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This paper examines the integration of Industry 5.0 principles with advanced predictive maintenance (PdM) and
condition monitoring (CM) practices, based on Industry 4.0’s enabling technologies. It provides a comprehensive
review of the roles of Machine Learning (ML), Digital Twins (DT), the Internet of Things (IoT), and Big Data (BD)
in transforming PdM and CM. The study proposes a six-layered framework designed to enhance sustainability,
human-centricity, and resilience in industrial systems. This framework includes layers for data acquisition,
processing, human-machine interfaces, maintenance execution, feedback, and resilience. A case study on a boiler
feed-water pump is also presented which demonstrates the framework’s potential benefits, such as reduced
downtime, extended lifespan, real-time equipment monitoring and improved efficiency. The findings of this study
emphasises the importance of integrating human intelligence with advanced technologies for a collaborative and

adaptive industrial environment, and suggest areas for future research.

1. Introduction

The industrial landscape has undergone a profound transformation
over the past decades, with the latest advancements in automation
technologies driving the so-called Fourth Industrial Revolution or In-
dustry 4.0 [1]. The advent of Industry 4.0, characterised by digitisa-
tion, automation, and data-driven decision-making, promised a new
era of efficiency and productivity. Through the integration of Indus-
try 4.0’s enabling technologies, manufacturing systems have become
more interconnected and intelligent, facilitating the adoption of im-
proved predictive and proactive maintenance tools. With the introduc-
tion of Industry 5.0, the fusion of cutting-edge technologies with the
core principles of human-centricity, resilience, and sustainability is set-
ting a new paradigm for predictive maintenance and condition moni-
toring in industrial operations, promising a transformative era in main-
tenance practices. Predictive Maintenance (PdM), a smart maintenance
technique, utilises data analysis and monitoring techniques to predict
equipment failure, enabling maintenance activities to be performed just
in time to prevent failure. Condition Monitoring (CM), also sometimes
referred to as condition-based maintenance (CBM), involves the con-

tinuous or periodic measurement of equipment parameters to assess
its health and detect early signs of failure. The primary distinction be-
tween PdM and CM is that PAM anticipates future failures and schedules
maintenance accordingly, whereas CM focuses on real-time monitoring
to identify current equipment conditions and immediate maintenance
requirements. Traditionally, the industries have employed various main-
tenance techniques, such as corrective and preventive maintenance, to
address faults and minimise equipment downtime. Corrective mainte-
nance, also known as breakdown maintenance, run-to-failure, or reac-
tive maintenance is a technique in which maintenance activities are
carried out once the equipment experiences a failure. Preventive main-
tenance, also referred to as routine or planned maintenance, is a more
cautious approach which involves the execution of maintenance activi-
ties in advance to proactively prevent potential faults or breakdowns.
This review paper delves into the evolving landscape of PAM and
CM. It begins with a review of PAM and CM practices within the con-
text of Industry 4.0, followed by an exploration of the definitions and
principles of Industry 5.0. The study then maps the PdAM and CM based
on enabling technologies of Industry 4.0, such as the Internet of Things
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(IoT), Big Data (BD), Machine Learning (ML), and Digital Twin (DT),
to the core principles of Industry 5.0. Based on this mapping, a layered
framework for implementing PAM and CM in Industry 5.0 is developed.
The framework is further supported by a case study, which demonstrates
its practical application in a real-world scenario, specifically focusing on
a boiler feed-water pump in a steam power plant.

The significance of maintenance has become paramount for indus-
tries, primarily driven by the rising complexity of interactions among
diverse production activities within ever-expanding manufacturing
ecosystems [2,3]. The emergence of IoT has infused intelligence and
connectivity into industrial processes and equipment, enabling real-time
monitoring, data collection, and analysis. This has revolutionised main-
tenance practices with PdAM and CBM leading this transformation. These
tools rely on advanced sensors, big data analytics, and machine learning
techniques to shift from conventional reactive maintenance practices to
proactive and data-driven approaches, resulting in lower costs, reduced
downtime, improved efficiency, availability, and resilience.

PdM and CM concepts have attracted significant interest from the
research community in recent years. Considerable work has been con-
ducted to explore the potential of these methods. Thus our research
process for selecting relevant papers included examining existing review
articles on PdAM and CM implementation. While these reviews compre-
hensively explored various enabling technologies, a critical gap remains.
Specifically, these reviews focused on individual enabling technologies
such as IoT, BD, ML, and DT for PAM and CM, but did not map these
technologies to the core principles of Industry 5.0. Furthermore, none of
these reviews presented or discussed any framework for implementing
PdM and CM within the context of Industry 5.0. In the following sec-
tion, we will provide a summary of the key findings from these existing
review papers, highlighting the enabling technologies they discussed for
PdM and/or CM implementation.

In PdM, the data handling is a vital task and to give detailed in-
sights about the research work in BD the authors of [4] comprehensively
review the techniques being employed in the work related to the manu-
facturing industry. The authors of [4] reported that 74% of the selected
publications in BD belonged to the area of industrial maintenance and
diagnostics. The study [5] developed a review for the existing open
source BD streaming technologies being used in PAM. Two use cases
of open-source BD technologies for the predictive maintenance in rail-
way transportation and wind turbines were also presented in the study.
A set of guidelines for using BD techniques in PdM applications was
developed to establish a reference point for decision-makers. In [6] an
overview of evolution of BD analytics from detection, and diagnosis to
prognosis in industrial process monitoring (IPM) was presented with
a description of various BD analytic techniques employed to detect and
diagnose abnormal behaviour in industrial processes. With the advance-
ment in ML and BD analytics, industrial processes are becoming more
smart, self-aware, intelligent, and capable of prognostics. The research
work [7] presents the review of literature on various ML and deep learn-
ing (DL) models being employed for the condition monitoring (CM) of
wind turbines. The study converges that the most widely used ML and
DL models for the CM of critical components of wind turbines are Sup-
port Vector Machines, Neural Networks and Decision Trees.

Innovation in data acquisition and data handling techniques is a key
factor in enabling CM and PdM in industrial sector. Industrial intelli-
gence is enhanced by the use of modern technologies such as Internet of
Things (IoT). With IoT enabled systems, industries are able to monitor
the real-time condition of the machines by collecting the streaming data
and communicating to the processing units using internet. The integra-
tion of IoT into the industrial sector has given rise to what is known as
the Industrial Internet of Things (IIoT), as discussed in a study [8]. This
study conducted a review of previous research, centring on the tech-
niques that make IIoT possible and the latest advancements in the field.
Specifically, the research delves into three key domains: IIoT architec-
tures and frameworks, communication protocols, and data management
techniques, examining each comprehensively. The study [9] focused on
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reviewing the PdM in smart factories by using intelligent sensors. The
intelligent sensors are capable of connecting to higher levels of commu-
nication and to the internet which is a key factor in enabling IoT devices
in industries.

Advancements in digital technologies, cyber-physical systems (CPS)
and IoT have led to the connected virtual and physical world. Digital
Twin (DT), a virtual model of a physically existing system, which de-
picts every process from design to disposal, is created based on physics
and is connected to the real-time physical system through IoT devices.
The study [10] presents a benchmark for defining the DT in scientific
literature by reviewing the existing literature in this context. The ap-
plication of DT technology in industrial maintenance has a potential to
shape the future of maintenance in industrial sector, as discussed in a re-
view study [11]. This study gives the concept of DT and maintenance in
detail and provides a literature review where these two concepts are
interlinked. It also highlights the future prospects regarding DT and
maintenance. Another study [12] focuses on the literature review of ap-
plication of DT systems in industrial operations, and presents a review
of 41 papers selected in between the years 2016 and 2020. Similarly, a
narrower study [13] focuses on reviewing the available literature on the
predictive maintenance using DT systems. It highlights the implemen-
tation of DT systems in the PAM of electrical systems. Future challenges
regarding the use of DT in after sales services were also discussed. As
the industrial sector advances, the benefits of deploying DT systems are
on the rise. In a recent investigation [14], DT systems were analysed in
the context of 13 diverse industries, shedding light on their expanding
application possibilities throughout the industrial sector.

Table 1 provides an organised presentation of additional information
from other review papers, highlighting a variety of techniques and tools
utilised for conducting PAM and CM within the industrial sector.

Rationale for the Study

While existing research covers a broad range of industrial applica-
tions for PAM and CM, a significant gap remains in addressing these
practices within the specific framework of Industry 5.0. Moreover, the
existing work lacks reviewing all the key enabling technologies of In-
dustry 4.0 in context of PAM and CM essential for mapping Industry
4.0’s enabling technologies to the core principles of Industry 5.0 such
as human-centricity, sustainability and resilience. The challenges here
involve integrating human-centric approaches, ensuring operational re-
silience, and promoting sustainability in industrial systems. Our study
aims to fill this gap by examining how PdM and CM practices, empow-
ered by Industry 4.0 technologies, can be effectively aligned with the
core principles of Industry 5.0. The key novelty of our work lies in devel-
oping a framework that bridges these practices with Industry 5.0 goals.
This framework is based on a thorough analysis of enabling technolo-
gies like the Internet of Things (IoT), Big Data (BD), Machine Learning
(ML), and Digital Twins (DT) being used for PAM and CM. By mapping
these technologies to the principles of human-centricity, resilience, and
sustainability, our framework illustrates how PdM and CM can evolve
to meet the demands of modern industry. The proposed framework not
only supports PAM and CM practices but also helps achieve the goals of
sustainability, resilience, and human-centricity, which are central to In-
dustry 5.0. Additionally, the case study shows how these technologies
can be put into practice to develop a more resilient, sustainable, and
human-centric industrial system. Fig. 1 highlights the structure of this
paper.

We approached this study with the following steps:

+ In Section 2, we reviewed over 100 research papers published be-
tween 2015 and 2023 to identify trends and patterns in how en-
abling technologies are being used to enhance PdM and CM prac-
tices. Whereas, Section 3 introduces Industry 5.0 by providing its
definitions, core principles and key enabling technologies.
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Table 1
An analogous assessment of previous studies on Predictive Maintenance (PdM) using novel techniques.
Reference Year CM RUL IoT DT ML/DL BigData  Fault Prediction Industry 5.0
[4] 2015 X X v X v v X X
[15] 2016 X v v X v X v X
[6] 2017 X v v X v v v X
[10] 2017 v X v v X X X X
[16] 2017 v v X v X X v X
[71 2019 v/ X X X v v v X
[17] 2020 V v v v v v v X
[5] 2020 v X v X v v X X
[11] 2020 v X v v X v v X
[8] 2020 v X v X v v X X
[18] 2020 v X X X X X X X
[13] 2021 v v v v X v X X
[12] 2021 X X v v v X X X
[91 2021 v/ v v v v v v X
[14] 2022 v X v v v v X X
Our Paper 2023 v v v v v v v v

+ Section 4 analyses these trends to understand how technologies like
IoT, BD, ML, and DT can be mapped to the core principles of Indus-
try 5.0.

In Section 5, based on this analysis, we developed a six-layered
framework for PAM and CM that integrates these technologies with
the goals of Industry 5.0, emphasising human-centricity, resilience,
and sustainability.

A case study is presented in Section 6 in which we applied this
framework for the PAM and CM of boiler feed-water pump in a
steam power plant, demonstrating its practical benefits.

The remaining sections of this paper are organised as follows: Section 7
provides a comprehensive discussion, analysing the implications of our
findings in the context of existing literature and identifying the gaps and
limitations of the current research. Section 8 delves into future chal-
lenges and presents a detailed roadmap for the way forward. Finally,
Section 9 concludes the paper by summarising the key contributions,
emphasising the significance of our findings, and underlining the po-
tential benefit of the proposed framework on enhancing sustainability,
resilience, and human-centricity in industrial maintenance practices.

2. Detailed review of PAM and CM in Industry 4.0

It is evident from history that the technological innovations lead to
industrial revolutions [19]. With the invention of steam engines, the
industrial sector witnessed its 15t industrial revolution. The transition
from an economy dominated by handicrafts to one dominated by ma-
chinery, significantly influenced various sectors. In the late 19 and
early 20™ centuries, the industrial sector experienced a series of notable
shifts. The invention of electric power and assembly line production lead
to the 2™ industrial revolution which resulted in substantial increase
in productivity. The advancements in communication technologies and
embedded systems played a pivotal role in automating the production
processes which resulted in the 3" industrial revolution, often referred
to as Industry 3.0. This particular phase centered on the adoption of
integrated circuit chips, digital logic, mass production, and related tech-
nologies. Notable examples include digital cellular phones, computers,
and the internet. Innovation in digital technologies led to the conversion
of physical technology to digital format. The 4™ industrial revolution
utilises various enabling technologies like Al, 3D printing, IoT, robots,
and cloud computing with the physical assets to increase the produc-
tivity and production flexibility [20]. This concept is later referred to
as Cyber-Physical Systems (CPS) [21]. Industry 4.0 is resulting in mass
production and increased productivity through the utilisation of its en-
abling technologies.

Currently, there is a substantial amount of research dedicated to
implementing predictive maintenance (PdM) and condition monitoring

1. Introduction

|

2. Detailed Review of PAM and CM in Industry 4.0

|

3. Industry 5.0: Overview

|

4. Mapping PdM and CM to Industry 5.0

|

5. Framework for PAM and CM in Industry 5.0

|

6. Case Study

|

7. Discussion

|

8. Future Challenges and Way Forward

|

9. Conclusion

Fig. 1. Structure of the paper.

(CM) using the enabling technologies of Industry 4.0. The aim of this
paper is to manoeuvre towards a framework that facilitates the imple-
mentation of PAM and CM based on the core principles of Industry 5.0,
leveraging these advanced technologies. A thorough review of PAM and
CM within the context of Industry 4.0 is essential to understand the
current state and future directions of research in this field. By examin-
ing the existing literature, we identified significant advancements and
ongoing trends which is crucial for transitioning from the current Indus-
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Fig. 2. Trend of enabling technologies in Predictive Maintenance (2015-2023).

try 4.0 paradigm to the more advanced, human-centric, and sustainable
framework envisioned in Industry 5.0.

