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A B S T R A C T

As mobile applications proliferate and user feedback becomes abundant, the task of identifying
and resolving conflicts among application features is crucial for delivering satisfactory user ex-
periences. This research, motivated to align application development with user preferences, in-
troduces a novel methodology that leverages advanced Natural Language Processing techniques.
The paper showcases the use of sentiment analysis using RoBERTa, topic modeling with Non-
negative matrix factorization (NMF), and semantic similarity measures from Sentence-BERT.
These techniques enable the identification of contradictory sentiments, the discovery of latent
topics representing application features, and the clustering of related feedback instances. The
approach detects conflicts by analyzing sentiment distributions within semantically similar
clusters, further enhanced by incorporating antonym detection and negation handling. It employs
majority voting, weighted ranking based on rating scores, and frequency analysis of feature
mentions to resolve conflicts, providing actionable insights for prioritizing requirements.
Comprehensive evaluations on large-scale iOS App Store and Google Play Store datasets
demonstrate the approach’s effectiveness, outperforming baseline methods and existing tech-
niques. The research improves mobile application development and user experiences by aligning
features with user preferences and providing interpretable conflict resolution strategies, thereby
introducing a novel approach to the field of mobile application development.

1. Introduction

In recent years, the mobile app industry has experienced unprecedented growth, fuelled by the ubiquity of smartphones and the
increasing demand for on-the-go services and entertainment. Based on the latest report from Statista [1], the global mobile app
revenue is on track to soar to an impressive $935 billion by 2023, highlighting the undeniable economic impact of this thriving
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industry. However, with millions of apps available in app stores, developers face intense competition to attract and retain users [2]. As
Nayebi et al. [3] highlight that the key to success is effectively identifying and meeting user needs. A fundamental way to understand
user needs is by extracting and analyzing user reviews, which provide direct insight into users’ app experiences [4,5].

In context, user reviews are an essential resource for gaining valuable insights into genuine user experiences with apps, as high-
lighted by Pagano and Maalej [6]. These reviews provide developers with a direct channel for gathering user perspectives and offer a
wealth of qualitative data that can inform product roadmaps and drive continuous improvement in mobile applications [7,8].
However, they often contain contradictory perspectives that make it challenging to derive consistent requirements [9,10]. For
example, some users may complain about frequent notifications while others request more notifications. Addressing these conflicting
perspectives is crucial for effectively prioritizing these reviews from users [11], which in turn can improve the crowdsourcing of
requirements in the context of requirements engineering [12–14]. Such conflicting feedback can hinder the effective prioritization of
requirements and impede the decision-making process for developers [15]. Failing to address this issue can result in suboptimal user
experiences, decreased user satisfaction, and app abandonment. According to Gambo et al. [16], unresolved conflicts among user
expectations can have detrimental effects on the acceptance and success of developed technology by affecting user satisfaction,
engagement, experience, and trust. Addressing these conflicts through effective conflict resolution strategies is essential for ensuring
the acceptance and adoption of technology products.

Our goal in this paper is to create a structured approach for evaluating conflicting user reviews, allowing us to better prioritize the
requirements of mobile applications for further improvement. Although past research has explored techniques for extracting useful
information from app reviews [17,18], there remains a need to investigate approaches specifically for reconciling conflicting feedback
to support consistent requirements prioritization for improving mobile app development. To address this gap, this research aims to
develop a systematic approach for detecting and resolving conflicts in user feedback for mobile app features. By leveraging advanced
natural language processing (NLP) techniques and advanced analytics, our proposed method seeks to identify contradictory input and
related comments and provide actionable insights to developers.

Furthermore, this paper has four specific objectives. Firstly, to develop an advanced NLP-based approach for detecting and cate-
gorizing conflicting user feedback. Secondly, to explore techniques for prioritizing and resolving conflicting feedback to derive
consistent requirements from user app reviews. The third objective is to evaluate the proposed approach using real-world mobile app
review data and user feedback datasets. Lastly, to provide guidelines and recommendations for incorporating the proposed approach
into the app development lifecycle. By accomplishing these objectives, this study aims to offer app developers an enhanced under-
standing of conflicting user reviews and systematic guidance on reconciling disagreements for data-driven requirements prioritization.
This holds implications for incrementally improving apps by better capturing genuine user concerns. In the paper, we addressed three
crucial research questions to address our objectives successfully.

• RQ1: How can our proposed approach, utilizing advanced NLP techniques, effectively identify and categorize conflicting user feedback in
mobile app reviews?

• RQ2: What clustering and prioritization methods are most suitable for resolving conflicts and deriving consistent requirements from con-
tradictory feedback?

• RQ3: How can visualization and explanation techniques be employed to enhance the transparency and interpretability of the conflict
resolution process for stakeholders?

The paper is structured as follows: Section 2 reviews relevant literature on user feedback analysis, conflict detection, and reso-
lution. Section 3 presents our methodology for analyzing contradictory user feedback, outlining algorithms and conflict detection and
resolution techniques. Section 4 details the dataset used for evaluation, along with evaluation metrics and procedures. Section 5
presents the experimental results of our approach, comparing its performance with baseline techniques. Section 6 presents a discussion
of the results. We summarize outcomes, contributions, and avenues for future research, offering insights for developers navigating
conflicting user feedback in app development in Section 7.

2. Related works

Analyzing user feedback is a vital focus in software engineering research, as it is essential for gaining insights into user re-
quirements, pinpointing problems, and enhancing product development. This section reviews existing literature on user feedback
analysis techniques, focusing on approaches for detecting and resolving conflicts in user requirements.

2.1. Opinion mining mobile app reviews techniques

Sentiment analysis, called opinion mining, is pivotal in understanding user sentiments within app reviews by discerning sentiment
polarity at different granularities, including total reviews, sentences, or phrases [19,20]. App reviews serve as a valuable repository of
user opinions, aiding software engineers in discerning sentiments related to diverse topics, features, and software attributes [21,22].
Analyzing these opinions not only aids in understanding user perceptions but also facilitates the discovery of user requirements and
preferences, enhancing software quality and user experience [23].

Numerous studies have explored the application of NLP and text mining techniques to extract actionable insights from user
feedback data, including app reviews, bug reports, and feature requests. For instance, Maalej and Nabil [24] introduced an automated
approach for categorizing user reviews into distinct groups using machine learning algorithms. Similarly, Guzman and Maalej [25]
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proposed a method for prioritizing feature requests based on sentiment analysis and topic modeling extracted from app reviews. Song
et al. [26] introduced a fine-grained multimodal sentiment analysis dataset based on stock comment videos. Vu et al. [18] presented
the PUMA framework, employing phrase-based techniques to filter informative sentences from user reviews, facilitating efficient
extraction and analysis of user sentiments. Iacob et al. [27] developed MARA (Mobile App Review Analyzer), a tool leveraging the
Latent Dirichlet Allocation model to automate feature request extraction from user reviews, demonstrating effectiveness in identifying
and prioritizing user requirements. These studies highlight the importance of mining user reviews to identify feature requests and
sentiments. In their 2015 study, Park et al. [28] utilized LDA to analyze app descriptions and user reviews to pinpoint the essential
features of apps. This advanced topic modeling technique was employed to uncover the crucial aspects of apps and establish con-
nections between the language used by app developers and users. Compared to LDA, Luiz et al. [29] use Non-negative Matrix
Factorization to extract features by decomposing a matrix of review term frequencies into semantic topic vectors and term vectors
using non-negativity constraints and dimensionality reduction.

