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Abstract
This paper introduces a method for forecasting the arrival of trains by analyz-
ing track vibration signals. The proposed algorithms, based on H-ranks of track
vibration signals, can generate early alerts for approaching trains. These algo-
rithms are robust to additive noise and environmental conditions. The theoretical
foundation of the method involves the application of matrix operations to detect
significant changes in vibration patterns, indicating an approaching train.

1 INTRODUCTION

The methods of acquiring knowledge about the current
state of processes and devices determine the quality of
the decisions made. In this respect, in engineering issues,
the dynamic development of measurement systems and
sensors is visible. The current possibilities of registering
many signals with high precision and sampling frequency
mean that the possibilities of correctly describing the
physical quantities representing the analyzed physical
phenomena are almost unlimited. Big Data denotes
vast, intricate, expanding datasets sourced from various
independent origins. (Wu et al., 2014). When processing
such datasets, a new challenge is to make proper choices
regarding the number of signals and to find suitable algo-
rithms for the extraction of useful information from those
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signals. The existing limitations of information extraction
techniques used for data pre-processing, data extrac-
tion, transformation, and representation are discussed
in Adnan and Akbar (2019). Based on the systematic
literature review, Adnan and Akbar (2019) conclude that
noise, missing data, incomplete, and low-quality data are
primary challenges that degrade the process of extracting
information. The additive noise can affect the extraction of
the information from vibration and audio signals (Heittola
et al., 2013; Tian, 2017). As a result, the development of
novel signal-processing methods continues to be an active
research topic.
The detection of approaching trains on a relatively

closed railway line is essential for enhancing overall
safety. This method serves as an additional layer of tech-
nical protection to mitigate human–vehicle conflicts and
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sensor failures. By implementing this detection system,
we can ensure a higher level of safety for maintenance
workers and road vehicle drivers who might otherwise
be unaware of an approaching train due to visibility
limitations or other factors.
Safety is a critical part of developing, manufacturing,

and utilizing technical goods. Every engineer prioritizes
safety when it comes to transportation systems. This
paper addresses safety concerns within rail transporta-
tion, particularly focusing on the motion of rail vehicles.
Railway-level crossings pose the highest risk of accidents
within the transportation network (Szaciłło et al., 2021).
This increased risk stems from the convergence of rail and
road traffic streams. Usually, railway-level crossings safety
is ensured by the separation of these traffic flows.However,
the safety of crossings without a barrier system depends on
the individual decisions of car drivers. The accident pre-
diction model presented in Borsos et al. (2016) defines the
geometry (the road pavement width, the crossing angle)
as a significant risk factor at railway and road level cross-
ings. The weights of the safety ranking components are
also determined in Borsos et al. (2016) for given estimates
of the recognizability and drivability. But in terms of driver
behavior at an unprotected railway crossing, the main
deciding factor for safety is that the driver can see an
approaching train. The information about the approaching
trainmay not reach the driver in time due to limited visibil-
ity resulting from buildings in the vicinity of a railway level
crossing, a bend of a road or a railway line, trees, roadside
advertisements, large-size vehicles standing on the road-
side, weather conditions, and so forth. The late reaction
can result in a serious accident, unfortunately often fatal.
This paper attempts to solve this problem by developing

a technique for obtaining warning information about an
approaching train, regardless of the factors that may limit
visibility. The importance of the problem is backed by
strong social significance. As already stated in Schoppert
et al. (1968), railway crossings with limited lateral visibility
present greater hazards, compared to crossings with
unobstructed visibility. The hypothesis of risk home-
ostasis theory, which suggests compensatory behavior in
reaction to perceived risks linked with limited visibility,
is examined in Ward and Wilde (1996) and Gerald et al.
(1987). One of the study’s discoveries indicates that the
origin of this driver behavior is methodological and lies in
the positioning on the area leading to the level crossing.
However, it should be noted that current social habits and
high trust in warning systems mean that the behavior of
drivers is different and much more focused on available
support in the decision-making processes.
From an engineering perspective, the investigated prob-

lem is called the rail vehicle detection problem. As a result,
the specific scientific topic addressed in this study is the
prediction of the railway vehicle approach based on data

TABLE 1 A table outlining the characteristics of various train
detection methods.

Detection method Characteristics
Inductive loop Reliable, requires installation in tracks

(Borsos et al., 2016)
Magnetic sensors Sensitive to metal objects, requires

calibration (Szaciłło et al., 2021)
Treadle systems Mechanical, prone to wear and tear

(Borsos et al., 2016; Schoppert et al., 1968)
Radar technologies Long-range detection, affected by

environmental factors (Gerald et al., 1987;
Ward &Wilde, 1996)

Ultrasonic methods High accuracy, limited by line-of-sight
(Heittola et al., 2013; Tian, 2017)

Computer vision Advanced, requires visual data (Adnan &
Akbar, 2019; Wu et al., 2014)

Vibration-based
(proposed)

Robust, independent of existing systems,
early detection

froman independent source. The primary aimof this paper
is to develop a signal processing algorithm capable of pre-
dicting approaching trains based on track vibration signals
(track vibration information is measured by devices not
used in the standard railway traffic control systems).
A table outlining the characteristics of various train

detection methods is provided in Table 1.
The need for accurate and timely information about

the state of railway transportation is paramount for safety
and efficiency. This study aims to develop a method for
detecting approaching trains using track vibration signals.
The proposed method addresses the limitations of existing
systems by providing an independent and early warning
system that enhances safety at railway crossings.
While it is true that many level crossings are equipped

with comprehensive signal systems, there are specific sce-
narioswhere these systems alonemaynot be sufficient. For
instance, at unmanned or remote crossings, the absence
of active monitoring can increase the risk of accidents.
Additionally, technical failures, whether due to system
malfunctions or external factors such as hacking, can
render traditional systems ineffective.
Our proposed method serves as an independent, redun-

dant safety layer that operates independently of the
existing rail infrastructure. This redundancy is crucial in
ensuring that even if the primary system fails, there is still
a reliable mechanism in place to detect and warn of an
approaching train. The vibration-based system is partic-
ularly effective because it is not susceptible to the same
vulnerabilities as signal-based systems, such as electro-
magnetic interference or software hacking.
The proposed method adds an extra layer of safety by

providing early detection of approaching trains using track
vibration signals. This serves as a redundancy measure,
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ORINAITE et al. 3

ensuring safety even in cases where traditional systems
may fail due to technical issues or environmental fac-
tors. The simplicity and robustness of vibration-based
detection make it a valuable addition to existing safety
measures.
The primary motivation for our work is rooted in the

increasing complexity and vulnerability of modern rail-
way systems. Traditional methods of train detection, while
effective in many scenarios, can be compromised by elec-
tromagnetic interference, hacking, and other technical
failures. Moreover, they are dependent on infrastructure
that, while generally reliable, does not provide a fail-safe
in all situations.
Our research seeks to fill this gap by developing an

alternative, independent detection system that leverages
track vibration data. This system is designed to be robust
against the aforementioned vulnerabilities and to operate
effectively in scenarios where traditional methods might
fail, such as in unmanned or remote crossings, or dur-
ing maintenance operations in challenging environments.
The simplicity and robustness of vibration-based detec-
tion, combined with the innovative application of the
H-rank algorithm, provide a critical safety layer that is both
independent and complementary to existing systems.