In this section, we present a comprehensive review of research papers
from reputable sources such as Springer, Elsevier, and IEEE. We have se-
lected over 100 papers published between 2015 and 2023 based on their
focus on enabling technologies for PAM and CM in industrial settings.
These technologies include digital twins, the Internet of Things (IoT),
machine learning, and big data analytics, which are central to the evo-
lution of PAM and CM. This review aims to provide a detailed overview
of how these technologies are currently being applied, their impact on
maintenance strategies, and their potential for future enhancements.
Fig. 2 represents the overall trend of research work regarding PdM us-
ing enabling technologies in the years 2015 to 2023. By understanding
the role of these technologies in advancing PAM and CM, we lay the
groundwork for developing a robust framework for Industry 5.0.

2.1. PdM and CM based on Digital Twin

The Digital Twin technology, with its ability to create digital mod-
els of physical assets, has emerged as a foundation for reshaping the
PdM and CM strategies. Digital twins which are virtual replicas of ma-
chines, are continuously updated with real-time sensor data from the
physical machines, enabling the real-time condition monitoring of the
machines. This data is processed and analysed in data centres to opti-
mise machine performance, predict maintenance needs, and ultimately
extend their operational life. Fig. 3 demonstrates the PdAM and CM en-
abling using DT technology. Digital Twins play an important role by
providing dynamic virtual models of physical systems that enable real-
time simulations and analysis. These virtual models are continuously
updated with data from their physical counterparts. This not only al-
lows for precise condition monitoring and predictive maintenance, but
also helps in simulating the failures beforehand based on real-time data
and trends. The Digital Twins fed with the real-time data also help in
analysing the situations for increasing operational efficiency and extend-
ing the machine life by changing the operating parameters in real-time.
With the help of Digital Twins, industries can simulate various scenarios,
predict potential failures, and optimise maintenance strategies without
shutting down the equipment or process. This capability is helpful in en-
hancing operational efficiency and it also contributes to sustainability
by minimising resource consumption and reducing downtime. Digital
Twins are in fact helping to bridge the gap between physical and digital
worlds. This section comprehensively reviews the research papers that
utilise Digital Twin technology in implementing PdM and CM across a
diverse set of industrial domain.
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A model-based approach for monitoring heat and implementing pre-
dictive maintenance in an automotive braking system is used in [22].
The method involved establishing a simulation-based digital twin to
enable monitoring, prognostics, and diagnosis of automotive braking
system. The study [23] investigates a predictive maintenance frame-
work for aero-engines utilising a DT. It focuses on developing an im-
plicit digital twin (IDT) model. The method’s validity is demonstrated
through the consistency of results for virtual and real datasets. Further-
more, the dataset is applied to a Deep Learning technique called Long
Short-Term Memory (LSTM), showing effective and efficient RUL pre-
diction results. Introduction to an advanced physics-based modelling
approach for enabling DT in PdM was presented in [24]. It outlines
two key steps: the creation of a digital model and the implementa-
tion of DT. The work focused on developing a digital model specifically
for an industrial robot, with the goal of enhancing its application in
Predictive Maintenance. The study [25] explores the application of a
Digital Twin in supporting both predictive and dynamic maintenance
within the Facility Management and Maintenance process. The proposed
framework involved the integration of data and processes among Build-
ing Information Models, IoT sensors, and facility management systems.
The predictive maintenance implementation comprised of three mod-
ules which are fault detection, condition prediction and maintenance
planning. A DT based PdM of an automotive brake pad was presented
in [26]. Real-time pressure data was gathered from the physical brake
pad through the ThingWorx IoT platform. The brake pad was repli-
cated in CREO, and the collected pressure data was incorporated into
the CREO Simulate model. This integration allowed for the assessment
of brake pad wear based on the actual pressure data. The study [27] fo-
cused on estimating the RUL through a physics-based model within a DT
framework, aimed to enable PAM with PHM techniques. The case study
centered on an industrial robot. Real-time machine data was fed into
the virtual model for predicting the remaining useful life. Implementa-
tion of PdM based on DT in flexible production systems are discussed
in details in the study [28]. A framework that establishes connections
between physical and real processes to facilitate efficient PdAM is pre-
sented in this work [29]. Using this framework, the RUL of a tunnel
furnace system was determined. The research study [30] introduces a
multi-degree-of-freedom (DOF) torsional model for a drive-train of off-
shore wind turbines, serving as a DT model. The proposed algorithm
takes in torsional response, estimated generator and rotor torques, and
computes drive-train dynamic properties. The study explores the ap-
plication of this model in predicting the RUL of a gear-train. In this
study [31] a Reference Architecture for DT-based predictive mainte-
nance systems is developed and evaluated, using domain analysis and
Unified Modelling Language (UML) diagrams to design the architecture,
and demonstrates its application in three case studies, showing its poten-
tial for reducing time-to-market and ensuring consistency in design. This
research work [32] implements DT for condition monitoring of knuckle
boom crane. The crane was modelled using non-linear finite element
(FE) approach and estimated weight was used as input. The DT model
gives a number of readings of load, stresses and strain at various points
on the crane. Hence providing a way for predictive maintenance and
life cycle assessment. The study [33] focuses on the implementation
of PAM using historical data and simulation data for industrial equip-
ment (combining data-driven and physics based models). It provides
a framework for implementing PdM based on DT on the existing in-
dustrial approaches. It also formulates the methods for interacting the
historical data with simulation data, which can result in better RUL pre-
diction. Conceptual design of DT for subsea pipelines is presented [34],
where the asset was modelled in Finite Element (FE) software and sup-
plied with the actual data from the field sensors. The computational
model based on machine learning predicted any behaviour due to sud-
den changes in loading regarding pressure changes, slags, leakages etc
and helped in implementing effective PAM along with reducing opera-
tional costs and downtime. This study [35] presents a data-driven model
for digital twin. A DT is constructed for machine tool and a deep learn-
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Table 2
An overview of reviewed papers on DT technology in PdM.

References  Application Area Key Findings

[39] General Industry An overview of PAM based on DT technology and its application in various industries.

[40] Manufacturing DT driven hybrid approach for PdM of a CNC machine cutting tool

[41] Fault Detection DT adopted fault detection based on simulations on high fidelity models and transferring these
models from virtual to real world using deep transfer learning techniques.

[42] Mechanical Transmission A framework based on DT which analyzes sensor data for mechanical transmission systems to

Systems devise maintenance strategy.

[43] Aerospace Identification of role of data fusion in DT technology for PdM of an aircraft is presented.

[44] Wind Turbines DT based on physical model for condition monitoring of drivetrains of test rig.

[45] Manufacturing DT technology is implemented with an integration framework for various industries for
dynamic maintenance decision making.

[46] Wind Turbines A methodology to predict the remaining useful life of an offshore wind turbine power converter
in digital twin frame work as a means of predictive maintenance strategy is presented.

[47] Manufacturing DT and AR application in manufacturing industry for PAM framework.

[48] Manufacturing A DT based framework for RUL prediction based on nonlinear-drifted Brownian motion for

smart manufacturing.

ing technique Deep Stacked Gated Recurrent Unit (DS-GRU) is used for
tool wear prediction. The work [36] explores the current status of re-
search and technology in the automation of maintenance. It proposes
the use of DT for automating decision-making in PdM by leveraging
operational data and the machine’s DT. A DT approach for drive-train
condition monitoring in floating offshore wind turbines, incorporating
a torsional dynamic model, online measurements, and fatigue damage
estimation for remaining useful life prediction in the study [37]. DT is
based on edge computing, where the data is sorted and processed at the
edges and then it is transmitted to DT model where it is used for con-
dition monitoring and anomaly detection. Proof of concept is given for
LiBr chillers and showed early detection of anomalies in the study [38].

In the preceding discussion, review of several papers that delve into
the application of DT in PdM is provided. The Table 2 provides a sum-
marised overview of the papers, including key findings and application
areas. The table highlights the papers which provide an application of
DT technology in PdM in different industrial settings.

2.2. Big data analytics for PAM and CM
The vastly generated data in the industries has fuelled the innova-

tions in Big Data. These innovations are proven to be a transformative
force in predictive maintenance. In this section, the review of the papers

that leverage on Big Data analytics as predictive maintenance optimi-
sation tool is presented. Each selected paper is examined for its role in
processing either the static or streaming data, performing more accu-
rate RUL predictions and fault detection for minimising downtime and
improving operational efficiency.

The study carried out in [49] addresses the challenges of predict-
ing RUL and maintenance decisions in condition based maintenance
using Big Data analytics. The technique used in this study for Big
Data analytics is based on fuzzy logic and it performed better as com-
pared to other techniques. The study [50] uses data analytics tech-
niques on real-time sensor data from rail-mounted sensors to predict
and improve the RUL of train axle bearings. Online Support Vector Re-
gression is employed for CM through Streaming Data Analysis of big
data collected from the sensors. The research work [51] employs enve-
lope analysis and fusion method for processing Industrial Big Data. It
proposes a framework for structuring heterogeneous data, considering
spatio-temporal properties and extracting intricate features. The goal
is to enhance the transparency of production systems and enable ef-
fective predictive maintenance implementation. The study carried out
in [52] introduces the Opportunistic-Condition-Condition-Based Main-
tenance (OCBM) technique, integrating condition-based maintenance
and opportunistic maintenance thresholds for maintenance optimisa-
tion for offshore wind farm. It employed predictive analytics technique
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Machine Learning

Supervised Learning

RF and DT [69-71]
LSTM-RNN [84]
ANN-GA[92]

Unsupervised Learning
RBM with PCA [60]
DBSCAN [66]

Reinforcement Learning
DRL, PPO-LSTM [56]
PdM with RL[57-58]

Fig. 4. Various techniques adapted for PAM and CM under Machine Learning Paradigm.

which demonstrated a significant annual maintenance cost reduction.
The study carried out in [53] proposes a precise and efficient algorithm
for feature extraction in time series data for industrial applications such
as PdM and production line optimisation. A maintenance alert system
based on data mining and IoT sensors for solar panels is presented in this
study [54]. The data is collected in the form of current and voltage of
solar panels which is then compared to the calibrated values of current
and voltage. This system alerts when the actual values are out of range,
hence detecting the fault and alerting the maintenance team. Fault diag-
nosis and prediction for machine centers, with the help of data mining
techniques within the context of Industry 4.0 for PAM of equipment and
tools is presented in [55]. The framework encompasses data acquisition,
preprocessing, data mining, decision support, and the implementation
of maintenance strategies.

2.3. Machine learning solutions for PAM and CM

In the realm of predictive maintenance at a wide industrial do-
main, ML is transforming the PdM landscape because of its adaptive
and self-learning capabilities. In the context of PAM, ML employs three
key techniques. Supervised Learning utilises historical labelled data to
train models for tasks like predicting equipment failures or estimating
remaining useful life. This technique enables the model to learn patterns
associated with normal and faulty system states. Unsupervised Learn-
ing comes into play when labelled data is scarce. It involves detecting
anomalies or patterns in unlabelled data, aiding in identifying subtle de-
viations indicative of potential faults. Lastly, Reinforcement Learning is
applied for adaptive maintenance strategies. Agents learn optimal deci-
sion policies over time through interactions with the dynamic system,
making it suitable for scenarios where the impact of maintenance actions
evolves. The Fig. 4 represents the various types of Machine Learning,
adopted by the researchers for PdM illustration.

In this sub-section we focused on the review of the papers which
focused on utilising the various ML techniques for fault prediction,
residual life estimation and other critical aspects of maintenance op-
timisation. The key findings of various research papers are presented to
highlight the diverse ways in which ML is being used to augment the
landscape of PAM.

Reinforcement Learning The article [56] explores using a model-
free deep reinforcement learning (DRL)-based PdM framework to solve
the complex resource management problem. Unlike existing frame-
works, it considers PAM sensor data and integrates both physical equip-
ment and human resources into the optimisation problem. The Proxi-
mal Policy Optimisation Long Short-Term Memory (PPO-LSTM) model
outperforms conventional DRL models in determining an optimal de-
cision policy. The research work [57] proposes an RL driven mainte-
nance strategy for optimising long-term aircraft maintenance decisions.
It integrates future mission requirements, repair costs, spare component

storage, and Prognostics and Health Management (PHM) outputs, out-
performing other strategies in simulated scenarios. The study carried out
in [58] introduces a novel multi-agent approach employing reinforce-
ment learning for learning maintenance policies employed by mainte-
nance technicians, under the uncertainty from multiple machine fail-
ures. RL agents with partial machine state observations coordinate main-
tenance scheduling, dynamically assigning tasks to technicians with di-
verse skills. Experimental results demonstrate a 75% improvement in
overall performance compared to traditional maintenance policies, in-
cluding corrective and preventive strategies.

The research carried out in [59] proposes a multi-channel convo-
lutional neural networks (CNNs) and Monte Carlo dropout for proba-
bilistic RUL prognostics. The data for turbofan engines’ degradation is
taken from NASA which consist of four subsets. Each of this data sub-
set considers a specific set of operating conditions and failure modes.
This study employs 14 sensor measurements per flight cycle. For data
preprocessing, the clustering is performed on operating conditions to
select 6 operating conditions. The study also considers operating con-
ditions’ history. After that, the normalisation of sensor measurements
is performed with respect to the operating conditions. A set of features
for a specific time window of operating cycle is selected as an input
to CNN model. The architecture of CNN model for probabilistic RUL
prognosis consists of multi-channel convolutional layers, linear layers,
and Monte Carlo dropout layer. A total of 5 Conv1D layers and 3 linear
layers are employed in this framework. Out of 3 linear layers, 2 layers
act as intermediate linear layers and 1 as output linear layer. The out-
put linear layer has a single neuron and no activation. The kernels and
biases of convolutional layers and weights and biases of linear layers
are optimised by using Adam optimiser. Monte Carlo dropout is applied
after each layer both during testing and training the model. The appli-
cation of Monte Carlo dropout during training prevents the overfitting
of the model and during testing to obtain the probability distribution
of RUL. This approach reduces total maintenance costs by 29.3%, pre-
vents 95.6% of unscheduled maintenance, and limits wasted engine life
to 12.81 cycles.