According to Suprayogi et al. [30] and Luiz et al. [29], Non-negative matrix factorization (NMF) can produce more interpretable
topics, noise remains an issue, and performance gains over LDA are small. Other studies combined topic modeling and aspect-based
sentiment analysis to associate user opinions and sentiments with the identified entities [31]. Utilizing aspect-based sentiment analysis
techniques allows researchers and practitioners to enhance their comprehension of user preferences, concerns, and priorities related to
specific features or aspects of mobile applications. This granular level of insight can inform software requirements elicitation processes,
enabling the development of user-centric applications that better align with user needs and expectations. One Prominent approach
within aspect-based sentiment analysis is SentiStrength [32]. These tools often provide pre-trained models or rule-based systems for
sentiment classification, which can be adapted or extended to capture aspect-specific sentiments. Jha and Mahmoud [33] and Luiz
et al. [29] leveraged Valence Aware Dictionary for sEntiment Reasoning (VADER), a rule-based sentiment analysis tool, to extract
aspect-level sentiments from user reviews. Their approach involved identifying aspect-related sentences using topic modeling tech-
niques and applying VADER to classify the feelings associated with each aspect. These studies did not capture semantic relationships
between words.

In addition, while existing research has made strides in automating the extraction and categorization of user feedback from app
reviews, there remains a gap in addressing conflicting opinions within such feedback. Current techniques focus on extracting and
categorizing feedback without explicitly handling contradictory sentiments, posing challenges for developers in prioritizing software
requirements effectively. Differently, this study aims to bridge this gap by developing a systematic approach for detecting and
resolving conflicting user feedback in mobile app reviews. The proposed method uses advanced NLP techniques to identify and
categorize conflicting sentiments, enabling developers to derive consistent requirements and prioritize them effectively for app
improvement initiatives. Additionally, this research will explore advanced topic modeling techniques, such as NMF, to further enhance
the extraction of essential app features from user reviews, contributing to a more comprehensive understanding of user needs and
preferences [29].

2.2. Methods for conflict detection and resolution in software engineering

Requirement engineering (RE) is a foundation for understanding, prioritizing, identifying, and resolving conflicts in user expec-
tations and experiences, ensuring that software development processes effectively address functional and user needs. Numerous
techniques have been proposed to address conflict detection and resolution, particularly in software engineering, particularly RE
[34–36]. Notably, Aldekhail et al. [12] focus on identifying and managing requirements conflicts in software development. It reviews
existing conflict analysis and detection techniques, categorizing them into semantic, syntax, graphical, and tractability approaches.
They highlight the prevalence of manual techniques over automated tools in addressing conflicts, focusing on identifying rather than
resolving them. However, automated approaches often rely on human analysis, leading to potential inefficiencies. To address these
limitations and improve the identification of requirements conflicts, researchers can focus on developing more efficient automated
tools that reduce human effort and time.

Gambo et al. [16] propose a strategy for conflict identification and resolution within the agile agent-oriented modeling method-
ology for socio-technical systems (STS), aiming to reduce costs, save time, and improve the quality of software products. The proposed
strategy should adopt techniques such as Joint Application Development (JAD), a suitable clustering algorithm, and prioritization
negotiations. However, existing approaches may not be sufficient to deal with conflicts arising from diverse stakeholder requirements.

One innovative approach proposed by Shah et al. [37], effectively utilizes NLP, ML, and ontology [38] based semantic analysis to
detect intra-conflicts among NFRs semi-automatically. The experimental findings demonstrate impressive results, underscoring the
efficiency and reliability of our method. However, their work focused primarily on NFRs and did not explicitly consider user feedback
or feature prioritization. Additionally, evaluating the effectiveness of proposed techniques in detecting and resolving conflicts, Abeba
et al. [39] introduce an ML model that effectively detects and resolves conflicts in non-functional requirements within SRS documents.
This model utilizes Bi-LSTM with pre-trained word2vec embedding to identify conflicts accurately. By pre-processing text, vectorizing
words, and employing classification algorithms, the model achieved an accuracy of 84.74 % in conflict detection. Thus, future research
should concentrate on experimenting with resolving conflicts in non-functional requirements by understanding the relationship be-
tween quality attributes.

Malik et al. [40] developed a method for detecting and resolving conflicts in software requirements specifications using NLP, BERT,
and USE. The first phase involves utilizing transformer-based sentence embeddings to convert requirements into numerical repre-
sentations and determine similarity, with ROC curves used to establish a cut-off for conflict identification. In the second phase, Named
Entity Recognition (NER) is employed to extract key entities and calculate overlaps to finalize conflicts. The results demonstrated
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strong performance across multiple datasets, with BERT-Term Frequency-Inverse Document Frequency (BERT-TFIDF) yielding su-
perior results in most scenarios. While their method addressed conflicts arising from SRS requirements, it did not directly tackle
contradictory user feedback, a crucial aspect of mobile app development. Future research will explore additional transformer-based
and sentence embeddings for further improvement and expand the scope to identify contradictory user feedback in the context of
mobile app features using advanced algorithms.

2.3. Deep models for user feedback classification and prioritization

Recent advancements in deep learning [41] have revolutionized NLP, facilitating tasks like sentiment analysis, text classification,
and semantic similarity computation, which are pivotal for detecting and resolving conflicts in user feedback. Various word embedding
models, including Word2vec, Glove, FastText, BERT, and XLNet, have been proposed to compute the semantic proximity between
tokens and sentences [42,43]. BERT-based models exhibit promising capabilities in learning contextual word embeddings from
long-term sentence dependencies. However, recent studies by de Araujo and Marcacini [44] suggest that local context significantly
influences the extraction of software requirements from reviews, with tokens proximate to software requirements being of greater
importance.

To address this issue, Liu et al. [45] introduced RoBERTa, a Robustly Optimized BERT Pre-training model, which employs dynamic
masking to enhance the extraction of software requirements from user feedback. By randomly sampling masked tokens for each
training instance, RoBERTamitigates the potential for the model to learn and exploit patterns in the masking process, resulting in more
robust representations. Unlike BERT’s pre-training approach, RoBERTa prioritizes the Masked Language Modeling task over the Next
Sentence Prediction task, a simplification that has been shown to improve the model’s performance across various downstream tasks
without compromising its language understanding capabilities. Studies conducted by Rajapaksha et al. [46], Liao et al. [47], and Dai
et al. [48] have empirically demonstrated the superior performance of RoBERTa compared to BERT and XLNet on diverse NLP tasks,
including text classification and sentiment analysis.

Researchers have explored various methodologies for ranking and prioritizing features based on user feedback in requirements
prioritization. Gao et al. [49] introduced the innovative PAID framework and effectively prioritizes app issues by analyzing user re-
views across different app versions. This framework involves extracting key phrases from user reviews, creating a Phrase Bank, and
utilizing topic modeling Dynamic LDA to group and rank the phrases using Topic Modeling Information (TMI) for developers. Simi-
larly, Villarroel et al. [50] proposed a framework that automates the extraction of useful information from app reviews to identify the
most requested features by users. Their emphasis on the efficiency and effectiveness of automated techniques in prioritizing re-
quirements over manual inspection highlights the advantages of their framework. Noei et al. [51] investigated the prioritization of
user-related issue reports in mobile applications and their correlation with star ratings, enabling comprehensive analysis and prior-
itization of issue reports based on various metrics and their impact on star ratings.

