
Citation: Stankevičius, L.;

Lukoševičius, M. Extracting Sentence

Embeddings from Pretrained

Transformer Models. Appl. Sci. 2024,

14, 8887. https://doi.org/10.3390/

app14198887

Academic Editor: Jenhui Chen

Received: 14 August 2024

Revised: 18 September 2024

Accepted: 23 September 2024

Published: 2 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Extracting Sentence Embeddings from Pretrained
Transformer Models
Lukas Stankevičius * and Mantas Lukoševičius

Faculty of Informatics, Kaunas University of Technology, LT-51368 Kaunas, Lithuania; mantas.lukosevicius@ktu.lt
* Correspondence: lukas.stankevicius@ktu.lt

Abstract: Pre-trained transformer models shine in many natural language processing tasks and
therefore are expected to bear the representation of the input sentence or text meaning. These
sentence-level embeddings are also important in retrieval-augmented generation. But do commonly
used plain averaging or prompt templates sufficiently capture and represent the underlying meaning?
After providing a comprehensive review of existing sentence embedding extraction and refinement
methods, we thoroughly test different combinations and our original extensions of the most promising
ones on pretrained models. Namely, given 110 M parameters, BERT’s hidden representations from
multiple layers, and many tokens, we try diverse ways to extract optimal sentence embeddings. We
test various token aggregation and representation post-processing techniques. We also test multiple
ways of using a general Wikitext dataset to complement BERT’s sentence embeddings. All methods
are tested on eight Semantic Textual Similarity (STS), six short text clustering, and twelve classification
tasks. We also evaluate our representation-shaping techniques on other static models, including
random token representations. Proposed representation extraction methods improve the performance
on STS and clustering tasks for all models considered. Very high improvements for static token-based
models, especially random embeddings for STS tasks, almost reach the performance of BERT-derived
representations. Our work shows that the representation-shaping techniques significantly improve
sentence embeddings extracted from BERT-based and simple baseline models.

Keywords: BERT; embeddings; large language models; natural language processing; text embeddings;
sentence vector representation; semantic similarity; transformer models; prompt engineering;
unsupervised learning

1. Introduction

Early work on learnable word-level representations [1] showed that semantic mean-
ing can be embedded in numerical vector representations. Arithmetic operations such
as king − man + woman ≈ queen were valid. But can similar or higher abilities also
be achieved for whole sentences, not just individual words? They would enable bet-
ter clustering, classification, and other tasks depending on the whole meaning of the
word sequence.

At the core of recent advancements in artificial intelligence is the transformer
architecture [2]. Compared to previous RNN-based models, it is fully parallelizable, al-
lowing faster training and greater generalization acquisition from the data. On their 10th
birthday, a child is expected to have already encountered and understood the meaning of
more than 100 million words [3], and now large language models surpass such scales by
multiple orders of magnitude. In addition to improved throughput, transformer models are
based on a self-attention mechanism [4] that allows the model to attend to relevant parts of
the input sequence. That is similar to how humans understand and experience the meaning
of words: using context. The success of the transformer architecture in Natural Language
Processing (NLP) tasks, starting with the BERT model [5], was also repeated in other fields
such as vision [6], speech [7], and reinforcement learning [8]. Transformer models enabled

Appl. Sci. 2024, 14, 8887. https://doi.org/10.3390/app14198887 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14198887
https://doi.org/10.3390/app14198887
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-0012-5471
https://orcid.org/0000-0001-7963-285X
https://doi.org/10.3390/app14198887
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14198887?type=check_update&version=2

Appl. Sci. 2024, 14, 8887 2 of 66

the solving of more sophisticated tasks such as sentiment analysis or question answering,
as well as became the state-of-the-art in almost every NLP task. Therefore, it should possess
the representation of the whole text sequence.

Transformer models generally have at least 12 layers and their parameters are counted
in hundreds of millions or much more. Condensing the sentence representation using
these weights into a fixed 768-length vector (a common length for token vectors in base
transformer models) is a challenge. It turns out that simply extracting features from a
transformer model’s last layer activations yields even worse results than much simpler
models [9]. There were multiple works that tried to optimize the architecture parameters
(see [10], which evaluated multiple proposed modifications), and multiple investigative
works probing the properties of different parts of the model (see a critical review [11]
of such approaches). Only the following methods gave tangible results: (1) the plain
embedding averaging of all tokens comprising the sequence; (2) engineering a prompt
template to condensate sentence representation into a single token; and (3) using a specially
dedicated fine-tuned model designed to produce such vectors.

Fine-tuning is definitely the most efficient option. Resulting models, such as InferSent [12]
or Sentence-BERT [9], showed state-of-the-art performance in sentence-level tasks at the
time. However, the success of fine-tuning depends on several factors. It requires high-
quantity and high-quality target domain data, as well as computational resources, which
may not always be available. Sometimes, even the existing target domain data cannot
be used, as they are very expensive to label. Other difficulties emerge if the data contain
sensitive or private information and present a risk of it surfacing during inference. Having
such constraints, one has to resort to the first two options of using raw encoded features to
produce a vector for a text sequence.

Using feature aggregation instead of fine-tuning also allows us to better explain the
inner workings of the state-of-the-art black-box models. Different parts of a transformer
model may be responsible for different levels of representation, which favor different tasks.
It is also important which levels in the representation hierarchy are easier to shape or
process. A better understanding of the inner workings could help address hallucinations or
other problems that current large consumer-grade language models face.

One of the two pre-training tasks of the famous BERT model [5] was next sentence
prediction. It was optimized through a special [CLS] token, which sought to capture
the whole-sequence-level representation. But in later works, such as [9], it was revealed
that such a representation is very poor, not better than the classic ones, and the authors
opted for simple averaging of the last layer tokens instead. The authors of [13] proposed
using averaging of tokens of the first and last layers, and the authors of [14] also included
hidden token representations of the second layer. But is that really the best way to obtain a
numerical representation of the text’s meaning?

Pre-trained models like BERT capture a lot of useful representations, yet it is not
that trivial to extract them. The authors of [15] showed that further improvements can be
achieved by removing the most frequent, sub-word, uppercase, and punctuation tokens
before averaging. Furthermore, even larger gains can be achieved by using a prompt
template, “This sentence: "[X]" means [MASK]”, where the target sentence is placed
instead of [X] and the representation of the token [MASK] is used as the final representation
of the whole sentence. Such a method is a good example of representation extraction
without any specific fine-tuning.

Inspired by the above findings, we hypothesize that there may be more ways to distill
relevant sentence-level embeddings without directly fine-tuning the pre-trained BERT
model. More concretely, in our analysis, we try to find a function that would shape and
extract representations of bert base-uncased along its layers, target tokens, and additional
corpus, so that the best performance in multiple tasks would be achieved. We evaluate our
approach on short text clustering, semantic textual similarity, and classification tasks.

Appl. Sci. 2024, 14, 8887 3 of 66

Considering the difficulties of acquiring representations from the state-of-the-art trans-
former models and following the success of recent works demonstrating it, our approach
offers these main contributions:

• We provide an extensive and organized review of related work on producing sentence-
level embeddings from transformer models.

• We experimentally test how multiple combinations of various of the most promising
token aggregation and sentence representation post-processing techniques impact the
performance of three classes of different tasks and properties of representations on
several models.

• We propose two competitive and simple static token models as baselines: random
embeddings and averaged representations (“Avg”).

• We propose an improvement for BERT: the BERT + Avg combined model. We experi-
mentally test many weights and layers of how the representations of BERT and Avg
can be most effectively mixed.

The rest of this paper is organized as follows. We provide a review of related work in
the literature on composing word vectors and representation reshaping to obtain sentence-
or text-level embeddings in Section 2. In Section 3, we outline the experimental setting and
give a detailed background on our chosen approach, models, and datasets. In Section 4, we
present the results. Finally, we summarize the findings of this work in Section 5.

2. Related Work

Taking the BERT model as an example, we are interested in how representation can be
aggregated over tokens, layers, and possibly modified, and which models produce the best
representations. Finally, we look at the evaluation options.

2.1. Composing Word Vectors

Thousands of works are being carried out on word-level vectors. Now, you can easily
download popular publicly accessible Word2Vec [16] and GloVe [17] embeddings. They are
lightweight and usually perfectly fit various word-level tasks. On the other hand, modeling
sequences of words is considered much more challenging. Count-based approaches lose
information on word order and are sparse. Learning higher-order n-gram vector space
models, not just words, but phrases or sentences, leads to sparsity, as frequencies vanish
for target n-grams and contexts. The latter, in particular, is the main driving force for
distributed representations. We will cover special methods dedicated to sentence level
in Section 2.3. Nevertheless, the easiest solution is to reuse individual word vectors of
the sequence.

The Principle of Semantic Compositionality (usually called Frege’s principle) states
that “the meaning of an expression is a function of, and only of, the meanings of its parts
together with the method by which those parts are combined” [18]. Many scholars use this
as a guide to how a sentence/paragraph/document vector should be formed. According to
the principle, for much easier acquisition of word vectors, only the method of combination
needs to be found. Therefore, in this subsection, we review the most popular candidate
combination methods that should give us a sequence vector from its multiple word vectors.

2.1.1. Formal Semantics

Historically, the first methods were formal and based on logic. Here, the meaning of a
sentence lies in the conditions under which it is true. A semantic parser, such as Boxer [19],
is used to produce semantic representations of the given raw text. One can easily imagine
the parse tree as a result of this analysis. As the structure is converted to first-order logic,
resulting in a formula, it can then be checked with a theorem prover or interpreted with
respect to a model, which is an abstract representation of a situation or setting [20–22].
Formal representations ensure that both semantic and syntactic information is preserved.

Unfortunately, formal methods have many practical shortcomings. A logic-based sys-
tem must explicitly maintain the lexical knowledge necessary for the inference. Therefore,

Appl. Sci. 2024, 14, 8887 4 of 66

expensive human labor is involved in the construction and maintenance of these knowledge
resources. More importantly, it must be domain-specific. One cannot simply use all the
knowledge bases of the entire community, as this would hinder complex inferences of
theorem provers and model building. There is an area of research on reducing processing
time, given the large amount of knowledge resources [23]. Due to this property, logic-based
systems have been criticized for their lack of robustness and scalability; implemented
systems tend to be small-scale and domain-specific [24]. Although being white-box, theo-
retically clear, and promising, in practice, formal semantics methods are often surpassed
by unsupervised distributional approaches capable of utilizing huge amounts of data.
As shown in [25], symbolic representations can at least provide additional features for
neural approaches.

2.1.2. Tensor Products

In [24,26], it was proposed to combine two representations, each in vector form, using
tensor products, i.e., every element of the first vector is multiplied by every element of the
second vector, retaining the products of all the pair combinations. This way, two rank-1
tensors result in a rank-2 tensor. Combining more vectors results in higher-rank tensors. It
allows the tensors to represent the relations and role-filler bindings in a distributed fashion.
However, it raises problems due to the dimensionality growing exponentially in size as
more constituents are composed [27]. Furthermore, as noted in [28], tensor-based models
can only efficiently handle sentences of a fixed structure. Unfortunately, in most practical
applications, this is not the case.

Some methods try to solve the mentioned problems by sticking to the original vector
dimensionality. It can be accomplished using convolution methods [29,30]. For exam-
ple, the circular convolution, as presented in [31], achieves compression by summing
along the transdiagonal elements of the tensor product. The compression is lossy, but the
noisy version of the original vector can be recovered using circular correlation [27] and
matched to the original one by comparing with all known component vectors. Due to
the same mathematical principles as light holography, these models are also referred to
as holographic.

Some works related to tensor products stem from formal semantics in a way that
syntax drives the compositional process. In particular, it was expected that one of the most
important parts of the sentence is the pair of a noun and an adjective. Machine learning,
in particular regression-based, can be used to find the composition method. The idea is
that vectors for AN (adjective–noun) pairs can be learned in the same fashion as for regular
words. Then, given the constituents and the final AN vector, a linear mapping is learned.
In [32], the mapping is learned as a separate matrix for each adjective, while in [33], a
generic “AN-slot” function is trained. These methods do not increase the dimensionality,
yet it is not clear how they would work with more words than only the AN pairs. A
later work [34] extended the idea of the adjective matrix of [32] to other types (in addition
to adjectives and nouns). They emulate formal semantics by representing functions as
tensors and arguments as vectors. This way, subjects and objects are rank-1 tensors, while
verbs are rank-3. However, as the authors trained only nouns, verbs, subject–verb pairs,
and subject–verb–object triplets, their method is still limited to phrases no longer than
three words.

Although tensor products share some exotic mathematical properties with quantum
mechanics, for example, quantum entanglement [30], the framework relies heavily on for-
mal semantics (see [35]). Therefore, it also shares the same weaknesses and is outperformed
by pure machine learning approaches.

2.1.3. Averaging

As neural vectors became more effective than traditional approaches [28], it turned
out that it was common to derive a vector for a sequence of words simply by summing
or averaging individual vectors. In 2009, the authors of [27] reported that for composing

Appl. Sci. 2024, 14, 8887 5 of 66

a phrase representation, “averaging is the most common form of vector combination”.
Despite its simplicity, the basic rule of averaging word vectors was shown to work very
well [36–38]. Later work, such as [39–41], even showed that simple pooling methods, such
as basic vector addition or averaging, match or outperform much more sophisticated
methods for encoding the meaning of a text sequence. The authors of [42] reported that in
out-of-domain scenarios, simple architectures such as word averaging outperform complex
Long Short-Term Memory (LSTM) models. In addition, they are even competitive with
systems tuned for particular tasks. Later work by [43] evaluated various compositional
models and found that word vector averaging performed reasonably well in most super-
vised benchmarks. According to the authors of [9], even for the currently trending BERT
transformer model, to map the sentence to a single vector, the most popular approach is to
average the word embeddings of the BERT output layer.

As averaging is well-suited to acquiring sentence optimization, some methods take
averaging into their structure to further optimize it. One such example is the deep average
network (DAN) [44]. It takes the input as an averaged text sequence and passes it to one
or more feedforward layers to finally perform linear classification. Another, C-PHRASE
model of [45], is trained to predict the contexts of phrases from the additive combination
of their elements. Such a design results in a useful property of C-PHRASE, that summing
word vectors yields sequence representation. The authors of [46] found that one should
use an average of all hidden states of LSMT, rather than using representation only from the
last one. In a similar fashion, the averaging or summing is optimized in the works of the
Siamese CBOW model [47], Sent2Vec model [48], and in other works [49–51].

A model derived from BERT, specially designed for sentence embeddings, SBERT,
also uses averaging to pool words from two sequences to a pair of fixed-size sentence
embeddings. Later, using the pair and its element-wise difference, the representation is
passed to the softmax layer for classification and regression tasks. The authors of [52]
tried to improve this configuration by replacing the averaging with a convolutional neural
network. However, their improvement was limited to only better scores for the SALBERT
model, which was still lower than SBERT based on averaging. Therefore, calculating the
mean embedding from multiple word vectors is still a solid approach to the inner workings
of current sentence models.

Averaging is used in various scenarios. Some authors employ it to derive static
embeddings from contextualized models. In [49], word vectors are learned by predicting
them from the average of all contextual embeddings of words (except the target word)
returned by the BERT encoder. Other authors of [53] derived static word embeddings
from contextualized transformer representations by averaging word embeddings for each
word in 100k different contexts. Such derived static versions are of better quality than
classic Word2Vec and share their benefits, such as having tens of millions of times lower
computational cost than using standard contextual embedding models [49]. The other
scenario is to compose a new more expressive meta-embedding from different models and
domains. As a means of composition, the authors of [54] proposed concatenation with
some trainable methods. However, a later work [55] found that averaging word vectors and
padding them with zeros to compensate for dimensionality mismatches is a surprisingly
effective method.

Despite its popularity, averaging has inherent deficiencies. The most prominent is
the loss of word order information. For this reason, it is sometimes called a bag-of-words
representation (that is, imagine that words lay in the bag in no specific order). As shown
in [44], models based on averaging are weaker in tasks that require syntax information. The
mean pooled static representations of the words “dog chased human” and “human chased
dog” will be the same. In addition, simple summation can cause destructive interference,
affecting valuable information. This is especially relevant in long documents. In addition to
neglected sentence structure and word order, the authors of [43] also note that individual
word identities are lost and noninformative words are more prominently represented than
essential ones.

Appl. Sci. 2024, 14, 8887 6 of 66

However, to some extent, drawbacks can still be overcome. Most tasks do not usually
rely on word order, and the number of occurrences of order-sensitive elements, such as
double negations, is generally low. Word vectors have a rich representation and some
related knowledge can still be found in them. For example, the authors of [56] showed that
the average of the word vectors retains information about the original sequence length. It
is even more the case with contextualized transformer representations, where starting from
the second layer, each hidden vector is expected to “know” every other token vector and,
therefore, to be aware of the word order.

2.1.4. Weighted Average

Not all constituent words are of the same importance; therefore, the corresponding
vectors should be weighted. As a surprising event in Information Theory has higher
information content than an expected event [57], some specific words should also add more
weight to the sentence vector than others.

In an early work [27], we can already find different weights for the members of the
pairs of adjective–noun, noun–noun, or verb–object phrases. Later, work went from formal
semantics to statistics-based measures, in particular the tf-idf scores. They can be used as
features on their own, such as in [58], but it is better to use them to weight neural word
vectors. For example, the authors of [59] proposed the Composite Document Vector as a
concatenation of idf-graded weighted Word2Vec vectors and tf-idf features. The authors
of [60] proposed another better weighting approach, called Smooth Inverse Frequency
(SIF). Here, higher-frequency words are down-weighted smoothly. The authors of [43]
evaluated various compositional models and found that weighted averaging, in particular
SIF, resulted in better performance in unsupervised similarity tasks that outperformed
all other models. The author of [61] presented the uSIF method, an improvement to SIF,
omitting hyperparameter tuning and constructing weighting with both word frequency
and word vector length information. The authors of [62] also showed that the mean pooled
output of transformers using tf-idf weights is better for clustering than the only regularly
averaged output.

A drastic case of weighting—a total removal of some words—is also shown to improve
results. The authors of an older work [37] removed the stop words from the sequence
before averaging. Meanwhile, as shown in [15,63], the current performance of the BERT
transformer model is also significantly improved in Semantic Text Similarity (STS) tasks
if the most frequent tokens are removed. In other cases, the task itself focuses only on a
few words, and others become redundant. The authors of [64] found that for the relation
extraction task, some sentence embedding methods work better with shorter spans of
words than the original sentences. They performed sentence segmentation in a way that a
(sub)sentence would cover the identified entity mentions. Other authors of [64] also noted
that SentenceBERT and Quickthought on spans or short segments containing two entity
mentions are more clusterable than on the original sentences. These works also highlight
the unequal contribution that each word has to the final sentence representation vector.

Some works use more complex word weighting schemes. For example, the authors
of [46] proposed a form of attention to weight each hidden state of LSTM. Other authors
of [65] proposed the idea that each word brings a novel orthogonal basis to the sentence.
Therefore, the length of a projection in this direction can be converted into a word’s weight
for use in the averaging. They come up with the final weight, consisting of three scores:
novelty, significance, and corpus-wise uniqueness. Authors of [64] found that for the
methods analyzed, such weighting of GloVe embeddings made them the most clusterable.
Similar work by [66] incorporated alignment and novelty scores and applied them to
contextualized representations of SBERT. Here, the alignment measures how well the
word aligns with the neighboring ones, i.e., a well-aligned one is less informative and
should be weighted less. The novelty, similar to [65], is expressed as the magnitude of the
orthogonal component of the word to the subspace of neighboring words. Furthermore,
the authors of [66] perform average weighting through all SBERT layers and also weight

Appl. Sci. 2024, 14, 8887 7 of 66

each layer-aggregated vector via l1-normalized variance. This means that words that
evolve faster across layers will receive higher weights since they have greater variance.
Although complex to implement, such methods are reported to provide some minor
performance improvements.

Surprisingly, the norm of word vectors has a large dispersion, as observed by the
authors of [67,68], and during the average pooling operation, it acts as a weight of the
word vector. The authors of [48] observed that their trained word vector in this way down-
weights frequent tokens by itself, and this weighting follows the hypothesis of Luhn [69],
a well-known information retrieval paradigm, stating that mid-rank terms are the most
significant for discriminating content. Using these insights, the authors of [70] used the
norm of word vectors as a proxy for the importance of words.

2.1.5. Clustering

As shown by [71], averaging word vectors leads to a loss of information. It is in
particular significant for longer text sequences, such as documents. Therefore, the idea
was developed to aggregate vectors in a more smooth and information-preserving manner.
The authors of [72] clustered the word vectors into k groups using k-means. Then, for a
document, each cluster vector is obtained as a sum of its constituent vectors. The final
representation is then the concatenation of the cluster vectors and the inverse cluster
frequency (icf) values, which are calculated using the idf values of the words present in
the document. Other authors of [73] proposed a similar method, but viewed it as one that
reduces the dimensionality from words to concepts. Concepts (as clusters) are created
by clustering word vectors generated from Word2Vec, and frequencies of these concept
clusters are used to represent document vectors. Finally, similarly to tf-idf applied to
bag-of-words, a weighting scheme, concept frequency-inverse document frequency (cf-
idf), is applied to acquired bag-of-concepts. The authors of [74] proposed the concepts of
word containers and document containers to explain how such procedures bring benefits.
Similarly to other works, they perform clustering of words into distinct clusters. Vectors
belonging to the same cluster are averaged, while resulting representations among different
clusters are concatenated. Using standard contextualized pre-trained transformer models
with frozen weights, the authors of [75], instead of a simple mean pooling, proposed
training a categorical variational autoencoder and reported the performance improvement
on some STS tasks. This way, similar to clustering, the lower intermediate compressed
representation would carry the essential representation of the sequence. Overall, using
clustering of independent word vectors allows the document representation to be expressed
in a smaller space of concepts, whose concepts are otherwise erased due to destructive
interference during the global averaging.

The authors of [76] improved the aforementioned method of [72] by using soft cluster-
ing and allowing a single word vector to participate in multiple clusters. More specifically,
each word is represented as a K × d dimensional embedding, where each kth row corre-
sponds to the original word vector weighted by its probability distribution in the kth cluster.
The embedding of this word is weighted with the inverse document frequency of the word
and summed with the embeddings of other words to form a document vector. As many
values in such a vector were observed to be close to zero, sparseness is induced with a
given minimal value threshold. The authors of [76] named their method Sparse Composite
Document Vector (SCDV).

The success of SCDV was supplemented by numerous other contributions. The authors
of [77], instead of the Gaussian Mixture Models (GMMs), used K-SVD (an algorithm for
designing overcomplete dictionaries for sparse representation) [78] for the topic modeling.
Furthermore, they used a newer word vector algorithm Doc2VecC and a modern SIF
weighting and removal of the top principal component of [60]. Other authors of [79], with
their SCDV-MS method, additionally performed word sense disambiguation to dissect
polysemous words into distinct vectors. In this way, the quality of the clusters improved.
To induce sparsity, the authors also applied hard thresholding in an earlier stage in word

Appl. Sci. 2024, 14, 8887 8 of 66

cluster assignments and trained word vectors with Doc2vecC. Next, with the emergence
of transformer models, the authors of [80] utilized contextualized representations in their
SCDV + BERT (ctxd) method. First, the corpus is contextualized following the technique
of [81]. That is, each corpus word is clustered among its individual recurrence contexts into
distinct clusters corresponding to the different meanings of the same word. After such a
procedure is repeated for all words, the vector for each word will then be the centroid vector
of the closest cluster. The authors of [80] then repeated the original SCVD procedure and
the result was an average improvement for STS tasks. Therefore, the idea of turning global
averaging to local inside-cluster averaging did not change; only newer representation
techniques and models were employed.

2.1.6. Spectral Methods

A text sequence comprising word embeddings can be interpreted as a multidimen-
sional signal over time. Therefore, temporal summarization techniques can be employed.

One such method is the Discrete Cosine Transform (DCT), originally presented in [82].
This invertible function maps an input sequence of N real numbers to the coefficients of the
N number of orthogonal cosine basis functions. The DCT components are arranged in order
of significance, with the first one being proportional to the simple average of the sequence.
DCT is used in data compression by preserving only the most important coefficients.

In [83,84], DCT was shown to outperform simple averaging of word embeddings. First,
it can be attributed to the fact that DCT is structure-sensitive, as it captures signal dynamics.
Second, the DCT has multiple coefficients, with the first one already corresponding to
averaging; thus, it should capture more information and enrich the performance of probing
classifiers. The authors of [83] apply DCT along the sequence of words for each embedding
dimension. Then, they retain lower-order coefficients and concatenate them to obtain
overall feature patterns in the word sequence. One drawback of this technique is that short
sentences must be padded with zeroed vectors. The following work [84] also showed good
results for DCT in multilingual and cross-lingual settings.

Concerning the spectral decomposition of DCT, the authors of [85] proposed EigenSent,
which utilizes Higher-Order Dynamic Mode Decomposition (HODMD). The method sum-
marizes transitions in a sequence of words into one representative sequence embedding.
The authors found that the best performance is achieved when such an embedding is con-
catenated with simple word vector averaging. This way, information on both the dynamics
and the scale of the sequence is captured.

2.1.7. Using Special Tokens

Modern transformer models have several special tokens that can play an important
role during representation aggregation. For example, BERT has [CLS] designed for the
next sentence prediction task, and it is supposed to carry the meaning of the input text
sequence. The authors of [86] tried to use this property and trained the model to learn to
aggregate everything in this [CLS] token. Other special tokens are [SEP], used to separate
two text inputs, [MASK], to concentrate the representation of the masked word, padding,
and various sentinel tokens (as in T5). Despite its intended purpose, special tokens are
generally dismissed, as in [14,87,88], and a simple average is used instead. However, such
tokens are important, as the authors of [89], after fine-tuning BERT, found a clear tendency
for earlier layers to pay attention to [CLS] and for later layers to pay attention to [SEP].

Recently, a prompt-based learning paradigm has emerged (see the survey [90]). Here,
instead of fine-tuning the model to the downstream task, one reformulates it to look like
the one that was being solved during the model pre-training process. Therefore, the main
effort goes to prompt engineering, i.e., finding the most appropriate prompt for the given
task. Such a strategy is especially suitable for very large, even colossal language models
that are difficult to train.

The authors of [15] successfully used prompt engineering to better capture sentence
embeddings with the BERT model. During the manual prompt search, the best prompt

Appl. Sci. 2024, 14, 8887 9 of 66

found was “This sentence: "[X]" means [MASK].”, where [X] is replaced by the input
sentence, and the output vector of token [MASK] is used as a final representation of the input
sequence. Then, they further optimized the template by fine-tuning it on Natural Language
Inference (NLI) data with the contrastive objective, while the BERT model weights were
frozen. The authors used the continuous template technique of [91], where each template
token is treated as a vector and optimized by gradient descent. The final template was
shown to outperform multiple untrained baselines. The authors also showed that different
templates can be used effectively to represent the same sentence with different points of
view during supervised contrastive learning. The following work by [92] adapted the
idea of using prompt instead of mean pooling and also used this representation extraction
during contrastive learning.

2.1.8. Aggregating through Layers

One special aggregation that is possible with newer contextualized models is through
deep neural network layers. For simplicity, we refer to transformer model blocks as layers.

One can imagine that “each layer will increasingly magnify small but significant
differences” [44]. Therefore, the early layers capture more fundamental and low-level
information [89], which dominates the learning of shallow lexical and meaning-related
knowledge [93]. The authors of [75] reported that the word embeddings of the lower layers
of BERT perform better than their upper layers on a word analogy task, and other authors
of [53] showed that the first quarter of the models’ layers perform best in lexical semantic
understanding. In the middle layers of the transformers, the hidden states are the most
transferable [94] and contain the most relevant information [95]. The authors of [96,97]
report that the middle layers of the multilingual transformers are more multilingually
aligned. According to the authors of [93], with the inclusion of context in the upper layers,
the encoded concepts evolve into a linguistic hierarchy where the middle and upper layers
have a better representation of the core linguistic and semantic concepts. Finally, as the
author of [98] explains, upper-layer representations become more context-specific.

A general tendency, as shown by [99], is that the STS performance increases until the
middle layers before decreasing toward the final ones. The authors of [99] even report that
the final layer of most transformer models produces the worst-performing representations.
Most scholars agree that this is due to the overspecialization of the last layers to the pre-
training task [100]. Therefore, the final layers of BERT are the most task-specific [101]
(but not as much as LSTM, as analyzed in [94]). Even during the fine-tuning phase, the
authors of [89] determined that the last two layers encoded the highest share of task-specific
features attributed to the score gain. Therefore, the last layers are specific to the training
objective and cause problems if it differs a lot from the downstream task objective.

However, some work in [102,103] found that it was beneficial to apply post-processing
to the final layers. This enabled them to restore the apparent drop in representational quality
in later layers and gave large performance improvements. It is thought that anisotropy,
known as the narrow cone of embeddings in vector space, may be to blame, which in [98]
was found to increase from the earlier to the later layers. However, successful post-
processing reveals that the last layers also possess relevant knowledge, but it is somewhat
obscured in the raw outputs.

The question is how to compose a universal representation from the relevant pieces
in multiple layers. One way is to try various combinations. The authors of [14] analyzed
all possible two-layer combinations for BERT. They found that combining the top and
bottom layers is better than using only the top layers. They tried to expand it to more layers
but remained on a combination of three layers (L1 + L2 + L12). From the older works,
we can mention the AdaSent model [104]. It operates on a hierarchy of representations
derived from a pyramid-like multilayer network structure. The gating network is trained
to adaptively select the most appropriate representation in the hierarchy for the given task.
A similar gating system for dynamically deciding which intermediate transformer layers to
use was proposed by the authors of [105].

Appl. Sci. 2024, 14, 8887 10 of 66

The contribution of each layer can also be accounted for by weighted average. The
authors of ELMO [106], a contextualized model based on LSTM, present this configuration
with additional weight parameters for each layer. Other authors investigating representa-
tions [94,95,107] call this weighting a scalar mix technique. The authors of [66], instead of
learning layer weights for each word, compute them using complex alignment and novelty
measures. For a few-layer model like ELMO, other authors of [108] found it useful to con-
catenate representations across layers while averaging across tokens, rather than using only
the top layer. Other authors of [86] extract relevant information from intermediate hidden
representations of BERT by treating them as positive samples during contrastive learning
and determining which final sentence embedded in the tuned model should be close.

In conclusion, there is no generally accepted method for taking advantage of repre-
sentations across all layers in an unsupervised setting. In the other, supervised case, the
whole network is fine-tuned, and the whole hierarchy of representations is taught to surface
representations according to the task at hand.

2.1.9. Other Means of Composition

Many other composition functions can be used to derive sentence embeddings. In
an early work [27] on phrase composition, the authors also found that multiplicative and
dilation models perform well. However, there are caveats; element-wise multiplication of
sparse representations results in loss of information (this effect is especially strong for more
than two words), while dilation, just like weighted average, requires additional parameters.
It should also be mentioned that max pooling is quite a popular operation to aggregate
the output of the LSMT encoder, as shown in [12,109], and also by the authors of [86], who
found it to work best for all BERT layers for the STS benchmark task. According to the
authors of [110], max pooling is also competitive with boundary-based methods (such
as those that use embeddings of words in the boundaries) for the representation of the
text span.

The input text sequence can be combined hierarchically. The authors of [111] used
a recursive autoencoder to contract two child words to a single parent one repeatedly,
to arrive at a final single common parent representation of the whole sequence. Later,
the authors of [112] extended this combination to specifically follow the structure of the
parse tree. Such a recursive model allowed them to compose word vectors in a bottom-up
approach up to a sentence level and outperform the simple averaging method. However,
a drawback is that such a composition is limited to only sentences. Other authors of [41]
used similar ideas for combinations, but did not learn any composition function. Instead,
given a specific window length, the vectors of words in these windows are averaged,
and the resulting embeddings are then max-pooled. Such a setup better preserves the
spatial information.

