, the shapes of entrance ramps are not perfect rectangles. To account for
irregularly aligned and rotated ramps, the ramp detection precision is evaluated using
both IoU based on rectangular bounding boxes and keypoints. Since four keypoints are
placed at the corners of the ramp, they more accurately represent the landing board’s area
compared to bounding boxes, providing a more precise measure of ramp detection.

The precision metric measures the model’s ability to correctly identify only the relevant
objects, which in this study are the bees and entrance ramps. It represents the proportion
of correct positive predictions and is quantified by the following equation:

Precision =
TP

TP + FP
=

TP
all detections

, (4)

where TP are true positives; FP are false positive predictions.
The mean Average Precision (mAP) measures how well the model detects objects and

is based on the IoU score between the predicted bounding boxes and the ground truth
boxes. For mAP50, a detection is considered correct if the IoU between the predicted and
ground truth box is at least 0.5, meaning that the boxes overlap by 50% or more.

Recall is the capability of a model to locate all the relevant instances of all ground
truth bounding boxes. It measures the percentage of true positives detected among all the
relevant ground truths and is expressed as follows:

Recall =
TP

TP + FN
=

TP
all ground truths

, (5)
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where FN are false negative predictions. Here, the detection is valid (True Positive) if the
ratio of intersection over union (IoU) is above 0.5.

4. Results

The experiments were performed on GeForce RTX 2060 GPU with 6144 MB of RAM. The
packages and libraries of Ultralytics YOLOv8.1.1, Python-3.9.17, torch-2.1.2 and CUDA 11.8
were used to train YOLOv8-pose models for bee and ramp detection. Nano-sized (n)
and medium-sized (m) models [35] were trained on the input resolution 640 × 384 px and
1024 × 576 px. All investigated models were trained for 400 epochs, with checkpoints of
the model saved periodically. The batch size was set based on the model’s input resolution
and complexity, aiming to maximize the utilization of available video RAM. For inputs
of 1024 × 576 px, the batch size is 10 for the nano model and 4 for the medium-sized
model. For 640 × 384 px inputs, the batch sizes are thirty-two, twelve, and eight images,
respectively, for the nano, medium, and large models. The dataset was split into 80% for
training and 20% for validation/testing. All models were trained and tested on the same
dataset split. Then, a new 20% subset of the dataset was assigned for validation/testing.
Training was repeated five times using the same hyperparameters and training settings,
with only the training and validation/test dataset splits varying.

Annotated bees have two keypoints per bee, so the keypoints–shape parameter was set
to [2, 3], where 2 defines the number of keypoints and 3 defines the number of dimensions
(x, y, visibility). For ramp detection, the keypoints–shape parameter was set to [4, 3], as the
ramp has four corners to detect. For augmentation, image translation was set to ±0.1 of the
image width, scaling was set to a gain of ±0.5, and the left–right image flip probability was
set to 0.5. The mosaic augmentation was disabled for the final 10 epochs. The AdamW [36]
optimizer, with a momentum of 0.9 and a learning rate of 0.002, was used for weight decay
regularization. The total loss function used for pose model training is as follows:

TotalLoss = λbox · BoxLoss + λcls · ClsLoss + λd f l · d f lLoss+

λpose · PoseLoss + λkobj · kobjLoss,
(6)

here, lambdas (λ) are loss gains that balance the contribution of each loss component to the
total loss: the box loss gain – λbox = 7.5, classification loss gain – λcls = 0.5, distribution
focal loss gain – λd f l = 1.5, keypoints loss gain – λpose = 12, and keypoint objectness
(confidence) loss gain – λkobj = 1.

Figure 6 presents the precision and recall graphs. The validation loss is slightly
higher than the training loss, the downward trend indicates that the model is generalizing
reasonably well on the validation data. The red markers on the loss graphs indicate that
after about 100 epochs, the model tends to overfit the training dataset, as the training loss
becomes lower than the validation loss. To prevent overfitting, the model’s checkpoints
were taken at the iteration where the training and validation losses matched. The precision
for bounding boxes quickly rises from 0.75 to near 0.97 within the first 50 epochs and stays
stable. The precision for pose prediction starts around 0.6 and quickly rises above 0.97,
indicating good performance in accurately predicting keypoint locations.

4.1. Bee Detection

The performance of the trained models is evaluated using precision, recall, mean
average precision (mAP@0.5) from the official VOC metric, and mAP@0.5-0.95 from the
official COCO metric. Table 2 summarizes the precision and speed of bee detection. The
medium model achieves 98% precision for both bounding box and keypoint detection
at an input resolution of 1024 × 576 px. However, due to its larger size, the medium
model requires more time to process the original resolution frame, detecting keypoints and
bounding boxes at 15 fps compared to the nano model’s 21 fps at the same input resolution
of 1024 × 576 px. Training the medium model with 1024 × 576 px input resolution took
11 min. When the input resolution is reduced to 640 × 384 px, the medium model’s frame
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rate matches that of the nano model at 1024 × 576 px, though precision drops slightly from
97% to 96%. The fastest nano model processes at 23 fps with 640 × 384 px input resolution,
but with a slight precision decrease to 95% for both box and keypoint detection.

