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Centre of Real Time Computer Systems, Kaunas University of Technology, 51368 Kaunas, Lithuania;
sara.tehsin@ktu.edu (S.T.); inzamam.nasir@ktu.edu (I.M.N.)
* Correspondence: robertas.damasevicius@ktu.lt

Abstract: Brain tumors are the result of irregular development of cells. It is a major cause of adult
demise worldwide. Several deaths can be avoided with early brain tumor detection. Magnetic
resonance imaging (MRI) for earlier brain tumor diagnosis may improve the chance of survival for
patients. The most common method of diagnosing brain tumors is MRI. The improved visibility of
malignancies in MRI makes therapy easier. The diagnosis and treatment of brain cancers depend on
their identification and treatment. Numerous deep learning models are proposed over the last decade
including Alexnet, VGG, Inception, ResNet, DenseNet, etc. All these models are trained on a huge
dataset, ImageNet. These general models have many parameters, which become irrelevant when
implementing these models for a specific problem. This study uses a custom deep-learning model
for the classification of brain MRIs. The proposed Disease and Spatial Attention Model (DaSAM)
has two modules; (a) the Disease Attention Module (DAM), to distinguish between disease and
non-disease regions of an image, and (b) the Spatial Attention Module (SAM), to extract important
features. The experiments of the proposed model are conducted on two multi-class datasets that
are publicly available, the Figshare and Kaggle datasets, where it achieves precision values of 99%
and 96%, respectively. The proposed model is also tested using cross-dataset validation, where it
achieved 85% accuracy when trained on the Figshare dataset and validated on the Kaggle dataset.
The incorporation of DAM and SAM modules enabled the functionality of feature mapping, which
proved to be useful for the highlighting of important features during the decision-making process of
the model.

Keywords: brain tumor classification; spatial attention; disease attention; CNN model

1. Introduction

Tumors in the brain can extensively affect a patient’s quality of life and general
existence due to their permanent and catastrophic mental and physical impacts [1]. Brain
tumors can be fatal if left untreated [2]. The National Brain Tumor Foundation (NBTF)
reports that throughout the last thirty years, the number of people who have passed away
from brain tumors has climbed by 300 percent [3]. Many common imaging modalities,
such as computed tomography (CT), X-ray, ultrasonography, and magnetic resonance
imaging (MRI), are used in medical imaging; they do not, however, show every complex
detail and parts of brain tumors. However, they help physicians estimate the tumor’s
growth [4]. Brain tumor diagnosis with MRI is a common and very effective procedure [5].
Medical imaging uses magnetic resonance imaging (MRI) to show abnormal bodily tissues.
In clinical settings, MRI is becoming more and more common for the diagnosis of brain
malignancies [6]. A set of MRI pictures taken at different levels can be used by doctors to
determine how the disease is progressing. This method can be time-consuming, though,
and it may result in missed or inaccurate diagnoses.

People’s lives have improved because of artificial intelligence (AI) advancements in
several sectors, including business, education, and healthcare [7]. Conventional modeling
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techniques such as decision trees and linear regression offer a meaningful relationship
between the model’s outputs and the input data [8]. These models, however less successful,
are often called “white-box models”.

Deep learning (DL) is a sub-domain of machine learning that has marked extraordinary
achievements in several disciplines, most notably image analysis and recognition [9]. It
has been extensively embraced and revolutionized in numerous industries, including
healthcare, thanks to its capacity to significantly reduce the amount of human labor required
and automate challenging tasks. When it comes to the detection of brain tumors through
different image modalities such as MRI, DL has shown promising results in identifying and
segmenting lesions accurately, allowing medical professionals to make informed judgments.
However, the biggest challenge in using DL for the detection of brain tumors is the black
box dilemma. The fact that doctors have voiced concerns about DL’s black box status is
not surprising [10]. The complexity of deep learning models due to the highly connected
networks of neurons makes it difficult to grasp how they make their predictions. Physicians
and researchers have problems because of this lack of interpretability, which makes it
difficult for them to accept and confirm the DL system’s outputs and prevents them from
comprehending the underlying decision-making process.