The common average operation can be generalized as a power mean, as proposed for
information retrieval in [113]. The authors of [114] introduced such an idea for combining
word vectors. They showed that using the document vector as a concatenation of the power
mean with different power values, particularly p = ±∞ (maximum and minimum), p = 1
(regular arithmetic mean), and other p > 0, substantially improves the representation of the
document. Other authors of [115] also proposed a long vector representation. They employ
self-attention to replace the max (or average) pooling from either RNN hidden states or
convolved n-grams, resulting in the sentence embedding of the matrix form. However, as
the authors of [116] criticize, concatenating representations is problematic. According to
them, bigger embeddings will always increase the performance of the linear model on top
of them. Therefore, embeddings of the same size should always be compared. In light of
this, concatenation is an undesirable operation.

2.2. Reshaping Representation Spaces

Word and sentence vectors obtained by older Word2Vec [1], GloVe [17], and current
state-of-the-art transformer techniques are not ideal. Therefore, additional processing

Appl. Sci. 2024, 14, 8887 11 of 66

techniques are applied to eliminate side effects and improve the performance of down-
stream tasks. In this subsection, we will describe anisotropy, a phenomenon believed to
be responsible for this, the reasons for its appearance, and the techniques that attempt to
improve the representation space.

2.2.1. Isotropy

Isotropy is defined as uniformity in all orientations. In this work, we talk about
embedding spaces of words and sentences. According to the authors of [117], “distribution
is isotropic when the variance is uniformly distributed across all dimensions”.

The anisotropic properties of independent word embeddings were first observed by
the authors of [118]. They analyzed common embedding models and found that, in all
cases, word vectors share a nonzero common vector; therefore, they are not zero-centered.
The authors also found that the variance ratios of the first few components derived by
PCA decay nearly exponentially. Furthermore, the variances explained by the leading
components “encode the frequency of the word to a significant degree”. Therefore, they
proposed eliminating the common mean vector and then removing the top principal
components, computed on representations from the entire vocabulary. A similar procedure
was also shown in an earlier work [60] to be a very good baseline. Here, words were
combined by a frequency-weighted average, and then just the first principal component
(yet dataset-specific, as computed on the entire dataset) was removed. As shown by the
All-But-The-Top (ABTT) method of [118], such a simple procedure, eliminating the common
mean vector and a few top dominating directions from the word vectors, greatly improves
both the isotropy and the downstream task performance (for sentence tasks, a simple
average of preprocessed word vectors is used). As found by [119], it is already known that
the isotropy of the target embedding is critical for the alignment of embeddings, which is
important for areas such as domain adaptation, word embedding evaluation, and machine
translation. However, the work [118] became the main stimulus for the research direction
that attempts to improve the isotropy of word embeddings.

Word representation anisotropy is also observed in the latest contextualized models.
The authors of [120] first observed this effect on the transformer machine translation
model [2], while the author of [98] found that this is the case for all ELMo [106], BERT [5],
and GPT-2 [121] layers. All representations for randomly sampled words from these
contextualized anisotropic spaces were observed to be highly similar, far from zero average
cosine similarity. Furthermore, the embeddings of any two words are positively correlated.
Finally, it was observed that all word vectors in the representation space tend to occupy a
narrow cone.

The research community offered some explanations for why anisotropy may occur.
We will cover them in more detail below.

Word Frequencies

The authors of [122] were among the first to observe that word embeddings encode
a surprising degree of information about word frequencies. In [60], it was shown that
simply representing sentences as a weighted average of words by their frequencies is a
very competitive method. In particular, the authors computed the weighted average of
the word vectors in the sentence (the weight of a word w is a/(a + p(w)), with a being a
parameter and p(w) the frequency) and then removed the projections of the average vectors
on their first singular vector (“common component removal”). Later, the authors of [118]
suggested removing more than one component. They found that the top PCA directions
encode word frequency information; therefore, the method was proposed to null these
directions. As this bias is very strong in representation space, it is inevitably related to the
anisotropy phenomena.

Similar encoding of frequency information is also evident in contextualized embed-
dings of modern transformer models. The authors of [123] investigated BERT embeddings
and found that high-frequency words are all close to the origin and densely concentrated,

Appl. Sci. 2024, 14, 8887 12 of 66

while low-frequency words are far away and scattered sparsely. The work in [124] high-
lighted that anisotropy is the most pronounced in rare words. The authors of [125] also
showed that the same applies to multilingual BERT embeddings; they have a biased
structure towards word frequency.

This bias to word frequency reveals a weakness. The authors of [126] constructed
a dataset using semantic relations extracted from WordNet [127] to test the semantic
properties of words. Using that, they showed that the ability of BERT to understand words
depends highly on their frequency, and therefore rare words are neglected. It was depicted
in [63] that removing the 34 most frequent tokens before averaging can greatly boost the
performance on semantic textual similarity tasks. The authors of [124] conducted a simple
experiment on the CNN News corpus with popular WordPiece tokenization and found
that 30% of the corpus can be accounted for using the 13 most frequent tokens, while to
cover at least 98% of the corpus, nearly 15,000 tokens are needed. Therefore, rare words are
a constituent part of modern NLP pipelines and, unfortunately, induce deficiencies.

The authors of [120] proposed an explanation for generation models that related
observations of the narrow cone form in the representation space and the frequencies of
words. They argue that the main culprit is the way models are trained on the language
modeling task. During the training process, the ground-truth word embedding will be
pushed toward the direction of the hidden state to obtain a larger likelihood. Meanwhile,
the embeddings of most words in the vocabulary (with non-appearing and rarely appearing
frequencies) will be pushed towards similar directions negatively correlated with most
hidden states and thus end up grouped together in the local region of the embedding
space. The following work [124] complemented the given explanation with the “common
enemies effect”—the effect of the target words producing gradients of the same direction
for all of the non-target words at each step of training with cross-entropy loss, and rare
tokens are the most affected by it. The authors also found that the embeddings learned
by GPT-2, BERT, and RoBERTa do not degenerate into a narrow cone (they only appear
as a cone when projected to a lower-dimensional space), but instead drift in one shared
direction. Therefore, the “common enemies effect” is argued to be the main culprit behind
the anisotropy of the representation space.

Outliers

There is evidence from multiple authors that contextualized representations of trans-
former models (in particular, the BERT family) contain undesirable outliers (interestingly,
abnormal dimensions were also previously observed for GloVe vectors in [128]). These are
certain positions in word vectors with unusually high values. The authors of [129] called it
outlier dimensions; in [130], it is referred to as outlier neurons, while the authors of [102]
call it rogue dimensions. In all of these works, it is agreed that it is a significant contributor
to the anisotropy of the representation space.

There is debate about what causes outliers. The authors of [129] found that outliers are
essential for good downstream performance. They regard it as a distinct model property
that emerges during training and even encourage one to consider it during weight initial-
ization. In contrast, in [102], it was found that the behavior of the model is not driven by
outliers; rather, only a small subset of linguistic abilities is handled there (such as positional
information; its relationship with outliers was revealed in [130]). Even more strangely, the
authors of [125] found that the embedding space of the multilingual BERT model does not
have outliers as the English BERT does, but is still anisotropic.

There are several options to account for outliers. The most obvious solution is to
remove them. The authors of [130] showed that this brings improvements for tasks
that directly use the geometry of the embeddings, such as semantic textual similarity;
however, ref. [129] showed that disabled outliers significantly degrade both Masked Lan-
guage Modeling (MLM) loss and downstream task performance. The authors of [102]
suggest that rogue dimensions be accounted for through the standardization transforma-
tion. Both options aim to reduce the dominating effect of the highest-value dimensions

Appl. Sci. 2024, 14, 8887 13 of 66

during the similarity measure, such as cosine similarity or Pearson correlation. On the
other hand, one can argue that the similarity measure we use, not the representation space,
needs improvements.

Criticism

Many works try to improve the isotropy of representation spaces, but is that truly the
right way to seek performance improvements? Some recent publications, such as [124],
expressed doubts about the role of isotropy in model performance, and the authors of [131]
even observed a negative relation between isotropy calibration and downstream perfor-
mance. The works in [117,124] ask whether there is truly a “narrow cone” in the embedding
space. Other authors of [15] argue that the main problems are various biases unrelated to
isotropy. Furthermore, the authors of [117] criticized multiple popular measures of isotropy
and warned that they are misleading and inaccurate.

The authors of [132] analyzed the contextual embedding space and found isolated
clusters and low-dimensional manifolds. They concluded that although the embeddings
are globally anisotropic, local isotropy exists. The authors of [133] continued this obser-
vation and applied the known preprocessing techniques of [118], not globally but locally,
in clustered regions of representations. They observed that sense-level information is
shadowed by structural, syntactic, and tense biases (for verbs), which their method of
dominant direction removal helps to reduce. Another work [134] showed that during the
fine-tuning phase, the anisotropy becomes even worse, while, in contrast, the performance
of STS increases. They found that removing the top dominant directions for fine-tuned
representations becomes detrimental, as the most essential information resides there. These
findings indicate that the representation space of transformer models is quite complicated
and that a simple fixation on isotropy can destroy its native features. These also include
biases, the usefulness of which may not be obvious to us, but models have found them
helpful during the pre-training. In the end, brute-forcing the plain isotropy may harm some
intricate semantic details, which we seek to capture.

2.2.2. Post-Processing Methods

Many post-processing methods have been proposed to improve the embeddings.
Whether they improve the isotropy of the representation space or help surface-relevant
information [135], multiple authors show the benefits of using them. However, these
methods generally favor unsupervised tasks, such as semantic textual similarity, with
limited improvements for downstream tasks. If enough data on the target task are available,
supervised training will inevitably be a better choice, as the transformation relevant to the
task is learned. However, post-processing may be the only option if the training samples
are obscure.

The simplest is the centering operation. It is especially important for the STS task
that involves cosine similarities. The authors of [124] found that it restores a nearly per-
fectly isotropic distribution. Subtracting the mean is also the first step in several other
post-processing methods. In some sense, such operations as centering can be viewed as
fine-tuning to the target domain, as all target embeddings participate in providing the
mean coordinates.

We already mentioned some operations related to isotropy enhancement in the previ-
ous section, such as zeroing target outliers or ABTT. In the following, we will mention the
remaining important ones.

Z-Score Normalization

The Z-score describes the position of a point in terms of its distance from the mean
when measured in units of standard deviation (in the distribution of the target samples). Z-
score normalization, also called standardization, transforms the distribution of embeddings
to have a zero mean and a unit standard deviation in all dimensions. The works in [102,103]
recommend that you consider it as a post-processing step. The authors of [116] advise

Appl. Sci. 2024, 14, 8887 14 of 66

using normalization, such as the z-score, in supervised settings as a binary hyperparameter,
because it can lead to rank changes.

All-But-The-Top (ABTT)

Many works are based on the influential ABTT algorithm [118]. It has a hyperparame-
ter, which tells the number of dominant directions to remove. Principle components are
either completely removed or left intact. As a result, the main weakness is finding the right
number of top components to remove, which can either cause information loss or eliminate
an insufficient amount of noise. The authors of [136] proposed post-processing through
variance normalization (PVN) to normalize the variance of leading principal components
to the same level instead of total component disposal. The authors of [137] performed the
removal in a softer way by employing matrix conceptors [138] in an unsupervised way.
A similar technique that employs conceptors can also target specific components, such as
those that incorporate social biases, and diminish them, as in [139]. Other authors of [140]
proposed learning weights for each dominant direction removal. All these approaches try
to preserve useful information residing in the top principal components while narrowing
the target noise.

Authors of [141] combined ABTT and dimensionality reduction. They found that
the best pipeline is to perform ABTT twice while performing dimensionality reduction in
between. In another line of work, the authors of [125,133], instead of global post-processing,
remove local dominant directions in separate clusters in the representation space. In this
way, the structure of the representation space is accounted for. Similarly, the authors
of [65], in light of the predecessor method of ABTT [60], proposed to eliminate the sentence-
dependent principal component, where they rerank the top principal vectors based on
correlation with each sentence. This individual removal of dominant directions was shown
to improve performance on the STSB task.

Whitening

The authors of [13] proposed the whitening approach to alleviate the anisotropy
problem of sentence embedding. The whitening operation involves centering embeddings
at the origin and making different dimensions have a unit variance and be uncorrelated,
turning their covariance matrix into the identity matrix. It was also found to be useful in
earlier work for the alignment of bilingual embeddings [142]. As a side effect, the authors
of [13] showed that whitening can also be used with a dimension reduction operation. A
concurrent work [14] also used a whitening algorithm to improve performance on STS tasks.
In that work, the authors combined the first and last layers of BERT embeddings and then
normalized them with whitening. Despite the initial success, subsequent work criticized
the whitening operation. The authors of [143] showed that whitened representations greatly
improve uniformity, but also suffer degeneration in the alignment property (for alignment
and uniformity properties, see [144]). To make matters worse, the authors of [145] called
whitening a “trick” that only helps with similarity tasks (by partially overfitting) and harms
downstream task performance.

2.2.3. Retrofitting

This word vector space specialization method can incorporate semantic knowledge
from external resources into word embeddings. The authors of [146] were the first to use
the term “retrofitting” for their post-processing step of vector space word representations.
Their idea was to incorporate rich relational information from semantic lexicons to word
vectors, which are trained in a data-driven fashion using plain texts. The authors showed
that the new vectors are similar in both their purely distributional representations and
related word types. In addition, they showed improvements in several benchmark tasks.

Retrofitting can be useful for fitting a desired domain that is different from the original
one used to pre-train the word vectors. An example is [147] where the authors retrofitted to
linkage information in biomedical taxonomy. Another related field is the alignment of cross-

Appl. Sci. 2024, 14, 8887 15 of 66

lingual word embeddings. The authors of [148] used retrofitting to align the vectors of the
source and target languages in the dictionaries. This way, translation pairs are pulled closer
while minimizing deviation from the original embeddings and preserving the existing
representation. In all these cases, the retrofitting is based on external relational data.

According to the authors of [149], the weakness of retrofitting is that only the vectors
of words present in the external constraints (resources) are modified. Therefore, they
proposed an explicit retrofitting model in which external knowledge relations are turned
into supervised training examples. Here, the distance between synonyms is supposed to be
as low as possible, and between antonyms as high as possible, while between remaining
words not present in the external knowledge base, it should remain the same as in the
original representation space. This way, on top of word vectors, a deep feedforward neural
network is trained to retrofit all the word embeddings.

Some work also found success in applying retrofitting to contextualized represen-
tations. The authors of [108] observed that for ELMo [106] representations, the distance
between the shared word in the paraphrases is even greater than the distance between
“large” and “small” in random contexts. Therefore, to improve the representation capabili-
ties, they minimized the difference in contextualized representations of the shared word in
paraphrased contexts while differentiating between those in other contexts. This retrofit
resulted in improved performance of downstream applications. Other authors of [150]
proposed a two-step process: first to train static vectors from contextualized ones, and then
to perform retrofitting. They showed that compared to baselines, such an approach gives
the best results in a range of intrinsic and extrinsic tasks.

2.2.4. Other Methods

Some methods are proposed to reduce anisotropy during the training process. In
particular, the authors of [120] added the specific regularization. According to them, the
aperture of the narrow cone of representations can be improved by minimizing the cosine
similarities between any two word embeddings. Such regularization encourages the vectors
to be more evenly spread and expressive. This method is highly related to the now-popular
contrastive learning approach (see Section 2.3.3). Other authors of [151] improve the
isotropy of the output embedding matrix using the spectrum control method. They guide
the singular value distribution of the embedding matrix throughout the training process
and control the decay rate of these singular values.

The authors of [123] suggest learning transformation of the embedding space of
the transformer, sometimes called a flow technique. Their method transforms the BERT
sentence embedding distribution into a smooth and isotropic Gaussian distribution. During
unsupervised training, only the flow network is optimized, while the BERT parameters
remain unchanged. Although BERT-flow showed performance improvements on multiple
tasks, the technique is criticized in the literature. First, it needs a specialized implementation
and has multiple additional parameters. The authors of [131] report that BERT-flow requires
on average 4.2 times more time per training epoch. Furthermore, for the STS benchmark
task, the authors of [145] report that BERT-flow with the l2 similarity metric performs even
worse than the baseline of the BERT average.

Different post-processing can help surface the different information residing in the
embeddings. The authors of [135] proposed a simple unsupervised singular value de-
composition to reassign the feature weights. By changing the similarity order of their
transformation, they tailored word embeddings in the semantics/syntax (tasks focusing on
sing–chant or sing–singing) and similarity/relatedness (tasks solving car–automobile or
car–road relationships) axes. Other authors of [152] used spectral filters to dissect BERT
representations at different temporal scales. They showed that a low-pass filter yields the
highest probing accuracy in topic classification, a high-pass filter in speech tagging, and a
middle-pass filter is best in dialog act speech tasks.

Appl. Sci. 2024, 14, 8887 16 of 66

2.2.5. Similarity Measures

Some most basic tasks for sentences require measuring the distances between the
corresponding embeddings. Usually, cosine similarity is employed. However, if the con-
tinuous representation space is curved or a text sequence is treated as a set of words,
different metrics or representation space manipulations can be beneficial. The authors
of [153] proposed Mutual Information (MI), well known in information theory and statis-
tics, as a candidate for a similarity measure. They managed to successfully estimate MI
for continuous random variables by the use of Kraskov–Stögbauer–Grassberger (KSG)
estimator [154], which is based on elementary nearest-neighbor statistics. The other authors
of [155] advised comparing sentence embeddings consisting of word vectors averaged
by rank correlation, such as Kendall’s τ. They argued that such measures enable mean
pooled representations to rival modern deep ones, used with cosine similarity. The authors
of [156] proposed treating sentences as fuzzy sets of words and showed good performance
with the specially adapted DynaMax similarity measure. They showed that word vectors
alone are sufficient to achieve excellent performance on semantic textual similarity tasks
when sentence embeddings and similarity measures are derived using ideas from fuzzy set
theory. Other authors of [157] suggest processing each sentence with respect to its found k-
nearest neighbors. Then, they find an optimal Euclidean subspace of the sentence manifold
where cosine similarity would work best. The authors of [158] also project the sentences
onto a fixed-dimensional manifold with the objective of preserving local neighborhoods in
the original space. All these works mentioned employ various strategies to enhance the
comparison of document representations, tailoring their approaches to the given task.

Many similarity measures between sets employing earth mover’s distance were pro-
posed. The authors of [159] were the first to frame the similarity of documents as a
transportation problem. The idea is that the distances between similar but different words
in two documents should be small. Their Word Mover’s Distance (WMD) is the cost of
transporting a set of word vectors in an embedding space. This approach was effective,
as it managed to exploit similarities between different Word2Vec word vectors, such as
the relation of analogies. However, the main deficiency of WMD was that the distances
were expensive to compute. Moreover, an output, the single number of a distance between
two given documents, can only be combined with k-nearest neighbors or k-means, while
applications usually require a whole feature vector. The authors of a subsequent work [160]
managed to derive vectors for documents using WMD. They constructed a positive-definite
word mover’s kernel using a feature map given by the WMD to random documents and
then derived document embedding via a Random Features approximation of the kernel.
Other authors of [70] proposed Word Rotator’s Distance (WRD). It is designed so that the
norm and angle of word vectors correspond to the probability mass and transportation
cost in the earth mover’s distance, respectively. Therefore, the norm of vectors, which is
associated with the vector’s significance, does not interfere with the calculation of trans-
portation cost, as in WMD. Finally, the authors of [?] attempted to include structural
information absent in the WMD’s distance estimation between two sets of words. They
represented the sentence vector as a weighted average of substructure vectors at a lower
level in a recursive way, while a transport plan at a different level explains how the different
substructures align.

2.3. Learning Sentence Embeddings Directly

We already mentioned some models that learn the aggregation of tokens or their
combination rules. However, in this section, we will look at more direct approaches to
learning a representation vector for a given text.

2.3.1. Paragraph Vectors

The method presented in [162], and sometimes called Doc2Vec, is one of the
first successful Word2Vec [16] adaptations to sequences of tokens. The authors presented
two methods of how document representation could be trained.

Appl. Sci. 2024, 14, 8887 17 of 66

In the Distributed Memory model of Paragraph Vectors (PV-DM), every paragraph is
mapped to a unique vector, which, together with context words, participates in predicting
the next word. This way, such a unique vector acts as a memory that stores the topic of the
paragraph and bears its representation. The second is the Distributed Bag Of Words version
of the Paragraph Vector (PV-DBOW) model. It leaves only a unique paragraph vector in the
input and predicts words randomly sampled from that paragraph in the output. However,
unlike the first method, it does not account for word ordering.

In the original article [162], authors represented sentences as a concatenation of DM
and DBOW vectors, as they saw such a setup as more consistent. Later works [163,164] also
reported that individual model performance had only marginal differences, yet deviations
were usually task-dependent.

The authors of [165] proposed a modification to Paragraph Vectors and called it
Doc2VecC. Differently from Doc2Vec, a document vector is derived not as a unique vector,
but as an average of sampled constituent word embeddings. The other notable contribution
is the added data-dependent regularization that favors informative or rare words while
forcing the embeddings of common and non-discriminative ones to be close to zero. At the
time, the authors showed Doc2VecC to match state-of-the-art in multiple tasks.

2.3.2. To RNN- and Transformer-Based Models

Shallow Doc2Vec-like models soon met competition from more complicated Recur-
rent Neural Networks (RNNs). In a sequence-to-sequence [166] (like machine translation)
setting, such a model usually has two parts: encoder and decoder. The encoder, going
through each token one by one, encodes the input sequence into a fixed hidden represen-
tation, which is later used by the decoder to generate the target sequence (translation in
NMT) token by token. Meanwhile, only the decoder part is needed to generate sentence
representation. Words of the sentence are sequentially fed as input to the RNN, and the
final hidden state is interpreted as its representation.

The benefit of RNN models is that the sequential consumption of tokens allows the
final representation to account for the word order and process the arbitrary number of
tokens. However, the effectiveness of this mechanism is questionable. It turns out that
information has a hard time propagating all the way to the final hidden state. As compen-
sation for that, a bidirectional [167] setting was used, which connects two hidden layers
of opposite directions to the same output, simultaneously getting forward and backward
information. The second solution was to use an attention mechanism [4], which, during
decoder token generation, takes a weighted average of the encoder hidden states from all
the input tokens. But it was only helpful for sequence-to-sequence tasks, like translation,
as such a mechanism removed the last hidden state bottleneck, which was required to
compress a long sequence of tokens into a single vector for a whole text representation.

One of the first famous recurrent models for sentence representation is the SkipThou-
ght [168]. This model is trained to predict neighboring sentences from the source one.
The center sentence is encoded by a bidirectional GRU (Gated Recurrent Unit [169]) that
concatenates the last hidden state of a forward GRU and the last hidden state of a backward
GRU, and then decodes it into the two target sentences. This way, the encoder is trained
to map a sentence to a single representative vector. The authors showed that the model
is robust and performed well on all tasks considered. The main drawbacks of this model
are the month-long training, huge vector size of 4800 (resulting from the concatenation of
2400 vectors from two separate models), and support of only sentence-level embeddings,
as well as the need for training text with a coherent inter-sentence narrative.

As recurrent GRU or LSTM [170] architectures became the standard, the most recent
advances in text representation were due to how data and training objectives were chosen.
Here, we have to mention a famous InferSent [12] model. The authors showed that the high-
quality supervised data, although in low quantity, can hugely increase the performance.
They trained an encoder based on a bi-directional LSTM architecture with max pooling,
on the Stanford Natural Language Inference (SNLI) [171] dataset. The resulting model

Appl. Sci. 2024, 14, 8887 18 of 66

outperformed SkipThought after less than a day of training on a single GPU. Other authors
of [172] modified the SkipThought model to QuickThoughts by framing the training task
as a classification. Instead of generating the target sentence, the model encodes the likely
candidates and chooses one of them. Authors of [173] leveraged several data sources with
multiple training objectives. Their GenSen model training tasks included Neural Machine
Translation, Constituency Parsing, Natural Language Inference, and SkipThought-like
training. Finally, authors of [174] proposed even greater utilization of training data by
constructing a discourse marker prediction task, predicting tokens such us tbecause, and,
if, etc. Such framing of the task allowed the authors to mine vast amounts of text pairs
together with the connecting markers. Their DisSent model performed similarly well to
InferSent on various transfer tasks. Overall, one can see that how the model is trained and
data quality and quantity play a huge role in the resulting text representation performance.

Many drawbacks of the recurrent models were solved by the transformer architecture [2].
The authors decided to get rid of recurrence and leave only the attention mechanism [4]
itself. The resulting model (1) is highly parallelizable; (2) only after the first layer, each
token has already attended to every other; and (3) it is faster than RNN models when
the sequence length is smaller than the representation dimensionality. These properties
allowed us to train transformer models with staggering amounts of text much faster and
they became state-of-the-art models on multiple tasks.

Previous advances in sentence representation using RNNs were quickly applied to the
new architecture. The authors of [175] presented a Universal sentence encoder model. It
used only the encoder part of the original transformer model trained with multiple tasks:
Skip-Thought-like training, SNLI, and conversational response prediction [176]. After the
appearance of the pre-trained BERT model, the authors of [9] proposed SBERT: a pre-trained
BERT model further fine-tuned with NLI data. It was a huge success, similar to the earlier
InferSent model, yet this time both the new architecture and the general pre-training were
the new factors for additional performance advancement. Other authors of [177] tried to
further utilize the unsupervised data. Their PAUSE model learned sentence embeddings
from a partially labeled dataset and showed that this way, the same performance can be
achieved with a smaller fraction of labeled NLI data. Here, we see the same tendency as
with the RNN models: new efforts to construct better fine-tuning tasks and better utilize
existing data.

2.3.3. Contrastive Learning Approaches

The search for better training tasks and data utilization culminated in a new area of
contrastive learning.

Distance-based contrastive loss [178] is more attractive for learning sentence-level
embeddings than the more conventional error prediction losses. It allows for a simple
construction of self-supervised learning using pairs of positive and negative examples.
Embeddings of the first group of samples are encouraged to be the same (by utilizing a loss
on a distance function between the text vectors), while the negative ones are encouraged to
be different.

In this way, the burden of expensive labeling can be relieved. Moreover, it can be used
as an intermediate step between pre-training and fine-tuning to inexpensively align the
model to the target task domain. These properties are especially useful for the “data-hungry”
transformer models.

The models in this class differ mainly in how they construct the positive example pairs.
This can be achieved in many different ways. We will describe them below.

Feature/Vector/Embedding-Level Augmentations

These are the modifications to the sentence in its vector representation space.
Dropout [179] is one of the most popular feature-level augmentation techniques. It

was originally used as a regularization of neural networks to increase the robustness to

Appl. Sci. 2024, 14, 8887 19 of 66

noise from the vector space. However, the same can be applied to derive an augmented
text sequence representation.

Popular BERT and RoBERTa pre-trained transformer models already have dropout
layers and require almost no modifications to employ the dropout augmentation. Two
positives are acquired by passing the same sample through the dropout-enabled network
twice [143,180,181]. This does not require additional preprocessing and can be applied on
the fly during the training.

Despite the effectiveness reported, dropout augmentation has the disadvantage of
being biased toward sentence length. This was observed in [181]. Two augmented versions
of the same sentence are of the same length and can be easily discriminated against
randomly drawn negatives of varying lengths. Therefore, instead of learning the general
sentence representation to match the same sentence samples, the model now just takes the
shortcut by only comparing their lengths. To counteract this, the authors of [181] added
token-level augmentations in addition to dropout so that the length of positives would be
different. Other authors of [182] also managed to avoid this problem by using negatives
produced by a much higher dropout rate than those used for positives.

Another feature-level (also regarded as token-level) augmentation technique is the
shuffle of tokens. Usually in pre-trained language models, positional information of each
sequence element is brought about by the addition of special positional embeddings to the
existing token ones. As a result, the shuffling of positions can be implemented simply as
the shuffling of position IDs and the corresponding positional vectors.

Similarly to dropout, there is a cutoff augmentation [183]. Dropout can also be consid-
ered as random erasing of weights in L × d text sequence embedding matrix with L tokens
of length d vectors. The token cutoff erases randomly selected rows, while the feature cutoff
erases columns of the L × d matrix. In the work of ConSERT [63] it was found that the
shuffle and token cutoff are the two most effective augmentation strategies, significantly
outperforming the feature cutoff and dropout.

There are more sophisticated approaches to alter embeddings than a dropout randomly
replacing weights with zero values. Specifically, adversarial attacks were shown to be
successful. They aim to add worst-case perturbations to the input samples. The authors
of [63] used the Fast Gradient Value (FGV) [184] method, which unfortunately relies on
supervised loss to compute adversarial perturbations. Other authors of [185] employed the
Fast Gradient Sign Method (FGSM) [186]. Perturbation is obtained by applying the sign
function to the derivative of the model with respect to the input by contrastive loss. The
authors of [185] composed their best augmentation mix as a dropout with FGSM.

Token-Level Augmentations

Language gives us many possibilities to convey almost the same meaning through simi-
lar or very different sequences of words. This can be easily utilized for augmentation purposes.

Using synonym replacement, random swapping of two consequent words, random
insertion and deletion, the so-called Easy Data Augmentation (EDA) the authors of [187]
managed to reduce the required dataset size by half for the same performance in multiple
classification tasks. In contrastive learning experiments for the biomedical relation extrac-
tion task, the authors of [188] found that synonym replacement outperformed random swap
and random deletion. Meanwhile, one of the first contrastive works for text [189] showed
that back-translation [190] augmentation outperformed the four mentioned techniques.
The authors took a pre-trained BERT [5] and pre-trained it further on the input text of
GLUE [191] tasks in a contrastive fashion, to be later fine-tuned and evaluated in GLUE.
The resulting CERT model achieved slight improvements in addition to the regular BERT.
CLEAR [192] was also an attempt to improve the regular BERT and RoBERTa pre-training
by jointly using MLM loss and constrastive loss. The authors found that the different com-
binations of different augmentation strategies (in particular, substitution, span-deletion,
and reordering) favor different improvements for GLUE and various SentEval tasks. A

Appl. Sci. 2024, 14, 8887 20 of 66

recent work [185] tried token-level augmentations such as typos, synonym replacement,
paraphrasing, and back-translation but found that they underperformed feature-level ones.

As the popular BERT model is pre-trained with a masked language modeling task, i.e.,
predicting the true masked token behind the special input [MASK] token, the same [MASK]
can also be used to induce augmentations by randomly masking tokens. The mirror-BERT
model of [180] used such random span masking for input augmentation, which, together
with feature augmentation, showed gains over off-the-shelf models in both lexical and
sentence-level tasks, across different domains and different languages.

Token-level augmentations can greatly contribute to existing vector-level ones. Feature-
level augmentations do not affect the length of the text sequence and are therefore suscepti-
ble to length bias. ESimCSE [181] showed that simple word repetition augmentation can
effectively counteract it. The authors also tested the insertion of the [MASK] token with
small improvements, while the insertion of stop words slightly decreased the effect.

A better distinction of negatives can also be obtained by token augmentations. The
authors of [92] proposed Bidirectional Margin Loss (BML) to incorporate soft-negative
samples that are generated using a simple rule-based method. According to its dependency
syntax tree, the positive sentence is converted to its negation with correct syntax and clear
semantics. The proposed setup saw improvements in the semantic textual similarity tasks
from SentEval.

One drawback of token-level augmentations is the chance of producing false positives.
It is especially risky in stochastic modifications, such as back-translation, deletion, or
insertion, where exact output cannot be controlled. Furthermore, token-level augmentations
are more complicated than feature-level ones, and thus they cannot be performed on-the-fly
during the training and must be prepared in advance.

Positives by Relative Placement

Similar to the older idea of skip-thoughts [168], the placement of sentences in a text
can be exploited. In such a setting, text segments near or overlapping each other in the
long text should also be near each other in the sentence embedding space. Therefore, text
parts near the same anchor in the text can be regarded as positive, while further away as
negative pairs for contrastive learning. DeCLUTR [193] for each document in a mini-batch
samples multiple anchor spans. The corresponding positives are further sampled for each
anchor and can be partially overlapping, adjacent, or subsumed by the anchor. This is
accomplished by sampling the anchor span length to be mostly longer than the positive
spans. At the time, DeCLUTR showed improvements in SentEval [194] transfer tasks
in an unsupervised setting. Location exploitation is a simple approach, but it has some
drawbacks. As the authors used the dataset consisting of documents of at least 2048 tokens
in length, it clearly reveals that sentence placement methods have limited applications for
short text domains. Moreover, random spans of DeCLUTR are subject to fragmentation
in semantics.

