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Featured Application: The presented solution can be applied to simplify and hasten the develop-
ment of gamified programming exercises conforming to the Framework for Gamified Programming
Education (FGPE) standard.

Abstract: Skilled programmers are in high demand, and a critical obstacle to satisfying this demand
is the difficulty of acquiring programming skills. This issue can be addressed with automated
assessment, which gives fast feedback to students trying to code, and gamification, which motivates
them to intensify their learning efforts. Although some collections of gamified programming exercises
are available, producing new ones is very demanding. This paper presents GAMAI, an Al-powered
exercise gamifier, enriching the Framework for Gamified Programming Education (FGPE) ecosystem.
Leveraging large language models, GAMALI enables teachers to effortlessly apply storytelling to
describe a gamified scenario, as GAMAI decorates natural language text with the sentences needed
by OpenAI APIs to contextualize the prompt. Once a gamified scenario has been generated, GAMAI
automatically produces exercise files in a FGPE-compatible format. According to the presented
evaluation results, most gamified exercises generated with Al support were ready to be used, with no
or minimum human effort, and were positively assessed by students. The usability of the software
was also assessed as high by the users. Our research paves the way for a more efficient and interactive
approach to programming education, leveraging the capabilities of advanced language models in
conjunction with gamification principles.

Keywords: gamification; programming education; educational tools; artificial intelligence

1. Introduction

The rising demand for skilled programmers reflects the pivotal role of programming in
various areas of the contemporary world [1]. However, the formidable challenge of learning
programming is an obstacle to meeting this demand. The integration of automated assess-
ment tools has shown promise in providing swift feedback to students as they experiment
with their code, facilitating a more efficient learning process [2]. In tandem, gamification
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has become a powerful strategy to enhance motivation and engagement, intensifying stu-
dents’ efforts to master programming concepts [3]. Together, these approaches form the
backbone of the Framework for Gamified Programming Education (FGPE) ecosystem [4].
The practical usefulness of the FGPE relies on the availability of gamified programming
exercises covering diverse topics.

In the context of this work, we define a gamified programming exercise as an exercise
aimed at testing the student’s ability to solve a specified problem, with the use of any
common or peculiar programming language feature or features, embedded in a narrative
scenario (considered as a gamification element, following, e.g., [5-7]), in which solving
the exercise is part of a wider challenge. On the technical level, a gamified programming
exercise is a programming exercise enhanced with an additional layer of metadata, defining,
e.g., the conditions for accessing the exercise and the rewards for solving it, conforming
to a standardized format (e.g., GEdIL [8]), making it possible to use the exercise within a
gamified interactive learning environment, such as the FGPE PLE [4].

Although there are open-licensed collections of these exercises [9], more are needed to
let students practice the same techniques in different contexts or to provide each student
with exercises different from their peers. Creating new gamified exercises remains a
significant challenge for educators, teachers, and trainers [4].

This paper, an extended version of our late-breaking work presented at the 25th
International Conference on Artificial Intelligence in Education (AIED 2024) [10], addresses
this challenge by introducing GAMAI, an artificial intelligence (AI)-powered exercise
gamifier integrated into the Framework for Gamified Programming Education (FGPE)
ecosystem. GAMALI leverages OpenAl API [11] to streamline the process of creating
gamified programming exercises. Through GAMAI, teachers can employ a storytelling
approach to articulate the gamified scenario. The system automatically enhances natural
language text with essential sentences required by OpenAl API to contextualize the prompt.
Once the gamified scenario has been generated, GAMALI further automates the production
of specification files that can be easily edited within FGPE AuthorKit [4]. This innovative
approach aims to alleviate the burden on educators, facilitating the seamless creation
and integration of gamified programming exercises into educational curricula. The novel
contribution of this paper is the processing approach to text prompt augmentation. The
proposed algorithm decorates the teachers’ gamified storytelling, to enable an automatic
gamified programming exercise playground.

