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1Abstract—The article presents a newly developed statistical
regression wind farm power change prediction model. Results
of the research and the data analysis performed show that the
model is able to evaluate factors determining the wind farm
gross output and to increase the prediction accuracy. The
influence of the regression equation independent variables on
the dependent one is determined by the means of the Students t-
test, and the levels of varying equation coefficients are
established. The transformation of weather density and wind
speed product corresponding to the linear stochastic
dependence of the variable power characteristic part for the
wind power plant is estimated. Expression of the
transformation is suitable to use for predicting the wind farm
power in the range from the minimum values to the installed
ones. The statistical regression model of the wind farm power
prediction is presented on the basis of given technique of the
linear regression analysis, the exponential regression equation,
and variable coefficients of regression equation. Results of
power prediction by the given model precision research show
that the one-day relative average prediction error does not
exceed 7.52 % of the installed value.

Index Terms—Wind farms, wind power generation, power
prediction, prediction precision.

I. INTRODUCTION

The prediction of gross output of wind power plant is
relevant to the selection of building place, identifying
possible wind power generation volumes and determining
the possibilities of wind power plant efficiency and cost-
effectiveness options. Wind farm (WF) power prediction is
necessary for the preliminary formation of operation
schedules and for setting the system power balancing
reserve. WFs power is predicted by the means of
eWindPredictor, WPPT, WPMS, Zephyr, Previento,
LocalPred, Sipreolico, WEPROG and other models [1]; also,
new, versatile and possibly more precise models are being
developed.

II. WIND FARM POWER PREDICTION SYSTEMS AND MODELS

According to the initial data used, WF power prediction
models are classified as time series models and numerical
weather prediction models (Fig. 1). Time series models use
direct wind speed or power measurement data of wind farm
(WF), by means of which the WF power is predicted a few
hours ahead. Long-term predictions are based on the
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numerical weather prediction models that are more precise
than time series models [2], [3].

Time series model is a simple model and the prediction
error for short time periods (a few minutes or hours) might
be relatively small, not exceeding a few percent. For longer
periods, preciseness rapidly decreases and errors might
reach even a few dozen percent. This situation is determined
by the velocities of atmosphere processes [1], [2].

Fig. 1. Types of wind farm power prediction models.

Numerical weather prediction models are classified as
physical and statistical models (Fig. 1). In physical models,
local wind speed in wind farm territory is evaluated
according to the data of numerical weather prediction model
and is recalculated to the wind farm power prediction.
Statistical models calculate WF power prediction according
to the numerical weather prediction and WF power
measurement data [1], [4].

WF power prediction using physical models is rather
inaccurate even for one wind power plant. The accuracy of
this model in the case of a wind farm decreases even more,
since it is complicated to calculate the wind speed at least a
little more precisely in the height of wind turbine axis or
average wind speed for all plants of a wind farm. It has been
identified that the wind speed might be completely different
for every wind power plant. Therefore, aiming to decrease
system errors of physical models and to increase preciseness
of power prediction, wind direction is taken into account.

Statistical models are based on the inter-relation set
between wind farm power measurements and relevant
numeric weather predictions. Over time, parameters of such
relationship change due to the changing weather conditions
and wind speed fluctuations. Moreover, the WF
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characteristics, as well as plants present in the territory of
WF, and artificial obstacles are being changed. Therefore, it
is necessary to recalculate the parameters of statistical
relationship constantly. In statistical models, the relationship
between numerical weather prediction and wind farm power
measurement data can be set by the adaptive regression or
artificial neural network methods [1], [4], [5]. Statistical
models possess one evident advantage of the above physical
models: the impact of relief, obstacles, atmosphere stability,
and other factors are constantly checked and assessed by
statistical relationship parameters. Predictions based on
statistical models are linked to certain wind farm locality,
thus, their system errors automatically decrease. Moreover,
statistical models analyse past data and, thus, allow avoiding
mistakes. Their main shortcoming is the requirement for the
measurement data for a long enough period in order to set a
statistical model and calculate regression coefficients.
Therefore, such models cannot be used for newly
constructed wind farms at the beginning of the performance.
Mixed physical-statistical models are being constructed to
eliminate this shortcoming.