Unsupervised Learning The research work [60] implemented an
ML technique for extracting the best features to predict the machine
health. Specifically an enhanced Restricted Boltzmann Machine (RBM)
with a novel regularisation term for feature extraction was imple-
mented. This technique showed promising results as compared to reg-
ular RBM and Principal Component Analysis (PCA). The technique’s
effectiveness was further validated for run-to-failure datasets from two
rotating equipment systems. The research study [61] addresses the ab-
sence of a unified definition for anomalies in PAM. The authors propose
a flexible evaluation framework for assessing unsupervised anomaly de-
tection algorithms in time series scenarios. The proposal is validated
through a case study with Big Data algorithms using real-world time
series data. The study [62] introduces an innovative method for early
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fault detection of machine tools under time-varying conditions. A deep
learning model is developed to extract impulse responses from vibra-
tion signals collected over 288 days of long-term data. By identifying
dynamic properties from these impulse responses, the technique enables
early fault detection under time-varying conditions. A hybrid intelligent
predictive maintenance model is utilised to address challenges in non-
linear, non-stationary, high-dimensional industrial data in this study
[63]. This method efficiently reduces the redundant data dimensions,
improving convergence speed and classification accuracy. The model
proposed in [64] develops an intelligent Health Indicator (HI) model
which extracts multi-scale coded features from vibration signals and
uses an ensemble health indicator to fuse healthy and damaged feature
metrics, improving RUL prediction reliability. The study [65] employs
the AutoRegressive Integrated Moving Average (ARIMA) technique to
analyse time series data sourced from sensors on a Slitting Machine. The
primary objective is to use ARIMA technique for the prediction of both
potential failures and quality defects within the context of the Slitting
Machine operations. The study [66] introduces a real-time condition
monitoring system which utilises IoT-based sensors, data preprocess-
ing, and a hybrid ML prediction model. The system deals with large
volumes of unstructured real-time data. Outlier detection is performed
using Density-Based Spatial Clustering of Applications with Noise (DB-
SCAN), while the prediction is carried out using the Random Forest
algorithm.

Supervised Learning The research work [67] exhibits the transfor-
mation of maintenance planning with the help of ML, which analyses
data for individual machine performance and environment variables. It
effectively identifies failure patterns, providing actionable predictions
for specific machine parts, thus enhancing overall maintenance strate-
gies. The research work [68] proposes MCA-BGRU, a novel framework
for predicting remaining useful life in mechanical systems. Combining
multi-scale CNN, BGRU, MHSA, and fully-connected layers, it captures
high-level representations and temporal tendencies in input data. Using
particle swarm optimisation for hyper-parameter tuning, it outperforms
existing studies by 0.32% in RMSE and 5.6% in Score values on the
C-MAPSS dataset. The research study [69] explores the application of
the Random Forest (RF) algorithm for predictive maintenance on a real
industry machine. It involves the development of data collection, anal-
ysis, and the application of machine learning techniques. Comparative
analysis with a simulation tool demonstrates the high accuracy of pre-
dicting various machine states using ML. The work [70] compares the
performance of RF, Decision Trees (DT), and Recurrent Neural Network
(RNN) on both experimental and real datasets for PAM. RF and DT ex-
hibit similar performance, whereas RNN demonstrated superiority for
large datasets and RF showed better results for smaller datasets. The
study suggests a hybrid approach combining RNN and RF for more pre-
cise and reliable predictions. In this study [71] novel Decision Support
System (DSS) utilising DTs is proposed for an effective decision-making
in implementing PdM in the industry. The DSS helped in determining
economically feasible conditions for PdAM implementation. PdM with
DTs is found to be economically suitable when compared to corrective
maintenance costs. In this study [72] an ANN based condition monitor-
ing is proposed for gearbox bearings of an off-shore wind turbine. This
approach helped in early detection of faults and breakdown. The study
carried out in [73] presents a hybrid approach for Prognosis and Diag-
nosis using a combination of features identified by an expert from big
data and Local Feature-based Gated Recurrent Unit (LFGRU) networks.
Experimental results, including tool wear prediction, gearbox failure
prediction, and bearing failure prediction demonstrate the effectiveness
and generalisation ability of this approach. This study [74] conducts
a comprehensive survey on the applications of data-driven methods in
PdM. Various ML algorithms were applied to a specific dataset related
to automatic washing equipment, and the results were compared.

Another study [75] provides an in-depth review of integration of ML
into additive manufacturing and highlights how ML models can analyse
complex datasets to optimise various AM processes. From the vast data

Results in Engineering 24 (2024) 102935

generated during the AM process, ML can find out complex relationships
among parameters, leading to more informed decision-making for pre-
dictive maintenance of AM system and improved 3D printing outcomes.
The study also discusses the potential of emerging ML techniques, such
as reinforcement learning and generative models, to further enhance the
condition monitoring of AM processes. These techniques can extend the
useful life of equipment and reduce disruptions in the manufacturing
process.

The remaining useful life (RUL) prediction an machine sate predic-
tion is a crucial requirement for the condition monitoring and PdM of
a machine. In the following, the review of the research papers which
utilise ML algorithms for carrying out machine state prediction and
RUL prediction is presented. The research study [76] discusses a model-
based approach for estimating RUL through ML algorithms. A model is
constructed using various parameters, and the features are initialised
using the Maximum Likelihood algorithm. A Particle Filtering-based
algorithm utilises these features for predicting the RUL. In this arti-
cle [77] explores using Temporal Convolutional Networks (TCNs) for
predicting the RUL of Turbofan engines in cyber-physical systems. It
compares TCNs with hybrid architectures and achieves high accuracy
and precision, demonstrating the effectiveness of TCNs for prognostics.
The study [78] presents a novel method for predicting RUL based on
stochastic process models. The stochastic degradation process of the
machine based on multiple variables is modelled using a stochastic pro-
cess model. Kalman Particle Filtering-based algorithm is employed to
predict both the machine state and RUL. Residual life prediction is a
helpful tool in implementing predictive maintenance. Effective and effi-
cient life prediction can help in the reduction of machine downtime by
taking necessary measures beforehand. Similarly, for condition monitor-
ing and the condition-based maintenance, the machine state prediction
is a vital tool. In Table 3, a brief summary and the key findings of the
selected papers based on ML is presented.

2.4. Internet of things technology for PdM and CM

With the permeation of IoT in industrial settings, its impact on CM
and PdM practices is prominent. In this section, the key findings of
the selected papers based on IoT enabled PdM are highlighted. It was
aimed to explore how IoT is contributing to real-time monitoring, faults
detection and implementing CM and PdM across various industries by
carefully examining the applications, methods and overall trends.

The study carried out in the research paper [94] integrates the Build-
ing Information Model (BIM) and IoT in Facility Maintenance Manage-
ment (FMM) which enables efficient PAM. The proposed framework
involves Information and Application Layers, utilising Support Vector
Machine(SVM) and ANNs for accurate predictions, especially for MEP
components. The study [95] introduces NGS-PlantOne, an Industrial
IoT(IIoT) device deployed in a power plant for efficient data monitoring.
It also highlights the effectiveness of such devices in real-time condition
monitoring and implementing efficient PAM in power plants. The re-
search work [96] explores the opportunities and challenges associated
with IoT-based Prognostics and Health Management (PHM) in indus-
trial applications. It emphasizes the necessity for collaboration among
the engineering, statistics, and machine learning communities to effec-
tively implement these models. Successful PHM implementation entails
linking anomalous data patterns to specific failure modes and establish-
ing connections to the fundamental physics of failure. In this study [97]
an incremental DNN model for predicting maintenance notifications in
IoT systems is proposed, addressing challenges of data availability and
non-stationary data distribution. The research work [98] utilises IoT
technology aiming to gather specific information for predicting motor
bearing failure and real-time CM by analysing the vibration and tem-
perature of an induction motor. The vibration signals are examined to
detect faulty operation of motors. The study [99] suggests an approach
for online process monitoring and predictive maintenance of equipment
through the integration of IoT. The approach comprises of two intercon-
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Table 3
Key findings, techniques used, and results reported for papers on ML for PdM.

Year Reference Key Findings Technique Used Results

2015 [79]1 Bearing RUL prediction based on Simplified Fuzzy Adaptive Resonance Neural Network Accuracy 74%
Theory Map neural network.

2016 [80] Data-driven models are utilised for RUL prediction. The model is k-Nearest Neighbour MAPE
constructed in two phases: an offline phase finds variables important for (KNN) 8.7691%
health degradation, and an online phase predicts RUL based on k-nearest
neighbour.

2017 [81] An approach based on degradation pattern learning is utilised to predict Neural Network Mean Score
RUL of an aircraft engine. 2.61

2017 [82] Mobile agent-based approach for PdM, effective in employing signal Support Vector Machine Accuracy
processing algorithms on distributed servers. (SVM) 99.8%

2018 [83] A framework for enabling the production machines for PAM based on IoT Random Forest F1 Score
architecture and ML. 98.1%

2020 [84] ML techniques such as LSTM RNN and Vanilla-RNN are employed for fault LSTM RNN Prediction
prediction and RUL prediction of equipment. Error 0.79%

2020 [85] Early prediction of machine failure using IoT devices with ML algorithms. Gradient Boosting Accuracy

98.9%

2020 [86] Failure prediction of medical equipment via vibration signals collected and  Linear-SVM Accuracy 96%
sent to ML models using IoT.

2021 [871] A condition monitoring application using ML approaches for machine Decision Tree (DT) Accuracy
condition prediction. 99.84%

2021 [88] A PdM model with CNN to classify faults in rotating equipment and Convolutional Neural Accuracy
recommend maintenance actions. Network (CNN) 99.58%

2022 [89] Real-time data from a 280 kW industrial motor is gathered and analysed in =~ SVM Accuracy
an ML model to detect maintenance needs. 99.8%

2022 [90] A PdM framework where data is collected by IoT system, features are CNN and LSTM MAE 0.4257%,
selected by CNN, and faults are predicted using LSTM. RMSE

0.4505%

2022 [91] PdM model for material handling equipment incorporating novel data Statistical Learning Highest
sources and KNN, RF Classifier. Methods (SLMs) accuracy 99%

2023 [92] Resource management framework for predictive maintenance based on Genetic Algorithm Accuracy
Genetic Algorithm. 94.5%

2023 [93] A machine learning method for predictive maintenance using pre-shipment  Light Gradient Boosting Accuracy
inspection data from equipment manufacturers. 94.66%

nected features: Process Monitoring for quality assurance and Condition
Monitoring to prevent unplanned outages.

IoT integration in power generation has shown promising results for
condition monitoring and predictive maintenance of business critical
and safety critical equipment. The study [100] focuses on CM and PdM
of generators through the implementation of an IoT framework. The
research involves gathering diverse data related to overloading and vi-
brations in generators. The study proposes an IoT-based system designed
to predict failures in generators. Another research work [101] presents a
self-powered IoT solution for monitoring a high-voltage substation con-
nector. It takes power from the substation and monitors temperature,
current, and voltage drop to calculate electrical contact resistance. The
data is transmitted via Bluetooth to gateways and then sent to servers for
storage, analysis, and visualisation. The study [102] proposes predictive
maintenance for coal mining equipment using IoT technology. The ap-
proach enables the prediction of equipment failure or defects which can
help in the prevention of accidents in the coal mines. A framework for
remotely monitoring refrigerant cold storage systems through a wireless
sensor network and data acquisition is introduced in this study [103].
The focus of the study is on predictive maintenance, employing intelli-
gent algorithms to enhance system reliability. The research study [104]
introduces a novel analytical framework based on IoT, specifically de-
signed for vibrational analysis of equipment. The results demonstrate
effective results for PAM and estimating RUL of machinery. A novel IoT
architecture for a semi-supervised learning technique is proposed to en-
hance sensor feature selection in the Consensus Self-organised Model
Approach (COSMO) in the research work [105]. COSMO serves as a tool
for PAM technique in public transport buses, identifying faulty buses
from a fleet. In [106] IoT-based PdM is implemented on a welding ma-
chine to forecast manufacturing defects. Data from various sensors on
the welding machine is collected through an IoT architecture. An ML
model is used to predict abnormal welds, which help in carrying out the
PdM of the welding machine.

3. Industry 5.0: a brief overview

With the adoption of Industry 4.0 by companies, it became evident
that it placed a greater emphasis on digitisation and Al-enabled tech-
nologies to enhance production flexibility and efficiency, rather than
giving top priority to fundamental principles like sustainability and a
human-centric approach. The 5% industrial revolution, often referred
to as Industry 5.0, is built on the synergy of human intelligence with in-
telligent systems and smart machines [107]. It focuses on creating more
inclusive, human-centric, resilient, and sustainable industrial processes
that not only aim for technological advancements but also prioritise the
well-being of people and the planet. An illustration depicting the core
principles and achieved outcomes of implementing Industry 5.0 is given
in Fig. 5.

3.1. Definition and key features of Industry 5.0

Industry 5.0 marks a significant industrial transformation driven
by human innovation. It represents the next evolutionary phase in
the industrial revolution, building upon the foundations of Industry
4.0, which focused on automation, digitisation, and interconnectivity
through various enabling technologies. Unlike its predecessor, Industry
5.0 places a strong emphasis on the integration of human intelligence
with smart systems, bringing human creativity, decision-making, and
complex problem-solving back into the manufacturing process. It aims
to create more personalised, efficient, and sustainable production pro-
cesses by leveraging the collaborative power of humans and machines.
A clear definition of Industry 5.0, as highlighted by the European Com-
mission [108], views it as a movement towards a more sustainable,
resilient, and human-centric industry. This approach advocates for the
balance between productivity and societal goals, ensuring that techno-
logical advancements contribute positively to both economic growth
and the well-being of society at large. The core principles of Industry
5.0 include:
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Fig. 5. Key principles and achieved outcomes of Industry 5.0.
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3.1.1. Human-centricity:

Human centricity in Industry 5.0 underscores the importance of
putting human workers at the forefront of the industrial processes, not
merely as operators or supervisors but as integral components of the
creative and decision-making process. This approach values the unique
cognitive and emotional capabilities of humans, such as creativity, em-
pathy, and ethical judgment, ensuring that technological advancements
contribute positively to societal needs, worker satisfaction, and well-
being. Human-centric initiatives in Industry 5.0 aim to leverage tech-
nology to augment human abilities, enabling personalised production,
enhancing safety, and ensuring that technology serves to improve the
quality of life. This paradigm shift advocates for sustainable develop-
ment, ethical considerations in automation, and ensuring that techno-
logical progress does not come at the expense of human employment or
well-being.

