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Abstract
Objective. Despite the growing interest in understanding the role of triggers of paroxysmal atrial
fibrillation (AF), solutions beyond questionnaires to identify a broader range of triggers remain
lacking. This study aims to investigate the relation between triggers detected in wearable-based
physiological signals and the occurrence of AF episodes. Approach.Week-long physiological signals
were collected during everyday activities from 35 patients with paroxysmal AF, employing an ECG
patch attached to the chest and a photoplethysmogram (PPG)-based wrist-worn device. The
signals acquired by the patch were used for detecting potential triggers due to physical exertion,
psychophysiological stress, lying on the left side, and sleep disturbances. To assess the relation
between detected triggers and the occurrence of AF episodes, a measure of relational strength is
employed accounting for pre- and post-trigger AF burden. The usefulness of ECG- and PPG-based
AF detectors in determining AF burden and assessing the relational strength is also analyzed.Main
results. Physical exertion emerged as the trigger associated with the largest increase in relational
strength for the largest number of patients (p< 0.01). On the other hand, no significant difference
was observed for psychophysiological stress and sleep disorders. The relational strength of the
detected AF exhibits a moderate correlation with the relational strength of annotated AF, with
r= 0.66 for ECG-based AF detection and r= 0.62 for PPG-based AF detection. Conclusions. The
findings indicate a patient-specific increase in relational strength for all four types of trigger.
Significance. The proposed approach has the potential to facilitate the implementation of
longitudinal studies and can serve as a less biased alternative to questionnaire-based AF trigger
detection.

1. Introduction

Despite advances in arrhythmia treatment, atrial fibrillation (AF) management remains a complex
challenge (Lippi et al 2021). The options for AF management are often confined to oral anticoagulants and
antiarrhythmic medication, each with notable side effects (Zimetbaum 2012, Mani and Lindhoff-Last 2014).
On the other hand, current treatment, for example, catheter ablation, come with substantial costs and a risk
of AF recurrence following intervention (Marine 2021). Therefore, an effective strategy may involve
interventions targeting lifestyle and risk factors in conjunction with conventional approaches to AF
management (Chung et al 2020).

AF leads to electrical and structural changes in the atria; thus, the goal is to maintain sinus rhythm for as
long as possible (Van Gelder and Hemels 2006). According to the latest understanding of AF initiating
mechanisms, AF episodes occur due to the interplay between the arrhythmogenic substrate, modulating
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factors, and acute exposures, often referred to as AF triggers (Vincenti et al 2006, Nattel and Dobrev 2016,
Severino et al 2019). AF triggers are gaining research interest due to their potential role in initiating AF in
certain patients (Groh et al 2019). Therefore, patient-specific detection of triggers may become an important
aspect of personalized AF management, enabling clinicians to focus on the underlying causes of AF episodes
in individual patients. In addition, patients can actively participate in managing their AF by making lifestyle
changes. Nevertheless, solutions to reliably detect a broader range of triggers are lacking.

Among the many AF triggers (Hansson et al 2004, Groh et al 2019), alcohol is the most extensively
studied, consistently demonstrating an association with the occurrence of AF episodes (Marcus et al 2022).
Abstaining from alcohol for several months reduces arrhythmia recurrence twofold in habitual
drinkers (Voskoboinik et al 2020), while consuming two or more standard alcoholic beverages is associated
with a threefold increase in the prevalence of AF within the next four hours (Marcus et al 2021). Evidence
suggests that the occurrence of AF episodes is also associated with physical exertion (Abdulla and Nielsen
2009, Guasch and Mont 2017), lying on the left side (Gottlieb et al 2021b), psychophysiological stress (Leo
et al 2023), and sleep disorders (Mehra et al 2022, Wong et al 2024).

The main limitation of prior studies lies in the subjectivity of AF triggers, as they were predominantly
self-reported through the use of questionnaires (Hansson et al 2004, Groh et al 2019, Voskoboinik et al 2020,
Marcus et al 2022). A considerable number of AF patients could identify a few trigger types, suggesting
confirmation bias (Groh et al 2019). Conversely, the fact that certain triggers were not reported by some
patients may be attributed to recall bias, for example, reluctance to acknowledge triggers which are bad for
health, like alcohol consumption (Groh et al 2019). An early effort to reduce questionnaire-related bias
involved a wearable ECG monitor and a transdermal alcohol sensor to supplement self-reported instances of
alcohol consumption with objective data (Marcus et al 2021).