However, while these techniques are valuable for classifying and prioritizing user feedback, they do not explicitly address the issue
of conflicting requirements. In this regard, several researchers have proposed methods for detecting and resolving conflicts in user
requirements. One prevalent approach uses clustering algorithms to group similar requirements and identify potential conflicts [13,14,

Fig. 1. An approach to conflict detection and resolution in contradictory user app feedback.

I. Gambo et al. Heliyon 10 (2024) e36729 

4 



52]. For example, Niu andMahmoud [53] employed k-means clustering and a word embedding technique to detect inconsistencies and
ambiguities in natural language requirements.

Yang et al. [54] also proposed a semi-supervised approach that combines topic modeling and word embeddings to identify con-
flicting requirements in software specifications. Another line of research has focused on leveraging ontologies and semantic tech-
nologies to detect and resolve conflicts in requirements. Camacho et al. [55] developed an ontology-based approach for detecting and
resolving disputes in software requirements specifications. Their method relies on defining domain-specific ontologies and using
reasoning techniques to identify inconsistencies and conflicts.

While these existing techniques have made valuable contributions, several gaps and limitations remain. Many proposed methods
for improving mobile app development heavily rely on domain-specific ontologies or rule-based systems, which can be challenging to
maintain in rapidly evolving domains. However, existing approaches focus on structured or formalized software requirements, leaving
out unstructured user feedback data such as app reviews. By addressing these gaps, there is a clear need for a new approach that can
effectively detect and resolve conflicts in user feedback for mobile app features by employing robust clustering and prioritization
methods to a group and prioritize related feedback while identifying and resolving contradictory requirements. This will provide
actionable insights and recommendations to developers, facilitating informed decision-making and requirements prioritization.

3. Proposed approach

Our innovative solution efficiently addresses conflicts in mobile app features using advanced NLP techniques and ML algorithms.
The method automatically identifies contradictory user feedback, detects conflicts among app features, and provides developers with
actionable insights. Fig. 1 shows our approach to identifying and categorizing conflicting sentiments. We use cutting-edge advanced
NLP techniques, such as pre-trained language models, word embeddings, and text similarity measures, to analyze user feedback data
precisely. Subsequent subsections in this section further provide detailed explanations of each component.

3.1. Crowdsourcing user app review

As Fig. 1 reflects, the first step in the proposed approach is to gather and prepare the user feedback data (i.e., crowdsourcing user
app expectations). This part covers how the data is collected and the specific techniques used for pre-processing, such as tokenization,
removing stopwords, and stemming.

3.1.1. Data collection process
The user feedback corpus is sourced from various platforms, such as Google Play Store and Apple App Store, which provide diverse

user feedback, including app reviews and casual comments. To maintain data integrity and representation, we developed web crawlers
to gather information such as review titles, descriptions, categories, publication dates, and star ratings and saved it in JSON format.
Table 1 shows examples of pre-processed sentences.

3.1.2. Pre-processing techniques
After collecting user feedback data, pre-processing techniques are applied to clean and normalize the text, enhancing the precision

and effectiveness of advanced NLP tasks like sentiment analysis and semantic similarity calculations. Tokenization divides the text into
smaller units called tokens, which can represent words, phrases, or other significant text units. Stopwords, everyday words that add
little meaning, are then removed to improve text clarity. Stemming reduces words to their base form, which helps handle inflected
forms like plurals or past tense verbs. The Porter stemmer algorithm is commonly used for this purpose. These pre-processing steps are
crucial for reducing noise and improving the quality of user feedback data, allowing for more accurate semantic content and sentiment
analysis, ultimately leading to enhanced conflict detection and resolution. Table 1 shows samples of sentences pre-processed.

3.2. Robustly Optimized BERT pre-training approach -based sentiment analysis

To understand the sentiment expressed in user feedback and identify feedback instances that may contain conflicting sentiments,
we employ advanced sentiment analysis techniques leveraging RoBERTa pre-trained language models, as shown in Fig. 2. As illus-
trated in Fig. 2, the input sentence is first tokenized and converted into embeddings, which are summed with positional encodings. The
embeddings are then sent through the encoder layers, which include multi-head self-attention and feed-forward networks.

The final output of the encoder is fed into the classification head, which produces the probability distribution over the sentiment
classes (positive, negative, neutral). To perform sentiment analysis on our collected user feedback data, we utilize the encoder
component for sentiment analysis, as it is a text classification task. The encoder consists of N identical layers containing a multi-head

Table 1
Sample of sentence pre-processed.

Sentence "The app’s user interface is intuitive."
tokenized [’The’, ’app’s’, ’user’, ’interface’, ’is’, ’intuitive’]
stopwords [’app’s, ’user’, ’interface’, ’intuitive’]
stemmed [’app’, ’user’, ’interface’, ’intuit’]
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self-attention mechanism and a position-wise feed-forward network. The input token sequence is converted to embeddings, combined
with positional encodings to include positional information. These embeddings then go through the encoder layers, where the self-
attentionmechanism calculates the weighted sum of values by assessing the compatibility between queries and keys (see Equation (1)).

Attention (Q,K,V)= softmax
(
QKT
̅̅̅̅̅
dk

√

)

V (1)

The queries, keys, and values (Q, K, V) are derived from the input embeddings in the multi-head attention mechanism. A scaling
factor of sqrt(dk) is applied to ensure numerical stability. The attention is computed h times in parallel, with each head using different
linear projections of the input embeddings as queries, keys, and values. The outputs of the heads are concatenated and linearly
transformed according to Equations (2) and (3), respectively.

ltiHead(Q,K,V)=Concat(head1,……‥, headn)Wo (2)

headi= attention
(
QWQ

i ,KW
K
i ,VW

V
i
)

(3)

Where WQ
i ,W

K
i ,W

V
i are learnable projection matrices for the queries, keys, and values in the i-th head.

The multi-head attention layer output is next sent through a position-wise feed-forward network. This network applies two linear
transformations with a ReLU activation in between, as defined by Equation (4).

FFN(x)=max
(
0,WT

1 + b1
)
WT

2 + b2 (4)

This process is repeated for each encoder layer, with residual connections and layer normalization applied for stability and
improved performance. The encoder’s final output is usually passed to a classification head in sentiment analysis. This head consists of
a linear layer followed by a softmax activation to generate the probability distribution across different sentiment classes. Furthermore,
the sentiment analysis step serves as a crucial first filter, allowing us to prioritize feedback instances that exhibit potential conflicts or
mixed sentiments for further in-depth analysis in subsequent stages of our approach.

3.3. Topic modeling

After conducting sentiment analysis on user feedback, we apply topic modeling techniques to uncover the underlying topics within
the data. These topics can represent different aspects, features, or functionalities of the mobile app, offering a more advanced semantic
interpretation of the feedback. Specifically, we use NMF, a reliable and widely used algorithm for topic modeling that has shown
effectiveness in various text-mining scenarios. In mathematical terms, NMF aims to estimate the term-document matrix X (with di-
mensions m × n, where m is the number of terms and n is the number of documents) by multiplying two non-negative matrices, W
(with dimensions m × k) and H (with dimensions k × n), where k is the desired number of topics.