The rest of this paper is organized as follows: Section 2 gives an overview of using Al
for the automatic generation of programming exercises; Section 3 describes the Framework
for Gamified Programming Education ecosystem targeted by GAMAI how GAMAI was
designed and implemented, and how it operates; a qualitative evaluation of the exercises
generated with GAMALI is reported in Section 4; finally, the paper content is summarized in
the final Section 5, with concluding remarks and an outline of the next steps planned for
future research.

2. Related Work

Al tools are pivotal in enhancing the teaching—learning process of computer program-
ming by providing personalized, adaptive, and interactive learning experiences [12]. In
programming education, Al can assist educators and learners in various aspects, including
automated feedback and code review [13], adaptive learning paths [14], programming
tutoring systems [15], automated assessment and grading [16], code summarization and
documentation [17], and code generation [18-21].

Another way of exploiting Al’s capabilities is by generating programming exercises.
There is a notable interest in such generators, as creating programming exercises that
are diversified and challenging for learners can be time-consuming for educators. The
generated exercises can be tailored to cater to different skill levels, ensuring a dynamic
learning environment that adapts to individual learner needs [22].
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Kurdi et al. [23] conducted a systematic review of automatic exercise generation
in many different domains, such as geometry, history, logic, programming, and science.
It included 93 papers between 2015 and 2019 that tackled the automatic generation of
exercises for educational purposes. The study concluded that there needs to be more tools
for generating exercises of controlled difficulty and with facilities like enriching question
forms and structures, automating template construction, improving presentation, and
generating feedback.

Zavala and Mendoza [24] presented a tool (version 1.0) that uses automatic item gener-
ation (AIG) to address the problem of creating many similar programming exercises using
predefined templates that are used for quizzes. The main goal was to ensure consistency in
testing many students with questions of the same difficulty level.

Goliath (version 1.0) is an application that automatically generates programming
exercises using a template system. With a Python programming exercise generator, Goliath
targets the facilitation of teachers’ day-to-day tasks. The tool creates templates, employing
two Al models—one for generating the basic text of the statement from keywords, and
another for extracting source code.

Agni (version 1.2) [25] serves as a dynamic code playground tailored for learning
JavaScript. In recognition of the challenges posed by manual exercise creation, Agni’s
creators recently introduced a new back end with an exercise generation component
powered by the ChatGPT API This integration automates the exercise creation process
by generating statements, solution code, and test cases. The tool supports the IMS LTI
specification, allowing seamless integration with learning management systems (LMS)
such as Moodle, Blackboard, and Canvas.

ExGen (version 1.0) [26] focuses on generating ready-to-use exercises for the specific
difficulty level and concept the student is working on. It leverages the latest advances in
LLMs to autogenerate many novel exercises and filter them to ensure they suit students.

TESTed (version 1.0) [27] is an educational testing framework that supports the creation
of programming exercises with automated assessment capabilities in a programming-
language-independent manner. TESTed combines the advantages of unit testing with
output comparison, providing a versatile solution for educational assessment.

Recently, works have been increasingly leveraging pre-trained LLMs for educational
purposes [28]. The most recent and relevant work [29] in automatic exercise generation
using novel Al technologies (pre-trained LLMs) explored OpenAl Codex (which has been
unavailable since March 2023) to create new programming exercises and code explana-
tions. They found many Codex-generated exercises sensible and novel, but others needed
clarification regarding problem statements and missing or faulty test cases.

On the other hand, Kasneci et al. [30] discussed the potential benefits, for instance,
content generation and personalized learning, as well as challenges, e.g., model biases,
system brittleness, etc., of applying LLMs to education. Similarly, Becker et al. [22] elabo-
rated on the educational opportunities of Al code generation and how educators should
act quickly given these developments.

Table 1 provides a comparative overview of some of the mentioned tools, based on
their generation method, supported formats, and other relevant criteria.