Positives by Two Networks

The augmented version of the sample can also be constructed using two encoders.
Different weight initialization and training data order are the most common causes of
fluctuations in neural network performance. Although the performance is generally com-
parable, each model learned differently represents a different local minimum. Such a subtle
difference can act as an augmentation. One of the first such setups was the CT model [99].
The simple objective required two models to retain similar representations for identical
sentences while distinguishing their representations from different ones.

The authors of [86] presented an approach of two BERT models, one fixed and the
other tunable. The authors imposed a contrastive tension between the [CLS] token of the
tunable model and a holistic representation of the fixed one. The latter is aggregated from
all BERT layers, thus encouraging the tunable model to learn to concentrate all the relevant
information to the [CLS] token.

Appl. Sci. 2024, 14, 8887 21 of 66

The authors of [195] proposed using multiple diverse positives instead of the usual
two. The authors claim that this increases the probability of “at-least-one” effective pos-
itive during training. To implement diverse positives, the agreement of two similarity
distributions of samples between two encoder models had to be maximized.

Another setup incorporating two networks can be used for Knowledge Distillation
(KD). In [196], after the regular KD step with the original pre-training task, an additional
contrastive pre-training was added. The pair of positives for a single text segment consisted
of a representation from the teacher model and another from the student. After the third
stage of fine-tuning on semantic textual similarity tasks, [196] showed that the 110 M model
outperformed the one with 11B parameters.

MoCoSE [185] combines both feature-level augmentations and two branches based on
asymmetric BERT encoders. While the online branch is updated through the loss gradient,
the second, the target branch, is updated by the Exponential Moving Average (EMA). These
discrepancies between the two branches prevented the model from collapsing and allowed
the achievement of competitive results in SentEval.

Although two-network approaches are conceptually similar, they require extra mem-
ory or time, which is a big drawback. Transformer models already require the latest
state-of-the-art GPU with the largest available memory. Techniques such as gradient accu-
mulation are often used to process large mini-batches sequentially, but in the contrastive
learning approach, the requirement for large in-batch negatives gives additional complexity.

Positives and Negatives from Supervised Data

Up to now, we have described various augmentation techniques that modify existing
unlabeled samples for use in contrastive learning. However, there are several labeled
datasets that can also be turned into positives or negatives by reusing the label information.

One of the first works to implement this idea was SimSCE [143]. The authors an-
alyzed six candidate datasets. They found that the Natural Language Inference (NLI)
datasets, SNLI [171] and MNLI [197], together performed the best. The combined dataset
contains sentence pairs in the form of (premise, hypothesis, label), labeled as entail-
ment, neutral, or contradiction, 314k for each class. The SimSCE authors constructed
positive pairs from entailment samples and negatives using contradiction ones. The result-
ing supervised approach achieved state-of-the-art results at the time for SentEval tasks.
The authors also tried to incorporate neutral pairs as less weighted negatives but did not
observe improvements.

The authors of [198] note that the use of NLI labels to construct positive and negative
pairs can contradict apparent semantic information. Elements of the negative pair may
not be negative in semantic space. To address this issue, the authors train the PairSupCon
model by incorporating an instance discrimination objective, which is claimed to have an
implicit grouping effect. The objective discriminates both hypothesis and premise sentences
from the positive pair separately from all other sentences in the batch. The authors also
incorporated importance weighting on negatives to facilitate the better effect of hard ones.
In total, the overall loss consisted of two instances of discrimination (one for hypothesis
and the other for premise) with negative weighting and a third cross-entropy predicting
NLI labels. Significant improvements were shown for clustering tasks, while for semantic
textual similarity tasks in SentEval, only moderate gains were shown.

A novel use of NLI dataset labels was implemented in the PairSCL [199] model. First,
the pair of hypothesis and premise sentences from the NLI dataset is passed through an
encoder, and the unified representation of such pair is aggregated by a cross-attention
module. Then a supervised contrastive loss is applied between positive and negative
samples. What is interesting is that positives are regarded as hypothesis and premise pairs
from the same class, i.e., whether contradiction, neutral, or entailment. Pairs labeled in
different classes are considered negatives. In addition to such supervised contrastive loss,
an additional cross-entropy loss is applied that predicts the actual class label. This setup
showed improvements in both the NLI and SentEval transfer tasks.

Appl. Sci. 2024, 14, 8887 22 of 66

ST5 [200] adopted the two-stage training strategy. In the first, 2B mined question-
answering data from Community QA sites were used, framing the question and answer
into the positive pair. During the second stage, NLI data were used, similar to SimSCE [143].
Such a more data-rich training allowed the authors to outperform the previous approaches
for the SentEval task. Furthermore, using larger models with up to 11B parameters brought
even further gains.

Supervised datasets are difficult to produce. If the domain of the task in question
differs from publicly available NLI datasets, the easiest solution is to use unsupervised
methods. Otherwise, labeled sources are indispensable. Exploiting multiple datasets and
label information can make the benefits even more obvious.

Direction of Contrastive Learning for NLP

The classic setup of contrastive learning is becoming more nuanced. The usual setup
of two positives and multiple in-batch negatives (just any other sentence) is not perfect. As
a result, the exact distance to the negatives or between the positives varies, and learning
produces only a coarse approximation. The distinction between soft, hard, and weighted
negatives begins to arise [92,143,198], as well as the use of multiple positives [195]. The
classic NT-Xent (also called InfoNCE) loss is thus often modified or additional losses
added to incorporate finer training signals. The desire to scale models and datasets is also
observed, as in [200], yet we think that more memory-efficient approaches, as in [196],
should be prioritized. Nonetheless, contrastive learning currently produces state-of-the-art
sentence embeddings.

3. Methods

Our extensive literature review allowed us to see the big picture of the sentence
embedding research.

Currently, the evolution of models for sentence embeddings and related NLP tasks
is settled at transformers. In this work, we use existing models to source the raw, token-
level embeddings. In Section 3.2, we describe the main model that we use in detail, some
baselines we used for comparisons, as well as some of our original extensions. In particular,
in T1–T4 models, we extend original prompting templates by incorporating more than one
[MASK] token. Next, we present a new Avg. model where we derived sentence embeddings
first by averaging tokens in different contexts and then by averaging the tokens themselves.
Finally, we present our BERT + Avg. model, which combines both contextual and multiple-
context averaged representations, all derived from the same BERT transformer model.

In addition to these extensions, we found two main directions that can be used to
improve sentence embeddings from transformer models: token aggregation and post-
processing techniques. Note, however, that our main contribution here is not the methods,
as we reuse most of them from the existing works, but the combinations of them on the
transformer model and extensive evaluation on multiple tasks. We thoroughly describe
the techniques used (and minor extensions) for token aggregation in Section 3.3 and post-
processing of embeddings in Section 3.4.

We have noticed that most works confine themselves to a small subset of evaluation
tasks, which limits their results’ comparability to others. Papers from top conferences
always include classification tasks on top of semantic textual similarity, which is usually
the only evaluation. In this work, we evaluate sentence embeddings on three different
types of tasks: semantic textual similarity, downstream classification, and clustering. We
present these tasks in Section 3.5.

We now proceed with the formal definition of the problem we address in this work.

3.1. Problem Formulation

We are given a text sequence s0, which was tokenized into N individual pieces
(i.e., tokens)

t1 t2 . . . tN , (1)

Appl. Sci. 2024, 14, 8887 23 of 66

and a model representing each token as a d-length vector v ∈ Rd in each of its L layers.
We also use static token embeddings denoted as the −1st layer and input embeddings
denoted as the 0th layer. They are sums of token, segment, and position vectors, with
layer normalization applied on top. Therefore, we obtain the following 3-dimensional
representation space R(L+2)×N×d:

v−1
1 v−1

2 . . . v−1
N

v0
1 v0

2 . . . v0
N

v1
1 v1

2 . . . v1
N

...
...

. . .
...

vL
1 vL

2 . . . vL
N

. (2)

We want to find such an aggregation function f that the ((L + 2)× N × d)-dimensional out-
put from a chosen transformer model would be reduced to as meaningful a d-dimensional
vector as possible in Rd.

As a baseline for the bert-base-uncased model with L = 12 layers, we consider the
average over the N tokens in text and over the first and last layers.

ffirst+last(s0) =
N

∑
n=1

v1
n + v12

n
2N

. (3)

Additional Context Data

Generally, a corpus has S number of text samples. Therefore, other text sequences
can also be used to derive the representation of the target sentence. In this way, our
aggregation function f operates on an (S × (L + 2)× N × d)-dimensional output from
the model. S can also be enlarged by using additional datasets. In particular, we used
Wikitext-2 from [201]. This can be used for various post-processing techniques such as
centering, standardization, PCA, and others, where transformations are learned on corpora
other than the target corpus.

3.2. Models

We use multiple text representation methods, focusing mainly on BERT-based ones.
Prompting method T4, Averaged BERT (Avg.), BERT + Avg., B2S-100, and Random embed-
dings (RE) are our proposed models or modifications, while BERT, T0, and B2S are plain
adaptations of existing ones. We tested token aggregation and sentence representation
post-processing techniques on all eight models. We will describe them in more detail below.

3.2.1. BERT

BERT is a very popular transformer model. When first introduced in [5], it spectacu-
larly outperformed multiple other models on a wide range of tasks.

BERT is based on the original transformer architecture of [2]. The main difference
is that instead of sequence-to-sequence workings and encoder–decoder structure, it is
composed only of an encoder side. This allows it to solve multiple classification and
regression tasks, maintaining the same pre-trained base while only changing the classifier
heads on top.

In this work, we use the BERT version called bert-base-uncased, a 110 M param-
eter model containing 12 layers (blocks) and working with lowercase text. We employ
the Hugging Face implementation [202] of BERT. It was pre-trained on BooksCorpus
(800 M words) [203] and English Wikipedia (2500 M words) datasets, which take 13 GB of
plain text combined. The model was trained for 40 epochs (or passes through the corpus).
Back then, the training time, model size, and data used were considered to be very large,
yet now they are only a small fraction of what the current state-of-the-art models use.

Appl. Sci. 2024, 14, 8887 24 of 66

Input

Input to the BERT encoder consists of token, positional, and token type embeddings.
BERT uses WordPiece tokenization [204]. Splitting less frequent words into sub-words
(e.g., “transformer” → “transform” and “##er”) rather than splitting everything on word
boundaries allows one to reach a manageable vocabulary size of 30,000 tokens. BERT, like
other transformer models, perceives input as a set; therefore, order information must be
supplied in addition. To achieve this, additional positional embeddings are used, with a
unique value for each position in a token sequence and feature dimension. Token type
embeddings allow the model to distinguish between the two (if there are two) separate
sentences (e.g., ⟨ Question, Answer ⟩) in one token sequence. Overall, token, positional, and
token type embeddings are added, and then layer normalization [205] and dropout [179]
are applied. This results in the input to the BERT model blocks (for simplicity, we will call
them layers).

There are 3 special tokens. [CLS] starts every token sequence, [SEP] ends token
sequences and acts as a separator in a pair of sentences, and [MASK] is used during pre-
training to mask some percentage of the input tokens at random for the model to predict
(known as a “Cloze” task [206]). The [CLS] token is also used for the next sentence
prediction task—predicting whether the second sentence in a pair actually follows the first
one in the training dataset or is a random one—the second unsupervised pre-training task
of BERT.

Transformer Block

Each transformer block (or layer) has two sublayers. The first is a multi-head self-
attention mechanism and the second is a position-wise fully connected feed-forward net-
work. The output of each sublayer Sublayer(x) is added to the input x that bypasses the
sublayer through residual connection [207] and the resulting signal ends in layer normal-
ization [205], LayerNorm(x + Sublayer(x)) becoming the input to the second sublayer or
the next layer.

Multi-Head Self-Attention

An input tensor X ∈ Rb×t× f with b samples in a batch, t tokens, and f features is
first linearly projected into queries Q ∈ Rb×tQ×h× fQ , keys K ∈ Rb×tK×h× fK , and values
V ∈ Rb×tV×h× fV tensors with h heads using learned weights. Note that in the standard
case, t = tQ = tK = tV and f = h fQ = h fK = h fV . Then, for each sample text in a batch
and each head dot, products between feature vectors of every combination of query and
key tokens are calculated, resulting in an attention tensor (QK) ∈ Rb×h×tQ×tK . It is then
scaled by dividing it by

√
fK, and softmax is applied along tK so that all the dot products

for any given query token and all the key tokens would sum to 1. Now, a dot product is
calculated again for the probability-like scores and values tensor, resulting in a weighted
selection of V, with the form of Rb×h×tQ× fV . Finally, the heads are concatenated back and a
linear transformation layer WO ∈ Rh fV× f is applied. The resulting tensor is the same shape
as the input one: MultiHead(X) ∈ Rb×t× f .

For a more detailed explanation of the BERT and transformer architecture, please read
the original papers [2,5].

3.2.2. Prompting Method (T0, T4)

The classical use of the BERT model involves two steps: (1) a general pre-training
on a very large corpora with unsupervised tasks, and (2) a supervised fine-tuning step
on a small target task dataset. The first step is expensive, it requires a lot of data, time,
and computing resources, but it is carried out only once. Weights that are produced in
an unsupervised way contain a lot of useful representations for the fine-tuning to only
perfect them.

Prompt-based methods take advantage of the first step and can completely avoid the
fine-tuning stage. The idea is to frame the target task in the original pre-training format,

Appl. Sci. 2024, 14, 8887 25 of 66

for which the model is essentially optimized. To extract a general sentence representation,
the authors of [15] proposed using “This sentence: "[X]" means [MASK]” template
(which we will call T0), where the target sentence is placed instead of [X] and the final layer
representation of [MASK] is used. This way, the model itself tries to predict the meaning
of a given sentence, and we can extract prediction weights before they are turned into
probabilities over tokens.

During initial experiments, we manually searched for other more complicated tem-
plates than T0, presented in Table 1. We will also use the T4 template, which is much longer
and has 3 [MASK] tokens that have to be averaged.

Table 1. Manual template search by adding additional text and [MASK] ([M]) tokens. Target sentences
are inserted into the place of [X]. Only the average of 12th layer [M] representations are used. Bolded
results are the best.

No. Template STS Clust. Class.

T0 This sentence: "[X]" means [M]. 63.4 45.5 78.7
T1 This sentence: "[X]" means [M][M]. 63.4 46.6 78.6
T2 This sentence: "[X]" means "[M][M]" and is about [M]. 70.4 52.8 78.3
T3 This sentence from the paraphrase dictionary: "[X]" means "[M]",

which is about [M].
69.6 54.2 77.4

T4 This sentence from the dictionary: "[X]" means "[M]" and is about
[M], which is a synonym for [M].

69.3 54.2 76.8

3.2.3. Averaged BERT (Avg.)

We follow the idea of [53] to average the representations of a token in its different
contexts to acquire its static embedding. Yet, we take it even further and construct vectors
for sentences by again averaging such static token embeddings over the sentences.

We construct static tokens using the Wikitext-103 [201] dataset and use the same tok-
enization as of BERT version bert-base-uncased. For each of all 28,807 tokens occurring
in the Wikitext-103, we sum all vectors produced by the BERT model (which differ due to
different contexts) and divide them by their count. Note that some tokens occur very often,
while others are rare (for example, the most frequent, “the”, is repeated 6,470,356 times).
The process is repeated for every BERT layer, as well as combinations of layers, so that we
can observe the performance dependence on this factor as well.

Combining Averaged BERT and Regular BERT (BERT + Avg.)

We also wanted to see how sentence embeddings derived from static averaged BERT
tokens can contribute to the original BERT representations. Therefore, we averaged sentence
embeddings from the two methods mentioned above.

3.2.4. BERT2Static (B2S, B2S-100)

There are more advanced distillation methods than simple BERT token averaging.
For example, the authors of [49] trained static word vectors using BERT’s contextual-
ized representations. They adapted the Sent2Vec [48] model for words and trained it
to predict the word given the context element of it by the contextual representation of
the BERT model. This way, the authors obtained vectors for the 750,000 most frequent
words. They also showed that this approach results in vectors that perform better than
existing static embeddings trained from scratch, while still enjoying a small memory and
computational footprint.

In our experiments, we used the bert_12layer_para model (downloaded from
https://github.com/epfml/X2Static, provided in [49], accessed on 1 May 2023), which
was trained from the contexts of a paragraph rather than only a sentence. We evaluated
two versions of BERT2Static: a regular one (B2S) and one with the 100 most frequent words
filtered out (B2S-100).

https://github.com/epfml/X2Static

Appl. Sci. 2024, 14, 8887 26 of 66

3.2.5. Random Embeddings (RE)

Instead of using a complex model to derive embeddings for words, we also tested
random vectors as token embeddings. More specifically, we assign each token a random
vector drawn from the normal (Gaussian) distribution, centered at 0 with 0.1 standard
deviation. To facilitate better comparisons with the BERT model, we use the same tokenizer
from the BERT version bert-base-uncased and make the vectors the same 768-size length.
The whole sentence representation is then computed as the average of its constituent
token vectors.

3.3. Aggregating Tokens

Every text contains multiple tokens, each with a corresponding embedding vector. To
obtain one vector for the whole text out of the many, usually, a simple average is calculated,
as discussed in Section 2.1. We use it as a baseline here for multiple methods.

We investigate different methods of token weighting and filtering based on their
frequencies. In classical bag-of-words approaches, it is usually accounted for with the tf-idf
weighting. We, however, use only idf weighting, because the same tokens in BERT cannot
be simply counted due to different contextualization. Given a dataset with N documents
and document frequency dft, defined to be the number of documents in the given dataset
that contain a token t, we calculate idft for a token t as

idft = log
N
dft

. (4)

To account for long/short text differences, we scale idft token weights for each text so
that they would sum up to 1. This way, to calculate the average embedding for a given
text, one need only sum up the weighted vectors. We calculate two inverse document
frequencies: idfW

t for the Wikitext-2 dataset from [201] and idfT
t for all samples from the

given target task.
We also adopt the method in [15,63] to drop the most frequent tokens. We choose 33

tokens, which were depicted in the appendix of [15]. Following that article, we also
investigate dropping punctuation and subword tokens. We found that dropping all
three parts—the most frequent, punctuation, and subword tokens—has the best effect,
and following the original work, we name such token aggregation as with removed
biases (“-biases”).

3.4. Post-Processing Embeddings

It is common in machine learning to standardize datasets, as most methods are de-
signed to work best with normally distributed data: Gaussian with zero mean and unit
variance. Yet it is not that trivial, as data may not follow a smooth distribution and may
contain disturbing outliers. In the context of the best practices reviewed in Section 2.2, we
investigate the following processing methods of embeddings.

3.4.1. Z-Score Normalization

The most basic is the standard score, also called the z-score. It is the number of
standard deviations σ by which the value x of a raw score is higher than or below the mean
value µ of the raw scores of all samples. We normalize our vectors to have z-score = 1:

z =
x − µ

σ
. (5)

3.4.2. Quantile Normalization to Uniform Distribution (quantile-u)

This technique works by making two distributions identical in statistical properties,
thus reshaping given data values according to some known distribution function. In our
case, we found that the uniform distribution worked very well as a reference. For a more
detailed description of the technique, see [208].

Appl. Sci. 2024, 14, 8887 27 of 66

We also tried other methods that are more robust to outliers; however, we found their
performance marginally below quantile-u. This includes quantile normalization using
a normal distribution and RobustScaler (as it is called in the scikit-learn preprocessing
library [209], which we used). The latter method removes the median value instead of the
mean and scales the data according to the selected quantile range.

3.4.3. Whitening

It is a transformation that produces uncorrelated components, each with a variance of 1.

3.4.4. All-But-The-Top (ABTT)

It is a method introduced in [118]. We start with the given embedding matrix A ∈ Rb× f

of b sentences, each with f features. First, it is centered by its mean µ ∈ R f into Ã ∈ Rb× f .
Using the centered Ã, and given the number d of the top principal components to remove,
we then calculate PCA components U ∈ Rd× f . Now, we project our data into these
components to acquire APCA ∈ Rb× f :

APCA
b f = ∑

d
Ãb f Ud f . (6)

The final processed embedding matrix will be:

A′ = Ã − APCA. (7)

The only difference of our approach from the original authors of [118] is that instead of
post processing words, we use all-but-the-top to post-process documents.

3.4.5. Normalization

We also experiment with normalization: scaling individual sentence vectors to have a
unit norm.

3.4.6. Learning Post-Processing

Some target task datasets can also be too scarce to calculate accurate statistics, such
as mean, standard deviation, or others, used in post-processing. Therefore, instead, we
also experiment with learning these weights on the Wikitext-2 dataset. We indicate such
techniques with a superscript ·W .

3.5. Evaluation

We evaluate the investigated methods on multiple clustering, semantic textual similar-
ity, and classification tasks.

3.5.1. Clustering Tasks

We assess the performance on 6 benchmark datasets for short text clustering. Com-
pared to the usual ones, short datasets impose a challenge due to the weak signal caused by
sparsity, which is a big problem for classic count-based approaches such as bag-of-words
or tf-idf. Table 2 provides an overview of the main statistics, and the details of each dataset
are as follows.

Agnews

It is a subset of news titles [210], which contains 4 topics selected by [211].

Biomedical

It is a subset of PubMed data distributed by BioASQ (http://participants-area.bioasq.
org/, accessed on 1 May 2023), where 20,000 paper titles from 20 groups are randomly
selected by [212].

http://participants-area.bioasq.org/
http://participants-area.bioasq.org/

Appl. Sci. 2024, 14, 8887 28 of 66

Table 2. Dataset statistics for the short text clustering datasets. N is the number of text samples,
C is the number of clusters, L/S is the imbalance number defined as the size of the largest class
divided by that of the smallest class, ∥V∥ is vocabulary size, Len is the average number of tokens
in each text sample, Alpha is the percent of tokens that are alphabetic (all token characters must be
defined in the Unicode character database as “Letter”, while tokens with numbers, punctuation, or
BERT continuation tokens such as “##ing” are excluded). Statistics with plain word tokenization are
marked with “W” and with bert-base-uncased model tokenizer as “B”.

Dataset N C L/S
∥V∥ Len Alpha, %

W B W B W B

agnews 8000 4 1 21,062 16,140 23 26 100 86
biomedical 20,000 20 1 18,888 9326 13 20 98 64
googleTS 11,109 152 143 19,508 14,763 28 33 100 85
searchsnippets 12,340 8 7 30,643 16,334 19 24 93 77
stackoverflow 20,000 20 1 22,909 7332 8 12 87 71
tweet 2472 89 249 5098 5091 9 11 100 81

GoogleTS

It contains titles and snippets of 11,109 news articles related to 152 events [213]. We use
the full version of the dataset, which includes both titles and snippets, named GoogleNews-
TS in [211].

Searchsnippets

It is extracted from web search snippets and contains 12,340 snippets associated with
8 groups [214].

Stackoverflow

It is a subset of the challenge data published by Kaggle (https://www.kaggle.com/
competitions/predict-closed-questions-on-stack-overflow/data, accessed on 1 May 2023),
where ref. [212] selected 20,000 question titles associated with 20 different categories.

Tweet

It consists of 89 categories with 2472 tweets in total [213].
We perform clustering by running k-means with the scikit-learn [209] package and

reported the clustering accuracy, computed using the Hungarian algorithm [215] and
averaged over 10 independent runs (we used the codebase from https://github.com/
amazon-science/sentence-representations and downloaded clustering datasets from
https://github.com/rashadulrakib/short-text-clustering-enhancement/tree/master/data,
both were accessed on 1 May 2023).

3.5.2. Semantic Textual Similarity (STS) Tasks

STS assesses the degree to which two sentences are semantically equivalent to each
other. A single sample consists of two sentences and a score ranging from 0 for no meaning
overlap to 5 for meaning equivalence. The semantic textual similarity shared task has been
held annually since 2012 up to 2017 [216–221] and formed STS12-STS17 datasets. A total
of 8628 carefully collected samples from these contests formed the STS benchmark [221].
Table 3 shows details of the STS datasets, including SICK-Relatedness [222] and STS-B
test sets, which we also use. Similarly to [145], we also add (STR) [223], a recent semantic
relatedness dataset created by comparative annotations.

https://www.kaggle.com/competitions/predict-closed-questions-on-stack-overflow/data
https://www.kaggle.com/competitions/predict-closed-questions-on-stack-overflow/data
https://github.com/amazon-science/sentence-representations
https://github.com/amazon-science/sentence-representations
https://github.com/rashadulrakib/short-text-clustering-enhancement/tree/master/data

Appl. Sci. 2024, 14, 8887 29 of 66

Table 3. Dataset statistics for STS and classification tasks. N is the number of text samples, C is the
number of clusters, L/S is the imbalance number, defined as the size of the largest class divided
by that of the smallest class (for STS tasks, the two classes are binned to 1 point label value length
ones from the highest and lowest sides), ∥V∥ is vocabulary size, Len is the average number of
tokens in each text sample, Alpha is the percent of tokens that are alphabetic. Statistics with plain
word tokenization are marked with “W” and with bert-base-uncased model tokenizer as “B”. For
MRPC, SICK-R/E, STS-B, and STS tasks, statistics are calculated for tokenized and then concatenated
sentences in each pair.

Dataset Split N C L/S
∥V∥ Len Alpha, %

W B W B W B

STS tasks

STS12 3108 5.2 8127 7802 25 28 83 77
STS13 1500 0.7 5152 5141 20 21 88 82
STS14 3750 1.6 9117 8613 21 23 86 80
STS15 3000 0.9 7364 7185 23 24 89 85
STS16 1186 1.2 3971 4175 26 28 87 83
STR 5500 1.0 22,392 12,883 25 32 83 76

Binary classification

MR 10,662 2 1.0 20,325 13,802 22 26 84 76
CR 3775 2 1.8 5675 5221 20 22 84 80
SUBJ 10,000 2 1.0 22,636 15,912 25 28 85 78
MPQA 10,606 2 2.2 6239 6248 3 3 97 88

SST2
train 67,349 2 1.3 14,816 11,570 9 11 88 78
dev 872 2 1.0 4339 4542 20 23 85 76
test 1821 2 1.0 7053 6824 19 23 85 76

MRPC train 4076 2 2.1 16,112 12,061 44 50 81 75
test 1725 2 2.0 10,092 8471 44 50 82 75

Fine-grained classification

SST5
train 8544 5 2.1 16,579 12,395 19 23 84 75
dev 1101 5 2.1 5038 5168 19 23 85 76
test 2210 5 2.3 7929 7478 19 23 85 76

TREC train 5452 6 14.5 9437 8492 10 11 87 81
test 500 6 15.3 1100 1247 7 8 85 79

SCICITE
train 7320 3 4.4 27,775 13,603 31 40 100 77
dev 916 3 4.4 7625 6918 31 40 100 78
test 1861 3 3.8 12,609 9217 31 41 100 77

SICK-E/R
train 4500 3/. . . 3.8/3.6 2258 2277 19 20 99 96
dev 500 3/. . . 3.8/5.0 1122 1172 20 20 99 96
test 4927 3/. . . 3.9/3.9 2271 2291 19 20 99 96

STS-B
train 5749 . . . 1.3 12,430 10,792 22 25 86 80
dev 1500 . . . 0.7 6542 6511 26 28 85 80
test 1379 . . . 1.1 4888 4921 22 24 85 81

STS is a very popular choice for evaluating textual embeddings in an unsupervised
way. Without any fine-tuning, one can calculate the distance (usually cosine) between
two vectors of two sentences, which should correlate to the target equivalence score. It is
so widely adopted that almost all work on semantic representations assesses the model
performance on this task.

We follow the STS evaluation settings from [143]. First, the evaluation is kept unsuper-
vised by not applying any additional regressors; cosine similarity between embeddings in
a pair is taken directly as a model score for similarity. To find the degree of correlation be-
tween the annotated and model-given labels, Spearman’s rank correlation is used because
it measures the rankings instead of the actual scores. Finally, for annual STS challenges,

Appl. Sci. 2024, 14, 8887 30 of 66

we concatenate all subsets and report the general Spearman correlation for that year (re-
ferred to in [143] as “all”). As we used the SentEval toolkit [194], we had to implement
concatenation ourselves since it only had “mean” and “wmean” settings available.

3.5.3. Downstream Classification Tasks

Differently from STS, these tasks are evaluated in a supervised way. Following the
SentEval [194] benchmark suite, the commonly used evaluation protocol is to train a
logistic regression or an MLP classifier with a cross-validation setup on top of the frozen
representations, and the testing accuracy is used as a measure of the representation quality.
We went after the logistic regression classifier and the 10-fold cross-validation scheme,
the setting which is the most commonly reported in the literature. We evaluated various
binary, ternary, and fine-grained classification as well as regression tasks. A more detailed
description of each is presented below, while statistics are presented in Table 3.

Binary Classification

It includes sentiment prediction from Stanford Sentiment Treebank dataset SST2 [112],
movie reviews MR [224], and customer product reviews CR [225]. In SUBJ [224], binary
subjectivity status is labeled for sentences from movie reviews and plot summaries, and in
MPQA [226,227], phrase-level opinion polarity from news articles is predicted. The last is
MRPC [228], the Microsoft Research Paraphrase Corpus, from parallel news sources for the
paraphrase detection task.

Ternary Classification

SCICITE [229] is a domain-specific classification task that assigns one of three intent
labels (“background information”, “method”, “result comparison”) to sentences collected
from scientific articles citing other articles. Meanwhile, the SICK-E [222] dataset has labels
for sentence pairs as “entailed”, “contradiction”, or “neutral”.

Fine-Grained Classification

It includes SST5 [112], a 5-level sentiment analysis dataset, and TREC [230], comprising
classification of 6 types of questions. We also evaluate regular semantic textual relatedness
and similarity tasks SICK-R [222] and STS-B [221] with classification, by splitting the real-
valued similarity targets into 5 discrete class labels. For example, a [0, 5] score of 3.6 goes to
class 3 with weight 0.4 and also to class 4 with weight 0.6.

3.5.4. Isotropy

We use the IsoScore [117] metric to measure the uniformity of the utilization of the
embedded space. As shown by the authors of [117], IsoScore has stronger properties than
other isotropy measures.

For each sentence embedding method, we calculated IsoScore for the Wikitext-2 dataset
from [201]. We split the dataset into individual sentences (now samples) and omitted texts
with less than 10 characters.

3.5.5. Alignment and Uniformity

Explaining the success of contrastive methods, the authors of [144] proposed using
alignment and uniformity properties to better quantify the quality of representations.
Alignment is calculated between semantically related positive pairs and therefore is an
expected distance between embeddings of the paired instances:

Lalign(f) = E
(x,y)∼ppos

[
∥ f (x)− f (y)∥2

]
. (8)

Appl. Sci. 2024, 14, 8887 31 of 66

Uniformity is computed using representations of the whole space:

Luniform(f) = log E
(x,y)i.i.d.∼ pdata

[
e−2∥ f (x)− f (y)∥2

]
. (9)

Smaller values of both alignment and uniformity indicate better quality of the representations.
As a distribution of positive pairs ppos, we used STS-B task training split pairs with a

similarity of 5.0, and for pdata, we used sentences from all pairs.

4. Results

Here, we present the results of our various experiments outlined in Section 3.

4.1. Token Aggregation and Post-Processing Techniques

The results of best-performing token aggregation and embedding post-processing
techniques are presented in Table 4. The results here are averaged over all the different
tasks in the class. See Appendix A for the individual results.

We see that both aggregation and post-processing methods have a great impact on
STS and clustering performance. For semantic textual similarity tasks, the best model was
improved from 62.3 to 71.6 average Spearman correlation, while for clustering, the best
model was improved from 59.2 to 64.8 average accuracy.