Figure 6. Training loss and evaluation metrics for the YOLOv8n-pose model for bee keypoint
detection with an input resolution of 1024 × 576 px.

Table 2. Results of bee box and keypoint detection after training of YOLOv8 pose models on custom
dataset on RTX 2060.

Model’s Input Resolution 640 × 384 px 1024 × 576 px
Model (YOLOv8-Pose) Nano Medium Nano Medium

Parameters 3.3 M 26.4 M 3.3 M 26.4 M
Training time, min 3 5 4 11

Time per frame, ms original 44 47 48 67
Max frame rate, fps image 23 21 21 15

Time per frame, ms resized 15 25 26 50
Max frame rate, fps image 67 40 38 20

Precision

Box

95 96 97 98
Recall 85 92 93 96
mAP50 93 97 97 99
mAP50-95 64 72 73 80

Precision

Keypoint

95 96 97 98
Recall 87 92 92 96
mAP50 94 97 97 99
mAP50-95 88 94 95 98

When the images were resized from the original 1920 × 1080 px to match the input
resolution of the model, the time per frame decreased significantly, while the precision
and recall metrics remained unchanged. The YOLOv8 nano model now achieves up to
67 fps. Image pre-processing, such as resizing each frame before feeding it into the CNN,
negatively impacts the overall system performance. It adds latency of 29 ms and 22 ms
for the nano and medium models at 640 × 384 px resolution, and 22 ms and 17 ms for the
nano and medium models at 1024 × 576 px resolution, respectively. Therefore, for field
deployment, the sensor resolution should match the model’s input resolution to avoid
frame rate drops.
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Figure 7 presents several images of entrance views with detected bees and keypoints.
Visual inspection of the labeled frames shows that all bounding boxes fit the bees, and all
keypoints correctly mark the head and stinger. When only part of the bee is visible at the
entrance hole, the blue point accurately indicates the front part of the bee, while the violet
point defines the back part of the body.

Figure 7. Detected bees on the entrance to the beehive. Blue point marks a head, violet point marks a
stinger. Green lines mark the ground truth inclination angle of bee. Predicted orientation vectors are
depict with yellow arrows.

Table 3 presents a comparative evaluation of the proposed implementation with state-
of-the-art methods for estimating bee orientation or pose in images. It is important to
note that the first study by Smith et al. [26] used the OKS metric, while all subsequent
studies used mAP. The implementations cannot be directly compared, as the authors used
different datasets, CNN architectures, hardware, and image resolutions. Smith et al. [26]
reported 97.7% OKS detecting the center point of the bees’ bounding box, and 33% OKS
for localizing 12 keypoints on a bee. Bozek et al. [24] achieved 87% orientation precision
using segmentation by calculating the centroid and first principal component, along with
96% precision in bee detection. Majewski et al. [9] reported 94% mean average precision
(mAP) for bee detection; however, the precision of orientation estimation was not provided.
Rodriguez et al. [25] achieved up to 99% mAP in detecting bee body parts: head, thorax,
and abdomen tip—the key points used for bee pose and orientation estimation.

The dataset from the study by Rodriguez et al. [25] was used to train the YOLOv8m-
pose model. The dataset was split in the same proportions as in the original article: 70%
for training and 30% for validation. The test results are presented at the end of Table 3.
The medium-sized pose model achieves 99% precision for detecting both bees and their
body parts. The datasets from other studies were not tested in this research due to either
unavailability of the datasets or format mismatch, as the pose model requires datasets
specifically labeled for keypoint detection.
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Table 3. Comparative evaluation of the proposed implementation with state-of-the-art methods for
bee detection, and the estimation of bee orientation (or body parts or pose detection) in images.

Authors Implementation Dataset,
Images

Image
Resolution,

Pixels

Model’s
Input

Resolution,
Pixels

Bee
Detection
Precision,

%

Orientation/
Body Parts
Precision,

%

Smith et al. [26] Segmentation, SLEAP (U-Net) 50 4096 × 3000 1024 × 1024 97.7 (OKS) 33.4 (OKS)

Bozek et al. [24] Segmentation, U-Net 720 3072 × 2048 512 × 512 96 (mAP) 87 (mAP)

Majewski et al. [9] Segmentation, Mask R-CNN 180 1920 × 1080 N/A 94.5 (mAP) N/A

Rodriguez et al. [25] Keypoints, modified VGG-19 270 2560 × 1440 640 × 360 N/A 99 (mAP)