X ≈ WH (5)

The goal is to locate matrices W and H that reduce the reconstruction error between X and its approximation WHwhile adhering to
the non-negativity constraints on W and H. A commonly used method is to minimize the Frobenius norm of the reconstruction error.

Fig. 2. The overall process of how an input sentence is processed using the RoBERTa model for sentiment analysis.
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min||X − WH|| F2 (6)

s.t.W≥0,H ≥ 0 (7)

where the columns of W represent the term distributions for each topic, and the rows of H represent the topic proportions for each
document (in our case, user feedback instance).

Various algorithms, such as the Multiplicative Update Rules, can solve this optimization problem [56]. This iterative algorithm
updates the values of W and H until convergence, minimizing the reconstruction error while enforcing the non-negativity constraints.
In our approach, we first construct the term-document matrix X from the pre-processed user feedback data, where each document
corresponds to a feedback instance, and the term frequencies (TF-IDF) are used as the matrix entries. We use NMF to break down X into
two matrices, H and W, based on a selected number of topics, k. The resulting topic-document matrix H provides the topic proportions
for each feedback instance, allowing us to group related feedback comments based on their dominant issues. Moreover, by analyzing
the term-topic matrix W, we can interpret and label the discovered topics, as the matrix entries represent the importance or relevance
of each term to a particular topic. All the processes are described in Algorithm 1.

Algorithm1. NMF Topic Model Optimization

Input: Term-document matrix X (m × n), number of topics k
Output: Term-topic matrix W (m × k), Topic-document matrix H (k × n)
1. Initialize W and H with non-negative random values
2. repeat
3. Update H: H = H * (WT * X)./(WT * W *H + ε)
4. Update W: W = W * (X * HT)./(W * H * HT + ε)
5. Normalize columns of W
6. until convergence or maximum iterations are reached
7. return W, H

Fig. 3. Flow Chart of the Feedback Clustering approach.
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3.4. User feedback clustering

We employ clustering techniques to group related user feedback instances based on the topics identified in the NMF topic modeling
stage. This clustering step aims to reveal clusters potentially representing conflicting user requirements or preferences, facilitating the
subsequent conflict detection and resolution processes. We utilize hierarchical clustering, a cutting-edge sentence embedding model,
to accurately capture semantic similarities in feedback instances. To overcome the limitations of conventional methods in capturing
nuanced semantics and contextual information in text, we leverage Sentence-BERT [57]. Based on BERT architecture and fine-tuned on
a vast amount of natural language inference data, this model produces highly informative and semantically rich sentence embeddings.
The essential advantage of using Sentence-BERT in our approach is its ability to accurately capture the semantic similarities between
feedback instances, even when they exhibit lexical or syntactic variations. This is achieved through the model’s deep understanding of
language and its ability to capture contextual information. It is well-suited for clustering user feedback data, which often contains
informal language, domain-specific terminology, and diverse writing styles.

Fig. 3 illustrates a visual representation of the feature clustering, highlighting the integration of Sentence-BERT for obtaining
semantically meaningful sentence embeddings and cosine distance and hierarchical clustering for grouping related feedback instances.

In our implementation, we first obtain sentence embeddings for each user feedback instance using the pre-trained Sentence-BERT
model. These embeddings are then used as input to the hierarchical clustering algorithm, where the distance between clusters is
computed using a suitable distance metric, cosine similarity distance, applied to the corresponding sentence embeddings. To achieve
clustering, we create a dendrogram by merging the closest clusters based on distances. We generate sentence embeddings using
Sentence-BERT for each instance in X = {x₁, x₂, …, xₙ}. Each feedback instance xᵢ is represented by an m-dimensional sentence
embedding vector e(xᵢ) ∈ ℝᵐ. The cosine distance between two sentence embeddings e(xᵢ) and e(xⱼ) is calculated as follows:

d(e(xᵢ), e(xⱼ))=1 − cos sim(e(xᵢ), e(xⱼ))=1 − (e(xᵢ) ⋅ e(xⱼ)) / (||e(xᵢ)|| ⋅ ||e(xⱼ)||) (8)

where cos_sim(e(xᵢ), e(xⱼ)) is the cosine similarity and || ⋅ || denotes the L₂ norm. For the average-linkage method, the distance between
clusters C₁ and C₂ is defined as:

d(C1,C2)= (1 / |C1| ⋅ |C2|) ∗ Σ d(e(xᵢ), e(xⱼ)) xᵢ∈C1, xⱼ ∈ C2 (9)

where |C₁| and |C₂| are the cardinalities of clusters C₁ and C₂, respectively.
By leveraging the power of Sentence-BERT embeddings and the flexibility of hierarchical clustering with cosine distance, Algorithm

2 describes the process of accurately grouping related user feedback instances, capturing semantic and contextual similarities while
accounting for language nuances and variations. The algorithm iteratively merges the closest clusters based on the distance matrix D,
updating it with the new cluster distances as each merge occurs. This process continues until a stopping criterion is reached, like
reaching a maximum number of clusters or a minimum cluster size. Finally, the algorithm constructs the hierarchical clustering
dendrogram based on the merging order and distances and returns the dendrogram as the output.

Algorithm 2. User Feedback Clustering Algorithm

Input: Set of user feedback instances X = {x₁, x₂, …, xₙ}
Output: Hierarchical clustering dendrogram
1. Calculate sentence embeddings e(x₁), e(x₂), …, e(xₙ) using Sentence-BERT

2. Initialize each feedback instance as a separate cluster: C₁ = {x₁}, C₂ = {x₂}, …, Cₙ = {xₙ}
3. Compute pairwise cosine distances between all clusters:

D = [d(e(xᵢ), e(xⱼ))] for all i, j ∈ {1, 2, …, n}
4. while the stopping criterion is not met:
5. Find the two closest clusters, Cᵢ and Cⱼ, based on the distance matrix D
6. Merge Cᵢ and Cⱼ into a new cluster Cₖ = Cᵢ ∪ Cⱼ
7. Update distance matrix D by removing rows/columns corresponding to Cᵢ and Cⱼ

8. Compute distances between new cluster Cₖ and all remaining clusters using the chosen linkage method
9. Add new distances to distance matrix D
10. Construct a dendrogram based on merging order and distances
11. return dendrogram

3.5. Conflict detection of contradictory user feedback

Wedetect potential conflicts within and across the resulting clusters after clustering the user feedback instances based on their semantic
similarities and topic distributions. This involves identifying clusters with significant positive and negative sentiments and clusters con-
taining feedback instances that express contradictory opinions or requirements. We employ techniques such as contradiction detection
using RoBERTa and lexical-based methods for identifying antonyms and negations to achieve this. Combining these techniques, we aim to
capture high-level semantic contradictions and the more granular lexical cues that may signal conflicting feedback. Fig. 4 illustrates the
conflict detection process by considering the steps described in Algorithm 3. Our approach uses these pre-trained models to identify
contradictory feedback instances within each cluster. Precisely, we fine-tune RoBERTa on a labeled dataset of contradictory and non-
contradictory text pairs, enabling it to learn the patterns and linguistic cues that indicate contradiction.
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Algorithm 3. Algorithm for Conflict Detection
Input:

- Set of user feedback clusters C = {C₁, C₂, …, Cₖ}
- Pre-trained RoBERTa model M_roberta for contradiction detection
- WordNet lexical database
- Negation dictionary D_neg (containing negation words and phrases)

