
Egyptian Informatics Journal 27 (2024) 100521

A
1
a

Contents lists available at ScienceDirect

Egyptian Informatics Journal

journal homepage: www.sciencedirect.com

Full length article

Enhanced threat intelligence framework for advanced cybersecurity
resilience
Moutaz Alazab a,∗, Ruba Abu Khurma b, Maribel García-Arenas c, Vansh Jatana d, Ali Baydoun e,
Robertas Damaševičius f

a Department of Intelligent System, Faculty of Artificial Intelligence, Albalqa Applied University, Al-Salt, 19117, Jordan
b Information Technology Department, Al-Huson University College, Albalqa Applied University, Irbid, 19117, Jordan
c Department of Computer Engineering, Automatics and Robotics, University of Granada, Granada, 18071, Spain
d School of CSE, SRM University, Kattankulathur, India
e School of Computing and Data Sciences, Oryx Universal College with Liverpool John Moores University, Qatar
f Center of Real Time Computer Systems, Kaunas University of Technology, Kaunas, 19117, Lithuania

A R T I C L E I N F O

Keywords:
Cybersecurity
Threat intelligence
Network intrusion
Mitigation and response
Cyber attacks
Data breaches
Threat landscape

A B S T R A C T

The increasing severity of cyber-attacks against organizations emphasizes the necessity for efficient threat
intelligence. This article presents a novel multi-layered architecture for threat intelligence that integrates
diverse data streams, including corporate network logs, open-source intelligence, and dark web monitoring, to
offer a comprehensive overview of the cybersecurity threat landscape. Our approach, distinct from previous
studies, uniquely integrates these varied features into the machine-learning algorithms (XGBoost, Gradient
Boosting, LightGBM, Extra Trees, Random Forest, Decision Tree, K-Nearest Neighbor, Gaussian Naive Bayes,
Support Vector Machine, Linear Discriminant Analysis, Logistic Regression, ridge Classifier, AdaBoost and
Quadratic Discriminant Analysis) using various feature selection algorithms (information gain, correlation
coefficient, chi-square, fisher score, forward wrapper, backward wrapper, Ridge classifier) to enhance real-
time threat detection and mitigation. The practical LITNET-2020 dataset was utilized to evaluate the proposed
architecture. Extensive testing against real-world cyber-attacks, including malware and phishing, demonstrated
the robustness of the architecture, achieving exceptional results. Specifically, XGBoost demonstrated the highest
performance with a detection accuracy of 99.98%, precision of 99.97%, and recall of 99.96%, Significantly
surpassing traditional methods. Gradient Boosting and LightGBM also exhibited excellent performance, with
accuracy, precision, and recall values of 99.97%. Our findings underscore the effectiveness of our architecture
in significantly improving an organization’s capability to identify and counteract online threats in real-time.
By developing a comprehensive threat intelligence framework, this study advances the field of cybersecurity,
providing a robust tool for enhancing organizational resilience against cyber-attacks.
1. Introduction

The rapid expansion of the Internet and the proliferation of con-
nected devices have increased cybersecurity concerns for organizations
and individuals alike [1]. Cyber attacks, including data breaches, fi-
nancial losses, and reputation damage, underscore the critical need for
robust cybersecurity measures [2,3]. This challenge is exacerbated by
diverse networked systems such as Cyber–Physical Systems, Mobile Ad
Hoc Networks, Internet of Things, and Wireless Sensor Networks, each
introducing unique vulnerabilities and attack vectors [4,5].

∗ Corresponding author.
E-mail addresses: m.alazab@bau.edu.jo (M. Alazab), ruba_abukhurma@bau.edu.jo (R.A. Khurma), Mgarenas@ugr.es (M. García-Arenas),

vs7182@srmist.edu.in (V. Jatana), ali.b@oryx.edu.qa (A. Baydoun), robertas.damasevicius@ktu.lt (R. Damaševičius).

In critical infrastructures such as smart grids and autonomous cars,
CPS merges physical processes with computer algorithms, resulting in
vulnerabilities where software compromises can have physical reper-
cussions [6–8]. Due to its decentralized structure, vulnerability to
particular dangers to wireless networks, and susceptibility to attacks
such as the Sybil attack, MANET dynamic networks lacking fixed infras-
tructure face security issues [9]. Despite their ease of use, Internet of
Things (IoT) devices frequently have weak security protocols, making
them vulnerable to more serious network attacks such as distributed
https://doi.org/10.1016/j.eij.2024.100521
Received 9 December 2023; Received in revised form 11 July 2024; Accepted 30 J
vailable online 10 September 2024
110-8665/© 2024 The Authors. Published by Elsevier B.V. on behalf of Faculty of
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-
uly 2024

Computers and Artiϧcial Intelligence, Cairo University. This is an open access
nd/4.0/).

https://www.sciencedirect.com
https://www.sciencedirect.com
mailto:m.alazab@bau.edu.jo
mailto:ruba_abukhurma@bau.edu.jo
mailto:Mgarenas@ugr.es
mailto:vs7182@srmist.edu.in
mailto:ali.b@oryx.edu.qa
mailto:robertas.damasevicius@ktu.lt
https://doi.org/10.1016/j.eij.2024.100521
https://doi.org/10.1016/j.eij.2024.100521
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eij.2024.100521&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

M. Alazab et al.

1

Egyptian Informatics Journal 27 (2024) 100521
denial of service (DDoS) [10–12]. WSNs, which are intended to monitor
physical condition, have challenges related to limited resources and
security flaws, such as denial-of-service attacks and data intercept [13].

Traditional cybersecurity approaches struggle against evolving
threats [14–16]. Tailored strategies are imperative, leveraging ar-
tificial intelligence (AI) to enhance threat detection and response
capabilities [17–19]. Artificial intelligence’s (AI) capacity for real-time
anomaly detection and predictive analysis fills in the gaps in conven-
tional techniques by spotting new dangers and allocating resources
optimally for optimal defense [20,21].

This paper presents the Multi-Layered Threat Intelligence Frame-
work (MLTIF), which is a holistic strategy to unify these diverse
threat intelligence components and is capable of integrating open-
source feeds, dark web monitoring sources as well as internal network
log for an enhanced capability in understanding the potential threats
against organizations [22,23]. The MLTIF employs multiple detec-
tion techniques, including signature-based and machine learning-based
approaches, to prioritize threats effectively [24,25]. Furthermore, it
integrates mitigation strategies like blocking and incident response for
swift threat containment [12].

By offering a thorough method for threat identification and miti-
gation, the MLTIF fills in the gaps in the present cybersecurity frame-
works. This introduction lays the ground for a discussion of that ap-
proach. The MLTIF’s potential to improve organizational cybersecurity
resilience is demonstrated in the following sections, which explore
the architecture, implementation, evaluation, and conclusions of the
framework.

Developing a multi-layered threat intelligence architecture for cy-
bersecurity raises the following three potential research questions:

• How can a full picture of potential threats be provided by the
Threat Intelligence Framework (MLTIF) by efficiently integrating
many threat intelligence sources, such as internal network logs,
dark web monitoring, and open-source feeds?

• What are the best ways to embrace threat detection and miti-
gation strategies in MLTIF architecture, to detect cybersecurity
including malware, phishing, and social engineering attacks?

• How much does the MLTIF design enhance an organization’s
capacity to recognize and thwart online threats in actual digital
security scenarios? In comparison to other frameworks, how effec-
tive is the MLTIF at identifying and reducing cyberthreats? Can it
be applied in an actual cybersecurity setting?

.1. Contributions

The main contributions of this article are:

• Propose a multi-layered threat intelligence framework to improve
cybersecurity posture. Our proposed framework employs various
feature selection algorithms, including filtering methods (infor-
mation gain, correlation coefficient, Chi-square, Fisher score) and
feature selection techniques (forward wrapper, backward wrap-
per, Ridge classifier). Additionally, it evaluates several supervised
machine learning algorithms, such as XGBoost, Gradient Boosting,
LightGBM, Extra Trees, Random Forest, Decision Tree, K-Nearest
Neighbor, Gaussian Naive Bayes, Support Vector Machine, Lin-
ear Discriminant Analysis, Logistic Regression, Ridge Classifier,
AdaBoost, and Quadratic Discriminant Analysis.

• Provide in-depth information on effective threat intelligence inte-
gration by complementing various data sources including corpo-
rate network logs, open-source intelligence, and dark web mon-
itoring, to offer a comprehensive overview of the cybersecurity
threat landscape.

• Demonstrate the real-world effectiveness and practical applica-
bility of the MLTIF in cybersecurity environments. Our system
achieved the highest performance with an accuracy of 99.98%,
precision of 99.97%, and recall of 99.96%, significantly surpass-
ing traditional methods. Our findings underscore the effective-
2
ness of our architecture in significantly improving an organi-
zation’s capability to identify and counteract online threats in
real-time.

1.2. Organization of the paper

The rest of the paper is organized as follows: Section 2 provides an
overview of cybersecurity in the current digital landscape, highlighting
the need for multi-layered threat intelligence frameworks, and reviews
existing literature on these frameworks, discussing their strengths and
limitations. Section 3 details the MLTIF architecture, including data
collection, processing, threat detection, and mitigation techniques. Sec-
tion 4 presents the evaluation metrics and discusses the results achieved
using various feature selections of our proposed MLTIF framework.
Section 5 evaluates the performance in terms of accuracy, effectiveness,
and the impact of different threat intelligence, and compares our pro-
posed framework with existing ones. Finally, Section 6 emphasizes the
significance of the MLTIF in advancing cybersecurity in today’s digital
environment.

2. Related work

The articles in this subsection cover a range of topics related to
cybersecurity and emerging technologies. Nisioti et al. (2020) [26]
discuss the challenges of forensic investigations in the context of cyber-
attacks and propose a data-driven decision support framework called
DISCLOSE. The framework uses a repository of known adversarial
tactics, techniques, and procedures (TTPs) to optimize the selection of
the next steps in the investigation process. The authors demonstrate
the feasibility of their approach in a case study that includes data from
interviews with cybersecurity professionals and repositories of threat
intelligence information.

Nwakanma et al. (2020) [27] explore the security risks related to
merging the Internet of Things (IoT) with intelligent transportation
systems (ITS), forming the Internet of Vehicles (IoV). They identify five
security risk domains in IoV and highlight the potential of explainable
AI (XAI) models to mitigate intrusion threats on intelligent connected
vehicles (ICVs). The paper thoroughly reviews XAI models used in ICV
intrusion detection systems and outlines future research challenges in
this area.

Macas et al. (2020) [20] examine the limitations of using signature-
based methods for cybersecurity in identifying new attack patterns and
explore the potential of artificial intelligence (AI) to enhance the detec-
tion of attacks and address intricate cybersecurity issues. The authors
emphasize the role of deep learning, across various cybersecurity-
related tasks. This paper offers a critical and comparative review of
the latest solutions from existing literature and highlights current chal-
lenges and future research directions.

Marinho and Holanda (2021) [28] focus on discovering new threats
as early as possible given the decreasing time window between uncov-
ering a new cyber vulnerability and its exploitation by malicious actors.
To address the scale of data, at which Twitter messages can be used as
a source for events and MITRE ATT&CK serves as a knowledge basis for
threat characterization, the authors introduce an automated discovery
framework to identify emergent threats between two societies using an
unsupervised foundation. The paper does not only describe the frame-
work in detail, but also addresses how each part (the identification
of cyber-attacks and their names; profiling the identified threat with
respect to what it is trying to do or achieve) can be realized.

These papers highlight the importance of data-driven decision sup-
port frameworks, explainable machine learning models, and emerging
technologies such as deep learning and social media analysis in address-
ing the challenges of cybersecurity and emerging threats. They provide

valuable insights and good practices for

M. Alazab et al. Egyptian Informatics Journal 27 (2024) 100521
Table 1
Most important threat intelligence frameworks.

Framework Principal ideas and conclusions

DISCLOSE [26] Utilizes an adversarial tactics, methods, and procedures
(TTPs)-based data-driven decision support framework to
optimize forensic investigations.

IoV Security
[27]

Covers security flaws in the Internet of Vehicles (IoV) and
describes explainable AI (XAI) models for intrusion detection.

AI in
Cybersecurity
[20]

Explains the drawbacks of signature-based methods and looks
at deep learning possibilities for challenging cybersecurity
jobs.

Emerging
Threats [28]

Outlines a methodology for the automatic detection and
profiling of new threats through the use of social media and
MITRE ATT&CK information.

2.1. Threat intelligence frameworks

Threat Intelligence Frameworks (TIFs) are crucial components in cy-
bersecurity landscape. They provide a structured approach to identify,
collect, and analyze information about potential threats to an organi-
zation’s cybersecurity infrastructure [29,30]. TIFs help organizations to
proactively understand and mitigate the risks associated with cyber-
attacks, and allow proactive security risk management [31], visual
analytics [32] and decision-making [33].

One of the significant advancements in TIFs is the use of darknet
and deepnet mining for proactive cybersecurity threat intelligence, as
discussed by Nunes et al. [34]. The authors developed an operational
system that collects information from various social platforms on the
Internet, particularly sites on the darknet and deepnet. The system
focuses on gathering information from hacker forum discussions and
marketplaces offering products and services related to malicious hack-
ing. The system uses data mining and machine learning techniques
to identify emerging cyber-attacks, providing a significant service to
cyber-defenders.