This study Keypoints, YOLOv8m-pose 400 1920 × 1080 640 × 384 97 (mAP) 97 (mAP)
1024 × 576 99 (mAP) 99 (mAP)

Tested on Rodriguez et al. [25] dataset 640 × 384 99 (mAP) 99 (mAP)

4.2. Ramp Detection

The investigation of bee keypoint detection presented above was conducted on the
entire frame to eliminate errors related to ramp detection. Three different-sized models
were trained exclusively for ramp detection in images. Similar to the training of bee
detection models, the scale gain was set to 0.5, and the flip left-to-right probability was set
to 0.5. Additionally, an image rotation parameter was introduced, allowing for a ±20-degree
range to improve the model’s ability to recognize ramps at various orientations. Since the
entrance ramp is symmetrical, the keypoint flipping index vector was set to [1, 0, 3, 2],
meaning the two upper corners could be flipped with each other, as could the two lower
corners. The nano, medium, and large models were each trained three times with different
keypoint standard deviations. This study examined the influence of standard deviation
on training time and precision. Two-thirds of the dataset were used for training, with the
remaining one-third for testing. The dataset split was performed randomly. To evaluate
ramp detection precision, the metrics OKS, IoUkp, and IoUbb were used (Table 4). The
IoUkp metric measures the intersection area defined by the four keypoints, while IoUbb is
based on the intersection area of the rectangular bounding boxes. The last column of the
table shows the epoch at which the algorithm stopped training. The highest IoUkp = 0.917
was achieved by the YOLOv8m-pose model when σ = 0.125, which also required the
fewest training epochs.

Table 4. IoU and OKS Metrics Detecting Beehive Entrance Ramp in Images.

Model OKS IoUkp IoUbb Epochs

σ = 0.25 (default)

YOLOv8n-pose 0.984 0.837 0.932 213
YOLOv8m-pose 0.971 0.828 0.925 217
YOLOv8l-pose 0.978 0.816 0.909 125

σ = 0.125

YOLOv8n-pose 0.834 0.713 0.919 131
YOLOv8m-pose 0.983 0.917 0.942 182
YOLOv8l-pose 0.952 0.805 0.914 125

σ = 0.0625

YOLOv8n-pose 0.8 0.767 0.907 190
YOLOv8m-pose 0.957 0.909 0.912 185
YOLOv8l-pose 0.927 0.903 0.906 210

For visualization and better understanding of detection mismatches, several frames
with detected ramps are presented in Figure 8. The red and orange circles indicate keypoint
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similarity levels of 0.95 and 0.75, respectively. The radius of each circle (measured in pixels)
depends on the keypoint similarity level KSi, standard deviation σi, and the area s of
the ramp:

R =
√
− ln(KSi)2s2(2σi)2. (7)

Figure 8. Cont.
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Figure 8. Detected entrance ramps: the ground truth edges are marked in green, while the predicted
ramp is marked in blue. Red and orange circles indicate OKS levels of 0.95 and 0.75, respectively,
when the standard deviation σ = 0.125 is applied to all corners of the ramp.

Samples of ramp images from one of the training batches are presented in Figure 9. The
original dataset was successfully augmented with flipped and rotated images as planned.
In these images, the red, pink, orange, and yellow dots indicate the order in which the
ramp corners are labeled.

There are two approaches to integrate automatic ramp detection into the behavior
recognition system. The first approach involves a stationary mounted camera and running
the ramp detection once before continuous behavior recognition. The estimated coordinates
of the ramp can then be used in subsequent frames. The second approach requires a moving
camera; in this case, ramp detection needs to be performed for each frame to accurately
reconstruct the bee’s track with respect to the ramp’s location.
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Figure 9. Samples of ramp images in training batch after augmentation.

5. Discussion

The bounding box-based intersection metric, IoUbb, is unsuitable for ramp detection
due to the ramp’s frequent misalignment with the horizontal axis of the image. Additionally,
OKS is a conditional metric that depends on the Gaussian spread parameter σ and the
number of keypoints assigned to the object. Therefore, we selected IoUkp as a more
appropriate metric. This metric accurately reflects the intersection between the predicted
and ground truth areas defined by the four corners of the ramp, regardless of distortion,
rotation, or alignment in the image.

During training, σ affects the speed of convergence of the keypoint loss function. A
higher σ allows for a wider distribution of keypoints. The default standard deviation of
the Gaussian distribution for a four-keypoint object in YOLOv8 pose models is σ = 0.25.
In this study, we evaluated the models’ performance using two smaller values, σ = 0.125
and σ = 0.0625, which require the training algorithm to maintain keypoint deviations that
are two and four times smaller, respectively. With the default σ = 0.25, the nano model
achieved the best performance with an IoUkp of 83.7%. For σ = 0.0625, the medium model
performed best with an IoUkp of 90.9%. For field applications of the entrance ramp detector,
the medium-sized model was chosen due to its promising performance, yielding an IoUkp
of 91.7% with σ = 0.125.