1.1 The historical background

To trace the evolution of vehicle detection solutions, the
overview of the existing solutions for the prediction of an
approaching train is presented for the decades of the 20th
and 21st centuries. This approach enables the contribution
of this paper to be contextualizedwithin both the historical
literature and the latest advancements in the field.
Already in the 20th century, the use of electricity in

railway signaling and track circuits became an important
factor. Methods for the elimination of the human aspect
in terms of the signalman and exercising total control
over traffic are explored in Hookham (1925). However, it
is noted that in the absence of an automatic train con-
trol system, the engine driver may disregard signals. The
growing necessity for track circuits and autonomous train
control is emphasized in Peter (1936). Innovative and alter-
native techniques for autonomous train detection have
already been proposed at the beginning of the 20th century.
For example, an interesting solution is proposed in Rice
(1932) where the autonomous train control system uses an
alternating magnetic Wheatstone bridge to receive signals
from the inert track inductors. Upon receiving these sig-
nals, when a train enters a dangerous area, its air brakes
are automatically engaged to bring the train to a halt
(Rice, 1932). Vehicle identification and signaling are also
considered in road transit.

An innovative concept for train vehicle detection is pre-
sented by McAulay (1974). The track is considered as the
communication channel capable of transmitting informa-
tion on the passing train. The techniques used in McAulay
(1974) are based on crossover wires capable of measuring
the surface electromagnetic waves (the numerical results
obtained through the finite element method are consistent
with the analytical findings).
Numerous studies on future vehicle detection systems

have been conducted since the 1970s. An overview of the
vehicle detection concepts is given in Mills (1970). Back
then, four types of vehicle detection technologies were
considered: inductive loop, magnetic, treadle, and radar
technologies (the radio frequency type vehicle detectors
are highlighted are future technologies). Barker (1970)
examines three distinct physical phenomena relevant to
the detection of vehicular traffic. These sensors supply
data inputs for controlling vehicle-activated traffic sig-
nals, managing control systems, monitoring freeways,
and conducting statistical analysis. The paper examines
radar detectors, which utilize microwave radio frequen-
cies between 2.5 and 10 MHz, detailing their operating
principles, design considerations, and real-world applica-
tions. Moreover, the paper explores acoustical detectors
functioning at 20 kHz and low-flux density change mag-
netic detectors. Furthermore, the paper undertakes a
comparative assessment of radar, acoustical, andmagnetic
sensors, in addition to mechanical, magnetic, induction,
and optical detectors.
Singleton and Ward (1977) describe the systems and

devices utilized until the 1970s in their report titled
“Comparative study of various types of vehicle detec-
tors,” prepared for the US Department of Transportation
Office of the Secretary of Systems Development and Tech-
nology. Additionally, an automated ultrasonic rail flaw
detection system is presented by Abonyi et al. (1988) for
the real-time detection and assessment of rail flaws. While
this system pertains to a different application, it signi-
fies a novel approach to the development of rail-mounted
measurement systems.
A new trend in vehicle identification utilizing vision-

based approaches may be seen in the 1990s (Bertozzi
et al., 2000). The whole strategy is founded on power-
ful image processing and pattern-matching algorithms
(Michalopoulos, 1991). During this decade, researchers
began investigating the feasibility of utilizing neural
networks in the detection of approaching vehicles
(Dougherty, 1995).
Since the early 2000s, innovative unorthodox

approaches to train detection have been introduced. The
conceptual viability of utilizing fiber optic sensors to detect
trains is discussed in Kuen and Ho (2006). A fiber Bragg
grating (FBG) sensor, which is an optical instrument,
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4 ORINAITE et al.

measures and quantifies strain by detecting variations in
the reflected wavelength of light (Hill et al., 1993). A FBG
sensor device may also be utilized to count train axles
(Wei et al., 2010). The FBG sensors may also be used to
check the condition of trains in real time. Optical systems
facilitate real-time monitoring of trains during regular
operation owing to their rapid responsiveness (Lai et al.,
2012). A system that uses wireless power transmission to
transmit train location information through a source coil
section is presented in Hwang et al. (2019). The system
comprises onboard sensor coils, ferrite blocks fabricated
with precise location data, and a detector. A study by Reiff
(2003) presents an evaluation of five potential detection
methods of trains at highway-rail junctions (the evalu-
ation criteria encompass detecting approaching trains,
identifying train islands, detecting stationary highway
vehicles, and detecting moving highway vehicles).
The advantage of optical fiber sensors is electromag-

netic immunity, which is a major issue in the context
of track circuits. Vibration signals created by a railway
car also help to ensure electromagnetic immunity. Most
of the publications (Gómez et al., 2018; Kaynia et al.,
2017) propose a vibration application for the detection
of defects. Alahakoon et al. (2018) provide an in-depth
examination of cutting-edge rail defect-detecting meth-
ods. Chen et al. (2022) describe a vibration-based detection
approach for detecting invisible fastener deterioration. A
self-powered nanofiber vibration sensor is used to monitor
the safety tightness of railway fasteners (Meng et al., 2022).
Zhao et al. (2022) analyze and examine existing conven-
tional rail detection systems exploiting techniques based
on vibration, ultrasonics, electromagnetic, and optics.
The study by Sun et al. (2021) describes a real-time

vibration-based approach for detecting the order and
rough degree of railway wheel polygonization faults. The
most prevalent local surface problems in railway wheels
are wheel flats. During the operating operation, this sort
of fault might generate a cyclic wheel-rail collision. The
publication by Li et al. (2017) describes a flaw detection
approach for flat railway wheels based on a rail vibra-
tion adaptive multiscale morphological filter. The study by
Suharjono et al. (2017) gives a preliminary examination of
vibration signal recognition for rail train arrival. Burdzik
et al. have provided various studies of rail vibration sig-
nal information capacity and its use for train identification:
studies for train traffic control (Burdzik et al., 2017), studies
for vehicle image analysis, and track conditionmonitoring
(Celiński et al., 2022). Some studies have been done on rail-
way lines using the sound approach (Burdzik et al., 2022).
Previous studies have explored various methods for

detecting trains, including light-based and electricity-
based technologies. However, vibration-based detection
methods offer distinct advantages due to their robustness

against electromagnetic interference and hacker attacks.
Studies such as in Suharjono et al. (2017) have demon-
strated the feasibility of using vibration signal recognition
for detecting train arrivals. This study expands on these
findings by applying the H-rank algorithm to enhance
the detection accuracy and reliability of vibration-based
methods.
In recent years, modern train detection systems have

become crucial elements of safety systems of railway
safety, especially with the progress of high-speed railway
infrastructure (Yang et al., 2011). Sensors on trains acti-
vate signaling devices as they approach the crossing level.
Wheel sensors play a significant role in detecting the
location and movement direction of the rail vehicle, influ-
encing the activation of these devices (Burdzik et al., 2016).
The limitations associated with these techniques include
the high costs involved in installing track circuits, axle
counters, and managing related equipment.
Presently, transponders stand out as the foremost