Thanks to technological advancements, wearable devices are today equipped with biosensors capable of
acquiring various physiological signals useful for detecting AF triggers and gathering AF episodes with the
same device. However, the detection of AF episodes is a much more complex task than merely confirming the
existence of arrhythmia (Butkuvienė et al 2024). It necessitates long-term, uninterrupted monitoring, where
interruptions or poor signal quality result in lost information on the occurrence of AF episodes, thereby
complicating the assessment of trigger interaction. Presently, implantable devices and ECG patches (e.g. Zio
XT Patch, Bittium Faros, Biobeat chest monitor) are the only commercial alternatives that ensure reliable
long-term monitoring. Conversely, wrist-worn devices capable of acquiring a photoplethysmogram (PPG)
are less accurate in detecting AF (Sološenko et al 2019, Zhu et al 2021), albeit more convenient. Nonetheless,
no study has yet investigated the detection of triggers in physiological signals, let alone the integration of
trigger information with the occurrence of AF episodes.

The present study proposes and explores a novel approach to establishing the relation between triggers
detected in long-term physiological signals and the occurrence of AF episodes. The method is designed to
detect triggers due to physical exertion, psychophysiological stress, lying on the left side, and sleep
disturbances in physiological signals. For the first time, the recently proposed measure of relational strength
between triggers and the occurrence of AF episodes (Pluščiauskaitė et al 2024) is applied to week-long ECG
and PPG signals collected from patients diagnosed with paroxysmal AF when doing their daily activities. To
gain insight into the utility of wearable devices for assessing relational strength, both ECG- and PPG-based
AF detectors are employed. Due to the limited understanding of how triggers influence the occurrence of AF
episodes in individual patients, the present study represents a step towards comprehending the mechanisms
governing trigger effects on AF episodes.

2. Methods

2.1. Database
One hundred eighty two patients diagnosed with paroxysmal AF were recruited from inpatient and
outpatient wards of the Cardiology Department at Vilnius University Hospital Santaros Klinikos. Prior to
their involvement, all eligible patients provided signed, written informed consent in agreement with the
ethical principles of the Declaration of Helsinki. Approval of the study was granted by the Vilnius Regional
Bioethics Committee (Reference Number 158200-18/7-1052-557). Only patients with at least one AF episode
during the observation interval were included, resulting in a database of 35 patients, see table 1.

The database is comprised of physiological signals recorded during daily activities, using a Bittium
OmegaSnapTM one channel ECG patch (Bittium, Finland), and a wrist-worn device developed at the
Biomedical Engineering Institute of Kaunas University of Technology (Bacevičius et al 2022). The ECG patch
was positioned directly on the sternum to record a continuous ECG sampled at 500Hz and tri-axial
acceleration signals sampled at 25Hz. The wrist-worn device captured a continuous PPG sampled at 100Hz.
The signal database is available on Zenodo (Bacevičius et al 2024).
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Table 1. Demographic and clinical characteristics of patients with paroxysmal AF.

Women, n 21
Men, n 14
Age, yrs 61± 13
Height, cm 175± 10
Weight, kg 89± 20
Body mass index, kg m−2 28.4± 5.0
Observation interval, days 7.0± 0.7
Medication (#patients)
Beta adrenoblockers 26
Antihypertensive drugs 31
Comorbidities (#patients)
Hypertension 29
Hyperthyroidism 3
Metabolic syndrome 15

2.2. AF detection
2.2.1. Annotation of AF episodes
A preliminary annotation of AF episodes was provided using the ECG-based detector described below,
followed by a manual review to refine the annotations by searching for undetected episodes, excluding falsely
detected episodes, and improving the temporal precision of episode onset and end. Cardiology residents
performed the manual review, consulting an experienced cardiologist in uncertain cases. The residents
annotated premature atrial contractions, atrial tachycardia, and atrial flutter.

2.2.2. Detector-based AF episodes
Two AF detectors are employed, one relying on the ECG and the other on the PPG. The ECG-based detector
relies on the fact that the RR intervals during AF are irregular and often associated with an elevated heart rate
(HR) (Petrėnas et al 2015). The detector, designed to find short AF episodes, incorporates ectopic beat
removal, suppression of bigeminy, quantification of RR interval irregularity, and signal fusion.