Regarding the generation method, Goliath relies on a template-based approach using
specific template fields for customization. Conversely, Agni integrates the ChatGPT API,
enabling on-demand customization through dynamic interaction with the language model.
ExGen leverages LLMs for exercise generation, while Zavala’s tool employs semantic-based
automatic item generation (AIG) to create contextual programming exercises dynamically.
TESTed uses unit testing, combining the advantages of traditional testing methodologies
with generic output comparison.

The tools present several output formats: Goliath generates exercises with DSL-
formatted text, ensuring a structured and consistent output. Agni outputs exercises in
JSON format, providing a machine-readable and versatile representation. ExGen produces
exercises in natural language, maintaining simplicity and accessibility. The remaining tools’
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output format varies based on the semantic-based AIG and depending on the unit testing
approach used.

Table 1. Comparison of automated programming exercise generation tools.

Tool Goliath (Version 1.0) Agni (Version 1.2)  ExGen (Version 1.0)  Zavala (Version 1.0) TESTed (Version 1.0)
Generation Method Template-based ChatGPT APIL LLM-based Semantic-based AIG Unit Testing
Varlablh'ty a.nd Template Fields On—DeIpar}d On—Demar'ld LOD Integration Varies
Customization Customization Customization
Output Formats DSL-formatted text JSON Natural language Varies Varies
Difficulty Levels Difficulty /Tags Difficulty / Tags Difficulty Difficulty Difficulty
and Tags
Integ}‘atlon with No IMS LTI Integration API Integration API Integration API Integration
Environments
Semantic-Based No No No Yes No

Generation

All tools allow the association of difficulty levels. This feature ensures instructors can
customize exercises based on the student’s proficiency levels. In Goliath and Agni, it is
possible to categorize exercises according to specific topics or concepts.

Regarding interoperability, Agni integrates with learning environments such as learning
management systems (LMS) using IMS LTI specifications. All the remaining tools (except
Goliath) offer APl integration, allowing easy incorporation into existing educational platforms.

Finally, regarding semantic-based generation, while Goliath, Agni, and TESTed do not
explicitly focus on semantic-based generation, ExGen uses recent advances in pre-trained
large language models (LLMs) for automatic exercise generation. Zavala’s tool stands
out by employing semantic-based AIG with linked open data integration, enhancing the
contextual relevance of exercises.

While there are known examples of supporting gamification with Al methods [31], none
of the existing tools and frameworks for programming exercise generation known to the
authors (including those described above) are capable of generating gamified programming
challenges, like GAMAI proposed here. The closest veins of research we were able to identify
are the automatic generation of quizzes on the topic of software specifications and testing [32],
and the automatic generation of challenges for gamification systems relatively distant in scope
from programming education: ear training for music theory classes [33] and sustainable urban
mobility [34]. It was this gap in the current research landscape that sparked our motivation to
develop GAMALI [10], which is described in the following section.

3. Solution
3.1. Target Ecosystem: FGPE

The Framework for Gamified Programming Education (FGPE) has succeeded in
establishing a technical milieu for incorporating gamification methods into programming
education. It covers various aspects, including gamified exercise formats, exemplary
collections, and the necessary supporting software [4]. The FGPE is programming-language-
agnostic (allowing students to select their preferred programming language to tackle
exercises), features multilingual instruction for students (who can effortlessly navigate
between languages to obtain exercise requirements in the form most comprehensible to
them) and extensive customization—encompassing both the learning content (educators
can compose original courses, reuse exercises from the provided open repositories [9],
or create brand new exercises, thus tailoring the learning content to the specific needs
of the class or individual students) and the gamification rules (educators can select pre-
existing gamified courses or create their own, drawing specifications of gamification rules
from the provided courses or developing their own ones). It also provides integration
with any LTI-compliant [35] learning management system (LMS) or massive open online
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course (MOOC), allowing for seamless synchronization of student identities, activities, and
learning outcomes.
The key components of the FGPE ecosystem include:

¢  FGPE AuthorKit: serves the dual purpose of preparing and managing both program-
ming exercises and gamification rules [4].