technologies for accurately detecting the position of
rail vehicles, particularly high-speed trains. However,
transponder telegrams are susceptible to corruption from
electromagnetic interference originating from onboard
electric train power equipment or wayside devices (Park
et al., 2016). In the current geopolitical situation and the
importance of rail transport as a critical infrastructure,
hacker and hybrid attacks cannot be ruled out. Current
transponder-based systems are at high risk for such
threats. An innovative method is being tested and vali-
dated to assess the practicality of using radio frequency
identification technology (RFID) to accurately position
vehicles at switch and crossing points within the railway
infrastructure Olaby et al. (2022).
All these systems enable the detection of a rail vehicle

when passing through a checkpoint (sensor); addition-
ally, an RFID-based system enables the identification of
vehicles that want to be identified and have an RFID tag.
The presented vibration method is distinguished by the
fact that it detects the approaching train in advance (pre-
diction), is independent and does not require additional
devices built into the rail vehicle, and is resistant to elec-
tromagnetic interference and hacker attacks. Given the
characteristics of vibration signals generated by moving
trains, the development of a signal processing method-
ology necessitated addressing nonstationary and random
vibrations using novel time-series analysis methods.
Recent advancements in train detection technologies

include the use of fiber optic sensors, wireless communica-
tion systems, and advanced signal processing techniques.
These modern approaches offer significant improvements
over early 21st-century technologies by providing more
accurate and reliable detection under various environmen-
tal conditions. This study builds on these advancements
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ORINAITE et al. 5

by proposing a novel method that utilizes track vibration
signals to detect approaching trains, offering a comple-
mentary solution to existing systems.

1.2 The main objective of this paper

The primary objective of this paper is to introduce a
novelmethod for predicting approaching trains using track
vibration signals. This method leverages the H-rank algo-
rithm to process vibration data, providing early warnings
of approaching trains. The innovations of this approach
include its robustness to environmental noise, indepen-
dence from existing rail traffic control systems, and the
ability to function without additional onboard devices.
These innovations address the challenges of sensor failures
and the need for enhanced safety at railway crossings.
Despite the extensive history spanning over a century

in rail vehicle detection and numerous recent publica-
tions exploring new detection methods, track circuits with
simple open/close circuit principles remain the most pop-
ular system for detecting rail vehicles moving on tracks.
However, it’s crucial to highlight that railway engineers
frequently encounter unstable or faulty operations of track
circuits due to electromagnetic interference. This issue
inevitably poses risks to the safe operation of trains. There-
fore, this paper introduces a novel approach utilizing
vibration signals, which are immune to electromagnetic
interference, for predicting approaching trains. Given the
characteristics of vibration signals generated by moving
trains, the development of a signal processing method-
ology necessitated addressing nonstationary and random
vibrations using time-series methods.
It is crucial to highlight that the suggested method

for the detection of approaching trains must be validated
using real-world experimental data. This experimental val-
idation is critical, as the signal processing approach will
account for all possible disturbances of the vibration sig-
nal, confirming the practical feasibility of implementing
the proposed system. Such a predictive system constitutes
an innovative contribution to both the historical literature
and the current state of the art. The proposed scheme not
only enables the detection of a passing train but also helps
to forecast its arrival. This prediction opens up new possi-
bilities for use in railway safety systems, particularly at rail-
way crossing levels, where there are no measures to sepa-
rate road and rail traffic. It also suggests innovative ways to
improve the railway safety system and train traffic control.

2 MATERIAL ANDMETHODS

The scientific issue tackled in this paper is the prediction
of the railway vehicle approach based on an alternative
source of information such as the train vibration sig-

F IGURE 1 The measurement setup showing the vibration
sensors mounted on the surface of the rail. Photographs courtesy of
Rafal Burdzik.

nal. The main goal is to introduce a signal processing
algorithm capable of performing an early prediction of
an approaching train. The vibration generated by rolling
wheels encompasses interactions between the vehicle,
track, and soil, as well as variations in track geometry and
dynamic axle loads (Xu et al., 2022). The irregular profile
of a railway line stands as a crucial source of vibrations for
both vehicles and tracks.
The research on the information capacity of rail vibra-

tion signal for different forces and railway system devices
reflecting the real vibrational conditions within the rail-
way infrastructure is presented in Burdzik and Nowak
(2017). The high capacity of information and the ability to
choose components of the signal, indicating diversemodes
of propagation of vibration waves on the rail, have been
provided in Burdzik and Nowak (2017). This enables the
continuation and expansion of the study for the feasibility
of forecasting an approaching rail vehicle.
Rail vibration acceleration is measured utilizing an ana-

log input module, specifically the NI 9233 from National
Instruments. These data acquisition device features a uni-
versal serial bus (USB) interface and four channels of 24-bit
analog inputs, complete with integrated signal condition-
ing. The Dytran series 3023 is a small triaxial integrated
electronic piezoelectric (IEPE) accelerometer with a sensi-
tivity of 10 mV/g that is available in transducer electronic
datasheet (TEDS) and high-temperature conditions. The
study is conducted on real railway lines in a typical
working setting. The measuring system is designed with
the purpose of not affecting the functioning of the rail-
way traffic management system or track infrastructure,
thus eliminating a possible impact on transport safety
(Figure 1).
As previously stated, the aim of this study is to verify the

possibility of predicting an approaching rail vehicle from
a distance so that it is safe for a car located on a railroad-
level crossing to exit or warn the driver enabling him to
stop safely before the crossing. An impulse-based sensor
is installed on the rail, positioned 400 m away from the
vibration-measuring sensor. The diagrammatic represen-
tation of the experimental scheme is depicted in Figure 2.
The sensor system is designed to detect the presence of

an approaching train when it is approximately 400m away
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6 ORINAITE et al.

F IGURE 2 The schematic diagram illustrating the
experimental setup.

from the vibration accelerometer. This means that the sys-
tem starts identifying the train’s approach at this distance.
The vehicle’s first axle is the point at which the vibration
caused by the train’s axle is directly detected by the sensor.
The initial detection occurs when the train is 400 m away,
and as the trainmoves closer, the system continues tomon-
itor the vibrations until the train passes over the sensor.
This continuous monitoring ensures early detection and
consistent tracking of the train’s approach.
The system is designed to detect and confirm the pres-

ence of a train from 400 m but does not classify the type
of train, measure its speed, or provide detailed informa-
tion about the train. The primary goal is to provide an
early warning of an approaching train to enhance safety at
railway crossings and other critical points along the track.
As a rule, for unguarded rail and road crossings (with-

out barriers and traffic lights) or with a system failure in
Poland, it is recommended to limit the train speed dur-
ing the passage to even 20 km/h. In the case of a larger
traffic index, the speed limit is 50 km/h. On railway lines
managed by Polish Rail lines Company, for the purposes of
positioning the signals, the following braking distances are
assumed, resulting from themaximum possible speed on a
given line section; for speeds up to 60 km/h, the assumed
braking distance is 400 m. However, the most important
thing is that the concept of using this method of predicting
the approach of a train is not about informing the loco-
motive driver and initiating braking, but about informing
road vehicle drivers or employees working on the tracks
and enabling them to evacuate from the danger zone, in
this case, 400 m is significantly sufficient.
The prediction of an oncoming rail vehicle can be given

as a function of distance or time. Therefore, during the
experimental investigations, the speed of the train was
also recorded using radar, making it possible to analyze
the impact of instantaneous speed on the total prediction
time (Figure 3). The horizontal axis represents the time in
seconds. The prediction time is converted into prediction
distance using the instantaneous speed of the approaching
train. This conversion is critical for accurately determin-
ing the distance at which the train will arrive based on the
vibration signals detected.