Table 4. Effect of different token aggregation and post-processing methods on multiple text embed-
ding models. Both correlation and accuracy scores range from 0 to 100 (from the worst to the best).
We also added results for SimCSE-BERT model [143], which is fine-tuned on NLI data supervision.
The best result for each model is bolded, while underlined results are the best across all the models.

Model T0 T4 BERT BERT + Avg. Avg. B2S B2S-100 RE

Layer Last First + Last –

Avg. Spearman correlation (%) of STS tasks
avg. 61.3 62.3 61.3 61.4 56.4 56.7 60.6 50.3

idfW
t 67.8 67.4 69.2 69.3 66.9 66.1 65.4 66.4
+ zscore 68.6 68.1 69.8 70.6 69.5 66.4 65.9 66.4

idfT
t 67.4 69.2 68.7 69.0 67.5 56.7 60.6 64.9
+ quantile-u 69.5 71.6 68.9 69.5 68.4 56.2 61.0 63.0

-biases 64.7 66.0 68.2 69.3 67.3 54.1 57.5 63.7
[MASK] 63.4 69.3

+ quantile-u 65.6 70.5
SimCSE performance: 81.5

Avg. accuracy (%) of clustering tasks
avg. 53.5 55.0 57.0 59.2 55.2 53.8 55.3 36.3

idfW
t 53.0 53.0 55.2 57.1 53.7 53.0 53.7 44.3
+ normalize 54.3 54.4 58.0 57.9 54.1 55.8 56.1 49.5

idfT
t 53.1 57.6 60.7 62.5 58.7 53.8 55.3 42.8
+ quantile-uW 57.6 60.0 63.1 64.4 60.2 54.6 56.0 44.4
+ normalize 55.5 57.6 63.4 64.8 59.8 55.5 57.2 47.0

-biases 54.3 56.2 61.1 62.2 61.6 52.6 54.1 40.7
+ normalize 54.4 56.3 62.4 63.4 62.2 54.4 56.8 44.6

[MASK] 45.5 54.2
+ quantile-u 44.4 54.9

SimCSE performance: 59.8 and 64.0 (avg. + quantile-uW , first + last layers)

Appl. Sci. 2024, 14, 8887 32 of 66

Table 4. Cont.

Model T0 T4 BERT BERT + Avg. Avg. B2S B2S-100 RE

Layer Last First + Last –

Avg. accuracy (%) of classification tasks

avg. 80.5 79.9 79.9 79.7 77.3 76.9 75.1 69.5
idfW

t 73.1 67.1 78.3 77.9 75.3 76.8 74.1 67.6
idfT

t 80.1 79.7 78.9 78.4 76.1 76.9 75.1 68.1
-biases 80.1 79.9 80.1 79.8 77.2 76.3 74.2 70.3
[MASK] 78.7 76.8

SimCSE performance: 86.5

Our techniques can even improve the dedicated SimCSE model [143], which was
fine-tuned on NLI data. Its main strength lies in semantic textual similarity tasks, where
it leads with over 10% difference. However, for clustering tasks, its average accuracy is
similar to the other evaluated models at 59.8% and improves up to 64.0%, if we apply the
best-performing techniques. This showcases a general tendency that the top-performing
models are very good only in a narrow subset of tasks and highlights the importance of
our more general methods.

For maximum performance, usually, both aggregation and post-processing techniques
must be used. As an example, sentences placed within the T4 template with no techniques
applied have a 62.3 average Spearman correlation. With a better aggregation method of
id f T

t , it is pushed up to 69.2, while only using quantile-u post-processing gives 67.3 (see
Table 5 with only post-processing techniques applied). However, a combined effort of both
id f T

t and quantile-u gives the average Spearman correlation score of 71.6.

Table 5. Performance of post-processing with plain token averaging. abtt-2 is the ABTT method with
top 2 principal components removed. The best result for each model is bolded, while underlined
results are the best across all the models.

Model T0 T4 BERT BERT + Avg. Avg. B2S B2S-100 RE

Layer Last First + Last –

Avg. Spearman correlation (%) of STS tasks

avg. 61.3 62.3 61.3 61.4 56.4 56.7 60.6 50.3
+ zscore 65.4 67.3 65.1 66.5 64.1 58.5 62.1 55.6
+ quantile-u 65.0 67.3 64.3 65.7 63.0 56.2 61.0 53.0
+ quantile-uW 62.8 64.6 63.0 64.7 62.1 55.5 60.5 52.2
+ abtt-2 64.7 66.7 64.3 66.3 64.3 58.3 62.0 54.4
+ normalize 61.3 62.3 61.3 61.4 56.4 56.7 60.6 50.3
+ whiten 63.5 64.2 64.7 65.6 65.5 62.1 61.2 63.2
+ whitenW 60.9 63.7 63.1 65.8 67.0 61.4 61.0 64.3

Avg. accuracy (%) of clustering tasks

avg. 53.5 55.0 57.0 59.2 55.2 53.8 55.3 36.3
+ zscore 54.2 55.7 57.8 59.5 56.1 53.3 55.0 36.3
+ quantile-u 54.6 56.3 58.7 60.7 57.3 54.2 55.8 36.8
+ quantile-uW 54.2 56.3 60.1 61.1 58.6 54.5 56.0 36.9
+ abtt-2 53.4 54.8 57.0 59.0 55.8 53.6 55.0 36.5
+ normalize 53.4 55.0 59.7 59.7 56.1 55.5 57.2 38.5
+ whiten 35.4 35.7 33.1 29.8 26.8 25.3 26.0 24.8
+ whitenW 49.0 49.8 56.2 58.7 55.0 50.4 50.1 41.5

Still, the improvements from both aggregation and post-processing do not exactly
add up linearly. This indicates that the improvements to representations of this type may
saturate below the perfect scores.

Appl. Sci. 2024, 14, 8887 33 of 66

We considered many post-processing techniques for sentence vectors and show the
performance of the most popular and best-performing ones in Table 5 separately. Indeed,
almost every method somehow improves the average Spearman correlation for STS tasks.
For all-but-the-top (abtt), we varied the number of components to remove up to a hundred
but settled on removing only the first two, as it was slightly better than the rest. Although
highly credited in the literature, abtt-2 still obtained smaller scores than the others. Plainly
averaging the token representations, the highest scores for both STS and clustering tasks
were achieved using quantile-uniform normalization. We would also like to mention the
simple normalization of vectors to the unit length, which was often beneficial for clustering
tasks, and whitening normalization, which was learned on Wikitext-2 dataset, and was
favorable with the random embeddings model. We trained other post-processing methods
on Wikitext-2 too, yet they resulted in similar or slightly smaller scores.

Unlike unsupervised ones, classification tasks do not benefit from the two representation-
shaping techniques. There is only negligible improvement for classification tasks, when
the biases (punctuation, most frequent, and subword tokens) are eliminated. Otherwise,
performance is only decreased.

This result is logical because similarity or clustering tasks are carried out with the
resulting text representations directly, while the classification is a supervised task learned
on top. In the first case, the most informative components of the representations must be
present in the largest principal components (i.e., constitute most of the variance in the data)
for high scores, while the supervised logistic regression classifier can learn to extract them
from the small principal components or ill-shaped representations on its own.

4.1.1. Avg. versus B2S and B2S-100

An interesting result, as seen in Table 4, is the comparison of simply averaged BERT
tokens from many contexts (the Avg. model) and word vectors from a specially trained
Word2Vec-style model BERT2Static (the B2S model) using the same BERT contexts, as
described in Section 3.2.4. If no token aggregation and post-processing techniques are
used, B2S is of similar performance in STS tasks (with average Spearman correlation of
56.7 versus 56.4), worse at clustering (with average clustering accuracy of 53.8 versus 55.2),
and comparable in classification tasks (with average B2S accuracy of 76.9 versus 77.3) to
the Avg. model. As we can see, the task performance differences are very small.

Apart from training, the second main difference between the Avg. and B2S models is
tokenization. The Avg. model uses sub-word tokens, the same as BERT (tokens of which it
averages), while B2S models use a vocabulary of the full set of the most frequent words,
20 times the size of the BERT’s. Due to this discrepancy, token aggregations for BERT and
B2S models are applied differently, as idf statistics for both tokenizations are different;
also, B2S does not have the equivalence of biased tokens such as BERT. However, it is very
straightforward for B2S to filter out (do not use during averaging) a portion of the most
frequent words. During our experiments, we varied this number and found that removing
the 100 most frequent words works best, which improved the average Spearman correlation
of STS tasks from 56.7 to 60.6 and the average accuracy of clustering tasks from 53.8 to 55.3
compared to full B2S, both with plain token averaging and no post-processing applied.

Despite the additional option for B2S to remove the 100 most frequent tokens, using
additional token aggregation and post-processing techniques allows our simple Avg. model
to surpass both B2S and B2S-100 (see Table 4). Note that the removal of the most frequent
words for B2S works in a similar way to weighted token aggregations or post-processing,
the gains are not additive. Now the best average STS Spearman correlation score becomes
69.5 for Avg. versus 66.4 of B2S and the best average clustering accuracy of 62.2 for Avg.
versus 57.2 of B2S-100. Additional techniques here helped a much simpler Avg. model
outperform a much more complex learned B2S.

The success of such a simple Avg. model inspired us to seek further improvement by
combining it with the parent BERT model. For the combined BERT + Avg. model results,
please see Section 4.3.

Appl. Sci. 2024, 14, 8887 34 of 66

4.1.2. BERT versus Random Embeddings

The most dramatic increase in performance due to the two techniques is observed
for the model of random embeddings. For STS tasks, the average Spearman correlation
rises from 50.3 to 66.4, while for clustering tasks, it increases from 36.3 to 49.5. Although
accuracy for the latter tasks is still very low, for STS, it is just a mere 3.4 points below what
BERT managed to accomplish with both techniques applied.

If we were to look at the detailed performance on individual tasks in Appendix A.1,
we would find several where random embeddings with the help of the two shaping tech-
niques score higher than the also-shaped BERT representations. For STS14 (Table A3), it
is 68.8 versus 68.3 Spearman correlation, while for the googleTS (Table A11), stackover-
flow (Table A13), and tweet (Table A14) datasets, the clustering accuracy is, respectively,
69.5 vs. 68.5, 70.6 vs. 59.9, and 58.5 vs. 55.1. This may indicate a smaller complexity of these
particular datasets, where the task can largely be solved based on a small set of keywords.
Also, if the texts do not contain the natural language of the type the BERT was pre-trained
on (e.g., they contain code), the model cannot properly contextualize the tokens, and the
random embeddings without contexts work better. Yet it is important to note that it is
achieved only with the help of aggregation and post-processing methods on top of the
random embeddings.

The largest clustering accuracy difference between BERT and random embeddings is
for the agnews and searchsnippets datasets, with the best scores of 86.8 versus 43.4 and
82.9 versus 36.6, respectively. We think that the observed performance gap may be related
to the vocabulary and text sizes of the datasets. Stackoverflow and tweet datasets, with ran-
dom embeddings ahead of the BERT, have the smallest vocabulary sizes of 7332 and 8091
(see Table 2), while agnews and searchsnippets have the largest vocabulary sizes of
16,140 and 16,334 unique tokens, respectively. Because random embeddings rely only
on distinctness of tokens, with the increased amount of them, the probability of having
exactly the same keywords in two texts drops. BERT embeddings having non-identical but
semantically similar tokens and similar representations helps in this case.

Having shorter text lengths (average text sizes of 12 and 11 for stackoverflow and
tweet, respectively, versus 26 and 24 for agnews and searchsnippets, respectively) may also
help the random embeddings, because they do not average away so easily, and there is less
context to consider.

In contrast, other static models have much more comparable scores. For example, the
Avg. clustering accuracy is 83.8 (agnews) and 74.2 (searchsnippets).

4.1.3. Isotropy

Many post-processing methods have previously been proposed to improve the isotropy
of representations. It was argued that representations from the BERT model fall into the
narrow cone and, therefore, are anisotropic. Thus, by raising isotropy, one can improve
regular task performance.

We calculate the IsoScore isotropy metric on the Wikitext-2 dataset after applying
various post-processing and token aggregation methods for multiple models. We exclude
whitening post-processing, as it always produces representations with the IsoScore at the
maximum of 100%, just due to its working principle. Then, we compare the isotropy
score to the STS, clustering, and classification task performance by calculating the Pearson
correlation coefficient. For semantic textual similarity tasks, results are shown in Figure 1,
and for clustering tasks, results are shown in Figure 2.

For each method, the baseline IsoScore is very low: always below 5%. After applying
weighted token aggregation techniques or post-processing, it is always increased. The
smallest improvements of up to 7-8% score are observed for templated models T0 and T4,
while the highest, over 80%, are for random embeddings. For other models, the IsoScore
reaches around 17%.

Appl. Sci. 2024, 14, 8887 35 of 66

60 62 64 66 68 70
Average Spearman correlation

4

5

6

7

8

9

Iso
Sc

or
e

(a)
T0, corr.=65%, p-value=0.0020

62.5 65.0 67.5 70.0 72.5
Average Spearman correlation

4

5

6

7

8

9

Iso
Sc

or
e

(b)
T4, corr.=63%, p-value=0.0027

60 62 64 66 68 70
Average Spearman correlation

4

6

8

10

12

14

16

Iso
Sc

or
e

(c)
BERT, corr.=69%, p-value=0.0030

60.0 62.5 65.0 67.5 70.0
Average Spearman correlation

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Iso
Sc

or
e

(d)
BERT+Avg., corr.=66%, p-value=0.0050

55 60 65 70
Average Spearman correlation

3

10

17

Iso
Sc

or
e

(e)
Avg., corr.=65%, p-value=0.0070

55 60 65
Average Spearman correlation

3

10

17

Iso
Sc

or
e

(f)
B2S, corr.=54%, p-value=0.0292

58 60 62 64 66
Average Spearman correlation

4

6

8

10

12

14

Iso
Sc

or
e

(g)
B2S-100, corr.=40%, p-value=0.1197

50 55 60 65
Average Spearman correlation

0

10

20

30

40

50

60

70

Iso
Sc

or
e

(h)
RE, corr.=41%, p-value=0.1175 avg.

+ normalize
+ quantile-u
+ zscore

idfW
t

+ normalize
+ quantile-u
+ zscore

idfT
t

+ normalize
+ quantile-u
+ zscore

biases
+ normalize
+ quantile-u
+ zscore

[MASK]
+ normalize
+ quantile-u
+ zscore

Figure 1. Relation between average Spearman correlation for STS tasks and IsoScore of Wikitext
representations for each model. Pearson correlation coefficients are shown.

Why is the IsoScore of random embeddings improved so much compared to the other
models? The answer may be related to the inner workings of RE. Once we generate the
random embeddings, these token-level representations have a maximum possible isotropy.
The RE model represents text sequences as averages of these vectors; thus, isotropy going
from the token level to the document is reduced. However, token aggregation and post-
processing techniques mitigate this isotropy loss, allowing for document embeddings to
regain most of it back from the token-level ones. Other models start with already low
isotropy for token-level representations and thus have less space to improve it.

IsoScore Correlation with Task Performance

Six out of eight models have a moderate correlation (more than 54%) between Isoscore
and the average Spearman correlation of semantic textual similarity tasks (see Figure 1).
For clustering (see Figure 2), it is less apparent, with only four models reaching moderate
Pearson correlation. However, for both STS and clustering tasks, the best score for each
model is always reached by some improvement of IsoScore, compared to the isotropy score
of the plain averaging setup.

In contrast, the classification does not improve with token aggregation and post-
processing techniques; therefore, we do not observe correlation (and do not show it here).

Appl. Sci. 2024, 14, 8887 36 of 66

4.1.4. Alignment and Uniformity

We observed that token pooling and post-processing techniques do not improve the
alignment and uniformity properties of the representations. Let us remind the reader that
alignment is calculated with only those STS-B pairs with a similarity score of 5, while
uniformity with all pairs, as defined in Section 3.5.5, and smaller values are better.

45 50 55
Average clustering accuracy

4

5

6

7

8

9

Iso
Sc

or
e

(a)
T0, corr.=17%, p-value=0.4820

52 54 56 58 60
Average clustering accuracy

4

5

6

7

8

9

Iso
Sc

or
e

(b)
T4, corr.=27%, p-value=0.2424

54 56 58 60 62 64
Average clustering accuracy

4

6

8

10

12

14

16

Iso
Sc

or
e

(c)
BERT, corr.=63%, p-value=0.0084

56 58 60 62 64 66
Average clustering accuracy

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Iso
Sc

or
e

(d)
BERT+Avg., corr.=61%, p-value=0.0116

54 56 58 60 62
Average clustering accuracy

3

10

17

Iso
Sc

or
e

(e)
Avg., corr.=77%, p-value=0.0005

52 53 54 55 56
Average clustering accuracy

3

10

17

Iso
Sc

or
e

(f)
B2S, corr.=62%, p-value=0.0106

54 56 58
Average clustering accuracy

4

6

8

10

12

14

Iso
Sc

or
e

(g)
B2S-100, corr.=26%, p-value=0.3257

35 40 45 50
Average clustering accuracy

0

10

20

30

40

50

60

70

Iso
Sc

or
e

(h)
RE, corr.=38%, p-value=0.1409 avg.

+ normalize
+ quantile-u
+ zscore

idfW
t

+ normalize
+ quantile-u
+ zscore

idfT
t

+ normalize
+ quantile-u
+ zscore

biases
+ normalize
+ quantile-u
+ zscore

[MASK]
+ normalize
+ quantile-u
+ zscore

Figure 2. Relation between average clustering accuracy and IsoScore of Wikitext representations for
each model. Pearson correlation coefficients are shown.

We can observe in Figure 3 that the z-score post-processing always makes align-
ment worse, while normalization of embeddings almost always does the same for the
uniformity of the representations. Excluding the random embeddings model, the best
alignment and uniformity properties are almost always with plain averaging and no
post-processing applied.

Both alignment and uniformity are sensitive to the scaling of the embedding vectors.
Depending on the resulting scaling from the post-processing method, either one or the
other is increased. However, decreasing them both using these methods is found to be
difficult. This finding strengthens the reputation of these two metrics that only training the
transformer model, as shown in [143], is capable of improving them.

As we mentioned, the outlier in its behavior here is the RE model, which improves
its uniformity by different weighting of tokens or using quantile-uniform post-processing.
Indeed, the latter post-processing is the least harmful for all models considered and disturbs
alignment and uniformity properties less.

Appl. Sci. 2024, 14, 8887 37 of 66

4.2. Using Prompts

The normal use of prompts, as presented in [15], is to place the sentence [X] inside a
template as “This sentence: "[X]" means [MASK]” and use only the vector of [MASK]
token from the final layer as the full representation of [X]. Our experiments show that in
general, using prompts is beneficial; however, we found some ways to improve perfor-
mance even more.

10.0 7.5 5.0 2.5 0.0
uniform

0

50

100

150

200

250

al
ig

n
(a) T0

10.0 7.5 5.0 2.5 0.0
uniform

0

50

100

150

200

250

al
ig

n

(b) T4

10 8 6 4 2
uniform

0

50

100

150

200

250

al
ig

n

(c) BERT

10.0 7.5 5.0 2.5 0.0
uniform

0

50

100

150

200

250

al
ig

n

(d) BERT+Avg.

10.0 7.5 5.0 2.5 0.0
uniform

0

50

100

150

200

250

al
ig

n
(e) Avg.

10 8 6 4 2
uniform

0

50

100

150

200

250

300

al
ig

n

(f) B2S

10 8 6 4 2
uniform

0

50

100

150

200

250

al
ig

n

(g) B2S-100

10 8 6 4 2
uniform

0

100

200

300

400

500

al
ig

n

(h) RE
avg.
+ normalize
+ quantile-u
+ zscore

idfW
t

+ normalize
+ quantile-u
+ zscore

idfT
t

+ normalize
+ quantile-u
+ zscore

biases
+ normalize
+ quantile-u
+ zscore

[MASK]
+ normalize
+ quantile-u
+ zscore

Figure 3. Alignment and uniformity of representations in relation to various token pooling and
post-processing techniques. Lower values are better.

First, extracting only the vector of [MASK] is not necessarily the best. We found that a
simple average of all tokens, including the ones from the prompt template, and also the
[MASK] token, is still a valid approach. Even more, it outperforms only the [MASK] token
approach for clustering and classification tasks, with corresponding 55.0 and 79.9 average
accuracies versus 54.2 and 76.8 for using only the [MASK] token (see T4 model results
in Table 4).

The use of the additional text template around the text enriches the target text repre-
sentation. Let us compare the performance of 12th layer averaged token representations
with and without a template (see Figure 4, T0 avg. and T4 avg. with a template versus
BERT avg. without). For all 3 groups of tasks—semantic textual similarity, clustering, and
classification—the T0 template achieves 61.3 average Spearman correlation, 53.5 clustering
accuracy, and 80.5 classification accuracy; the T4 template reaches 62.3, 55.0, and 79.9, while
a regular, non-templated text obtains just 53.2, 50.6, and 79.0, respectively. This shows that
the use of the templates allows the model to enrich target text representation. However,

Appl. Sci. 2024, 14, 8887 38 of 66

this effect peaks at the last, 12th layer, and the achieved performance is similar to the
first + last layer combination of the regular non-templated vectors.

0 2 4 6 8 10 12 1
12

Layer

0

20

40

60

80

Av
g.

 S
TS

 S
pe

ar
m

an
 c

or
re

la
tio

n

(a)

T0 avg.
T0 [MASK]
T0 avg. no [MASK]

0 2 4 6 8 10 12 1
12

Layer

(b)

T4 avg.
T4 [MASK]
T4 avg. no [MASK]

0 2 4 6 8 10 12 1
12

Layer

(c)

BERT avg.
RE avg.

0 2 4 6 8 10 12 1
12

Layer

0

20

40

60

80

Av
g.

 c
lu

st
er

in
g

ac
cu

ra
cy

(d)

T0 avg.
T0 [MASK]
T0 avg. no [MASK]

0 2 4 6 8 10 12 1
12

Layer

(e)

T4 avg.
T4 [MASK]
T4 avg. no [MASK]

0 2 4 6 8 10 12 1
12

Layer

(f)

BERT avg.
RE avg.

0 2 4 6 8 10 12 1
12

Layer

0

20

40

60

80

Av
g.

 c
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

(g)

T0 avg.
T0 [MASK]
T0 avg. no [MASK]

0 2 4 6 8 10 12 1
12

Layer

(h)

T4 avg.
T4 [MASK]
T4 avg. no [MASK]

0 2 4 6 8 10 12 1
12

Layer

(i)

BERT avg.
RE avg.

Figure 4. Layer-wise performance of templated models T0 (a,d,g) and T4 (b,e,h), as well as BERT
versus RE with no weighting or post-processing (c,f,i). The average performance of STS (a–c),
clustering (d–f), and classification tasks (g–i) is shown by the lines, while shadow areas correspond
to the standard deviation. We also show first + last aggregation over layers as the last tick 1

12 on the
horizontal axis.

Performance of using only the [MASK] token also peaks at the 12th layer, so we investi-
gated what influence it has in the enrichment of templated target text representation. Could
it be that this token is the main culprit for better performance of averaged templated text
representations? To answer this question, we tried to omit the [MASK] token from averaging
(see Figure 4 T0 avg. no [MASK] and T4 avg. no [MASK]). For the T4 template and 12th layer
representations, averaging all tokens yields 62.3 average Spearman correlation, 55.0 cluster-
ing accuracy, and 79.9 classification accuracy; dropping the [MASK] token from averaging
yields 58.7, 53.3, and 79.8; non-templated performance is 53.2, 50.6, and 79.0, respectively.
We see that omitting the [MASK] token in averaging indeed hurts the performance. On
the other hand, the results show that it is responsible only for approximately half of the
improvements, with the other half coming from the other tokens in the templated text.

One good reason to use averaging instead of only the [MASK] token is that then token
weighting can be also applied. As we already showed in Table 4), the T4 template together
with id f T

t token weighting and uniform quantile post-processing allowed us to reach the

Appl. Sci. 2024, 14, 8887 39 of 66

average Spearman correlation of 71.6, which was the best among the tried methods. Also,
we observed that post-processing on text representations from [MASK] token was not as
effective as from averaged ones. This also suggests that all tokens in templated texts have
richer representations.

4.3. BERT + Avg. Model

One of the ways we sought to improve BERT transformer model representations
is to combine embeddings of the regular BERT with the ones averaged over multiple
contexts. That is, for each token in each BERT layer, we collected many different contexts,
and the averaged vector became the vector of the Avg. model. We then combined BERT
and Avg. model, according to the parameter w, which shows the fraction of Avg. model
representations in the resulting vector v:

v = vBERT(1 − w) + vAvg.w. (10)

We have also varied the w parameter to the negative values in (10) to see if subtracting
(instead of adding) the context-average representations from the context-aware ones helps.

The impact of the w parameter and the choice of the layer to source the representations
(same layer for both BERT and Avg.) is presented in Figure 5.

0 1 2 3 4 5 6 7 8 9 101112 1
12

1
2
12

0
1
2
12

Layer

1.0
0.75
0.5

0.25
0.0

0.25
0.5

0.75
1.0

w

(a) v = vBERT(1 w) + vAvg. w

0 1 2 3 4 5 6 7 8 9 101112 1
12

1
2
12

0
1
2
12

Layer

(b) v = vBERT(1 w) + vAvg. w

0 1 2 3 4 5 6 7 8 9 101112 1
12

1
2
12

0
1
2
12

Layer

(c) v = vBERT(1 w) + vAvg. w

50 55 60
Avg. Spearman correlation of STS tasks.

35 40 45 50 55
Avg. accuracy of clustering tasks.

77 78 79 80
Avg. accuracy of classification tasks.

Figure 5. BERT + Avg. model performance dependence on the weight w of Avg. model and layer,
from which (for both models) representations are used. To the right of the black line on the horizontal
axis, average aggregation of multiple layers is also shown. Tokens are simply averaged and no
post-processing is used. The horizontal line with w = 0.0 corresponds to a regular Bert (B) model,
w = 0.5 is B + Avg., and w = 1.0 is the Avg. model. The white × marks the maximum value.

One can see that for clustering and classification tasks, the combination of both models
in equal portions of w = 0.5 is better than these models alone (w = 0.0 corresponds to
BERT, w = 1.0 is a single Avg. model). If we look at the best scores with the two techniques
applied in Table 4, for the average clustering accuracy this translates to an improvement of
1.4% from the 63.4% of BERT to 64.8% of BERT + Avg.

Meanwhile, as we see in the same table, the average accuracy of classification tasks
without additional techniques applied to the combination of the first and last layers is
similar between only BERT (79.9%) and BERT + Avg. (79.7%). However, as we see in
Figure 5, differently from the first + last optimal layer setting for BERT, BERT + Avg. has a
sweet spot in the 10th layer with an average classification accuracy of 80.5%, surpassing
that of BERT by 0.6%.

These results suggest a conclusion that for clustering and classification tasks, com-
bining a regular BERT token with the same one but averaged over multiple contexts
is beneficial.

As we already mentioned, STS tasks preferred the regular BERT (w = 0) to the
BERT + Avg. on average. However, for several individual semantic textual similarity
datasets, the best weights turned out to be even negative. This is the case for STS15
(w = −0.25) and STS16 (w = −0.75). The same negative weight of w = −0.5 preference
was also observed for the searchsnippets clustering dataset. Although the Spearman

Appl. Sci. 2024, 14, 8887 40 of 66

correlation for three STS tasks was only up to several percent higher, for searchsnippets,
the clustering accuracy increased to a staggering 80.2% from 72.2% of w = 0.0. This shows
that the determined values of w = 0.0 for STS and w = 0.5 for clustering and classification
are not universal, and for a small percentage of tasks, they can differ. For more BERT + Avg.
task-wise details, see Appendix A.2 figures for STS (Figure A1), clustering (Figure A2), and
classification (Figure A3) performance.

Layers

Figure 5 also depicts the task performance versus BERT layers. Our first observation
is that for STS and clustering tasks, there is a strong preference for the first layers. As
a result, the best combination of layers also involves the first ones; for semantic textual
similarity tasks, it is the average of representations from one, two, and twelve layers, and
for clustering, zero, one, two, and twelve layers. Even individual SICK-E, SICK-R, and
STS-B classification tasks, which originate from semantic textual similarity ones, have
strong first layers (see Figure A3 in Appendix A.2), although on average, the best layer
for classification tasks is the tenth. This shows that a lot of performance for tasks that
work on similarities between texts (STS and clustering) depends on the first layers, which,
according to [231], have more generalized token representations. However, the last layer,
which receives recreated token identities [231] is also important, as the best combinations
(such as 1 + 2 + 12) also involve it. This first + last cooperation of layers can be distinctly
observed as a U shape for clustering performance in layers (see Figure 5 and also Figure 4).

For most classification tasks (excluding those originating from STS), the U shape
is inversed. This is very clearly seen for binary classification tasks (see Figure A3 in
Appendix A.2), where the highest classification accuracy is concentrated between the ninth
and the eleventh layers. This aligns with the explanations of the previous work [100], which
argues that the last layer is over-specialized for the training objective.

5. Conclusions

We empirically evaluated the effects of various aggregation and post-processing
techniques of token representations in a trained transformer and other models to form good
text-, paragraph-, or sentence-level embeddings. We carried out the empirical evaluation of
the embeddings on three classes of downstream text-level tasks: Semantic Textual Similarity
(STS), clustering, and classification.

We found the techniques to benefit all models studied for the unsupervised STS (the
best model average Spearman correlation increased from 62.3% to 71.6%) and clustering
(the best model average clustering accuracy increased from 59.2% to 64.8%), while it had
no positive effect on the supervised classification tasks (see Table 4).

We present a strong and very simple baseline model of Random Embeddings (RE),
where every token is assigned a random vector as its embedding. Combined with to-
ken aggregation and post-processing techniques, it also almost matches the average STS
performance of the BERT model with the techniques applied, with 66.4% versus 69.8%
average Spearman correlation. It also shows very high performance for some tasks, like
stackoverflow classification, where BERT token contextualization may not work well on
code samples in the texts (see Section 4.1.2 for more details). We encourage future work
to use RE as a baseline, due to its mid-level performance, simple implementation, and
ability to separate the contribution to the performance of the learned contexts from the
aggregation and post-processing techniques.

We found that the aggregation and post-processing techniques tried typically increase
the isotropy of the representations, and the isotropy for most models is positively correlated
(up to 69% Pearson correlation) with the Spearman correlation of STS tasks (Section 4.1.3).
The highest isotropy improvement is observed for our Random Embeddings model, since
its token representations have the maximal isotropy to start with. We did not find the token
aggregation and post-processing techniques to improve the alignment and uniformity
properties of representations.

Appl. Sci. 2024, 14, 8887 41 of 66

We question the use of prompts (adding a sentence into a certain text template) for
retrieving the representation of the sentence from only the [MASK] token. Our experiments
show that averaging all the templated text tokens, with idf weighting and post-processing
for the unsupervised tasks, is better. Meanwhile, the average increase in performance due
to the added template is only obvious for the STS tasks, gives no improvement in clustering,
and is very slight in classification (see Table 4, Section 4.2).

We presented a static vector model Avg., which simply contains BERT tokens averaged
over multiple different contexts. Our experiments show that it outperforms a more complex
BERT2Static [49], also a static word-level model, yet specially trained on BERT contexts.
With the best post-processing and token aggregation techniques, the advantage for unsuper-
vised STS tasks is 69.5 versus 66.4, and for clustering, it is 62.2 versus 57.2., with a negligible
difference for classification tasks. Moreover, we show that combining Avg. with the parent
BERT model can bring even further improvements. In particular, BERT + Avg. reached the
highest average clustering accuracy of 64.8 out of all our considered models, as well as the
classification accuracy of 80.5 (Section 4.3). We encourage future work to also use Avg. as a
baseline, both due to its upper-level performance and simple implementation.

In our work, we also analyzed prompt and BERT + Avg. models layer-wise. We found
that for the STS tasks, taking the representations from the first layers performs better, and for
the clustering task, the performance profile forms a “U” shape with tops at the first and last
layers. Therefore, for these two task groups, we mostly use the average of first + last layers,
harnessing both of the tops for the best performance. On the other hand, classification tasks
have an inverted “U” shape with the top in the 10th layer (Figure 5). We did not find token
aggregation and post-processing techniques to change such profile curvature.