*  GitHub-hosted Open Repository: serves as a centralized hub for gamified program-
ming exercises [9].

*  FGPE Gamification Service: processes gamification rules and manages the overall
game state [36].

*  Mooshak sandbox: executes programs submitted by students and autonomously
assesses their performance [37].

e FGPE PLE (Programming Learning Environment): a progressive web app which
lets students access gamified exercises, solve them, and receive graded feedback,
whereas teachers can use the PLE to organize exercise sets, grant access to students,
and monitor their learning progress [4].

The gamified programming exercises within the FGPE ecosystem are encapsulated in
educational content in two distinct formats. These formats serve to articulate programming
exercises and gamification layers, respectively. The first format, known as YAPEXIL [38], is
dedicated to meticulously describing programming exercises, ensuring clarity and precision
in their presentation. On the other hand, the second format, GEdIL [8], is specifically
tailored for the representation of gamification layers, providing a structured framework for
integrating game elements into educational materials.

3.2. Design and Implementation

Figure 1 provides a comprehensive visualization of the overarching Framework for
Gamified Programming Exercises (FGPE) architecture, emphasizing the innovative contri-
bution of the proposed Al-powered exercise gamification solution. Designing, implement-
ing, training, and reinforcing a dedicated generative pre-trained transformer-based large
language model from scratch was outside of the scope of this research, so we designed
GAMALI with leveraging OpenAl API [11] usage in mind. However, we considered a
possible scenario in which different resources of a similar kind are used. The GPT Abstrac-
tion Layer component abstracts the interface to OpenAl API, enabling FGPE developers
to test GAMAI with diverse and different large language model services. GAMAI uses
generative Al LLMs to help creators implement exercises and challenges. Although the
technical interactions between the GPT abstraction layer and the actual Al service provider
are similar for both cases, the prompt engineering is different, as explained below.
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editor
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Figure 1. GAMAI placed within the FGPE architecture.
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Al-assisted programming exercise creation. GAMAI’'s main aim is to assist teachers,
educators, and trainers in creating gamified exercises for programming education. In this
work, the creator is the human interacting with GAMALI to create the gamified exercises
and the related gamified scenario. That means the creator’s expertise is crucial in setting
up the context in which the generative Al model has to imitate human behavior. The
OpenAl GPT generative model used to develop the GAMAI prototype enables context
settings using the “act as” clause. For example, we can consider a computer science
research assistant who has to generate exercises for a first-year introduction to computing
programming using the C language for bachelor students in a computer science degree class.
The generative Al model must reflect the creator’s cultural background and experience,
acting appropriately. The Al generative model context setting sentence has to be assembled
as a well-formed context selection prompt for the GPT service containing the following
act as selectors: (i) the background skills of the creator; (ii) the kind of class for which the
exercises have to be created; and (iii) the level of the exercises. In a different scenario, the
creator could be a full professor of computer science who has to generate exercises for
advanced algorithms and data structures using Python programming for a master’s degree
in computer engineering. Contexts are stored in the project repository and managed by
the Context Manager component. For Al-based programming exercises, the context is
consistent by assembling it in each session, ensuring exercises created by different creators
for the same target audience are consistent.

While the nature of the exercises can vary widely, the kind of gamification augmenta-
tion is limited by the FGPE core implementations. A typical kind of exercise gamification
leverages approaches like, but not limited to, (i) fill the gap; (ii) find the bug; or (iii) com-
plete the code. Finally, the exercise is evaluated by the Mooshak component; thus, it has
to be constrained so that the evaluation service can correctly perform scoring. To prepare
a prompt considering this constraint, we developed a Constraint Manager component
leveraging diverse and different constraints stored in the project repository alongside the
Exercises, Challenges, and Contexts above.