Output:
- Set of potential conflicts PC

1. Initialize an empty set of potential conflicts PC = {}
2.for each cluster Cᵢ in C:
3. for each pair of feedback instances (f₁, f₂) in Cᵢ:
4. # Contradiction Detection using RoBERTa
5. contradiction_score = M_roberta(f₁, f₂)
6. if contradiction_score > threshold_contradiction:
7. PC.add((f₁, f₂))
8. # Antonym Detection using WordNet
9. antonym_pairs = []
10. for word₁ in tokenize(f₁):
11. for word₂ in tokenize(f₂):
12. if are_antonyms(word₁, word₂, WordNet):
13. antonym_pairs.append((word₁, word₂))
14. if antonym_pairs:
15. PC.add((f₁, f₂, antonym_pairs))
16. # Negation Detection
17. negations_f₁ = identify_negations(f₁, D_neg)
18. negations_f₂ = identify_negations(f₂, D_neg)
19. if negations_f₁ or negations_f₂:
20. PC.add((f₁, f₂, negations_f₁, negations_f₂))

Fig. 4. Conflict detection of contradictory user feedback process with input and output sample.
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During the conflict detection process, we generate pairs of feedback instances within each cluster and feed them into the fine-tuned
model. The model then outputs a probability score indicating the likelihood of contradiction between the two instances. Feedback
instance pairs with a high probability of contradiction are flagged as potential conflicts. For example, in case (A) in Fig. 5, the pre-
trained model will likely detect a high contradiction score due to strict antonyms (intuitive vs. confusing, easy vs. difficult). While
pre-trained language models excel at capturing high-level semantic contradictions, they may overlook more granular lexical cues that
signal conflicts. To complement the contradiction detection approach with antonyms and negations, we leverage lexical resources
using WordNet [58], which captures semantic relationships between words. For example, consider the pair of reviews in case (B).
while there are no strict antonyms, the contrasting meanings of "fast" and "slow" in loading times would be identified as non-strict
antonyms, indicating a potential conflict.

Moreover, the presence of negations can also signal conflicting or contradictory feedback. We employ rule-based negation dic-
tionaries to identify negations within the feedback instances accurately. By combining the detection of antonyms and negations with
the outputs from the pre-trained language model for contradiction detection, we can better understand the potential conflicts present
in the user feedback data.

This approach effectively captures high-level semantic contradictions and detailed lexical cues, enhancing conflict detection’s
accuracy and reliability. The output of this conflict detection process can then be further processed and analyzed in the subsequent
stages of conflict resolution and prioritization.

3.6. Procedure for conflict resolution and prioritization

After identifying potential conflicts within and across user feedback clusters, the next crucial step is to derive actionable insights
and prioritized requirements to guide the mobile app development process. In our approach, we employ a multi-faceted strategy that
combines various conflict resolution and prioritization techniques. These techniques leverage the outputs from the previous stages,
such as sentiment analysis, topic modeling, and conflict detection, while incorporating additional contextual information. One of the
fundamental techniques employed in our conflict resolution and prioritization process is majority voting. This quantitative method
analyzes the sentiment distributions within each conflict cluster to identify if a clear majority sentiment emerges, thus prioritizing the
corresponding requirement or preference.

As shown in Fig. 6, most feedback instances express a positive sentiment. This suggests that, despite some negative feedback, the
overall user sentiment is positive, and the corresponding requirements should be prioritized. Consequently, the development teammay
focus on enhancing and refining the feature requests rather than others. However, it is essential to note that majority voting is just one
component of our multi-faceted conflict resolution strategy. In addition, we also incorporate weighted ranking-based rating scores and
frequency of features. However, majority voting alone may not capture the nuances and varying degrees of user satisfaction or
dissatisfaction.

To address this limitation, we incorporate a weighted ranking technique that considers the rating scores assigned by users to
specific app features or aspects. These rating scores, often on a numerical scale (1–5 stars), offer a more granular representation of user
sentiment than binary positive/negative classifications. The weighted ranking process involves aggregating the rating scores for each
feature or aspect across all user feedback instances and then ranking them based on their weighted average scores. Features with higher
weighted average scores are considered more positively received by users and are prioritized for enhancement or refinement.
Conversely, features with lower weighted average scores may require more substantial improvements or redesigns to address user
dissatisfaction.

In addition to sentiment analysis and rating scores, our approach also considers the frequency with which specific features or
aspects are mentioned in the user feedback corpus. This frequency analysis provides insights into the relative importance or criticality
of different features from the users’ perspective. Features frequently mentioned, positively or negatively, will likely be more salient
and impactful to the overall user experience. By combining the weighted ranking based on rating scores with the frequency analysis of
feature mentions, our approach can prioritize requirements that address user satisfaction or dissatisfaction and account for the relative
importance or criticality of those features to the users.

Fig. 5. Examples of contradiction mobile app review pairs, where the contradictory parts involve antonyms and non-strict antonyms.
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3.7. Visualization and Reporting using LIME

While our approach’s quantitative and qualitative techniques provide valuable insights for conflict resolution and prioritization,
effectively communicating these insights to stakeholders, such as developers, product managers, and end-users, is crucial for informed
decision-making and transparency. In response to this requirement, we utilize Local Interpretable Model-Agnostic Explanations
(LIME), a valuable technique for explaining the predictions of intricate ML models [59]. LIME seeks to identify an interpretable model
g that approximates the complex model f for a given instance x. This is achieved by minimizing a specific objective function (see
Equation (10)).

ξ(x)= argmingЄG Ɩ(f, g, π x) + Ω(g) (10)

where Ɩ(f, g, π_x) quantifies the similarity between the complex model f and the interpretable model g, with emphasis on a neigh-
borhood π_x surrounding the point x and Ω(g) promotes simplicity and interpretability in the interpretable model g.

These explanations can be presented in various forms, such as visualizations highlighting the key phrases or aspects of the feedback
instances or textual explanations providing a concise summary of the decision rationale. Incorporating LIME into our approach can
enhance transparency and interpretability, enabling stakeholders to understand the reasoning behind the prioritized requirements and
conflict resolutions. Algorithm 4 summarizes the LIME algorithm for creating local explanations in conflict resolution. The input for
this algorithm includes the instance to be explained (feedback or Conflict), the complex model representing conflict detection and
resolution techniques, the number of perturbed samples to generate, and the kernel width parameter.

Algorithm 4. Visualization and Reporting with LIME

Input:
- Instance x (e.g., a feedback instance or a conflict)
- Complex model f (ensemble of techniques for conflict detection and resolution)
- Number of perturbed samples N
- Kernel width σ

Output:
- Interpretable model g for explaining the prediction or decision, for instance, x

1. Generate N perturbed samples x’ around instance x using a perturbation technique (e.g., word deletion, word masking)
2. Obtain the predictions or decisions f(x’) for the perturbed samples using the complex model f
3. Construct the dataset D = {(x’_i, f(x’_i)), i = 1, …, N}
4. Define the interpretable model g (e.g., sparse linear regression)
5. Define the locality measure π_x (e.g., exponential kernel)
6. Define the complexity measure Ω(g) (e.g., L1 regularization)
7. Minimize the objective function:

ξ(x) = argmin_g Ɩ(f, g, π_x) + Ω(g)
to obtain the interpretable model g

8. Use the interpretable model g to generate explanations for the prediction or decision f(x)
9. Visualize or report the explanations for stakeholders

4. Experimental evaluation

We conducted an experimental study to evaluate the efficacy and practicality of our proposed approach for conflict detection and
resolution in mobile app features using contradictory feedback analysis. This study focused on assessing our method in real-world
mobile applications.