F IGURE 3 A typical train speed profile measured during a
typical experiment.

F IGURE 4 A technical roadmap illustrating the proposed
methodology.

Continuous registration of the instantaneous speeds of
the approaching train enables the conversion of the predic-
tion time into the predicted distance. Ultimately, this may
facilitate the installation of rail vehicle detection devices
in specific locations of the railway network for known
parameters of railway lines and permissible speed.
A technical roadmap illustrating the overall method-

ology of the study is provided in Figure 4. This roadmap
outlines the key steps involved in the detection pro-
cess, including data acquisition, signal processing, and
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the application of the H-rank algorithm to identify
approaching trains.
Technical route: The detection system follows a clear

and systematic process: (1) Data Acquisition: Sensors col-
lect vibration signals from the railway tracks; (2) Signal
Processing: Raw data are filtered and preprocessed to
remove noise; (3) Feature Extraction: Relevant vibration
features indicative of an approaching train are extracted;
(4) H-rank Algorithm Application: The extracted fea-
tures are analyzed using the H-rank algorithm to detect
approaching trains. Each step is optimized for real-time
processing and accuracy.

3 THE PROPOSED COMPUTATIONAL
APPROACH

3.1 Overview of the H-rank algorithm

The H-rank method, previously described in the litera-
ture, is briefly introduced here. This study focuses on
the customizations and modifications made to the H-
rank algorithm to specifically address the challenge of
detecting approaching trains using track vibration signals.
These modifications include adapting the algorithm to
handle high-frequency vibration data and optimizing its
parameters for early and accurate detection.
The transformation of a sequence of real numbers using

the Hankel transform (𝑥𝑘)
∞
𝑘=1

yields a sequence (ℎ𝑘)∞𝑘=1,
where ℎ𝑘 = det(𝐻𝑘) and 𝐻𝑘 is a kth order Hankel matrix
(V. L. Kurakin et al., 1995)

𝐻𝑘 =

⎡
⎢
⎢
⎢
⎢
⎣

𝑥1 𝑥2 ⋯ 𝑥𝑘

𝑥2 𝑥3 ⋯ 𝑥(𝑘+1)

⋮ ⋮ ⋱ ⋮

𝑥𝑘 𝑥(𝑘+1) ⋯ 𝑥(2𝑘−1)

⎤
⎥
⎥
⎥
⎥
⎦

(1)

If there exists such 𝑚 > 1 that ℎ𝑚 ≠ 0, but ℎ𝑗 = 0 for
all 𝑗 > 𝑚, then (𝑥𝑘)

∞
𝑘=1

is a 𝑚th order linear recurrence
sequence (LRS; A. Kurakin et al., 1995).
However, calculating the order of an LRS by computing

a series of determinants is both impractical and impre-
cise. The utilization of the singular value decomposition
(SVD) of a Hankel matrix is a well-established method
for effectively determining the rank of a linear model
governing the evolution of a time series (Klema & Laub,
1980). The count of non-zero singular values in a Hankel
matrix of an LRS matches the number of non-zero roots
present in the characteristic polynomial of the linear
recurrence. The SVD algorithm can also be used to
determine the order of linear recurrences affected by
noise (Palivonaite & Ragulskis, 2014). Furthermore, the
quantity of squared singular values of the Hankel matrix

that exceeds the threshold 𝜀 can be utilized to assess the
algebraic complexity of any time series, regardless of
whether it is a linear recurrence or not (Navickas et al.,
2017). Computing the count of singular values greater than
a certain threshold 𝜀 value constitutes the principle of the
H-rank algorithm (Navickas et al., 2017). Choosing the
appropriate dimensions for the Hankel matrix, denoted
by 𝑑, and the threshold parameter 𝜀, aids in evaluating the
algebraic complexity of any given time series (Landauskas
et al., 2017; Petkevičiute-Gerlach et al., 2020).
The singular values of the Hankel matrix are calculated

using the SVD algorithm. The threshold parameter 𝜀 is
selected based on empirical testing to balance sensitivity
and robustness. In our experiments, a threshold value of
0.1 provided the best results for detecting approaching
trains.
While the H-rank algorithm relies onmatrix operations,

its application to vibration data involves complex signal
processing techniques that enhance detection accuracy.
The method’s innovativeness lies in its ability to process
large datasets efficiently and to detect subtle changes in
vibration patterns of approaching trains.
The H-rank algorithm quantifies the changes in vibra-

tion patterns, which are indicative of an approaching
train. The physical significance lies in the algorithm’s
ability to detect subtle increases in vibration intensity
and specific frequency changes that occur as the train
gets closer. By mapping H-rank values to the distance
and speed of an approaching train, the algorithm uses a
combination of signal amplitude and frequency analysis
to distinguish train vibrations from environmental noise.
Detailed results from controlled experiments demonstrate
that as the train distance decreases, the H-rank value
increases in a predictable manner, allowing for accurate
train detection.
The H-rank algorithm’s feasibility has been demon-

strated through extensive testing with real-life vibration
datasets. To handle large-scale computations, we utilize
optimized numerical libraries and efficient specialized
algorithms. These optimizations reduce the computational
complexity and enable real-time processing of vibration
data on standard computing hardware. Specifically, the
computation of the SVD for a 100 × 100 matrix was com-
pleted in 0.003041 s on a laptop equipped with an Intel
Core i3 (10th Gen) 1005G1 processor, 4 GB DDR4 SDRAM,
and a processor frequency ranging from 1.2 to 3.4 GHz. For
a 100 × 100 matrix, the SVD computation corresponds to
200 data points within an observation window from the
dataset, covering a 0.004-s signal. This method is a feasible
approach using standard computer hardware.
For the purpose of consistency and to ensure suffi-

cient data for accurate analysis, the observation window
throughout this study is standardized to 380,000 data
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8 ORINAITE et al.

points, which corresponds to a duration of 7.6 s of vibration
signal recording.
The H-rank algorithm represents a significant advance-

ment in vibration signal processing by enabling the detec-
tion of subtle pattern changes that simpler algorithms
might miss. This capability is particularly important in
ensuring the reliability of detection systems in scenarios
where human vigilance or traditional systems might fail.
The innovation of our approach lies in its ability to func-

tion independently of the existing rail infrastructure and
human factors, offering a consistent and accurate detec-
tion mechanism. This is particularly valuable in scenarios
where traditional systems may be compromised or where
human error could lead to catastrophic consequences. By
automating the detection process, our system reduces the
risk of human error and provides an additional layer of
protection.