Al-assisted gamified scenario creation. To create gamified challenges, the creator’s
skills could belong to a completely different area, in particular, focused on digital humani-
ties, communications, and professional storytelling. Before each GPT service interaction, a
prompt has to be built, performing a decoration stage in which the critical points of the
“act as” statement are formed. For example, the creator can be an expert in fantasy saga
writing, defining a story’s characters and main plot. The plot branching and twists can
be mapped on gamified exercises, adding custom fields to the results. Once the students
have solved a quest, the story continues along a different branch. The Context Manager
and the Constraint Manager components provide the prompt decoration with data from
the project repository needed to set the context automatically, ensuring the consistency of
the automatically generated content.

The Exercise Prompt Decorator is the component devoted to adding the needed
ancillary information to the creator-generated prompt describing the kind of exercise.
Listing 1 represents the prompt produced by this component. Line 1 is set by gathering the
exercise creator skill from the project setup (default exercise creator skills) or the exercise
collection level. Line 2 is directly written by the exercise creator, specifying the number
and the kind of exercises to be generated. Line 3 can be assembled automatically using the
GAMALI exercise prompt user interface or from details described by the exercise creator.
Finally, line 4 is automatically added to retrieve results directly in JSON, to simplify the
parsing of the results.
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Listing 1. Gamified exercise generation prompt example (1).

1 Acting as a research assistant in computer science.

2 Generate 10 gamified programming exercises of increasing difficulty
for a first-year introduction to computing programming using the
C language for bachelor students in a computer science degree

class.
3 The answer to the exercise’s correct solution has to be chosen from a
set of 5.

4 Return the result in json.

The Challenge Prompt Decorator is the component devoted to adding the main plot
and the kind of quests, with related plot branching and plot twisting, to the creator-
generated prompt describing the gamification scenario. Listing 2 represents the prompt
produced by this component. As for the Exercise Prompt Decorator, line 1 is gathered
from the contexts repository at the project level. In the example, the creator’s skills are not
technical. Line 2 is written directly by the content author and is the main statement for
the Al-assisted world generation. Line 3 is a statement provided by the content creator
specifying if each student (in the gamified and real worlds) has to compete alone or in
teams. Line 4 states how the quest concludes and if all the participants can win the award or
only one. Line 5 is the quest generation statement. The creator writes it using the GAMAI
challenges prompt user interface. In line 6, one can observe the kinds of plot branches from
one quest to the next. In this example, the quests have to be solved in sequential order.
Line 7 instructs the GPT provider to generate the results in JSON. Finally, line 8 defines
how the quest has to be connected to the exercise repository, the exercise kind (for example,
multiple choice), and the exercise’s difficulty level.

Listing 2. Gamified scenario generation prompt example.

1 Acting as an expert fantasy storyteller.

Create a world where young boys and girls in high school attend
wizarding schools.

Each student has to compete alone to solve a quest.

Each student solving the final quest wins the wizard certificate.

Generate 10 different magic quests of increasing difficulty.

The wizard student who solves the first quest can continue with the
second one, and so on.

7 Return the result as json.

8 Add to each quest the field:

N

N U1l = W

9 “‘exercise’’: |{

10 ‘‘repository’’:“‘__world__"",
11 “’kind’’:’“multiple_choices’’,
12 ‘“level’’: “‘__iteration___""
13}

