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Abstract—Obstructive sleep apnea (OSA) is believed to
contribute significantly to atrial fibrillation (AF) develop-
ment in certain patients. Recent studies indicate a ris-
ing risk of AF with increasing OSA severity. However, the
commonly used apnea-hypopnea index in clinical practice
may not adequately account for the potential cardiovas-
cular risks associated with OSA. 1) Objective: to propose
and explore a novel method for assessing OSA severity
considering potential connection to cardiac arrhythmias.
2) Method: the approach utilizes cross-recurrence features
to characterize OSA and AF by considering the relation-
ships among oxygen desaturation, pulse arrival time, and
heart-beat intervals. Multinomial logistic regression models
were trained to predict four levels of OSA severity and four
groups related to heart rhythm issues. The rank biserial cor-
relation coefficient, rrb, was used to estimate effect size for
statistical analysis. The investigation was conducted using
the MESA database, which includes polysomnography data
from 2055 subjects. 3) Results: a derived cross-recurrence-
based index showed a significant association with a higher
OSA severity (p < 0.01) and the presence of AF (p <
0.01). Additionally, the proposed index had a significantly
larger effect, rrb, than the conventional apnea-hypopnea
index in differentiating increasingly severe heart rhythm
issue groups: 0.14 > 0.06, 0.33 > 0.10, and 0.41 > 0.07.
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4) Significance: the proposed method holds relevance as a
supplementary diagnostic tool for assessing the authentic
state of sleep apnea in clinical practice.

Index Terms—Apnea-hypopnea index (AHI), atrial
fibrillation (AF), cross-recurrence properties, heart rate
interval, multinomial logistic regression, obstructive sleep
apnea (OSA) severity, oxygen desaturation, pulse arrival
time (PAT), time series.

I. INTRODUCTION

OBSTRUCTIVE sleep apnea (OSA) is a prevalent sleep-
related breathing disorder characterized by recurrent up-

per airway obstruction, leading to diminished or absent breathing
during sleep. Worldwide, it is estimated that over 1 billion
people suffer from OSA with prevalence exceeding 50% in some
countries [1]. It is reported that approximately 26% of adults
aged 30–70 years experience symptoms of OSA [2]. However,
80–90% of OSA cases remain undiagnosed [3]. In addition, peo-
ple with OSA often experience excessive daytime sleepiness [4]
and loud snoring at night. Such patients are increasingly using
healthcare services being at higher risk of type 2 diabetes [5],
[6], [7], obesity [8], anxiety and mood disorders [9], [10], [11],
and cardiovascular diseases [12], [13], [14], [15], [16], [17].

In clinical practice, the apnea-hypopnea index (AHI) is used
as the gold standard for determining the presence and severity of
OSA [18]. The AHI indicates the number of times that a patient
stops breathing or experiences a significant reduction in airflow
per hour of sleep time. According to the AHI, OSA is categorized
into mild (5–15 events/hour), moderate (15–30 events/hour), and
severe (>30 events/hour) [19]. This index was introduced in
1983 [20] and is still currently used to describe OSA.

However, it has faced criticism for not capturing relevant
clinical features and being an insufficient tool for predicting
clinical outcomes [21], [22], [23], [24], [25], [26]. Critics argue
that AHI thresholds lack validity for severity scoring, deeming
severity categories arbitrary and potentially misleading for clin-
ical decision-making [21], [27], [28]. Moreover, issues such as
the appropriate definition of total sleep time in the denomina-
tor [21], [29], [30], the definition of criteria for hypopneas, and
the consideration of event durations [21] have been raised. Cur-
rently, the primary role of the AHI as a diagnostic biomarker and
severity indicator of clinically relevant OSA is declining [21].
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Fig. 1. Examples of time series estimated from PPG and ECG signals: SpO2 in (a) normal case and (b) during OSA and AF, blood pressure-
correlated PAT in (c) normal case and (d) during OSA and AF, heart rate RR intervals in (e) normal case and (f) during OSA and AF.

We assert that the AHI alone is inadequate for assessing OSA
severity, as it solely measures events per hour of sleep and fails
to quantify other critical factors such as potential cardiovascular
effects.

Recent studies [12], [13], [14], [15], [16], [17], [31], [32], [33],
[34] show that OSA and atrial fibrillation (AF) are potentially
related. AF is a heart condition that leads to irregular and often
abnormally fast atrial contractions when normal atrial systole
no longer occurs. OSA is thought to be an important factor in
the development of AF in certain sleep apnea patients [12], [31],
[32]. However, it is currently unclear which patients with OSA
are at increased risk of AF. Studies show that the risk of AF
increases with increasing severity of OSA [35], [36]. Therefore,
the presence of cardiac arrhythmias such as AF should be
considered when assessing OSA in clinical practice.

We presume that potential arrhythmias in OSA may stem from
abrupt heart rate changes associated with blood pressure fluc-
tuations during apneic episodes [37]. During apnea, immediate
cessation of breathing leads to a decrease in arterial blood oxy-
gen saturation (SpO2) [38], [39], [40]. The sympathetic nervous
system, triggered by stress, releases hormones, elevating both
blood pressure and heart rate. Studies [38] indicate that apneic
episodes with SpO2 desaturations are linked to decreased blood
pressure-correlated pulse arrival time (PAT). With an increasing
number of SpO2 desaturations and the severity of apnea, more
simultaneous reductions in blood pressure-correlated PAT are
expected. Consequently, we suggest that the sequential similar-
ity between SpO2 and blood pressure fluctuations significantly
increases with the severity of OSA due to larger desaturations
(see Fig. 1(a)–(d)). As oxygen deficiency induces changes not
only in blood pressure, but also in heart rate, we hypothesize that
cardiac arrhythmias cause a significant decrease in the sequential
similarity between blood pressure fluctuations and heart rate
time series in OSA patients (see Fig. 1(c)–(f)).