4.1. Datasets

The proposed approach for identifying and resolving conflicts in mobile app features through contradictory feedback analysis was
evaluated on two large-scale user feedback datasets collected from the iOS App Store and Google Play Store. These datasets were
carefully curated to encompass various apps and user reviews, ensuring a comprehensive and representative evaluation of the

Fig. 6. Majority voting for conflict resolution.
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proposed techniques. The iOS App Store dataset comprised 2,457,832 reviews spanning 1024 distinct apps. This dataset exhibited an
average review length of 67 words, highlighting user feedback’s varying levels of detail and complexity.

Notably, the number of reviews per app varied significantly, with a median of 1523 reviews, a minimum of 128 reviews, and a
maximum of 9745 reviews. This diversity in review count per app allowed for assessing the scalability and robustness of the approach
under different data distributions. Furthermore, the dataset encompassed feedback on 287 unique app features or aspects, providing a
rich and diverse corpus for evaluating the topic modeling and conflict detection components. Secondly, the Google Play Store dataset
comprised an even more extensive collection of 4,923,664 reviews from 2048 apps. While the average review length was slightly
shorter at 53 words, the dataset exhibited similar characteristics in terms of review count variability, with a median of 1893 reviews
per app, a minimum of 312, and a maximum of 12,987 reviews. This dataset covered feedback on 341 unique app features or aspects,
further enhancing the diversity and representativeness of the evaluation corpus. Rating distributions were analyzed to gain insights
into the sentiment distributions within these datasets. In the iOS App Store dataset, most reviews (52.3 %) were assigned a 5-star
rating, followed by 23.1 % with 4 stars, 11.7 % with 3 stars, 6.4 % with 2 stars, and 6.5 % with 1 star.

Similarly, in the Google Play Store dataset, 46.2 % of reviews had a 5-star rating, 27.8 % had 4 stars, 13.5 % had 3 stars, 6.9 % had 2
stars, and 5.6 % had 1 star. These ratings show a mix of positive and negative sentiments in the data, making it ideal for testing the
effectiveness of the proposed approach in sentiment analysis and conflict detection. The datasets focused on reviews from 2020 to 2023
to represent current language patterns and were converted into CSV format. Table 2 summarizes the key statistics of the user feedback
datasets used for evaluation, allowing for a comprehensive understanding of the data characteristics and their implications for
assessing the proposed approach’s performance.

4.2. Evaluation metrics

We evaluated the effectiveness of the proposed approach using standard evaluationmetrics commonly used in NLP and information
retrieval tasks. These metrics were calculated for the approach’s sentiment analysis and conflict detection components. Specifically, we
used precision to measure the fraction of relevant extracted features and recall to determine the percentage of successfully retrieved
features. To consolidate the effectiveness of our approach, we used the f1-measure, which merges precision and recall through a
harmonic equation. Furthermore, we attributed great value to Mean Average Precision, which determines the average precision across
recall levels. Lastly, we ranked the first relevant extracted feature using the Mean Reciprocal Rank (MRR). MRR is a widely used metric
in information retrieval and ranking tasks, where a higher value indicates better ranking performance. Other evaluation metrics used
are the Adjusted Rand Index (ARI) and the Silhouette Coefficient, which measure the quality of the clustering results. As for metric
computation, our approach is a micro-average methodology where TP, FP, FN, and TN are first aggregated before analysis. The
Equation used for evaluation metrics is described in Table 3.

4.3. Model implementation details

Our approach utilized advanced NLP models and techniques for implementation. Details on model parameters and training
hyperparameters are provided in Table 4. For instance, the RoBERTa-base model with 12 transformer layers, a hidden size 768, and 12
attention heads was fine-tuned on a dataset of text pairs with contradictory and non-contradictory labels. The training utilized a
learning rate of 3e-5, a batch size of 16, and 10 epochs. Similarly, sentiment analysis and contradiction detection tasks involved fine-
tuning the base RoBERTa model on specific datasets with varying sequence lengths, batch sizes, learning rates, and training epochs.
The Sentence-BERT model used for semantic similarity employed a bert-base-nli-mean-tokens model with an embedding dimension of
768. For topic modeling using NMF, 20 topics were set with initialization performed using non-negative double singular value
decomposition. The maximum number of iterations was 200, with a convergence tolerance of 1e-4. In the hierarchical clustering step,
the average linkage method was used with a distance threshold of 0.5 and cosine similarity as the affinity measure. These model
parameters and hyperparameters were chosen based on best practices and empirical evaluation on a validation set to ensure optimal
performance for the respective tasks.

Table 2
User feedback datasets used.

Statistic iOS App Store Dataset Google Play Store Dataset

Number of Reviews 2,457,832 4,923,664
Number of Apps 1024 2048
Average Review Length (words) 67 53
Number of Reviews (Median per App) 1523 1893
Number of Reviews (Minimum per App) 128 312
Number of Reviews (Maximum per App) 9745 12,987
Number of Unique App Features/Aspects 287 341
Rating Distribution 5★: 52.3 %, 4★: 23.1 % 5★: 46.2 %, 4★: 27.8 %

3★: 11.7 %, 2★: 6.4 % 3★: 13.5 %, 2★: 6.9 %
1★: 6.5 % 1★: 5.6 %
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5. Experimental results

RQ1 How can our proposed approach, utilizing advanced NLP techniques, effectively identify and categorize conflicting user feedback in
mobile app reviews?

To address RQ1, our approach utilizes advanced NLP techniques to analyze user feedback effectively. The aspect-based sentiment
analysis identifies app features mentioned in the input and assigns a sentiment polarity (positive, negative, neutral) to each aspect. This
is crucial for understanding the user’s sentiment toward different aspects of the app, which can help detect potential conflicts. Using
the samples in Table 5, we identified the app features or aspects and the sentiment polarities expressed in the user feedback instances.
For each sentiment polarity, we expressed the number of cases and the corresponding percentages to the respective app feature or
aspect, such as Photo Editing Tools, Camera Features, Battery life, User Interface, and Performance, which are identified as shown in
Table 6. These five features were among themost frequently mentioned and had the most diverse sentiment distributions, making them
particularly interesting for demonstrating our approach to conflict detection and resolution. For instance, the "Photo Editing Tools"
aspect received a high percentage (65.2 %) of positive sentiment, indicating that users generally appreciate the app’s photo editing
capabilities.

However, a considerable portion (27.9 %) of negative sentiment instances suggests room for improvement in this aspect, poten-
tially by introducing more advanced tools catering to serious photographers, as evident from the example conflict instances. On the
other hand, the "Battery Life" aspect received an overwhelming majority (76.8 %) of negative sentiment instances, highlighting a
critical area of concern that needs to be addressed by the developers. Users expressed dissatisfaction with the app’s impact on battery

Table 3
Evaluation metrics and corresponding equations.