Once the Exercise Prompt Decorator and the Challenge Prompt Decorator have pro-
vided the decorated prompts, the provided GPT service is invoked and the received
Al-generated content has to be parsed by the Exercise Parser and the Challenge Parser.
Both components have a similar behavior, interpreting the results provided by the GPT
service via the GPT Abstraction Layer. The parsers map the data produced by the GPT
services onto FGPE entities, providing semantic consistency. The gamified exercises and
scenarios produced by the GPT service could be described without considering the pecu-
liarity of the FGPE ecosystem. The Exercise Encoder component acts as a data sink for
the Exercise Parser, producing an exercise representation that is fully compliant with the
FGPE gamified exercise schema (YAPEXIL [4]). Thanks to this compatibility, the exercise
creator can use the AuthorKit tool to fully manage the exercises by adding or removing
functional and ancillary parts. This component enables the creator to, for example, deco-
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rate the exercise description with diverse and different input dataset providers or custom
exercise correctness checkers. The Challenge Encoder plays a pivotal role in the processing
pipeline by receiving data generated from the Challenge Parser. Its primary function is to
transform its input data into a gamified scenario representation that strictly conforms to
the FGPE gamified scenario schema (GEdIL [8]). It ensures a standardized and cohesive
structure for the gamified exercises within the framework. As was the case with exercises,
AuthorKit affords exercise creators extensive control over the gamified scenarios, providing
the flexibility to add or remove both functional and ancillary components, thus allowing for
a tailored and dynamic exercise design process. Whether incorporating specific function-
alities to enhance the challenge or streamlining the scenario by eliminating non-essential
elements, AuthorKit serves as a versatile interface for refining the Al-generated gamified
content. In essence, the Challenge Encoder and AuthorKit’s Challenge Editor together form
a cohesive unit within the FGPE architecture. While the former ensures adherence to the
established gamified scenario schema, the latter provides a user-friendly and feature-rich
environment for exercise creators to fine-tune and customize gamified scenarios according
to their pedagogical objectives and creative preferences. This integrated approach under-
scores the commitment to standardization and flexibility in designing and implementing
gamified programming exercises. As we explore further functionalities and interactions
within this architecture, the synergistic relationship between these components becomes
increasingly apparent, contributing to the effectiveness and adaptability of the overall
GAMAI-enhanced framework.

3.3. Operation

GAMAI seamlessly integrates cutting-edge technologies, focusing on leveraging Ope-
nAl’s robust APL The user-facing front end establishes a nuanced dialogue with the back
end, which is engineered to handle request processing and integrate with OpenAl’s ad-
vanced capabilities for exercise creation. As the core computational engine, the back end
diligently manages user intent transmission to OpenAl and intelligently interprets the
Al-generated responses. The diagram in Figure 2 depicts the complete sequence.

The subsequent phase involves the back end transitioning from a relay to an intelligent
parsing engine, proficiently dissecting the received messages and extracting essential
components for exercise creation. The back end synthesizes exercises, strictly adhering
to the YAPEXIL format. A critical milestone is achieved, as the back end molds OpenAl’s
raw output and dispatches a curated list of exercises to the front end. This achievement
signifies the completion of a complex orchestration and delivers a tangible educational
resource to end-users, featuring exercises tailored to computer-science concepts. The
user-centric front end acts as the interactive interface, empowering users to influence the
exercise generation process actively. Acknowledging user agency and integrating it into
the system, the interface allows users to articulate bespoke requests directly to OpenAl
API, injecting personalized dimensions into the exercise generation pipeline. This user-
initiated input allows imbuing exercises with contextual relevance, aligning educational
content precisely with computer science students’ nuanced demands and preferences. This
meticulously designed system stands at the forefront of Al-driven educational technology in
computer science, redefining the way educational content is created. The intricate interplay
of components, spanning front-end interactions, back-end orchestration, and Al-output
parsing, holds transformative potential for the pedagogical aspects of computer science
education by automating the process with precision, customization, and engagement.
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Figure 2. GAMAI sequence diagram while creating an exercise using OpenAI API.

4. Evaluation and Discussion

4.1. Evaluation Methods and Procedures

Although generating a set of exercises automatically is much less time-consuming for
the creators than developing them manually, the automatically generated exercises often

need to be refined to meet expectations, which still requires some human effort.

Imbue exercises with contextual relevance

|
| request

Listing 3 contains one of the exercises produced as the result of the prompt described

in Listing 4.
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Listing 3. Example of an Al-generated gamified exercise (1).