3.2 Computational examples and results

As previously stated, the H-rank algorithm is useful
not just for identifying the sequence order in a linear
recurrence but also for assessing the algebraic intricacy of
any time series (Petkevičiute-Gerlach et al., 2020, 2022).
Therefore, before analyzing˙ the rail vibration data, we
will demonstrate the H-rank algorithm using a synthetic
chaotic time series. The paradigmatic master–slave cou-
pled (MSC) logistic map (Brown et al., 1994) is used to
demonstrate how the H-rank algorithm can reveal the
varying complexity of the MSC model. Specifically, we
will consider a system in which the degree of synchro-
nization between two subsystems (the master and the
slave) can be controlled, and we will show that the H-rank
algorithm is able to efficiently determine this degree of
synchronization.
The equations governing the MSCmodel are as follows:

𝑋𝑘+1 = 𝑟𝑋 ⋅ 𝑋𝑘 ⋅ (1 − 𝑋𝑘) ,

𝑌𝑘+1 = 𝑟𝑌 ⋅ 𝑞𝑘 ⋅ (1 − 𝑞𝑘) ,

𝑞𝑘 = Δ ⋅ 𝑋𝑘 + (1 − Δ) ⋅ 𝑌𝑘, 𝑘 = 0, 1, 2, …

(2)

where 𝑋 represents the master system, 𝑌 represents the
slave system, and the parameter Δ denotes the strength of
the master–slave coupling.
We select a value of 𝑟𝑋 = 3.9 for the master system and

𝑟𝑌 = 3.89 for the slave system to ensure that both systems
operate in a chaotic state (Brown et al., 1994). The ini-
tial conditions for the master and slave systems are set
to 𝑋0 = 0.1 and 𝑌0 = 0.2, respectively. As a result, when
the coupling parameter Δ is set to 0, the two logistic maps
produce completely different time series. In this study, the

values of parameter Δ for the computational experiments
are set to Δ = {0.01; 0.3; 0.4; 0.5}.
Increasing the magnitude of the coupling parameter Δ

leads to master–slave synchronization between the two
coupled maps. The time series produced by the master
and slave systems exhibit significant divergence at Δ =

0.01 (Figure 5). As the value of Δ increases, the time
series generated by the master and slave systems start to
resemble each other more closely. For example, at Δ = 0.3

(Figure 5) andΔ = 0.4 (Figure 5), the likeness of themaster
and the slave systems is indicated by the smaller differ-
ences between 𝑋 and 𝑌. The master and the slave systems
become almost identicalwhenΔ is large enough (Figure 5),
though small intermittent bursts can still be observed
in the time series of the difference between the two
systems.
The coupling parameter Δ can be utilized to control the

complexity of the time series representing the difference
between the master and slave (𝑋𝑘 − 𝑌𝑘). The MSC model
does not only allow the generation of a chaotic time series
(𝑋𝑘 − 𝑌𝑘) but also is capable to control its complexity. We
will demonstrate that the H-rank algorithm can provide a
meaningful evaluation of the algebraic complexity of this
synthetic chaotic time series.
The master–slave system serves as a model for gen-

erating synthetic vibration data of an approaching train.
The master–slave system is used to model the interaction
between the track and the approaching train. The mas-
ter system represents the track’s baseline vibration pattern,
while the slave system captures the variations caused by
the approaching train. This setup allows for the effective
application of the H-rank algorithm to detect significant
deviations indicative of an approaching train.
For further computations, parameter Δ is chosen as

a slowly varying function of time in the form of a
cubic spline interpolant over 10,000 discrete time steps
(Figure 6). The master (𝑋) always remains the same, it
is not influenced by the variation of Δ (Figure 6). How-
ever, the slave (𝑌) does respond to the variation of Δ.
The difference (𝑋𝑘 − 𝑌𝑘) becomes almost equal to zero
when Δ = 0.5 and does represent a violent chaotic behav-
ior at Δ = 0 (Figure 6). In fact, the variation of Δ is
chosen in such a way that the difference time series
(𝑋𝑘 − 𝑌𝑘) would represent the computational approxima-
tion of the rail vibration of the approaching and distancing
train.
The parameter Δ represents the coupling strength

between the master and the slave systems. In our experi-
ments, Δ is varied according to Figure 6 to simulate differ-
ent levels of interaction between the track and the train.
This variation helps to fine-tune the H-rank algorithm for
optimal detection performance.
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ORINAITE et al. 9

F IGURE 5 The experimental computation results of the master–slave coupled (MSC) logistic map at different constant values of Δ for
time series 𝑋,𝑌, and (𝑋 − 𝑌). The results at Δ = 0.01 in panel (a) show complete chaos at the difference between master and slave (𝑋 − 𝑌).
Increasing Δ corresponds to the increasing similarity between the time series of master and slave in panels (b) and (c). At Δ = 0.5 in panel (d)
the difference between master and slave is almost equal to zero, thus master has high control over the behavior of the slave.

The dimensions of the Hankel matrix utilized to cal-
culate the H-ranks are established as 100 × 100 (resulting
in an observation window length of 200-time forward
iterations); the threshold parameter is set to 𝜀 = 0.1. Each
observation window (each Hankel matrix) results in a
single numerical value representing the H-rank of that
matrix (Ragulskis & Navickas, 2011). We use overlapping
observation windows to produce the continuous variation
of the H-ranks throughout the whole domain (represented
by a thin blue line in the H-rank panel of Figure 6; note
that the maximal possible H-rank at this size of the
Hankel matrix is 100). It can be noted that the recon-
structed H-ranks provide a good approximation of the
varying complexity of the difference time series (𝑋𝑘 − 𝑌𝑘)

(Figure 6).

4 THE DETECTION OF THE
APPROACHING TRAIN BASED ON
TRACK VIBRATION SIGNAL ANALYSIS

The primary goal of the proposed method is to detect
the presence of an approaching train. While the current
implementation focuses on presence detection, future
enhancements could extend the method to estimate the
train’s distance, speed, and speed variations. This would
involve additional signal processing techniques to analyze
the frequency and amplitude of the vibration signals in
more detail.
Three types of experimental train track vibration signals

generated by different types of moving trains are investi-
gated in this paper: freight train with 12 wagons, electric
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10 ORINAITE et al.

F IGURE 6 The results of the computational experiment of the MSC logistic map while parameter Δ is described as a function of the
interpolated cubic spline. The slave (time series 𝑌) behaves in respect of the master (time series 𝑋) corresponding to the value of Δ. The
difference between the master and the slave is shown in the panel of (𝑋 − 𝑌) and demonstrates that two time series are becoming almost the
same at high Δ values and evolve into almost chaotic time series at Δ equals zero. H-ranks computed for the time series of the difference
between the master and the slave (𝑋 − 𝑌) denote the chaotic behavior: H-ranks are high when the signals 𝑋 and 𝑌 are different and H-ranks
become close to zero otherwise.

F IGURE 7 Different types of trains investigated in the paper:
(a) the freight train, (b) electric multiple units, and (c) the railcar.
Photographs courtesy of Rafal Burdzik.

multiple units (EMU), and solo (single) railcar. These
three types of railway vehicles are illustrated in Figure 7.
The dataset of recorded vibration signals has 5,796,000
data points for the freight train, 3,864,000 data points for
the EMU, and 3,066,000 data points for the solo railcar.
The sampling rate for all signals is 50,000 Hz, so each file
of vibration signals contains vibration records for 115.92
s (freight train), 77.28 s (EMU), and 61.32 s (solo railcar;
Figure 8). The accelerometer mounted on the train track
is set to measure the track vibration in the direction of the
𝑋-axis.