Metrics Equations

Precision P =
TP

TP+ FP
Recall R =

TP
TP+ FN

F1-Measure F1 = 2 ∗
Precision ∗ Recall
Precision+ Recall

Accuracy Accuracy =
TP+ TN

TP+ FP+ TN+ FN
Mean reciprocal rank MRR =

1
|Q|

∑|Q|
i− =1

1
ranki

Adjusted Rand Index (ARI) ARI = (RI - Expected_RI)/(max(RI) - Expected_RI)
Silhouette Coefficient s(i) = (b(i) - a(i))/max(a(i), b(i))

Table 4
Model parameters and training hyperparameters.

Model/Technique Parameters Training Hyperparameters

RoBERTa (Sentiment Analysis) Base model: Roberta-base Batch size: 32
Maximum sequence length: 128 Learning rate: 2e-5

Epochs: 5
RoBERTa for Contradiction Detection RoBERTa-base (12 layers, 768 hidden sizes, 12 attention heads) Learning rate: 3e-5

Batch size: 16
Epochs: 10
Warmup steps: 500

Sentence-BERT for Text Similarity Sentence-BERT-base (4 layers, 768 hidden sizes, 12 attention heads) Pre-trained model, no further training required
NMF for Topic Modeling Number of topics: 20 Iterations: 1000

Alpha: 0.1
L1_ratio: 0.5

Hierarchical Clustering Linkage method: Average N/A
Distance metric: Cosine similarity

Table 5
Examples of feedback instance.

Feedback Instance Sentiment App Feature. Aspect

1. The photo editing tools in this app are fantastic! There are so many options and filters to choose from. Positive Photo Editing Tools
2. The photo editing capabilities are disappointing. Not enough advanced tools for serious photographers. Negative Photo Editing Tools
3. I love the camera’s low-light mode. It captures excellent shots even in dim lighting. Positive Camera Features
4. The camera performance is terrible in low-light conditions. The images come out blurry and grainy. Negative Camera Features
5. The app’s user interface is intuitive and easy to navigate. Positive User Interface
6. The UI design is confusing and cluttered. It isn’t easy to find the features I need. Negative User Interface
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life, which could be a deal-breaker for many users. The sentiment polarities associated with different app features or aspects can guide
developers in prioritizing their efforts and allocating resources effectively to address user concerns and meet their expectations. The
sentiment analysis stage also uses the RoBERTa pre-trained language model, known for its exceptional performance in various NLP
tasks, including sentiment analysis. While Table 6 highlights five key app features for illustrative purposes, our analysis identified and
evaluated hundreds of features and aspects across the entire dataset, as shown in Appendix A. This appendix showcases various app
features and aspects and their associated positive, negative, and neutral sentiment instances. This detailed breakdown offers deeper
insights into user preferences and pain points across various mobile app functionality and design dimensions.

Table 7 presents the sentiment analysis performance metrics obtained by the RoBERTamodel on the iOS App Store and Google Play
Store datasets. The model performed well on the iOS App Store and Google Play Store datasets, showing high precision, recall, and F1
scores for all sentiment classes. F1 scores on the iOS dataset were 0.903 for positive, 0.860 for negative, and 0.815 for neutral sen-
timents. The Google Play dataset’s F1 scores were 0.893 for positive, 0.847 for negative, and 0.800 for neutral sentiments. These results
illustrate the model’s ability to accurately detect sentiment polarity in user reviews, which is crucial for identifying conflicting
feedback. A comparison with other pre-trained language models, including BERT, XLNet, and DistilBERT, was conducted to evaluate
RoBERTa’s performance in sentiment analysis, as shown in Fig. 7. As Fig. 7 reflects, RoBERTa surpassed these models, achieving the
highest accuracy of 0.892 and macro-averaged F1-score of 0.891, showcasing its effectiveness in correctly classifying sentiment po-
larity in user feedback.

To further analyze the performance of the sentiment analysis component, Fig. 8 presents the confusion matrices for the iOS App
Store and Google Play Store datasets, respectively. These confusion matrices provide a detailed breakdown of the model’s predictions,
allowing for a more nuanced understanding of its strengths and potential areas for improvement. For instance, in the iOS App Store
dataset, the model correctly classified 915 instances as positive, 849 as negative, and 804 as neutral.

However, it misclassified 35 positive instances as negative, 51 negative instances as positive, and 76 positive instances as neutral,
among other misclassifications. Similar patterns can be observed in the Google Play Store dataset, with the model exhibiting a slightly
higher tendency to misclassify negative instances as neutral compared to the iOS dataset. These insights from the confusion matrices
can guide future improvements in the sentiment analysis component, such as fine-tuning the model on domain-specific data or
incorporating additional features to better capture the nuances of user feedback.

Complementing the sentiment analysis component, the topic modeling stage aims to discover latent topics representing different
app features or aspects within the user feedback corpus. Table 8 presents the topic modeling coherence and diversity scores, which
measure the semantic coherence and separation of the identified topics. On the iOS App Store dataset, the proposed approach achieved
a topic coherence score of 0.647 (using the Calinski-Harabasz Index) and a topic diversity score of 0.872. The coherence score for the
Google Play Store dataset was 0.619, and the diversity score was 0.857. These scores indicate that the identified topics exhibit high
semantic coherence, with related terms and aspects effectively grouped.

Furthermore, the diversity scores demonstrate that the approach discovered distinct and non-overlapping topics representing
different app features or aspects. To provide a qualitative understanding of the identified topics, Fig. 9 shows the top terms associated
with each topic using word clouds or topic networks. This visualization aids in interpreting and labeling the discovered topics, enabling
a better understanding of the app features or aspects represented by each topic. For example, one topic may be dominated by terms
such as "interface," "design," "layout," and "UI," suggesting that it represents feedback related to the user interface and visual design
aspects of the app. Another topic may include terms like "performance," "speed," "lag," and "crash," indicating that it captures feedback
on the app’s performance and stability. The proposed approach can accurately pinpoint conflicting sentiments and potential feature
conflicts within mobile apps using advanced NLP techniques such as cutting-edge language models and topic modeling algorithms. The
sentiment analysis component accurately captures the sentiment polarity of user feedback.

In contrast, the topic modeling component discovers latent topics and group-related feedback instances, enabling the identification
of conflicts within and across these topics. The performance metrics, visualizations, and results in this section confirm the effectiveness
of the proposed approach in addressing research question RQ1. This provides a solid basis for analyzing and resolving any conflicts that
have been identified.

RQ2 What clustering and prioritization methods are most suitable for resolving conflicts and deriving consistent requirements from contra-
dictory feedback?

To address RQ2, we evaluated various clustering algorithms and prioritization strategies, considering their suitability for effec-
tively grouping related user feedback instances and resolving conflicts. Our approach employed hierarchical clustering with Sentence-
BERT embeddings to group semantically similar user feedback instances. The user feedback clustering step employs the Sentence-BERT

Table 6
Frequently identified app features/aspects and associated sentiment polarities.

App Feature/Aspect Positive Sentiment Instances Negative Sentiment Instances Neutral Sentiment Instances

Photo Editing Tools 1234 (65.2 %) 527 (27.9 %) 131 (6.9 %)
Camera Features 2017 (71.8 %) 386 (13.7 %) 407 (14.5 %)
User Interface 1628 (58.1 %) 919 (32.8 %) 256 (9.1 %)
Battery Life 421 (18.9 %) 1712 (76.8 %) 96 (4.3 %)
Performance 1103 (49.5 %) 874 (39.2 %) 252 (11.3 %)
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model to obtain semantically meaningful sentence embeddings, which are then used for hierarchical clustering. Using the Feedback
Instances with Contradictory Sentiments sample identified in RQ2 illustrated in Table 9, we compute the combination of instance pair
with semantic similarity measures and sentiment polarities. As shown in Table 10, the semantic similarity scores range from 0.62 to
0.91, indicating the degree of similarity in meaning or context between the paired instances. A higher score suggests a more substantial
semantic similarity.