3.1.2. Resilience

Developing flexible and adaptable manufacturing systems that can
quickly respond to changes and disruptions. Resilience in the context of
Industry 5.0 refers to the capacity of industrial systems to anticipate,
prepare for, respond to, and recover from disruptions. This includes
adapting to changes in market demand, supply chain interruptions, and
other unforeseen challenges in a way that maintains operational conti-
nuity, protects the workforce, and minimises environmental impact.

3.1.3. Sustainability

While prioritising environmental sustainability through efficient use
of resources, reduction of waste, and minimisation of the carbon foot-
print, sustainability in Industry 5.0 focuses on integrating environmental
considerations into the core of industrial processes, aiming to achieve
economic growth without depleting natural resources or harming the
ecosystem.

The ultimate aim is to elevate living standards, foster innovative
solutions, and produce high-quality customised products according to
Michael Rada, the founder and leader of Industry 5.0 [109]. According
to Friedman and Hendry [110], Industry 5.0 necessitates that profes-
sionals from various sectors such as industry, information technology
and philosophy collaborate to achieve integration of human elements
with technologies within industrial systems.

In the upcoming section, we delve into the enabling technologies that
serve as the driving force behind the implementation of key principles
of Industry 5.0.

3.2. Enabling technologies

Industry 5.0’s focus on human centricity, resilience, and sustainabil-
ity is supported by a suite of enabling technologies of Industry 4.0 that
drive its implementation and achievement. These technologies facili-
tate the seamless integration of human intelligence with machine effi-
ciency, ensuring industrial systems are more adaptive, environmentally
friendly, and capable of enhancing human well-being. Fig. 6 illustrates
how the enabling technologies are shaping the modern industrial land-
scape. Following section contains the brief overview of these enabling
technologies.

Edge Computing (EC): Data processing at the network edge. Edge
Computing (EC) uses IoT devices and perform necessary data processing
at edges. EC has the capability to fulfil expectations concerning latency
costs, battery life constraints, response time requirements, data protec-
tion, and privacy [111]. EC reduces communication overhead, enables
efficient remote computing, and addresses data security concerns, which
are significant in Industry 5.0, through local data handling. The study
carried out in [112] detects anomalies at the edges. The study employs
edge computing devices in order to enhance the real-time condition
monitoring of the machinery. The device is powered by an autoencoder,
which is a deep learning model, enabling it to analyse the data locally to
detect anomalies such as unexpected vibrations and temperature spikes.
This system identifies the potential issues instantaneously by processing
the data at edges without relying on constant communication with the
central servers hence reducing the computational requirements of the
central servers. The study also highlights how the employed system re-
duced latency and bandwidth usage.

Digital Twins (DTs): The term “DT” stands for Digital Twin, which
refers to the digital replication of physical systems, equipment, or ma-
chinery. This concept encompasses the digital modelling of various
equipment, machinery, and systems. The scope of DTs is vast, enabling
the digital representation of factories, wind farms, jet engines, and even
entire cities [113]. The advent of IoT devices has further enhanced the
potential of DTs by connecting them to the real world. This connectiv-
ity enables the collection of real-time data from physical systems, which
can then be processed within the digital model. This not only allows for
real-time condition monitoring but also supports early fault prediction,
making DTs a valuable tool in various industries [114]. A case study pre-
sented in [40] employs digital twin (DT) technology for predicting tool
wear of a CNC cutting tool. A digital counterpart of the cutting tool was
built both with the physics-based and data-driven approaches. DT model
had an ability of mapping the actual physical machine tool’s operating
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Fig. 6. An overview of how the enabling technologies are shaping the landscape of Industry 5.0.

conditions. Sensors such as accelerometer, dynamometer and acoustic
emission sensor provided the model with the real-time data. The model
utilised a hybrid technique based on both the physics-based model sim-
ulation and data-driven approaches to predict tool wear. It was found
that the DT model predicts a better result with this hybrid approach in-
stead of using model-based simulation or data-driven approach alone.
This study shows how DT technology is helpful in predicting the tool
wear and to carry out necessary maintenance activities. Early tool-wear
prediction helps not only in utilising the maximum useful life of cutting
tool but also minimise the chance of using worn out tool, thereby reduc-
ing excessive maintenance and improving product quality side-by-side.

Big Data Analytics: The continuous advancement of digital tech-
nologies is generating vast volumes of data, collectively referred to as
big data, sourced from diverse origins. In response, various analysis
techniques and tools, including AI, ML, data mining, and data fusion,
have been employed for preprocessing and analysing this substantial
dataset [115]. Big data analytics assumes a vital role within Industry
5.0, aiding in the comprehension of consumer behaviour and the opti-
misation of production facilities. Moreover, it facilitates real-time data
analysis, PdM, and equipment condition monitoring in smart factories,
empowering experts to make informed and improved decisions. An ex-
ample of how the big data-analytics is implemented in real life scenarios
is also presented to further enhance the depth of this section. A study
carried out in [50] showcases the implementation of big-data analyt-
ics and machine learning for condition-based maintenance of train axle
bearings. This study employed an online-support vector regressor (OL-
SVR), an ML model, to predict the remaining useful (RUL) life of a train
axle bearing by using the big streams of data. The strategy adopted in
the framework also incorporated a trade-off between the accuracy of
the model and computational requirements. The framework receives the
streams of big data, uses a trained OL-SVR to analyse and predict the
RUL of train axle bearing. Hence, providing a vital information about
RUL to avoid accidents linked to breakdown of axle bearings.

Internet of Everything (IoE): The concept of the IoE integrates peo-
ple, processes, and systems into a more extensive and interconnected
ecosystem [116]. It builds upon the foundation of the Internet of Things
(IoT), facilitating seamless integration with diverse systems. Within the
context of Industry 5.0, IoE contributes to the establishment of inno-
vative facilities, the development of intelligent systems capable of har-
nessing human intelligence for enhanced performance, the facilitation
of effective maintenance procedures, and the optimisation of informed
production systems. This concept holds the potential to drive advance-
ments and improvements across various industrial domains.
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Cobots (Collaborative Robots): The rapid progress in automation
and Al has necessitated close collaboration between humans and robots,
giving rise to collaborative robots, or cobots. The concept of cobots
traces back to their initial development in 1996 by Professor Edward
Colgate and Michael Peshkin of Northwestern University [117]. In the
present day, modern cobots have become indispensable in tasks de-
manding high precision, posing safety concerns for human workers,
repetitive operations, and labour-intensive functions. These robots are
equipped with highly efficient sensors that make them exceptionally
responsive, ensuring reliability in collaborative work settings with hu-
mans. This collaboration enhances productivity and safety across a wide
range of industrial applications. Moreover, cobots contribute to PdAM
by providing real-time data, continuous monitoring, efficiency, and
safety, all of which enhance the ability to predict equipment failures
and perform timely maintenance, ultimately reducing downtime and op-
erational costs improving sustainability and resilience of the industrial
settings.

Blockchain Technology: Blockchain technology is a pivotal enabler
of Industry 5.0, providing a foundation for secure peer-to-peer commu-
nication and an immutable ledger for digital record-keeping [118]. It
embodies the principles of decentralised record management, accom-
modating a diverse array of interconnected devices. The immutability
inherent to this technology significantly enhances data security and
transparency, addressing core concerns in the digitally interconnected
world.

6G and Beyond: 6G and beyond represent the future development
in the wireless communication technology and is based upon the foun-
dation laid by 5G. These technologies are expected to deliver higher
data rates, lower latency, and extremely reliable communication net-
work [119]. They will empower augmented and virtual reality expe-
riences, enhance the efficiency of production processes, aid in remote
equipment monitoring, and facilitate PdAM implementation. Addition-
ally, they will also support high-definition video streaming, and meet
the extensive connectivity requirements of IoT.

The progression of enabling technologies has paved the way for
their widespread application across a diverse industrial landscape. These
technologies, spanning sectors from healthcare [120,121] to energy gen-
eration [122,123], are driving the evolution of conventional processes
into intelligent and efficient manufacturing systems. Table 4 highlights
the diverse applications of enabling technologies that are helping trans-
form traditional industrial systems.
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Table 4
Application areas of enabling technologies.
Area Enabling Technology Application References
Energy Generation ML, DT, IoT PdM, PHM, Fault Prediction, RUL [95], [391, [54], [124]
prediction
Production/ Manufacturing Cobots, IoE Cobots-based manufacturing, Smart [125], [126], [127]

Healthcare Industry 10T, Cobots, ML, Al

Building and Architecture DT, IoE, ML

Automotive DT, IoT, Al

Process Industries Edge computing, IoT, Big
Data, DT

Supplychain Blockchain, IoT, DT

Manufacturing

Remote health monitoring,

[128], [129], [130]

cobots-based surgeries

Building Information Modelling (BIM),

[131], [132], [133]

smart cities

Autonomous vehicles, RUL prediction
Real-time process monitoring,

[66], [134], [22], [135]
[136], [137], [138]

diagnostics and prognostics

Asset tracking, smart contracts, demand

[139], [140], [141]

forecasting

Digital Twins

Big Data Analytics

DT: [24], [26], [22], [47], [90]
loT: [94], [95]

ML: [56], [58], [73]

BD: [51]

Human Centricity

DT: [29], [32], [45]
loT: [54], [102], [101]
ML: [34], [52], [42]
BD: [49], [103]

DT: [30], [38], [44]

loT: [66], [59], [96], [99]
ML: [23], [41], [43], [40]
BD: [50]

Resilience

Fig. 7. Mapping enabling technologies to Industry 5.0 principles.

4. Mapping PdM and CM in Industry 4.0 to Industry 5.0

In the progression towards a more human-centric, sustainable, and
resilient industrial future, Industry 5.0 principles significantly enhance
the approach to Predictive Maintenance (PdM) and Condition Moni-
toring (CM). This transformation is facilitated by leveraging advanced
technologies such as Digital Twins (DT), Big Data Analytics, Machine
Learning (ML), and the Internet of Things (IoT). By analysing selected
research papers, this section aims to map how these enabling technolo-
gies have evolved from Industry 4.0 to Industry 5.0, focusing on their
role in fostering human-machine collaboration, optimising resource util-
isation, and building robust PAM and CM systems. A mapping diagram
is provided in the Fig. 7 which highlights how the various research work
on PdM and CM based on enabling technologies maps with the key prin-
ciples of Industry 5.0.

4.1. Human-centric PAM and CM practices:

The foundation of human-centric Industry 5.0 principles lies in pro-
moting a collaborative environment between humans and intelligent
machines. This section explores how the selected papers leverage en-
abling technologies to promote this synergy within PdAM and CM prac-
tices. These innovations not only enhance the efficiency and reliability
of maintenance strategies but also foster a more interactive and in-
tuitive interface between humans and machines. This section aims to
investigate how these technologies empower human decision-making
and equip technicians with advanced tools. The development of a dig-
ital model for an industrial robot, as discussed in [24], exemplifies the
progression towards technologically enhanced PdM through the lens of
human-machine collaboration. This approach not only facilitates main-
tenance but also bridges the gap between the physical and digital realms,
enabling more precise and proactive maintenance decisions. Similarly,

11

the study [26] and [22] demonstrates how real-time data from an au-
tomotive braking system can be integrated into a Digital Twin model,
offering a tangible example of technology’s role in streamlining main-
tenance processes and increasing the safety of the concerned person-
nel by enabling monitoring, prognostics, and diagnosis of automotive
braking systems. This integration not only aids in the accuracy of main-
tenance predictions but also enhances the maintenance experience by
making it more interactive. The utilisation of Digital Twin (DT) and
Augmented Reality (AR) technologies in the manufacturing sector, as ex-
plored in [47] and reiterated in another study [90], enriches the predic-
tive maintenance framework. By providing an immersive and intuitive
platform for technicians, these technologies significantly improve the
way maintenance needs are understood and predicted, marking a sig-
nificant step towards technology-driven, human-centered maintenance
practices.

Explorations into model-free deep reinforcement learning for opti-
mising resource management in PAM [56], along with studies employing
reinforcement learning for crafting maintenance strategies [58], under-
score the potential of machine learning in enhancing human-machine
collaboration. These approaches not only streamline the decision-
making process but also ensure that human resources are optimally
utilised, reflecting a nuanced application of technology in maintenance
practices. The study [59] presents an Al-powered framework for PdAM
that assists maintenance teams in optimising maintenance plans, po-
tentially reducing costs and workload by predicting engine life and
scheduling repairs efficiently. The study [71] proposes a Decision Sup-
port System (DSS) that aids human decision-making for implementing
PdM in industry. The system analyses costs and helps determine if PdAM
with Decision Trees is economically beneficial compared to traditional
corrective maintenance. The research [73] combines human expertise
with machine learning (LFGRU networks) to improve PdM tasks like
tool wear and gearbox failure prediction. This collaboration between



A. Ahmed Murtaza, A. Saher, M. Hamza Zafar et al.

human and machine learning can potentially lead to more accurate and
reliable fault detection.