The radar installation location is carefully selected based
on the expected speed range of approaching trains and the
geometry of the track. The radar is positioned to maximize
its field of view and ensure accurate speed measurement.
The relationship between radar and sensor systems is
designed to optimize detection performance by aligning
the radar’s detection range with the sensor’s vibration sen-
sitivity. Instantaneous speed measurements are used to
dynamically adjust detection parameters, enhancing the
system’s accuracy and responsiveness.
The chosen sampling rate of 50,000 Hz is necessary

to capture the high-frequency components of the track
vibration signals accurately. This high sampling frequency
ensures that even subtle changes in the vibration patterns,
indicative of an approaching train, are detected reliably.
While this increases computational requirements, the
benefits of early and accurate detection outweigh the costs.
As mentioned previously, the rail track is equipped

with standard impulse-based sensors used to detect the
approaching train. The output of the impulse-based
sensors is depicted in Figure 8 in green solid lines. The
first peak of the impulse-based sensor shows the train
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ORINAITE et al. 11

F IGURE 8 Track vibration data measured for three different types of trains. The track vibration signal is shown in gray, and the signal of
the impulse-based sensor is plotted in green. Panels (a), (b), and (c) show the measurement results of the freight train, the EMU, and the solo
railcar respectively.

passing over the point located 400m ahead of the vibration
measurement accelerometer (Figure 1).
Three impulses generated by the impulse-based sensor

can be observed in Figure 8. Those impulses do determine
the successive times of the position of the train. The first
impulse is when the wheels of the first axle of the train
are 400 m from the place where the vibration accelerom-
eter is mounted. The second impulse is registered when
the wheels of the first axle of the train approach the place
where the vibration accelerometer is located (the moment
of the train entry). The third impulse is when the wheels
of the last axle of the train approach the place where the
vibration accelerometer is mounted (the train exit). These
impulses are marked in green lines in Figure 8.
As mentioned previously, the primary aim of this study

is to demonstrate that the H-rank algorithm can predict
the approaching trains earlier than the existing impulse-
based sensors. The Hankel matrix dimension is specified
as 𝑑 = 100, leading to an observation window comprising
200 data points. The value of the threshold parameter 𝜀
is set to 0.1 (the same as used for the identification of the
complexity of the MSC model).

4.1 The selection of the length of the
observation window

The experimental track vibration signals are inevitably
contaminated by different types of noise (especially around
the railroad crossings). Hence, it is crucial to adjust the
algorithms for detecting approaching trains. A single ran-
dom peak in the vibration signal should not be detected as
an approaching train. On the other hand, the algorithms
should be sufficiently sensitive to detect even smaller
approaching train vehicles. In any case, the sensitivity of
the proposed algorithm should be high enough to detect an
approaching train further than 400 m away (the standard
distance of the train markers).

The proposed method has been tested under a variety
of track conditions and environmental factors, including
different rail types, weather conditions, and noise levels.
Results show that the H-rank algorithm effectively adapts
to these varying conditions by adjusting its sensitivity to
the specific vibration signatures associated with different
train types and environmental influences. This adaptabil-
ity ensures reliable train detection across diverse scenarios.
As mentioned earlier, a single calibration is sufficient

for each specific location. For detailed steps and con-
siderations involved in this calibration process, refer to
Section 4.2, where we outline the calibration procedure
comprehensively
Let us consider the experimental vibration signal of the

track vibration measured without the approaching train.
The first 380,000 data points of the vibration signal (7.6 s)
are depicted in gray in Figure 9a–c. The selection of the
length of the observation window is critical in our anal-
ysis. The H-ranks computed for this vibration signal are
shown in blue in Figure 9. Clearly, the stochastic nature of
the vibration signal leads to considerable fluctuation in the
reconstructed H-ranks (Figure 9). Clearly, it would be dif-
ficult to exploit the values of H-ranks for a straightforward
prediction of an approaching train.
In this study, it is demonstrated that the methodology is

independent of the type of approaching train. A single cal-
ibration ensures reliable computation under challenging
environmental conditions. This is the primary advantage
of the proposed method. While a fixed window interval
of 7.6 s was used in the initial experiments, future work
will explore adaptive window intervals that vary based on
trainweight, speed, rail condition, andweather. This adap-
tation aims to improve the accuracy and reliability of the
detection system under varying conditions.
The proposedmodel is effective under conditions where

early detection of approaching trains is critical for safety,
such as at unmanned railway crossings or maintenance
areas. The model is particularly useful in scenarios where
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12 ORINAITE et al.

F IGURE 9 The selection of the length of the observation window. The vibration signal is divided into different intervals, showing
varying slope coefficients. The whole observation window is used for linear regression in panel (c), resulting in a slope coefficient
𝛼 = −0.11449402 ⋅ 10

−4.

visibility is limited, and existing detection systems may
not provide adequate warning. By detecting the train’s
presence from 400 m, the model ensures sufficient time
for vehicles or personnel to react, even at speeds up to 60
km/h.
It is well known from the theory of stochastic pro-

cesses that statistical tests for stationarity in time series
require an observation window of a certain length (Davy-
dov, 1968). Therefore, thewhole vibration signal in Figure 9
is split into several non-overlapping intervals of equal
length, and the variation of H-ranks is approximated by
linear regression in each of the intervals (marked in red
in Figure 9).
Linear regression models are commonly used to explore

the connection between a continuous outcome and inde-
pendent variables (Swamy & Tinsley, 1980). The recon-
structed model of the linear regression reads 𝑦 = 𝛼𝑥 + 𝛽,
where 𝑦 is defined as the approximated H-rank of the
track vibration signal, and the 𝑥 is time. The slope coeffi-
cient 𝛼 can be used to detect the approaching train. When
the slope coefficient 𝛼 is equal to around zero, the track
vibration signal corresponds to the random noise. The
higher slope coefficient 𝛼 denotes the increasing values
of the H-ranks, which can be interpreted because of the
approaching train.
Therefore, the first task is to choose a proper length of

the interval for the computation of the slope coefficient 𝛼.
A stationary random signal should result in 𝛼 = 0. If the
vibration signal in Figure 9 is divided into five parts (panel
a), the slope coefficients are different in each sub-interval.
That is a clear indication that the process is not stationary,
and implementing the proposed algorithm for detecting
approaching trains might pose challenges.
Next, the vibration signal is segmented into three parts

(Figure 9). The differences between the slope coefficients
are smaller, but it would be still difficult to construct a reli-
able algorithm for the detection of the approaching train.
Finally, if the vibration signal in Figure 9 is approximated

by the linear regression in the whole observation win-
dow, the slope coefficient reads 𝛼 = −0.11449402 ⋅ 10

−4.
This value of the slope coefficient is considered sufficiently
small, and all further computational analysis of vibration
signals is performed using non-overlapping observation
windows equal to 380,000 data points (7.6 s).
To calibrate the system, two parameters are required: the

width of the observation window and the threshold, 𝜀. We
have extensively discussed the choice of observation win-
dow; however, it is worth noting that it may need to be
adjusted based on the non-stationarity of environmental
noise. This adjustment does not require the presence of a
moving train. Instead, sensors need to be installed on the
tracks at a specific location, and L can be calibrated based
on the results obtained using the described methodology.
The calibration of 𝜀, however, is more complex. It neces-

sitates the measurement of vibration signals from at least
one passing train. Additionally, a sensor needs to be placed
at a specific distance (typically 400 m) to measure the
exact moment of the train’s passage. At least one vibration
record is required. Based on this record and the described
methodology, 𝜀 is calibrated.
There is always a lower bound for the value of 𝜀. If 𝜀

is too low, the system will operate unstably and generate
false alerts. Conversely, 𝜀 should not be too high, as the
system would then only detect the passing train when it
is very close. The goal is to find a reliable compromise
between noise resistance and sensitivity to an approaching
train.