Poor-quality ECG segments are excluded from further analysis. The assessment of signal quality relies on
the bsqi index which explores the difference in performance of two different QRS detectors (Behar et al
2013). The first detector (jqrs) is from the PhysioNet Cardiovascular Toolbox (Vest et al 2018), whereas the
second detector is from the R-DECO toolbox (Moeyersons et al 2019). The index is defined by the percentage
of beats aligning between the two detectors, here set to 90% if a segment is to be considered for further
analysis. Moreover, only segments without premature atrial contractions, atrial flutter, and atrial tachycardia
are analyzed.

The PPG-based detector relies on the analysis of peak-to-peak intervals, using an adaptive threshold for
peak detection (Sološenko et al 2019). The detector incorporates the same signal processing blocks as the
ECG-based detector aimed at reducing the number of false alarms. The detector includes a block for
assessment of signal quality.

Both AF detectors offer flexibility in determining the minimum episode duration, controlled by the
smoothing coefficient of exponential averaging filters; for details, see Petrėnas et al (2015). In this study, the
smoothing coefficient was set to 0.02, resulting episodes as brief as 60 beats. Given that HR often increases
during AF, this duration is in agreement with the clinical definition of the minimum episode
duration (Kirchhof et al 2016).

The annotated and detector-based AF episodes are exemplified in figure 1. It is should be noted that the
ECG-based AF detector emphasizes sensitivity, while the PPG-based detector emphasizes specificity. As a
result, ECG-based AF detection may produce more falsely detected episodes, while PPG-based AF detection
may miss some episodes due to preferred specificity.

2.3. Trigger detection
The principles for detecting potential triggers are described in the following. Each type of trigger is based on
a detection parameter computed in successive intervals throughout the ECG and/or acceleration signals,
resulting in a time series which is subject to threshold-based detection. For simplicity, physical exertion,
psychophysiological stress, lying on the left side, and sleep disturbances are in the following referred to as
triggers irrespective of whether AF occurs or not.

2.3.1. Physical exertion
Participating in higher-intensity exercise is considered a contributing factor to the occurrence of AF episodes,
both in athletes and the general population (Shamloo et al 2018). To detect physical exertion, the metabolic
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Figure 1. An example of AF episodes obtained by (a) annotation, (b) ECG-based detection, and (c) PPG-based detection. (c)
Dropouts, indicated by a lowered non-AF baseline, represent non-wear time of the PPG device.

equivalent of task (MET), serving as a physiological measure of the energy expenditure associated with
various physical activities relative to the resting metabolic rate, is used for detecting physical exertion.

The MET is estimated using acceleration and HR to account for patient-specific variability, as patients
may exhibit different HR responses to the same physical activity due to variation in fitness level and health
condition. The following regression equation is used to estimate MET (Moeyersons et al 2019):

yMET = 0.0043xACC+ 0.047xHRR+ 1.4238, (1)

where xACC denotes the vector magnitude of the tri-axial acceleration signals and xHRR denotes HR reserve,
which depends on the heart’s ability to increase heart rate during physical activity.

To eliminate the gravitational acceleration component, the tri-axial acceleration signals are high-pass
filtered with a cut-off frequency of 0.7Hz (Oshima et al 2010). Then, the vector magnitude is computed and
averaged within 1min intervals to yield xACC (Nakanishi et al 2018).

The HR reserve xHRR is defined as follows,

xHRR =
xHR,a − xHR,r
xHR,m − xHR,r

· 100, (2)

where xHR,a is the mean HR in 1min intervals and xHR,r is the mean of the 5min HR during daytime
sedentary activities, determined as the mean amplitude deviation (MAD) of the tri-axial, unfiltered
acceleration signals within the range of 3–15 milligravity. The measure xHR,m is the maximum heart rate
determined using the standard formula 220 minus age.

A trigger is detected if the mean MET, computed for 1min intervals with non-AF rhythm, exceeds 5
METs. Considering that most patients were elderly, the threshold for detecting physical exertion is adjusted
to 5 METs instead of 6 METs typically used to characterize vigorous activity in a younger population (Patel
et al 2019).