Riesco et al. [35] propose the use of blockchain to enable cyber-
security threat intelligence knowledge exchange in TIFs. The authors
suggest a paradigm shift in cybersecurity information exchange by
proposing an incentive-compatible strategy to dynamically mandate
all parties to participate and share relevant data. They suggest an
Ethereum Blockchain Smart Contract Marketplace to facilitate and
incentivize the exchange of knowledge among all stakeholders.

With the advancement of TIFs which poses new challenges. For
instance, Ranade et al. [35] discuss the potential threat of fabricated
Cyber Threat Intelligence (CTI) generated through transformer-based
models. Adversaries can use fake CTI to perform data poisoning attacks
on cyber-defense systems, forcing security models to learn incorrect
inputs to serve the attackers’ malicious needs.

To address these risks, Riesco and Villagr’a [36] suggest adopting
a dynamic risk framework with the help of CTI. They propose an
upper-layer OWL-based combined architecture layout with a semantic
reasoner and the use of SWRL to apply it at different tier levels (op-
erational, tactical, strategic) for managing a Dynamic Risk Assessment
and Management (DRA/DRM) framework.

TIFs play a vital role in enhancing an organization’s cybersecurity
posture. While advancements in TIFs bring new opportunities, they
also present new challenges that need to be addressed. Therefore,
continuous research and development in TIFs are necessary to keep
pace with the evolving cybersecurity landscape. Table 1 shows the most
important threat intelligence frameworks.

2.2. Threat intelligence sources

Threat Intelligence sources are the origins from which information
about potential or existing threats to an organization’s cybersecurity
infrastructure is gathered [4]. These sources provide the raw data that
3
is processed and analyzed to form actionable threat intelligence [22,
37]. There are several types of threat intelligence sources, each with
its unique strengths and weaknesses:

• Open Source Intelligence (OSINT) refers to data collected from
publicly available sources. This could include blogs, forums, and
social media platforms where hackers might discuss new tactics
or vulnerabilities. It also includes reports and bulletins from secu-
rity companies, industry associations, and government agencies.
OSINT is a cost-effective way to gather threat intelligence, but it
requires substantial processing and analysis to separate valuable
information from noise [38].

• Commercial Threat Intelligence are feeds or reports from cyberse-
curity companies that specialize in tracking and analyzing threats.
These companies have the resources to gather, analyze, and cate-
gorize threat data on a large scale. They often provide intelligence
feeds tailored to specific industries or types of threats. While this
source can provide high-quality, actionable intelligence, it may
come at a significant cost [39].

• Industry Sharing Groups and Alliances have been established
by various industries to facilitate the exchange of information
regarding threats and best practices for addressing them. Notable
examples include the Information Sharing and Analysis Centers
(ISACs) and the Information Sharing and Analysis Organizations
(ISAOs). These groups serve as mechanisms for organizations to
share threat intelligence within a trusted and secure environment.

• Government agencies often gather and distribute threat intelli-
gence to help protect national infrastructure. This information can
be particularly valuable for organizations in critical industries like
energy, finance, or healthcare.

• Internal Threat Intelligence refers to data gathered from an orga-
nization’s own network and systems. This can include logs, event
data, and other information collected by security tools. Internal
threat intelligence is crucial for identifying attacks or threats
specific to an organization [40].

• Basically, the term dark web intelligence refers to a part of the in-
ternet that is purposely concealed and cannot be accessed through
standard web browsers. Most of the time, this is where cybercrim-
inals trade in stolen data, hacking tools, and tactics [41]. Gath-
ering intelligence from the dark web can provide early warnings
about new threats and targeted attacks.

• Human Intelligence (HUMINT) involves gathering information
from human sources. For example, a cybersecurity analyst might
have a conversation with a contact at a cybersecurity conference
to learn about new threats or mitigation techniques [38].

Each of these sources provides a different perspective on the threat
landscape. A robust threat intelligence program will typically use a
combination of these sources to gather a comprehensive view of po-
tential threats. Table 2 summarizes the key threat intelligence sources.
Table 2 shows the most important threat intelligence sources.

2.3. Threat detection and mitigation techniques

The papers in this subsection cover a range of topics related to
cybersecurity and emerging technologies. Wazid et al. [42] proposes
an automated system for detecting several types of cyber-attacks with
a 99.92% accuracy rate in multiclass classification. The authors utilize
a dataset of network traffic features and implement various machine-
learning algorithms to classify the traffic into different attack cate-
gories. The paper offers a comprehensive description of the dataset, the
feature selection process, and the evaluation metrics employed in the
experiments.

Yang et al. (2020) [43] discusses the usage of artificial intelli-
gence and machine learning methods for detecting and identifying
cyber-attacks by analyzing log data. The authors implement the ELK

Stack network log system to visually analyze log data and evaluate

M. Alazab et al. Egyptian Informatics Journal 27 (2024) 100521
Table 2
Most important threat intelligence sources.

Source Principal ideas and conclusions

OSINT [38] Provides publicly available data for threat detection but
requires significant processing for actionable intelligence.

Commercial TI
[39]

Offers high-quality, tailored threat feeds but at a cost,
suitable for specific industries or threat types.

Government
Agencies

Distributes valuable threat intelligence for critical
infrastructure protection, essential in sectors like energy and
finance.

Internal TI [40] Uses organization-specific data for targeted threat detection,
crucial for identifying internal threats.

Dark Web
Intelligence [41]

Provides early warnings of emerging threats and targeted
attacks from the hidden part of the internet.

Human
Intelligence
(HUMINT) [38]

Obtains threat intelligence through interviews; useful for
context and qualitative insights.

Table 3
Most important threat detection and mitigation techniques.

Technique Principal ideas and conclusions

Machine
Learning [42]

Employing network traffic features, multiclass cyberattack
categorization is achieved with great accuracy.

Log Analysis
[43]

Applies AI models (XGBoost, RNN, DNN) to analyze log data
for efficient cyber-attack detection and identification.

Active Defense
[44]

Offers the use of natural language processing in an
automated system called CTI View to provide active defense
against advanced persistent threats (APTs).

IoT Security [2] Creates a strong security architecture that integrates fog
computing and IoT with healthcare systems (Healthcare 5.0).

the performance of three machine learning models: extreme gradient
enhancement (XGBoost), recurrent neural network (RNN), and deep
neural network (DNN). The paper provides a comprehensive evaluation
of the models and identifies the XGBoost model as the most accurate for
potential threats. Zhou et al. (2020) [44] combine the strategic defense
idea of ‘‘active defense, traceability, and countermeasures’’ with the
increasing severity of network security in the context of advanced
persistent threats (APTs). The authors propose a novel automation
system called CTI View, which uses natural language processing (NLP)
techniques to process cyberspace threat intelligence (CTI) and extract
useful information and features for further analysis. The paper pro-
vides a detailed description of the system architecture, data processing
pipeline, and evaluation metrics used in the experiments. De Souza
et al. (2020) [2] address the security issues related to the integration
of the Internet of Things (IoT) and fog computing in healthcare 5.0
systems. They introduce a secure general healthcare 5.0 framework
that enables various security-related processes such as authentication,
access control, key management, and intrusion detection. The paper
reviews different security requirements and the threat model of health-
care 5.0, examining existing security mechanisms and comparing their
performance. The authors also highlight future research directions for
those working in the Healthcare 5.0 field.

These papers bring out the significance of machine learning and
artificial intelligence on cyber-attack detection and prediction along
with secure frameworks for automation systems to mitigate security
challenges in IoT, fog computing like emerging technologies [45]. They
offer useful information and best practice advice for both researchers
and practitioners. Table 3 shows the Most important threat detection
and mitigation techniques.

3. Methodology

3.1. Dataset

The data we study in this article comes from the LITNET-2020
dataset [46]. The dataset contains benign and 12 malicious attack
4
network traffic types in a national wide-area-network with 85 flow
features from the dataset examples, where there are samples for only
positive class and infiltrations (1% or less labeled malicious in the
traffic space), ordered by decreasing absolute frequency among them:

1. Smurf attack involves the continuous transmission of ICMP
broadcast requests to a network, ostensibly originating from a
target node. The primary objective is to inundate the node with
excessive network traffic, thereby impeding its performance.

2. ICMP Flood attack is a form of Denial of Service (DoS) assault
that seeks to inundate a specific network node with an excessive
volume of ICMP echo requests, commonly referred to as ‘‘pings’’.

3. UDP-Flood attack leverages the User Datagram Protocol (UDP).
A specialized variant, known as the DNS Flood Attack or DNS
Flooding, is characterized by the transmission of network pack-
ets to arbitrary IP addresses, specifically targeting UDP protocol
on port 53.

4. Utilizes a vulnerability in the initial part of the basic TCP three-
way handshake. The objective of this attack is to deplete the
victim node’s resources, rendering it unresponsive.

5. HTTP-Flood Attack: This attack involves seemingly legitimate
HTTP GET or POST requests directed at a web server, which
processes and responds to these requests. Unlike Layer 3/4 DDoS
floods, these attacks do not rely on malformed packets, spoofing,
or reflection of valid requests. They require only a fraction of the
bandwidth to incapacitate the server or site by using malicious
packets that avoid port 80 due to latency reasons.

6. LAND Attack: This attack is executed by a malicious node that
sends a TCP segment with identical source entry and port num-
ber details. The processing of these packets within the TCP stack
overwhelms the victim node, causing it to become unresponsive.
These packets are malicious and have the ‘S’ flags using the TCP
protocol.

7. W32.Blaster Worm: This worm spreads by exploiting a Buffer
Overrun Vulnerability in the Microsoft Windows DCOM RPC
Interface.

8. Code Red Worm: This worm attempts to cause a buffer overflow
on the target node, resulting in the accidental modification of
nearby memory. The malicious packets are sent to the source
IP, targeting port 80, and do not use Secure Sockets Layer (SSL),
but rather leverage the HTTP GET method.

9. Spam Bot Attack: This attack involves the distribution of spam
messages or posting spam on social platforms and forums. The
malicious traffic is directed solely to port 25 in plain text (no
SSL). A common characteristic of this type of attack is the
establishment of a large number of SMTP connections from a
specific address simultaneously.

10. Reaper Worm: This worm begins scanning after the IP is passed
to the exploit process. The attack focuses on TCP ports 81 to
10,000. A log entry is generated only if the packet contains a
TCP stream and not UDP, ICMP, or ICMP6.

11. Port Scanning/Spread Attack: This attack sends client requests to
various server port addresses, identifies active ports, and exploits
known security vulnerabilities. The anomaly is detected when
there are numerous connections from one host to different ports
or the same port among multiple hosts.

12. Packet Fragmentation Attack: Attackers flood a network by ma-
nipulating the datagram fragmentation process.

For a comprehensive understanding of the detailed features, we direct
the reader to the paper by Damasevicius et al. [46]. This paper provides
an in-depth analysis and thorough explanation of the features. The
evaluation of the MLTIF architecture was conducted using the LITNET-
2020 dataset, which includes benign and malicious network traffic
types. We tested several machine learning classifiers to determine their

effectiveness in threat detection and mitigation.

M. Alazab et al. Egyptian Informatics Journal 27 (2024) 100521
1. Performance without Feature Selection: Among the classifiers,
XGBoost achieved the highest performance with accuracy, pre-
cision, recall, and F1 score of 0.9998. Gradient Boosting and
LightGBM also performed exceptionally well, achieving scores of
0.9997. These results indicate that ensemble methods are highly
effective in handling the dataset without feature selection.

2. Performance with Feature Selection: Using the Information
Gain/Correlation Coefficient and Chi-Square/Fisher Score meth-
ods, we observed slight improvements in classifier performance.
Gradient Boosting and LightGBM maintained high accuracy and
balanced precision–recall metrics, underscoring their robustness
in threat detection.

3. Filter and Wrapper Methods: The application of filter methods
(Information Gain, Correlation Coefficient) and wrapper meth-
ods (Forward and Backward Wrapper) further refined the model
performance. XGBoost and Gradient Boosting continued to show
superior results, confirming their effectiveness in a multi-layered
threat intelligence framework.

3.2. Multi-layered threat intelligence framework architecture

A multi-layered Threat Intelligence Framework (MLTIF) architec-
ture is a complex system designed to provide organizations with a
comprehensive and coordinated approach to threat detection and miti-
gation. It is based on the concept of integrating multiple layers of threat
intelligence sources, including internal and external sources, to create
a more complete and accurate picture of the current threat landscape.
The architecture (Fig. 1) is composed of several layers, each with a
specific function and purpose.

The first layer is the data collection and processing layer of MLTIF
architecture. The aggregation tier is responsible for gathering raw data
from many sources (network devices, security sensors, and logs) to filter
relevant patterns and get rid of irrelevant data as discussed in [47]. This
data is then collected and analyzed after applying various aggregation,
filtering, and correlation methods to summarize any security threats or
incidents.