Prediction models are assessed in accordance with their
precision. Precision of physical and statistical wind
prediction models is influenced by the accuracy of numerical
weather prediction results. Relative average error of wind
farm power prediction models depends on prediction period
and reaches about 8 % of installed power for 24 hours, 8 %–
12 % for 36 hours, and 16 % for 48 hours [1], [6], [7]. Since
2012, a prediction for 24 hours of power generated by all
wind farms in Lithuania is performed using physical
program model AIOLOS developed by Swedish company
VITEC [8]. Its precision is 11 % with regard to the average
power generated by WFs. It shows a high enough precision
of physical model, since the error has been calculated with
regard to the average power generated, but not the installed
one. It is determined that lower power predicting errors of
the WFs located in a larger region appear due to the so
called spatial alignment effect and autocorrelation of errors
[9].

WF power prediction models have their advantages and
disadvantages, however all of them are not precise enough.
Therefore, the article suggests a more precise statistical
regression model for wind farm power prediction.

III. PREDICTION METHODOLOGY OF THE STATISTICAL
REGRESSION OF WIND FARM POWER

Aiming to predict wind farm power, it is necessary to
identify the dependence of the farm gross output on the wind
speed, air density, and wind direction, to evaluate the
location of plants in the farm, wind and weather parameter
prediction discrepancies, the impact of changing external
factors, other quantitative and qualitative factors. The task
will be solved by means of multiple regression model
[10], [11]. Under multiple linear stochastic dependence,
random change of independent variables defines the change
of a dependent variable with a certain random error

0 1 1 2 2 ... ,m mΥ X X X          (1)

where Xj is independent variables of regression function; j

is unknown coefficients of regression function of data
population researched; and ε refers to random error.

Having calculated the values of the coefficients j by the
method of least squares, the regression equation can be used
for setting the estimate of variable Y with certain precision.
Assuming that variable Yi was observed for n times Y1, Y2,...,
Yn and the independent variable Xj was observed for n times
as well X1j, X2j,..., Xnj (where j = 1, 2,..., m). Then the
analysis model of multiple linear regression can be
expressed by the following matrix equation

,  β εY X (2)

where Y is (n × 1) dependent variable measurement vector;
X refers to n ×(m + 1) independent variable measurement
matrix; β is (m + 1) measurement regression equation
coefficient vector; and ε represents (n × 1) measurement
random error vector.

The expanded matrix can be expressed as follows
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In the analysis model of multiple linear regression,
variables Y, X1, X2 ,..., Xm are quantitative, measured in
interval and relative scales, or dichotomous, of m values.
Linear regression analysis model can be applied if data meet
certain conditions. The main part of the assumptions for
regression analysis are the requirements for random errors i,
which show the difference between the observational Yi

value and the value obtained from the regression equation
created. These assumptions of linear regression analysis are
as follows [12]–[14]:

1. Random errors εi are normally distributed.
2. Averages of all εi are equal to zero, Eεi = 0.
3. Dispersions of all εi are equal (homoscedasticity
assumption).
4. There are no data exclusions.
The first two assumptions are verified using a

Kolmogorov-Smirnov criterion.
Supposedly, (3) expresses linear stochastic dependence on

the population of variables with a population error , which
is obtained by replacing actual form of dependence with a
linear one. Components of vector j are the unknown
population regression function coefficients with the index j =
0, 1,..., m. In an observation set, the major part of the
realizations of this function Yi must correspond to the fixed
values of the independent variables Xi1, Xi2,..., Xim, where i =
1, 2,..., n. Based on these data, formulas for identifying
regression equation coefficients used for the calculation of
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regression equation coefficients (estimates) of a set and
regression equation coefficients j estimates bj (j = 0, 1,...,
m) of a set researched are calculated by the least square
method [12]. Applying this method estimates b of
coefficients β minimizing functions are calculated as follows

2 T T

1
( ) ( ) min,

n
i

i
       L ε ε ε X β Y X βY (4)

where T is matrix transpose sign.
The least square value is obtained by solving the system

of equations 0 
L

β

T 1 T( ) .  b X X X Y (5)

This estimate is unbiased Eb = β, while diagonal elements

of the covariant matrix bcov = = σ2 × T 1( )X X
regression coefficient are the dispersions of estimates bo, b1,
b2, …bm [12].