To assess the sequential similarity between the mentioned
time series, we employed cross-recurrence plot (CRP) analysis
methods [41], [42], [43]. The CRP illustrates instances when
the states of the first time series coincide with those of the

second time series in a phase space trajectory. These methods are
commonly used for analyzing the dynamical evolution similarity
between different systems or investigating the time relationship
of two similar systems [43]. CRPs provide useful information
even for short intervals and non-stationary data, where other
methods fail (e.g., Pearson correlation analysis) or could have
different sensitivity due to non-stationarity (e.g., Dynamic Time
Warping). For instance, the sensitivity of Dynamic Time Warp-
ing depends on various hyperparameters and factors such as the
choice of distance metric, warp path constraints, the specific
characteristics of the time series being compared, the algorithm
and norms used, and the particular implementation [44], [45].
In addition, the CRP method offers a more straightforward
interpretation than statistical approaches such as transfer entropy
or mutual information, which are based on information theory.

This study introduces and explores a novel cross-recurrence
properties-based method for characterizing OSA severity con-
sidering potential connection to cardiac arrhythmias. The pro-
posed approach involves estimating cross-recurrence properties
between SpO2 and blood pressure-correlated PAT time series,
as well as between PAT and heart rate RR intervals.

The investigation of this study consists of the following stages:
(i) cross-recurrence feature selection for models; (ii) analysis
of cross-recurrence indexes estimated from selected features;
(iii) comparison of obtained cross-recurrence indexes to the
AHI; (iv) validation of implemented models.

II. MATERIAL AND METHODS

A. Dataset

In this study, the Multi-Ethnic Study of Atherosclerosis
(MESA) dataset [46], [47] was used to implement and investi-
gate the cross-recurrence properties-based approach to charac-
terize OSA severity. The MESA data consists of 2055 patients
aged 54–95 years old, totaling 16,300 hours of full overnight
annotated polysomnography recordings. This sleep study in-
cluded only subjects who had not used continuous positive
airway pressure (CPAP), oxygen device, or received any other
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treatment for sleep apnea for more than a month before the study,
or who reported using any of these treatments rarely, i.e., less
than weekly.

Polysomnography signals were obtained at home using the
Compumedics Somte monitoring system (Compumedics Ltd.,
Abbotsville, Australia). Electrocardiogram (ECG) and photo-
plethysmogram (PPG) signals with a sampling rate of 256 Hz
were analyzed to evaluate cross-recurrence features between
time series of SpO2 and PAT, and between PAT and RR intervals.
Single-lead ECG signals were recorded from the chest using the
Ag/AgCl electrode. Whereas PPG signals were obtained from
the finger using the Nonin 8000 sensor.

The AHI values of MESA subjects were used to train and
test the first cross-recurrence properties-based model for char-
acterizing OSA severity. The subjects were categorized into four
groups based on their AHI, which includes all observed apneas
and hypopneas with ≥3% oxygen desaturation:

1) Normal / No Sleep Apnea (AHI < 5) −414 subjects.
2) Mild Sleep Apnea (5 ≤ AHI < 15) −643 subjects.
3) Moderate Sleep Apnea (15 ≤ AHI < 30) −518 subjects.
4) Severe Sleep Apnea (AHI ≥ 30) −480 subjects.

An apnea was defined as a complete or almost complete
cessation of airflow, lasting at least 10 s, and usually associated
with oxygen desaturations and/or arousal events. Whereas, a
hypopnea was defined as a reduction in airflow (at least 50% of
a baseline level), associated with oxygen desaturations and/or
arousal events.

In addition, the MESA dataset includes labels of heart rhythm
(HR) issues, thus, the subjects were categorized also into four
other groups as follows:

1) No HR issues - 1801 subjects.
2) Abnormalities seen-not clinically significant - 194 sub-

jects.
3) Urgent referral – HR (No AF) −36 subjects. This group

includes subjects with HR > 150 bpm or < 30 bpm for
>2 min, non sustained ventricular tachycardia, acute ST
segment, oxygen saturation <85% or other criteria, but
excluding all AF cases.

4) Potential urgent - AF/flutter HR - 24 subjects. The group
includes all cases of AF, regardless of rate, pre-existing
diagnosis, duration or rhythm disturbance.

The mentioned HR issue groups were used to train and test
the second cross-recurrence properties-based model for charac-
terizing AF in sleep apnea patients. The distributions of OSA
severity among HR issue groups are showed in Fig. 2.

B. The Proposed Structure of the Model Approach

The proposed cross-recurrence properties-based approach for
characterizing OSA severity considering potential connection
to AF consists of (see Fig. 3): (i) estimating time series of
SpO2, PAT, and RR intervals; (ii) estimating cross-recurrence
properties between SpO2 and PAT time series, and between PAT
and RR time series; (iii) implementing models for characterizing
OSA and AF in apnea patients; (iv) estimating cross-recurrence
indexes from implemented hierarchical multinomial logistic
regression models.

Fig. 2. The distributions of OSA severity (SAS1 - No Sleep Apnea,
SAS2 - Mild Sleep Apnea, SAS3 - Moderate Sleep Apnea, SAS4

- Severe Sleep Apnea) among HR issue groups: (a) No HR issues,
(b) Abnormalities seen-not clinically significant, (c) Urgent referral – HR
(No AF), (d) Potential urgent - AF/flutter HR.