The employment of data mining and IoT in developing a mainte-
nance alert system for solar panels [54] underscores the shift towards a
proactive maintenance culture. This system allows maintenance teams
to anticipate potential issues, ensuring the reliability and safety of oper-
ations. Furthermore, the integration of Building Information Modelling
(BIM) and IoT for Facility Maintenance Management [94], along with
the deployment of Industrial Internet of Things (IIoT) devices for data
monitoring [95], highlight the growing reliance on technology to sup-
port human decision-making in the maintenance domain. Innovations
in IoT for predictive maintenance, as seen in studies focusing on weld-
ing machines [106], coal mining equipment [102], and motor bearing
failure prediction [98], offer promising avenues for enhancing main-
tenance efficiency and safety not only for maintenance teams but also
for the machines, significantly contributing to the operational reliability
and safety of industrial systems. The proposal of an [oT architecture for
predictive maintenance in public transport buses [105] emphasises the
role of sensor data in improving maintenance outcomes. By focusing on
feature selection and fault identification, this approach exemplifies how
technological advancements can be leveraged to enhance maintenance
efficiency and safety, reflecting a commitment to both operational ex-
cellence and human welfare. Through these examples, it is evident that
the integration of enabling technologies into PAM and CM practices not
only enhances operational capabilities but also fosters a more engaged
and informed maintenance process. By bridging the gap between hu-
mans and machines, these technologies lay the groundwork for a future
where maintenance practices are not only more efficient but also more
attuned to the needs and safety of human operators.

4.2. Sustainability in industrial maintenance

The adoption of advanced technologies in predictive maintenance
and condition monitoring is paving the way for more sustainable indus-
trial maintenance practices. By leveraging digital twins, machine learn-
ing, big data analytics, and IoT, industries are moving towards main-
tenance strategies that not only ensure operational efficiency but also
prioritise resource conservation and environmental sustainability. The
study [29] demonstrates how bridging physical and digital processes in
tunnel furnace systems can lead to significant reductions in operational
costs and downtime. This study [32] highlights the application of DT
technology for monitoring knuckle boom cranes, facilitating life cycle
assessments to optimise PAM schedules and efficiently utilise resources.
This study [45] focuses on the use of DT technology across various indus-
tries to facilitate dynamic and efficient PAM decision-making, ensuring
optimal resource utilisation. The research work [49] focuses on employ-
ing Big Data analytics in PdAM and CM to streamline maintenance sched-
ules and curtail superfluous resource usage. A methodology for increas-
ing production system transparency via Big Data is proposed in [51],
leading to more effective PdM strategies. The study [34] showcases mod-
elling subsea pipelines using machine learning to predict maintenance
needs, contributing to both operational efficiency and resource conser-
vation. This research [52] introduces and demonstrates a maintenance
strategy that merges condition-based and opportunistic maintenance for
offshore wind farms, showcasing a method for significant cost reduction
and efficient resource management.

The implementation of an IoT-based maintenance alert system for
solar panels is presented in this study [54], aiming to detect early
faults and extend the operational life of the panels, reflecting a com-
mitment to reduce resource consumption and electronic waste. By fo-
cusing on analysing sensor data from mechanical transmission systems,
this study [42] creates maintenance strategies that enhance efficiency
while minimising unnecessary resource expenditure. The study [50]
utilises real-time sensor data to improve the reliability and longevity
of train axle bearings, embodying efficient use of resources and enhanc-
ing component lifespan. The study [103] emphasises remote monitor-
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ing of refrigerant systems to preemptively address maintenance needs,
thereby enhancing system reliability and averting energy waste. This
study [101] introduces a self-powered IoT solution for monitoring high-
voltage substations, emphasising proactive maintenance to prevent fail-
ures and ensure efficient energy use. These initiatives underscore a
transformative shift in industrial maintenance practices, where the de-
ployment of innovative technologies is not solely focused on enhancing
operational efficiencies but also embodies a profound commitment to
sustainable development and responsible resource management. This
alignment of technology with sustainability goals marks a pivotal step
towards a more environmentally conscious and resource-efficient future
in industrial maintenance.

4.3. PdM and CM for a resilient industrial system

The evolving landscape of PAM and CM in industrial systems through
the use of enabling technologies has led to an extended lifespan of ma-
chines. These maintenance practices are resulting in systems that can
adapt to and robustly withstand operational stresses. These innovations
encapsulate a proactive shift towards ensuring operational continuity
and efficiency, central to the resilience of critical infrastructures. The
development of predictive frameworks for complex systems, such as
aero-engines utilising deep learning algorithms like Long Short-Term
Memory (LSTM) as seen in studies like [23], exemplifies the strategic
foresight in preempting potential system failures. Similarly, the intro-
duction of multi-degree-of-freedom (DOF) torsional models for offshore
wind turbine drivetrains, facilitated by DT technology in [30], and the
use of edge computing for real-time monitoring and anomaly detection
in chillers as discussed in [38], underline the critical measures under-
taken to safeguard essential infrastructure. The automation of mainte-
nance decision-making processes through ML and DT, leveraging oper-
ational data for improved responses, represents a dynamic approach to
maintenance planning. This dynamic is further enriched by integrating
data fusion techniques to enhance predictive accuracy, as shown in the
aerospace maintenance operations explored in [43]. The DT-driven hy-
brid approaches based on ML for PdM, such as those applied to CNC
machine tools in [40], and innovative fault detection mechanisms that
facilitate rapid adaptation to faults, exemplified in [41]. Ensuring con-
tinuous monitoring by employing DT for the condition monitoring of
wind turbine drivetrains, as noted in [44], underscores the strategic
advancements towards ensuring equipment longevity and system ro-
bustness.

The essence of industrial resilience is captured in strategies enabling
early detection and maintenance of crucial components. For instance,
utilising IoT frameworks for predictive health management in various
industrial applications, such as those discussed in [96] and [99], high-
lights a commitment to predictive maintenance. This commitment is
evident in the integration of real-time monitoring systems with IoT, en-
hancing the accuracy of predictive maintenance and the responsiveness
of maintenance operations, as seen in studies like [66] and [59]. More-
over, the integration of IoT with advanced data analytics, as demon-
strated in [55] and [104], exemplifies a paradigm shift towards main-
taining uninterrupted operational resilience. Whether through vibra-
tional analysis for early fault detection or the application of IoT for
predictive maintenance to prevent unplanned outages, these strategies
underscore the critical integration of technological advancements with
maintenance practices. Through these diverse applications of DT, ML,
and IoT technologies, the industrial maintenance landscape is under-
going a transformative shift towards inherently resilient practices. This
paradigm not only signals a move towards more dependable and effi-
cient industrial operations but also highlights the indispensable role of
advanced technologies in crafting the future of industrial maintenance
practices.

This transformative shift sets the stage for a comprehensive, multi-
layered framework for PAM and CM in Industry 5.0. The proposed
framework aims to integrate these technological advancements into a
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cohesive structure, enhancing the resilience and efficiency of industrial
systems. The next section outlines this proposed layered framework, de-
tailing the strategic implementation of PAM and CM within the Industry
5.0 paradigm.

5. Framework for PAM and CM in Industry 5.0

The industrial landscape has witnessed profound transformations
through the successive waves of industrial revolutions, each marked by
significant technological innovations. The advent of Industry 4.0 rev-
olutionised traditional maintenance practices by integrating industrial
systems and the Internet of Things (IoT), leading to unprecedented levels
of data-driven decision-making in industry [142]. As Industry 4.0 ma-
tures, the emergence of Industry 5.0 brings forward a paradigm that not
only emphasises efficiency and digitisation but also re-introduces the
human element into the automation loop, fostering a collaboration that
aims to combine the strengths of both human creativity and technologi-
cal precision [107]. Predictive Maintenance (PdM) and Condition Mon-
itoring (CM) have been at the core of this technological advancement,
providing substantial reductions in unplanned downtime and mainte-
nance costs. These practices have evolved from reactive strategies to
highly sophisticated systems powered by data analytics and real-time
monitoring technologies. In Industry 4.0, PAM and CM relied heavily
on the capabilities of IoT and Big Data to predict machinery failures
before they occur, thereby optimising maintenance schedules and ex-
tending equipment life [9]. However, despite these advancements, the
integration of human-centric approaches was often secondary.

Industry 5.0 seeks to balance automation with human expertise, aim-
ing to create more sustainable, resilient, and customised production
processes. This new industrial phase emphasises not only the contin-
uation of technological innovation but also the enhancement of worker
satisfaction and environmental sustainability. Thus, the framework for
PdM and CM in Industry 5.0 must adapt to these shifts by incorporat-
ing advanced technologies such as Artificial Intelligence (AI), Machine
Learning (ML), and Digital Twins, while also enhancing the interaction
between humans and machines through interfaces like Augmented Re-
ality (AR) and Virtual Reality (VR) [143]. The transition to Industry 5.0
offers an opportunity to redesign PdAM and CM systems to be more re-
silient and adaptable to changes, ensuring that maintenance processes
are not only predictive but also responsive to unexpected conditions and
capable of learning from new data. This integration promises to enhance
operational efficiencies and foster environments where technology am-
plifies human potential, leading to maintenance strategies that are not
only effective but also align with broader societal and environmental
goals.

This section will explore a framework as illustrated in 8 that embod-
ies these principles, ensuring that PAM and CM not only prevent failures
but also contribute to the sustainability and resilience of industrial op-
erations.

5.1. Data acquisition layer

The initial step in any predictive maintenance and condition moni-
toring system is the acquisition of high-quality data. In Industry 5.0, the
data acquisition layer extends beyond traditional sensors, incorporating
a sophisticated array of IoT devices capable of capturing a wide range
of operational data in real-time. This layer is foundational, as it sets the
groundwork for all subsequent analysis and predictive actions.

+ The integration of advanced sensors and IoT technology forms the
backbone of modern PdM and CM systems. These sensors collect
critical data points such as temperature, pressure, vibration, and
acoustics, which are essential for monitoring the health and perfor-
mance of machinery. In Industry 5.0, the role of IoT devices expands
to include not only data collection but also the proactive interac-
tion with machine operators and maintenance systems. According
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to [98], IoT devices enable real-time data streaming that supports
instant diagnostics and predictive analytics, enhancing the respon-
siveness of maintenance systems.

+ With the advent of smart sensors equipped with onboard processing
capabilities, data acquisition in Industry 5.0 includes preliminary
data analysis at the source. These smart sensors can filter and pre-
process data, transmitting only relevant information to central sys-
tems, thereby reducing bandwidth usage and enhancing data qual-
ity [144]. Enhanced connectivity solutions such as 5G technology
further enable seamless and efficient data transmission, supporting
a robust data infrastructure critical for real-time monitoring and
analysis.
One of the challenges faced in the integration of new IoT tech-
nologies is interoperability between different devices and existing
enterprise systems. To address this, Industry 5.0 emphasises the
development of standards and protocols that ensure seamless inte-
gration of heterogeneous devices with ERP and MES systems. This
integration enables a holistic view of operational data, facilitating
cross-functional data analysis and decision-making [145]. Ensuring
that data flows smoothly between sensors, machines, and decision
platforms is crucial for the effective implementation of predictive
maintenance strategies.

+ As the reliance on IoT devices and interconnected systems grows, so
does the vulnerability to cyber threats. Protecting the integrity and
confidentiality of data in transit and at rest becomes paramount.
Implementing robust cybersecurity measures, including encryption
and secure data transmission protocols [146], is essential to safe-
guard maintenance data from unauthorised access and cyberat-
tacks.

In the context of Industry 5.0, the data acquisition layer not only
supports predictive maintenance but also contributes to sustainability
by optimising machine use and reducing wasteful practices. By enabling
more precise monitoring and data-driven decisions, this layer supports
the overarching goals of Industry 5.0 to enhance efficiency, reduce envi-
ronmental impact, and improve overall productivity in a human-centric
manner.

5.2. Data processing and analytics layer

The Data Processing and Analytics Layer is where the raw data col-
lected by sensors and IoT devices is transformed into actionable insights.
In the context of Industry 5.0, this layer not only leverages traditional
data processing techniques but also incorporates advanced technologies
such as edge computing, machine learning, and artificial intelligence to
enable real-time, predictive, and adaptive maintenance strategies.

+ Edge Computing: To manage the vast amounts of data generated
by modern industrial systems and minimize latency in critical op-
erations, edge computing has emerged as a pivotal technology. By
processing data near the source rather than relying on distant cloud
servers, edge computing ensures rapid response times and reduces
bandwidth demands on central systems [147]. This is crucial for
maintenance tasks that require immediate action to prevent equip-
ment failure or to mitigate potential hazards.

Machine Learning and Artificial Intelligence: Machine learning
algorithms and Al are integral to analysing the complex datasets
gathered from various sensors and IoT devices. These technologies
can identify patterns and predict potential failures before they oc-
cur, significantly enhancing the effectiveness of maintenance sched-
ules. For instance, predictive models can forecast equipment wear
and tear based on operational data, allowing maintenance to be
performed only when necessary, rather than at fixed intervals [67].
This not only extends the life of the equipment but also reduces
unnecessary maintenance costs.
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- Digital Twins: Digital Twins represent a technological leap in In-
dustry 5.0, providing dynamic virtual models of physical systems
that can be used for simulations and analysis. By integrating real-
time data from IoT devices, digital twins allow for the continuous
monitoring of systems and the simulation of potential changes to
predict their effects on operations. This helps in fine-tuning pro-
cesses and predicting future failures with high accuracy. Digital
twins enable a deep understanding of machinery conditions and can
significantly improve decision-making processes in maintenance
management [39].

Implementing comprehensive data analytics platforms that can in-
tegrate and analyse data from diverse sources is crucial. These plat-
forms utilise advanced analytics techniques, including statistical
analysis, trend analysis, and machine learning, to extract valuable
insights from big data. The integration of these platforms with en-
terprise systems facilitates the dissemination of insights across vari-
ous departments, ensuring that all relevant stakeholders have access
to the information needed for informed decision-making [148].

In Industry 5.0, the Data Processing and Analytics Layer is not just
about optimising maintenance; it’s also about integrating human in-
sights and enhancing operational transparency. This integration sup-
ports the human-centric goals of Industry 5.0, enabling workers to inter-
act with systems more intuitively and make better-informed decisions
based on reliable data insights. Moreover, the adaptive capabilities fos-
tered by AI and machine learning contribute to the resilience and sus-
tainability of industrial operations, aligning with the broader goals of
efficiency and environmental stewardship.