2.3.2. Psychophysiological stress
During psychophysiological stress, the body releases stress hormones thereby contributing to elevated HR
and intensified cardiac contractions, potentially leading to the occurrence of AF episodes (Leo et al 2023).
Detection of psychophysiological stress relies on the assumption that a sudden elevation in HR, not
attributable to notable physical activity or arrhythmia, is indicative of a stress-inducing event.

A trigger is detected when the elevation in HR exceeds 15 beats per minute within a 1min
interval (Brouwer and Hogervorst 2014), provided that no physical activity is present and no trigger has been
detected during the preceding 4 h. Physical activity is considered absent when both the average MAD of the
5min interval before and the analyzed 1min interval remain below 22.5mg, a level that indicates sedentary
behavior such as sitting and standing still (Vähä-Ypyä et al 2018). To reduce the impact of outliers, the
elevation is not determined directly from the HR series but by computing the difference between end and
onset of a first-degree polynomial fitted to the HR series in the 1min interval.

2.3.3. Lying on the left side
The left lateral lying position has been self-reported as a trigger of AF episodes (Groh et al 2019, Gottlieb et al
2021b). This finding can be explained by the left lateral position exerting heightened pressure on the walls of
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Figure 2. An example of (a) annotated AF episodes, and the different time series of parameter values and detected triggers related
to (b) physical exertion, (c) psychophysiological stress, (d) left lateral lying position, and (e) sleep disturbances. The occurrence
times of the triggers are indicated with red vertical lines. The nighttime intervals, spanning from midnight to 7:00, are displayed
in grey.

the atrial and pulmonary vein, thereby functioning as a proarrhythmic factor (Chang et al 2007, Gottlieb
et al 2021a, 2023).

A trigger is detected when the acceleration signal of the mediolateral axis (MADy), i.e. the signal best
reflecting the left lateral lying position, remains below−600mg for at least 1 h and no trigger has been
detected during the preceding 4 h. Given that changes in lying position occur multiple times during the
night, only the first detected trigger is considered for the preceding 4 h.

2.3.4. Sleep disorders
Sleep disorders, particularly obstructive sleep apnea, have been identified as potential triggers of AF (Mehra
et al 2022, Wong et al 2024). Given that episodes of obstructive sleep apnea are often accompanied with cyclic
variations in HR, certain HR variability indices are well-suited for detecting such episodes (Roche et al 1999).
In this study, nocturnal alterations in HR are explored using the standard deviation of normal-to-normal RR
intervals (SDNN), serving as an indicator of the dominant component of sympathetic and vagal
activity (Malik and Camm 2004).

Before SDNN is computed, the RR interval series is corrected with respect to missed beats, false
detections, and ectopic beats, using the algorithm described in Lipponen and Tarvainen (2019). False
detections are eliminated, and, for a missed beat, a new beat is inserted to divide the prolonged RR interval
into two RR intervals of the same length. Ectopic beats are handled by interpolation of the adjacent RR
intervals.

To detect sleep disorders, the nighttime interval from midnight to 7:00 was analyzed, computing SDNN
within 1 h increments. A threshold of 116 ms is employed to determine the large variations in HR based on
the SDNN (Roche et al 1999). When the SDNN exceeds the threshold in a 1 h interval, the onset of the
interval is taken as the occurrence time of the trigger.

2.4. Trigger example
An example of the four series of parameter values, the detected triggers, and the annotated AF episodes, is
presented in figure 2. For this particular patient, lying on the left side seems to be linked with AF episode
occurrence. However, this may not be true for other patients as different patients may have different types of
trigger.

2.5. Quantifying the relation between a potential trigger and the occurrence of AF episodes
The assessment of the relation between a potential trigger and the occurrence of AF episodes is based on AF
burden, defined as the ratio of time spent in AF to the total duration of the analysis time interval T. The
relational strength γ relies on the assumption that the post-trigger AF burden B1,n of the nth trigger exceeds
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Figure 3. (a) Stacked diagrams of the number of triggers detected in each patient, with patients ranked in descending order based
on the total number of detected triggers. (b) The proportion of patients with a particular number of triggers detected over the
observation interval.

the pre-trigger AF burden B0,n (Pluščiauskaitė et al 2024):

γ =

Nt∑
n=1

B1,n

1+B0,n
H(B1,n −B0,n) , (3)

where Nt denotes the number of triggers during the observation interval. The Heaviside step function H(·)
excludes instances when the pre-trigger burden is larger than the post-trigger burden.