C. ECG & PPG Signals Pre-Processing

The ECG signals were processed using a zero-phase fourth-
order Butterworth low-pass filter with a cut-off frequency of
25 Hz to mitigate high-frequency interferences. The baseline
was removed by estimating it using a median filter with over-
lapping windows of 1 s duration and 0.5 s overlap, which was
then interpolated and subtracted from the ECG signals [48]. The
PPG signals were processed using a zero-phase fourth-order
Butterworth band-pass filter with a pass-band of 0.4–6 Hz to
reduce noise and improve the detectability of fiducial points.

D. Assessing Time Series of SpO2 & PAT & RR

Oxygen desaturation-related SpO2 time series sampled at
1 Hz were provided in the MESA dataset, which were obtained
from the finger using the Nonin 8000 sensor.

Blood pressure-correlated PAT time series were estimated as
intervals between the ECG R peak and the subsequent PPG
systolic peak. The PAT post-processing procedure involved cor-
recting low-quality intervals and interpolating PAT sequences as
described in [38].

RR time series representing heart-beats were obtained from
filtered ECG signals using the R-DECO algorithm [49]. This
algorithm has been found to perform well, with sensitivity of
99.6% and positive predictive value of 99.7% [49].

Fig. 1 shows examples of SpO2, PAT, and RR time series
estimated from PPG and ECG signals in normal case and during
OSA and AF episodes, resampled to the same sampling rate of
1 Hz.

E. Estimation of Cross-Recurrence Properties

Visual analysis of CRPs can answer questions about the sta-
tionarity, periodicity, and randomness of time series, but it cannot
accurately classify signals according to their complexity [43].
For this purpose, numerical cross-recurrence features have been
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Fig. 3. The proposed structure of the cross-recurrence properties-based approach for estimating cross-recurrence indexes: CRI1 for OSA, CRI2

for AF, and CRI for OSA characterization considering potential connection to AF.

proposed based on the density of black dots and the structures of
diagonal, vertical, and horizontal lines in CRPs [50], [51]. For
instance, black dots in the CRP represent the repetition of signal
states. Diagonal lines represent episodes of quasi-periodicity
in signals. The longer the diagonal line, the longer the signal
was periodic. Vertical and horizontal lines represent episodes of
permanency reflecting the presence of steady states in signals
and indicating that these states change slowly in time. In terms
of differences between these structures, the vertical lines rep-
resent co-occurrences of the ith signal states in the jth signal,
whereas the horizontal lines do the opposite. It is stated that
diagonal measures reveal pairwise similarity, as vertical and
horizontal measures represent pairwise dissimilarity between
time series [50].

In this study, we analyzed 10 cross-recurrence features [51],
which were normalized within the range [0 1]. The normal-
ization was performed by subtracting the minimum value of
each feature and dividing by the difference between maximum
and minimum values. These features include diagonal measures
such as determinism, DET , mean diagonal length, L, maximal
diagonal length, Lmax, and entropy of diagonals, ENTR; and
vertical and horizontal measures such as laminarity, LAMV and
LAMH , mean vertical and horizontal lengths known as trapping
time, TTV and TTH , and maximal vertical and horizontal
lengths, Vmax and Hmax. DET measure is defined as the ratio
of the number of dots forming diagonals to the total number
of black dots. Whereas LAM reflects the ratio of the number
of dots forming vertical/horizontal lines to the total number of
black dots.

The mentioned cross-recurrence features for OSA characteri-
zation were estimated from CRP diagrams, which were obtained
from SpO2 and PAT time series:

CR1(i, j) = Θ(ε− ‖−−−→PAT (i)−−−−→
SpO2(j)‖), (1)

where Θ(·) is the Heaviside unite step function, ‖·‖ is a norm, ε
is a recurrence threshold distance between neighbouring states,

while i and j are the time samples of
−−−→
PAT and

−−−→
SpO2 time

delay-embedded vectors, respectively. If the distance between
two states of analyzed time series is less than this threshold,
then we consider these states to be approximately repetitive in
certain time instant (i, j).

In this work, we used the fixed recurrence rate method to
define the threshold distance, ε. It was defined as a fixed quantile
of the recurrence distance matrix. The distances between two
standardized vectors of states were calculated by using the
Euclidean norm. The standardization procedure was performed
by subtracting the mean and dividing by the standard deviation
of time series.

To obtain time delay-embedded vectors, the embedding di-
mension,m, and the delay, t, parameters were used. The embed-
ding dimension, m, defines a number of how many samples one
signal state was composed. Whereas, the delay, t, is a sampling
step, which was used to take samples from signals of time series.

The same cross-recurrence features for AF characterization
were estimated from CRP diagrams, which were obtained from
PAT and RR time series:

CR2(i, j) = Θ(ε− ‖−→RR(i)−−−−→
PAT (j)‖), (2)

where i and j are the time samples of
−→
RR and

−−−→
PAT time delay-

embedded vectors, respectively.
Examples of CRP diagrams obtained from SpO2 and PAT time

series, as well as from PAT and RR time series, are provided in
Fig. 4.