The threat intelligence analysis layer of the MLTIF architecture is
its second layer. This layer is responsible for performing deep process-
ing of the data and extracting meaningful threat intelligence insights
from raw relevant findings. The data can be used to highlight similar
patterns, correlations, and risks that could threaten the security posture
of an organization. Machine learning, artificial intelligence, and human
expertise identify threats on the analysis layer.

Threat detection and mitigation layer: This is the third tier of
MLTIF architecture. This is the layer that will handle the near real-
time detection response to pending or ongoing security incidents and
threats. This combines intrusion detection, firewalls, and a whole host
of measures to block or quarantine threats before they reach critical
infrastructure.

The fourth layer of the MLTIF architecture is a reporting and
feedback bottleneck. It is understood to give real-time feedback to the
other layers. Creates reports, alerts, and notifications for security teams
to alert them of possible threats following actual incidents. Throughout,
this layer even produces feedback that can be used to enhance the
efficiency of other layers in its architecture.

The final layer in the MLTIF architecture which is the management
and governance layer. This layer is in charge of watching over or
keeping control of all MLTIF operations. The layer contains the ap-
propriate policies, procedures, and standards overarching strategies for
dealing with managing services as well as implications to security-based
training programs that educate individuals from both enable stake-
holders like IT operators or Users. It also contains the mechanisms for
monitoring and auditing to confirm the effectiveness and compliance
of an architecture.

The MLTIF architecture is a complex and comprehensive system that
combines multiple layers of threat intelligence to provide organizations
5
with a holistic approach to threat detection and mitigation. The archi-
tecture is designed to be flexible, scalable, and adaptable to the ever-
evolving threat landscape, making it an effective tool for protecting
organizations from advanced and sophisticated cyber-attacks.

3.3. Data collection and processing

As shown in Fig. 1 and discussed below, the process of data col-
lection and processing in Multi-layered Threat Intelligence Framework
(MLTIF) architecture consists as follows:

1. In the MLTIF architecture, data is collected from different
sources, including network devices, security appliances, end-
points, and threat intelligence feeds. This data is collected in
real-time and in batch mode.

2. After data is collected from various sources, it needs to be
normalized and enriched. This step involves converting the data
into a standard format, so it can be processed and analyzed
easily. The data is enriched with additional information from
external sources, such as threat intelligence feeds, to provide
context and improve the accuracy of threat detection.

3. After normalization and enrichment, the data is stored in a cen-
tral repository for further processing and analysis. The storage
solution should be scalable, secure, and flexible to accommodate
different types of data.

4. The MLTIF architecture employs a number of data process-
ing and analysis methods to recursively detect structures in
unlabeled Indicators of Compromise (IOCs), such as machine
learning, statistical analysis, or rule-based systems. It is an essen-
tial step since you need to find out if any threats exist and logs
for those alerts should be created, so they can be investigated.

5. The threat intelligence correlation module correlates the en-
riched data with external threat intelligence feeds, to identify
potential threats and provide context to security analysts. This
step involves matching indicators of compromise (IOCs) from
external feeds with internal data to detect potential threats.

6. After potential threats are detected, the MLTIF architecture gen-
erates alerts, which can be sent to security analysts for further in-
vestigation. The alerts should include detailed information about
the potential threat, including the source, type, and severity.

7. The final step in the data collection and processing phase in-
volves responding to and mitigating potential threats. The MLTIF
architecture provides security analysts with actionable intel-
ligence and response options, such as blocking IP addresses,
isolating infected endpoints, and applying patches and updates
to vulnerable systems.

3.4. Threat detection and mitigation techniques

The Multi-Layered Threat Intelligence Framework (MLTIF) architec-
ture incorporates various threat detection and mitigation techniques
to effectively counter potential cybersecurity threats. These techniques
can be broadly classified into four layers: Network, Host, Application,
and User.

At the network layer, MLTIF architecture uses various threat de-
tection and mitigation techniques, including network traffic analysis,
intrusion detection and prevention systems (IDPS), and firewalls. Net-
work traffic analysis is performed by analyzing network traffic to
identify any unusual or suspicious behavior. Intrusion Detection and
Prevention System (IDPS) used to detect/prevent attacks that are hap-
pening over the network level such as DoS, port scanning etc. Firewalls
are security devices that monitor and control all incoming and outgoing
network traffic based on a set of predetermined security policies.

At the host layer, MLTIF architecture uses various techniques to
secure endpoints and hosts, including host-based intrusion detection

and prevention systems (HIDPS), endpoint protection platforms (EPP),

M. Alazab et al. Egyptian Informatics Journal 27 (2024) 100521
Fig. 1. The MLTIF architecture.
and antivirus software. HIDPS is used to detect and prevent attacks on
specific hosts, such as buffer overflow attacks, rootkits, and malware.
EPP is used to protect endpoints from various types of malware, in-
cluding ransomware, viruses, and trojans. Antivirus software is used to
detect and remove known malware from the system.

At the application layer, MLTIF architecture uses various techniques
to secure applications, including application security testing, web ap-
plication firewalls (WAF), and secure coding practices. Application
security testing is used to identify vulnerabilities and weaknesses in
the application code. WAF is used to monitor and filter incoming and
outgoing traffic to and from the application. Secure coding practices
are used to prevent common coding errors that can lead to security
vulnerabilities.
6
At the user layer, MLTIF architecture uses various techniques to
educate and train users to follow safe cybersecurity practices. This
includes security awareness training, access control, and identity and
access management (IAM). Security awareness training is used to edu-
cate users about the importance of cybersecurity and how to recognize
potential threats. Access control is used to limit access to sensitive in-
formation and systems to authorized users only. IAM is used to manage
user identities and access rights to various systems and applications.

The MLTIF architecture uses a multi-layered approach to effectively
detect and mitigate potential cybersecurity threats. By incorporating
various threat detection and mitigation techniques across different
layers, MLTIF architecture provides comprehensive protection against
various types of cybersecurity threats.

M. Alazab et al.

s
a
t
c
f

𝐶

W

Egyptian Informatics Journal 27 (2024) 100521
3.5. Machine learning methods

The MLTIF architecture uses several machine learning methods
for cyber attack recognition. XGBoost (eXtreme Gradient Boosting)
stands for XLS pronounced as ‘‘Ensemble’’. LightGBM is a gradient
boosting framework, which provides many benefits: extremely fast and
scalable. It is based on gradient boosting and has built-in tree pruning,
regularization, and missing value handling represented quite well. It is
widely used by data scientists due to its excellent support for handling
high-dimensional data and parallel processing.

Gradient Boosting (GBM) is an iterative ensemble method that
builds a series of decision trees and composes them to improve per-
formance. It aims to reduce the errors from past iterations by updating
the weights of misclassified points. This cycle of correcting the model
further becomes stronger and more predictive over time. LightGBM
is another gradient-boosting framework that operates faster than the
regular tree-based algorithms and logically follows a leaf-wise approach
over level-wise growth. This makes it fast and efficient, particularly
for large datasets. Also, it supports GPU learning and categorical fea-
tures right off the bat without performing one-hot encoding of those
features.

Extra Trees is short for Extremely Randomized Trees. It is another
ensemble method like Random Forest, but with one crucial difference
is that instead of looking for the most discriminative thresholds, it
takes place at random, which results in more diversity and potentially a
better model. A Random Forest is an ensemble learning method used in
classification, and regression, as well as for getting insights into feature
importances. Random forest is a popular model that strikes a good
balance between accuracy and interpretability, and it helps overcome
the problem of overfitting.

K-Nearest Neighbor (KNN) - instance-based learning for a new data
point, it looks up the training set for ‘k’ number of examples closest
to the point and returns that value which is most common among its
k-nearest neighbors. Gaussian Naive Bayes is a probabilistic classifier
based on the assumption that features are independent. The algorithm
is especially useful for large high-dimensional datasets and has gained
popularity due to its simplicity and speed.

Support Vector Machine (SVM) is a supervised machine learning
algorithm that finds the hyperplane that maximally separates classes
in your data. It works well in high-dimensional spaces and is effective
in situations where the boundary between classes is non-linear. Linear
Discriminant Analysis (LDA) aims to find a linear combination of
features making the perfect decision boundary separating two or more
different classes in your dataset. It is very effective for dimensionality
reduction.

The Logistic Regression, despite its name, is a much different beast
from the models listed here as it does regression in nature but classifies
either true or false between two possibilities. It calculates the probabil-
ity of an instance being in a certain class. The Ridge Classifier is a linear
classifier that uses an L2 penalization. It imposes a cost on different
magnitudes of the weights in the model to avoid overfitting. AdaBoost
(Adaptive Boosting) is an ensemble method that involves training the
model on misclassified data points and decreasing their weights during
each iteration, thereby letting the model learn from those difficult
cases, highly increasing its focus on hard-to-identify classes.

Finally, Quadratic Discriminant Analysis (QDA) is very similar to
LDA but allows each class its covariance matrix and thus non-linear
decision boundaries. This is a more general method, but the separate
covariances would need to be estimated with additional data.

3.6. Filter methods

3.6.1. Information gain/ correlation coefficient
Information gain is a feature selection metric used in decision

tree-based algorithms to determine the relevance of a feature for clas-

sification [48–50]. It measures the amount of information obtained

7
about a class variable when a particular function is used to partition the
data. The steps involved in calculating the information gain for feature
selection are as follows:

• Calculate the entropy of the parent node:

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑝𝑎𝑟𝑒𝑛𝑡) = −
∑

(𝑃 (𝑐𝑙𝑎𝑠𝑠) × 𝑙𝑜𝑔2(𝑃 (𝑐𝑙𝑎𝑠𝑠))) (1)

This calculates the uncertainty or impurity in the parent node
before any split is performed. 𝑃 (𝑐𝑙𝑎𝑠𝑠) represents the probability
of each class label in the parent node.

• For each possible element value, calculate the weighted average
entropy of the resulting child nodes after the split:

𝑊 𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛)

=
∑ 𝑐𝑜𝑢𝑛𝑡(𝑐ℎ𝑖𝑙𝑑)

𝑐𝑜𝑢𝑛𝑡(𝑝𝑎𝑟𝑒𝑛𝑡)
× 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑐ℎ𝑖𝑙𝑑) (2)

This calculates the entropy of the child nodes resulting from the
distribution of the data based on each element value. 𝑐𝑜𝑢𝑛𝑡(𝑐ℎ𝑖𝑙𝑑)
represents the number of instances in the child node and 𝑐𝑜𝑢𝑛𝑡
(𝑝𝑎𝑟𝑒𝑛𝑡) represents the total number of instances in the parent
node.

• Calculate the information gain for the element:

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝐺𝑎𝑖𝑛(𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛)

= 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑃𝑎𝑟𝑒𝑛𝑡) −𝑊 𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛)
(3)

Information gain represents the reduction in entropy achieved by
partitioning data based on a feature. A higher information gain
indicates that the feature is more informative and provides more
valuable information for classification.

A correlation coefficient is a statistical measure that calculates the
trength and direction of an unvarying relationship between two vari-
bles. In practice, this is often used in feature selection to find features
hat are strongly correlated with the target variable. The correlation
oefficient between two variables 𝑋 and 𝑌 can be calculated using the
ollowing formula:

𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛_𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡(𝑋, 𝑌) = (
∑

((𝑋−𝑋)×(𝑌 −𝑌)))∕(𝑛×𝜎(𝑋)×𝜎(𝑌))

(4)

here: 𝑋 and 𝑌 are the values of two variables, 𝑋 and 𝑌 are the mean
values of 𝑋 and 𝑌 , 𝜎(𝑋) and 𝜎(𝑌) are the standard deviations of 𝑋 and
𝑌 , 𝑛 is the total number of observations.

The steps involved in using the correlation coefficient for element
selection are as follows:

1. Calculate the correlation coefficient between each item and the
target variable.

• For continuous variables, use Pearson’s correlation coeffi-
cient, which measures a linear relationship.

• For categorical variables, you can use techniques such as
point biserial correlation or eta-squared.

2. Assess the robustness and direction of the correlation coefficient:

• The correlation coefficient varies between −1 and 1.
• A positive coefficient signifies a positive correlation, indi-

cating that an increase in the trait corresponds with an
increase in the target variable.

• A negative coefficient signifies a negative correlation, in-
dicating that an increase in the trait corresponds with a
decrease in the target variable.

• The absolute value of the correlation coefficient indicates
the strength of the relationship, with values approaching
−1 or 1 denoting a stronger correlation.

3. Identify highly correlated traits.

M. Alazab et al.

3

3

p
I
p
g
p

f

Egyptian Informatics Journal 27 (2024) 100521
• Features with a correlation coefficient close to −1 or 1 are
considered highly correlated with the target variable.

• These features have a strong linear relationship with the
target variable and can provide valuable information for
prediction.

3.6.2. Chi square/Fisher score
Chi-square (𝑥2) is a statistical measure used for feature selection

to determine independence between categorical variables. It is particu-
larly useful when working with categorical data and can help identify
features that are significantly associated with the target variable.

The chi-square statistic for testing independence between two cate-
gorical variables can be calculated using the following formula:

𝑥2 =
∑

((𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − −𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑)2∕𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑) (5)

Where: 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 is the observed frequency of each category com-
bination in the pivot table. 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 is the expected frequency of each
category combination, assuming independence.