The analysis time interval T, used to compute B1,n and B0,n, is set to the anticipated duration of the
trigger effect, here taken to be 4 h (Marcus et al 2021). Depending on whether γ relates to detector-based or
annotated AF episodes, it is denoted γd and γa, respectively.

To assess γ unrelated to the trigger, a control γc is computed using randomly placed control triggers. The
number of control triggers used for computing γc is identical to the number of detected triggers.

2.6. Statistical analysis
Normality is assessed using the Shapiro–Wilk test, and, given the non-normal distribution, boxplots are
employed to summarize the results. The Wilcoxon signed-rank test is used to compute p-values for
assessment of differences between dependent groups, while the Mann–Whitney U test is used for assessment
of differences between independent groups.

Scatter plots are used to show the degree of association between γ, computed for each trigger type, either
for annotated or detector-based AF episodes. The association is assessed using linear regression, and the
results are presented using the Spearman correlation coefficient.

3. Results

Figure 3(a) shows the number of each trigger type detected in each patient. At least one trigger of physical
exertion, psychophysiological stress, lying on the left side, and sleep disorders was detected in 80%, 74%,
71%, and 89% of the patients, respectively. A median of 2 (IQR 1–3), 2 (1–5), 4 (1–6), and 5 (4–7) triggers
were detected for physical exertion, psychophysiological stress, lying on the left side, and sleep disorders,
respectively (figure 3(b)); the related interquartile range is given within the parenthesis.

Figure 4 shows γc as a function of the number of triggers for different numbers of random initializations.
In the computation of γc, Nt uniformly distributed timestamps were generated in the observation interval.
To ensure robustness of γc, a median of 100 random initializations was used.

Figure 5 shows γd for detected triggers and γc for control triggers in patients with at least one trigger. The
results show that, for some patients, γd increases substantially for all four trigger types relative to γc. Overall,
physical exertion emerged as the most significant trigger, associated with the largest increase in γd across the
largest number of patients (p< 0.01); no significant difference was observed between γd and γc for
psychophysiological stress and sleep disorders. Additionally, no significant difference in γd was found
between females and males, with p-values of 0.06, 0.34, 0.49, and 0.66 for physical exertion,
psychophysiological stress, lying on the left side, and sleep disturbances, respectively.

Figure 6 shows that γa is moderately correlated with γd, with the correlation coefficients r= 0.66 and
r= 0.62 for ECG- and PPG-based AF detection, respectively.
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Figure 4. Control relational strength γc as a function of the number of triggers for different numbers of random initialization.

Figure 5. The relational strengths γc and γd, obtained using control triggers and detector-based triggers, respectively, computed
for each patient and different types of trigger: (a) physical exertion, (b) psychophysiological stress, (c) lying on the left side, and
(d) sleep disorders. Females are represented by white circles.

4. Discussion

An important finding of the present study is a substantial increase in γd relative to γc in certain patients. This
finding is consistent with those of questionnaire-based studies (Hansson et al 2004, Groh et al 2019), which
indicate the absence of a universal AF trigger. On the contrary, depending on the presence of other factors
that increase the propensity for AF (Nattel and Dobrev 2016), triggers will induce AF in certain patients. To
evaluate the temporal relation between detected triggers and AF occurrence, one might assume that the
number of episodes would increase after the trigger. However, the number of episodes in pre- and
post-trigger intervals was found to be similar in our study. Therefore, employing a cumulative principle as
the one in the definition of γ, might prove to be more effective in detecting triggers.

Evidence suggests a J-shaped relation between physical activity and the risk of AF, indicating that light
and moderate physical activity can reduce the risk of AF, while both inactivity and vigorous physical activity
can elevate the risk of AF (Guasch and Mont 2017). However, the exact mechanisms through which vigorous
physical activity may trigger AF are not known. One plausible explanation involves the interplay between the
autonomic nervous system and atrial remodeling, leading to AF episodes (D’Ascenzi et al 2015). Regarding
vagally induced AF, patients who engage in regular physical activity tend to experience AF episodes more
frequently than their sedentary counterparts (Mont et al 2002). Furthermore, increased vagal activity is
associated with a shortened atrial refractory period, facilitating re-entry and potentially triggering
AF (Morseth et al 2018).
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Figure 6. Association between γa, obtained using annotated AF episodes, and γd, obtained using detector-based AF episodes, for
pooled data encompassing all four types of trigger. Bright squares and dark circles represent ECG- and PPG-based detection of AF
episodes, respectively.