F. Hierarchical Multinomial Logistic Regression Models

The Hierarchical Multinomial Logistic Regression (HMLR)
method was selected to implement models for characterizing
OSA severity and AF, respectively. The most statistically im-
portant SpO2-PAT cross-recurrence features were selected as
predictors of the HMLR Model 1 for assessing OSA severity.
The features were ranked by using chi-square tests. To avoid
high correlations among model parameters, the single most
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Fig. 4. Examples of CRP diagrams obtained from (a)–(b) SpO2 and PAT time series: unthresholded distance coded matrices – (e) normal case,
(f) during OSA; thresholded matrices – (i) normal case, (j) during OSA; CRP exemplary features, laminarity, LAMH , and trapping time, TTH – (m)
normal case, (n) during OSA. Examples of CRP diagrams obtained from (c)–(d) PAT and RR time series: unthresholded distance coded matrices
– (g) normal case, (h) during AF; thresholded matrices – (k) normal case, (l) during AF; CRP exemplary features, mean diagonal length, L, and
maximal vertical length, Vmax – (o) normal case, (p) during AF.

statistically significant feature was selected along with the most
important ones from the diagonal, horizontal, and vertical struc-
tures, respectively. Similarly, the most statistically significant
PAT-RR cross-recurrence features among HR issue groups were
selected as predictors of the HMLR Model 2 to characterize AF
in sleep apnea patients.

Further, two cross-recurrence indexes,CRI1 andCRI2, were
estimated as log-odds expressions of the response probabilities
related to the linear combination of the selected predictors from
HMLR Models 1 and 2, respectively:

CRIk = bk0 +

i=4∑

i=1

bki f
k
i , (3)

where k is the number of HMLR Model, i is the indice of
feature, and bk and fk are the coefficients and the selected
features of HMLR Model kth, respectively. The coefficients,
bk, were estimated for the models of the relative risk of having
OSA (SAS2, SAS3, SAS4 groups) / AF (HRI4 group) versus
not having OSA (SAS1 group) / AF (HRI1, HRI2, HRI3
groups) when performing training with 60% of the data and
setting appropriate seed of the random number generator (see
more details in Results Subsection A).

These indexes then were combined into a cross-recurrence in-
dex,CRI , for characterizing OSA severity considering potential

connection to AF as follows:

CRI =
√
CRI1CRI2, (4)

where CRI1 is the cross-recurrence index for OSA charac-
terization, and CRI2 is the cross-recurrence index for AF
characterization among OSA patients.

To investigate which AF subjects could potentially have OSA-
related AF, a single-term exponential model, EM(AHI), was
fitted on the cross-recurrence index, CRI , values sorted by the
AHI from the AF group data:

EM(AHI) = ae(bAHI), (5)

where AHI is the apnea-hypopnea index, and a and b are the
model coefficients.

We used this exponential model to investigate whether the
increasing number of sleep apnea episodes could lead to cardiac
arrhythmias potentially associated with OSA.

G. Statistical Analysis

The Anderson–Darling test found no Gaussian distribution in
the analyzed cross-recurrence features and indexes. The non-
parametric Mann-Whitney U test was used to test for statistical
differences (α = 0.05) between cross-recurrence features and
indexes for different apnea severity and HR issue groups. The
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following features and indexes were compared: (i) SpO2-PAT
cross-recurrence features for apnea severity groups; (ii) PAT-
RR cross-recurrence features for HR issue groups; (iii) cross-
recurrence index CRI1 distributions for apnea severity groups;
(iv) cross-recurrence index CRI2 distributions for HR issue
groups; (v) cross-recurrence index CRI distributions for apnea
severity and HR issue groups; (vi) cross-recurrence index CRI
and AHI distributions for HR issue groups.

Additionally, the effect size was estimated using the rank
biserial correlation coefficient, rrb. For this purpose, median
values for each subject were obtained and compared. The effect
size is considered small when rrb < 0.30, medium - rrb ≥ 0.30,
and large - rrb ≥ 0.50 [52].

H. Performance Evaluation

In order to evaluate the performance of implemented HMLR
models for characterizing OSA severity and AF in sleep apnea
patients, the metrics for a particular class were estimated as
sensitivity, Se, specificity, Sp, positive predictive value, PPV ,
negative predictive value,NPV , and accuracy,Acc. In addition,
area under the ROC curve,AUC, was computed. Also, averaged
metrics among classes were estimated.

To validate implemented HMLR models, 10-fold cross-
validation was used. For reproducibility, the random number
generator was set to the appropriate seed and Mersenne Twister
algorithm.

I. Data Mining for Class Balancing in HR Issue Groups

To address the imbalance between HR issue groups, the finite
impulse response (FIR) antialiasing filter-resampling method
was chosen for data mining and compared with the synthetic
minority oversampling technique (SMOTE) [53].

The FIR Resampling method was used to resample the data
so that each group contained approximately the same amount of
data, while the total amount of data remained unchanged. The
SMOTE method was used to additionally synthesize minority
classes to reduce the imbalance between HR issue groups.

III. RESULTS

A. Parameter Settings

To estimate SpO2-PAT and PAT-RR cross-recurrence fea-
tures, the average optimal embedding dimension across all sub-
jects for SpO2, PAT, and RR time series was found to bem=5 by
computing the amount of false nearest neighbours as a function
of the embedding dimension (see Fig. 5(a)). This approach
involves embedding time series into a higher dimensional system
and finding a dimension in which the neighbourhood in a lower
dimension does not extend into a higher. The delay was set to
t = 1, as it was observed that this parameter does not have a
significant impact on the results as reported in [54]. The minimal
length of diagonal, vertical, and horizontal lines was set to 2 to
generate CRPs.