In this research, we used a pre-trained BERT as a manageable representative of trans-
former models, but the findings should be transferable to other types of transformers,
including large language models. We also specifically did not perform task-specific fine-
tuning of the model to keep it universal. This enables the same model to be used in multiple
ways. For example, given a prompt, its text-level embedding can be extracted from the
model using the techniques investigated here, and this embedding can be used to search
an external database for related information to add the prompt to the same model, i.e., we
can use the same model for both query encoding and generation in retrieval-augmented
generation [232]. Alternatively, one of the simpler baseline models proposed here could be
used as the query encoder.

Author Contributions: Conceptualization, L.S. and M.L.; methodology, L.S. and M.L.; software, L.S.;
validation, L.S.; formal analysis, L.S. and M.L.; investigation, L.S. and M.L.; resources, M.L.; data
curation, L.S.; writing—original draft preparation, L.S.; writing—review and editing, M.L. and L.S.;
visualization, L.S.; supervision, M.L.; project administration, M.L.; funding acquisition, M.L. and L.S.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were used in this study. The details and
links to the datasets and preparation codes are presented in Sections 3.5.1–3.5.3 for the clustering,
STS, and classification tasks, respectively.

Conflicts of Interest: The authors declare no conflicts of interest.

Appl. Sci. 2024, 14, 8887 42 of 66

Appendix A. Detailed Performance on Individual Tasks

Appendix A.1. Token Aggregation and Post-Processing

Table A1. Spearman correlation dependence on token aggregation and post-processing techniques
for semantic textual similarity STS12 task. The best result for each model is bolded, while underlined
result is the best across all the models.

Model T0 T4 BERT BERT + Avg. Avg. B2S B2S-100 RE

Layer Last First + Last –

avg. 48.7 53.9 45.1 48.7 48.5 47.2 54.2 34.7
+ normalize 48.7 53.9 45.1 48.7 48.5 47.2 54.2 34.7
+ quantile-u 52.1 56.2 48.7 51.9 51.5 45.8 52.4 40.1
+ quantile-uW 50.2 55.1 46.6 50.7 50.3 44.6 52.5 36.9
+ whiten 41.9 42.9 43.2 44.5 46.0 45.0 44.6 44.1
+ whitenW 46.2 50.4 47.3 52.8 57.7 54.7 55.0 54.2
+ zscore 51.5 54.1 50.2 53.4 53.1 49.1 54.7 43.6

idfW
t 56.2 56.8 57.5 58.7 58.3 57.6 56.9 55.4
+ normalize 56.2 56.8 57.5 58.7 58.3 57.7 56.9 55.4
+ quantile-u 56.2 56.5 56.4 57.9 57.5 54.5 53.6 52.0
+ quantile-uW 57.0 57.5 57.1 58.7 58.4 55.4 54.4 52.6
+ whiten 43.7 43.8 46.1 46.7 47.2 45.3 44.7 44.6
+ whitenW 52.6 53.3 57.5 58.8 58.7 57.5 56.8 55.5
+ zscore 56.1 55.9 57.4 58.7 58.2 56.9 56.4 55.6

idfT
t 59.2 64.4 57.3 59.0 59.0 47.2 54.2 55.1
+ normalize 59.2 64.4 57.3 59.0 59.0 47.2 54.2 55.1
+ quantile-u 58.5 62.6 56.5 58.2 58.1 45.8 52.4 52.3
+ quantile-uW 59.1 63.9 57.0 58.8 58.9 44.6 52.5 52.9
+ whiten 43.8 45.3 46.0 46.7 47.4 45.0 44.6 44.6
+ whitenW 52.6 56.3 56.9 58.2 58.4 54.7 55.0 55.1
+ zscore 56.9 59.7 57.7 59.3 59.3 49.1 54.7 55.6

-biases 55.1 58.2 58.6 62.2 62.9 45.1 51.9 57.5
+ normalize 55.1 58.2 58.6 62.2 62.8 45.1 51.9 57.5
+ quantile-u 56.0 59.6 57.9 60.9 61.2 44.0 50.3 54.6
+ quantile-uW 54.7 59.1 58.2 61.5 61.6 42.7 50.3 55.1
+ whitenW 51.8 54.0 57.2 60.2 61.6 53.2 53.3 58.1
+ whiten 42.5 43.2 45.1 46.2 47.6 44.2 44.2 46.2
+ zscore 55.1 57.5 57.8 60.4 60.6 47.4 52.7 58.2

[MASK] 55.2 60.6
+ normalize 55.2 60.6
+ quantile-u 56.0 60.8
+ quantile-uW 56.6 61.7
+ whiten 47.7 48.0
+ whitenW 52.5 57.7
+ zscore 55.4 59.8

Appl. Sci. 2024, 14, 8887 43 of 66

Table A2. Spearman correlation dependence on token aggregation and post-processing techniques
for semantic textual similarity STS13 task. The best result for each model is bolded, while underlined
result is the best across all the models.

Model T0 T4 BERT BERT + Avg. Avg. B2S B2S-100 RE

Layer Last First + Last –

avg. 62.6 64.7 64.3 63.4 56.6 61.4 66.2 48.8
+ normalize 62.6 64.7 64.3 63.4 56.6 61.4 66.2 48.8
+ quantile-u 68.4 70.9 68.3 69.0 65.5 60.4 68.9 54.8
+ quantile-uW 64.0 66.5 65.7 66.8 64.0 59.2 67.2 53.3
+ whiten 76.0 76.6 77.6 78.3 78.0 76.4 76.1 75.1
+ whitenW 62.2 66.5 64.8 65.8 66.2 60.6 60.8 63.7
+ zscore 70.7 72.5 70.4 70.7 67.1 62.8 68.9 55.9

idfW
t 75.4 74.7 77.2 79.1 77.8 77.5 77.3 72.5
+ normalize 75.4 74.7 77.2 79.1 77.8 77.5 77.3 72.5
+ quantile-u 76.7 76.0 77.7 79.3 78.7 77.1 76.3 73.4
+ quantile-uW 75.6 74.7 77.1 79.3 79.1 77.2 76.7 74.2
+ whiten 76.8 76.0 78.3 78.6 77.6 77.1 76.7 74.6
+ whitenW 68.1 68.1 74.1 75.2 75.4 73.1 73.9 72.7
+ zscore 76.7 76.4 78.2 79.7 79.3 77.5 78.0 73.0

idfT
t 70.8 73.7 74.8 76.5 76.0 61.4 66.2 68.3
+ normalize 70.8 73.7 74.8 76.5 76.0 61.4 66.2 68.3
+ quantile-u 74.7 77.0 76.0 77.2 76.7 60.4 68.9 71.9
+ quantile-uW 72.0 74.6 74.8 76.4 76.0 59.2 67.2 71.5
+ whiten 77.1 78.0 78.1 78.3 77.3 76.4 76.1 74.0
+ whitenW 67.2 71.0 70.3 70.4 70.1 60.6 60.8 68.1
+ zscore 75.9 77.7 76.2 76.9 75.8 62.8 68.9 69.8

-biases 66.5 68.7 68.4 69.9 68.1 56.3 60.5 61.3
+ normalize 66.5 68.7 68.4 69.9 68.1 56.3 60.5 61.3
+ quantile-u 70.9 73.5 70.8 71.9 70.3 55.0 63.2 66.2
+ quantile-uW 67.4 70.3 68.6 69.9 68.2 53.9 61.3 64.4
+ whitenW 63.1 67.1 65.2 65.7 65.9 56.6 56.7 63.0
+ whiten 76.2 76.8 77.9 78.5 78.1 73.3 73.1 74.7
+ zscore 73.0 74.9 72.5 72.9 70.6 58.5 64.0 64.6

[MASK] 63.4 76.2
+ normalize 63.4 76.2
+ quantile-u 68.1 77.3
+ quantile-uW 65.2 76.0
+ whiten 73.1 77.6
+ whitenW 61.7 70.9
+ zscore 69.4 76.9

Table A3. Spearman correlation dependence on token aggregation and post-processing techniques
for semantic textual similarity STS14 task. The best result for each model is bolded, while underlined
result is the best across all the models.

Model T0 T4 BERT BERT + Avg. Avg. B2S B2S-100 RE

Layer Last First + Last –

avg. 53.9 54.5 54.6 55.4 51.7 55.9 61.2 48.2
+ normalize 53.9 54.5 54.6 55.4 51.7 55.9 61.2 48.2
+ quantile-u 57.8 60.1 58.1 60.0 58.2 53.5 62.9 52.3
+ quantile-uW 55.6 57.1 57.0 59.4 58.1 53.5 62.2 52.1
+ whiten 64.0 65.0 66.2 68.1 69.4 67.7 68.5 68.3
+ whitenW 53.5 57.0 57.6 61.1 64.5 60.7 61.3 64.6
+ zscore 58.6 61.3 58.7 61.2 59.6 55.7 61.3 53.5

Appl. Sci. 2024, 14, 8887 44 of 66

Table A3. Cont.

Model T0 T4 BERT BERT + Avg. Avg. B2S B2S-100 RE

Layer Last First + Last –

idfW
t 65.5 65.9 65.2 67.7 67.8 67.2 67.8 67.6
+ normalize 65.5 65.9 65.2 67.7 67.8 67.2 67.8 67.6
+ quantile-u 66.7 66.7 66.5 69.0 69.3 67.2 68.1 66.4
+ quantile-uW 66.5 66.6 66.2 68.9 69.3 67.1 68.0 67.0
+ whiten 65.4 65.4 67.6 68.5 68.8 68.3 68.7 67.9
+ whitenW 59.2 59.4 64.7 67.0 68.2 66.6 67.4 68.0
+ zscore 65.7 65.3 66.2 68.8 69.2 66.8 68.0 67.8

idfT
t 61.6 63.9 64.3 66.7 67.1 55.9 61.2 65.5
+ normalize 61.6 63.9 64.3 66.7 67.1 55.9 61.2 65.5
+ quantile-u 64.2 66.5 65.8 67.8 68.0 53.5 62.9 65.3
+ quantile-uW 62.9 65.4 65.3 67.5 67.8 53.5 62.2 65.7
+ whiten 65.2 66.8 67.5 68.3 68.5 67.7 68.5 67.4
+ whitenW 58.0 61.6 63.0 64.6 65.3 60.7 61.3 65.3
+ zscore 64.5 66.8 65.1 67.1 67.2 55.7 61.3 65.7

-biases 60.7 62.0 63.8 66.9 66.9 53.1 58.1 64.7
+ normalize 60.7 62.0 63.8 66.9 66.9 53.1 58.1 64.7
+ quantile-u 63.4 65.9 65.2 67.9 67.8 50.8 59.8 65.2
+ quantile-uW 61.9 64.3 64.8 67.7 67.6 50.9 59.2 65.3
+ whitenW 57.3 60.4 62.8 65.5 67.3 58.5 58.9 66.2
+ whiten 64.9 66.2 68.3 69.6 70.4 65.8 66.4 68.8
+ zscore 64.1 66.3 64.8 67.4 67.2 53.3 58.6 65.3

[MASK] 53.9 63.9
+ normalize 53.9 63.9
+ quantile-u 56.1 65.1
+ quantile-uW 54.8 64.7
+ whiten 60.8 66.3
+ whitenW 51.5 61.3
+ zscore 56.7 65.1

Table A4. Spearman correlation dependence on token aggregation and post-processing techniques
for semantic textual similarity STS15 task. The best result for each model is bolded, while underlined
result is the best across all the models.

Model T0 T4 BERT BERT + Avg. Avg. B2S B2S-100 RE

Layer Last First + Last –

avg. 70.2 70.6 70.5 70.0 64.2 69.8 74.2 62.1
+ normalize 70.2 70.6 70.5 70.0 64.2 69.8 74.2 62.1
+ quantile-u 71.8 73.7 72.7 74.3 72.4 68.9 73.6 61.4
+ quantile-uW 71.5 72.5 72.3 74.1 72.6 69.4 74.4 62.7
+ whiten 62.6 62.9 64.0 65.9 69.3 69.3 68.8 67.9
+ whitenW 70.2 71.8 71.9 74.9 77.0 74.7 75.2 74.7
+ zscore 71.9 73.0 72.6 74.3 72.4 69.3 73.9 64.3

idfW
t 75.4 74.4 75.8 75.4 71.5 73.7 74.4 74.4
+ normalize 75.4 74.4 75.8 75.4 71.5 73.7 74.4 74.4
+ quantile-u 75.1 74.2 75.3 75.7 73.7 73.4 71.9 68.5
+ quantile-uW 76.5 75.6 76.3 76.9 74.8 74.6 73.7 71.1
+ whiten 62.7 61.4 64.3 65.2 66.3 66.8 66.7 65.0
+ whitenW 72.2 71.6 75.0 76.5 76.6 75.4 75.5 74.4
+ zscore 74.2 73.1 75.2 76.2 75.0 73.8 74.4 73.2

Appl. Sci. 2024, 14, 8887 45 of 66

Table A4. Cont.

Model T0 T4 BERT BERT + Avg. Avg. B2S B2S-100 RE

Layer Last First + Last –

idfT
t 74.1 75.2 76.2 76.8 75.1 69.8 74.2 73.8
+ normalize 74.1 75.2 76.2 76.8 75.1 69.8 74.2 73.8
+ quantile-u 75.2 77.1 76.0 76.8 75.7 68.9 73.6 69.5
+ quantile-uW 75.4 77.0 76.9 77.8 76.7 69.4 74.4 71.6
+ whiten 63.1 64.2 64.5 66.0 68.5 69.3 68.8 67.2
+ whitenW 72.9 74.6 75.4 76.2 75.8 74.7 75.2 73.1
+ zscore 75.0 76.0 75.9 76.8 75.8 69.3 73.9 72.7

-biases 72.9 73.3 76.2 77.3 75.2 67.3 70.8 74.3
+ normalize 72.9 73.3 76.2 77.3 75.2 67.3 70.8 74.3
+ quantile-u 74.1 76.1 76.3 77.5 76.2 66.3 70.1 69.6
+ quantile-uW 73.7 75.3 76.8 78.4 77.3 66.9 70.9 71.7
+ whitenW 72.6 73.7 75.4 77.0 77.3 72.6 72.6 74.8
+ whiten 64.2 64.8 65.2 66.5 69.1 67.4 66.4 66.8
+ zscore 74.4 75.1 75.7 76.9 75.7 67.0 70.7 73.6

[MASK] 67.0 74.1
+ normalize 67.0 74.1
+ quantile-u 68.0 74.7
+ quantile-uW 68.3 75.7
+ whiten 61.0 65.1
+ whitenW 67.7 74.5
+ zscore 68.0 72.9

Table A5. Spearman correlation dependence on token aggregation and post-processing techniques
for semantic textual similarity STS16 task. The best result for each model is bolded, while underlined
result is the best across all the models.

Model T0 T4 BERT BERT + Avg. Avg. B2S B2S-100 RE

Layer Last First + Last –

avg. 69.1 69.7 67.9 65.2 56.4 55.2 58.5 55.5
+ normalize 69.1 69.7 67.9 65.2 56.4 55.1 58.5 55.5
+ quantile-u 70.1 72.4 70.3 71.0 67.0 55.9 59.5 54.8
+ quantile-uW 69.7 71.5 69.8 70.0 65.3 54.6 57.9 55.1
+ whiten 65.4 65.9 67.1 68.9 69.9 65.0 63.0 67.1
+ whitenW 64.7 67.2 69.9 71.5 71.1 63.1 62.8 68.3
+ zscore 69.3 71.0 72.0 73.2 69.8 60.2 62.3 60.4

idfW
t 70.1 69.1 73.9 73.0 69.5 68.8 68.0 71.9
+ normalize 70.1 69.1 73.9 73.0 69.5 68.8 68.0 71.9
+ quantile-u 70.5 69.9 73.7 74.2 72.9 68.1 65.8 68.9
+ quantile-uW 70.5 69.8 74.0 74.4 72.7 67.9 66.2 69.6
+ whiten 64.6 64.0 68.0 68.9 69.1 65.6 63.4 67.3
+ whitenW 70.0 69.1 75.6 76.0 74.8 69.6 68.7 72.4
+ zscore 72.2 71.7 75.6 76.4 74.8 70.3 69.5 72.2

idfT
t 72.9 73.1 72.8 72.0 69.7 55.2 58.5 69.1
+ normalize 72.9 73.1 72.8 72.0 69.7 55.2 58.5 69.1
+ quantile-u 73.9 75.0 72.8 73.0 71.8 55.9 59.5 67.3
+ quantile-uW 73.7 74.6 72.7 72.7 71.2 54.6 57.9 67.5
+ whiten 67.0 68.6 68.0 68.7 69.5 65.0 63.0 67.8
+ whitenW 69.0 71.0 73.2 72.8 71.3 63.1 62.8 69.3
+ zscore 73.1 73.1 74.4 74.4 73.1 60.2 62.3 70.1

Appl. Sci. 2024, 14, 8887 46 of 66

Table A5. Cont.

Model T0 T4 BERT BERT + Avg. Avg. B2S B2S-100 RE

Layer Last First + Last –

-biases 70.1 71.9 72.2 72.1 68.4 52.8 56.3 65.4
+ normalize 70.1 71.9 72.2 72.1 68.4 52.8 56.3 65.4
+ quantile-u 71.1 73.7 72.3 73.3 71.6 53.5 57.5 64.7
+ quantile-uW 70.6 73.2 72.1 72.7 70.4 52.3 55.8 64.4
+ whitenW 65.2 68.0 71.0 72.1 71.5 61.1 60.9 68.5
+ whiten 64.9 66.2 67.3 68.5 69.3 63.4 61.4 67.4
+ zscore 71.1 72.5 73.3 74.1 72.0 58.2 60.4 66.7

[MASK] 67.2 71.0
+ normalize 67.2 71.0
+ quantile-u 68.2 71.8
+ quantile-uW 67.7 71.7
+ whiten 65.5 70.0
+ whitenW 64.1 69.4
+ zscore 66.6 68.9

Table A6. Spearman correlation dependence on token aggregation and post-processing techniques
for semantic textual similarity STS-B task. The best result for each model is bolded, while underlined
result is the best across all the models.

Model T0 T4 BERT BERT + Avg. Avg. B2S B2S-100 RE

Layer Last First + Last –

avg. 60.4 61.0 59.0 59.9 54.2 56.1 60.7 46.5
+ normalize 60.4 61.0 59.0 59.9 54.2 56.1 60.7 46.5
+ quantile-u 67.7 70.9 63.6 65.2 61.7 56.9 61.1 52.4
+ quantile-uW 62.8 65.0 61.3 63.5 59.7 54.7 60.4 50.5
+ whiten 68.2 70.0 68.7 70.0 69.6 66.7 64.6 68.1
+ whitenW 62.1 65.8 62.6 67.3 69.4 65.1 64.1 67.5
+ zscore 68.7 71.1 65.0 66.7 63.0 58.8 62.5 54.6

idfW
t 69.0 68.2 70.3 69.6 66.4 68.0 66.9 69.8
+ normalize 69.0 68.2 70.3 69.6 66.4 68.0 66.9 69.8
+ quantile-u 69.4 68.6 69.3 69.6 67.8 66.7 64.7 64.4
+ quantile-uW 69.4 68.8 70.2 70.3 68.1 67.0 65.3 65.7
+ whiten 65.6 65.0 67.9 68.0 67.2 65.8 64.1 66.5
+ whitenW 67.0 66.6 71.2 72.1 71.5 69.8 68.2 70.4
+ zscore 70.7 69.9 71.0 71.7 70.1 69.0 67.8 70.0

idfT
t 68.8 70.7 69.6 69.3 67.3 56.1 60.7 67.0
+ normalize 68.8 70.7 69.6 69.3 67.3 56.1 60.7 67.0
+ quantile-u 72.4 75.1 69.2 69.3 67.7 56.9 61.1 64.2
+ quantile-uW 70.4 73.2 69.7 69.6 67.7 54.7 60.4 65.0
+ whiten 69.6 72.2 68.4 68.4 67.7 66.7 64.6 67.0
+ whitenW 67.8 71.0 69.6 69.9 68.7 65.1 64.1 67.1
+ zscore 72.4 74.7 70.1 70.3 68.6 58.8 62.5 67.4

-biases 64.7 65.4 70.2 71.0 67.8 52.9 57.3 66.6
+ normalize 64.7 65.4 70.2 71.0 67.8 52.9 57.3 66.6
+ quantile-u 70.1 73.4 69.9 71.0 68.9 54.2 58.1 62.8
+ quantile-uW 66.1 69.2 70.3 71.5 69.0 51.7 57.1 63.9
+ whitenW 66.1 68.5 69.6 71.3 70.9 61.8 60.8 68.8
+ whiten 68.1 69.9 69.5 69.9 69.3 64.6 62.4 66.5
+ zscore 71.1 73.2 70.2 71.1 68.9 56.1 59.4 67.4

Appl. Sci. 2024, 14, 8887 47 of 66

Table A6. Cont.

Model T0 T4 BERT BERT + Avg. Avg. B2S B2S-100 RE

Layer Last First + Last –

[MASK] 68.5 73.3
+ normalize 68.5 73.3
+ quantile-u 70.8 74.8
+ quantile-uW 69.3 74.4
+ whiten 70.5 74.3
+ whitenW 65.3 70.9
+ zscore 70.5 73.7

Table A7. Spearman correlation dependence on token aggregation and post-processing techniques for
semantic textual similarity SICK-R task. The best result for each model is bolded, while underlined
result is the best across all the models.

Model T0 T4 BERT BERT + Avg. Avg. B2S B2S-100 RE

Layer Last First + Last –

avg. 64.4 64.2 63.8 63.1 60.3 60.2 61.2 53.1
+ normalize 64.4 64.2 63.8 63.1 60.3 60.2 61.2 53.1
+ quantile-u 66.1 66.3 64.9 64.7 62.5 61.0 61.8 54.8
+ quantile-uW 64.9 64.7 64.3 64.1 61.6 59.7 61.0 53.1
+ whiten 61.0 60.8 60.4 59.1 55.1 55.3 55.4 53.3
+ whitenW 63.1 63.2 63.7 63.9 61.5 61.0 59.9 58.4
+ zscore 66.3 66.7 65.0 64.9 62.8 62.1 63.1 56.3

idfW
t 62.5 62.0 61.7 59.7 57.5 61.9 60.1 57.4
+ normalize 62.5 62.0 61.7 59.7 57.5 61.9 60.2 57.4
+ quantile-u 63.0 62.6 61.8 60.4 58.5 60.8 59.4 52.9
+ quantile-uW 62.9 62.5 61.8 60.5 59.0 61.1 59.5 54.7
+ whiten 57.7 57.5 57.1 55.9 53.8 54.5 54.7 52.0
+ whitenW 60.9 61.1 61.9 60.8 59.0 61.2 60.1 56.7
+ zscore 63.7 63.4 63.2 62.3 60.9 62.9 61.3 57.3

idfT
t 64.4 65.0 62.8 61.1 59.2 60.2 61.3 56.8
+ normalize 64.4 65.0 62.8 61.1 59.2 60.2 61.2 56.8
+ quantile-u 66.0 66.3 63.2 61.6 59.7 61.0 61.8 54.3
+ quantile-uW 65.0 65.6 63.0 61.3 59.5 59.7 61.0 55.2
+ whiten 59.9 60.3 58.1 56.8 54.4 55.3 55.4 52.5
+ whitenW 63.5 64.2 62.4 61.0 58.9 61.0 59.9 56.3
+ zscore 66.2 66.5 63.7 62.4 60.8 62.1 63.1 57.0

-biases 65.1 65.9 65.6 65.1 63.8 59.0 59.7 59.7
+ normalize 65.1 65.9 65.6 65.1 63.8 59.0 59.7 59.7
+ quantile-u 66.9 67.7 66.0 65.7 64.7 59.9 60.2 56.5
+ quantile-uW 65.6 66.5 65.8 65.5 64.4 58.6 59.3 57.3
+ whitenW 64.8 65.4 64.7 63.9 61.3 59.8 58.6 58.0
+ whiten 61.3 61.1 60.3 58.9 55.4 54.2 54.1 53.1
+ zscore 67.1 67.8 66.3 66.3 65.6 61.1 62.0 60.4

[MASK] 64.8 65.0
+ normalize 64.8 65.0
+ quantile-u 67.1 66.0
+ quantile-uW 65.6 65.6
+ whiten 61.7 61.8
+ whitenW 63.3 64.2
+ zscore 67.1 66.2

Appl. Sci. 2024, 14, 8887 48 of 66

Table A8. Spearman correlation dependence on token aggregation and post-processing techniques
for semantic textual similarity STR task. The best result for each model is bolded, while underlined
result is the best across all the models.

Model T0 T4 BERT BERT + Avg. Avg. B2S B2S-100 RE

Layer Last First + Last –

avg. 60.9 59.8 65.4 65.6 59.4 48.2 48.9 53.3
+ normalize 60.9 59.8 65.4 65.6 59.4 48.2 48.9 53.3
+ quantile-u 65.7 67.8 68.1 69.2 65.4 47.3 47.9 53.6
+ quantile-uW 63.6 64.1 67.3 68.8 65.3 48.0 48.6 53.7
+ whiten 68.9 69.6 70.1 69.7 67.0 51.4 48.8 62.1
+ whitenW 65.2 67.7 66.7 68.7 68.6 51.3 49.2 63.2
+ zscore 66.6 68.9 66.7 67.5 64.5 50.1 50.1 56.0

idfW
t 68.2 67.8 71.9 70.9 66.3 53.8 51.5 62.6
+ normalize 68.2 67.8 71.9 70.9 66.3 53.8 51.5 62.6
+ quantile-u 69.7 69.5 72.5 72.7 70.0 52.4 49.7 59.7
+ quantile-uW 69.2 69.0 72.5 72.8 70.4 53.3 50.8 61.2
+ whiten 69.5 68.8 70.1 68.9 66.2 51.9 49.5 61.1
+ whitenW 68.2 67.8 70.8 70.6 67.7 52.4 49.9 61.7
+ zscore 69.5 68.9 71.4 71.2 68.7 54.0 52.2 62.4

idfT
t 67.1 67.5 71.8 70.8 66.9 48.2 48.9 63.3
+ normalize 67.1 67.5 71.8 70.8 66.9 48.2 48.9 63.3
+ quantile-u 71.0 73.2 72.1 71.9 69.3 47.3 47.9 59.3
+ quantile-uW 69.8 71.6 72.0 72.0 69.7 48.0 48.6 60.6
+ whiten 70.4 71.1 70.4 69.0 66.3 51.4 48.8 61.4
+ whitenW 69.0 71.3 70.4 70.0 67.6 51.3 49.2 62.1
+ zscore 70.8 73.2 71.4 71.3 69.3 50.1 50.1 63.1

-biases 62.8 62.5 70.7 70.1 64.9 46.0 45.8 60.3
+ normalize 62.8 62.5 70.7 70.1 64.9 46.0 45.8 60.3
+ quantile-u 66.7 69.6 72.2 72.1 68.6 45.7 45.0 58.0
+ quantile-uW 65.2 67.1 71.9 71.9 68.4 46.2 45.5 58.9
+ whitenW 67.8 69.3 69.2 69.2 66.4 49.4 47.0 60.1
+ whiten 69.1 69.5 69.6 68.5 65.0 49.6 46.9 59.6
+ zscore 68.3 70.8 69.7 69.1 65.9 48.5 47.6 60.0

[MASK] 67.0 70.1
+ normalize 67.0 70.1
+ quantile-u 70.7 73.5
+ quantile-uW 69.1 73.2
+ whiten 70.5 72.3
+ whitenW 68.1 72.6
+ zscore 70.7 73.1

Table A9. Clustering accuracy dependence on token aggregation and post-processing techniques
for the agnews dataset. The best result for each model is bolded, while underlined result is the best
across all the models.

Model T0 T4 BERT BERT + Avg. Avg. B2S B2S-100 RE

Layer Last First + Last –

avg. 85.4 80.7 81.2 84.4 79.0 85.0 85.0 28.0
+ normalize 85.5 80.6 85.6 86.1 79.6 85.7 85.9 27.2
+ quantile-u 85.2 86.9 84.0 85.1 79.7 85.2 85.2 27.5
+ quantile-uW 85.4 86.7 85.3 85.7 80.6 85.4 85.4 27.2
+ whiten 34.3 31.3 31.3 31.5 30.5 29.9 29.9 28.8
+ whitenW 75.2 75.0 72.7 72.8 58.6 70.6 69.0 28.4
+ zscore 86.0 81.2 81.3 83.8 79.8 84.8 85.2 27.7

Appl. Sci. 2024, 14, 8887 49 of 66

Table A9. Cont.

Model T0 T4 BERT BERT + Avg. Avg. B2S B2S-100 RE

Layer Last First + Last –

idfW
t 79.5 81.4 80.6 84.0 78.0 83.6 83.7 39.9
+ normalize 84.9 85.6 84.7 85.1 78.3 85.0 84.9 41.4
+ quantile-u 85.8 85.7 81.7 84.4 78.6 84.2 84.2 41.2
+ quantile-uW 85.6 85.8 81.8 84.7 79.1 84.6 84.7 43.4
+ whiten 30.9 32.0 31.3 31.8 30.7 30.7 30.1 27.6
+ whitenW 74.5 78.1 73.8 74.4 70.9 72.5 72.1 38.4
+ zscore 85.9 81.8 80.4 84.0 78.9 83.7 83.7 41.0

idfT
t 80.1 82.1 80.9 82.5 79.3 85.0 85.0 28.7
+ normalize 85.2 82.2 85.1 84.8 81.7 85.7 85.9 28.5
+ quantile-u 85.9 87.0 82.4 81.9 80.9 85.2 85.2 28.6
+ quantile-uW 85.9 87.0 82.0 84.4 82.1 85.3 85.5 28.4
+ whiten 30.2 32.6 30.9 31.3 29.9 29.9 29.8 28.0
+ whitenW 72.1 68.4 73.0 71.9 45.5 70.6 69.0 28.9
+ zscore 85.9 82.6 81.1 82.1 79.7 84.8 85.2 28.8

-biases 85.7 86.4 81.4 85.6 83.4 84.0 83.8 28.5
+ normalize 85.7 86.6 86.8 86.8 83.8 85.3 85.5 28.4
+ quantile-u 85.4 86.7 85.7 85.4 83.4 84.7 84.7 28.5
+ quantile-uW 85.6 87.1 86.1 86.0 83.6 84.6 84.9 29.4
+ whitenW 73.5 73.4 72.4 72.1 55.5 68.8 67.6 28.2
+ whiten 31.1 31.5 33.0 30.4 30.3 29.5 29.8 28.3
+ zscore 86.0 87.1 81.7 84.8 83.5 84.4 84.5 28.1

[MASK] 74.8 81.9
+ normalize 75.1 82.2
+ quantile-u 63.1 82.1
+ quantile-uW 76.1 84.2
+ whiten 30.9 31.8
+ whitenW 52.9 48.3
+ zscore 76.1 81.7

Table A10. Clustering accuracy dependence on token aggregation and post-processing techniques for
the biomedical dataset. The best result for each model is bolded, while underlined result is the best
across all the models.

Model T0 T4 BERT BERT + Avg. Avg. B2S B2S-100 RE

Layer Last First + Last –

avg. 32.7 32.4 34.8 36.1 30.7 33.1 37.0 19.4
+ normalize 32.8 32.0 35.1 36.3 30.3 33.8 37.6 20.7
+ quantile-u 33.6 32.5 37.0 39.1 33.1 32.9 36.7 21.0
+ quantile-uW 33.4 32.5 35.4 37.9 34.5 33.0 37.0 21.1
+ whiten 29.4 30.2 27.2 23.2 18.2 12.7 13.2 15.9
+ whitenW 34.8 34.7 40.2 42.7 36.5 35.0 34.4 29.4
+ zscore 33.5 33.0 36.1 37.4 32.1 32.4 36.1 20.0

idfW
t 31.0 30.0 32.3 32.3 28.1 34.5 34.5 32.1
+ normalize 31.2 30.2 32.5 32.6 28.7 34.7 34.8 35.2
+ quantile-u 32.5 31.3 33.6 33.6 29.8 33.9 35.0 32.4
+ quantile-uW 31.7 30.7 31.9 33.6 30.7 33.7 34.4 33.4
+ whiten 27.3 27.6 26.4 20.6 17.1 11.8 12.4 16.7
+ whitenW 32.8 32.1 37.0 38.7 35.4 37.2 37.2 30.8
+ zscore 32.0 30.8 32.6 32.5 28.2 34.3 34.3 31.8

Appl. Sci. 2024, 14, 8887 50 of 66

Table A10. Cont.