An increasing number of studies are investigating the utility of MET units as a measure for determining
thresholds in classifying the intensity of physical activity (Mansoubi et al 2015, Mendes et al 2018, Nakanishi
et al 2018). However, the majority of these studies have predominantly focused on young or middle-aged
adults, while less so on the elderly. Considering the variable effort levels required by patients of different
age groups to execute identical activities, discernible differences in energy expenditure become
apparent (Nagayoshi et al 2019). Relying solely on estimation of MET from acceleration and HR data may
inadequately capture the true energy expenditure, potentially resulting in underestimation of MET (Byrne
et al 2005). To account for age-related differences in the present study population, the threshold designating
physical exertion was set to 5 METs instead of the conventional 6 METs used for identifying vigorous activity.
This adjustment accommodates activities such as stair climbing, brisk walking, and table tennis (Ainsworth
et al 2011).

Psychophysiological stress has an adverse impact on the cardiac system, potentially elevating the risk of
developing AF (Leo et al 2023). Their potential role as triggers of AF is indicated by findings from
laboratory-induced stress tests and several observational studies (Severino et al 2019, Leo et al 2023). During
stress and negative emotions, the body releases stress hormones, including adrenaline, noradrenaline, and
cortisol. These hormones impact blood flow by triggering mechanisms such as elevated HR and increased
blood pressure. Moreover, stress exerts direct effects on the heart, inducing alterations in cardiac electrical
activity, which in turn may contribute to the initiation and perpetuation of AF. The interplay between stress,
physiological responses, and cardiac electrophysiology underscores the multifaceted nature of the relation
between psychophysiological stress and AF, warranting further investigation to elucidate the underlying
mechanisms and targeted interventions.

Patients frequently report that a left lateral body position triggers AF episodes (Groh et al 2019).
Twenty-two percent of the patients noted a particular body posture that induced their AF symptoms. Among
those, the left lateral position has been identified as the triggering posture in 57% of all cases (Gottlieb et al
2021b). The AF triggering mechanism of a left lateral body position can be explained by a heightened stretch
of the pulmonary veins, which are known to be proarrhythmic for AF. Changing from a supine to a left
lateral position causes the heart to shift in an anterior-left lateral direction within the thorax. This alteration
leads to an increase in left atrial volume and an elevation in local wall stress in the pulmonary vein
regions (Gottlieb et al 2021a).

The relational strength in individual patients has been assessed utilizing an approach well-suited for
non-stationary and binary data (Pluščiauskaitė et al 2024). The approach builds on a cumulative principle, as
there is no basis to assume that the trigger influences AF burden consistently. It is more likely that the trigger
sporadically initiates AF due to the interplay of various factors that augment the propensity for AF (Vincenti
et al 2006, Nattel and Dobrev 2016, Severino et al 2019). Therefore, γd should be interpreted in light of the
number of triggers detected. For a single trigger, γd = 1 indicates a moderate strength, signifying a scenario
in which AF is initiated shortly after a trigger and persists throughout the analysis time interval, with no
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pre-trigger AF burden. In cases where both the pre- and post-trigger burdens are larger than 0, γd falls within
the interval 0.5⩽ γd < 1, indicating a weak relational strength. Conversely, when both the pre- and
post-trigger burdens approach zero, γd is less than 0.5, suggesting a very weak relational strength. To
establish a strong relational strength, at least two triggers must be detected.

The choice of the analysis time interval T, employed to compute both pre- and post-trigger burdens, is
another influential determinant for γd which has to take the anticipated duration of the trigger effect into
account. In this study, T was set to 4 h for all trigger types; nevertheless, the choice of T deserves further
attention. A too brief interval may only capture a partial effect of the trigger, while a too long interval may
include intervals beyond the trigger effect. Additionally, it is important to consider the time lag between the
trigger and the onset of an AF episode. For instance, the influence of alcohol consumption on AF occurrence
may persist for up to 12 h (Marcus et al 2021), with the highest prevalence of AF episodes occurring at 4 h
following the onset of alcohol consumption. However, the lasting effect of the types of trigger explored in
this study is not as clear.