W N

O 0 ] O U1

10
11
12

““question’’: ‘’Which of the following is the correct way to
declare an integer variable named ‘count’ in C?’7,
““options " ": [

{“*value’’: “’“int count;’’, ‘‘correct’’: true},

{““value’’: “’integer count;’’, ‘‘correct’’: false},
{““value’’: “‘count int;’’, ‘‘correct’’: false},
{““value’’: ““declare count as int;’’, ‘‘correct’’: false},
{““value’’: ‘“‘variable count is int;’’, ‘‘correct’’: false}

]
b

Listing 4. Gamified exercise generation prompt example (2).

—_

Acting as a seasoned full professor in computer science.
Generate 100 gamified programming exercises of increasing difficulty
for a

The answer to the exercise’s correct solution has to be chosen from a

set of 5.
Return the result in json.

Because, to the best of our knowledge, a standardized procedure for evaluating the

quality of automatically generated human language exercise texts has not yet been made
available in the literature, we had to define a tentative protocol as follows:

Considering as exercise text all the human language content, assigning a score, in

parentheses, for each needed fix, we classified the efforts as follows:
1.

2.

We set up a team of experts composed of five assistant professors in computer science
for human-based computer-generated text evaluation.

We set up the evaluation grid in Table 2 to score the automatically generated exercise
texts. Our effort was focused on trying to homogenize the evaluation provided by the
team of experts.

In order to asses the human effort needed to make the automatically generated
gamified exercises usable, we choose to generate 10 exercises for each of the following
prompts as part of line three of Listing 4:

e first-year introduction to computer programming using the C language for bach-
elor students in a computer science degree class [1CCS];

e first-year introduction to computer programming using the Python language for
bachelor students in a computer science degree class [1PCS];

e first-year introduction to computer programming using the Python language for
bachelor students in an environmental science degree class [1PES];

e first-year introduction to computer programming using the Python language for
bachelor students in a law degree class [1PLS];

*  third-year object-oriented computer programming using the Java language for
bachelor students in a computer engineering degree class [3JCE];

*  third-year object-oriented computer programming using the Java language for
bachelor students in a computer science degree class [3]JCS].

Finally each member evaluated all the Al automatically generated programming
exercise texts, scoring each one with a value from 0 to 5; then, for each exercise, the
mean score was evaluated and then rounded to the closest integer.

The Al-generated exercise types (1CCS, 1PCS, 1PES, 1PLW, 3KCE, and 3]JCS) were

chosen to match the evaluation team’s direct experiences in dealing with the related topics.
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We are aware that this could have been a source of bias, but at the current stage of our
studies, we preferred to maximize the overall consistency in exercise quality evaluation.
The results discussed in the following section have been grouped by exercise type.

Table 2. The evaluation grid for Al-generated programming exercise texts.

Score Evaluation

0 The exercise can be used as is

1 The text is unclear, it needs rearrangement

2 The text must be completely rewritten, but the exercise is formerly correctly generated
3 The text is correct, but there are issues from a technical point of view

4 The exercise, although correct in the text part, is too easy or too hard considering the

intended difficulty level

5 The exercise cannot be used as is; it must be dropped or completely rewritten; for
example, a code snippet is entirely missing

4.2. Results and Discussion

The experiment results (Table 3) show that most generated exercises were ready to
be used with no or minimum human effort to make them comply with the expectations
(61.7%).

Nevertheless, there were non-neglectable cases in which the code snippet had to be
manually added, especially for high-difficulty-level exercises (28.3%).

Cases of entirely useless automatic generations were uncommon (10.0%).

Another point to focus on is that the generated exercise quality was related to the kind
of programming language. Most of the provided C-language exercises were ready to be
used, whereas more Python exercises needed the human creator’s intervention.

Table 3. Human effort needed to ensure usability of created gamified exercises. Experimental results.