Model T0 T4 BERT BERT + Avg. Avg. B2S B2S-100 RE

Layer Last First + Last –

idfT
t 33.4 33.6 36.0 36.2 32.6 33.1 37.0 30.0
+ normalize 33.6 34.1 36.0 37.1 33.9 33.8 37.6 32.2
+ quantile-u 35.4 35.3 36.9 37.2 34.1 32.9 36.7 31.3
+ quantile-uW 35.0 35.7 36.6 37.5 34.7 33.0 37.0 32.2
+ whiten 28.3 30.8 20.9 19.4 16.3 12.7 13.2 15.2
+ whitenW 36.8 37.4 40.4 39.9 33.1 35.0 34.4 29.2
+ zscore 34.7 35.4 36.9 36.8 32.4 32.4 36.1 29.5

-biases 35.1 32.2 39.0 39.2 37.2 31.6 35.9 29.2
+ normalize 35.2 32.5 39.4 39.4 37.7 32.9 36.9 30.8
+ quantile-u 36.0 33.0 39.8 39.6 37.2 32.3 36.2 29.9
+ quantile-uW 36.6 34.6 39.6 39.9 37.3 32.4 36.3 30.9
+ whitenW 38.6 38.7 41.7 40.3 34.4 34.4 33.4 28.7
+ whiten 29.8 31.6 22.0 17.1 13.5 12.5 12.0 13.2
+ zscore 35.6 32.7 39.4 39.5 37.0 30.9 35.6 28.7

[MASK] 24.0 34.8
+ normalize 25.1 35.3
+ quantile-u 27.4 35.9
+ quantile-uW 25.1 34.7
+ whiten 21.9 28.4
+ whitenW 23.7 32.8
+ zscore 26.4 35.0

Table A11. Clustering accuracy dependence on token aggregation and post-processing techniques for
the googleTS dataset. The best result for each model is bolded, while underlined result is the best
across all the models.

Model T0 T4 BERT BERT + Avg. Avg. B2S B2S-100 RE

Layer Last First + Last –

avg. 63.5 64.3 66.1 66.1 65.1 66.2 65.8 61.2
+ normalize 62.7 64.6 66.2 67.1 66.2 68.3 67.7 67.1
+ quantile-u 64.8 65.1 67.1 67.4 67.3 66.3 66.9 63.5
+ quantile-uW 63.9 64.7 66.4 68.0 66.7 66.9 67.2 63.6
+ whiten 59.2 60.3 57.5 57.3 54.5 58.1 58.4 53.1
+ whitenW 62.4 62.0 65.6 66.1 65.2 65.8 65.8 61.7
+ zscore 63.6 65.0 66.7 67.1 65.9 66.0 66.6 61.8

idfW
t 63.5 62.6 65.2 66.2 65.6 64.5 65.8 63.8
+ normalize 64.3 63.1 66.0 66.5 66.0 66.5 66.7 69.5
+ quantile-u 64.0 65.4 66.6 66.5 67.0 66.4 66.1 64.1
+ quantile-uW 64.4 64.9 67.5 67.8 66.6 67.4 65.9 63.4
+ whiten 57.9 59.9 58.3 56.5 55.2 58.9 58.6 51.4
+ whitenW 61.9 61.4 66.2 67.7 66.7 65.5 66.7 63.3
+ zscore 63.5 63.3 66.1 66.4 65.7 65.9 65.6 63.9

idfT
t 63.2 64.9 66.4 67.4 65.9 66.2 66.0 61.3
+ normalize 64.7 64.7 67.7 68.6 65.9 68.3 67.7 67.4
+ quantile-u 65.2 65.5 68.5 67.9 67.5 66.6 67.0 63.7
+ quantile-uW 64.8 66.2 67.7 67.3 67.3 67.1 67.2 62.9
+ whiten 58.8 59.2 58.7 59.0 55.6 57.7 58.5 55.1
+ whitenW 60.1 60.4 65.1 66.7 64.8 65.8 65.8 61.2
+ zscore 63.8 65.0 66.4 67.6 66.3 66.0 66.3 62.1

Appl. Sci. 2024, 14, 8887 51 of 66

Table A11. Cont.

Model T0 T4 BERT BERT + Avg. Avg. B2S B2S-100 RE

Layer Last First + Last –

-biases 63.2 64.1 66.0 66.3 65.7 65.7 65.3 62.0
+ normalize 62.6 63.4 66.3 66.8 65.8 67.0 66.8 67.1
+ quantile-u 64.8 65.1 66.7 68.0 67.7 65.7 65.4 64.0
+ quantile-uW 64.4 65.5 67.1 67.4 66.7 66.5 66.7 64.1
+ whitenW 60.9 61.6 66.0 66.4 65.2 63.9 65.5 63.2
+ whiten 61.3 60.3 59.2 59.2 57.6 57.3 57.1 56.9
+ zscore 63.8 64.9 65.7 66.7 66.1 65.3 65.0 62.7

[MASK] 45.5 56.0
+ normalize 45.9 56.5
+ quantile-u 47.8 56.2
+ quantile-uW 46.9 56.4
+ whiten 53.4 53.1
+ whitenW 43.0 53.3
+ zscore 47.0 56.0

Table A12. Clustering accuracy dependence on token aggregation and post-processing techniques for
the searchsnippets dataset. The best result for each model is bolded, while underlined result is the
best across all the models.

Model T0 T4 BERT BERT + Avg. Avg. B2S B2S-100 RE

Layer Last First + Last –

avg. 67.3 73.3 72.2 70.8 63.6 72.0 72.0 23.3
+ normalize 68.2 73.8 81.7 73.1 65.7 76.4 76.3 20.4
+ quantile-u 69.8 72.4 74.1 73.0 66.8 75.2 72.9 22.3
+ quantile-uW 69.7 73.5 81.6 74.7 68.6 75.7 75.1 21.7
+ whiten 33.8 36.1 32.3 31.7 26.3 22.9 24.8 21.2
+ whitenW 47.7 49.2 58.3 61.8 56.3 58.8 58.3 24.0
+ zscore 67.9 73.2 72.7 71.3 63.7 72.3 72.1 22.8

idfW
t 67.1 67.0 71.9 70.4 63.0 69.9 69.9 29.2
+ normalize 68.4 69.4 81.8 73.0 65.2 81.4 81.4 36.6
+ quantile-u 70.3 71.6 73.8 72.5 65.9 74.4 72.2 30.7
+ quantile-uW 70.8 72.5 80.6 74.0 67.1 74.8 80.7 32.1
+ whiten 32.7 34.8 33.0 31.7 23.7 27.3 24.1 20.5
+ whitenW 47.8 51.9 64.5 66.1 61.9 67.6 68.5 30.0
+ zscore 69.8 70.0 72.2 70.4 62.7 70.1 70.2 29.7

idfT
t 55.1 75.3 72.0 70.5 59.3 72.0 72.0 26.1
+ normalize 63.2 75.6 81.2 76.9 60.9 76.4 76.3 24.8
+ quantile-u 68.8 78.5 74.6 76.1 59.1 75.2 72.9 26.1
+ quantile-uW 71.2 78.7 81.3 77.0 61.0 75.7 75.1 25.8
+ whiten 30.6 35.7 30.8 29.8 25.0 22.9 24.8 21.3
+ whitenW 46.8 46.1 62.7 63.0 52.9 58.8 58.3 26.7
+ zscore 68.6 79.1 73.3 72.4 59.0 72.3 72.1 25.8

-biases 66.5 70.4 82.6 73.0 71.7 70.5 71.9 22.8
+ normalize 67.0 70.5 82.9 74.8 73.8 75.2 80.9 22.6
+ quantile-u 68.8 80.3 80.7 73.8 72.3 73.5 73.8 23.8
+ quantile-uW 69.8 80.6 82.6 76.5 74.2 75.6 72.7 22.9
+ whitenW 48.4 46.0 64.5 64.4 54.9 57.1 53.6 23.9
+ whiten 31.6 36.3 33.2 29.3 22.7 23.3 23.9 22.0
+ zscore 67.6 79.8 82.1 72.6 71.4 72.6 72.6 23.3

Appl. Sci. 2024, 14, 8887 52 of 66

Table A12. Cont.

Model T0 T4 BERT BERT + Avg. Avg. B2S B2S-100 RE

Layer Last First + Last –

[MASK] 61.1 69.9
+ normalize 61.0 69.6
+ quantile-u 60.3 69.6
+ quantile-uW 61.4 69.8
+ whiten 31.1 34.0
+ whitenW 39.4 45.3
+ zscore 61.8 69.8

Table A13. Clustering accuracy dependence on token aggregation and post-processing techniques for
the stackoverflow dataset. The best result for each model is bolded, while underlined result is the
best across all the models.

Model T0 T4 BERT BERT + Avg. Avg. B2S B2S-100 RE

Layer Last First + Last –

avg. 25.0 30.9 35.9 43.5 41.9 14.8 20.2 39.2
+ normalize 25.4 30.7 36.9 42.8 42.3 15.0 20.7 39.0
+ quantile-u 27.8 32.7 38.3 45.9 45.1 14.7 20.5 38.6
+ quantile-uW 25.7 32.4 38.4 46.9 47.9 15.0 20.4 40.0
+ whiten 39.8 39.7 34.2 17.8 13.0 9.8 12.6 12.2
+ whitenW 28.9 33.9 49.4 57.3 62.0 21.7 23.5 56.6
+ zscore 26.7 33.1 37.3 44.2 43.6 14.0 19.8 39.2

idfW
t 28.6 29.8 30.6 37.7 39.1 16.1 17.5 55.4
+ normalize 29.0 30.3 31.1 37.2 38.0 16.8 18.6 62.7
+ quantile-u 29.8 31.1 32.0 38.1 40.7 16.8 17.5 57.7
+ quantile-uW 30.0 30.9 32.1 39.9 40.8 16.3 18.0 58.8
+ whiten 30.6 30.1 26.1 15.4 12.2 9.7 9.7 12.5
+ whitenW 29.8 31.4 40.0 50.3 55.8 16.2 17.1 56.8
+ zscore 30.2 30.6 31.1 37.4 38.7 16.1 16.8 54.1

idfT
t 36.2 39.0 54.2 63.4 60.5 14.8 20.2 61.6
+ normalize 36.9 38.6 55.1 66.6 62.4 15.0 20.7 70.6
+ quantile-u 38.7 40.7 57.1 64.3 63.1 14.7 20.5 63.7
+ quantile-uW 38.6 40.0 57.7 65.6 63.0 15.0 20.4 65.2
+ whiten 43.5 44.6 32.1 19.7 16.6 9.8 12.6 16.7
+ whitenW 35.7 36.7 59.9 63.1 58.7 21.7 23.5 61.6
+ zscore 38.3 40.6 54.5 62.0 58.9 14.0 19.8 60.7

-biases 28.5 34.5 44.8 56.7 59.7 14.3 18.2 53.9
+ normalize 28.4 35.3 45.2 57.0 58.7 14.6 19.4 63.6
+ quantile-u 31.0 36.8 44.5 56.7 59.3 14.0 19.0 58.0
+ quantile-uW 30.8 35.5 46.4 59.9 60.6 14.8 19.3 57.4
+ whitenW 35.1 36.1 55.4 62.8 61.0 21.0 20.9 52.2
+ whiten 42.6 38.7 21.4 15.7 11.3 8.0 11.6 11.3
+ zscore 31.5 36.9 45.2 57.5 57.9 13.4 18.5 53.0

[MASK] 26.4 35.5
+ normalize 26.5 36.1
+ quantile-u 26.0 37.7
+ quantile-uW 24.9 37.0
+ whiten 22.7 41.0
+ whitenW 18.0 32.2
+ zscore 27.3 37.4

Appl. Sci. 2024, 14, 8887 53 of 66

Table A14. Clustering accuracy dependence on token aggregation and post-processing techniques for
the tweet dataset. The best result for each model is bolded, while underlined result is the best across
all the models.

Model T0 T4 BERT BERT + Avg. Avg. B2S B2S-100 RE

Layer Last First + Last –

avg. 47.0 48.2 51.8 54.1 50.7 51.7 51.7 46.5
+ normalize 46.2 48.3 53.0 53.2 52.4 53.7 55.2 56.4
+ quantile-u 46.6 48.5 51.9 53.9 51.7 50.8 52.9 48.2
+ quantile-uW 46.9 48.0 53.6 53.4 53.0 51.4 51.1 47.8
+ whiten 15.9 16.3 15.9 17.0 18.5 18.1 17.2 17.6
+ whitenW 44.9 44.1 51.1 51.2 51.7 50.5 49.9 49.0
+ zscore 47.5 49.0 53.0 53.3 51.4 50.0 50.5 46.4

idfW
t 48.6 47.2 50.5 52.1 48.5 49.4 50.8 45.4
+ normalize 48.3 47.8 51.9 52.7 48.5 50.3 50.4 51.5
+ quantile-u 49.0 47.9 52.7 51.9 48.8 49.8 49.9 46.4
+ quantile-uW 48.3 47.9 52.7 52.8 48.3 49.4 49.6 46.0
+ whiten 15.3 15.1 15.7 16.2 18.3 17.4 17.0 15.9
+ whitenW 43.0 42.3 50.0 50.8 50.1 49.8 49.3 45.5
+ zscore 49.3 46.7 52.2 51.4 48.0 48.9 49.1 46.3

idfT
t 50.8 50.5 55.0 55.2 54.5 51.7 51.7 49.0
+ normalize 49.6 50.6 55.1 54.7 53.6 53.7 55.2 58.5
+ quantile-u 49.7 51.0 53.5 54.3 53.7 50.8 52.9 50.5
+ quantile-uW 50.0 52.3 53.4 54.8 53.3 51.4 51.1 51.7
+ whiten 17.6 18.0 15.5 16.5 18.2 18.1 17.2 17.6
+ whitenW 44.4 46.6 51.9 53.2 54.0 50.5 49.9 48.8
+ zscore 49.7 50.0 53.5 55.4 53.8 50.0 50.5 47.8

-biases 47.1 49.6 52.4 52.3 51.7 49.6 49.6 48.0
+ normalize 47.3 49.3 54.0 55.7 53.4 51.3 51.3 55.1
+ quantile-u 47.9 50.4 53.0 55.6 53.4 48.6 50.7 48.2
+ quantile-uW 48.8 50.0 53.4 54.4 53.5 50.0 49.0 47.4
+ whitenW 45.9 46.0 52.2 53.0 53.3 47.3 47.5 47.4
+ whiten 16.3 16.9 16.4 17.4 18.7 18.7 17.7 18.5
+ zscore 47.3 49.4 52.0 53.5 53.2 48.3 49.0 47.4

[MASK] 41.1 47.0
+ normalize 41.0 47.1
+ quantile-u 42.0 47.7
+ quantile-uW 41.9 47.4
+ whiten 14.9 16.6
+ whitenW 38.4 41.7
+ zscore 41.6 46.7

Appl. Sci. 2024, 14, 8887 54 of 66

Appendix A.2. BERT + Avg. Model in Different Layers

0 1 2 3 4 5 6 7 8 9 101112 1
12

1
2
12

0
1
2
12

Layer

1.0
0.75
0.5

0.25
0.0

0.25
0.5

0.75
1.0

w

(a) v = vBERT(1 w) + vAvg. w

0 1 2 3 4 5 6 7 8 9 101112 1
12

1
2
12

0
1
2
12

Layer
w

(b) v = vBERT(1 w) + vAvg. w

0 1 2 3 4 5 6 7 8 9 101112 1
12

1
2
12

0
1
2
12

Layer

w

(c) v = vBERT(1 w) + vAvg. w

0 1 2 3 4 5 6 7 8 9 101112 1
12

1
2
12

0
1
2
12

Layer

1.0
0.75
0.5

0.25
0.0

0.25
0.5

0.75
1.0

w

(d) v = vBERT(1 w) + vAvg. w

0 1 2 3 4 5 6 7 8 9 101112 1
12

1
2
12

0
1
2
12

Layer

w

(e) v = vBERT(1 w) + vAvg. w

0 1 2 3 4 5 6 7 8 9 101112 1
12

1
2
12

0
1
2
12

Layer
w

(f) v = vBERT(1 w) + vAvg. w

0 1 2 3 4 5 6 7 8 9 101112 1
12

1
2
12

0
1
2
12

Layer

1.0
0.75
0.5

0.25
0.0

0.25
0.5

0.75
1.0

w

(g) v = vBERT(1 w) + vAvg. w

0 1 2 3 4 5 6 7 8 9 101112 1
12

1
2
12

0
1
2
12

Layer

w

(h) v = vBERT(1 w) + vAvg. w

30 35 40 45 50
Spearman correlation of STS12.

45 50 55 60
Spearman correlation of STS13.

40 45 50 55
Spearman correlation of STS14.

60 65 70
Spearman correlation of STS15.

55 60 65
Spearman correlation of STS16.

56 58 60 62
Spearman correlation of SICK-R.

45 50 55 60
Spearman correlation of STS-B.

52.5 55.0 57.5 60.0 62.5 65.0
Spearman correlation of STR.

Figure A1. BERT + Avg. model individual task STS performance dependence on the weight w of
Avg. model and layer, from which (for both models) representations are used. To the right of the
black line on the horizontal axis, average aggregation of multiple layers is also shown. Tokens are
simply averaged and no post-processing is used. The horizontal line with w = 0.0 corresponds to a
regular Bert (B) model, w = 0.5 is B + Avg., and w = 1.0 is the Avg. model. The white × marks the
maximum value.

Appl. Sci. 2024, 14, 8887 55 of 66

0 1 2 3 4 5 6 7 8 9 101112 1
12

1
2
12

0
1
2
12

Layer

1.0
0.75
0.5

0.25
0.0

0.25
0.5

0.75
1.0

w
(a) v = vBERT(1 w) + vAvg. w

0 1 2 3 4 5 6 7 8 9 101112 1
12

1
2
12

0
1
2
12

Layer

w

(b) v = vBERT(1 w) + vAvg. w

0 1 2 3 4 5 6 7 8 9 101112 1
12

1
2
12

0
1
2
12

Layer

w

(c) v = vBERT(1 w) + vAvg. w

0 1 2 3 4 5 6 7 8 9 101112 1
12

1
2
12

0
1
2
12

Layer

1.0
0.75
0.5

0.25
0.0

0.25
0.5

0.75
1.0

w

(d) v = vBERT(1 w) + vAvg. w

0 1 2 3 4 5 6 7 8 9 101112 1
12

1
2
12

0
1
2
12

Layer

w
(e) v = vBERT(1 w) + vAvg. w

0 1 2 3 4 5 6 7 8 9 101112 1
12

1
2
12

0
1
2
12

Layer

w

(f) v = vBERT(1 w) + vAvg. w

30 40 50 60 70 80
Clustering accuracy of agnews.

15 20 25 30 35
Clustering accuracy of biomedical.

55 60 65
Clustering accuracy of googleTS.

30 40 50 60 70 80
Clustering accuracy of searchsnippets.

20 30 40
Clustering accuracy of stackoverflow.

35 40 45 50
Clustering accuracy of tweet.

Figure A2. BERT + Avg. model individual task clustering performance dependence on the weight w
of Avg. model and layer, from which (for both models) representations are used. To the right of the
black line on the horizontal axis, average aggregation of multiple layers is also shown. Tokens are
simply averaged and no post-processing is used. The horizontal line with w = 0.0 corresponds to a
regular Bert (B) model, w = 0.5 is B + Avg., and w = 1.0 is the Avg. model. The white × marks the
maximum value.

0 1 2 3 4 5 6 7 8 9 101112 1
12

1
2
12

0
1
2
12

Layer

1.0
0.75
0.5

0.25
0.0

0.25
0.5

0.75
1.0

w

(a) v = vBERT(1 w) + vAvg. w

0 1 2 3 4 5 6 7 8 9 101112 1
12

1
2
12

0
1
2
12

Layer

w

(b) v = vBERT(1 w) + vAvg. w

0 1 2 3 4 5 6 7 8 9 101112 1
12

1
2
12

0
1
2
12

Layer

w

(c) v = vBERT(1 w) + vAvg. w

0 1 2 3 4 5 6 7 8 9 101112 1
12

1
2
12

0
1
2
12

Layer

1.0
0.75
0.5

0.25
0.0

0.25
0.5

0.75
1.0

w

(d) v = vBERT(1 w) + vAvg. w

0 1 2 3 4 5 6 7 8 9 101112 1
12

1
2
12

0
1
2
12

Layer

w

(e) v = vBERT(1 w) + vAvg. w

0 1 2 3 4 5 6 7 8 9 101112 1
12

1
2
12

0
1
2
12

Layer

w

(f) v = vBERT(1 w) + vAvg. w

0 1 2 3 4 5 6 7 8 9 101112 1
12

1
2
12

0
1
2
12

Layer

1.0
0.75
0.5

0.25
0.0

0.25
0.5

0.75
1.0

w

(g) v = vBERT(1 w) + vAvg. w

0 1 2 3 4 5 6 7 8 9 101112 1
12

1
2
12

0
1
2
12

Layer

w

(h) v = vBERT(1 w) + vAvg. w

0 1 2 3 4 5 6 7 8 9 101112 1
12

1
2
12

0
1
2
12

Layer

w

(i) v = vBERT(1 w) + vAvg. w

0 1 2 3 4 5 6 7 8 9 101112 1
12

1
2
12

0
1
2
12

Layer

1.0
0.75
0.5

0.25
0.0

0.25
0.5

0.75
1.0

w

(j) v = vBERT(1 w) + vAvg. w

0 1 2 3 4 5 6 7 8 9 101112 1
12

1
2
12

0
1
2
12

Layer

w

(k) v = vBERT(1 w) + vAvg. w

0 1 2 3 4 5 6 7 8 9 101112 1
12

1
2
12

0
1
2
12

Layer

w

(l) v = vBERT(1 w) + vAvg. w

76 78 80 82
Classification accuracy of MR.

80 82 84 86
Classification accuracy of CR.

92 93 94 95
Classification accuracy of SUBJ.

87 88 89
Classification accuracy of MPQA.

80 82 84 86
Classification accuracy of SST2.

71 72 73 74 75
Classification accuracy of MRPC.

42 44 46 48
Classification accuracy of SST5.

86 88 90 92 94
Classification accuracy of TREC.

79 80 81 82 83
Classification accuracy of SCICITE.

78 80 82
Classification accuracy of SICK-E.

72 74 76
Classification accuracy of SICK-R.

60 65 70
Classification accuracy of STS-B.

Figure A3. Cont.

Appl. Sci. 2024, 14, 8887 56 of 66

0 1 2 3 4 5 6 7 8 9 101112 1
12

1
2
12

0
1
2
12

Layer

1.0
0.75
0.5

0.25
0.0

0.25
0.5

0.75
1.0

w

(a) v = vBERT(1 w) + vAvg. w

0 1 2 3 4 5 6 7 8 9 101112 1
12

1
2
12

0
1
2
12

Layer

w

(b) v = vBERT(1 w) + vAvg. w

0 1 2 3 4 5 6 7 8 9 101112 1
12

1
2
12

0
1
2
12

Layer

w

(c) v = vBERT(1 w) + vAvg. w

0 1 2 3 4 5 6 7 8 9 101112 1
12

1
2
12

0
1
2
12

Layer

1.0
0.75
0.5

0.25
0.0

0.25
0.5

0.75
1.0

w

(d) v = vBERT(1 w) + vAvg. w

0 1 2 3 4 5 6 7 8 9 101112 1
12

1
2
12

0
1
2
12

Layer

w

(e) v = vBERT(1 w) + vAvg. w

0 1 2 3 4 5 6 7 8 9 101112 1
12

1
2
12

0
1
2
12

Layer

w

(f) v = vBERT(1 w) + vAvg. w

0 1 2 3 4 5 6 7 8 9 101112 1
12

1
2
12

0
1
2
12

Layer

1.0
0.75
0.5

0.25
0.0

0.25
0.5

0.75
1.0

w
(g) v = vBERT(1 w) + vAvg. w

0 1 2 3 4 5 6 7 8 9 101112 1
12

1
2
12

0
1
2
12

Layer

w

(h) v = vBERT(1 w) + vAvg. w

0 1 2 3 4 5 6 7 8 9 101112 1
12

1
2
12

0
1
2
12

Layer

w

(i) v = vBERT(1 w) + vAvg. w

0 1 2 3 4 5 6 7 8 9 101112 1
12

1
2
12

0
1
2
12

Layer

1.0
0.75
0.5

0.25
0.0

0.25
0.5

0.75
1.0

w

(j) v = vBERT(1 w) + vAvg. w

0 1 2 3 4 5 6 7 8 9 101112 1
12

1
2
12

0
1
2
12

Layer

w

(k) v = vBERT(1 w) + vAvg. w

0 1 2 3 4 5 6 7 8 9 101112 1
12

1
2
12

0
1
2
12

Layer

w

(l) v = vBERT(1 w) + vAvg. w

76 78 80 82
Classification accuracy of MR.

80 82 84 86
Classification accuracy of CR.

92 93 94 95
Classification accuracy of SUBJ.

87 88 89
Classification accuracy of MPQA.

80 82 84 86
Classification accuracy of SST2.

71 72 73 74 75
Classification accuracy of MRPC.

42 44 46 48
Classification accuracy of SST5.

86 88 90 92 94
Classification accuracy of TREC.

79 80 81 82 83
Classification accuracy of SCICITE.

78 80 82
Classification accuracy of SICK-E.

72 74 76
Classification accuracy of SICK-R.

60 65 70
Classification accuracy of STS-B.

Figure A3. BERT + Avg. model individual task supervised classification performance dependence
on the weight w of Avg. model and layer, from which (for both models) representations are used.
To the right of the black line on the horizontal axis, average aggregation of multiple layers is also
shown. Tokens are simply averaged and no post-processing is used. The horizontal line with w = 0.0
corresponds to a regular Bert (B) model, w = 0.5 is B + Avg., and w = 1.0 is the Avg. model. The
white × marks the maximum value.

References
1. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed Representations of Words and Phrases and their

Compositionality. In Advances in Neural Information Processing Systems; Burges, C., Bottou, L., Welling, M., Ghahramani, Z.,
Weinberger, K., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2013; Volume 26.

2. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.U.; Polosukhin, I. Attention is All you Need.
In Advances in Neural Information Processing Systems; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan,
S., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2017; Volume 30.

3. Hart, B.; Risley, T. The early catastrophe: The 30 million word gap by age 3. Am. Educ. 2003, 27, 4–9.
4. Bahdanau, D.; Cho, K.; Bengio, Y. Neural Machine Translation by Jointly Learning to Align and Translate. In Proceedings of the

3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015.
5. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Under-

standing. In Proceedings of the 2019 Annual Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, MN, USA, 2–7 June 2019;
pp. 4171–4186. [CrossRef]

6. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. An Image is Worth 16 × 16 Words: Transformers for Image Recognition at Scale. In Proceedings of the International
Conference on Learning Representations, Vienna, Austria, 3–7 May 2021.

7. Gulati, A.; Qin, J.; Chiu, C.C.; Parmar, N.; Zhang, Y.; Yu, J.; Han, W.; Wang, S.; Zhang, Z.; Wu, Y.; et al. Conformer: Convolution-
augmented Transformer for Speech Recognition. arXiv 2020, arXiv:2005.08100. [CrossRef]

8. Chen, L.; Lu, K.; Rajeswaran, A.; Lee, K.; Grover, A.; Laskin, M.; Abbeel, P.; Srinivas, A.; Mordatch, I. Decision Transformer:
Reinforcement Learning via Sequence Modeling. In Advances in Neural Information Processing Systems; Beygelzimer, A., Dauphin, Y.,
Liang, P., Vaughan, J.W., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2021.

9. Reimers, N.; Gurevych, I. Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), Hong Kong, China, 3–7 November 2019; pp. 3982–3992. [CrossRef]

10. Narang, S.; Chung, H.W.; Tay, Y.; Fedus, L.; Fevry, T.; Matena, M.; Malkan, K.; Fiedel, N.; Shazeer, N.; Lan, Z.; et al. Do Transformer
Modifications Transfer Across Implementations and Applications? In Proceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing, Online and Punta Cana, Dominican Republic, 7–11 November 2021; pp. 5758–5773. [CrossRef]

http://doi.org/10.18653/v1/N19-1423
http://dx.doi.org/10.48550/ARXIV.2005.08100
http://dx.doi.org/10.18653/v1/D19-1410
http://dx.doi.org/10.18653/v1/2021.emnlp-main.465

Appl. Sci. 2024, 14, 8887 57 of 66

11. Belinkov, Y. Probing Classifiers: Promises, Shortcomings, and Advances. Comput. Linguist. 2022, 48, 207–219. [CrossRef]
12. Conneau, A.; Kiela, D.; Schwenk, H.; Barrault, L.; Bordes, A. Supervised Learning of Universal Sentence Representations from

Natural Language Inference Data. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing,
Copenhagen, Denmark, 7–11 September 2017 ; pp. 670–680. [CrossRef]

13. Su, J.; Cao, J.; Liu, W.; Ou, Y. Whitening Sentence Representations for Better Semantics and Faster Retrieval. arXiv 2021,
arXiv:2103.15316. [CrossRef]

14. Huang, J.; Tang, D.; Zhong, W.; Lu, S.; Shou, L.; Gong, M.; Jiang, D.; Duan, N. WhiteningBERT: An Easy Unsupervised Sentence
Embedding Approach. In Proceedings of the Findings of the Association for Computational Linguistics: EMNLP 2021, Punta
Cana, Dominican Republic, 16–20 November 2021; pp. 238–244. [CrossRef]

15. Jiang, T.; Jiao, J.; Huang, S.; Zhang, Z.; Wang, D.; Zhuang, F.; Wei, F.; Huang, H.; Deng, D.; Zhang, Q. PromptBERT: Improving
BERT Sentence Embeddings with Prompts. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing, Abu Dhabi, United Arab Emirates, 7–11 December 2022; pp. 8826–8837.

16. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient Estimation of Word Representations in Vector Space. arXiv 2013,
arXiv:1301.3781. [CrossRef]

17. Pennington, J.; Socher, R.; Manning, C.D. GloVe: Global Vectors for Word Representation. In Proceedings of the Empirical
Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014 ; pp. 1532–1543.

18. Pelletier, F.J. The principle of semantic compositionality. Topoi 1994, 13, 11–24. [CrossRef]
19. Bos, J. Wide-Coverage Semantic Analysis with Boxer. In Proceedings of the Semantics in Text Processing, STEP 2008 Conference

Proceedings; College Publications: Marshalls Creek, PA, USA, 2008; pp. 277–286.
20. Montague, R. Universal grammar. Theoria 1970, 36, 373–398. [CrossRef]
21. Bos, J. A Survey of Computational Semantics: Representation, Inference and Knowledge in Wide-Coverage Tex �Understanding.

Lang. Linguist. Compass 2011, 5, 336–366. [CrossRef]
22. Erk, K. Vector Space Models of Word Meaning and Phrase Meaning: A Survey. Lang. Linguist. Compass 2012, 6, 635–653.

[CrossRef]
23. Yoshikawa, M.; Mineshima, K.; Noji, H.; Bekki, D. Combining Axiom Injection and Knowledge Base Completion for Efficient

Natural Language Inference. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1
February 2019; Volume 33, pp. 7410–7417. [CrossRef]

24. Clark, S.; Pulman, S.G. Combining Symbolic and Distributional Models of Meaning. In Proceedings of the AAAI Spring
Symposium: Quantum Interaction, Stanford, CA, USA, 26–28 March 2007.