In this study, an ECG patch attached to the chest was employed to acquire physiological signals. While
wrist-worn PPG-based devices have attracted increasing attention for continuous monitoring in everyday
settings, their suitability for trigger detection remains unclear. This is primarily due to two factors: lack of a
stable reference point for accelerations and lower accuracy in HR estimation. Commonly, the mean absolute
percentage error of the estimated HR from a PPG is 5%–20% (Bent et al 2020, Düking et al 2020, Germini
et al 2022). Furthermore, the error increases by up to 30% during high-intensity physical activity compared
to resting states. Such large errors pose a limitation to detecting physical exertion, psychophysiological stress,
or sleep disturbances using HR variability analysis. An additional challenge is the detection of lying on the
left side based on wrist-derived acceleration signals since sleep posture varies considerably between
individuals, and behavior is less controlled during sleep. Unsurprisingly, the wrist location was found to be
the least reliable for accelerometer-based detection of lying posture (Alinia et al 2020).

PPG-based AF detection in everyday settings is affected by other factors, such as non-wear time and
motion artifacts (Inui et al 2020, Pluščiauskaitė et al 2023). In our study, AF burden, determined from AF
episodes acquired by the PPG-based detector, exhibited a reduction of approximately 70% when compared
to annotated episodes. This reduction was primarily attributed to the exclusion of a substantial portion of
the PPG signal due to poor quality and non-wear time. These findings are consistent with those reported
in Zhu et al (2021), where a coverage rate of 52% was achieved, although the patients were encouraged to
wear a device overnight. This reduction in estimated AF burden is important, particularly in light of the fact
that trigger-induced increments in AF burden are typically on the order of a few percentage (Voskoboinik
et al 2020).

Sleep disorders, such as poor sleep quality, snoring, and obstructive sleep apnea, are frequently associated
with AF (Genuardi et al 2019, Mehra and Marcus 2019, Mehra et al 2022). Research has shown a 15% higher
risk of experiencing an AF episode following a night of poor sleep (Wong et al 2024). Additionally, prolonged
instances of poor sleep have been associated with longer AF episodes (Wong et al 2024). Since most adverse
health conditions tend to decrease HR variability (Kleiger et al 2005), SDNN appears to be robust against
false detections of sleep disturbances. This can be substantiated by the findings in Roche et al (1999), where a
nocturnal SDNN exceeding 116ms detects sleep apnea with 90% specificity. However, dedicated wearable
devices for sleep monitoring may offer greater accuracy in detecting sleep disturbances. For example,
commercial sleep analyzers equipped with pneumatic and acoustic sensors can be used to identify the onset
and end of sleep and detect episodes of snoring and sleep apnea (Edouard et al 2021).

Triggers may alter the physiological systems, for example, the autonomic nervous system, and, in this
way, contribute to AF (Chen et al 2014, Rebecchi et al 2021, Joglar et al 2023). The autonomic activation
influences the intracellular calcium dynamics, leading to a reduction in action potential duration and
refractoriness which in turn may result in ectopic firing in atrial muscles surrounding the pulmonary
veins (Kaakeh et al 2012). A noteworthy observation is that AF patients without structural heart disease tend
to exhibit an increase in vagal tone before AF onset. Conversely, patients with structural heart disease have an
increased sympathetic tone before AF onset (Olshansky 2005). The alterations in the autonomic nervous
system can be studied using HR variability indices, potentially enhancing understanding of the processes that
contribute to the initiation of AF.

At an early stage, we explored alterations in the autonomic nervous system using the widely adopted HR
variability index, the low frequencies/high frequency ratio (LF/HF), serving as an indicator of the dominant
component of sympathetic and vagal activity (Malik and Camm 2004). However, no difference was observed
between pre- and post-trigger intervals in LF/HF. This outcome was likely influenced by the collection of
data during unrestricted daily activities, leading to ECG signals of lower quality due to motion artifacts and
noise. Since physical activity has an impact on the autonomic nervous system (Bishop 2004), it becomes
challenging to accurately assess its relation to triggers during daily activities.
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5. Limitations and future work

Within the initial cohort of patients diagnosed with paroxysmal AF, merely 24% encountered at least one AF
episode throughout the one-week observation interval. Consequently, the results may be influenced by
individual variation. Moreover, a relatively low AF burden among those who had AF episodes influenced the
relational strength γ, being less sensitive to lower AF burden (Pluščiauskaitė et al 2024).