Explainable artificial intelligence (XAI) is being considered by researchers as a po-
tential remedy for the “black box” issue [11,12]. XAI aims to fill the gap between the DL
model’s complexity and interpretable decision-making needs. It encompasses a variety of
methods and techniques meant to provide elucidations and understandings into predictions
produced by deep learning models.

This paper proposes a custom convolutional neural network (CNN) with an addi-
tion called the Disease and Spatial Attention Model (DaSAM), which has two additional
modules: (a) the Disease Attention Module (DAM) to distinguish between disease and
non-disease regions of an image and (b) the Spatial Attention Module (SAM) to extract
important features to identify and predict brain tumors from a collection of brain MRI
images. The proposed DAM and SAM modules enable explainability by mapping impor-
tant features.

The organization of the rest of the paper is as follows: the literature review is discussed
in Section 2; the proposed methodology is discussed in Section 3; experimental results are
provided in Section 4 and the conclusion is explained in Section 5.

2. Literature Review

Knowing the type and size of a tumor helps doctors determine which treatment plan
is best for each patient. Previous work is categorized into three groups based on the need to
develop systems that can analyze medical images and accurately identify areas of the brain
that may have tumors or other irregularities: (a) detection systems based on traditional
machine learning, (b) deep learning-based detection systems, and (c) systems built on
top of pre-trained large architectures. These three methods have been widely used for
brain tumor classification. Traditional ML methods were outperformed by DL methods
and then pre-trained models were introduced to further enhance the performance of CAD
systems. In this study, pre-trained models are taken as inspiration to propose a problem-
specific CNN model, shown in Figure 1, which is not only classifying the tumor, but also
providing explanations about its predictions. Early detection of brain tumors can lead to
more successful treatments with fewer complications or side effects.
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Figure 1. The proposed model’s architecture with integrated SAMs and DAMs.

2.1. Machine Learning

Numerous research has employed traditional machine learning approaches like sup-
port vector machine (SVM), decision tree (DT), k-nearest neighbor (KNN), and adaptive
boosting (AdaBoost). The decision tree (DT) model developed by Naik et al. [13] was 96%
accurate in classifying brain cancers from CT scan brain pictures. Several researchers have
applied a support vector machine (SVM) as a classifier after the extraction of features to
identify brain tumors; principal component analysis (PCA) was utilized for dimension
reduction and discrete wavelet transform (DWT) was used for the extraction of features
by Shil et al. [14], while wavelet transform (WT) was employed for feature extraction by
Mathew et al. [15]. A gray-level co-occurrence matrix (GLCM) was employed by Singh
and Kaur [16] to extract features, and Amin et al. [17] tried to categorize MRI at the repre-
sentation and lesion levels. Using k-nearest neighbor (KNN) as a classifier, Ramteke and
Monali [18] generated statistical texture feature sets from normal and abnormal images,
attaining an 80% accuracy rate.

2.2. Deep Learning

Deep learning systems can identify patterns in scans and identify potential issue
areas for more investigation. Compared to preset and manually generated features, deep
learning algorithms are more effective in achieving greater results since they automatically
extract highly discriminative features in the form of a hierarchy [19–23]. Pereira et al. [24]
introduced a novel CNN with deeper architectures and shorter kernels that obtained 89.5%
accuracy to automatically predict the grades of LGG and HGG brain tumors on both
whole-brain and just tumor area MRI images. For the categorization of brain tumors,
CNN was also used in [25–28]. CNN architecture created by Seetha and Raja [25] had the
greatest accuracy rate, at 97.2%. Faster R-CNN was employed as the tumor classifier by
Bhanothu et al. [26] and the VGG19 pre-trained model was used for convolution feature
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map extraction. Their mean precision was 77.6% on average. Das et al. [28] obtained
94.39% accuracy using the proposed CNN design, but Badža and Barjaktarovic [27] pro-
posed a CNN architecture that reached the greatest accuracy of 96.56%. For classifying
brain tumors, Afshar et al. [29] suggested modified capsule network designs, or Cap-
sNets, with five possible combinations. They made use of different convolutional layer
combinations, convolutional feature maps, different main capsules—both dimensional
and non-dimensional—and different numbers of neurons in fully linked layers. Out of
all the combinations, the original capsule network had a maximum accuracy of 82.30%,
whereas CapsNet with one convolutional layer and 64 feature maps had a highest accuracy
of 86.56%.