The fixed recurrence rate method was used to determine the
size of neighbourhood, ε. The optimal fixed recurrence rate
of 7% was found by calculating the averaged rank biserial

Fig. 5. Finding the optimal (a) embedding dimension by means of
false nearest neighbours; (b) fixed recurrence rate; (c) window size by
calculating the averaged rank biserial correlation coefficient, rrb, across
CRI1 (Model 1 in blue) and CRI2 (Model 2 in red) distributions for
apnea severity and HR issue groups, respectively.

correlation coefficient, rrb, across CRI1 (Model 1) and CRI2

(Model 2) distributions for apnea severity and HR issue groups,
respectively (see Fig. 5(b)). This was done by averaging the six
rrb values obtained from the six possible pairs of sleep apnea
severity and HR issue groups, when different fixed recurrences
rates were used (see Fig. 5(b) blue points for sleep apnea severity,
and red points for HR issue groups). Similarly, the window
size was set to 2% of the time series length, as the averaged
proportion of rrb maximum locations (see Fig. 5(c)). The overlap
was selected to be half the window size.

To ensure reproducibility in data splitting and mining, the
Mersenne Twister random number generator was set to the 17th
seed. This seed was chosen as the minimum value that achieved
a sensitivity of >80% for identifying severe sleep apnea and AF
when testing 40% of the data. The SMOTE method was used for
data mining, with k = 5 nearest neighbours considered during
augmentation.

B. Feature Selection for Models

The SpO2-PAT cross-recurrence features with the estimated
rank biserial correlation rrb values for different sleep apnea
severity groups are shown in Fig. 6. The rrb values are pre-
sented for three apnea severity classes comparing them to the
severe sleep apnea severity group. The selected SpO2-PAT
cross-recurrence features for the HMLR Model 1 were LAMH ,
Lmax,TTH , andVmax, with obtained coefficients of b10=−2.26,
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Fig. 6. The SpO2-PAT cross-recurrence features with the estimated rank biserial correlation rrb values for three apnea severity classes, SAS1,
SAS2, and SAS3, comparing them to the severe sleep apnea severity group, SAS4 (SAS1 - No Sleep Apnea, SAS2 - Mild Sleep Apnea, SAS3

- Moderate Sleep Apnea, SAS4 - Severe Sleep Apnea): (a) determinism, DET , (b) mean diagonal length, L, (c) maximal diagonal length, Lmax,
(d) entropy of diagonals, ENTR, (e) laminarity of vertical lines, LAMV , (f) trapping time of vertical lines, TTV , (g) maximal vertical length, Vmax,
(h) laminarity of horizontal lines, LAMH , (i) trapping time of horizontal lines, TTH , (j) maximal horizontal length, Hmax (p < 0.05 is marked ∗, and
p < 0.001 – ∗∗).

Fig. 7. The PAT-RR cross-recurrence features with the estimated rank biserial correlation rrb values for three HR issue classes, HRI1, HRI2,
and HRI3, comparing them to the AF group, HRI4 (HRI1 - No HR issues, HRI2 - Abnormalities seen-not clinically significant, HRI3 - Urgent
referral – HR (No AF), HRI4 - Potential urgent - AF/flutter HR): (a) determinism, DET , (b) mean diagonal length, L, (c) maximal diagonal length,
Lmax, (d) entropy of diagonals, ENTR, (e) laminarity of vertical lines, LAMV , (f) trapping time of vertical lines, TTV , (g) maximal vertical length,
Vmax, (h) laminarity of horizontal lines, LAMH , (i) trapping time of horizontal lines, TTH , (j) maximal horizontal length, Hmax (p < 0.05 is marked
∗, and p < 0.001 – ∗∗).

b11 = 5.16, b12 = −3.29, b13 = 5.92, and b14 = −0.97 (see (3)),
respectively. According to a decrease of horizontal lines-related
features – LAMH , TTH , and Hmax, a decrease in permanency
between SpO2 and PAT time series is significantly associated
with increasing severity of OSA (see Fig. 6: (h–j)). This means
that as the number of apneic episodes increases, the frequency
of co-occurrences of SpO2 steady states in PAT decreases.

The PAT-RR cross-recurrence features with the estimated rank
biserial correlation rrb values for different HR issue groups are
shown in Fig. 7. The rrb values are presented for three HR issue
classes comparing them to the AF group. The selected PAT-RR

cross-recurrence features for the HMLR Model 2 were ENTR,
L, TTH , and Vmax, with obtained coefficients of b20 = −2.47,
b21 = 20.95, b22 = −21.52, b23 = −1.87, and b24 = 6.98 (see (3)),
respectively. According to a decrease of diagonal lines-related
features – DET , L, Lmax, and ENTR, a decrease in quasi-
periodicity between PAT and RR time series is significantly
associated with the presence of AF in OSA patients (see Fig. 7:
(a)–(d)). Whereas a decrease of vertical lines-related features –
LAMV , TTV , and Vmax, shows that AF leads to the decreased
frequency of co-occurrences of RR steady states in PAT (see
Fig. 7: (e)–(g)).
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Fig. 8. The distributions of cross-recurrence indexes with the estimated rank biserial correlation rrb values: (a) CRI1 for different sleep apnea
severity groups (SAS1 - No Sleep Apnea, SAS2 - Mild Sleep Apnea, SAS3 - Moderate Sleep Apnea, SAS4 - Severe Sleep Apnea), (b) CRI2 for
different HR issue groups (HRI1 - No HR issues, HRI2 - Abnormalities seen-not clinically significant, HRI3 - Urgent referral – HR (No AF), HRI4
- Potential urgent - AF/flutter HR), (c) CRI for different sleep apnea severity groups, (d) CRI for different HR issue groups, (e) AHI for different HR
issue groups (p < 0.05 is marked ∗, and p < 0.001 – ∗∗).