Prompt 0 1 2 3 4 5 Score
1CCS 5 4 0 1 0 0 7
1PCS 4 0 0 4 2 0 20
1PES 6 0 0 4 0 0 12
1PLW 3 1 2 3 0 1 19
3JCE 4 3 0 3 0 0 12
3JCS 6 1 0 0 3 0 13

% 40.0 21.67 3.33 25.0 8.33 1.67

The improvement in the speed of the exercise generation and gamification layer
creation is beyond doubt.

Nevertheless, some discussion about using the FGPE and GAMALI in a real-world
production environment is needed. As shown by the example given in this section, the
text generated by the GPT service could be affected by inaccuracies, biases, and intellectual
property issues.

While checking each automatically generated exercise is a task that could be considered
mandatory for the content creator, and tedious but not complicated to perform, the same
cannot be said about the quality check verification of the world created for the gamification
scenarios’” automatic generation. Arguably, due to the strategy used by Open Al to train
and reinforce their models, they are strongly influenced by popular culture, causing a
potential issue regarding copyright management.
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For example, in Listing 5, there is a field named “wizarding_schools” that conveys
the name of three different schools of wizardry in the fantasy world of Eldoria [39]. In the
used prompt (Listing 2), no mention was made of this entity, while the result produced is
conceptually and numerically similar to literature protected by intellectual property rights.
Note that this particular problem has also been observed in other use cases of Open Al’s
models [40].

Listing 5. Example of an Al-generated gamified exercise (2).

1

2 ““world” ;|

3 ““name’’: ‘‘Eldoria’’,

4 ““description’’: ‘‘A magical realm where wizarding schools are
scattered across mystical landscapes, and young sorcerers
engage in solo quests to prove their magical prowess.’’

5 I

6 ““wizarding_schools”’: [...],

7 ““quests’’: [

8 {

9 ““name’’: ‘‘The Enchanted Amulet’’,

10 ““description’’: ‘‘Retrieve the Enchanted Amulet hidden within

the Forbidden Forest, guarded by mystical creatures and
protected by a powerful enchantment.’”,

11 ‘“exercise’’: { ‘‘repository’’: “‘__world__’’, “‘kind’’: “f
multiple_choice’’, “‘level’’: “’__iteration__"" }

12 b

13

5. Conclusions

This paper presents our findings from applying a large language model based on
a generative pre-trained transformer to help generate gamified exercises designed for
programming education, in a form compatible with the FGPE ecosystem. Given the
complexity of designing, implementing, training, and reinforcing such natural language
processing models, we opted to leverage the capabilities of a commercially available robust
API service.

The results of the evaluation of the quality of the generated exercises presented in
Section 4 are positive, with most of the exercises being usable as they are or only requiring
slight corrections.

We are nonetheless aware of the limitations of our research. Threats to the validity
and generalizability of the presented results stem from both the limited number of the
evaluated exercises (60 in total) and the subjective character of the experts’ evaluation. It is
possible that another batch of generated exercises could contain more flaws, and another
group of experts could evaluate the same exercises more harshly.

Despite these research limitations, with GAMAI, we have successfully demonstrated
that the time needed for developing gamified programming exercises can be significantly
reduced by employing LLMs, which motivates further research on this topic.

Our future research will focus on two primary avenues. First, we aim to refine
the components responsible for prompt decoration and parsing the generated text. The
ultimate goal is to greatly minimize or, if possible, completely eliminate the need for human
intervention within the editing process, thereby streamlining the workflow. Second, we
envision the creation of a formally defined test suite to evaluate the performance of student
learning with gamified exercises generated with the support of GAMAI, comparing it with
the performance of students learning with manually developed gamified exercises. Such a
research would provide valuable insights into the efficacy of incorporating automatically
generated gamified content into educational settings.
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Overall, our research paves the way for a more efficient and interactive approach
to programming education, leveraging the capabilities of advanced language models in
conjunction with gamification principles.
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