4.2 The calibration of the slope
coefficient

Figure 10 shows H-ranks computed for all three different
types of trains (freight train in panel (a), EMU in panel
(b), and solo railcar in panel (c)). Afterward, the time
series of H-ranks is divided into intervals of 7.6 s. Since the

 14678667, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ice.13349 by C
ochrane L

ithuania, W
iley O

nline L
ibrary on [28/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1111%2Fmice.13349&mode=


ORINAITE et al. 13

F IGURE 10 The reconstruction of slope coefficients from the track vibration signals recorded for different types of trains (the freight
train, EMU, and the solo railcar vibration signals. Railcar vibration signals are gray. H-ranks for track vibrations are in blue (right blue scales).
Red dashed lines indicate sub-intervals for H-rank linear regression: 15 in (a) (freight train), 10 in (b) (EMU), and eight in (c) (solo railcar).

TABLE 2 The slope coefficients of H-ranks are approximated
by the linear regression for track vibration signals generated by
different types of passing trains.

Slope coefficient
Freight train EMU Solo railcar
−0.0114 0.0081 1.1783
−0.0119 0.9115 1.9107
0.0286 4.0409 4.0794
0.3741 14.5960 10.6448
1.0496 6.2254 13.1414
2.4673 2.5940 −11.9728
5.7050 18.0439 −6.9073
10.6117 −1.0988 −8.8009
13.6492 −12.7204
6.1539 −16.9926
1.1997

−4.9164
−6.5852
−9.3314
−9.9389

Note: The computed values of the slope coefficients are multiplied by 103 for
clarity. Note that the duration of recorded vibration signals for different types
of trains is different. Coefficients colored in red denote sub-intervals where the
proposed technique could not detect the approaching train. Coefficients col-
ored in green represent sub-intervals when the approaching train is detected
earlier by the proposed technique than by the impulse-based sensor mounted
400 m away from the vibration accelerometer.
Abbreviation: EMU, electric multiple units.

vibration records are of different lengths, such a division
results in 15 sub-intervals in Figure 10a, 10 sub-intervals
in Figure 10b, and eight sub-intervals in Figure 10c. The
slope coefficients of the linear regressions computed for
the variation of H-ranks in each sub-interval are depicted
in Table 2 (note that the values of slope coefficients are
multiplied by 1000 for clarity).

Now, the calibration of the proposed technique must be
done in terms of the minimum slope coefficient signaling
about the approaching train. It can be observed that the
threshold value of the slope coefficient equal to 0.02 ⋅ 10−3

does serve as a reliable indicator for an approaching train.
Calibration is performed once immediately after the

installation of the measurement hardware. This calibra-
tion ensures that the sensors are accurately aligned and
responsive. These calculations clearly demonstrate that
calibration for different types of trains is unnecessary. A
single calibration ensures the successful operation of the
system. Comparative experiments have been conducted to
test the applicability of the method across different types
of trains, velocities, and environmental conditions. These
experiments demonstrate the robustness and reliability of
the proposed detection system.
Table 2 shows that from the first sub-interval of H-ranks

linear regressions train can be detected only by the sig-
nal of solo railcar (Figure 10c) as the slope coefficient for
this sub-interval 1.1783 ⋅ 10−3 is greater than the thresh-
old parameter 0.02 ⋅ 10−3 (the third column in Table 2).
The train can be detected from the second sub-interval
of the linear regression (the second column in Table 2)
of the EMU train vibration signal (Figure 10b) since the
slope coefficient is 0.9115 ⋅ 10−3 > 0.02 ⋅ 10

−3. The third
sub-interval of the linear regression (the first column in
Table 2) denotes the approaching train for the vibration sig-
nal of the freight train since the slope coefficient 0.0286 ⋅
10

−3 is greater than 0.02 ⋅ 10−3 (Figure 10a).
Regarding the presented methodology the train can be

detected from38 to 60.8 s before driving across the crossing.
This algorithm is better for the train detection system than
previous methods, using physical sensors while detecting
an approaching train 33 s before it drives across the road.
The calibration process is performed once per location

to account for the specific track and environmental charac-
teristics. During calibration, the systemmeasures baseline
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14 ORINAITE et al.

vibrations and environmental noise, adjusting its sensitiv-
ity and thresholds accordingly. This allows the algorithm
to remain effective across different train types without the
need for recalibration, as it is designed to recognize the
unique vibration patterns of all trains passing through the
calibrated location.
Calibrating the slope coefficient is directly linked to

choosing the appropriate observation window. The pri-
mary goal of this calibration procedure is to enable the
proposed algorithm to distinguish track vibrations induced
by the approaching train from the environmental noise. It
is important to observe that this calibration is performed
only once right after the installation of the specific mea-
surement hardware and is usable for all three types of
trains investigated in this paper. No doubt, different types
of accelerometers and different vibration signal acquisi-
tion hardware and software would require a re-calibration
of the slope coefficient. But the results of this study show
that once this calibration is done, it can be used for dif-
ferent kinds of trains, for different train velocities, and for
different environmental parameters.

5 DISCUSSION

Increasing the prediction range of an approaching rail
vehicle requires the use of new devices and advanced
methods of signal processing. Existing devices dedicated
to the detecting of moving objects, both those used in rail
transport and vehicle detectors (Feng et al., 2017; based
on magnetoresistive sensors, fiber optic sensors, current
sensors, voltage sensors, or even temperature sensors), or
radars are increasingly being tested. However, the suc-
cessful implementation of such techniques has several
limitations in their application. The sensors used in the
train traction system enable the detection of a vehicle
located above the sensor or in its immediate vicinity. Axle
counters, also referred to as rail vehicle detection sensors,
stand as the primary component of the rail traffic control
system. The task of these devices is to constantly control
the unoccupied sections of the track necessary for the safe
operation of rail traffic both on the railway line and at the
station. Information on which of the supervised sections is
free or occupied is necessary to determine a safe route, and
thus allow the train to enter the controlled zone. Therefore,
they constitute the sectional control points whose possibil-
ities of predicting the approach of a train are limited due to
the length of specific linear sections.
Radars, on the other hand, allow the detection of vehi-

cles from certain distances, but they are exposed to many
unwanted effects, and their effectiveness strongly depends
on the location and topography as well as barriers that are
often present in the vicinity of the railway crossings.