Automatic detection of a hive’s entrance ramp is crucial for a portable bee behavior
analysis system, as it enables the localization of the area in the video where bee traffic
needs to be analyzed. Once the ramp is detected and the corner locations are established,
the ramp detection model only needs to be applied occasionally, such as when the camera
moves. For a stationary mounted camera, the ramp detection model can be run once prior
to bee traffic analysis.
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We plan to enhance the ramp detection dataset by incorporating images from various
apiaries to develop a more generalized model for ramp detection. This will make the
bee behavior recognition system adaptable to different locations. Currently, the system
employs two separate models for detecting bees and ramps. In future work, we aim to
create a unified dataset and develop a single model capable of simultaneously detecting
keypoints and bounding boxes for both bees and ramps.

The study of bee behavior at the entrance of the hive is a future goal. We plan to
develop methods for recognizing bee actions by employing tracking, pose, and orientation
estimation, as well as analyzing bee paths and the speed of incoming and outgoing bees.
These methods will help beekeepers automate the tracking of foraging intensity and enable
the early detection of robbing or swarming. Therefore, a high-priority task is to augment
the dataset with intrinsic behavioral patterns of the bee colony at the hive entrance.

Early tests on bee tracking indicate that accurate track reconstruction requires a min-
imum of 50 fps to successfully monitor the fast movement of forager bees at the hive
entrance. Only the nano model meets the real-time requirements, as other models achieve
frame rates between 20–40 fps, which are insufficient for real-time applications, especially
when additional tracking and action recognition algorithms run simultaneously on the
same hardware. Therefore, future work should focus on optimizing the architecture of the
YOLO models to balance performance, speed, and accuracy for deployment on embedded
computing platforms.

Previous studies have utilized various methods for bee orientation estimation, includ-
ing CNN models and barcode tracking systems. For instance, Smith et al. [26] reported an
OKS of 0.96 for detecting multiple anatomical points on bees, while the current study’s
dual keypoint approach offers a simpler yet effective alternative with comparable accuracy.
While earlier works primarily focused on bee detection and counting through background
subtraction or edge detection techniques, this study employs advanced computer vision
models (YOLOv8) that enhance both detection speed and accuracy. Rodriguez et al. [25]
achieved an impressive average precision of 99% on a custom dataset with an artificial
entrance ramp. This approach focused on tracking specific body parts to infer orientation.
In contrast, the current study utilized a YOLOv8 pose model that detected two keypoints
(head and stinger) per bee, achieving a high accuracy of 99% for both bounding box and
keypoint detection. This suggests that while Rodriguez’s method is highly precise, the
current study’s approach may offer practical advantages in terms of speed and efficiency
due to the YOLO architecture. Rodriguez et al. [25] utilized a modified VGG-19 model to
detect five keypoints on bees, achieving precise pose tracking that allows for detailed orien-
tation analysis. Similarly, Smith et al. [26] expanded this approach by employing twelve
keypoints, enhancing the granularity of pose detection for individual bees. In contrast, our
study focuses specifically on estimating bee orientation using only two keypoints—the
head and the stinger. This streamlined approach is sufficient for our task, as it effectively
captures the essential information needed for orientation detection while simplifying the
model and improving processing speed.

The absence of prior studies on hive entrance ramp detection highlights the novelty of
this research. While other systems have monitored bee traffic using various landing board
designs, none have specifically addressed the automated identification of entrance ramps,
marking a significant gap that this study fills.

6. Conclusions

The algorithm developed for label merging and conversion from XML to YOLO format
was successfully tested, with unassigned keypoints correctly assigned to the corresponding
bee boxes. YOLOv8-pose keypoint detection models are suitable for tracking the head
and stinger of bees and estimating their orientation at the hive entrance. The medium-size
YOLOv8 detection model achieved 98% precision in detecting both bounding boxes and
keypoints in bees. However, the medium model only delivers 20 fps for 1024 × 576 px
images. In contrast, the smallest nano model achieves 67 fps on 640 × 384 px images, with
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a precision of 95% for both bounding boxes and keypoints. Therefore, for field deployment,
either a hardware upgrade should be considered to speed up processing, or the smallest
model could be used, sacrificing 3% precision in bee and keypoint detection. The achieved
precision in bee keypoint detection is on par with state-of-the-art approaches.

The medium-size YOLOv8m-pose model achieves the highest IoUkp = 91.7% com-
pared to the nano and large-sized models. This high precision in ramp detection is due
to the similarity in ramp shapes from a single apiary. To ensure effective bee behavior
identification across different apiaries, it is necessary to extend the entrance ramp dataset.
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