5.3. Human-Machine Interface (HMI) layer

The Human-Machine Interface (HMI) Layer in Industry 5.0 serves
as the critical junction where human operators interact directly with
the advanced maintenance systems. This layer is designed to enhance
the usability and effectiveness of predictive maintenance and condition
monitoring by making complex data understandable and actionable for
human users, thereby supporting more informed decision-making and
efficient maintenance operations.

« Augmented Reality (AR) and Virtual Reality (VR) technologies play
pivotal roles in modern HMIs by providing interactive and immer-
sive experiences that bridge the gap between digital information
and the physical world. AR can overlay critical information, such
as machine performance data or maintenance instructions, directly
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onto a technician’s field of view, enhancing understanding and re-
ducing errors during maintenance tasks [90]. Similarly, VR can
be used for training purposes, allowing maintenance personnel to
simulate and practice complex procedures in a safe, controlled en-
vironment before applying them in real-world scenarios.
Dashboards are essential tools in the HMI Layer, designed to ag-
gregate and display data from various sources in an intuitive and
accessible format. These dashboards provide real-time insights into
system performance, alerts, and predictive maintenance recommen-
dations, all tailored to be easily digestible by human operators.
Advanced dashboards also incorporate user-friendly interfaces that
allow workers to interact with the system, adjust parameters, and
make informed decisions quickly based on real-time data.
Incorporating a user-centric design philosophy in the development
of HMIs ensures that the systems are accessible and useful to all
workers, regardless of their technical expertise. This involves em-
ploying principles of ergonomic design, clear visualisations, and
intuitive controls. Such designs help in reducing the learning curve
and enhancing the overall user engagement with the technol-
ogy [149].

Effective HMIs in Industry 5.0 are equipped with feedback mecha-
nisms that allow operators to provide inputs back to the system,
which can be used to refine and optimise the maintenance pro-
cesses. These mechanisms not only support continuous improve-
ment but also empower workers by giving them a voice in how the
systems operate, thereby fostering a more collaborative and respon-
sive maintenance environment.

To maximise effectiveness, HMIs need to be seamlessly integrated
with broader enterprise systems such as Manufacturing Execu-
tion Systems (MES) and Enterprise Resource Planning (ERP) plat-
forms [150]. This integration allows for a holistic view of the
operational data and facilitates the coordination of maintenance
activities across different departments and functions within the or-
ganisation [151].

The HMI Layer is critical in Industry 5.0 as it directly supports the
human-centric approach that this new industrial era champions. By en-
hancing the interaction between human operators and the sophisticated
maintenance systems, HMIs help in reducing complexity and making
technology more accessible and beneficial to all users. Moreover, by
improving the clarity and usability of information, HMIs contribute to
quicker, more accurate maintenance decisions, which can significantly
reduce downtime and enhance operational efficiency. This layer, there-
fore, not only supports the technical goals of predictive maintenance but
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also aligns with the broader objectives of Industry 5.0 to create more
sustainable, efficient, and human-friendly industrial operations.

5.4. Maintenance execution layer

The Maintenance Execution Layer is where the strategies developed
through data insights and human-machine interfaces are implemented.
This layer focuses on the actual performance of maintenance tasks, op-
timising both the efficiency and effectiveness of these operations within
the framework of Industry 5.0.

+ In Industry 5.0, automated maintenance scheduling leverages Al-
driven insights to optimise the timing and scope of maintenance ac-
tivities. By predicting when maintenance should occur, rather than
adhering to a rigid schedule, organisations can minimise downtime
and extend the lifespan of their equipment. This approach uses data
analytics to determine the optimal maintenance windows, balanc-
ing operational demands with maintenance needs, thereby ensuring
that maintenance activities are conducted without disrupting pro-
duction processes [152].

The integration of robotics and automation technologies plays a
pivotal role in enhancing maintenance tasks. Robots can perform
dangerous or complex tasks with precision and without fatigue, in-
creasing safety and efficiency. For instance, drones can be used for
inspecting infrastructure in hard-to-reach areas, while robotic arms
can handle high-precision tasks under hazardous conditions [153].
This not only improves safety by reducing human exposure to dan-
gerous environments but also enhances the quality and speed of
maintenance operations.

While automation and robotics significantly enhance maintenance
capabilities, human oversight remains crucial, especially in com-
plex decision-making scenarios where human judgement is in-
valuable. Technicians and engineers oversee and intervene in the
maintenance process, especially in situations where automated sys-
tems might not fully comprehend the nuances of a problem. This
human-in-the-loop approach ensures that maintenance decisions
are not only data-driven but also contextually informed, safeguard-
ing against potential oversights by automated systems [154].
Advancements in predictive maintenance enable a shift towards
more proactive maintenance strategies. By not only predicting po-
tential failures but also actively preventing them through timely in-
terventions, Industry 5.0 maintenance practices move beyond mere
prediction to prevention. This proactive approach minimises the
risk of unexpected failures and maximises equipment availability
and reliability [145].

To effectively manage the sophisticated technologies used in Indus-
try 5.0, ongoing training and skills development for maintenance
personnel are essential. This ensures that the workforce is capable
of operating advanced maintenance systems and can adapt to new
technologies as they are integrated into the maintenance processes.
Training programs often include simulations and VR-based mod-
ules to provide hands-on experience in a controlled environment,
preparing maintenance staff for real-world scenarios [155].

The Maintenance Execution Layer is critical for translating the insights
gained from predictive analytics into tangible actions that directly im-
pact the efficiency and longevity of industrial operations. In Industry
5.0, this layer not only ensures the effective implementation of mainte-
nance tasks but also upholds the human-centric principles of the era
by enhancing worker safety and skill development. Furthermore, by
integrating proactive maintenance strategies, this layer contributes to
the sustainability and resilience of industrial operations, aligning with
Industry 5.0’s emphasis on sustainable practices and operational excel-
lence.
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5.5. Feedback and optimisation layer

The Feedback and Optimisation Layer in Industry 5.0 is vital for
maintaining a cycle of continuous improvement in predictive mainte-
nance and condition monitoring systems. This layer captures feedback
from all previous layers, using it to refine processes, enhance system
accuracy, and adapt to evolving operational conditions.

« Incorporating continuous learning mechanisms is essential for up-
dating and improving the predictive models based on real-time
operational data and feedback. As new data are collected and anal-
ysed, machine learning algorithms adjust to better predict failures
and optimise maintenance schedules. This dynamic adaptation en-
sures that the models remain effective even as equipment conditions
change or new types of faults emerge. Regular updates to the mod-
els can also account for changes in operational environments or
production demands, thereby maintaining high accuracy and rele-
vance [156].
Continuous performance monitoring is critical to assess the ef-
fectiveness of maintenance interventions. By analysing outcomes,
such as the frequency and nature of equipment failures post-
maintenance, organisations can gauge the efficacy of their predic-
tive maintenance strategies [157]. This monitoring helps in identi-
fying areas where predictions may not align with actual outcomes,
highlighting opportunities for improvement in both data handling
and maintenance execution.
This layer also incorporates metrics that evaluate the environmental
impact of maintenance activities. These metrics include energy con-
sumption, resource utilisation, waste production, and overall car-
bon footprint associated with maintenance processes. By tracking
these metrics, companies can strive to reduce their environmental
impact, optimising maintenance practices not only for operational
efficiency but also for sustainability.
Establishing robust feedback loops that integrate insights from the
shop floor up to the management level is crucial for fostering a re-
sponsive and adaptive maintenance environment. These loops allow
for the continuous flow of information between operators, techni-
cians, and decision-makers, ensuring that insights gained from data
analytics and field experiences are utilised to inform broader main-
tenance strategies.
 Active engagement with all stakeholders, including maintenance
personnel, operators, and management, is essential for effective op-
timisation. By involving stakeholders in the review and refinement
process, organisations can ensure that the maintenance strategies
are practical, meet the users’ needs, and are aligned with organi-
sational goals. This inclusive approach improves the effectiveness
of the maintenance procedures and builds a feasible set of mainte-
nance performance indicators [158].

The Feedback and Optimisation Layer is instrumental in realising the
full potential of a human-centric approach to predictive maintenance in
Industry 5.0. It ensures that the systems are not static but are continually
evolving based on actual performance data and user feedback. This layer
supports the resilience of maintenance operations by enabling systems
to adapt to changes and challenges swiftly. Moreover, by incorporating
sustainability metrics, it ensures that maintenance processes contribute
to the broader goals of environmental stewardship and sustainability,
which are central to the ethos of Industry 5.0.

5.6. Resilience and adaptation layer

In Industry 5.0, the Resilience and Adaptation Layer is crucial for
ensuring that PAM and CM systems are not only robust but also capable
of adapting to unexpected changes and challenges. This layer focuses on
building resilience into the systems and enabling them to dynamically
adjust their operations in response to new data or external changes.
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+ Continuously analysing the robustness of the PdAM and CM systems
against potential disruptions, whether they are physical (such as
equipment failure or environmental changes) or digital (such as cy-
ber threats or data integrity issues). By identifying vulnerabilities
and potential failure points within the systems, organisations can
implement targeted strategies to mitigate risks and enhance system
resilience. Regular resilience assessments help ensure that mainte-
nance systems can sustain operations under a variety of stress con-
ditions, thereby minimising downtime and preventing catastrophic
failures [159].

Adaptive predictive models are designed to adjust their parameters
based on real-time data and changing conditions [160]. These mod-
els use machine learning algorithms that evolve as they are exposed
to new operational data, allowing them to continually refine their
predictions and recommendations. This adaptability is essential in
industries where operational conditions can vary significantly, en-
suring that the maintenance strategies remain effective and relevant
under diverse scenarios.

Utilising digital twins and advanced simulation tools, this layer
allows for comprehensive scenario planning. Organisations can sim-
ulate various operational and failure scenarios to assess how their
systems would respond. This proactive approach helps in identi-
fying potential issues before they occur in the real world and al-
lows for the refinement of maintenance strategies to handle those
situations effectively [47]. It also aids in training personnel to re-
spond effectively to emergencies, further enhancing operational re-
silience.

Incorporating dynamic response systems within the maintenance
framework enables rapid adjustments to maintenance schedules
and procedures based on sudden changes or emergent issues. These
systems can automatically reallocate resources, adjust priorities,
and even initiate emergency protocols if needed, ensuring that the
organisation can maintain operational continuity under various cir-
cumstances [161].

Ensuring that feedback from all previous layers is integrated effec-
tively into the resilience planning process is key. Learning loops that
incorporate insights from the execution and feedback layers help
in continuously updating the resilience strategies. This integration
ensures that the lessons learned from past incidents and routine op-
erations are used to strengthen the resilience of the maintenance
systems.

The Resilience and Adaptation Layer is integral to achieving the goals
of Industry 5.0, which emphasises not only efficiency and productivity
but also the sustainability and adaptability of industrial operations. By
building resilient and adaptive maintenance systems, organisations can
ensure that they are prepared to handle both predictable wear and tear
and unexpected disruptions. Furthermore, this layer fosters a culture of
continuous improvement and learning, which is essential for maintain-
ing the long-term viability and competitiveness of industrial enterprises.

6. Case study: implementing a layered framework for predictive
maintenance and condition monitoring of a boiler feed-water
pump in Industry 5.0

In the complex operational environment of steam power plants, the
reliability of boiler feed-water pumps is important to maintaining con-
tinuous and efficient plant operation [162]. These pumps serve a critical
function by supplying water to the boiler under high pressure, which is
essential for steam generation. Historically, the maintenance strategies
employed to ensure the operational integrity of these pumps have re-
lied on reactive approaches. However, as the demands on power plants
increase in terms of efficiency, sustainability, and reliability, these tra-
ditional methods are becoming increasingly inadequate. This case study
explores the implementation of a layered framework for Predictive
Maintenance (PdM) and Condition Monitoring (CM) in Industry 5.0 for
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a critical component—the Boiler Feed-Water Pump in a power plant. It
addresses challenges traditionally associated with the maintenance of
this specialised equipment and aims to provide a preliminary approach
for the implementation of Industry 5.0 framework in PdM and CM.

6.1. Traditional maintenance challenges

In steam power plants, the maintenance of boiler feed-water pumps
is critical due to their direct impact on the operational efficiency and
reliability of the entire facility. The traditional maintenance approaches
face several challenges that, if not addressed, could significantly under-
mine the goals of Industry 5.0, which aims for resilience, sustainability,
and human-centric industrial operations.

+ Frequent Unplanned Downtime: One of the most pressing chal-
lenges is frequent unplanned downtime due to pump failures, caus-
ing partial or complete plant shutdowns. These shutdowns are
disruptive and costly, leading to lost productivity and increased
operational expenses [163]. The unpredictability of these failures
complicates resource planning and allocation, contradicting Indus-
try 5.0’s goal of seamless and sustainable operational workflows.
Reactive Maintenance Practices: Traditionally, the maintenance
approach for these pumps is reactive. This approach often results in
higher maintenance costs due to more severe damage that occurs
when issues are not addressed promptly [164]. Reactive mainte-
nance contradicts Industry 5.0’s emphasis on predictive and proac-
tive strategies, which leverage advanced technologies to forecast
and solve problems before they lead to failure.

Lack of Real-Time Insights: The absence of real-time insights into
the operational health of the pump significantly hampers the abil-
ity to perform timely maintenance. Without accurate and real-time
data, it is nearly impossible to implement predictive maintenance
strategies effectively [165]. Industry 5.0 revolves around the inte-
gration of digital technologies that provide real-time data to op-
timise operations. The inability to access real-time insights is a
barrier to achieving the high levels of operational efficiency and
agility that Industry 5.0 aims for.

To address these challenges, the implementation of the developed
framework as illustrated in Fig. 9 for PAM and CM is necessary. The ap-
proach for employing the layered framework for enabling the predictive
maintenance of boiler feed-water pump is elaborated in the following
section.