Therefore, the search for new sources of information
about approaching trains is an important scientific issue
with great potential for practical applications. The tech-
nique described in this paper is based on rail vibration
measurements and enables independent predictions from
other information systems used in rail transport. The diffi-
culty in using vibration signals for these purposes results
from the large information capacity, which results in
redundancy and sensitivity to the inevitable environmen-
tal noise. That is why the development of an original and
dedicated mathematical algorithm for signal processing to
extract information about the approaching train as early as
possible is so important.
The proposed method utilizes durable sensors with a

low maintenance requirement, making it a cost-effective
solution for railway safety. Initial installation costs are off-
set by the system’s longevity and low operational costs.
Additionally, the system’s ability to reduce accidents and
improve safety at railway crossings provides significant
economic and social benefits, further enhancing its cost-
effectiveness.
Whenever a new technique is developed, its limitations

should be considered.One such limitation is the type of rail
vehicle. Of course, the type, size, weight, and speed of the
rail vehicle do affect the generated track vibrations. There-
fore, as part of the measurements, signals of rail vibrations
generated by the passage of various types of trains are
recorded. Then, as part of analytical experiments, calcu-
lations are carried out for extremely different types of rail
vehicles: a freight train, a passenger train (EMU), and
a single handcar. The train types are selected in such a
way that the differences in the construction, weight, and
size are very large. Additionally, rail vehicles moving at
different speeds are considered too. Due to the use of
the signal processing method developed using the H-rank
algorithm, it is shown that in each of these very different
situations, satisfactory prediction rates are achieved. This
is a very important achievement of the developed method,
which reduces the fundamental limitation of the method
for different rail vehicles moving at different speeds.
Another limitation is related to the location of the

railway network and the resulting differences in the track
geometry and the type of track infrastructure. In this
respect, the same measurement setup was installed in
different geographical locations. The obtained results
confirmed the satisfactory results for different locations.
Similarly, the influence of the ambient temperature, which
could potentially impact the propagation characteristics of
the vibration wave on the steel rail, is verified too. Satisfac-
tory results are also achieved for different meteorological
and environmental conditions. Therefore, as limitations
of the developed method of predicting an approaching rail
vehicle using vibration signals and the H-rank algorithm,
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which require further verification, the type of vibration
sensors used and the place of mounting on the rail should
be indicated. An additional limitationmay be the presence
of other railway crossings, stations, or carrying out works
on the railway infrastructure within the prediction range
converted into distances from the location of the vibration
sensor.
It takes a long time to achieve 100% separation of road

and rail traffic flows using railroad crossings levels with
barriers. Additionally, this process will progress at differ-
ent rates in different countries. So far, there is not a single
country in the entire world that has all rail and road cross-
ings with barriers. For example, in Poland, there are over
8740 crossings without barriers (ca. 70% of all). Moreover,
the presented research shows the potential and possibil-
ities of using rail vibration signals, which can be used
in many areas of rail transport and in the entire railway
network, not only at railroad crossings.
In experimental tests, rail vibration accelerations were

recorded during the passage of several dozen trains. Long-
term signals were always recorded, which included at least
5 min of recording before the train passage and a few
minutes after the train passage. The article presents only
representative results for three types of trains (passenger—
EMU, freight, and single railcar), whose construction is
so different that they constitute separate experimental
groups. For each of these groups, several dozen passages
of various trains were recorded. In addition, the concept of
the signal processing methodology is based on tools that
determine relative measures and trends, which makes it
possible to reduce the impact of the environment (differ-
ent tracks) and different types of trains on the prediction
time of an approaching rail vehicle.
The concept and prototype of the system are completely

independent from other systems currently used in railway
infrastructure. The sensor is powered autonomously and
by battery, the battery life is over 12 months. Tracking sen-
sor for rail vehicles was patented in Tracking sensor for rail
vehicles (2021). The signal transmission system is based
on LoRa technology, independent of the railway transport
transmission system. LoRa is a radio interface operating,
among others, in the ISM 434 MHz and 868 MHz bands,
enabling long-range communication with low power con-
sumption. The data processing and results archiving unit
is built into the measurement sensor. The prototype of the
system was developed by the Polish company DR-TECH
and has been installed for over 2 years at a railroad cross-
ing level as a completely independent and autonomous
system.
The developed method for predicting an approaching

train was designed with the assumption of being indepen-
dent of the technical state of the railway infrastructure and

superstructure, including the condition and type of tracks
and rail vehicles.
Knowing howmuch influence the parameters, type and

technical condition of ballast, railway sleepers and rail
joints have on the recorded vibration signals, as well as
the size, type of train, type of suspension, technical con-
dition of wheels and bogies of rail vehicles (locomotives
and wagons), it was assumed that all these factors would
be reduced as a vibration background. Therefore, relative
measures have been proposed that analyze the increases
in subsequent iterations of the computational algorithm,
which reduces the impact of infrastructure and tempera-
ture. In the case of the technical condition of rail vehicles,
any anomalies from the standard condition result in an
increase in the dissipation of vibration energy, which fur-
ther highlights the upward trends, making it easier to
predict the vehicle from a greater distance.
It is difficult to compare the obtained results of research

experiments with the research of other authors because
there are no articles in the literature presenting calcula-
tions for predicting the approach of a rail vehicle based on
rail vibration signals. It is true that there aremany publica-
tions on themeasurement of rail vibrations: Cui et al. (2021,
2022) and Kaewunruen and Remennikov (2006) alongside
the anticipation of vibrations triggered by train passage
and the emission of vibrations into the ground, Auersch
(2020), Kouroussis et al. (2017), Lombaert et al. (2006), and
Picoux & Houedec (2005), but it is not possible to directly
relate these results to the described experiments.
Our research demonstrates that such methods are often

insufficient in complex environments characterized by
high levels of noise and other vibrations. The H-rank
algorithm we propose is specifically designed to address
these challenges by analyzing large datasets to detect sub-
tle changes in vibration patterns that simpler algorithms
might miss.
In environments with significant noise, such as urban

areas or near industrial sites, the precision of our method
becomes critical. The advanced algorithm we developed
is capable of distinguishing between different types of
vibrations, ensuring that the system can reliably detect
an approaching train even under these challenging con-
ditions. This accuracy and robustness are not achievable
with simple vibration detection methods, particularly
when the train is far from the detection point, and the
signal-to-noise ratio is low.
While simple vibration detection methods can identify

the presence of a train, they may not provide the accu-
racy needed in complex environments with high noise
levels. The H-rank algorithm enhances detection reliabil-
ity by processing large datasets efficiently, ensuring robust
performance even in challenging conditions.
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6 CONCLUDING REMARKS

This paper introduces a novel technique for detecting
approaching trains through the analysis of track vibration
signals. The proposed method relies on the H-ranks of
vibration signals obtained from a real experimental setup,
where the vibrations produced through the interaction of
the wheel with the track are inevitably affected by environ-
mental noise. It appears that the predictions performed by
the proposed method do outperform standard techniques
for the detection of approaching trains.
The presented approach for the detection of the

approaching trains can be easily implemented on the exist-
ing track infrastructure without compromising any safety
standards or regulations. All presented experimental mea-
surements, computations, and predictions are performed
when the vibration accelerometer is installed directly on
the track at the crossing location. The prediction time
for the approaching train could be seriously improved if
the vibration accelerometer were mounted ahead of the
crossing (e.g., 400 m away from the crossing). Then, the
proposed technique should either comprise wireless vibra-
tion signal transmission to the computer performing the
prediction, or all the real-time computations should be per-
formed in the vicinity of the vibration accelerometer (then
only the warning signals for the approaching train should
be transmitted to the location of crossing). The concrete
goal of future research is to practically implement such a
distributed infrastructure.
While direct comparisons with other studies are chal-

lenging due to the lack of similar research, our experimen-
tal results indicate that the proposed method provides reli-
able early detection of approaching trains. The method’s
robustness to noise and environmental conditions further
supports its potential for practical application.
For practical implementation, the proposed technique

can be enhanced by incorporatingwireless vibration signal
transmission to a central processing unit or perform-
ing real-time computations locally near the vibration
accelerometers. This would ensure timely and efficient
detection, improving overall safety.
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