After setting the coefficient β estimates b, multiple linear
regression function suitable for the prediction of fixed
estimates of independent variables of the average Y value is
obtained

0 1 1 2 2ˆ ... .m mY b b X b X b X     (6)

Ιf the regression function is determined, it is necessary to
check whether the regression function corresponds to the
data. The most famous suitability criteria are the standard
regression error and certainty factor [15]. Accordance of the
sample regression equation to the observation results (Xi1,

Xi2,…, Xim, where 1,i n ) is checked. The better the
regression function corresponds to the data, the lower is the
difference between the estimates Yi observed and the
estimates iŶ calculated according to the set regression (6)
function. This difference is called a residual error or simply
a residual

ˆ ,i i ie Y Y  (7)

where ei is a residual, Yi represents the estimate observed,
and iŶ is the average estimate calculated according to the
regression equation.

Estimates of errors can be found by using bj estimates

 .  e X X b (8)

The dispersion of errors σ2 is also unknown, thus, its
estimate s is also calculated as follows
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Three sums of deviation squares are used for the
assessment of regression function suitability, [16]:

1. Total sum of deviation squares SSB, defining the
distribution of Y estimates around the average Y and

equal to 2

1
( )

n
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  ;

2. The regression sum of deviation squares SSR, defining a
part of the distribution of Y estimates around the average
Y and explained by linear regression Y in respect of
variables Xj, i.e. by their linear dependence, and equal to
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3. The error sum of squares SSe, defining the distribution
of Y estimates around the regression function, i.e. the
distribution of Y estimates around the part of the average
Y that is not explained by the linear regression and equal

to 2 2
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Multiple regression certainty factor r2 is obtained by
dividing the sum of regression deviation squares SSR to total
sum of deviation squares SSB

2    .R

B

SSr
SS

 (10)

This coefficient shows what part of the estimate Y
distribution around the average value Y corresponds to
linear regression. The closer r2 is to unit, the bigger part of
the distribution is defined by linear regression, i.e. the
regression function better defines the dependent variable Y.
In multiple linear regression analysis, the adjusted multiple
regression certainty factor, adjusted R Square, r2

adj [10],
[11], is used to set which number of the regression equation
independent variables m and the size of the set n is necessary
to know. The adjusted R Square shows which part of the
distribution of the dependent variable Y around the average
can be defined by Y linear regression in respect to
independent variables X1, X2, …, Xm.

Looking for multiple linear regression function, the
hypothesis on regression linear dependence is verified. The
hypothesis on the estimates of the regression coefficients of
all independent variables is verified using the Fisher F
criterion with the right critical area and is identified by
means of program package SPSS [17]:

0H : 1 2 ... 0,m     

aH : at least one 0. 
Fisher F criterion with the right critical area is equal to

~ ( , 1),R

e

SSF F m n m
SS
   (11)

where RSS is regression average of deviation squares; eSS
is residual average of deviation squares.

After setting the rejection of hypothesis H0 and the
acceptance of the alternative hypothesis Ha, it can be stated
that the regression is linear, there is at least one coefficient
of an independent variable which is not equal to zero, and

51



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 23, NO. 1, 2017

the regression model is at least partially suitable for
predictions. If all regression function coefficients of
independent variables are equal to zero, the regression
model is not suitable for predictions and the equation is not
formed correctly.

In solving the regression analysis equation, it is important
to define the influence of the independent variables Xj on a
dependent variable Y. Usually, the influence of Xj on the
change of Y is verified by the zero hypothesis H0 j = 0, i.e.
whether the coefficient next to Xj in the population
regression equation is equal to zero or not. The alternative
hypothesis Ha j ≠ 0 means the existence of linear
dependence between Xj, where j = 1, 2,…, m, and Y. The
hypotheses on regression equation coefficients are verified
using Student statistics

 ~ St 1 , 0,  1,  ..., .j
j

bj

b
T n m j m

s
    (12)

The values of Student statistics allow forming the
observed significance level p around the rejection of zero
hypothesis H0. If the zero hypothesis is rejected, the
coefficient j statistically considerably differs from zero, i.e.
j confidence intervals (CI) with level 1 – α are obtained
using the formula
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where Student distribution with a freedom degree level n –
m - 1 quintile /2; j = 0, 1, …, m is marked as tα/2;n-m-1; sbj is
a standard error of coefficient estimates bj.