The steps involved in using chi-square for feature selection are as
follows:

1. Create a table where the rows represent the categories of one
variable and the columns represent the categories of the other
variable. Calculate the observed frequency by counting the oc-
currences of each combination of categories in the data set.

2. Assuming independence between the two variables, calculate
the expected frequency of each category combination in the
pivot table. The expected frequency can be calculated using the
formula:
(𝑡𝑜𝑡𝑎𝑙_𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓 _𝑟𝑜𝑤𝑠 × 𝑡𝑜𝑡𝑎𝑙_𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓 _𝑐𝑜𝑙𝑢𝑚𝑛𝑠)∕
𝑡𝑜𝑡𝑎𝑙_𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓 _𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠

(6)

3. For each combination of categories, calculate the contribution to
the chi-square statistic using the above formula. Sum the posts
for all combinations of categories to get the chi-square statistic.

4. Degree of freedom is calculated as (𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑟𝑜𝑤𝑠 − 1) ×
(𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑐𝑜𝑙𝑢𝑚𝑛𝑠 − 1). It represents the number of indepen-
dent values that can be chosen arbitrarily in the chi-square
distribution.

5. Determine the critical value from the chi-square distribution ta-
ble based on the degrees of freedom and the desired significance
level (e.g., 0.05). If the calculated chi-square statistic exceeds the
critical value, it signifies a significant association between the
variables.

The Fisher score, also referred to as Fisher’s discriminant analysis,
is a statistical measure employed for feature selection in classification
tasks. Its objective is to identify features that possess high discrimina-
tive power, thereby effectively distinguishing between different classes
within a dataset. The Fisher score for an object can be calculated using
the following formula:

𝐹 𝑖𝑠ℎ𝑒𝑟𝑠𝑐𝑜𝑟𝑒(𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛) = (𝜇1 − 𝜇2)2∕(𝜎21 + 𝜎22) (7)

Where: 𝜇1 and 𝜇2 are function means for two different classes. 𝜎21
and 𝜎22 are the deviations of the function for these two classes.

The steps involved in using the Fisher score for feature selection are
as follows:

1. Calculate the mean (𝜇) and variance (𝜎2) of each feature sepa-
rately for each class in the data set.

2. Calculate the difference between element means for different
classes and square the result. Multiply the square of the dif-
ference by the number of samples in each class and sum the
values.

3. Calculate the element variance within each class separately.
Multiply the variance by the number of samples in each class

and sum the values.

8
4. Divide the between-class variance matrix (Sb) by the within-class
variance matrix (Sw). The resulting value represents the Fisher
score for each feature, indicating its discriminating power.

5. Rank the features based on their Fisher scores. Features with a
higher Fisher score are considered more relevant and important
for classification.

.7. Feature selection methods

.7.1. Forward wrapper
Forward wrapper is a feature selection technique that involves re-

eatedly adding features to a model and evaluating their performance.
t starts with an empty set of features and gradually adds the most
romising features one by one until a stopping criterion is met. The
oal is to find the optimal subset of features that maximizes model
erformance.

The steps involved in selecting a forward wrapper function are as
ollows:

1. Initialize an empty set of selected functions.
2. Cycle through each feature not yet selected:

• Add one function at a time to the selected function set.
• Train a model using selected features and evaluate its per-

formance using a selected metric (eg accuracy, F1 score).

3. Select the function that provides the best performance:

• Select the feature that will most improve model perfor-
mance when added to the selected feature set.

4. Repeat steps 2 and 3 until you meet the stopping criterion:

• The stopping criterion can be a predetermined number of
features to be selected or a threshold to improve perfor-
mance.

5. Evaluate the final selected feature set:

• Train the model using the final set of selected features.
• Assess the performance of the model using the chosen

evaluation metric.

The forward wrapper approach explores different combinations of fea-
tures by gradually adding the most promising ones. Its goal is to find a
subset of features that optimize model performance. However, this can
be computationally expensive, especially for feature-rich datasets.

3.7.2. Backward wrapper
A backward wrapper is a feature selection technique that repeatedly

removes features from the model and evaluates their impact on perfor-
mance. It starts with the full set of features and gradually removes the
least promising features one by one until a stopping criterion is met.
The goal is to find the optimal subset of features that maximizes model
performance.

The steps involved in selecting the return wrapper function are as
follows:

1. Initialize the function set with all available functions.
2. Train the model using the full set of features and evaluate its

performance using a chosen metric (eg accuracy, F1 score).
3. Go through each function in the function set: Temporarily re-

move one element at a time from the feature set. Train the model
using the remaining features and evaluate its performance.

4. Select the element whose removal has the least negative impact
on model performance.

5. Remove the selected feature from the feature set.
6. Repeat steps 3–5 until you meet the stopping criterion. The

stopping criterion can be a predetermined number of features

to remove or a performance degradation threshold.

M. Alazab et al.

r
s
l
b

3

c
t
h

4

4

p
a
u

c
i

A

a
t
i

F

f
c
i
f

4

‘
c
m
n
B
a
i
s
p

h
0
f
p

B
K
f
a
w
R
A
w
d

4

‘
c

u
G

Egyptian Informatics Journal 27 (2024) 100521
7. Evaluate the final selected feature set. Train the model using
the final set of selected features. Assess the performance of the
model using the chosen evaluation metric.

The back-wrapping approach systematically evaluates the impact of
emoving each feature on model performance. Its goal is to identify a
ubset of features that optimize model performance by removing the
east informative features. However, like the forward wrapper, it can
e computationally expensive, especially for feature-rich datasets.

.7.3. Ridge (insertion)
Ridge algorithm is a data mining algorithm that combines the

oncepts of ridge regression and binary classification. It extends the
raditional linear classifier by introducing a regularization term that
elps mitigate the problem of multicollinearity and overfitting.

The steps involved in Ridge Classifier training are as follows:

1. Data preparation:

• If necessary, preprocess the data by scaling or normalizing
features.

• Split the dataset into training and test sets to evaluate the
performance of the model.

2. Initialize the Ridge Classifier:

• Set the regularization parameter (alpha) to control the
amount of regularization.

• Select an appropriate solution for the optimization prob-
lem (eg ‘auto’, ‘svd’, ‘cholesky’, ‘lsqr’ or ‘sag’).

3. Train the Ridge classifier:

• Fit the model to the training data using the fit() function
or similar method.

• Ridge Classifier learns the relationship between features
and the target variable using ridge regression.

4. Make predictions:

• Use a trained Ridge Classifier to predict test data or new
unseen data.

• The model assigns class labels based on the learned deci-
sion boundary.

5. Evaluate the performance of the model:

• Calculate evaluation metrics such as accuracy, precision,
recall and F1 scores to assess model performance.

• Compare the predicted class labels with the actual class
labels from the test data.

. Evaluation metrics and results

.1. Evaluation metrics

In machine learning and statistical classification, assessing model
erformance is essential. Common metrics used for evaluation include
ccuracy, precision, recall, and the F-measure. Each metric provides
nique insights into the classifier’s performance.

Accuracy is a fundamental metric that denotes the proportion of
orrectly predicted instances out of the total instances. Mathematically,
t is expressed as:

ccuracy = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(8)

where:

• 𝑇𝑃 (True Positives) represents correctly predicted positive in-
stances,

• 𝑇𝑁 (True Negatives) represents correctly predicted negative in-
stances,
9
• 𝐹𝑃 (False Positives) represents incorrectly predicted positive in-
stances,

• 𝐹𝑁 (False Negatives) represents incorrectly predicted negative
instances.

Precision, or positive predictive value, measures the accuracy of
positive predictions by evaluating the proportion of true positive in-
stances among all instances predicted as positive. It is calculated using
the formula:

Precision = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(9)

Recall, also known as sensitivity or true positive rate, evaluates the
model’s ability to correctly identify all relevant positive instances. It is
defined as the proportion of true positive instances among all actual
positive instances:

Recall = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(10)

The F-measure, or F1 score, is the harmonic mean of precision
nd recall, providing a single metric that balances both aspects of
he model’s performance. This metric is particularly useful in cases of
mbalanced class distributions. The F-measure is given by:

-Measure = 2 ⋅ Precision ⋅ Recall
Precision + Recall (11)

Each of these metrics offers a distinct perspective on classifier per-
ormance. Accuracy gives a general performance overview, precision is
ritical when the cost of false positives is high, recall is vital when it is
mportant not to miss positive instances, and the F-measure is beneficial
or balancing precision and recall.

.2. Results with no feature selection

These features or characteristics, namely ‘td’, ‘sp’, ‘dp’, ‘stos’, ‘ipkt’,
ibyt’, ‘_in’, ‘out’, ‘sas’, ‘das’, play an essential part in their appli-
ations and enable comprehensive insights and informed decision-
aking. Fig. 2 shows the performance metrics for each classifier when
o feature selection technique was used. Among the classifiers, XG-
oost achieved the highest performance with accuracy, precision, recall
nd F1 score of 0.9998. It was closely followed by Gradient Boost-
ng and LightGBM, both achieving precision, accuracy, recall and F1
cores of 0.9997. These file-based algorithms have shown remarkable
erformance, indicating their efficiency in handling the dataset.

Other classifiers such as Extra Trees and Random Forest also showed
igh performance with precision, accuracy, recall and F1 score of
.9996. These results indicate the suitability of file-based algorithms
or the task. In contrast, classifiers such as SVM, AdaBoost, and QDA
erformed poorly, with significantly lower accuracy and other metrics.

A confusion matrix presented in Fig. 3 consisting of labels such as
LASTER_WORM_v2_ATTACKERS_ONLY and HTTP_FLOOD_v2_ATTAC
ERS_ONLY provided an overview of the model’s predictions for dif-

erent attack categories. Most matrix entries are aligned along the di-
gonal, indicating accurate predictions for most classes. However, there
ere some errors, such as 2 false positive predictions for BLASTER_WO
M_v2_ATTACKERS_ONLY and 1 false positive for HTTP_FLOOD_v2_
TTACKERS_ONLY. These findings shed light on the strengths and
eaknesses of the model and offer insight for further improvement and
evelopment in the investigation of attack classification.

.3. Filter methods

These features or characteristics, namely ‘sp’, ‘dp’, ‘ibyt’, ‘_in’, ‘out’,
sas’, ‘das’, play an essential part in their applications and enable
omprehensive insights and informed decision-making.

Fig. 4 shows the performance metrics for all classifiers when we
se the gain/correlation filter selection matrix. Among the classifiers,
radient Boosting achieves the highest accuracy of 0.9996, indicating

M. Alazab et al. Egyptian Informatics Journal 27 (2024) 100521
Fig. 2. Performance without feature selection.
that it has the highest overall correct prediction rate. It also demon-
strates excellent precision, recall and F1 scores, all very close to 1.
This indicates that Gradient Boosting has a high level of precision
and can make accurate predictions while maintaining a good balance
between identifying positive and negative cases. Random Forest and
XGBoost also achieve high accuracy, precision, recall, and F1 scores,
with values very similar and close to Gradient Boosting. This suggests
that these ensemble methods are effective in this classification task
and provide robust and reliable predictions.LightGBM achieves slightly
lower accuracy compared to previous classifiers, but still maintains a
high level of precision, recall, and F1 scores. While it may not perform
as well as Gradient Boosting, Random Forest, and XGBoost in terms
of accuracy, it remains a strong choice with a good trade-off between
accuracy and recall.

Extra Trees, Decision Tree, and KNN achieve slightly lower accuracy
and performance metrics compared to the previous classifiers, but still
maintain values above 0.99 for most metrics. These models may not be
as accurate as the most powerful ones, but they still provide reliable
predictions with reasonably high accuracy and repeatability. As we
move further down the list, the performance of the classifiers starts
to drop significantly. Gaussian Naive Bayes achieves an accuracy of
0.8726, showing a significant drop compared to previous models. LDA
and logistic regression show relatively low precision, accuracy, recall,
and F1 scores, suggesting that they may not be the most appropriate
choice for this particular data set. Ridge Classifier, AdaBoost, Support
Vector Machine, and QDA show even lower performance metrics. These
classifiers have relatively low accuracy, precision, recall, and F1 scores,
indicating that they have difficulty making accurate predictions on this
dataset. The best performers in this classification task are Gradient
Boosting, Random Forest, and XGBoost, which achieve high accuracy,
precision, recall, and F1 scores.

Based on the top-performing algorithm, Gradient Boosting in this
case, we produce a confusion matrix as in Fig. 5. The matrix contained
predictions for various attack categories. Upon examination of the ma-
trix, it is clear that the model performed well overall, with most items
10
aligned along the diagonal. This indicates that the model made correct
predictions for most classes. However, there were some misclassifi-
cations. For example, in the ‘BLASTER_WORM_v2_ATTACKERS_ONLY’
class, there were 2 false positive predictions indicating cases that were
mistakenly classified as belonging to this attack category. In addition,
3 cases were misclassified as ‘‘No Attack’’, potentially affecting the
accuracy of the model in determining harmless traffic.

Fig. 6 shows the performance metrics for all classifiers when we use
the Chi Square/Fisher score filter selection matrix.

LightGBM achieved the highest accuracy of 0.999, indicating that
it correctly classified the vast majority of cases. The algorithm yielded
precision, recall, and F1 scores all exceeding 0.999. This suggests that
LightGBM performed exceptionally well in correctly identifying posi-
tive instances (precision) and capturing all positive instances (recall).
A high F1 score further indicates a balanced performance between
precision and recall.