6.2. Industry 5.0 framework implementation

1. Data Acquisition Layer

The deployment of Data Acquisition Layer forms the foundation of
predictive maintenance for boiler feed-water pumps in an Industry 5.0
environment. This layer incorporates advanced IoT sensors strategically
installed on the pump to continuously monitor vital parameters such as
temperature, pressure, vibrations, and flow rates [166]. These sensors
collect real-time data, providing a comprehensive view of the pump’s
operational health. This data is essential not only for identifying cur-
rent issues but also for predicting future malfunctions. The integration
of these sensors ensures seamless data capture, which is crucial for the
subsequent layers of processing and analysis [167]. This layer enables
the advanced predictive analytics that drive predictive maintenance de-
cisions by collecting real-time data. Thereby laying the groundwork for a
proactive maintenance strategy that significantly enhances operational
efficiency and reliability.

2. Data Processing and Analytics Layer

Data collected by the sensors is processed locally using edge com-
puting solutions, ensuring rapid response capabilities necessary for pre-
dictive maintenance. The local processing includes filtering and pre-
liminary analysis, reducing the volume of data that needs to be sent
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Fig. 9. Industry 5.0 implementation - a layered approach for enabling PAM and CM in a boiler feed-water pump.

to central servers, thus enhancing efficiency and reducing latency. The
central feature of this layer involves the application of Deep Neural Net-
works (DNNs). These DNNs are trained on historical performance data
alongside the real-time data collected by IoT sensors. By understand-
ing both the historical and current operational signatures of the pump,
DNNs can predict potential failure points with high accuracy [168].This
capability allows maintenance teams to shift from a reactive mainte-
nance model to a predictive one, addressing issues before failure. To
accommodate changes in pump behaviour over the time due to wear and
other operational influences, adaptive predictive models are employed.
These models are capable of updating their parameters automatically in
response to new data, ensuring that the predictive insights remain ac-
curate and relevant. This adaptation is supported by machine learning
techniques like online learning, where the model continuously updates
itself without requiring a complete retraining process.

3. Human-Machine Interface (HMI) Layer

In the next layer, advanced HMI solutions are used to effectively
translate the complex data and model outputs into actionable in-
sights [169]. Customised local dashboards are used which provide
real-time data visualisations designed for quick decision-making by
maintenance staff [170]. These dashboards highlight critical metrics
that predict maintenance needs, such as increased vibration levels or
unusual temperature readings. AR tools are employed to overlay digital
information, such as predictive insights and maintenance instructions,
directly onto the technician’s view of the physical equipment. This in-
tegration helps in reducing errors during maintenance tasks and speeds
up the repair process by providing contextual information in real-time.
This layer not only improves the efficacy of maintenance team but also
helps in the execution of maintenance tasks with more accuracy and
reduced time.

4. Maintenance Execution Layer
The next layer involves the execution of maintenance. The Mainte-
nance Execution Layer is where the predictive insights generated from
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data analytics are put into action. In this layer, the integration of auto-
mated systems plays a pivotal role. By utilising the forecasts provided
by predictive layer, this layer schedules maintenance tasks dynami-
cally, ensuring they are conducted at the most opportune times without
disrupting the plant’s operations. Supported by the customised dash-
boards and AR tools to enhance the efficiency of maintenance team,
this layer ensures the error free execution of maintenance tasks. The
use of robotics and automated tools is crucial here, as they perform
high-precision tasks such as shaft balancing and alignment and replace-
ments which not only enhances safety by reducing human involvement
in potentially hazardous activities but also increases the accuracy of
maintenance procedures. This layer is critical as it translates predictive
data into tangible maintenance actions that directly contribute to the
durability and reliability of the boiler feed-water pump.

5. Feedback and Optimisation Layer

The Feedback and Optimisation Layer is deployed which is essential
for refining the predictive maintenance process. It continuously collects
data from all executed maintenance activities and analyses the outcomes
to assess the effectiveness of the predictive models and the efficiency
of the executed maintenance tasks [171]. This layer utilises tools like
performance monitoring dashboards that provide insights into mainte-
nance effectiveness, equipment reliability, and areas for improvement.
Feedback from this layer is used to adjust the predictive algorithms, en-
hancing their accuracy and reliability. By creating a loop of continuous
improvement, this layer ensures that the maintenance system adapts to
changing conditions and remains optimal over time. It also promotes
sustainability by optimising resource utilisation and waste reduction.
Thus, aligning maintenance practices with the eco-friendly goals of In-
dustry 5.0.

6. Resilience and Adaptation Layer

The Resilience and Adaptation Layer focuses on ensuring that the
maintenance system can withstand and quickly recover from opera-
tional disruptions. It incorporates resilience analysis to identify and
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mitigate potential risks to the maintenance system, enhancing its ability
to operate under a variety of stress conditions [172].Adaptive predic-
tive models are employed which play a key role in this layer. These
models are designed to adjust their strategies based on new data or
changes in operational conditions. Reinforcement learning techniques
are utilised which continuously learn and improve from each scenario.
These techniques help in the evolution of boiler feed-water pump’s pre-
dictive maintenance model along with its operating environment. This
layer utilised a physics-based Digital Twin model of boiler feed-water
pump, incorporating the real-time data from the Data Acquisition Layer
which helps in scenario planning and simulations to forecast and pre-
pare for potential future challenges. The simulations involved creating
imaginary scenarios and evaluating the behaviour of the equipment
and the predictive maintenance model. This proactive approach not
only mitigates risks but also ensures that the maintenance strategies
are robust, flexible, and capable of adapting to new challenges as they
arise.

6.3. Projected outcomes

The design of layered framework for enabling Predictive Mainte-
nance (PdM) and Condition Monitoring (CM) of the boiler feedwater
pump would resolve the issues currently encountered with the reac-
tive maintenance approach. By shifting to this advanced framework, the
system will proactively identify and address potential failures, thereby
improving reliability and efficiency. The associated benefits of utilising
this framework are detailed below.

+ The integration of advanced IoT sensors and real-time data process-
ing through data processing and analytics layer would reduce the
frequency of unplanned shutdowns by giving insights about the ma-
chine condition. Predictive analytics, powered by machine learning
models such as Deep Neural Networks (DNNs), will enable the early
detection of potential failures before they escalate into costly break-
downs. This proactive approach will minimise disruptions, ensuring
continuous operation of the power plant.

By shifting from a reactive to a predictive maintenance strategy,
the framework would allow for maintenance activities to be sched-
uled and performed based on the actual condition of the equipment
rather than on a fixed schedule or after the occurrence of failure.
Not only would this approach reduce maintenance costs but also ex-
tend the lifespan of the equipment by preventing breakdowns and
excessive wear and tear.

Moreover, the deployment of digital twins and augmented reality
tools within the maintenance framework would provide mainte-
nance personnel with real-time insights into the operational health
of the pump. These technologies offer a dynamic visualisation of
performance and potential issues, empowering operators with im-
mediate data to make informed decisions.

The achievements in tackling traditional maintenance challenges
through this framework align closely with the key principles of Indus-
try 5.0. This framework helps in achieving the Industry 5.0’s goals of
operational efficiency and sustainability by reducing unplanned down-
time and enhancing the efficiency of maintenance processes. Addition-
ally, the shift towards predictive maintenance and the empowerment
of personnel with real-time data and sophisticated tools reflect Indus-
try 5.0’s human-centric approach. These technologies not only improve
the safety and efficiency of maintenance tasks but also provide a more
knowledgeable and proactive workforce, thereby enhancing both hu-
man and operational aspects of industrial practices. This alignment
demonstrates that integrating advanced, intelligent technologies with
a focus on human factors leads to a more resilient, efficient, and sus-
tainable industrial environment.
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7. Discussion

In an effort to explore the effective implementation and framework
development for Predictive Maintenance (PdM) and Condition Monitor-
ing (CM), an exhaustive review of the literature covering the enabling
technologies of Industry 4.0 for PAM and CM implementation as pre-
sented in Section-2 has uncovered multi-dimensional insights. This lit-
erature underscores not only the inherent adaptability and flexibility of
systems empowered by the integration of key technologies but also the
pivotal role they play in steering maintenance practices towards a pre-
dictive and proactive future.The transition from traditional maintenance
methods to advanced strategies rely on the enabling technologies such as
Digital Twins (DT), Machine Learning (ML) and Internet of Things (IoT).
DT enabled systems supported by Big Data analytics, offer insights cru-
cial for condition monitoring and early fault detection. Similarly, the
application of ML in predicting Remaining Useful Life (RUL) and an-
ticipating faults demonstrates its potential in making industrial systems
more self-aware and adaptable. The integration of ML into systems not
only enhances decision-making processes for maintenance strategies but
also showcases exceptional accuracy in fault prediction. Central to the
integration of all these enabling technologies is IoT, which is facilitating
communication between systems, processes, and human beings.

The mapping of PAM and CM based on these enabling technologies
with the core principles of Industry 5.0 revealed several key insights.
DT-enabled PdM and CM systems align closely with the human-centric
approach of Industry 5.0 goals, followed by ML, which aids in decision-
making processes. Moreover, DT, [oT, and ML-based predictive main-
tenance practices align with the sustainability goals of Industry 5.0,
ensuring that industrial maintenance practices are more sustainable.
Similarly, ML and IoT techniques for PAM and CM contribute to build-
ing resilient industrial systems, with DT providing useful insights for
RUL prediction of machines. Through the implementation of these tech-
niques, it is evident that the goals of Industry 5.0 in PdAM and CM
implementation are achievable. Additionally, with the advent of Aug-
mented Reality (AR) and Virtual Reality (VR) techniques and customised
interactive dashboards, the goal of human-centricity is further achieved.
The six-layered approach based on this mapping helps develop a frame-
work, as elaborated in Section-5, to ensure maintenance practices in the
industry powered by the enabling technologies are in accordance with
the key principles of Industry 5.0.

From the developed framework the data acquisition layer can pro-
vide interoperability and seamless integration with existing ERP and
MES systems. This layer can prove instrumental in fusing the existing
practices with this novel framework. In data processing and analytics
layer the data, after being processed at the edges by edge computing,
is utilised for identifying patterns and useful highlights to predict faults
and potential failures beforehand. This layer integrates human insights
by enabling workers to interact with systems and make informed de-
cisions. The Human-Machine Interface (HMI) layer helps in making a
collaborative approach for humans and machines. The maintenance ex-
ecution layer executes the maintenance processes by Al-driven insights
from the previous layer. Trained workers carry out specific tasks along
with robots for high precision, risky, and hazardous tasks. The last two
layers of this framework focus on incorporating adaptive learning to
adapt to any changing scenarios such as wear and tear of machinery. En-
suring the PAM and CM framework can adapt to unexpected changes and
disruptions, these layers help in building a resilient industrial system
and contribute to sustainable maintenance practices. Dynamic response
systems help in enabling rapid adjustments to maintenance schedules
and procedures based on sudden changes or emergent issues.

The case study on the boiler feed-water pump in a steam power plant
further illustrates the practical implications of the developed frame-
work. Implementing the developed six-layer framework for this boiler
feed-water pump’s maintenance would result in reducing the unplanned
downtime, provide PdM practices instead of reactive measures, and
enable continuous condition monitoring of the equipment. Early fault
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detection using Deep Neural Networks (DNNs) architecture would help
identify issues before they cause costly breakdowns. Incorporation of
automated shaft balancing and alignment techniques would help in re-
ducing risky work for humans, focusing on a safer work environment.
Overall, this sustainable, resilient, and human-centric PAM and CM ap-
proach not only achieves better maintenance outcomes but also aligns
with Industry 5.0 guidelines. While the research reviewed in this study
significantly contributes to understanding and adapting Industry 5.0
principles and enabling technologies for PAM and CM applications, it
also reveals notable gaps in the current literature. The upcoming section
will delve into a detailed discussion of these gaps, providing insights into
areas where further research and development could prove instrumen-
tal. Addressing these gaps is crucial for advancing the theoretical foun-
dation of Industry 5.0-driven PAM and CM based on the core concepts
of human-centricity, resilience, and sustainability, and for practical im-
plementation in real-world industrial scenarios.

7.1. Current challenges, gaps and limitations

The integration of Predictive Maintenance (PdM) and Condition
Monitoring (CM) practices, based on key enabling technologies of Indus-
try 4.0, in accordance with the principles of Industry 5.0 faces several
challenges. These challenges also highlight the gaps and limitations in
the existing research and implementation strategies.

One of the primary challenges is the integration of diverse and often
incompatible data sources from various IoT devices and smart sensors.
This issue leads to data fragmentation, creating large data silos that
hinder the smooth and continuous data flow. Therefore reducing the ef-
fectiveness of PAM and CM practices. Moreover, the vast amounts of data
generated from the industrial processes present a challenge in the form
of data processing and storage. Industries struggle to implement scalable
solutions that can handle big data efficiently. This represents a critical
challenge where more advanced and cost-effective data management
solutions are required. Another challenge is related to the processing of
data that is, the accuracy and reliability of predictive models. Machine
Learning (ML) algorithms require high-quality and well-curated datasets
for their optimal performance. However, the presence of noisy, incom-
plete or biased data can lead to flawed predictions which may result in
costly maintenance errors. This points to a limitation in current research
where more robust methods for data validation and model training are
necessary.

Existing research in PAM and CM reveals some noteworthy gaps.
Firstly, the literature lacks a comprehensive view of Industry 5.0, with
little to no emphasis on cross-industry collaboration, limiting the de-
velopment of predictive maintenance strategies that are helpful across
different industrial domains. Additionally, there is a lack of in-depth
exploration into the application of edge computing for PAM and CM,
hindering insights into its potential in optimising real-time data process-
ing and reducing the required computational power at central servers.
Human-centric considerations, such as user acceptance and behavioural
aspects in the adoption of PAM and CM in the context of Industry 5.0
technologies, remain overlooked. Moreover, the intersection of predic-
tive maintenance and collaborative robots (cobots) is under-explored,
necessitating further research into the potential contribution of cobots
for PAM and CM. There is also limited exploration of blockchain tech-
nology for industrial data, raising concerns about data integrity and
security. The role of wireless communication-based sensors in PdM lacks
thorough investigation, creating gaps in understanding their deploy-
ment and implications for a PdM-enabled industry.