2.3. Pre-Trained Models

Large datasets are still needed for deep learning models, notwithstanding their recent
outstanding classification performance. It has been shown in numerous studies that using
pre-trained models increases the efficacy of brain tumor detection. While Khan et al. [30]
used VGG16, ResNet50, and InceptionV3 models to identify the type of brain cancers
from MRI images, Swati et al. [31] used a feature extractor based on VGG19. In order to
classify meningioma, glioma, and pituitary types of brain tumors, Deepak and Ameer [32]
developed a classification technique that used deep transfer learning and a pre-trained
GoogLeNet architecture to extract features from brain MRI images with five-fold cross-
validation. In order to examine the relationship between time and model accuracy, Chel-
ghoum et al. [33] used pre-trained models from ResNet18, ResNet50, ResNet101, ResNet-
InceptionV2, AlexNet, VGG16, VGG19, GoogLeNet, and SENet on the same dataset. These
models were trained for varied numbers of epochs. A binary classification task of iden-
tifying malignant and benign tumors was carried out by Mehrota et al. [34]. The dataset
consisted of just 696 T1-weighted MRI images; therefore, they used pre-trained models
including SqueezeNet, GoogLeNet, AlexNet, ResNet50, and ResNet101.

2.4. Explainable Artificial Intelligence

While numerous explainable artificial intelligence techniques have already been in-
troduced for image categorization and comprehension tasks, there has not been much
focus on explaining brain imaging tasks like segmentation and tumor diagnosis. Two-
dimensional Grad-CAM was added to improve the interpretability of the suggested
models [35–38]. Two-dimensional Grad-CAM was utilized by Natekar et al. [35] to in-
terpret Deep Neural Network (DNN) predictions for brain tumor classification. While
Esmaeili et al. [36] employed 2D Grad-CAM for performance comparison among DenseNet-
121, GoogLeNet, and MobileNet on brain tumor classification, Windisch et al. [37] created
heatmaps from 2D GRAD-CAM to show the locations of the brain tumor predicted by
the suggested model. Saleem et al. [39] expanded on class activation mapping (CAM) by
producing three-dimensional heatmaps that highlight the importance of segmentation data.
Zeineldin et al. [40] implemented seven state-of-the-art explanation methods to present a
novel framework (NeuroXAI) for viewing deep learning networks. Using NeuroXAI, they
classified and segmented brain cancers using the magnetic resonance (MR) modality.

3. Proposed Methodology

This section provides a comprehensive explanation of the proposed Disease and
Spatial Attention Model (DaSAM). Figure 1 illustrates the framework of the proposed
model. The DaSAM has two modules: (a) the Disease Attention Module (DAM) and (b) the
Spatial Attention Module (SAM). The proposed CNN framework incorporates SAM at the
beginning and end to extract important features, while DAM is incorporated in the middle
to distinguish between disease and non-disease regions of an image. The input image
contains significant and distinctive information for brain tumor detection, both in terms of
its spatial and temporal aspects. Nevertheless, the data’s distribution is often imbalanced.
Not all elements of the image are directly linked to the disease in terms of their spatial
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relationship. Consequently, it is typical to allocate different levels of attention to different
parts of the image. These findings resulted in the formulation of a DAM and SAM that can
accurately identify the most important section of an image and extract key features.

3.1. Disease Attention Module

Each feature in an input image has a distinct impact on the classification of a brain
tumor. Tumors can occur in connected and/or concentrated regions or they can appear in
multiple regions. Hence, it is important to note that not all features hold significance in the
classification of cancer. Additionally, there exist certain features that have less relevance or
no relevance whatsoever to the specific category being targeted. These irrelevant features,
when fed to a CNN model, are treated as noise, which can lead to inaccurate recognition
results. On the other hand, certain features are more significant for the targeted classes
and require greater attention. CNNs designed specifically for brain tumor exhibit greater
reliability when they focus on shorter yet more information-dense segments of the image,
as opposed to analyzing the entire image. This study proposes a DAM which compresses
the spatial and channel dimensions of the input feature map to focus on the temporal
dimension and extract these features. These features are then used to generate temporal
descriptors, which can aggregate the features that are relevant to specific cancerous regions.
The DAM also generates disease attention scores based on this aggregation. The output
feature map of the convolution layer is obtained by translating the original input feature
vector to F′

j =
[

x′1, . . . , x′j
]
, as depicted in Figure 2.