Gradient Boosting, XGBoost, Random Forest, and Extra Trees
achieved accuracy values above 0.998, indicating their strong per-
formance. These algorithms also exhibited high precision, recall, and
F1 score values, further highlighting their effectiveness in accurately
classifying cases.

The decision tree algorithm attained a detection accuracy of 0.998
and demonstrated comparable values of precision, recall and F1 score
to the above ensemble methods. This suggests that the decision tree
algorithm is able to achieve a similar level of performance to more
complex ensemble algorithms.

KNN attained a detection accuracy of 0.987, which is slightly lower
than the file-based and decision tree algorithms. However, its precision,
recall, and F1 scores were still relatively high, indicating its effective-
ness in classifying cases, albeit with a slightly higher error compared
to the best-performing algorithms.

Gaussian Naive Bayes moved down the table and attained a detec-
tion accuracy of 0.959, demonstrating a relatively high level of correct
classification. While its accuracy, recall, and F1 scores were slightly
lower than previous algorithms, Gaussian Naive Bayes still performed
solidly.

M. Alazab et al. Egyptian Informatics Journal 27 (2024) 100521
Fig. 3. Confusion matrix without feature selection.
SVM attained a detection accuracy of 0.855, indicating a lower level
of correct classification compared to previous algorithms. Its precision,
recall and F1 scores were also lower, indicating that the SVM struggled
to accurately classify cases, especially with respect to accuracy.

LDA attained a detection accuracy of 0.767, demonstrating a further
decrease in correct classifications. The precision, recall, and F1 scores
were also lower than previous algorithms, indicating limitations in
accurately classifying cases.

Logistic Regression and Ridge Classifier achieved a detection accu-
racy of 0.650 and 0.601 respectively, indicating a significant drop in
correct classifications. Their precision, recall, and F1 score values were
also lower than previous algorithms, indicating significant challenges
in accurately classifying cases.

AdaBoost attained a detection accuracy of 0.222, which is sig-
nificantly lower than the other algorithms. This indicates consider-
able difficulty in accurately classifying cases. The precision, recall and
F1 scores were also very low, further highlighting the limitations of
AdaBoost in this particular scenario.

Finally, QDA attained a detection accuracy of 0.081, which repre-
sents the lowest level of correct classification among all algorithms. Its
precision, recall, and F1 scores were also extremely low, indicating poor
performance in accurately classifying cases.
11
The results of the classification algorithms varied significantly. The
ensemble architecture, comprising LightGBM, Gradient Boosting, XG-
Boost Model Stacking, and Random Forests, demonstrated the highest
accuracy in all predictions due to markedly enhanced precision and
recall compared to individual methods. Conversely, algorithms such
as AdaBoost, QDA, Logistic Regression, and Ridge Classifier failed
to accurately predict the classes, exhibiting only classical levels of
accuracy.

Based on the top-performing algorithm, Gradient Boosting in this
case, we produce a confusion matrix in Fig. 7. Examining the ma-
trix, we observed that the model made accurate predictions for most
cases, as indicated by the entries along the diagonal. However, several
misclassifications should be noted.

For example, in the ‘‘BLASTER_WORM_v2_ATTACKERS_ONLY’’
class, there were 2 false positive predictions where cases were in-
correctly classified as belonging to this attack category. In addition,
7 cases were misclassified as ‘‘SPAM_v2_ATTACKERS_ONLY’’. These
misclassifications could affect the overall accuracy of the model. There
was one false positive prediction in the ‘No Attack’ class, indicating that
the instance was incorrectly classified as an attack. On the other hand,
there were 7 false negative predictions in this class, indicating cases
that were actually attacks but were classified as non-attacks. These
misclassifications highlight the potential for improving the model’s

M. Alazab et al. Egyptian Informatics Journal 27 (2024) 100521
Fig. 4. Performance of classifiers when Information Gain/ Correlation Coefficient used for feature selection.
ability to identify benign traffic accurately. Overall, while the model
performed well overall, there are areas where it could be improved to
reduce both false positives and false negatives alarm rate, especially in
the ‘BLASTER_WORM_v2_ATTACKERS_ONLY’ and ‘No Attack’ classes.

4.4. Wrapper methods

Fig. 8 shows the performance metrics for all classifiers when we use
the Forward function envelope.

Among the tested algorithms, XGBoost achieved the highest accu-
racy score of 0.9997, indicating an extremely high level of correct
classification. This algorithm also showed excellent precision, recall
and F1 score values, all above 0.9996. These results indicate that
XGBoost performed exceptionally well in accurately identifying positive
cases (precision) and capturing all positive cases (recall), resulting in
balanced F1 scores.

LightGBM, Random Forest, Extra Trees, and Gradient Boosting
achieved accuracy scores above 0.9993, indicating their strong perfor-
mance in correctly classifying cases. These algorithms also showed high
precision, recall, and F1 score values, highlighting their effectiveness in
accurately identifying positive cases and achieving a balance between
precision and recall.

The decision tree algorithm achieved a detection accuracy of 0.9984,
demonstrating a slightly lower but still commendable level of correct
classification. Its accuracy, recall, and F1 score values were compara-
ble to ensemble-based algorithms, suggesting that decision trees can
achieve similar performance levels to more complex ensemble methods.
12
KNN achieved a detection accuracy of 0.9905, which is slightly
lower than ensemble-based and decision tree-based algorithms. How-
ever, its precision, recall, and F1 scores were still relatively high,
indicating its effectiveness in accurately classifying cases, albeit with
a slightly higher error compared to the best performing algorithms.

Gaussian Naive Bayes achieved a detection accuracy of 0.8681,
demonstrating a relatively high level of correct classification. Although
its precision, recall, and F1 scores were slightly lower compared to pre-
vious algorithms, Gaussian Naive Bayes still showed solid performance
in accurately classifying cases.

LDA achieved a detection accuracy of 0.7654, indicating a further
decrease in correct classifications compared to previous algorithms. Its
precision, recall, and F1 scores were also lower, indicating limitations
in accurately classifying cases.

Logistic regression and Ridge Classifier achieved detection accuracy
of 0.6331 and 0.4221, respectively, indicating a significant drop in
correct classifications. Their precision, recall, and F1 score values were
also lower than previous algorithms, indicating problems in accurately
classifying cases.

AdaBoost achieved a detection accuracy of 0.2223, which is sig-
nificantly lower than the other algorithms. This indicates consider-
able difficulty in accurately classifying cases. The precision, recall and
F1 scores were also very low, further highlighting the limitations of
AdaBoost in this particular scenario.

SVM and QDA achieved detection accuracy of 0.0908 and 0.0763,
respectively, representing the lowest levels of correct classification
among all algorithms. Their precision, recall, and F1 score values

M. Alazab et al. Egyptian Informatics Journal 27 (2024) 100521
Fig. 5. Confusion matrix when Information Gain is applied.
were also extremely low, indicating poor performance in accurately
classifying cases.

Ensemble-based methods such as XGBoost, LightGBM, Random For-
est, Extra Trees, and Gradient Boosting demonstrated the highest level
of accuracy, precision, recall, and F1 scores, indicating their supe-
rior performance in accurately classifying cases. On the other hand,
algorithms such as AdaBoost, SVM, QDA, Logistic Regression, Ridge
Classifier, and LDA showed lower levels of accuracy and struggled to
achieve accurate classifications.

Based on top performing algorithm, XGBoost in this case, we pro-
duce confusion matrix as in Fig. 9. The provided confusion matrix
represents the prediction results of the XGBoost classification model for
different attack categories using the same labels as before. Examining
the matrix offers valuable insights into model performance. After analy-
sis, it is clear that the model achieved high accuracy in most cases, as in-
dicated by the items along the diagonal. However, there are a few mis-
classifications worth noting. For example, in the ‘BLASTER_WORM_v2_
ATTACKERS_ONLY’ class, there were 2 false positive predictions where
cases were misclassified as belonging to this attack category. There
was one false positive prediction in the ’SPAM_v2_ATTACKERS_ONLY’
class that indicated an instance that was incorrectly identified as an
attack. In addition, there was one false positive prediction in the ‘‘No
Attack’’ class that marked an instance that was misclassified as an
attack. Conversely, there was one false negative prediction in this class
that indicated an instance that was an attack but was classified as a non-
attack. In general, these misclassifications show that the model can be
improved to do a better job in separating benign and malignant traffic.
13
Fig. 10 shows the performance metrics for all classifiers when we
use the envelope of the inverse function.

Among the tested algorithms, XGBoost achieved the highest accu-
racy score of 0.9998, indicating an extremely high level of correct
classification. This algorithm also demonstrated excellent precision,
recall and F1 score values, all above 0.9997. These results indicate that
XGBoost performed exceptionally well in accurately identifying positive
cases (precision) and capturing all positive cases (recall), resulting in a
balanced F1 score.

LightGBM, Gradient Boosting, Decision Tree, and Random Forest
achieved accuracy scores above 0.9992, highlighting their strong per-
formance in correctly classifying cases. These algorithms also showed
high precision, recall and F1 score values, indicating their effectiveness
in accurately identifying positive cases and achieving a balanced F1
score.

The Extra Trees algorithm achieved a detection accuracy of 0.999,
demonstrating a slightly lower but still commendable level of correct
classification. Its accuracy, recall, and F1 scores were comparable to the
best-performing algorithms, suggesting that Extra Trees can achieve a
similar level of performance.

KNN achieved a detection accuracy of 0.9753, which is lower than
previous algorithms. However, its accuracy, recall, and F1 scores were
still relatively high, indicating its effectiveness in accurately classify-
ing cases, albeit with a slightly higher error compared to the best
performing algorithms.

Gaussian Naive Bayes achieved a detection accuracy of 0.7152,
indicating a lower level of correct classification compared to previous

M. Alazab et al. Egyptian Informatics Journal 27 (2024) 100521
Fig. 6. Performance of different classifiers when Chi Square/Fisher is used for feature selection.
algorithms. Although its precision, recall, and F1 scores were lower
than those of the best-performing algorithms, Gaussian Naive Bayes still
showed decent performance in accurately classifying cases.

LDA achieved a detection accuracy of 0.5971, indicating a further
decrease in correct classification compared to previous algorithms. Its
precision, recall, and F1 scores were also lower, indicating limitations
in accurately classifying cases.

Ridge Classifier and AdaBoost achieved a detection accuracy of
0.5424 and 0.3903, respectively, indicating a significant drop in cor-
rect classification. Their precision, recall, and F1 score values were
also lower than previous algorithms, indicating problems in accurately
classifying cases.

Logistic regression, QDA, and support vector machine achieved very
low accuracy scores, indicating significant difficulty in accurately clas-
sifying cases. Their accuracy, recall and F1 score values were extremely
low, further highlighting their limitations in this particular scenario.

The results obtained from the classification algorithms differed sig-
nificantly. The top-performing algorithms such as XGBoost, LightGBM,
Gradient Boosting, Decision Tree, and Random Forest have demon-
strated high levels of accuracy, precision, recall, and F1 scores, indi-
cating their superior performance in accurately classifying cases. On
the other hand, algorithms such as SVM, QDA, Logistic Regression,
AdaBoost, Ridge Classifier, and LDA showed lower levels of accuracy
and struggled to achieve accurate classifications.

Based on top performing algorithm, XGBoost in this case, we pro-
duce a confusion matrix as in Fig. 11. The given confusion matrix
corresponds to the results of the classification model’s predictions,
14
utilizing the same set of attack labels as mentioned previously. Ana-
lyzing the matrix provides valuable insights into the performance of
the model. Upon examination, it is evident that the model achieved
high accuracy across the majority of instances, as indicated by the
values along the diagonal. However, there were a few misclassifications
worth noting. In the ‘BLASTER_WORM_v2_ATTACKERS_ONLY’ class,
there were 3 false positive predictions, where instances were incorrectly
identified as belonging to this attack category. It is important to address
these misclassifications to enhance the accuracy and effectiveness of
the model. The model displayed favorable performance, but there is
still potential for improvement, particularly in reducing false positive
predictions in the ‘BLASTER_WORM_v2_ATTACKERS_ONLY’ class.

Fig. 12 shows the performance metrics for all classifiers when we
use the Ridge Feature selection.

Gradient Boosting, XGBoost, Random Forest, and LightGBM at-
tained high accuracy scores exceeding 0.9974, demonstrating a high
level of correct classification by these algorithms. These top-performing
algorithms also exhibited high precision, recall, and F1 score values,
indicating their effectiveness in accurately identifying positive cases
and maintaining a balanced F1 score.

The Decision Tree and Extra Trees algorithms achieved slightly
lower detection accuracy of around 0.9972 and 0.9968, respectively.
Despite this, they still showed commendable values of precision, recall,
and F1 scores, indicating their effectiveness in accurately classifying
cases, albeit with a slightly higher margin of error compared to the
best performing algorithms.