25. Bjerva, J.; Bos, J.; van der Goot, R.; Nissim, M. The Meaning Factory: Formal Semantics for Recognizing Textual Entailment and
Determining Semantic Similarity. In Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014),
Dublin, Ireland, 23–24 Auguts 2014; pp. 642–646. [CrossRef]

26. Smolensky, P. Tensor product variable binding and the representation of symbolic structures in connectionist systems. Artif.
Intell. 1990, 46, 159–216. [CrossRef]

27. Mitchell, J.; Lapata, M. Composition in Distributional Models of Semantics. Cogn. Sci. 2010, 34, 1388–1429. [CrossRef] [PubMed]
28. Milajevs, D.; Kartsaklis, D.; Sadrzadeh, M.; Purver, M. Evaluating Neural Word Representations in Tensor-Based Compositional

Settings. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar,
25–29 October 2014; pp. 708–719. [CrossRef]

29. Jones, M.N.; Mewhort, D.J. Representing word meaning and order information in a composite holographic lexicon. Psychol. Rev.
2007, 114, 1. [CrossRef]

30. Widdows, D. Semantic Vector Products: Some Initial Investigations. In Proceedings of the Second AAAI Symposium on Quantum
Interaction, Stanford, CA, USA, 26–28 March 2007; College Publications: Marshalls Creek, PA, USA, 2008.

31. Plate, T. Holographic reduced representations. IEEE Trans. Neural Netw. 1995, 6, 623–641. [CrossRef] [PubMed]
32. Baroni, M.; Zamparelli, R. Nouns are Vectors, Adjectives are Matrices: Representing Adjective-Noun Constructions in Semantic

Space. In Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, Cambridge, MA, USA,
9–10 October 2010; pp. 1183–1193.

33. Guevara, E. A Regression Model of Adjective-Noun Compositionality in Distributional Semantics. In Proceedings of the 2010
Workshop on GEometrical Models of Natural Language Semantics, Uppsala, Sweden, 16 July 2010; pp. 33–37.

34. Grefenstette, E.; Dinu, G.; Zhang, Y.; Sadrzadeh, M.; Baroni, M. Multi-Step Regression Learning for Compositional Distributional
Semantics. In Proceedings of the 10th International Conference on Computational Semantics (IWCS 2013)–Long Papers, Potsdam,
Germany, 19–22 March 2013; pp. 131–142.

35. Baroni, M.; Bernardi, R.; Zamparelli, R. Frege in Space: A Program for Composition Distributional Semantics. Linguist. Issues
Lang. Technol. 2014, 9, 241–346. [CrossRef]

36. Xing, C.; Wang, D.; Zhang, X.; Liu, C. Document classification with distributions of word vectors. In Proceedings of the Signal
and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific, Siem Reap, Cambodia,
9–12 December 2014; pp. 1–5. [CrossRef]

37. Yu, L.; Hermann, K.M.; Blunsom, P.; Pulman, S. Deep Learning for Answer Sentence Selection. arXiv 2014, arXiv:1412.1632.
[CrossRef]

http://dx.doi.org/10.1162/coli_a_00422
http://dx.doi.org/10.18653/v1/D17-1070
http://dx.doi.org/10.48550/ARXIV.2103.15316
http://dx.doi.org/10.18653/v1/2021.findings-emnlp.23
http://dx.doi.org/10.48550/ARXIV.1301.3781
http://dx.doi.org/10.1007/BF00763644
http://dx.doi.org/10.1111/j.1755-2567.1970.tb00434.x
http://dx.doi.org/10.1111/j.1749-818X.2011.00284.x
http://dx.doi.org/10.1002/lnco.362
http://dx.doi.org/10.1609/aaai.v33i01.33017410
http://dx.doi.org/10.3115/v1/S14-2114
http://dx.doi.org/10.1016/0004-3702(90)90007-M
http://dx.doi.org/10.1111/j.1551-6709.2010.01106.x
http://www.ncbi.nlm.nih.gov/pubmed/21564253
http://dx.doi.org/10.3115/v1/D14-1079
http://dx.doi.org/10.1037/0033-295X.114.1.1
http://dx.doi.org/10.1109/72.377968
http://www.ncbi.nlm.nih.gov/pubmed/18263348
http://dx.doi.org/10.33011/lilt.v9i.1321
http://dx.doi.org/10.1109/APSIPA.2014.7041633
http://dx.doi.org/10.48550/ARXIV.1412.1632

Appl. Sci. 2024, 14, 8887 58 of 66

38. Lev, G.; Klein, B.; Wolf, L. In Defense of Word Embedding for Generic Text Representation. In Natural Language Processing and
Information Systems; Biemann, C.; Handschuh, S.; Freitas, A.; Meziane, F.; Métais, E., Eds.; Springer International Publishing:
Cham, Switzerland, 2015; pp. 35–50.

39. Ritter, S.; Long, C.; Paperno, D.; Baroni, M.; Botvinick, M.; Goldberg, A. Leveraging Preposition Ambiguity to Assess Com-
positional Distributional Models of Semantics. In Proceedings of the Fourth Joint Conference on Lexical and Computational
Semantics, Denver, CO, USA, 4–5 June 2015; pp. 199–204. [CrossRef]

40. White, L.; Togneri, R.; Liu, W.; Bennamoun, M. How Well Sentence Embeddings Capture Meaning. In Proceedings of the
20th Australasian Document Computing Symposium, Association for Computing Machinery, Parramatta, NSW, Australia,
8–9 December 2015; ADCS ’15. [CrossRef]

41. Shen, D.; Wang, G.; Wang, W.; Min, M.R.; Su, Q.; Zhang, Y.; Li, C.; Henao, R.; Carin, L. Baseline Needs More Love: On
Simple Word-Embedding-Based Models and Associated Pooling Mechanisms. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), Melbourne, Australia, 15–20 July 2018; pp. 440–450.
[CrossRef]

42. Wieting, J.; Bansal, M.; Gimpel, K.; Livescu, K. Towards Universal Paraphrastic Sentence Embeddings. arXiv 2015,
arXiv:1511.08198. [CrossRef]

43. Aldarmaki, H.; Diab, M. Evaluation of Unsupervised Compositional Representations. In Proceedings of the 27th International
Conference on Computational Linguistics, Santa Fe, NM, USA, 20–26 August 2018; pp. 2666–2677.

44. Iyyer, M.; Manjunatha, V.; Boyd-Graber, J.; Daumé, H., III. Deep Unordered Composition Rivals Syntactic Methods for
Text Classification. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), Beijing, China, 26–31 July 2015;
pp. 1681–1691. [CrossRef]

45. Pham, N.T.; Kruszewski, G.; Lazaridou, A.; Baroni, M. Jointly optimizing word representations for lexical and sentential tasks
with the C-PHRASE model. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), Beijing, China, 26–31 July 2015;
pp. 971–981. [CrossRef]

46. Wieting, J.; Gimpel, K. Revisiting Recurrent Networks for Paraphrastic Sentence Embeddings. arXiv 2017, arXiv:1705.00364.
[CrossRef]

47. Kenter, T.; Borisov, A.; de Rijke, M. Siamese CBOW: Optimizing Word Embeddings for Sentence Representations. In Proceedings
of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Berlin, Germany,
7–12 August 2016; pp. 941–951. [CrossRef]

48. Pagliardini, M.; Gupta, P.; Jaggi, M. Unsupervised Learning of Sentence Embeddings Using Compositional n-Gram Features. In
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers), New Orleans, LA, USA, 1–6 July 2018; pp. 528–540. [CrossRef]

49. Gupta, P.; Jaggi, M. Obtaining Better Static Word Embeddings Using Contextual Embedding Models. In Proceedings of the
59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), Online, 1–6 August 2021; pp. 5241–5253. [CrossRef]

50. Hill, F.; Cho, K.; Korhonen, A.; Bengio, Y. Learning to Understand Phrases by Embedding the Dictionary. Trans. Assoc. Comput.
Linguist. 2016, 4, 17–30. [CrossRef]

51. Joulin, A.; Grave, E.; Bojanowski, P.; Mikolov, T. Bag of Tricks for Efficient Text Classification. In Proceedings of the 15th
Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, Valencia, Spain,
3–7 April 2017; pp. 427–431.

52. Choi, H.; Kim, J.; Joe, S.; Gwon, Y. Evaluation of BERT and ALBERT Sentence Embedding Performance on Downstream NLP
Tasks. In Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 10–15 January 2021;
pp. 5482–5487. [CrossRef]

53. Bommasani, R.; Davis, K.; Cardie, C. Interpreting Pretrained Contextualized Representations via Reductions to Static Embeddings.
In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online, 5–10 July 2020; pp. 4758–4781.
[CrossRef]

54. Yin, W.; Schütze, H. Learning Word Meta-Embeddings. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), Berlin, Germany, 5–10 July 2016; pp. 1351–1360. [CrossRef]

55. Coates, J.; Bollegala, D. Frustratingly Easy Meta-Embedding—Computing Meta-Embeddings by Averaging Source Word
Embeddings. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 2 (Short Papers), New Orleans, LA, USA, 1–6 June 2018; pp. 194–198.
[CrossRef]

56. Adi, Y.; Kermany, E.; Belinkov, Y.; Lavi, O.; Goldberg, Y. Fine-grained analysis of sentence embeddings using auxiliary prediction
tasks. In Proceedings of the 5th International Conference on Learning Representations, Toulon, France, 24–26 April 2017.

57. Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]
58. Riedel, B.; Augenstein, I.; Spithourakis, G.P.; Riedel, S. A simple but tough-to-beat baseline for the Fake News Challenge stance

detection task. arXiv 2017, arXiv:1707.03264. [CrossRef]

http://dx.doi.org/10.18653/v1/S15-1023
http://dx.doi.org/10.1145/2838931.2838932
http://dx.doi.org/10.18653/v1/P18-1041
http://dx.doi.org/10.48550/ARXIV.1511.08198
http://dx.doi.org/10.3115/v1/P15-1162
http://dx.doi.org/10.3115/v1/P15-1094
http://dx.doi.org/10.48550/ARXIV.1705.00364
http://dx.doi.org/10.18653/v1/P16-1089
http://dx.doi.org/10.18653/v1/N18-1049
http://dx.doi.org/10.18653/v1/2021.acl-long.408
http://dx.doi.org/10.1162/tacl_a_00080
http://dx.doi.org/10.1109/ICPR48806.2021.9412102
http://dx.doi.org/10.18653/v1/2020.acl-main.431
http://dx.doi.org/10.18653/v1/P16-1128
http://dx.doi.org/10.18653/v1/N18-2031
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.48550/ARXIV.1707.03264

Appl. Sci. 2024, 14, 8887 59 of 66

59. Singh, P.; Mukerjee, A. Words are not Equal: Graded Weighting Model for Building Composite Document Vectors. In Proceedings
of the 12th International Conference on Natural Language Processing, Trivandrum, India, 11–14 December 2015; pp. 11–19.

60. Arora, S.; Liang, Y.; Ma, T. A simple but tough-to-beat baseline for sentence embeddings. In Proceedings of the 5th International
Conference on Learning Representations, ICLR 2017, Toulon, France, 24–26 April 2017.

61. Ethayarajh, K. Unsupervised Random Walk Sentence Embeddings: A Strong but Simple Baseline. In Proceedings of the Third
Workshop on Representation Learning for NLP, Melbourne, Australia, 20 July 2018; pp. 91–100. [CrossRef]

62. Stankevičius, L.; Lukoševičius, M. Testing pre-trained transformer models for Lithuanian news clustering. In Proceedings of the
CEUR Workshop Proceeding: IVUS 2020, CEUR-WS, Kaunas, Lithuania, 23 April 2020; Volume 2698, pp. 46–53.

63. Yan, Y.; Li, R.; Wang, S.; Zhang, F.; Wu, W.; Xu, W. ConSERT: A Contrastive Framework for Self-Supervised Sentence Repre-
sentation Transfer. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing (Volume 1: Long Papers), Online, 1–6 August 2021; pp. 5065–5075.
[CrossRef]

64. An, Y.; Kalinowski, A.; Greenberg, J. Clustering and Network Analysis for the Embedding Spaces of Sentences and Sub-Sentences.
In Proceedings of the 2021 Second International Conference on Intelligent Data Science Technologies and Applications (IDSTA),
Tartu, Estonia, 15–17 November 2021; pp. 138–145. [CrossRef]

65. Yang, Z.; Zhu, C.; Chen, W. Parameter-free Sentence Embedding via Orthogonal Basis. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), Hong Kong, China, 3–7 November 2019; pp. 638–648. [CrossRef]

66. Wang, B.; Kuo, C.C.J. SBERT-WK: A Sentence Embedding Method by Dissecting BERT-Based Word Models. IEEE ACM Trans.
Audio Speech Lang. Proc. 2020, 28, 2146–2157. [CrossRef]

67. Schakel, A.M.J.; Wilson, B.J. Measuring Word Significance using Distributed Representations of Words. arXiv 2015,
arXiv:1508.02297. [CrossRef]

68. Arefyev, N.; Ermolaev, P.; Panchenko, A. How much does a word weigh? Weighting word embeddings for word sense induction.
arXiv 2018, arXiv:1805.09209. [CrossRef]

69. Luhn, H.P. The Automatic Creation of Literature Abstracts. IBM J. Res. Dev. 1958, 2, 159–165. [CrossRef]
70. Yokoi, S.; Takahashi, R.; Akama, R.; Suzuki, J.; Inui, K. Word Rotator’s Distance. In Proceedings of the 2020 Conference on

Empirical Methods in Natural Language Processing (EMNLP), Online, 16–20 November 2020; pp. 2944–2960. [CrossRef]
71. Amiri, H.; Mohtarami, M. Vector of Locally Aggregated Embeddings for Text Representation. In Proceedings of the 2019

Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), Minneapolis, MN, USA, 2–7 June 2019; pp. 1408–1414. [CrossRef]

72. Gupta, V.; Karnick, H.; Bansal, A.; Jhala, P. Product Classification in E-Commerce using Distributional Semantics. In Proceedings
of the COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, Osaka, Japan,
11–16 December 2016; pp. 536–546.

73. Kim, H.K.; Kim, H.; Cho, S. Bag-of-concepts: Comprehending document representation through clustering words in distributed
representation. Neurocomputing 2017, 266, 336–352. [CrossRef]

74. Guo, S.; Yao, N. Document Vector Extension for Documents Classification. IEEE Trans. Knowl. Data Eng. 2021, 33, 3062–3074.
[CrossRef]

75. Li, M.; Bai, H.; Tan, L.; Xiong, K.; Li, M.; Lin, J. Latte-Mix: Measuring Sentence Semantic Similarity with Latent Categorical
Mixtures. arXiv 2020, arXiv:2010.11351. [CrossRef]

76. Mekala, D.; Gupta, V.; Paranjape, B.; Karnick, H. SCDV : Sparse Composite Document Vectors using soft clustering over
distributional representations. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing,
Copenhagen, Denmark, 9–11 December 2017; pp. 659–669. [CrossRef]

77. Gupta, V.; Saw, A.; Nokhiz, P.; Netrapalli, P.; Rai, P.; Talukdar, P. P-sif: Document embeddings using partition averag-
ing. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34,
pp. 7863–7870.

78. Aharon, M.; Elad, M.; Bruckstein, A. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation.
IEEE Trans. Signal Process. 2006, 54, 4311–4322. [CrossRef]

79. Gupta, V.; Saw, A.; Nokhiz, P.; Gupta, H.; Talukdar, P. Improving Document Classification with Multi-Sense Embeddings. In
Proceedings of the European Conference on Artificial Intelligence, Santiago de Compostela, Spain, 29 August–8 September 2020.

80. Gupta, A.; Gupta, V. Unsupervised Contextualized Document Representation. In Proceedings of the Second Workshop on Simple
and Efficient Natural Language Processing, Virtual, 10 November 2021; pp. 166–173. [CrossRef]

81. Mekala, D.; Shang, J. Contextualized Weak Supervision for Text Classification. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, Online, 5–10 July 2020; pp. 323–333. [CrossRef]

82. Ahmed, N.; Natarajan, T.; Rao, K. Discrete Cosine Transform. IEEE Trans. Comput. 1974, 100, 90–93. [CrossRef]
83. Almarwani, N.; Aldarmaki, H.; Diab, M. Efficient Sentence Embedding using Discrete Cosine Transform. In Proceedings of the

2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), Hong Kong, China, 3–7 November 2019; pp. 3672–3678. [CrossRef]

http://dx.doi.org/10.18653/v1/W18-3012
http://dx.doi.org/10.18653/v1/2021.acl-long.393
http://dx.doi.org/10.1109/IDSTA53674.2021.9660801
http://dx.doi.org/10.18653/v1/D19-1059
http://dx.doi.org/10.1109/TASLP.2020.3008390
http://dx.doi.org/10.48550/ARXIV.1508.02297
http://dx.doi.org/10.48550/ARXIV.1805.09209
http://dx.doi.org/10.1147/rd.22.0159
http://dx.doi.org/10.18653/v1/2020.emnlp-main.236
http://dx.doi.org/10.18653/v1/N19-1143
http://dx.doi.org/10.1016/j.neucom.2017.05.046
http://dx.doi.org/10.1109/TKDE.2019.2961343
http://dx.doi.org/10.48550/ARXIV.2010.11351
http://dx.doi.org/10.18653/v1/D17-1069
http://dx.doi.org/10.1109/TSP.2006.881199
http://dx.doi.org/10.18653/v1/2021.sustainlp-1.17
http://dx.doi.org/10.18653/v1/2020.acl-main.30
http://dx.doi.org/10.1109/T-C.1974.223784
http://dx.doi.org/10.18653/v1/D19-1380

Appl. Sci. 2024, 14, 8887 60 of 66

84. Almarwani, N.; Diab, M. Discrete Cosine Transform as Universal Sentence Encoder. In Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing
(Volume 2: Short Papers), Online, 1–6 August 2021; pp. 419–426. [CrossRef]

85. Kayal, S.; Tsatsaronis, G. EigenSent: Spectral sentence embeddings using higher-order Dynamic Mode Decomposition. In
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, 28 July–2 August 2019;
pp. 4536–4546. [CrossRef]

86. Kim, T.; Yoo, K.M.; Lee, S.g. Self-Guided Contrastive Learning for BERT Sentence Representations. In Proceedings of the
59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), Online, 1–6 August 2021; pp. 2528–2540. [CrossRef]

87. Tanaka, H.; Shinnou, H.; Cao, R.; Bai, J.; Ma, W. Document Classification by Word Embeddings of BERT. In Computational
Linguistics; Nguyen, L.M., Phan, X.H., Hasida, K., Tojo, S., Eds.; Springer: Singapore, 2020; pp. 145–154.

88. Ma, X.; Wang, Z.; Ng, P.; Nallapati, R.; Xiang, B. Universal Text Representation from BERT: An Empirical Study. arXiv 2019,
arXiv:1910.07973. [CrossRef]

89. Kovaleva, O.; Romanov, A.; Rogers, A.; Rumshisky, A. Revealing the Dark Secrets of BERT. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), Hong Kong, China, 3–7 November 2019; pp. 4365–4374. [CrossRef]

90. Liu, P.; Yuan, W.; Fu, J.; Jiang, Z.; Hayashi, H.; Neubig, G. Pre-train, Prompt, and Predict: A Systematic Survey of Prompting
Methods in Natural Language Processing. arXiv 2021, arXiv:2107.13586. [CrossRef]

91. Zhong, Z.; Friedman, D.; Chen, D. Factual Probing Is [MASK]: Learning vs. Learning to Recall. In Proceedings of the 2021
Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies,
Online, 6–11 June 2021; pp. 5017–5033. [CrossRef]

92. Wang, H.; Li, Y.; Huang, Z.; Dou, Y.; Kong, L.; Shao, J. SNCSE: Contrastive Learning for Unsupervised Sentence Embedding with
Soft Negative Samples. arXiv 2022, arXiv:2201.05979. [CrossRef]

93. Dalvi, F.; Khan, A.R.; Alam, F.; Durrani, N.; Xu, J.; Sajjad, H. Discovering Latent Concepts Learned in BERT. In Proceedings of the
International Conference on Learning Representations, Online, 25–29 April 2022.

94. Liu, N.F.; Gardner, M.; Belinkov, Y.; Peters, M.E.; Smith, N.A. Linguistic Knowledge and Transferability of Contextual Representa-
tions. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, MN, USA, 2–7 June 2019; pp. 1073–1094.
[CrossRef]

95. Tenney, I.; Xia, P.; Chen, B.; Wang, A.; Poliak, A.; McCoy, R.T.; Kim, N.; Durme, B.V.; Bowman, S.; Das, D.; et al. What do you
learn from context? Probing for sentence structure in contextualized word representations. In Proceedings of the International
Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019.

96. Muller, B.; Elazar, Y.; Sagot, B.; Seddah, D. First Align, then Predict: Understanding the Cross-Lingual Ability of Multilingual
BERT. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main
Volume, Online, 19–23 April 2021; pp. 2214–2231. [CrossRef]

97. Hämmerl, K.; Libovický, J.; Fraser, A. Combining Static and Contextualised Multilingual Embeddings. In Proceedings of the
Findings of the Association for Computational Linguistics: ACL 2022, Dublin, Ireland, 22–27 May 2022; pp. 2316–2329. [CrossRef]

98. Ethayarajh, K. How Contextual are Contextualized Word Representations? Comparing the Geometry of BERT, ELMo, and
GPT-2 Embeddings. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, 3–7 November 2019;
pp. 55–65. [CrossRef]

99. Carlsson, F.; Gyllensten, A.C.; Gogoulou, E.; Hellqvist, E.Y.; Sahlgren, M. Semantic re-tuning with contrastive tension. In
Proceedings of the International Conference on Learning Representations, Addis Ababa, Ethiopia, 25–29 April 2020.

100. Chung, H.W.; Fevry, T.; Tsai, H.; Johnson, M.; Ruder, S. Rethinking Embedding Coupling in Pre-trained Language Models. In
Proceedings of the International Conference on Learning Representations, Virtual, 3–7 May 2021.

101. Rogers, A.; Kovaleva, O.; Rumshisky, A. A Primer in BERTology: What We Know About How BERT Works. Trans. Assoc. Comput.
Linguist. 2020, 8, 842–866. [CrossRef]

102. Timkey, W.; van Schijndel, M. All Bark and No Bite: Rogue Dimensions in Transformer Language Models Obscure Representa-
tional Quality. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, Online and Punta
Cana, Dominican Republic, 7–11 November 2021; pp. 4527–4546. [CrossRef]

103. Sajjad, H.; Alam, F.; Dalvi, F.; Durrani, N. Effect of Post-processing on Contextualized Word Representations. arXiv 2021,
arXiv:2104.07456. [CrossRef]

104. Zhao, H.; Lu, Z.; Poupart, P. Self-Adaptive Hierarchical Sentence Model. In Proceedings of the 24th International Conference on
Artificial Intelligence, IJCAI’15, Buenos Aires, Argentina, 25–31 July 2015; pp. 4069–4076.

105. Yang, J.; Zhao, H. Deepening Hidden Representations from Pre-trained Language Models. arXiv 2021, arXiv:1911.01940.
106. Peters, M.E.; Neumann, M.; Iyyer, M.; Gardner, M.; Clark, C.; Lee, K.; Zettlemoyer, L. Deep Contextualized Word Representations.

In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers), New Orleans, LA, USA, 1–6 June 2018; pp. 2227–2237. [CrossRef]

http://dx.doi.org/10.18653/v1/2021.acl-short.53
http://dx.doi.org/10.18653/v1/P19-1445
http://dx.doi.org/10.18653/v1/2021.acl-long.197
http://dx.doi.org/10.48550/ARXIV.1910.07973
http://dx.doi.org/10.18653/v1/D19-1445
http://dx.doi.org/10.1145/3560815
http://dx.doi.org/10.18653/v1/2021.naacl-main.398
http://dx.doi.org/10.48550/ARXIV.2201.05979
http://dx.doi.org/10.18653/v1/N19-1112
http://dx.doi.org/10.18653/v1/2021.eacl-main.189
http://dx.doi.org/10.18653/v1/2022.findings-acl.182
http://dx.doi.org/10.18653/v1/D19-1006
http://dx.doi.org/10.1162/tacl_a_00349
http://dx.doi.org/10.18653/v1/2021.emnlp-main.372
http://dx.doi.org/10.48550/ARXIV.2104.07456
http://dx.doi.org/10.18653/v1/N18-1202

Appl. Sci. 2024, 14, 8887 61 of 66

107. Michael, J.; Botha, J.A.; Tenney, I. Asking without Telling: Exploring Latent Ontologies in Contextual Representations. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), Online, Online, 16–20
November 2020; pp. 6792–6812. [CrossRef]

108. Shi, W.; Chen, M.; Zhou, P.; Chang, K.W. Retrofitting Contextualized Word Embeddings with Paraphrases. In Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), Hong Kong, China, 3–7 November 2019; pp. 1198–1203. [CrossRef]

109. Artetxe, M.; Schwenk, H. Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond. Trans.
Assoc. Comput. Linguist. 2019, 7, 597–610. [CrossRef]

110. Toshniwal, S.; Shi, H.; Shi, B.; Gao, L.; Livescu, K.; Gimpel, K. A Cross-Task Analysis of Text Span Representations. In Proceedings
of the 5th Workshop on Representation Learning for NLP, Online, 9 July 2020; pp. 166–176. [CrossRef]

111. Socher, R.; Pennington, J.; Huang, E.H.; Ng, A.Y.; Manning, C.D. Semi-Supervised Recursive Autoencoders for Predicting
Sentiment Distributions. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing,
Edinburgh, Scotland, UK, 27–31 July 2011; pp. 151–161.

112. Socher, R.; Perelygin, A.; Wu, J.; Chuang, J.; Manning, C.D.; Ng, A.; Potts, C. Recursive Deep Models for Semantic Compositionality
Over a Sentiment Treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing,
Seattle, WA, USA, 18–21 October 2013; pp. 1631–1642.

113. Salton, G.; Fox, E.A.; Wu, H. Extended Boolean Information Retrieval. Commun. ACM 1983, 26, 1022–1036. [CrossRef]
114. Rücklé, A.; Eger, S.; Peyrard, M.; Gurevych, I. Concatenated Power Mean Word Embeddings as Universal Cross-Lingual Sentence

Representations. arXiv 2018, arXiv:1803.01400.
115. Lin, Z.; Feng, M.; dos Santos, C.N.; Yu, M.; Xiang, B.; Zhou, B.; Bengio, Y. A Structured Self-Attentive Sentence Embedding. In

Proceedings of the International Conference on Learning Representations, Toulon, France, 24–26 April 2017.
116. Eger, S.; Rücklé, A.; Gurevych, I. Pitfalls in the Evaluation of Sentence Embeddings. In Proceedings of the 4th Workshop on

Representation Learning for NLP (RepL4NLP-2019), Florence, Italy, 2019; pp. 55–60. [CrossRef]
117. Rudman, W.; Gillman, N.; Rayne, T.; Eickhoff, C. IsoScore: Measuring the Uniformity of Embedding Space Utilization. In

Proceedings of the Findings of the Association for Computational Linguistics: ACL 2022, Dublin, Ireland, 22–27 May 2022;
pp. 3325–3339. [CrossRef]

118. Mu, J.; Viswanath, P. All-but-the-Top: Simple and Effective Postprocessing for Word Representations. In Proceedings of the
International Conference on Learning Representations, 30 April–3 May 2018.

119. Zhou, T.; Sedoc, J.; Rodu, J. Getting in Shape: Word Embedding SubSpaces. In Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence, IJCAI-19, Macao, China, 10–16 August 2019; pp. 5478–5484. [CrossRef]

120. Gao, J.; He, D.; Tan, X.; Qin, T.; Wang, L.; Liu, T. Representation Degeneration Problem in Training Natural Language Generation
Models. In Proceedings of the International Conference on Learning Representations, New Orleans, LA, USA. 6–9 May 2019.

121. Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; Sutskever, I. Language Models are Unsupervised Multitask Learners. OpenAI
Blog 2019, 1, 9.

122. Schnabel, T.; Labutov, I.; Mimno, D.; Joachims, T. Evaluation methods for unsupervised word embeddings. In Proceedings of the
2015 Conference on Empirical Methods in Natural Language Processing, Lisbon, Portugal, 17–25 September 2015; pp. 298–307.
[CrossRef]

123. Li, B.; Zhou, H.; He, J.; Wang, M.; Yang, Y.; Li, L. On the Sentence Embeddings from Pre-trained Language Models. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), Online, 16–20 November
2020; pp. 9119–9130. [CrossRef]

124. Biś, D.; Podkorytov, M.; Liu, X. Too Much in Common: Shifting of Embeddings in Transformer Language Models and its
Implications. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Online, 6–11 June 2021; pp. 5117–5130. [CrossRef]

125. Rajaee, S.; Pilehvar, M.T. An Isotropy Analysis in the Multilingual BERT Embedding Space. In Proceedings of the Findings of the
Association for Computational Linguistics: ACL 2022, Dublin, Ireland, 22–27 May 2022; pp. 1309–1316. [CrossRef]

126. Schick, T.; Schütze, H. Rare Words: A Major Problem for Contextualized Embeddings and How to Fix it by Attentive Mimicking. In
Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 8766–8774.
[CrossRef]

127. Miller, G.A. WordNet: A Lexical Database for English. Commun. ACM 1995, 38, 39–41. [CrossRef]
128. Lee, Y.Y.; Ke, H.; Huang, H.H.; Chen, H.H. Less is More: Filtering Abnormal Dimensions in GloVe. In Proceedings of the 25th

International Conference Companion on World Wide Web, WWW ’16 Companion, Republic and Canton of Geneva, Switzerland,
11–15 April 2016; pp. 71–72. [CrossRef]

129. Kovaleva, O.; Kulshreshtha, S.; Rogers, A.; Rumshisky, A. BERT Busters: Outlier Dimensions that Disrupt Transformers. In
Proceedings of the Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, Online, 1–6 August 2021;
pp. 3392–3405. [CrossRef]

130. Luo, Z.; Kulmizev, A.; Mao, X. Positional Artefacts Propagate Through Masked Language Model Embeddings. In Proceedings of
the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), Online, 1–6 August 2021; pp. 5312–5327. [CrossRef]

http://dx.doi.org/10.18653/v1/2020.emnlp-main.552
http://dx.doi.org/10.18653/v1/D19-1113
http://dx.doi.org/10.1162/tacl_a_00288
http://dx.doi.org/10.18653/v1/2020.repl4nlp-1.20
http://dx.doi.org/10.1145/182.358466
http://dx.doi.org/10.18653/v1/W19-4308
http://dx.doi.org/10.18653/v1/2022.findings-acl.262
http://dx.doi.org/10.24963/ijcai.2019/761
http://dx.doi.org/10.18653/v1/D15-1036
http://dx.doi.org/10.18653/v1/2020.emnlp-main.733
http://dx.doi.org/10.18653/v1/2021.naacl-main.403
http://dx.doi.org/10.18653/v1/2022.findings-acl.103
http://dx.doi.org/10.1609/aaai.v34i05.6403
http://dx.doi.org/10.1145/219717.219748
http://dx.doi.org/10.1145/2872518.2889381
http://dx.doi.org/10.18653/v1/2021.findings-acl.300
http://dx.doi.org/10.18653/v1/2021.acl-long.413

Appl. Sci. 2024, 14, 8887 62 of 66

131. Ding, Y.; Martinkus, K.; Pascual, D.; Clematide, S.; Wattenhofer, R. On Isotropy Calibration of Transformer Models. In Proceedings
of the Third Workshop on Insights from Negative Results in NLP, Dublin, Ireland, 26 May 2022; pp. 1–9. [CrossRef]

132. Cai, X.; Huang, J.; Bian, Y.; Church, K. Isotropy in the Contextual Embedding Space: Clusters and Manifolds. In Proceedings of
the International Conference on Learning Representations, Vienna, Austria, 4 May 2021.