Input

AvgPooling2D

MaxPooling2D

Add

Add

Conv2D

Fully-ConnectedSigmoid

Figure 2. The proposed DAM’s architecture.

The feature map is divided into two separate feature descriptors, Avgj ∈ F1×1×1×J

and Maxj ∈ F1×1×1×J , which are used to represent the attention weights of the input
image. The sizes of both channel and spatial dimensions are simultaneously reduced by
applying avgpool and maxpool operations. The original features are further processed to
generate the disease attention maps Avgj and Maxj. The entire procedure is as follows:

Avgj = avgpool
(

x′j
)
=

1
W × H × C

W

∑
w=1

H

∑
h=1

C

∑
c=1

Fw×h×c×J (1)

Maxj = maxpool
(

x′j
)
= max

{
x′j
}

(2)

The variables Maxj and Avgj represent the local and global features of the image,
respectively. The variables w and h show the indices of the spatial domain, whereas c is the
indices of the channel part. j is an indicator of temporal features that range from 1 to J. W,
H, and C show the width, height, and channel of the feature map, respectively. The module
combines two distinct temporal feature descriptors by summing their elements to generate
the final temporal features Tf , which has dimensions of F1×1×1×J operates as follows:

Tf = Maxj + Avgj (3)
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After this, the output of the convolution layer is forwarded to the reshape layer, which
transforms it into the original shape, and a concatenate layer aggregates the output of the
reshape layer. At the end, a fully connected (FC) layer is integrated, which has a sigmoid
function to obtain the weights as follows:

ρDAM = δ
(

conv
(

Tf

))
(4)

Here, conv is a convolution layer and δ represents a sigmoid function, which generates
an output ρDAM in range [0, . . ., 1].

3.2. Spatial Attention Module

The study also investigates spatial attention at the channel level, which aids in the
identification of unique features for the detection of brain tumors. The individual channels
of a CNN-based model can be considered as spatial representations of the cancer class.
Hence, SAM is specifically designed to acquire the significance score of each channel of
a CNN that correlates to a given tumor characteristic. The model emphasizes spatial
regions with high scores corresponding to a certain class, while discarding regions with
low values deemed unimportant. After undergoing specific processing, the output feature
map obtained from the DAM is inputted into the SAM. The SAM efficiently reduces the
size of the feature map in both the spatial and temporal dimensions to retrieve channel
information. This compression technique also enables the retrieval of channel descriptors,
which are utilized to capture spatial attention maps effectively. Figure 3 illustrates how
the global average pool and global maximum pool layers merge the spatial and temporal
aspects of the input image and produce attention feature maps.

InputAvgPooling2D MaxPooling2D

Add

Fully-Connected Fully-Connected

Fully-ConnectedSigmoid

ReLU

Fully-Connected Sigmoid

ReLU

Figure 3. The proposed SAM’s architecture.

As channel information shows the spatial characteristics, the dimension of the channel is
preserved, resulting in the generation of two distinct channel descriptions, namely maxk and
Avgk. The spatial attention feature descriptor can be derived using the following formula:

ρSAM = δ{τ1[τ2(Avgk)] + τ1[τ2(maxk)]} × φ (5)

The symbol δ represents the sigmoid function, which guarantees a feature maps
descriptor in a range between 0 and 1. τ1 and τ2 are trainable parameters, while φ denotes
the reduction ratio. maxk and Avgk are two descriptors, where Avgk quantifies the overall
background information for each channel, and maxk quantifies the specific discriminant
information at a local level.

3.3. Data Preprocessing and Augmentation

The input size of the training and testing images was 128 × 128. The images were
resized to the standard size. The proposed model obtained an RGB image, so the grayscale
conversion was not performed in the preprocessing step. A training, validation, and test
ratio of 60-10-30 was used for the Kaggle dataset and a ratio of 80-10-10 was used for the
Figshare dataset throughout our experimentation. The validation step was performed to
avoid overfitting and evaluating the model. After the preprocessing step, data augmenta-
tion was performed to increase the training images and train the model to diverse types of
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data. Horizontal and vertical flips were used to normalize the datasets in this step. Figure 4
shows the horizontal and vertical flips of the training images.