When the observational set is not large, even one
completely different observation can considerably change
the estimates of regression equation coefficients statistically.
Therefore, it is important to identify, whether the data have
no exclusions. There are various methods for identifying
exclusions [10]–[12]. The simplest method is based on the
standard residual obtained by contracting the arithmetical
average of residual set from the residual ei and dividing the
result by the standard deviation. Standard residual average is
equal to 0, while standard deviation is equal to 1. The
observation is an exception, if the absolute size of standard
residual exceeds three standard deviations [12]. Confidence
intervals (CI) of average and individual values are calculated
[10], [12] for prediction individual and average values of a
dependent variable Y corresponding to given values of
independent variables. The calculated upper and lower
boundaries of variable Y prediction CI for the lower and
upper boundaries prediction of Y individual value are
recorded into the data matrix by a statistical applied program
package SPSS [12], [13].

It has been identified that the gross output of the wind
farm essentially depends on two quantitative independent
variables: air density (ρ) and wind speed (v), as well as one
qualitative variable, i.e., wind direction (K). Thus, for the
solution of wind farm power prediction task formed, it is
relevant to apply the regression analysis model for each

wind direction: {N, NNE, NE, ENE, E, ESE , SE, SSE, S,K 
SSW, SW, WSW, W, WNW, NW, NNW}.

Therefore (1) can be simplified and worked out as follows

0 1 1 2 2 ,Y β β X β X     (14)

The dependence of the gross output generated by a certain
wind farm and its coefficients upon wind speed and air
density based on multiple linear regression analysis model
and (14) obtained should be calculated. For this purpose,
hourly prediction data of atmosphere pressure (po),
temperature (ϑ), wind speed (v), and wind direction (K) were
received from Sventoji station of the Lithuanian
Hydrometeorological Service. The statistical hourly data of
gross output (P) generated were received from Benaiciai
WF. The activity data of four periods in 2009 were used for
the establishment of wind farm power dependence and
coefficients of (14). Hourly data of atmosphere air pressure
and temperature were recalculated to the relative air density
ρ according to the formula

,op
R




 (15)

where po is air density (hPa), ϑ is temperature (K), and R is a
specific gas constant (287 JK-1kg-1).

Since the characteristics of power and the dependence of
gross output P upon the product of air density ρ and wind
speed v are not linear in changing a part of the
characteristics, various transformations were applied aiming
to obtain linear stochastic dependence. It was determined
that the most suitable transformation of WF gross output P
dependence upon ρv into linear dependence is as follows:

Ln( ),Y P (16)

1
1 .X

v



(17)

The expression (16) shows that two independent variables
can be replaced by one variable of their product. After
assessing two independent variables ρ and v as one variable
ρv, multiple linear regression analysis expression applied for
the solution of the task becomes a linear regression analysis
equation of one variable

0 1
1Ln( ) ,P β β
v



   (18)

where β0, β1 are the unknown regression equation
coefficients of identified wind directions.

The mentioned changes do not affect the dependence of
WF gross output on the product of atmosphere air density
and wind speed distribution points. Aiming to identify the
values of unknown regression equation (18) coefficients o

and 1, linear regression analysis model was researched
using an SPSS [13]. The correspondence of the set
regression function obtained to the data was verified using
regression model suitability indicators, i.e. the standard
regression error and certainty index. It has been identified
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that the empirical function duly corresponds to theoretical
function. WF power prediction linear regression function
(18) regression certainty coefficients (R. Squared) calculated
– r2 [0.961 ÷ 0.988] approaches to unit for all wind
directions researched (Table I). Therefore, they are correct.
The regression function obtained explains the average
distribution of values from 96.1 % to 98.8 % ln P by a linear
regression in respect of the independent variable 1/ρv.

TABLE I. SUITABILITY INDICATORS OF THE LINEAR
REGRESSION EQUATION FOR PREVAILING WIND DIRECTION.

Wind
Direction R Squared, r2 Std. Error off

the Estimate

Kolmogorov-
Smirnov criterion,

p
WSW 0.978 0.134 0.442

Standard regression errors (Std. error off the estimate),
changing in the interval from 0.084 to 0.166 and diminishing
to zero were calculated. Linear regression equation
suitability indicators set for the prevailing wind direction are
delivered in Table II. Errors were compared to each other,
and the best function with the minor errors was identified
this way. It was identified that the regression function
obtained meets the assumptions of the normal distribution,
absence of exceptions, and data homoscedasticity of residual
errors. After the assessment of the correspondence
hypothesis and Kolmogorov-Smirnov criterion estimates, it
is possible to conclude that standardized residual
distributions are standard and normal, the hypothesis was not
rejected for all wind directions, since (p [0.442 ÷ 0.988]
and meets the of Kolmogorov Smirnov condition p > 0.05.