C. Analysis of Cross-Recurrence Indexes

The distributions of cross-recurrence indexes, CRI1, CRI2,
and CRI , with the estimated rank biserial correlation rrb values
for different sleep apnea severity and HR issue groups are pro-
vided in Fig. 8. The rrb values are presented for three respective
classes comparing them to the fourth group.

Fig. 8(a) reveals that a decrease in CRI1 is significantly
associated with increasing severity of OSA (rrb = 0.86, 0.81,
0.61, when p < 0.001). This is likely due to CRI1 being mostly
related to a decrease in permanency between SpO2 and PAT time
series.

Fig. 8(b) shows that a decrease in CRI2 is significantly
associated with the presence of AF in OSA patients (rrb =
0.15, 0.40, 0.69, when p < 0.001). This could be explained
by the fact that CRI2 is significantly related to a decrease
in quasi-periodicity between PAT and RR time series during
irregular rhythms.

Fig. 8(c) and (d) indicate that a lower value of the new pro-
posed cross-recurrence index, CRI , is significantly associated
with a higher degree of OSA severity (rrb = 0.81, 0.75, 0.52,
when p < 0.01), especially with severe sleep apnea, and the
presence of AF among OSA patients (rrb = 0.14, 0.33, 0.41,
when p < 0.01).

The coefficients of the single-term exponential model,
EM(AHI), were obtained as a = 0.549 and b = −0.009 with
95% confidence bounds of a (0.468, 0.630) and b (−0.015,
−0.003). According to Fig. 8(c) and (d) that a lower value of
CRI was significantly associated with a higher degree of OSA
severity and AF, we assumed that CRI decreases exponentially
with increasing number of apnea episodes within AF subjects
(see Fig. 9). Based on OSA characterization considering cardiac
arrhythmias, Fig. 9 reveals that 15 out of 24 subjects are likely
to have AF associated with OSA, while the remaining subjects
are unlikely to have this association.

D. Comparison to the AHI

The proposed cross-recurrence indexes, CRI1, CRI2, and
CRI , were compared to the AHI. The estimated rank biserial

Fig. 9. The single-term exponential model, EM(AHI), fitted on the
cross-recurrence index, CRI, values sorted by the AHI from the AF
group data, with indicating subjects whose AF are possibly related to
OSA (red circle points below the fitted curve) and subjects whose AF
are possibly unrelated to OSA (blue circle points above the fitted curve).

correlation rrb values of AHI distributions for different HR issue
groups are provided in Fig. 8(e). The rrb values are presented
for three HR issue classes comparing them to the AF group.
The new proposed cross-recurrence index, CRI , was found to
be more sensitive to differentiate between HR issues, especially
for AF (rrb - 0.14 > 0.06, 0.33 > 0.10, 0.41 > 0.07), which can
be the advantage of the proposed method.

Fig. 10 shows the estimated rank biserial correlation rrb
values among cross-recurrence indexes distributions for sleep
apnea severity and HR issue groups. The rrb values among AHI
distributions are provided for comparison (see Fig. 10(b)). The
cross-recurrence index, CRI1, was found to have a larger effect
size than the combined index,CRI , when differentiating among
apnea severity groups (see Fig. 10(a)). However, the combined
index, CRI , had a significantly larger effect than the AHI when
differentiating among HR issue groups (see Fig. 10(b)). Anyway,
CRI2 outperforms CRI .

E. Validation of Models

The performance metrics of the HMLR Model 1 are provided
in Table I. According to the prediction results, the severe sleep
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TABLE I
THE PERFORMANCE METRICS OF THE HMLR MODEL 1 OBTAINED BY USING 10-FOLD CROSS-VALIDATION (MEAN ± STANDARD DEVIATION)

Fig. 10. The estimated rank biserial correlation rrb values among
cross-recurrence indexes distributions for: (a) sleep apnea severity
groups (SAS1 - No Sleep Apnea, SAS2 - Mild Sleep Apnea, SAS3 -
Moderate Sleep Apnea, SAS4 - Severe Sleep Apnea); (b) HR issue
groups (HRI1 - No HR issues, HRI2 - Abnormalities seen-not clinically
significant, HRI3 - Urgent referral – HR (No AF), HRI4 - Potential
urgent - AF/flutter HR). The subscripts indicate which groups were
compared with each other. The rrb values among AHI distributions for
HR issue groups are provided for comparison (p > 0.05 is marked ◦, p
< 0.05 – •, and p < 0.01 – ∗).

apnea group demonstrated the highest sensitivity of 76.24 ±
5.57%, positive and negative predictive values of 73.23± 8.61%
and 92.62 ± 2.30%, respectively, accuracy of 87.84 ± 2.03%,
and area under the ROC curve of 93.66 ± 1.76%. Whereas
normal group demonstrated the highest specificity of 93.14 ±
1.51%.

The amount of data samples in each HR issue group after data
mining methods is shown in Fig. 11.