Figure 4. The output of data augmentation operations, i.e., horizontal and vertical flips.

4. Experimental Results

The model’s training and testing requirements regarding hardware and software will
be discussed in this section. During the model’s evaluation, the analysis of the parameters
and the model will be conducted. All experiments have been run on Google Colaboratory,
which is an open-source platform that offers resources for academic and research tasks.
TensorFlow and Keras API libraries were utilized for development, and four GPUs with
16 GB RAM were employed.

4.1. Datasets and Hyperparameter Settings

Extensive experiments have been conducted to check the proposed model’s efficiency.
Two publicly available datasets are used for the experimental purpose. One dataset is pub-
licly available: Kaggle Brain Tumor Classification (MRI) [41], which is a multi-class brain
tumor dataset having four classes which include no tumor (N), glioma (G), meningioma
(M), and pituitary (P). The other dataset one is the Figshare brain tumor dataset [42], which
has three classes: glioma (G), meningioma (M), and pituitary (P). Sample images from these
two datasets are shown in Figure 5.
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Figure 5. Sample images from Figshare and Kaggle datasets.
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The proposed model is trained effectively by fine-tuning hyperparameters such as
batch size, learning rate, optimizer, epoch, and loss function. Categorical cross-entropy
has been employed as the loss function for the multi-class tumor problem classification.
The details of the hyperparameters are given in Table 1.

Table 1. Hyperparameters and their values.

Parameters Value

Epochs 100

Batch Size 32

Epsilon 0.1

Optimizer Adam

Learning Rate 0.01

Initial Class Weights Figshare: 0: 1.44, 1: 0.72, 2: 1.09
Kaggle: 0: 0.37, 1: 0.85, 2: 1.37, 3: 1.98

Early Stopping Monitor = Validation Loss, Patience = 20, Minimum Change = 0.001

4.2. Classification Results

The classification results of the proposed model utilizing the testing data are presented
in Table 2. The performance measures are precision (P), recall (R), F1 score (F), and
accuracy (A). The proposed model accurately classifies different types of tumors, such
as meningioma, glioma, and pituitary, with high precision rates. Specifically, it achieves
precision values of 97% for meningioma, 100% for glioma, and 99% for pituitary on the
Figshare dataset. Additionally, it achieves precision values of 92% for meningioma, 98% for
glioma, 93% for pituitary, and 94% for no tumor when applied to Kaggle dataset. These
results demonstrate the effectiveness of our model using publicly available datasets.

Table 2. Performance of the proposed model on testing data. Here: P—Precision, R—Recall,
F—F-score, A—Accuracy.

Class
Figshare Dataset Kaggle Dataset

P (%) R (%) F (%) A (%) P (%) R (%) F (%) A (%)

M 97 100 97

99

92 97 95

96

G 100 96 98 98 94 96

P 99 100 99 93 97 94

N - - - 94 94 95

Macro Average 98 99 98 95 97 94

Weighted Average 98 98 98 95 96 94

The visual results of the proposed model on the Figshare dataset are illustrated in
Figure 6. This figure displays the input image, the ground truth image, and the predicted
attention of the proposed model. The incorporation of SAM and DAM modules in the
proposed CNN architecture accurately maps the tumor component of the input image.
Nevertheless, the model encounters confusion when predicting the two samples displayed
in the last row. In one case, it incorrectly associates a smaller area, while in the other
case, it incorrectly associates an additional area. This misprediction is due to the visual
resemblance with other classes.
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Cross-dataset validation is also performed to check the validity of the proposed model.
The Figshare dataset has three classes, while the Kaggle dataset has four classes. The extra
class, no tumor, was removed class from the Kaggle dataset, and then the proposed
model was tested by training on the Figshare dataset and testing on the Kaggle dataset.
The performance of the proposed model is given in Table 3.

MRI Image Predicted Mask MRI Image Predicted Mask MRI Image Predicted Mask

Figure 6. Visual results of the proposed model on the Figshare dataset.

Table 3. Cross-dataset validation results when trained on Figshare and tested on Kaggle datasets.