The assumption of homoscedasticity, or the quality of
conditional dispersions is the requirement that the
distribution of residuals shall be the same with each fixed X1j

estimate or each fixed prediction estimate îY . The closer the

estimates distribute around X1 or Ŷ axis, the better
regression function describes the data analysed. In the case
researched, the distribution of standardized residuals is
constant.

The influence of the independent variable 1/ρv on changes
of dependent variable P was verified using zero hypothesis
H0: 1 = 0, which was rejected in favour of the alternative
hypothesis Ha: 1 ≠ 0. It confirms the existence of linear
dependence between 1/ρv and P and the significance of all
sample and population regression equation coefficients,
since p < 0.001 (Table II).

Estimates b of all regression equation coefficients ,
standard errors, Student statistics, significance levels, and
confidence intervals were identified for all wind directions.
The above-mentioned coefficients and parameters are
provided in Table II and Table III only for the prevailing
wind direction.

TABLE II. COEFFICIENTS AND ASSUMPTION PARAMETERS OF
LINEAR REGRESSION EQUATION FOR THE PREVAILING WIND

DIRECTION.

Wind
Direction

Coefficient of regression
equation j Student's

statistics

Significance
level

pEstimate
bj

Value Std.
Error

WSW b0 4.282 0.039 108.602 0.000
b1 -24.051 0.321 -74.928 0.000

The results of analysis performed show that the estimates
of linear regression equation coefficients b0 = 4.282 and b1 =
–24.051 are determined with the confidence intervals PI0.95

β0 = (4.204; 4.361) and PI0.95 β1 = (–24.686; –23.416) for the
prevailing West-South-West (WSW) wind direction
(Table III). It can be stated on the basis of these data that the
average estimate of WF gross output will fall into the
confidence interval set. Analogous conditions are valid for
the other wind directions.

TABLE III. CONFIDENCE INTERVAL COEFFICIENTS OF LINEAR
REGRESSION EQUATION FOR THE PREVAILING WIND

DIRECTION.
Wind

Direction Coefficient 95 % Confidence interval for βj

Lower boundary Upper boundary

WSW b0 4.204 4.361
b1 –24.686 –23.416

It can be stated on the basis of the analytical results
assessed that the linear regression assumptions are met and
the linear regression analysis function can be used in
practice. Therefore, the WF power of wind direction
established can be identified by using the following linear
regression equation

0 1
1ˆLn( ) .P b b
v

  (19)

Having applied the inverse transformation, the following
exponential regression equation for the prediction of WF
power is obtained

0 1
1

ˆ .
b b

vP e 


 (20)

The results of linear regression function analysis show
that the linear regression equation (20) meets the
assumptions of linear regression and can be used for the
prediction of WF power from minimum to the installed
power. Expression (20) can be transformed to the simpler
and more comfortable form to use

,
b
vP C e 


  (21)

where C is a coefficient equal to the dimension 0be , b is a
coefficient equal to b1.

Values of WF prediction formula coefficient C and b for
prevailing wind directions are presented in Table IV.

TABLE IV. POWER PREDICTION EXPRESSION COEFFICIENTS.

Coeffici
-ent

Wind Direction

WSW W SW WNW S

Not
taken
into

account
C 72.385 71.023 75.189 61.621 52.353 61.744
b 24.051 24.124 24.859 23.143 22.258 23.347

It is determined by the research that the dependence of the
average WF power on wind direction is rather significant
and can reach quite high differences from the average power
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under increasing estimates of the product of air density and
wind speed. If the product ρv reaches the estimate of
17.5 kg/m3 m/s, the difference from the average power can
reach about 5 MW and be equal to about 30 % of the
installed power of the farm. It means that the assessment of
wind direction and the prediction of WF power is not only
relevant, but necessary.