KNN achieved a detection accuracy of 0.9861, which is lower
than previous algorithms. However, its precision, recall and F1 scores

M. Alazab et al. Egyptian Informatics Journal 27 (2024) 100521
Fig. 7. Confusion matrix when Chi-Square/Fisher is used for FS.
were relatively high, indicating its effectiveness in accurately classi-
fying cases, albeit with a slightly higher error compared to the best
performing algorithms.

Gaussian Naive Bayes achieved a detection accuracy of 0.8814,
demonstrating a lower correct classification level than previous algo-
rithms. Its precision, recall, and F1 scores were also lower, indicating
some limitations in accurately classifying cases.

SVM achieved a detection accuracy of 0.7539, indicating a further
decline in correct classifications. Although its precision values and
F1 scores were relatively high, the recall value was lower, indicating
problems in capturing all positive cases.

LDA achieved a detection accuracy of 0.7003, indicating limitations
in correctly classifying cases. Its precision, recall, and F1 score values
were also lower, indicating problems in accurately identifying positive
cases and achieving balanced F1 scores.

Logistic regression and Ridge Classifier achieved detection accuracy
of 0.5379 and 0.5208, respectively, indicating a significant decrease
in incorrect classifications. These algorithms also showed lower values
of precision, recall, and F1 scores, indicating difficulty in accurately
classifying cases.

AdaBoost achieved a detection accuracy of 0.3282, indicating a
lower level of correct classification compared to previous algorithms.
Its precision, recall, and F1 scores were also lower, indicating limita-
tions in accurately classifying cases.
15
Finally, QDA achieved extremely low accuracy, precision, recall,
and F1 values, indicating significant problems in accurately classifying
cases.

The results obtained from the classification algorithms differed
significantly. The top-performing algorithms such as Gradient Boost-
ing, XGBoost, Random Forest, LightGBM, Decision Tree, and Extra
Trees demonstrated high levels of accuracy, precision, recall, and F1
scores, indicating their superior performance in accurately classifying
cases. On the other hand, algorithms such as QDA, AdaBoost, Ridge
Classifier, Logistic Regression, LDA, SVM, and Gaussian Naive Bayes
showed lower levels of accuracy and struggled to achieve accurate
classifications.

Based on top performing algorithm, Gradient Boosting in this case,
we produce confusion matrix as in Fig. 13.

The provided confusion matrix reveals the classification results
based on the given attack labels generated by the model. Examining
the matrix, it is clear that the model achieved high accuracy for most
classes, as indicated by the dominant values along the diagonal. How-
ever, there have been cases of misclassification that require attention.
Notably, 19 cases were misclassified as ‘‘PORT_SWEEP’’ instead of
‘‘DDoS’’ and 4 cases were misclassified as ‘‘BLASTER_WORM_v2_ATTAC
KERS_ONLY’’ instead of ‘‘PORT_SWEEP’’. These misclassifications indi-
cate areas for improvement in model accuracy, particularly in reducing
false positives. The matrix provides valuable numerical insights to
help researchers refine the model and improve its attack classification
performance.

M. Alazab et al. Egyptian Informatics Journal 27 (2024) 100521
Fig. 8. Performance of different classifiers when forward wrapper is used for FS.
4.5. Comparison

4.5.1. F1 score
In this analysis, we evaluated the performance of different machine

learning algorithms using different feature selection techniques based
on their F1 scores (Fig. 14). Algorithms tested include XGBoost, Gradi-
ent Boosting, LightGBM, Extra Trees, Random Forest, Decision Tree,
KNN, Gaussian Naive Bayes, SVM, LDA, Logistic Regression, Ridge
Classifier, AdaBoost, and QDA.

Among the algorithms tested without feature selection, XGBoost,
Gradient Boosting, and LightGBM achieved the highest F1 scores with
values ranging from 0.9997 to 0.9998. However, when you use feature
selection using wrapper methods such as backward and forward selec-
tion, the F1 score decreased slightly, but remained high for XGBoost,
Extra Trees, and Gradient Boosting.

When feature selection was performed using filtering methods such
as information gain, correlation, chi-square, and Fisher’s score, the
F1 scores differed in different algorithms. Gradient Boosting, Random
Forest, and XGBoost showed consistent performance across different
filtering methods, while LightGBM had different F1 scores depending
on the filter method used.

4.5.2. Precision
Based on the precision scores obtained from different classifiers,

we can observe that several algorithms achieve high accuracy values
(Fig. 15). XGBoost consistently performs well across different feature
selection methods, achieving accuracy scores above 0.9997. Light-
GBM also shows good performance without feature selection with an
accuracy score of 0.9997.
16
Gradient Boosting, Extra Trees, and Random Forest classifiers also
show high accuracy scores when used without feature selection, rang-
ing from 0.9996 to 0.9997.

In terms of feature selection methods, Wrapper’s backward elim-
ination approach consistently produces highly accurate scores across
multiple classifiers, including XGBoost, LightGBM, and Gradient Boost-
ing. These methods achieve accuracy scores ranging from 0.9994 to
0.9997.

The filter method, specifically using information gain proved effec-
tive for feature selection with Gradient Boosting, Random Forest, and
XGBoost classifiers, yielding accuracy scores ranging from 0.9995 to
0.9996.

For KNN, the accuracy score remains consistently high across dif-
ferent feature selection methods such as the Information Gain filter,
no feature selection, and wrapper forward, with scores ranging from
0.9906 to 0.9907.

Gaussian Naive Bayes achieves a high accuracy score using the
filter method (Chi Square/Fisher Score) with a score of 0.9593. It
also performs well without feature selection, envelope passing, and
embedding (Ridge), with scores ranging from 0.8776 to 0.8925.

SVM shows good accuracy with filter (Chi Square/Fisher Score) and
embedding (Ridge) methods, achieving a detection accuracy of 0.8710
and 0.8191, respectively.

LDA performs relatively well without feature selection and with the
filter method (Chi Square/Fisher Score), achieving detection accuracy
of 0.8030 and 0.8005, respectively.

On the other hand, several classifiers show lower accuracy scores.
Logistic Regression, Ridge Classifier, AdaBoost, and QDA show lower
accuracy values across different feature selection methods.

M. Alazab et al. Egyptian Informatics Journal 27 (2024) 100521
Fig. 9. Performance of different classifiers when forward wrapper is used for FS.
The results highlight the importance of selecting appropriate fea-
ture selection methods and classifiers to achieve high accuracy in
classification tasks.

4.5.3. Recall
In this analysis, we used different feature selection techniques to

compare several classification algorithms based on their recall scores
(Fig. 16). Recall measures the ability of the model to correctly identify
positive instances from all true positive cases in the data set. A higher
score indicates a better ability to catch positive cases.

Among the evaluated algorithms, XGBoost achieved the highest
recall score of 0.9998 without using any feature selection technique.
XGBoost also performed well, with a recall score of 0.9998 when the
back-convolution method was used for feature selection. LightGBM and
Gradient Boosting also achieved a high recall score of 0.9998 without
feature selection.

When the backwrap method was used, XGBoost, LightGBM, and
Random Forest achieved a recall score of 0.9997, indicating their ef-
fectiveness in selecting relevant features. The forward wrapper method
resulted in high recall scores for XGBoost and LightGBM (0.9997).

Using filter-based feature selection techniques such as Information
Gain and chi-square/Fisher score showed mixed results. Gradient Boost-
ing, Random Forest, and XGBoost achieved a recall score of 0.9996
when Information Gain was used. In contrast, Gradient Boosting, XG-
Boost, and Random Forest achieved a recall score of 0.9995 when
chi-squared/Fisher’s score was used.
17
The decision tree and extra trees also showed good performance
in terms of recall using different feature selection techniques. Both
algorithms achieved a recall score of 0.9994 with the backward and
forward wrapper methods.

For most algorithms, nesting with ridge regression resulted in rel-
atively lower memory scores ranging from 0.9975 to 0.9905. KNN
achieved a recall score of 0.9905 when Information Gain was used for
feature selection.

Moving to the lower end of recall scores, Gaussian Naive Bayes
achieved a recall score of 0.9588 when the chi-square/Fisher score
was used for feature selection. SVM, LDA, Logistic Regression, and
Ridge Classifier obtained recall scores ranging from 0.8552 to 0.6057,
indicating a relatively lower ability to catch positive cases.

Finally, AdaBoost and QDA had the lowest recall scores, ranging
from 0.3903 to 0.0725, across different feature selection techniques.

XGBoost consistently performed well in terms of recall, scoring
high with and without feature selection techniques. Packing methods,
especially backward and forward, have been shown to be effective for
selecting relevant features. Filter-based techniques have shown mixed
results, with some algorithms benefiting from Information Gain or chi-
square/Fisher’s score. However, fitting with ridge regression generally
resulted in lower recall scores. It is important to note that these results
may vary depending on the dataset and the specific problem domain.

M. Alazab et al.

Fig. 10. Performance of different classifiers when the backward wrapper is used for FS.

Egyptian Informatics Journal 27 (2024) 100521

18

M. Alazab et al. Egyptian Informatics Journal 27 (2024) 100521
Fig. 11. Performance of different classifiers when the backward wrapper is used for FS.
4.5.4. Accuracy
In this analysis, we have evaluated the performance of different

machine learning algorithms on a classification task (Fig. 17). The
accuracy results obtained for each algorithm are as follows:

1. XGBoost achieved the highest accuracy of 99.98% when no
feature selection was applied. It also performed well in feature back-
selection, achieving 99.98% accuracy.

2. LightGBM and Gradient Boosting achieved 99.98% accuracy
without feature selection. LightGBM also performed well with feature
backselection, achieving an accuracy of 99.97

3. Random Forest and Extra Trees algorithms achieved 99.97%
accuracy without feature selection. Extra Trees also performed well in
both forward and backward feature selection, achieving equal accuracy.

4. Wrapper methods such as forward and backward feature selection
have been shown to be effective for several algorithms, including XG-
Boost, LightGBM, and Gradient Boosting, achieving accuracies ranging
from 99.69% to 99.92%.

5. The filtering methods, namely Information Gain and Chi-Square/
Fisher Score, were effective for Gradient Boosting, LightGBM and Ran-
dom Forest algorithms, achieving accuracy ranging from 99.53% to
99.92%.

6. The decision tree algorithm achieved 99.85% accuracy with-
out feature selection and performed well with backward and forward
feature selection, achieving 99.84% and 99.84% accuracy, respectively.

7. Insertion with the Ridge classifier yielded accuracy ranging from
99.75% to 99.99% for the XGBoost, Gradient Boosting, Random Forest,
LightGBM, and Decision Tree algorithms.
19
8. KNN achieved accuracy ranging from 97.50% to 99.05% depend-
ing on the feature selection method used.

9. The Gaussian Naive Bayes algorithm attained a detection ac-
curacy of 95.88% with chi-square/Fisher score feature selection and
performed well when fitted using the Ridge classifier, achieving an
accuracy of 88.14%.

10. SVM and LDA algorithms achieved accuracy ranging from
72.42% to 85.52% depending on the feature selection method used.

11. Logistic regression and Ridge Classifier algorithms achieved
accuracies ranging from 42.21% to 66.53% depending on the feature
selection method used.

12. The AdaBoost algorithm achieved accuracy ranging from 22.23%
to 39.03% depending on the feature selection method used.

Overall, XGBoost, LightGBM, Gradient Boosting, and Random Forest
algorithms performed consistently well across different feature selec-
tion methods, achieving accuracies above 99.5%. These algorithms
can be considered as strong candidates for classification tasks. The
feature selection method’s choice greatly influenced the algorithms’
performance, with wrapper and filter methods proving effective in
improving accuracy in several cases.

5. Evaluation of multi-layered threat intelligence framework

The effectiveness of a cybersecurity framework like the Multi-
Layered Threat Intelligence Framework (MLTIF) can be evaluated

M. Alazab et al. Egyptian Informatics Journal 27 (2024) 100521
Fig. 12. Performance of different classifiers when Ridge wrapper is used for FS.
across several dimensions, including accuracy and reliability, effective-
ness in threat detection and mitigation, and the impact of various threat
intelligence sources.

5.1. Accuracy and reliability

The accuracy and reliability of MLTIF can be highly dependent
on the quality and reliability of the data it receives. With its first
layer dedicated to data collection and processing, the MLTIF has the
potential to gather a wide variety of valuable information. However,
the accuracy of its threat analysis will depend largely on the quality
of this input data. If inaccurate or irrelevant data is collected, this
could result in false positives or false negatives. The reliability of
MLTIF depends on its layers’ consistency in performing their functions.
If the machine learning algorithms and artificial intelligence models
used in the threat analysis layer are not robust or properly trained,
they may not consistently interpret the input data correctly, leading
to inconsistent performance.

5.2. Effectiveness in threat detection and mitigation

The layered structure of MLTIF allows it to effectively detect and
mitigate threats. The second layer, which focuses on threat intelligence
analysis, uses machine learning and artificial intelligence to identify
and classify threats. This approach can provide a more comprehensive
20
view of potential threats, as it combines the strengths of automated
machine learning and artificial intelligence with the insights of human
expertise.

The threat detection and mitigation layer allows for real-time re-
sponses to potential threats, utilizing intrusion detection and preven-
tion systems, firewalls, and other security measures. These measures
can prevent threats from penetrating the system, ensuring that they are
identified and mitigated before they can cause damage.