133. Rajaee, S.; Pilehvar, M.T. A Cluster-based Approach for Improving Isotropy in Contextual Embedding Space. In Proceedings of
the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 2: Short Papers), Online, 1–6 August 2021; pp. 575–584. [CrossRef]

134. Rajaee, S.; Pilehvar, M.T. How Does Fine-tuning Affect the Geometry of Embedding Space: A Case Study on Isotropy. In
Proceedings of the Findings of the Association for Computational Linguistics: EMNLP 2021, Punta Cana, Dominican Republic,
16–20 November 2021; pp. 3042–3049. [CrossRef]

135. Artetxe, M.; Labaka, G.; Lopez-Gazpio, I.; Agirre, E. Uncovering Divergent Linguistic Information in Word Embeddings with
Lessons for Intrinsic and Extrinsic Evaluation. In Proceedings of the 22nd Conference on Computational Natural Language
Learning, Brussels, Belgium, 31 October–1 November 2018; pp. 282–291. [CrossRef]

136. Wang, B.; Chen, F.; Wang, A.; Kuo, C.C.J. Post-Processing of Word Representations via Variance Normalization and Dynamic
Embedding. In Proceedings of the 2019 IEEE International Conference on Multimedia and Expo (ICME), Shanghai, China,
8–12 July 2019; pp. 718–723. [CrossRef]

137. Liu, T.; Ungar, L.; Sedoc, J.A. Unsupervised Post-Processing of Word Vectors via Conceptor Negation. In Proceedings
of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First Innovative Applications of Artificial Intel-
ligence Conference and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, Honolulu, HI, USA,
27 January–1 February 2019; AAAI’19/IAAI’19/EAAI’19. [CrossRef]

138. Jaeger, H. Controlling Recurrent Neural Networks by Conceptors. Technical Report No. 31; Jacobs University Bremen arXiv 2014,
arXiv:1403.3369. [CrossRef]

139. Karve, S.; Ungar, L.; Sedoc, J. Conceptor Debiasing of Word Representations Evaluated on WEAT. In Proceedings of the
First Workshop on Gender Bias in Natural Language Processing, Florence, Italy, 2 August 2019; pp. 40–48. [CrossRef]

140. Liang, Y.; Cao, R.; Zheng, J.; Ren, J.; Gao, L. Learning to Remove: Towards Isotropic Pre-Trained BERT Embedding. In
Proceedings of the Artificial Neural Networks and Machine Learning—ICANN 2021: 30th International Conference on Artificial
Neural Networks, Bratislava, Slovakia, 14–17 September 2021; Proceedings, Part V; Springer: Berlin/Heidelberg, Germany, 2021;
pp. 448–459. [CrossRef]

141. Raunak, V.; Gupta, V.; Metze, F. Effective Dimensionality Reduction for Word Embeddings. In Proceedings of the 4th Workshop
on Representation Learning for NLP (RepL4NLP-2019), Florence, Italy, 2 August 2019; pp. 235–243. [CrossRef]

142. Artetxe, M.; Labaka, G.; Agirre, E. Generalizing and Improving Bilingual Word Embedding Mappings with a Multi-Step
Framework of Linear Transformations. In Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA,
2–7 February 2018; Volume 32. [CrossRef]

143. Gao, T.; Yao, X.; Chen, D. SimCSE: Simple Contrastive Learning of Sentence Embeddings. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing, Online and Punta Cana, Dominican Republic, 7–11 November 2021;
pp. 6894–6910. [CrossRef]

144. Wang, T.; Isola, P. Understanding Contrastive Representation Learning through Alignment and Uniformity on the Hypersphere.
In Proceedings of the 37th International Conference on Machine Learning, Virtual, 13–18 July 2020; Volume 119, pp. 9929–9939.

145. Wang, B.; Kuo, C.C.J.; Li, H. Just Rank: Rethinking Evaluation with Word and Sentence Similarities. In Proceedings of the 60th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Dublin, Ireland, 22–27 May 2022;
pp. 6060–6077. [CrossRef]

146. Faruqui, M.; Dodge, J.; Jauhar, S.K.; Dyer, C.; Hovy, E.; Smith, N.A. Retrofitting Word Vectors to Semantic Lexicons. In Proceedings
of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Denver, CO, USA, 31 May– 5 June 2015; pp. 1606–1615. [CrossRef]

147. Yu, Z.; Cohen, T.; Wallace, B.; Bernstam, E.; Johnson, T. Retrofitting Word Vectors of MeSH Terms to Improve Semantic Similarity
Measures. In Proceedings of the Seventh International Workshop on Health Text Mining and Information Analysis, Auxtin, TX,
USA, 5 November 2016; pp. 43–51. [CrossRef]

148. Zhang, M.; Fujinuma, Y.; Paul, M.J.; Boyd-Graber, J. Why Overfitting Isn’t Always Bad: Retrofitting Cross-Lingual Word
Embeddings to Dictionaries. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online,
5–10 July 2020; pp. 2214–2220. [CrossRef]

149. Glavaš, G.; Vulić, I. Explicit Retrofitting of Distributional Word Vectors. In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), Melbourne, Australia, 15–20 July 2018; pp. 34–45. [CrossRef]

150. Zheng, J.; Wang, Y.; Wang, G.; Xia, J.; Huang, Y.; Zhao, G.; Zhang, Y.; Li, S. Using Context-to-Vector with Graph Retrofitting
to Improve Word Embeddings. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), Dublin, Ireland, 22–27 May 2022; pp. 8154–8163. [CrossRef]

151. Wang, L.; Huang, J.; Huang, K.; Hu, Z.; Wang, G.; Gu, Q. Improving Neural Language Generation with Spectrum Control. In
Proceedings of the International Conference on Learning Representations, Addis Ababa, Ethiopia, 26–30 April 2020.

http://dx.doi.org/10.18653/v1/2022.insights-1.1
http://dx.doi.org/10.18653/v1/2021.acl-short.73
http://dx.doi.org/10.18653/v1/2021.findings-emnlp.261
http://dx.doi.org/10.18653/v1/K18-1028
http://dx.doi.org/10.1109/ICME.2019.00129
http://dx.doi.org/10.1609/aaai.v33i01.33016778
http://dx.doi.org/10.48550/arXiv.1403.3369
http://dx.doi.org/10.18653/v1/W19-3806
http://dx.doi.org/10.1007/978-3-030-86383-8_36
http://dx.doi.org/10.18653/v1/W19-4328
http://dx.doi.org/10.1609/aaai.v32i1.11992
http://dx.doi.org/10.18653/v1/2021.emnlp-main.552
http://dx.doi.org/10.18653/v1/2022.acl-long.419
http://dx.doi.org/10.3115/v1/N15-1184
http://dx.doi.org/10.18653/v1/W16-6106
http://dx.doi.org/10.18653/v1/2020.acl-main.201
http://dx.doi.org/10.18653/v1/P18-1004
http://dx.doi.org/10.18653/v1/2022.acl-long.561

Appl. Sci. 2024, 14, 8887 63 of 66

152. Tamkin, A.; Jurafsky, D.; Goodman, N. Language Through a Prism: A Spectral Approach for Multiscale Language Representations.
In Advances in Neural Information Processing Systems; Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H., Eds.; Curran
Associates, Inc.: Red Hook, NY, USA, 2020; Volume 33, pp. 5492–5504.

153. Zhelezniak, V.; Savkov, A.; Hammerla, N. Estimating Mutual Information Between Dense Word Embeddings. In Proceedings of
the 58th Annual Meeting of the Association for Computational Linguistics, Online, 5–10 July 2020; pp. 8361–8371. [CrossRef]

154. Kraskov, A.; Stögbauer, H.; Grassberger, P. Estimating mutual information. Phys. Rev. E 2004, 69, 066138. [CrossRef] [PubMed]
155. Zhelezniak, V.; Savkov, A.; Shen, A.; Hammerla, N. Correlation Coefficients and Semantic Textual Similarity. In Proceedings

of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), Minneapolis, MN, USA, 2–7 June 2019; pp. 951–962. [CrossRef]

156. Zhelezniak, V.; Savkov, A.; Shen, A.; Moramarco, F.; Flann, J.; Hammerla, N.Y. Don’t Settle for Average, Go for the Max: Fuzzy
Sets and Max-Pooled Word Vectors. In Proceedings of the International Conference on Learning Representations, New Orleans,
LA, USA, 6–9 May 2019.

157. Min, C.; Chu, Y.; Yang, L.; Xu, B.; Lin, H. Locality Preserving Sentence Encoding. In Proceedings of the Findings of the Association
for Computational Linguistics: EMNLP 2021, Punta Cana, Dominican Republic, 7–11 November 2021; pp. 3050–3060. [CrossRef]

158. Kayal, S. Unsupervised Sentence-embeddings by Manifold Approximation and Projection. In Proceedings of the 16th Conference
of the European Chapter of the Association for Computational Linguistics, Main Volume, Online, 19–23 April 2021; pp. 1–11.
[CrossRef]

159. Kusner, M.; Sun, Y.; Kolkin, N.; Weinberger, K. From Word Embeddings To Document Distances. In Proceedings of the 32nd
International Conference on Machine Learning, Lille, France, 6–11 July 2015 ; Volume 37, pp. 957–966.

160. Wu, L.; Yen, I.E.H.; Xu, K.; Xu, F.; Balakrishnan, A.; Chen, P.Y.; Ravikumar, P.; Witbrock, M.J. Word Mover’s Embedding:
From Word2Vec to Document Embedding. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, Brussels, Belgium, 31 October–4 November 2018; pp. 4524–4534. [CrossRef]

161. Wang, Z.; Zhang, Y.; Wu, H. Structural-Aware Sentence Similarity with Recursive Optimal Transport. arXiv 2020, arXiv:2002.00745.
[CrossRef]

162. Le, Q.; Mikolov, T. Distributed Representations of Sentences and Documents. In Proceedings of the 31st International Conference
on Machine Learning, Bejing, China, 21–26 June 2014; Volume 32, pp. 1188–1196.

163. Lau, J.H.; Baldwin, T. An Empirical Evaluation of Doc2Vec with Practical Insights into Document Embedding Generation. In
Proceedings of the 1st Workshop on Representation Learning for NLP, Berlin, Germany, 11 August 2016; pp. 78–86. [CrossRef]

164. Hill, F.; Cho, K.; Korhonen, A. Learning Distributed Representations of Sentences from Unlabelled Data. In Proceedings
of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, San Diego, CA, USA, 12–17 June 2016; pp. 1367–1377. [CrossRef]

165. Chen, M. Efficient Vector Representation for Documents through Corruption. In Proceedings of the International Conference on
Learning Representations, Toulon, France, 24–26 April 2017.

166. Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to Sequence Learning with Neural Networks. In Advances in Neural Information
Processing Systems; Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Weinberger, K., Eds.; Curran Associates, Inc.:
Red Hook, NY, USA, 2014; Volume 27.

167. Schuster, M.; Paliwal, K. Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 1997, 45, 2673–2681. [CrossRef]
168. Kiros, R.; Zhu, Y.; Salakhutdinov, R.R.; Zemel, R.; Urtasun, R.; Torralba, A.; Fidler, S. Skip-Thought Vectors. In Advances in

Neural Information Processing Systems; Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R., Eds.; Curran Associates, Inc.:
Red Hook, NY, USA, 2015; Volume 28.

169. Cho, K.; van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations
using RNN Encoder–Decoder for Statistical Machine Translation. In Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; pp. 1724–1734. [CrossRef]

170. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
171. Bowman, S.R.; Angeli, G.; Potts, C.; Manning, C.D. A large annotated corpus for learning natural language inference. In

Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Lisbon, Portugal, 17–21 September
2015; pp. 632–642. [CrossRef]

172. Logeswaran, L.; Lee, H. An efficient framework for learning sentence representations. In Proceedings of the International
Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.

173. Subramanian, S.; Trischler, A.; Bengio, Y.; Pal, C.J. Learning General Purpose Distributed Sentence Representations via Large
Scale Multi-task Learning. In Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada,
30 April–3 May 2018.

174. Nie, A.; Bennett, E.; Goodman, N. DisSent: Learning Sentence Representations from Explicit Discourse Relations. In Proceedings
of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, 28 July–2 August 2019; pp. 4497–4510.
[CrossRef]

175. Cer, D.; Yang, Y.; Kong, S.Y.; Hua, N.; Limtiaco, N.; St. John, R.; Constant, N.; Guajardo-Cespedes, M.; Yuan, S.; Tar, C.; et al.
Universal Sentence Encoder for English. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, Brussels, Belgium, 31 October–4 November 2018; pp. 169–174. [CrossRef]

http://dx.doi.org/10.18653/v1/2020.acl-main.741
http://dx.doi.org/10.1103/PhysRevE.69.066138
http://www.ncbi.nlm.nih.gov/pubmed/15244698
http://dx.doi.org/10.18653/v1/N19-1100
http://dx.doi.org/10.18653/v1/2021.findings-emnlp.262
http://dx.doi.org/10.18653/v1/2021.eacl-main.1
http://dx.doi.org/10.18653/v1/D18-1482
http://dx.doi.org/10.48550/ARXIV.2002.00745
http://dx.doi.org/10.18653/v1/W16-1609
http://dx.doi.org/10.18653/v1/N16-1162
http://dx.doi.org/10.1109/78.650093
http://dx.doi.org/10.3115/v1/D14-1179
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.18653/v1/D15-1075
http://dx.doi.org/10.18653/v1/P19-1442
http://dx.doi.org/10.18653/v1/D18-2029

Appl. Sci. 2024, 14, 8887 64 of 66

176. Henderson, M.; Al-Rfou, R.; Strope, B.; hsuan Sung, Y.; Lukacs, L.; Guo, R.; Kumar, S.; Miklos, B.; Kurzweil, R. Efficient Natural
Language Response Suggestion for Smart Reply. arXiv 2017, arXiv:1705.00652.

177. Cao, L.; Larsson, E.; von Ehrenheim, V.; Cavalcanti Rocha, D.D.; Martin, A.; Horn, S. PAUSE: Positive and Annealed Unlabeled
Sentence Embedding. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, Online and
Punta Cana, Dominican Republic, 7–11 November 2021; pp. 10096–10107. [CrossRef]

178. Hadsell, R.; Chopra, S.; LeCun, Y. Dimensionality Reduction by Learning an Invariant Mapping. In Proceedings of the 2006 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), New York, NY, USA, 17–22 June 2006;
Volume 2, pp. 1735–1742. [CrossRef]

179. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks
from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

180. Liu, F.; Vulić, I.; Korhonen, A.; Collier, N. Fast, Effective, and Self-Supervised: Transforming Masked Language Models into
Universal Lexical and Sentence Encoders. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, Online and Punta Cana, Dominican Republic, 7–11 November 2021; pp. 1442–1459. [CrossRef]

181. Wu, X.; Gao, C.; Zang, L.; Han, J.; Wang, Z.; Hu, S. ESimCSE: Enhanced Sample Building Method for Contrastive Learning of
Unsupervised Sentence Embedding. arXiv 2021, arXiv:2109.04380. [CrossRef]

182. Klein, T.; Nabi, M. SCD: Self-Contrastive Decorrelation for Sentence Embeddings. arXiv 2022, arXiv:2203.07847.
183. Shen, D.; Zheng, M.; Shen, Y.; Qu, Y.; Chen, W. A Simple but Tough-to-Beat Data Augmentation Approach for Natural Language

Understanding and Generation. arXiv 2020, arXiv:2009.13818. [CrossRef]
184. Rozsa, A.; Rudd, E.M.; Boult, T.E. Adversarial diversity and hard positive generation. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition Workshops, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 25–32.
185. Cao, R.; Wang, Y.; Liang, Y.; Gao, L.; Zheng, J.; Ren, J.; Wang, Z. Exploring the Impact of Negative Samples of Contrastive

Learning: A Case Study of Sentence Embedding. arXiv 2022, arXiv:2202.13093. [CrossRef]
186. Goodfellow, I.J.; Shlens, J.; Szegedy, C. Explaining and Harnessing Adversarial Examples. In Proceedings of the 3rd International

Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015.
187. Wei, J.; Zou, K. EDA: Easy Data Augmentation Techniques for Boosting Performance on Text Classification Tasks. In Proceedings

of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, 3–7 November 2019; pp. 6382–6388. [CrossRef]

188. Su, P.; Peng, Y.; Vijay-Shanker, K. Improving BERT Model Using Contrastive Learning for Biomedical Relation Extraction. In
Proceedings of the 20th Workshop on Biomedical Language Processing; Association for Computational Linguistics, Online,
11 June 2021; pp. 1–10. [CrossRef]

189. Fang, H.; Wang, S.; Zhou, M.; Ding, J.; Xie, P. CERT: Contrastive Self-supervised Learning for Language Understanding. arXiv
2020, arXiv:2005.12766. [CrossRef]

190. Edunov, S.; Ott, M.; Auli, M.; Grangier, D. Understanding Back-Translation at Scale. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, Brussels, Belgium, 31 October–4 November 2018; pp. 489–500. [CrossRef]

191. Wang, A.; Singh, A.; Michael, J.; Hill, F.; Levy, O.; Bowman, S. GLUE: A Multi-Task Benchmark and Analysis Platform for Natural
Language Understanding. In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, Brussels, Belgium, 1 November 2018; pp. 353–355. [CrossRef]

192. Wu, Z.; Wang, S.; Gu, J.; Khabsa, M.; Sun, F.; Ma, H. CLEAR: Contrastive Learning for Sentence Representation. arXiv 2020,
arXiv:2012.15466.

193. Giorgi, J.; Nitski, O.; Wang, B.; Bader, G. DeCLUTR: Deep Contrastive Learning for Unsupervised Textual Representations.
In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), Online, 1–6 August 2021; pp. 879–895. [CrossRef]

194. Conneau, A.; Kiela, D. SentEval: An Evaluation Toolkit for Universal Sentence Representations. In Proceedings of the Eleventh
International Conference on Language Resources and Evaluation (LREC 2018), Miyazaki, Japan, 7–12 May 2018.

195. Wu, Q.; Tao, C.; Shen, T.; Xu, C.; Geng, X.; Jiang, D. PCL: Peer-Contrastive Learning with Diverse Augmentations for Unsupervised
Sentence Embeddings. arXiv 2022, arXiv:2201.12093. [CrossRef]

196. Wu, X.; Gao, C.; Wang, J.; Zang, L.; Wang, Z.; Hu, S. DisCo: Effective Knowledge Distillation For Contrastive Learning of Sentence
Embeddings. arXiv 2021, arXiv:2112.05638. [CrossRef]

197. Williams, A.; Nangia, N.; Bowman, S. A Broad-Coverage Challenge Corpus for Sentence Understanding through Inference. In
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers), New Orleans, LA, USA, 1–6 June 2018; pp. 1112–1122. [CrossRef]

198. Zhang, D.; Li, S.W.; Xiao, W.; Zhu, H.; Nallapati, R.; Arnold, A.O.; Xiang, B. Pairwise Supervised Contrastive Learning of Sentence
Representations. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, Online and
Punta Cana, Dominican Republic, 7–11 November 2021; pp. 5786–5798. [CrossRef]

199. Li, S.; Hu, X.; Lin, L.; Wen, L. Pair-Level Supervised Contrastive Learning for Natural Language Inference. arXiv 2022,
arXiv:2201.10927. [CrossRef]

200. Ni, J.; Ábrego, G.H.; Constant, N.; Ma, J.; Hall, K.B.; Cer, D.; Yang, Y. Sentence-T5: Scalable Sentence Encoders from Pre-trained
Text-to-Text Models. arXiv 2021, arXiv:2108.08877. [CrossRef]

http://dx.doi.org/10.18653/v1/2021.emnlp-main.791
http://dx.doi.org/10.1109/CVPR.2006.100
http://dx.doi.org/10.18653/v1/2021.emnlp-main.109
http://dx.doi.org/10.48550/ARXIV.2109.04380
http://dx.doi.org/10.48550/ARXIV.2009.13818
http://dx.doi.org/10.48550/ARXIV.2202.13093
http://dx.doi.org/10.18653/v1/D19-1670
http://dx.doi.org/10.18653/v1/2021.bionlp-1.1
http://dx.doi.org/10.48550/ARXIV.2005.12766
http://dx.doi.org/10.18653/v1/D18-1045
http://dx.doi.org/10.18653/v1/W18-5446
http://dx.doi.org/10.18653/v1/2021.acl-long.72
http://dx.doi.org/10.48550/ARXIV.2201.12093
http://dx.doi.org/10.48550/ARXIV.2112.05638
http://dx.doi.org/10.18653/v1/N18-1101
http://dx.doi.org/10.18653/v1/2021.emnlp-main.467
http://dx.doi.org/10.48550/ARXIV.2201.10927
http://dx.doi.org/10.48550/ARXIV.2108.08877

Appl. Sci. 2024, 14, 8887 65 of 66

201. Merity, S.; Xiong, C.; Bradbury, J.; Socher, R. Pointer Sentinel Mixture Models. In Proceedings of the International Conference on
Learning Representations, Toulon, France, 24–26 April 2017.

202. Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.; Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M.; et al. Transformers:
State-of-the-Art Natural Language Processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, Online, 16–20 November 2020; pp. 38–45. [CrossRef]

203. Zhu, Y.; Kiros, R.; Zemel, R.; Salakhutdinov, R.; Urtasun, R.; Torralba, A.; Fidler, S. Aligning Books and Movies: Towards Story-
Like Visual Explanations by Watching Movies and Reading Books. In Proceedings of the 2015 IEEE International Conference on
Computer Vision (ICCV), Los Alamitos, CA, USA, 7–13 December 2015; pp. 19–27. [CrossRef]

204. Wu, Y.; Schuster, M.; Chen, Z.; Le, Q.V.; Norouzi, M.; Macherey, W.; Krikun, M.; Cao, Y.; Gao, Q.; Macherey, K.; et al. Google’s
Neural Machine Translation System: Bridging the Gap between Human and Machine Translation. arXiv 2016, arXiv:1609.08144.

205. Ba, J.L.; Kiros, J.R.; Hinton, G.E. Layer Normalization. arXiv 2016, arXiv:1607.06450.
206. Taylor, W.L. “Cloze Procedure”: A New Tool for Measuring Readability. J. Q. 1953, 30, 415–433. [CrossRef]
207. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]
208. Bolstad, B.; Irizarry, R.; Åstrand, M.; Speed, T. A comparison of normalization methods for high density oligonucleotide array

data based on variance and bias. Bioinformatics 2003, 19, 185–193. [CrossRef]
209. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.;

Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
210. Zhang, X.; LeCun, Y. Text Understanding from Scratch. arXiv 2015, arXiv:1502.01710. [CrossRef]
211. Rakib, M.R.H.; Zeh, N.; Jankowska, M.; Milios, E. Enhancement of Short Text Clustering by Iterative Classification. In Natural

Language Processing and Information Systems; Métais, E., Meziane, F., Horacek, H., Cimiano, P., Eds.; Springer International
Publishing: Cham, Switzerland, 2020; pp. 105–117.

212. Xu, J.; Xu, B.; Wang, P.; Zheng, S.; Tian, G.; Zhao, J.; Xu, B. Self-Taught convolutional neural networks for short text clustering.
Neural Netw. 2017, 88, 22–31. [CrossRef] [PubMed]

213. Yin, J.; Wang, J. A model-based approach for text clustering with outlier detection. In Proceedings of the 2016 IEEE 32nd
International Conference on Data Engineering (ICDE), Helsinki, Finland, 16–20 May 2016; pp. 625–636. [CrossRef]

214. Phan, X.H.; Nguyen, L.M.; Horiguchi, S. Learning to Classify Short and Sparse Text & Web with Hidden Topics from Large-Scale
Data Collections. In Proceedings of the 17th International Conference on World Wide Web; Association for Computing Machinery,
WWW ’08, New York, NY, USA, 17–22 May 2008; pp. 91–100. [CrossRef]

215. Munkres, J. Algorithms for the Assignment and Transportation Problems. J. Soc. Ind. Appl. Math. 1957, 5, 32–38. [CrossRef]
216. Agirre, E.; Cer, D.; Diab, M.; Gonzalez-Agirre, A. SemEval-2012 Task 6: A Pilot on Semantic Textual Similarity. In Proceedings

of the *SEM 2012: The First Joint Conference on Lexical and Computational Semantics – Volume 1: Proceedings of the main
conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval
2012), Montréal, QC, Canada, 7–8 June 2012; pp. 385–393.

217. Agirre, E.; Cer, D.; Diab, M.; Gonzalez-Agirre, A.; Guo, W. *SEM 2013 shared task: Semantic Textual Similarity. In Proceedings of
the Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 1: Proceedings of the Main Conference
and the Shared Task: Semantic Textual Similarity, Atlanta, GA, USA, 13–14 June 2013; pp. 32–43.

218. Agirre, E.; Banea, C.; Cardie, C.; Cer, D.; Diab, M.; Gonzalez-Agirre, A.; Guo, W.; Mihalcea, R.; Rigau, G.; Wiebe, J. SemEval-2014
Task 10: Multilingual Semantic Textual Similarity. In Proceedings of the 8th International Workshop on Semantic Evaluation
(SemEval 2014), Dublin, Ireland, 23–24 August 2014; pp. 81–91. [CrossRef]

219. Agirre, E.; Banea, C.; Cardie, C.; Cer, D.; Diab, M.; Gonzalez-Agirre, A.; Guo, W.; Lopez-Gazpio, I.; Maritxalar, M.;
Mihalcea, R.; et al. SemEval-2015 Task 2: Semantic Textual Similarity, English, Spanish and Pilot on Interpretability. In
Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), Denver, CO, USA, 4–5 June 2015;
pp. 252–263. [CrossRef]

220. Agirre, E.; Banea, C.; Cer, D.; Diab, M.; Gonzalez-Agirre, A.; Mihalcea, R.; Rigau, G.; Wiebe, J. SemEval-2016 Task 1: Semantic
Textual Similarity, Monolingual and Cross-Lingual Evaluation. In Proceedings of the 10th International Workshop on Semantic
Evaluation (SemEval-2016), San Diego, CA, USA, 16–17 June 2016; pp. 497–511. [CrossRef]

221. Cer, D.; Diab, M.; Agirre, E.; Lopez-Gazpio, I.; Specia, L. SemEval-2017 Task 1: Semantic Textual Similarity Multilingual and
Crosslingual Focused Evaluation. In Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017),
Vancouver, BC, Canada, 3–4 August 2017; pp. 1–14. [CrossRef]

222. Marelli, M.; Menini, S.; Baroni, M.; Bentivogli, L.; Bernardi, R.; Zamparelli, R. A SICK cure for the evaluation of compositional
distributional semantic models. In Proceedings of the Ninth International Conference on Language Resources and Evaluation
(LREC’14), Reykjavik, Iceland, 26–31 May 2014; pp. 216–223.

223. Abdalla, M.; Vishnubhotla, K.; Mohammad, S.M. What Makes Sentences Semantically Related: A Textual Relatedness Dataset
and Empirical Study. In Proceedings of the 17th Conference of the European Chapter of the Association for Computational
Linguistics: Main Volume, Dubrovnik, Croatia, 2–6 May 2023.

224. Pang, B.; Lee, L. Seeing Stars: Exploiting Class Relationships for Sentiment Categorization with Respect to Rating Scales. In
Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL’05), Ann Arbor, MI, USA, 25–30
June 2005; pp. 115–124. [CrossRef]

http://dx.doi.org/10.18653/v1/2020.emnlp-demos.6
http://dx.doi.org/10.1109/ICCV.2015.11
http://dx.doi.org/10.1177/107769905303000401
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1093/bioinformatics/19.2.185
http://dx.doi.org/10.48550/ARXIV.1502.01710
http://dx.doi.org/10.1016/j.neunet.2016.12.008
http://www.ncbi.nlm.nih.gov/pubmed/28157556
http://dx.doi.org/10.1109/ICDE.2016.7498276
http://dx.doi.org/10.1145/1367497.1367510
http://dx.doi.org/10.1137/0105003
http://dx.doi.org/10.3115/v1/S14-2010
http://dx.doi.org/10.18653/v1/S15-2045
http://dx.doi.org/10.18653/v1/S16-1081
http://dx.doi.org/10.18653/v1/S17-2001
http://dx.doi.org/10.3115/1219840.1219855

Appl. Sci. 2024, 14, 8887 66 of 66

225. Hu, M.; Liu, B. Mining and Summarizing Customer Reviews. In Proceedings of the Tenth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, New York, NY, USA, 22–24 August 2004; KDD ’04; pp. 168–177. [CrossRef]

226. Wiebe, J.; Wilson, T.; Cardie, C. Annotating expressions of opinions and emotions in language. Lang. Resour. Eval. 2005,
39, 165–210. [CrossRef]

227. Deng, L.; Wiebe, J. MPQA 3.0: An entity/event-level sentiment corpus. In Proceedings of the 2015 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Denver, CO, USA,
31 May–5 June 2015; pp. 1323–1328.

228. Dolan, B.; Quirk, C.; Brockett, C. Unsupervised Construction of Large Paraphrase Corpora: Exploiting Massively Parallel News
Sources. In Proceedings of the COLING 2004: Proceedings of the 20th International Conference on Computational Linguistics,
Geneva, Switzerland, 23–27 August 2004; pp. 350–356.

229. Cohan, A.; Ammar, W.; van Zuylen, M.; Cady, F. Structural Scaffolds for Citation Intent Classification in Scientific Publications.
In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, MN, USA, 2–7 June 2019; pp. 3586–3596. [CrossRef]

230. Li, X.; Roth, D. Learning Question Classifiers. In Proceedings of the COLING 2002: The 19th International Conference on
Computational Linguistics, Taipei, Taiwan, 26–30 August 2002.

231. Voita, E.; Sennrich, R.; Titov, I. The Bottom-up Evolution of Representations in the Transformer: A Study with Machine Translation
and Language Modeling Objectives. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, 3–7 November
2019; pp. 4396–4406. [CrossRef]

232. Lewis, P.; Perez, E.; Piktus, A.; Petroni, F.; Karpukhin, V.; Goyal, N.; Küttler, H.; Lewis, M.; Yih, W.T.; Rocktäschel, T.; et al.
Retrieval-augmented generation for knowledge-intensive NLP tasks. In Proceedings of the 34th International Conference
on Neural Information Processing Systems, Vancouver BC Canada, 6–12 December 2020; NIPS ’20; Curran Associates Inc.:
Red Hook, NY, USA, 2020.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/1014052.1014073
http://dx.doi.org/10.1007/s10579-005-7880-9
http://dx.doi.org/10.18653/v1/N19-1361
http://dx.doi.org/10.18653/v1/D19-1448

	Introduction
	Related Work
	Composing Word Vectors
	Formal Semantics
	Tensor Products
	Averaging
	Weighted Average
	Clustering
	Spectral Methods
	Using Special Tokens
	Aggregating through Layers
	Other Means of Composition

	Reshaping Representation Spaces
	Isotropy
	Post-Processing Methods
	Retrofitting
	Other Methods
	Similarity Measures

	Learning Sentence Embeddings Directly
	Paragraph Vectors
	To RNN- and Transformer-Based Models
	Contrastive Learning Approaches

	Methods
	Problem Formulation
	Models
	BERT
	Prompting Method (T0, T4)
	Averaged BERT (Avg.)
	BERT2Static (B2S, B2S-100)
	Random Embeddings (RE)

	Aggregating Tokens
	Post-Processing Embeddings
	Z-Score Normalization
	Quantile Normalization to Uniform Distribution (quantile-u)
	Whitening
	All-But-The-Top (ABTT)
	Normalization
	Learning Post-Processing

	Evaluation
	Clustering Tasks
	Semantic Textual Similarity (STS) Tasks
	Downstream Classification Tasks
	Isotropy
	Alignment and Uniformity

	Results
	Token Aggregation and Post-Processing Techniques
	Avg. versus B2S and B2S-100
	BERT versus Random Embeddings
	Isotropy
	Alignment and Uniformity

	Using Prompts
	BERT + Avg. Model

	Conclusions
	Detailed Performance on Individual Tasks
	Token Aggregation and Post-Processing
	BERT + Avg. Model in Different Layers

	References