The dependence of power prediction on the product of air
density and wind speed, in the standard atmosphere (po =
1013,25 hPa; ϑ = 15 °C; density, ρ = 1,225 kg/m3; g =
9,81 m/s2) in Benaiciai WF with generators of V100-2,75
type curves are provided in Fig. 2 according to the
expression (21). Benaiciai WF power characteristics (Fig. 2)
visually show the influence of wind direction and allow the
approximate prediction of gross output generated by the
farm under the atmosphere parameters predicted.

Rather significant differences of Benaiciai WF power for
various directions are influenced by the location of plants
and natural or artificial obstacles causing turbulent air
movements.

Fig. 2. Dependencies of Benaiciai wind farm power on the values of ρv
under standard atmosphere conditions.

Overall, it can be stated, that the statistical regression of
WF power prediction model evaluates wind speed and
direction, atmosphere parameters, their prediction system
errors, plant location within the farm, natural and artificial
obstacles, ground roughness, permanent parameter variation
and allows a more precise prediction of wind farm power.

IV. RESEARCH OF THE PRECISION OF STATISTICAL
REGRESSION PREDICTION MODEL OF WIND FARM POWER

Statistical regression model for the prediction of wind
farm power, consisting of the prediction and statistical parts,
has been proposed on the basis of linear regression analysis
methodology formed in Section II, exponential regression
equation obtained (21) and regression equation coefficients
for wind directions set (Fig. 3).

The statistical module accumulates prediction data from
Hydrometeorological Service of wind speed, wind direction,
atmosphere pressure and air temperature for the same period
from the closest station. WFs SCADA system directly
delivers the information about the gross output and the
number of plants operating. These data are grouped

according to wind directions, the data of the time when not
all plants were operating are rejected. Data of wind farm
gross output are analysed and compared to wind parameters
using linear regression analysis model, exclusions are
identified and rejected. Based on the finally selected data,
regression analysis model calculates regression equation
coefficients for each wind direction. Coefficients set are
periodically renewed and sent to the prediction module.

For the prediction of WF power, the numerical weather
prediction block of the prediction module is uploaded with
the prediction period data on wind speed and direction as
well as other meteorological data grouped according to wind
directions. Then air density estimates are calculated for the
predicted wind directions, and all necessary regression
equation coefficients are chosen from the block of regression
equation coefficients according to wind directions. WF
power prediction block identifies farm power for the
prediction period according to the regression equation
(21) and wind directions.

One of the most comprehensive periods, namely 15–22
July 2009, has been chosen for the prediction precision
research. Numerical weather prediction data on wind and
atmosphere in this period were regenerated by Harmonie
model. The wind speed and direction of Benaiciai WF were
regenerated using the data base of HIRLAM model and
recalculated to the height of 100 m vertically, while
horizontally it were recalculated to ensure that the wind
prognosis for the location and WF coordinates matched as
much as possible. For the period set, numerical weather
prediction on hourly wind and atmosphere data were
delivered 24 hours forward and renewed four times per day
(12 AM, 6 AM, 12 PM, and 6 PM).

Fig. 3. Wind farm power prediction statistical regression model.

Data of Benaiciai WF actual gross output as well as wind
speed and direction values measured in the farm for the same
period were used for the research of statistical regression
model precision. Estimates of relative average errors (SVP)
were calculated hourly for the comparison and precision
evaluation of prediction models

fact pr
1inst

1 ,
n

i i
i

SVP P P
nP 
  (21)

as well as relative average square errors (SVKP) in respect
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of the installed power of the WF

2
 fact  pr

1inst

1 1 ( ) ,
n

i i
i

SVKP P P
P n 
  (22)

where n is a number of data estimates, Pi fact is actual power,
Pi pr is predicted power, and Pinst is installed power of wind
farms.

The precision analysis of WF power prediction using the
statistical regression model created and the results obtained
show that the hourly estimate of one-week relative average
error identified daily, taking into account the wind direction,
changes from 7.51 % to 9.72 %, and does not exceed 8.66 %
of WF installed power. It increases up to 8.16 %–10.91 % of
WF installed power without taking into account the wind
direction (Fig. 4). In this case, the estimates of relative
average errors of weekly duration increase to 9.24 % of WF
installed power. For the assessment of model developed, the
same power predictions were made by a comparative time
series model; and it was identified that hourly relative
average error fluctuates within the range of 8.73 %–11.39 %,
while the weekly relative average error reaches 9.82 % of
WF installed power.