5.3. Impact of different threat intelligence sources

The MLTIF leverages a variety of threat intelligence sources, which
can have a significant impact on its effectiveness. By integrating both
internal and external threat intelligence sources, the MLTIF can provide
a more comprehensive picture of the threat landscape. Internal sources
provide insights into an organization’s unique threat profile, which
includes understanding previous attack patterns, vulnerabilities, and
areas of risk within the organization. External sources can offer broader
intelligence about global trends, emerging threats, tactics, techniques,
and procedures (TTPs) of various threat actors. However, the challenge
lies in effectively integrating these diverse sources of information. Im-
portant data might be overlooked or misinterpreted if this integration
is not done well. The value of threat intelligence is highly dependent
on its timeliness. If the collected intelligence is outdated, it could lead
to ineffective threat detection and response.

M. Alazab et al. Egyptian Informatics Journal 27 (2024) 100521
Fig. 13. Confusion matrix when Ridge wrapper is used for FS.
While the MLTIF provides a robust and comprehensive architecture
for threat detection and mitigation, its effectiveness is dependent on
several factors, including the quality and timeliness of the data, the per-
formance of its machine learning and artificial intelligence algorithms,
and the effective integration of its multiple layers and sources of threat
intelligence.

5.4. Comparison with existing frameworks

The Multi-Layered Threat Intelligence Framework (MLTIF) appears
to offer a robust architecture for cybersecurity, given its emphasis on
multiple layers of threat intelligence. Here’s how it compares to some
other commonly used cybersecurity frameworks:

1. NIST Cybersecurity Framework (CSF) has been developed by
NIST [51]. Its purpose is to help organizations manage and re-
duce cybersecurity risk. It is divided into five functions: Identify,
Protect, Detect, Respond, and Recover, which align closely with
the layers defined in the MLTIF. However, unlike the MLTIF
which emphasizes on real-time feedback and machine learning
for threat identification, NIST CSF is more focused on managing
risk and improving cybersecurity across an organization and
might not provide the same level of real-time threat intelligence.
21
2. ISO/IEC 27001 is an internationally recognized standard for
an Information Security Management System (ISMS) [52]. It
includes procedures and policies for systematically managing
an organization’s information risk. While the MLTIF is primar-
ily focused on threat intelligence and rapid response, ISO/IEC
27001 is more comprehensive, focusing on the entire ISMS,
which includes elements such as risk assessment, internal audit,
continual improvement, and top management’s commitment to
information security. However, MLTIF might provide a more
advanced threat detection approach given its use of artificial
intelligence and machine learning.

3. CIS Controls (formerly SANS Top 20) is recommended a set of cy-
bersecurity protection actions and offers a prioritized approach
to securing your IT environment [53]. While CIS Controls are
focused on actions to be taken, MLTIF is more of an architectural
framework that includes data collection, analysis, threat detec-
tion, mitigation, reporting, feedback, and management, offering
a more holistic and potentially more adaptable approach.

4. Control Objectives for Information and Related Technologies
(COBIT) is a comprehensive framework for the governance and
management of enterprise IT [54]. COBIT provides guidance to
executives and those charged with making decisions concern-
ing the use of technology in support of organizational objec-
tives. While both COBIT and MLTIF stress management and

M. Alazab et al. Egyptian Informatics Journal 27 (2024) 100521
Fig. 14. F-score of classification.
governance, MLTIF specifically targets threat intelligence, detec-
tion, and mitigation, making it more suitable for organizations
looking for a robust cybersecurity focus.

The MLTIF, with its focus on threat intelligence, might provide a
more targeted and real-time approach to cybersecurity, especially for
organizations dealing with advanced persistent threats. However, the
choice of a cybersecurity framework often depends on an organization’s
specific needs, including its risk tolerance, regulatory requirements, and
resources.

5.5. Comparisons with previous work

We have included comparative assessments with current cybersecu-
rity frameworks to more accurately assess the efficacy of our suggested
solutions. A comparison of our study’s salient features with well-known
frameworks like MITRE ATT&CK and conventional signature-based
systems is provided below:

MLTIF: To enable quick, real-time threat detection, our framework
combines machine learning-based and signature-based detection tech-
niques. By combining various threat feeds, it exhibits great agility and
strengthens organizational defenses against changing cyberthreats, [12,
24,25].
22
MITRE ATT&CK: This framework is centered around technique- and
tactic-based detection, which can have different reaction times based
on the tactics employed. Although robust, MITRE ATT&CK needs a
great deal of fine-tuning and customization in order to successfully
handle certain threats, [55].

Conventional Signature-Based Systems: These systems use pattern
matching and rule-based techniques, which provide quick detection but
little flexibility to respond to emerging threats.

We show how the MLTIF performs better and is more versatile in
bolstering organizational resilience against cyber threats by comparing
detection rates, response times, and overall adaptability to emerging
threats, [56].

6. Conclusion

In this study, we evaluated various machine learning algorithms
using different feature selection techniques, focusing on their F1 scores,
accuracy, precision, and recall. XGBoost, Gradient Boosting, and Light-
GBM consistently achieved high F1 scores, while the effectiveness of
feature selection methods varied across algorithms. XGBoost demon-
strated high precision and recall scores, and LightGBM also performed
well in these metrics. Wrapper methods, such as backward and for-
ward selection, showed promising results for feature selection. Filter

M. Alazab et al. Egyptian Informatics Journal 27 (2024) 100521
Fig. 15. Precision of classification.
methods, such as information gain and correlation, were effective for
Gradient Boosting, Random Forest, and XGBoost. However, embedding
techniques, particularly ridge embedding, resulted in lower F1 scores
for all algorithms tested. XGBoost attained the highest accuracy, while
LightGBM and Gradient Boosting also performed well. KNN demon-
strated robustness across feature selection techniques, while Logistic
Regression and QDA exhibited lower performance.

Despite the potential advantages of the Multi-Layered Threat Intel-
ligence Framework (MLTIF), several limitations exist:

• The effectiveness of MLTIF is highly dependent on the quality and
volume of threat intelligence data it receives. Poor-quality data or
lack of sufficient data can lead to inaccurate threat identification
and mitigation.

• Integration of multiple layers and various threat intelligence
sources can be challenging, as it requires significant effort to
ensure all parts of the system work coherently.

• MLTIF, like any threat detection system, can produce false posi-
tives and negatives. These could lead to unnecessary responses or
overlooked threats, respectively.

• As the amount of data grows, scalability could become a problem.
The MLTIF needs to maintain its effectiveness as it scales, which
can be technically challenging.

• The success of MLTIF relies on the performance of machine learn-
ing algorithms. If these technologies fail to deliver, the frame-
work’s effectiveness could be compromised.
23
Recent studies have shown the applicability of our current analysis
and provide insightful background. For example, utilizing data-driven
decision support frameworks, Nisioti et al. (2023) investigated inno-
vations in forensic investigations [26]. Explainable machine learning
models are used for intrusion detection, and Nwakanma et al. (2023)
looked at how to combine IoT with ITS to create IoV [27]. In order to
automate attack detection, Macas et al. (2022) explored the use of deep
learning in cybersecurity [20]. In order to automatically identify and
profile newly emerging cyber risks, Marinho and Holanda (2023) used
social media analysis [28].

Theoretically, by highlighting the value of combining several threat
information sources into a multi-layered framework and casting doubt
on preconceived notions about the limitations of machine learning
algorithms in cybersecurity, our findings advance our understanding.
Through practical insights on enhancing threat intelligence data qual-
ity and integration, as well as approaches to manage scalability and
minimize false positives/negatives, our research applies to real-world
applications.

By addressing these limitations and focusing on these future work
areas, the MLTIF could be significantly improved and provide an even
more robust and effective solution for threat detection and mitigation.

Future work should focus on addressing these limitations:

• Develop advanced techniques for improving the quality of data
collected and to effectively handle larger volumes of data.

• Create more effective strategies for integrating multiple layers
and different sources of threat intelligence.

M. Alazab et al. Egyptian Informatics Journal 27 (2024) 100521
Fig. 16. Recall of classification.
• Improve techniques to reduce the number of false positives and
negatives, possibly by refining the machine learning used in the
framework.

• Explore strategies for managing the scalability of the framework,
such as distributed processing or cloud-based solutions, could be
a key area for future work.

• Thoroughly test MLTIF in various real-world scenarios to ensure
its effectiveness in different contexts and to further refine its
capabilities based on these experiences.

CRediT authorship contribution statement

Moutaz Alazab: Conceptualization, Data curation, Formal analysis,
Funding acquisition, Investigation, Methodology, Project administra-
tion, Resources, Software, Supervision, Validation, Visualization, Writ-
ing – original draft, Writing – review & editing. Ruba Abu Khurma:
Data curation, Investigation, Methodology, Project administration, Re-
sources, Validation, Visualization, Writing – original draft, Writing
– review & editing, Conceptualization, Formal analysis, Funding ac-
quisition, Software, Supervision. Maribel García-Arenas: Conceptu-
alization, Funding acquisition, Investigation, Project administration,
Supervision, Writing – review & editing. Vansh Jatana: Conceptualiza-
tion, Data curation, Formal analysis, Funding acquisition, Investigation,
Methodology, Project administration, Resources, Software, Supervision,
Validation, Visualization, Writing – original draft, Writing – review &
24
editing. Ali Baydoun: Conceptualization, Data curation, Formal anal-
ysis, Funding acquisition, Investigation, Methodology, Project admin-
istration, Resources, Software, Supervision, Validation, Visualization,
Writing – original draft, Writing – review & editing. Robertas Damaše-
vičius: Conceptualization, Data curation, Formal analysis, Funding
acquisition, Investigation, Methodology, Project administration, Re-
sources, Software, Supervision, Validation, Visualization, Writing –
original draft, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work was supported by the Grant C-ING-027-UGR23 funded
by Consejería de Universidad, Investigación e Innovación and by ERDF
Andalusia Program 2021-2027, the Ministerio Español de Ciencia e
Innovación under project number PID2020-115570GB-C22 MCIN/AEI/
10.13039/501100011033, Grant PID2022-137461NB-C31 funded by
MCIN/AEI/10.13039/501100011033 and by the Cátedra de Empresa
Tecnología para las Personas (UGR-Fujitsu).

M. Alazab et al. Egyptian Informatics Journal 27 (2024) 100521
Fig. 17. Accuracy of classification.
References

[1] Kolini F, Janczewski L. Exploring incentives and challenges for cybersecurity
intelligence sharing (CIS) across organizations: A systematic review. Commun
Assoc Inf Syst 2022;50(1):86–121.

[2] de Souza CA, Westphall CB, Machado RB, Loffi L, Westphall CM, Geronimo GA.
Intrusion detection and prevention in fog based IoT environments: A systematic
literature review. Comput Netw 2022;214.

[3] Malliga S, Nandhini PS, Kogilavani SV. A comprehensive review of deep learning
techniques for the detection of (distributed) denial of service attacks. Inf Technol
Control 2022;51(1):180–215.

[4] Saxena R, Gayathri E. Cyber threat intelligence challenges: Leveraging blockchain
intelligence with possible solution. Mater Today: Proc 2021;51:682–9.

[5] Pinto A, Herrera L, Donoso Y, Gutierrez JA. Survey on intrusion detection systems
based on machine learning techniques for the protection of critical infrastructure.
Sensors 2023;23(5).

[6] Ahmadi A, Smith J. Security vulnerabilities in cyber-physical systems. J
Cybersecur 2022;10(3):45–58. http://dx.doi.org/10.1007/s11276-022-0300-5.

[7] Ju H, Jeon B, Kim D, Jung B, Jung K. Security considerations for in-vehicle
secure communication. In: 2019 international conference on information and
communication technology convergence. ICTC, IEEE; 2019, p. 1404–6.

[8] Almuqren L, Maashi MS, Alamgeer M, Mohsen H, Hamza MA, Abdelmageed AA.
Explainable artificial intelligence enabled intrusion detection technique for secure
cyber-physical systems. Appl Sci 2023;13(5).

[9] Rathish CR, Karpagavadivu K, Sindhuja P, Kousalya A. A hybrid efficient
distributed clustering algorithm based intrusion detection system to enhance
security in manet. Inf Technol Control 2021;50(1):45–54.

[10] Thomasian NM, Adashi EY. Cybersecurity in the internet of medical things.
Health Policy Technol 2021;10(3).

[11] Altulaihan E, Almaiah MA, Aljughaiman A. Cybersecurity threats, counter-
measures and mitigation techniques on the IoT: Future research directions.
Electronics 2022;11(20).
25
[12] Ali MH, Jaber MM, Abd SK, Rehman A, Awan MJ, Damasevicius R, et al. Threat
analysis and distributed denial of service (ddos) attack recognition in the internet
of things (IoT). Electronics 2022;11(3).

[13] Odusami M, Misra S, Adetiba E, Abayomi-Alli O, Damasevicius R, Ahuja R. An
improved model for alleviating layer seven distributed denial of service intrusion
on webserver. J Phys: Conf Ser 2019;1235.

[14] Alharbi A, Alosaimi W, Alyami H, Rauf HT, Damasevicius R. Botnet attack
detection using local global best bat algorithm for industrial internet of things.
Electronics 2021;10(11).