Classes P (%) R (%) F (%) A (%)

M 83 80 85

85G 80 81 79

P 78 85 83

Macro Average 81 83 82

Weighted Average 80 81 84

The visual results are shown in Figure 7, where the images of the Kaggle dataset
are given and the proposed model highlights the maps important regions of the tumor.
However, there are no ground truth images given for the Kaggle dataset and thus its
validity cannot be established.
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Figure 7. The visualized maps of the proposed model when trained on the Figshare dataset and
evaluated on the Kaggle dataset.

4.3. Ablation Analysis

An ablation study was conducted by varying the learning rate, the optimizer, and
split ratio. All experiments were conducted on the Figshare and Kaggle datasets. It has
been noted through experimentation that the best results are attained once the learning
rate is 0.01 on both datasets. The Adam optimizer is most suitable for both datasets as
provides good model convergence when compared to the other optimizers. In the case
of the Figshare dataset, an 80-10-10 split ratio provides better results and for the Kaggle
dataset a 60-10-30 split ratio provides prominent results. The results of varying the learning
rate, the optimizer, and split ratio are given in Table 4.

Figure 8 illustrates the impact of different learning rates on the performance met-
rics for Figshare and Kaggle datasets. Cross-dataset validation tests a model’s robust-
ness across several datasets. This improves model generalization, avoids overfitting,
and handles data variability. It identifies biases and tests whether the model can perform
consistently across data characteristics, noise, and feature distributions. This technique
finds solid, dependable models for varied real-world applications. Varying learning rates
have distinct impacts on model performance for the Figshare and Kaggle datasets. At a
high learning rate (0.01), Figshare shows excellent performance across all metrics (P, R, F
at 98%, A at 99%), indicating quick and effective convergence, while Kaggle performs
slightly lower (P at 95%, R at 96%, F at 94%, A at 96%). At a moderate learning rate (0.001),
Figshare experiences a slight drop but maintains good performance (P at 92%, R at 94%,
F at 95%, A at 96%), whereas Kaggle sees a more noticeable decline (P at 92%, R at 90%,
F at 93%, A at 91%). With a low learning rate (0.0001), Figshare remains stable (P at 93%,
R at 95%, F at 93%, A at 92%), but Kaggle shows further degradation (P at 91%, R at 88%,
F at 90%, A at 89%). At a very low learning rate (0.00001), Figshare’s metrics recover
somewhat (P at 91%, R at 97%, F at 94%, A at 93%), particularly in recall, while Kaggle sees
slight improvement in recall (92%) and F1 score (93%) but remains lower in precision (90%)
and accuracy (95%), indicating some instability at very low learning rates.
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Table 4. Classification results with different hyperparameter values on the Figshare and
Kaggle datasets.

Results of Different Learning Rates

Learning Rate
Figshare Kaggle

P (%) R (%) F (%) A (%) P (%) R (%) F (%) A (%)

0.01 98 98 98 99 95 96 94 96

0.001 92 94 95 96 92 90 93 91

0.0001 93 95 93 92 91 88 90 89

0.00001 91 97 94 93 90 92 93 95

Results of Different Optimizers

Optimizers
Figshare Kaggle

P (%) R (%) F (%) A (%) P (%) R (%) F (%) A (%)

SGD 86 83 82 85 79 80 81 83

RMSprop 92 94 95 96 92 90 93 91

Adam 98 98 98 99 95 96 94 96

Adadelta 87 85 83 86 81 79 78 80

Results of Different Split Ratio

Split Ratio
Figshare Kaggle

P (%) R (%) F (%) A (%) P (%) R (%) F (%) A (%)

50-25-25 65 68 63 67 89 84 80 85

60-10-30 81 85 82 84 95 96 94 96

70-15-15 78 75 76 79 94 93 90 91

80-10-10 98 98 98 99 91 93 92 90

Figure 8. Influence of learning rate hyperparameter on performance of classification in Figshare and
Kaggle datasets.