The exploration and examination of the literature also highlighted
some limitations associated with implementing PdM in the context of
Industry 5.0. The heterogeneous nature of industries constitutes a signif-
icant challenge in developing a universally applicable PAM framework.
The demand for customisation to accommodate industry-specific needs
is a limiting factor in implementing PdM in Industry 5.0 settings. Fur-
thermore, the adaptability of PAM and CM may be constrained by the
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expense-to-profit ratio, as industries with low-profit margins require a
delicate balance between implementation costs and potential benefits.
Addressing these gaps and limitations in future research can improve our
understanding of PdM in the Industry 5.0 landscape. This effort aims to
provide a more complete and detailed insight into how predictive main-
tenance strategies can be enhanced and adapted to meet the evolving
needs of Industry 5.0.

8. Future challenges and way forward
8.1. Security of sensitive data

Security of sensitive data is a critical aspect in the implementation
of PAM and CM framework in Industry 5.0. The increasing connectivity
and data exchange in Industry 5.0 can potentially expose systems to
various cyber threats, raising questions about the integrity of the data
being processed and exchanged. Blockchain technology acts as a robust
solution within the principles of Industry 5.0 to address these security
concerns. By employing blockchain for data storage and transactions, a
decentralised and tamper-resistant system is established. This not only
serves to enhance data security but also guarantees transparency and
traceability throughout the system.

In the context of PAM and CM applications, blockchain technol-
ogy can play a pivotal role in securing the integrity of maintenance
records and sensor data. For instance, maintenance records stored on a
blockchain become resistant to tampering, providing an immutable and
auditable history of equipment health and maintenance activities. This
aligns with Industry 5.0’s emphasis on building a secure and transpar-
ent digital ecosystem. One of the key advantages of utilising blockchain
in the context of PAM and CM is its ability to mitigate concerns related
to data breaches and unauthorised access. With its decentralised na-
ture, blockchain minimises the risk of a single point of failure, making
it significantly more challenging for malicious actors to compromise the
entire system. The cryptographic principles based on blockchain ensure
that once data is added to the chain, it becomes virtually impossible to
alter, ensuring the integrity of the information exchanged. Moreover,
blockchain’s distributed ledger technology promotes a collaborative
and trustful environment. In Industry 5.0, where multiple stakeholders
across the supply chain and ecosystem interact, blockchain provides a
secure foundation for data sharing and collaboration. This is particularly
beneficial in PAM and CM applications, where real-time information
exchange among different entities, such as equipment manufacturers,
service providers, and end-users, is crucial for effective decision-making.

While blockchain technology offers a promising solution by estab-
lishing a decentralised and tamper-resistant system, its application in
industrial settings is still in its beginning. Future research should ex-
plore the scalability of blockchain solutions in large-scale industrial
environments and address potential latency issues that could affect real-
time data processing. Additionally, the combination of blockchain with
other emerging technologies like quantum encryption could offer new
avenues for enhancing data security. Moreover, industries must consider
the legal and regulatory implications of adopting blockchain technology,
specifically related to data privacy laws such as General Data Protec-
tion Regulation (GDPR). The establishment of industrial standards for
blockchain implementation in PAM and CM would help not only in
achieving broader transformation but also ensuring compliance with
regulatory requirements. Collaborative efforts among industry stake-
holders, cybersecurity experts, and policymakers will be essential in
creating a secure and transparent digital ecosystem that aligns with the
principles of Industry 5.0.

As the technology landscape evolves, new challenges and vulnerabil-
ities may emerge. Therefore, staying vigilant and proactive in adapting
security measures to the evolving threat landscape is crucial for ensur-
ing the long-term efficacy of blockchain solutions in the context of PAM
and CM within Industry 5.0. In conclusion, the adoption of blockchain
technology for data security in Industry 5.0’s PAM and CM applications
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not only aligns with the principles of a secure and transparent digital
ecosystem but also presents a practical and effective solution to address
existing and emerging challenges related to data integrity, breaches, and
unauthorised access.

8.2. Excessive investments

For industries which are looking forward to implement advanced
PdM and CM frameworks, the hurdle of excessive investment remains a
significant challenge. The costs associated with the implementation of
the layered framework for PAM and CM in Industry 5.0, such as data
acquisition and data processing layer, can be substantial particularly
for small and medium-sized enterprises (SMEs). Future strategies should
focus on developing scalable and modular PdM systems that allow com-
panies to implement these technologies in stages, spreading out the costs
over time. Research into cost-benefit analysis models, specific to Indus-
try 5.0 technologies, could provide industries with clearer insights into
the long-term financial benefits of these investments. This will not only
justify the initial expenditure but also encourage the decision-makers to
take step for implementing these strategies.

A strategic and cost-effective approach to overcoming these chal-
lenges is embedded in adhering to Industry 5.0 principles. The collabora-
tive nature of Industry 5.0 provides a framework for shared investments
and resources among interconnected industries. By promoting cross-
industry collaboration, the burden of investment can be distributed
across multiple stakeholders, making advanced PdM and CM technolo-
gies more accessible and affordable for individual organisations. This
collaborative approach aligns with the principles of Industry 5.0, em-
phasising a collective effort towards creating a connected and inter-
dependent industrial ecosystem. As the industries work together the
financial burden is reduced. Moreover, the implementation of PAM and
CM strategies can be accelerated with the help of shared knowledge,
expertise, and resources.

In addition, public-private partnerships and government-funded ini-
tiatives could play a critical role in reducing the financial burden on
individual companies. An environment of shared resources across the
industries could help SMEs to get access to PAM and CM framework im-
plementation and take advantage of the advancements of Industry 5.0.
Exploring alternative financing models, such as leasing or subscription-
based services for PAM technologies, could also provide more flexible
options for industries facing budget constraints.

Moreover, the collaborative and resource-sharing principles of Indus-
try 5.0 can extend beyond financial considerations. Industries can share
best practices, standardised protocols, and research findings, creating a
collective intelligence that benefits all participants. This collaborative
environment not only reduces costs but also fosters innovation and ac-
celerates the maturity of PdM frameworks. Government initiatives and
industry associations can play a pivotal role in facilitating this collabo-
rative approach. By establishing frameworks for cooperation, providing
incentives, and promoting the exchange of information and resources,
these entities can contribute to the creation of a supportive ecosystem
for the adoption of advanced PdM technologies. In summary, while the
implementation costs associated with PAM and CM framework for Indus-
try 5.0 may initially pose a challenge for the industries, the collaborative
and resource-sharing nature of Industry 5.0 offers a strategic solution.
By emphasising cross-industry collaboration, the financial burden can
be distributed, making advanced PdM technologies more accessible, af-
fordable, and ultimately promoting a collective environment conducive
to innovation and progress in the realm of predictive maintenance.

8.3. Highly skilled manpower

The demand for highly skilled manpower is a pressing challenge in
the implementation of Industry 5.0-centric predictive maintenance. As
the industry transitions towards advanced technologies such as data
analytics, Al, and ML, there is a growing need for professionals with
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expertise in these domains. The shortage of such skilled manpower is
hindering the full realisation of the benefits associated with advanced
PdM implementation. To address this challenge, industries must invest
in comprehensive training and development programs that equip their
existing workforce with the necessary skills. Research into the effec-
tiveness of various training methodologies, such as on-the-job training,
certifications, and continuous learning platforms, will be vital in ensur-
ing that these programs are successful.

The integration of cobots and other automation technologies into
maintenance processes can alleviate some of the pressure caused by the
shortage of skilled workers, allowing human operators to focus on more
complex, value-added tasks. By automating routine maintenance tasks
through the use of cobots, organisations can optimise the utilisation of
skilled personnel. This automation allows skilled professionals to redi-
rect their focus towards higher-level decision-making and creative tasks
which aligns with the human-centric approach promoted by Industry
5.0 principles. The integration of cobots not only addresses the shortage
of skilled manpower but also enhances overall efficiency in PdAM and CM
processes by making a collaborative working environment with the help
of human-machine integration.However, it is crucial to ensure that the
collaboration between human workers and cobots is flawless and that
the technology adjuncts rather than replaces human expertise. Future
research should focus on optimising human-cobot interaction, explor-
ing how augmented reality (AR) and virtual reality (VR) can be used to
enhance training and ensure that workers are comfortable and effective
in this new collaborative environment.

Industry 5.0 emphasises the importance of continuous learning. By
utilising AR and VR techniques, workers can be trained to meet the skill
requirements for implementing this PdAM and CM framework. Organisa-
tions can invest in training programs to equip their workforce with the
necessary skills to operate and manage advanced technologies.Addition-
ally, the development of educational curricula that incorporate Industry
5.0 principles and technologies could help bridge the skills gap over
the long term. By partnering with educational institutions, industries
can help shape the next generation of workers who are well-prepared
to navigate and excel in a rapidly evolving industrial landscape. These
proactive approaches not only help in overcoming the current shortage
of skilled manpower but also ensure that the workforce remains adapt-
able and proficient in the evolving technological landscape.

In summary, while the shortage of highly skilled manpower poses a
challenge in implementing Industry 5.0-driven PAM and CM practices.
The integration of cobots, promoting human-machine collaboration, us-
ing advanced techniques such as AR and VR and collaborating with
educational institutions to train the manpower, can be effective solu-
tions. These approaches allow skilled professionals to focus on higher-
level tasks, optimising their expertise while addressing the shortage
of skilled personnel for routine maintenance activities. Embracing the
principles of Industry 5.0 provides a harmonious relationship between
human capabilities and technological advancements, ultimately driving
innovation and efficiency in predictive maintenance processes.

8.4. Interoperability and standardisation

Lack of interoperability and standardisation across different systems
and platforms is another key challenge in advancing Predictive Main-
tenance (PdM) and Condition Monitoring (CM) within the Industry 5.0
framework. As industries increasingly adopt diverse technologies and
solutions from various vendors, the ability for these systems to work
together becomes vital. Without standardised protocols and interfaces,
integrating data from different sources can be cumbersome which can
lead to inefficiencies and potential errors in PAM and CM processes. Fu-
ture research should focus on developing and promoting the standards
that facilitate interoperability among different systems and devices. This
includes communication protocols, data formats and exchange stan-
dards to ensure consistency and compatibility across diverse platforms.
The development of open-source frameworks and tools could also play
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a significant role in promoting interoperability, allowing industries to
customise and integrate different solutions more easily.

However, for standardisation to be effectively adopted, it is essen-
tial that industry leaders, technology providers, and regulatory bodies
collaborate closely. These groups need to work together to develop and
implement common standards that can be universally applied across the
industry. Such collaboration is important for overcoming the challenges
posed by proprietary systems, which often create barriers to interop-
erability and integration. By establishing these shared standards, the
industry can create a more cohesive and efficient ecosystem where dif-
ferent technologies and systems can work together in an effective way.
This is especially important as Industry 5.0 progresses, with an increas-
ing focus on integrating advanced technologies like IoT, AI, and ML into
a wide range of industrial applications. A standardised approach will en-
sure that these technologies can be effectively implemented and used to
their full potential across the industry.

9. Conclusions

The integration of Industry 5.0 principles with advanced Predic-
tive Maintenance (PdM) and Condition Monitoring (CM) technologies
represents a major shift towards a more human-focused, resilient, and
sustainable industrial approach. This study has thoroughly reviewed and
synthesised existing literature to understand how technologies like Ma-
chine Learning (ML), Digital Twins (DT), the Internet of Things (IoT),
and Big Data (BD) are laying the groundwork for moving PdAM and CM
practices from Industry 4.0 to Industry 5.0. Digital Twins have proven
essential in creating human-centric maintenance environments by pro-
viding virtual replicas of physical systems that predict maintenance
needs and facilitate intuitive decision-making processes. Big Data An-
alytics plays a crucial role in generating actionable insights, enabling
industries to process vast amounts of data for optimized maintenance
strategies and operational efficiency. Machine Learning, with its adap-
tive algorithms, enhances system resilience by predicting and mitigating
potential failures. The IoT underpins these advancements by enabling
seamless communication across diverse industrial settings and enhanc-
ing the efficacy of predictive maintenance through real-time data col-
lection and analysis.

Our proposed six-layered framework for implementing PAM and CM
in Industry 5.0 is a significant contribution to the field. It includes a data
acquisition layer for real-time data collection, a data processing and an-
alytics layer powered by edge computing and advanced ML algorithms,
a Human-Machine Interface (HMI) layer for enhanced human-machine
collaboration, a maintenance execution layer incorporating automation
and robotics, a feedback and optimisation layer for continuous improve-
ment, and a resilience and adaptation layer to help systems adapt to
unexpected disruptions. The practical application of this framework is
demonstrated through a case study on a boiler feed-water pump in a
steam power plant. The implementation of this approach would result
in reducing unplanned downtime, a shift from reactive to predictive
maintenance, and continuous condition monitoring. The framework’s
early fault detection capabilities, AR tools for worker training, and au-
tomated maintenance processes, along with the integration of real-time
data analytics and adaptive learning, would enhance system’s resilience
and safety. This approach aligns with Industry 5.0’s goals of sustainabil-
ity by reducing resource consumption and waste, human-centricity by
improving worker training and collaboration, and resilience by ensuring
systems can quickly adapt to changes and disruptions.

However, the journey towards fully realising Industry 5.0-driven
PdM and CM is not without challenges. The study highlights several
gaps in current literature, including the need for a comprehensive view
of Industry 5.0, deeper exploration of edge computing, consideration
of human-centric aspects, and the integration of collaborative robots
(cobots). Addressing these gaps is essential for advancing both theoreti-
cal and practical aspects of Industry 5.0-driven PdM strategies. Looking
forward, it is crucial to tackle challenges related to data security, in-
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vestment costs, demand for skilled manpower, and interoperability and
standardisation requirements. Blockchain technology offers promising
solutions for ensuring data integrity and transparency. The collaborative
nature of Industry 5.0 can help manage costs and standardise PdM prac-
tices, making advanced PdM technologies more accessible. Additionally,
integrating cobots and enhancing human-machine collaboration can ad-
dress the shortage of skilled labour.
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