Fig. 4. Relative average errors of the wind farm power prediction.

Analogous relative average square error research shows
that one-week identified daily relative average square error
estimate changes from 10.3 % to 13.7 %. The weekly
estimate of the daily-identified relative average square error
does not exceed 11.64 %. Without taking into account the
wind direction, it increases to 11.02 %–14.72 %. The weekly
estimate of identified daily relative average square error
increases to 12.45 % of WF installed power (Fig. 5). The
comparative calculations using the time series method show
that weekly relative average square error of this model
fluctuates within the range of 12.24 %–15.47 %, while
weekly relative average square error reaches 14.09 % of WF
installed power.

Potentially more accurate prediction of WF power
changes during the following 24 hours is necessary for
composing the operation schedules of WF power balancing
equipment. The prediction is made for 21 July 2009. The
initial data of this time interval are given in Fig. 6. The
diagrams also show the predicted average wind speed per
day, WF actual wind speed of 10 minutes, and the actual

average gross output of the farm per 1 minute. The predicted
wind speeds and actual wind speeds per day are quite
similar, however the precision of prediction is not the same.
This may have a quite significant influence on the precision
of statistical regression power prediction model.

Fig. 5. Relative average square errors of the wind farm power prediction.

Hourly WF power of one day (Fig. 7) was predicted on
the basis of initial prediction data and WF power prediction
statistical regression model. The initial data were updated
every 6 hours (6 AM, 12 PM, and 6 PM). The figure also
shows WF average gross output per minute and per hour.

Fig. 6. Wind farm day time predicted and measured wind speed, also the
gross output according to the data of 21/07/2009 (the scale of wind speed
and power are coincided).

The analysis of predicted and measured data shows
(Fig. 7) that the discrepancies in predicted and actual power
during the first three hours of operation may be explained by
the insufficient wind speed at some wind plants. It is
determined that at WF average 5.43 m/s wind speed in
10 minutes interval the wind speed at certain wind plants can
change from 3.3 m/s to 5.9 m/s at the same time. Wind
plants of V100–2.75 type in Benaiciai farm start operating
when the average wind speed of 10 minutes reaches 4.0 m/s
and stop when the wind speed is 3.0 m/s. Such WF operation
settings are used aiming to reduce the number of
unnecessary connections to the electrical network. It shows
that the wind plants cannot start operating at the same time if
the wind speed is close to the initial WF operation speed
depending on the plants layout in the farm and different
wind speeds. Also, at the initial wind speed prognosis, it was
impossible to have a more precise evaluation of the
reduction of wind speed at 10–11 AM and after 6 PM.
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Fig. 7. Wind farm predicted and actual power per day (21/07/2009).

The diagram (Fig. 7) shows that the initial prognosis of
0.00 PM and 6 PM were not precise enough for the last four
hours of the day. It also affected the total precision of WF
power prediction.

The estimated one-day relative average error for the non-
regenerated prediction is 7.52 %, while the estimate of a
relative average error for regenerated prediction every 6
hours decreases to 7.42 %.

It is established on the basis of the comparison of
statistical regression model power prediction precision with
the studies of other authors given in literature that the
prediction accuracy of the sequence model of comparative
data is 10 %, precision of the physical program model
exceeds 11 % and accuracy of other physical and statistical
models reaches approximately 8 %.

The results obtained allow to state that the statistical
regression prediction model developed is suitable for WF
power prediction and can be a versatile prediction model,
taking into account not only the wind parameter errors, but
also the effect of changing WF environmental factors.

V. CONCLUSIONS

The statistical regression of wind farm power prediction
model allows a more precise prediction of wind farm power,
taking into account the dependence of gross output of the
farm on wind speed, wind direction, atmosphere parameters,
their system errors, plant location in a farm, natural and
artificial obstacles, ground roughness, permanent changes of
the parameters, and rejecting data unsuitable for prediction.

A one-day relative average error of wind farm power
prediction does not exceed 7.52 % of the installed power.

It has been identified that the accuracy of the power
prediction model of the wind farm essentially depends on the
precision of wind speed and atmosphere parameter
predictions, as well as the evaluation of the number of
operating plants.

The regeneration of wind and atmosphere parameter
prognosis during a day allows achieving more accurate
predictions of wind farm power.
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