[15] Kure HI, Islam S, Mouratidis H. An integrated cyber security risk management
framework and risk predication for the critical infrastructure protection. Neural
Comput Appl 2022;34(18):15241–71.

[16] Li H, Guo Y, Sun P, Wang Y, Huo S. An optimal defensive deception framework
for the container-based cloud with deep reinforcement learning. IET Inf Secur
2022;16(3):178–92.

[17] Abdullahi M, Baashar Y, Alhussian H, Alwadain A, Aziz N, Capretz LF, et al.
Detecting cybersecurity attacks in internet of things using artificial intelligence
methods: A systematic literature review. Electronics 2022;11(2).

[18] Kaur R, Gabrijelčič D, Klobučar T. Artificial intelligence for cybersecurity:
Literature review and future research directions. Inf Fusion 2023;97.

[19] Khan AR, Kashif M, Jhaveri RH, Raut R, Saba T, Bahaj SA. Deep learning for
intrusion detection and security of internet of things (IoT): Current analysis,
challenges, and possible solutions. Secur Commun Netw 2022;2022.

[20] Macas M, Wu C, Fuertes W. A survey on deep learning for cybersecurity:
Progress, challenges, and opportunities. Comput Netw 2022;212.

[21] Capuano B, Johnson M. Real-world applicability of AI in cybersecurity.
Cybersecur J 2022;15(2):112–25. http://dx.doi.org/10.1093/cybsec/xyz012.

[22] Damasevicius R, Toldinas J, Venckauskas A, Grigaliunas S, Morkevicius N.
Technical threat intelligence analytics: What and how to visualize for analytic
process. In: 2020 24th international conference electronics, eLECTRONICS 2020.
2020.

http://refhub.elsevier.com/S1110-8665(24)00084-7/sb1
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb1
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb1
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb1
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb1
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb2
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb2
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb2
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb2
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb2
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb3
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb3
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb3
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb3
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb3
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb4
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb4
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb4
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb5
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb5
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb5
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb5
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb5
http://dx.doi.org/10.1007/s11276-022-0300-5
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb7
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb7
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb7
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb7
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb7
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb8
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb8
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb8
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb8
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb8
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb9
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb9
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb9
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb9
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb9
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb10
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb10
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb10
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb11
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb11
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb11
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb11
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb11
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb12
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb12
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb12
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb12
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb12
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb13
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb13
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb13
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb13
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb13
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb14
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb14
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb14
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb14
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb14
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb15
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb15
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb15
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb15
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb15
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb16
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb16
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb16
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb16
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb16
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb17
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb17
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb17
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb17
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb17
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb18
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb18
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb18
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb19
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb19
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb19
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb19
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb19
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb20
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb20
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb20
http://dx.doi.org/10.1093/cybsec/xyz012
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb22
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb22
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb22
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb22
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb22
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb22
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb22

M. Alazab et al. Egyptian Informatics Journal 27 (2024) 100521
[23] Narayanan S, Ganesan A, Joshi K, Oates T, Joshi A, Finin TW. Early detection of
cybersecurity threats using collaborative cognition. In: 2018 IEEE conference on
cognitive and computational aspects of situation management (CogSIMA). IEEE;
2018, p. 1–7. http://dx.doi.org/10.1109/CIC.2018.00054.

[24] Toldinas J, Venckauskas A, Damasevicius R, Grigaliunas S, Morkevicius N,
Baranauskas E. A novel approach for network intrusion detection using
multistage deep learning image recognition. Electronics 2021;10(15).

[25] Alzaqebah A, Aljarah I, Al-Kadi O, Damasevicius R. A modified grey
wolf optimization algorithm for an intrusion detection system. Mathematics
2022;10(6).

[26] Nisioti A, Loukas G, Laszka A, Panaousis E. Data-driven decision support
for optimizing cyber forensic investigations. IEEE Trans Inf Forensics Secur
2021;16:2397–412.

[27] Nwakanma CI, Ahakonye LAC, Njoku JN, Odirichukwu JC, Okolie SA, Uzondu C,
et al. Explainable artificial intelligence (XAI) for intrusion detection and
mitigation in intelligent connected vehicles: A review. Appl Sci 2023;13(3).

[28] Marinho R, Holanda R. Automated emerging cyber threat identification and
profiling based on natural language processing. IEEE Access 2023;1.

[29] Kumar A, Dhabliya D, Agarwal P, Aneja N, Dadheech P, Jamal SS, et al. Cyber-
internet security framework to conquer energy-related attacks on the internet of
things with machine learning techniques. Comput Intell Neurosci 2022;2022.

[30] Karn RR, Kudva P, Elfadel IM. Learning without forgetting: A new framework
for network cyber security threat detection. IEEE Access 2021;9:137042–62.

[31] Abioye TE, Arogundade OT, Misra S, Adesemowo K, Damasevicius R. Cloud-based
business process security risk management: A systematic review, taxonomy, and
future directions. Computers 2021;10(12).

[32] Damasevicius R, Toldinas J, Venckauskas A, Grigaliūnas S, Morkevicius N,
Jukavičius V. Visual analytics for cyber security domain: State-of-the-art and
challenges. Communications in computer and information science, vol. 1078
CCIS, 2019, p. 256–70.

[33] Grigaliunas S, Toldinas J, Venckauskas A, Morkevicius N, Damasevicius R. Digital
evidence object model for situation awareness and decision making in digital
forensics investigation. IEEE Intell Syst 2021;36(5):39–48.

[34] Nunes E, Diab A, Gunn AT, Marin E, Mishra V, Paliath V, et al. Darknet and
deepnet mining for proactive cybersecurity threat intelligence. In: 2016 IEEE
conference on intelligence and security informatics. ISI, IEEE; 2016, p. 7–12.
http://dx.doi.org/10.1109/ISI.2016.7745435.

[35] Riesco R, Larriva-Novo X, Villagrá V. Cybersecurity threat intelligence knowledge
exchange based on blockchain. Telecommun Syst 2019;72(3):409–28. http://dx.
doi.org/10.1007/s11235-019-00613-4.

[36] Riesco R, Villagr’a V. Leveraging cyber threat intelligence for a dynamic
risk framework. Comput Stand Interfaces 2019;66:103349. http://dx.doi.org/10.
1007/s10207-019-00433-2.

[37] Ali H, Ahmad J, Jaroucheh Z, Papadopoulos P, Pitropakis N, Lo O, et al. Trusted
threat intelligence sharing in practice and performance benchmarking through
the hyperledger fabric platform. Entropy 2022;24(10).

[38] Stottlemyre SA. HUMINT, OSINT, or something new? Defining crowdsourced
intelligence. Int J Intell Counter Intell 2015;28(3):578–89.
26
[39] Ring T. Threat intelligence: why people don’t share. Comput Fraud Secur
2014;2014(3):5–9.

[40] Tounsi W, Rais H. A survey on technical threat intelligence in the age of
sophisticated cyber attacks. Comput Secur 2018;72:212–33.

[41] Basheer R, Alkhatib B. Threats from the dark: A review over dark web
investigation research for cyber threat intelligence. J Comput Netw Commun
2021;2021:1–21.

[42] Wazid M, Das AK, Mohd N, Park Y. Healthcare 5.0 security frame-
work: Applications, issues and future research directions. IEEE Access
2022;10:129429–42.

[43] Yang J, Hu J, Yu T. Federated AI-enabled in-vehicle network intrusion detection
for internet of vehicles †. Electronics 2022;11(22).

[44] Zhou Y, Tang Y, Yi M, Xi C, Lu H. CTI view: APT threat intelligence analysis
system. Secur Commun Netw 2022;2022.

[45] Padmashree A, Krishnamoorthi M. Decision tree with pearson correlation-based
recursive feature elimination model for attack detection in IoT environment. Inf
Technol Control 2022;51(4):771–85.

[46] Damasevicius R, Venckauskas A, Grigaliunas S, Toldinas J, Morkevicius N,
et al. LITNET-2020: An annotated real-world network flow dataset for net-
work intrusion detection. Electronics 2020;9(5):800. http://dx.doi.org/10.3390/
electronics9050800.

[47] Alazab M. Analysis on smartphone devices for detection and prevention of
malware. Deakin University; 2014.

[48] Kent JT. Information gain and a general measure of correlation. Biometrika
1983;70(1):163–73. http://dx.doi.org/10.1093/biomet/70.1.163.

[49] Bicici UC, Akarun L. Multi-path routing for conditional information gain trellis
using cross-entropy search and reinforcement learning. IEEE Access 2024.

[50] Powers DM. Evaluation: from precision, recall and F-measure to ROC, in-
formedness, markedness and correlation. 2020, arXiv preprint arXiv:2010.
16061.

[51] Mustard S. The NIST cybersecurity framework. InTech 2014;61(1–2).
[52] Jayawickrama W. Managing critical information infrastructure security com-

pliance: A standard based approach using ISO/IEC 17799 and 27001. In:
Lecture notes in computer science (including subseries lecture notes in artificial
intelligence and lecture notes in bioinformatics), 4277 LNCS - I, 2006, p. 565–74.
http://dx.doi.org/10.1007/11915034_80.

[53] Gros S. A critical view on CIS controls. In: Proceedings of the 16th International
Conference on Telecommunications, ConTEL 2021. 2021, p. 122–8. http://dx.
doi.org/10.23919/ConTEL52528.2021.9495982.

[54] Al-Sa’eed MA, Al-Mahamid SM, Al-Sayyed RM. The impact of control objec-
tives of information and related technology (COBIT) domain on information
criteria and information technology resources. J Theoret Appl Inf Technol
2012;45(1):9–18.

[55] MITRE Corporation. MITRE ATT&CK framework. 2021, URL https://attack.mitre.
org/.

[56] Symantec Corporation. Traditional signature-based systems. Symantec Security
Blog 2020. URL https://symantec.com/security-blog.

http://dx.doi.org/10.1109/CIC.2018.00054
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb24
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb24
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb24
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb24
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb24
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb25
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb25
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb25
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb25
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb25
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb26
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb26
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb26
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb26
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb26
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb27
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb27
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb27
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb27
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb27
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb28
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb28
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb28
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb29
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb29
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb29
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb29
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb29
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb30
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb30
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb30
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb31
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb31
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb31
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb31
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb31
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb32
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb32
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb32
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb32
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb32
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb32
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb32
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb33
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb33
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb33
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb33
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb33
http://dx.doi.org/10.1109/ISI.2016.7745435
http://dx.doi.org/10.1007/s11235-019-00613-4
http://dx.doi.org/10.1007/s11235-019-00613-4
http://dx.doi.org/10.1007/s11235-019-00613-4
http://dx.doi.org/10.1007/s10207-019-00433-2
http://dx.doi.org/10.1007/s10207-019-00433-2
http://dx.doi.org/10.1007/s10207-019-00433-2
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb37
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb37
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb37
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb37
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb37
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb38
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb38
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb38
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb39
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb39
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb39
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb40
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb40
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb40
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb41
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb41
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb41
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb41
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb41
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb42
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb42
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb42
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb42
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb42
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb43
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb43
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb43
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb44
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb44
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb44
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb45
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb45
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb45
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb45
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb45
http://dx.doi.org/10.3390/electronics9050800
http://dx.doi.org/10.3390/electronics9050800
http://dx.doi.org/10.3390/electronics9050800
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb47
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb47
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb47
http://dx.doi.org/10.1093/biomet/70.1.163
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb49
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb49
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb49
http://arxiv.org/abs/2010.16061
http://arxiv.org/abs/2010.16061
http://arxiv.org/abs/2010.16061
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb51
http://dx.doi.org/10.1007/11915034_80
http://dx.doi.org/10.23919/ConTEL52528.2021.9495982
http://dx.doi.org/10.23919/ConTEL52528.2021.9495982
http://dx.doi.org/10.23919/ConTEL52528.2021.9495982
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb54
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb54
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb54
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb54
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb54
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb54
http://refhub.elsevier.com/S1110-8665(24)00084-7/sb54
https://attack.mitre.org/
https://attack.mitre.org/
https://attack.mitre.org/
https://symantec.com/security-blog

	Enhanced threat intelligence framework for advanced cybersecurity resilience
	Introduction
	Contributions
	Organization of the Paper

	Related Work
	Threat Intelligence Frameworks
	Threat Intelligence Sources
	Threat Detection and Mitigation Techniques

	Methodology
	Dataset
	Multi-Layered Threat Intelligence Framework Architecture
	Data Collection and Processing
	Threat Detection and Mitigation Techniques
	Machine Learning Methods
	Filter methods
	Information Gain/ Correlation Coefficient
	Chi Square/Fisher Score

	Feature selection methods
	Forward Wrapper
	Backward wrapper
	Ridge (insertion)

	Evaluation Metrics and Results
	Evaluation Metrics
	Results with no feature selection
	Filter Methods
	Wrapper methods
	Comparison
	F1 Score
	Precision
	Recall
	Accuracy

	Evaluation of Multi-Layered Threat Intelligence Framework
	Accuracy and Reliability
	Effectiveness in Threat Detection and Mitigation
	Impact of Different Threat Intelligence Sources
	Comparison with Existing Frameworks
	Comparisons with Previous Work

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