Figure 9 the results for different optimizers on the Figshare and Kaggle datasets. Each
plot displays the metrics for precision (P), recall (R), F1 score (F), and accuracy (A) across
various optimizers (SGD, RMSprop, Adam, Adadelta). The performance of each optimizer
is compared, showing how they impact the model’s effectiveness in terms of these metrics
for both datasets. The results reveal several interesting trends and observations across
different optimizers for the Figshare and Kaggle datasets. Notably, the Adam optimizer
consistently achieves the highest performance metrics on both datasets, with precision,
recall, and F1 score values of 98% and an accuracy of 99% for Figshare, and slightly lower
but still leading values for Kaggle. This indicates Adam’s superior capability in han-
dling diverse data distributions. Conversely, SGD and Adadelta show significantly lower
performance, particularly for the Kaggle dataset, where their metrics hover around 80%.
RMSprop performs moderately well, but still trails behind Adam, especially in recall and
accuracy. The most intriguing trend is the stark contrast in optimizer effectiveness, high-
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lighting Adam’s robustness and efficiency in optimizing complex models, while traditional
optimizers like SGD struggle to achieve comparable results, especially on more challenging
datasets like Kaggle.

The results of the different split ratios reveal several key insights into model perfor-
mance for the Figshare and Kaggle datasets. For Figshare, the 80-10-10 split yields the
highest performance across all metrics, with precision, recall, F1 score, and accuracy all
around 98–99%, indicating that a larger training set significantly enhances model effec-
tiveness. Interestingly, the 60-10-30 split also performs well, particularly in precision and
accuracy (81% and 84% respectively), suggesting a good balance between training and
testing data. Conversely, the 50-25-25 split shows the lowest performance, especially in
F1 score (63%) and accuracy (67%), highlighting the limitations of smaller training sets.
For the Kaggle dataset, the 60-10-30 split provides the best overall results, with precision
at 95%, recall at 96%, F1 score at 94%, and accuracy at 96%, demonstrating optimal per-
formance with this balanced split. However, the 80-10-10 split shows a slight decrease in
precision and F1 score (91% and 92% respectively), indicating that while a larger training
set improves recall and accuracy, it may slightly impact other metrics. The 50-25-25 split
again shows the lowest performance, particularly in F1 score (80%) and accuracy (85%),
reinforcing the importance of an adequate training set size for robust model performance
(see Figure 10).

Figure 9. Performance results for different optimizers on the Figshare and Kaggle datasets.

Figure 10. Performance results of different split ratios on Figshare and Kaggle datasets.

Following the completion of the validation of the proposed model, a comprehensive
comparison is carried out. An overview of the comparison is provided in Table 5 for both
selected publicly available datasets.
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Table 5. Comparison with exiting techniques.

Model Dataset Accuracy

CNN [43] Figshare 96%
Binary Dataset 94%

CNN with Pre-processing [44] Kaggle Dataset 96%

Transfer learning-based CNN [45] Figshare 94%
Binary Dataset 95%

CNN with Pre-processing [46] Figshare 96%
Kaggle Dataset 94%

CNN with Pre-processing [47] Figshare 98%
Kaggle Dataset 98%

Proposed Model Figshare 99%
Kaggle Dataset 96%

5. Conclusions

Tumors pose a significant threat to human health, as malignant cells can invade adja-
cent tissue and metastasize to distant sites within the body. The need for early detection of
brain tumors to administer appropriate medical intervention has been well acknowledged.
This study presents DaSAM, a system designed to detect brain cancers using MRI data.
The Kaggle dataset was used to evaluate the performance of DaSAM in multi-class classifi-
cation. The dataset consists of four types of tumor images. The Figshare dataset was also
used, which has three types of tumor images. The achieved results show that the proposed
methodology can highlight the important features by using its DAM and SAM modules.

The study also demonstrates the critical role of hyperparameter tuning in deep learning
models, particularly for medical image analysis. The Adam optimizer, coupled with an
appropriately high learning rate and a balanced split ratio, consistently enhances model
performance. These insights can guide future research and practical applications in brain
tumor detection, emphasizing the need for careful optimization of learning parameters to
achieve the best results.

In the future, the focus will be on the development of models that are interpretable
and capable of accurately assessing tumor segmentation for precise tumor localization.
The proposed model is trained and tested on a custom CNN model, involving modules
like DAM and SAM. A famous explainable model, KAN, can also be implemented and
compared with the proposed model, which can improve its validity.
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