The performance metrics of the HMLR Model 2 are presented
in Table II. The AF group showed the highest sensitivity (FIR
Resampling −80.91 ± 4.24%, SMOTE – 81.69 ± 2.46%),
positive predictive value (FIR Resampling −64.91 ± 5.57%,
SMOTE – 60.09 ± 3.34%), negative predictive value (FIR
Resampling −93.05 ± 1.99%, SMOTE – 95.08 ± 0.93%),
accuracy (FIR Resampling−84.43± 2.11%, SMOTE – 85.75±
1.54%), and area under the ROC curve (FIR Resampling−89.69

Fig. 11. The amount of data samples in each HR issue group (HRI1
- No HR issues, HRI2 - Abnormalities seen-not clinically significant,
HRI3 - Urgent referral – HR (No AF), HRI4 - Potential urgent -
AF/flutter HR) after data mining methods.

± 2.25%, SMOTE – 91.30 ± 1.38%). The highest specificity
(FIR Resampling −86.67 ± 2.48%, SMOTE – 89.99 ± 1.68%)
was demonstrated by urgent referral HR group. The model did
not show high estimates for other HR issue groups, which may
be related to the clinically negligible degree of damage to the
cardiovascular system.

Comparing the models, the HMLR Model 1 demonstrated the
highest averaged accuracy of 80.46 ± 1.42% and area under the
ROC curve of 85.26 ± 2.01% for characterizing OSA severity.
For the HMLR Model 2, there are no significant differences
between performance metrics by using FIR Resampling and
SMOTE methods for data mining.

IV. DISCUSSION

Main Findings: The study aimed to propose a novel method
for characterizing OSA severity considering potential connec-
tion to cardiac arrhythmias such as AF. The proposed approach
was based on estimating cross-recurrence properties between
SpO2 and blood pressure-correlated PAT time series, as well as
between PAT and heart rate RR intervals. The method consisted
of: (i) estimating time series of SpO2, PAT, and RR intervals;
(ii) estimating cross-recurrence properties between SpO2 and
PAT time series, and PAT and RR time series; (iii) implementing
models for characterizing OSA and AF in apnea patients; (iv)
estimating cross-recurrence indexes from implemented hierar-
chical multinomial logistic regression models. The key findings
are as follows. First, a decrease in permanency between SpO2
and PAT time series is significantly associated with increasing
severity of OSA. Second, a decrease in quasi-periodicity be-
tween PAT and heart rhythm interval RR time series is signif-
icantly associated with the presence of AF in OSA patients.
Third, a lower value of the new proposed cross-recurrence
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TABLE II
THE PERFORMANCE METRICS OF THE HMLR MODEL 2 OBTAINED BY USING 10-FOLD CROSS-VALIDATION (MEAN ± STANDARD DEVIATION)

index, CRI , is significantly associated with a higher degree
of OSA severity, especially with severe sleep apnea, and the
presence of AF in OSA patients. Fourth, the new proposed
cross-recurrence index, CRI , is more sensitive to the presence
of AF in OSA patients, and has a significantly larger effect than
the AHI when differentiating among HR issue groups. Fifth,
implemented models for characterizing OSA severity and AF
demonstrated high performance metrics to identify severe sleep
apnea and arrhythmias, respectively.

Hypotheses Testing: In this study, we tested two hypotheses.
The first one stated that the sequential similarity between SpO2
and blood pressure fluctuations significantly increases with the
severity of OSA due to larger desaturations. The hypothesis
was particularly confirmed by cross-recurrence features - max-
imal diagonal length, Lmax, laminarity and trapping time of
horizontal lines, LAMH and TTH , respectively, and maxi-
mal horizontal length, Hmax, estimated from SpO2 and blood
pressure-correlated PAT time series. According to the results
(see Fig. 6(h)–(j)), with increasing severity of OSA, the sequen-
tial similarity between SpO2 and PAT significantly increases, be-
cause horizontal measures related to pairwise dissimilarity [50]
decrease. Moreover, increasing diagonal-related feature, Lmax,
associated with pairwise similarity, also supports this assump-
tion (see Fig. 6(c)). However, other diagonal features, DET and
L, and SpO2-PAT vertical measures did not confirm the hypothe-
sis. This suggests that the most appropriate estimate of diagonal-
related similarity is Lmax representing the maximum quasi-
periodic intervals of pairwise similarity in recurrence plots. On
the other side, this may be due to the choice of the minimal diag-
onal length. Therefore, developing algorithms to determine such
optimal values for recurrence analysis might be considered [55].
Moreover, it should be kept in mind that choosing too high a
minimal diagonal length may miss important recurrent patterns.

We assume that a decrease in permanency between SpO2
and PAT was related to the increasing number of significant
desaturation events, which led to the increasing number of simul-
taneous correlated PAT drops during apneic episodes via sym-
pathetic activation [38]. Additionally, our studies have shown
that SpO2-RR cross-recurrence features were not as successful
in characterizing sleep apnea as SpO2-PAT analysis. This may
indicate that the relation of SpO2 changes with PAT is more
appropriate for apnea staging than the relation with RR intervals.

The second hypothesis was that cardiac arrhythmias cause a
significant decrease in the sequential similarity between blood
pressure fluctuations and heart rate time series in OSA patients.