Most patients (74%) were administered with beta-blockers, which block the release of the stress hormone
adrenaline and thus reduce HR. Since HR is directly involved in detecting physical exertion and
psychophysiological stress, this may have led to fewer detected triggers.

The simultaneous occurrence of different types of trigger and their possible interaction was not taken
into consideration. Assessing interaction is a complex task requiring more knowledge about the duration of
the effect of each type of trigger. One solution is to group types of trigger based on the activated components
of the autonomic nervous system (Groh et al 2019). While physical exertion and psychophysiological stress
activate the sympathetic nervous system, the effect of lying on the left side on the autonomic nervous system
is unknown.

The four types of trigger were chosen based on their feasibility for detection in physiological signals. In
questionnaire-based studies, alcohol consumption, dehydration, large meals, and cold food have also been
suggested as triggers of AF (Hansson et al 2004, Groh et al 2019), however, these triggers may not be easily
detected in physiological signals.

Alcohol may have the strongest effect on AF occurrence, and, therefore, may act as a confounder or effect
modifier of other triggers. Although acute alcohol intoxication typically causes temporary ECG changes, such
as P-wave prolongation, QTc prolongation, T-wave abnormalities, and QRS complex prolongation (Raheja
et al 2018), these changes can also result from other conditions, such as the use of certain medications or
electrolyte imbalances. Therefore, information on alcohol consumption is usually obtained through
questionnaires or ethanol detectors (Marcus et al 2021). In this study, the effect of alcohol on other AF
triggers was not explored. However, it constitutes a challenging future research topic, particularly when
analyzing the intermediate processes from the initial trigger to the occurrence of an AF episode.

Triggers in females and males is yet another interesting research question to explore, but so far such data
are lacking. In a questionnaire-based study (Groh et al 2019), females were 2–3 times more likely to report
lack of sleep and lying on the left side as trigger. In the present study, the number of triggers was similar in
both sexes, i.e. lying on the left side was detected in 14 females and 12 males, sleep disturbances in 13 females
and 14 males, physical exertion in 14 females and 12 males, and only psychophysiological stress was more
common among males (14 versus 9). Given that differences may exist between males and females how
triggers are experienced (Winborn et al 1988, Deng et al 2016), physiological signal-based detection of
triggers may provide a more accurate assessment compared to relying solely on self-reported data.

This study outlines the principles of trigger detection in physiological signals but does not address the
issue of missed and falsely detected triggers. This is due to several reasons, primarily the fact that the data
were collected in the patients’ homes. The occurrence times of potential triggers can be gathered through
mobile apps or questionnaires, but both methods have notable limitations. Triggers are self-reported, leading
to bias and a time delay between the actual event and when it is logged. The use of specific sensors, such as
ethanol detectors, could shorten such delays for certain triggers. For example, self-reported alcohol
consumption closely matched the results obtained from transdermal alcohol sensors (Marcus et al 2021).
However, not all triggers can be detected using sensors. Validating physical exertion or psychophysiological
stress is even more challenging because these triggers are subjective and therefore may differ from the effects
observed on physiological signals. Meanwhile, sleep disturbances can be detected in sleep laboratories or
using a sleeping mat, which offers a cheaper but less reliable alternative.

6. Conclusions

The results show an increase in the relational strength between detected triggers and the occurrence of AF
episodes for some patients, particularly related to physical exertion and lying on the left side. A moderate
correlation in relational strength was found when the detector-based AF episodes were compared to the
annotated AF episodes. The proposed approach has the potential to facilitate the implementation of
longitudinal studies, allowing for less-biased detection of AF triggers without the need for questionnaires.

Data availability statement

The long-term physiological signal database of paroxysamal atrial fibrillation patients is currently is publicly
available through open-access portal Zenodo: https://zenodo.org/records/11242869.
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