This was confirmed by decreasing diagonal measures (DET ,L,
Lmax, and ENTR) related to pairwise similarity and estimated
from PAT and heart-beat RR intervals (see Fig. 7(a)–(d)). We
presume that this decrease in quasi-periodicity between PAT and
RR time series was related to cardiac rhythm disturbances during
AF episodes. However, as with the first hypothesis, decreasing
PAT-RR vertical measures did not support the second either.
Based on our hypotheses (see Fig. 1) and obtained results (see
Fig. 8(a) and (b)), we could define CRI1 as a measure of
dissimilarity between SpO2 and PAT time series, whereasCRI2

as a measure of similarity between PAT and RR time series.
Validation Analysis: We proposed two models to characterize

OSA severity and AF, respectively. The first model was validated
by dividing database patients into four groups based on AHI
values. Whereas the second model was validated by dividing
patients into four HR issue groups as provided in the MESA.
Severe sleep apnea and AF classes demonstrated the highest
performance metrics compared to other groups. This shows
that the models perform better for characterizing the extremes.
However, it should be noted that we used the AHI as the gold
standard for validation, which has been criticized in the scientific
literature [21], [22]. While the flawed AHI is currently used to
confirm the OSA diagnosis, its limitations as the gold standard
for OSA severity are well known [21]. Additionally, data mining
methods were utilized for the second model due to the relatively
low prevalence of AF among OSA patients, which may have
influenced the validation results.

Method Benefit: Our study found that a lower value of the
new proposed index, CRI , was significantly associated with a
higher degree of OSA severity and the presence of AF among
OSA patients. Moreover, our models showed high accuracy in
identifying the stage of severe sleep apnea and AF. This is
particularly important as our new proposed approach would
allow further exploration of the relationships between sleep
apnea and cardiovascular diseases in the future, helping to
identify patients whose cardiac arrhythmias may be associated
with OSA or individuals being at high risk of developing AF, and
so potentially overcoming some of the limitations of the AHI.

Study [56] concludes that OSA treatment with CPAP can
reduce the risk of development and progression of AF. This
kind of treatment leads to decreased sympathetic nervous system
activity, arterial stiffness, blood pressure, and increased arterial
baroreflex sensitivity [56]. As our proposed OSA characteriza-
tion method considers AF, such an approach could be a clinically
important biomarker to select OSA patients who would benefit
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from CPAP in term of AF risk reduction. In addition, the Euro-
pean Society of Cardiology recommends optimizing diagnosis
and treatment of OSA to reduce AF recurrences and improve
AF treatment results [57].

Related Studies: Recurrence plots have been used for ana-
lyzing sleep apnea in several studies [58], [59], [60]. However,
our study is the first to propose the use of recurrence properties
for multinomial OSA staging instead of apnea detection [61],
[62]. In addition, our approach involves the integrated analysis
of cardiac arrhythmias in sleep apnea patients. Unlike other stud-
ies [58], [59], which only used convolutional neural networks on
recurrence plots, our study attempts a deeper interpretation of the
estimated recurrence features at the level of apnea physiological
analysis. The proposed approach is also distinctive in that it com-
bines the analysis of different time series that can be obtained
simultaneously. Such multimodal analysis may provide more
crucial information on the physiological mechanisms of sleep
apnea and its possible relationship to cardiac arrhythmias. Plau-
sible arrhythmogenic mechanisms of sleep apnea were discussed
in [63]. These mechanisms include respiratory effort during
obstruction that results in the shortened atrial refractory period,
intermittent hypoxemia and hypercapnia leading to sympathetic
discharge, and intrathoracic pressure alteration leading to left
atrial stretch and left ventricular afterload. Moreover, OSA
is related with significant atrial remodeling characterized by
atrial enlargement, reduction in voltage, widespread conduction
abnormalities, and longer sinus node recovery [64]. These find-
ings could also explain the association between OSA and AF
diseases.

The study [65] showed that cardiac arrhythmias among OSA
patients were related to age, male gender, body-mass index, and
comorbidities such as hypertension, diabetes, dyslipidemia, and
chronic obstructive pulmonary disease. The aim of our study
was to propose a signal analysis-based method, which would
be independent of demographic and anthropometric variables.
However, monitoring the mentioned factors and investigating
their associations may also be of interest to assess AF in patients
with sleep apnea.

Limitations: Despite the promising results, this work has
some limitations. Although studies [35], [36] show that AF is
associated with increasing severity of OSA, it is unclear from the
data used, which patients developed sleep apnea first rather than
cardiac arrhythmias, and what is the origin of AF. It is important
to note that cross-sectional studies such as ours have limitations
in terms of establishing causality. Consequently, the findings
should be interpreted as indicative of associations rather than
causal relationships. The exponential model (see Fig. 9) was
proposed to identify patients with potentially associated OSA
and AF. By this study, we aim to propose a tool that could be
potentially useful in future prospective studies dedicated to the
establishment of causal relationships between OSA and AF.

Another limitation of the method is the interpretability of
the proposed new index, CRI . Whereas CRI1 and CRI2

are related to measures of dissimilarity and similarity between
the respective time series during OSA and AF, respectively, the
physiological clarification of the combined index, CRI , is more
complex.

Future Work: The proposed method could be simplified by
using only PPG analysis to obtain the input time series. For
instance, by replacing heart-beat RR intervals to pulse-to-pulse
intervals and PAT sequences to PPG-derived morphological
features correlated with blood pressure fluctuations. This sim-
plification would enable the algorithms to be integrated into a
wearable system and could be used not only for the diagnosis of
OSA, but also for its prevention at home as well as its long-term
monitoring. However, it should be noted that such simplification
could lead to some uncertainty in the method.

V. CONCLUSION

A novel cross-recurrence properties-based approach for char-
acterizing OSA severity was proposed and explored. The de-
rived cross-recurrence index showed a significant association
with increasing OSA severity and the presence of AF among
subjects with OSA. The proposed index was more sensitive
than the conventional AHI in differentiating increasingly severe
HR issues, especially for AF. The study demonstrates that the
proposed method has the potential to be used as an alternative to
the AHI and could be utilized as a supplementary tool to assess
the authentic state of sleep apnea in clinical practice.
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