Additionally, the sentiment polarity reveals the sentiment orientation or polarity of the paired instances. For instance, the pair 1–2
has a semantic similarity of 0.82 and a sentiment polarity of "Positive-Negative," suggesting that while the instances are semantically
similar, they express contrasting sentiments (positive and negative) towards the same app feature or aspect. This could potentially

Table 7
Performance metrics obtained by RoBERTa on the user feedback datasets.

Dataset Sentiment Class Precision Recall F1-Score

iOS App Store Positive 0.892 0.915 0.903
Negative 0.871 0.849 0.860
Neutral 0.827 0.804 0.815

Google Play Store Positive 0.879 0.907 0.893
Negative 0.856 0.838 0.847
Neutral 0.811 0.789 0.800

Fig. 7. Comparative analysis of proposed RoBERTa with existing approaches.

Fig. 8. iOS App and Google Play Stores Sentiment Analysis Confusion Matrix.

Table 8
Topic modeling coherence and diversity scores.

Dataset Topic Coherence (CV) Topic Diversity

iOS App Store 0.647 0.872
Google Play Store 0.619 0.857
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indicate conflicting or contradictory feedback from users. On the other hand, instances with the same sentiment polarity (pair 1–3 with
"Positive-Positive") are likely to express similar sentiments towards the app feature or aspect despite their varying semantic similarity
scores. Moreover, pairs with different sentiment polarities ("Negative-Positive" for pairs 2–3) might indicate contrasting opinions or
experiences about the same app feature or aspect.

A comparison with other similarity measures was conducted to evaluate the effectiveness of Sentence-BERT in capturing semantic
similarities between user feedback instances. Table 11 compares the performance of Sentence-BERT with other semantic similarity
measures, such as TF-IDF Cosine, Word Mover’s Distance, and Soft Cosine, for clustering related user feedback instances. Sentence-
BERT outperforms the different similarity measures, achieving the highest ARI of 0.712 and the highest Silhouette Coefficient of
0.621. These results demonstrate the effectiveness of Sentence-BERT in capturing semantic similarities between user feedback in-
stances, even in the presence of lexical variations and informal language, leading to more accurate clustering of related feedback.

However, to compare the performance and suitability of our clustering approach, Hierarchical Clustering with Sentence-BERT, we
conducted experiments with alternative methods, such as K-means clustering and DBSCAN in grouping related user feedback instances
based on semantic similarity, evaluated using ARI and Silhouette Coefficient metrics. As shown in Fig. 10, hierarchical clustering with
Sentence-BERT embeddings outperformed other algorithms, K-means, and DBSCAN in terms of ARI and Silhouette Coefficient metrics.
These metrics measure the quality of the clustering results, with higher values indicating better clustering performance. The results
showcase the ability to accurately capture the underlying semantic relationships between user feedback instances, leading to more
meaningful and coherent clusters. In addition, we evaluate the trade-off between the True Positive Rate (TPR) and the False Positive
Rate (FPR) through AUC curves. As shown in Fig. 11, the Hierarchical Clustering algorithm, which builds a hierarchy of clusters by
merging or splitting them based on their similarity, exhibited superior performance with an AUC score of 0.89. In contrast, the K-Means
and DBSCAN algorithms achieved an AUC score of 0.82 and 0.86, respectively. This outstanding performance can be explained by
Hierarchical Clustering’s ability to handle varying cluster shapes and densities, making it more suitable for user feedback data’s
complex and diverse nature.

The confusion matrix provides insights into the types of conflicts correctly or incorrectly identified by the proposed approach. As
shown in Table 12, the rows represent the actual classes (Actual Non-Conflict and Actual Conflict), while the columns represent the
predicted classes (Predicted Non-Conflict and Predicted Conflict). The values 1842 and 354 in the diagonal represent correctly
classified instances, with the predicted label matching the actual label. The off-diagonal values (178 and 126) represent the mis-
classified instances. The confusion matrix shows that the proposed approach performed reasonably well detecting conflicts, correctly
identifying 354 out of 480 conflict instances. However, there were some false positives (178), where non-conflicting instances were
incorrectly classified as conflicts, and false negatives (126), where actual conflicts were missed.

Analyzing misclassified instances provides developers with valuable insights into difficult-to-detect conflicts and areas for
improvement in conflict detection techniques. Performance in conflict detection was assessed by testing different combinations of
sentiment analysis (RoBERTa, BERT, XLNet) and semantic similarity techniques (Sentence-BERT,WordMover’s Distance, Soft Cosine),
with results shown in Table 13. Additionally, the last row showcases the performance when combining RoBERTa with antonym
detection and negation detection techniques. As evident from the results, the combination of RoBERTa for sentiment analysis and
Sentence-BERT for semantic similarity achieved the highest F1-score of 0.781, indicating a good balance between precision (0.832)
and recall (0.738) in detecting conflicts. The highest performance was achieved by combining RoBERTa with antonym and negation
detection techniques, resulting in a precision of 0.849, recall of 0.752, and an F1-score of 0.797. This synergy capitalizes on RoBERTa’s
semantic understanding and the precision of antonym and negation detection in identifying conflicting cues. These results can be
valuable for app developers and researchers as they provide insights into user feedback patterns, identify potential areas of Conflict or
contradiction, and assist in addressing or resolving contradictory feedback during the app development or improvement process.

Our approach uses multiple techniques like majority voting, weighted ranking, and frequency analysis to address conflicting
feedback and prioritize requirements. The majority voting technique analyzes the sentiment distributions within each conflict cluster
to identify if a clear majority sentiment emerges, thus prioritizing the corresponding requirement or preference [60]. Table 14 presents

Fig. 9. Visualizing identified topics with word clouds.

Table 9
Examples of feedback instances with contradictory sentiments.

Review 1 Sentiment Review 2 Sentiment

"The app’s user interface is intuitive and easy to navigate." Positive "The app’s user interface is confusing and difficult to use." Negative
"The app’s loading times are lightning-fast." Positive "This app is incredibly slow and takes forever to load." Negative
"The new update has introduced several bugs and crashes." Negative "The latest update has fixed many issues and improved stability." Positive
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Table 10
Sample of semantic similarity measures and sentiment polarities.

Instance Pair Semantic Similarity Sentiment Polarity

1–2 0.82 Positive-Negative
1–3 0.91 Positive-Positive
2–3 0.68 Negative-Positive
3–4 0.75 Positive-Neutral
4–5 0.89 Neutral-Positive
5–6 0.62 Positive-Negative

Table 11
Evaluation of semantic similarity measures for clustering.

Similarity Measure Adjusted Rand Index (ARI) Silhouette Coefficient

Sentence-BERT 0.712 0.621
TF-IDF Cosine 0.598 0.514
Word Mover’s Distance 0.667 0.582
Soft Cosine 0.681 0.596

Fig. 10. Performance comparison of clustering algorithms for user feedback grouping.

Fig. 11. AUC curve for the proposed method by implementing different clustering techniques.
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the results of the majority voting analysis, showing the percentage of clusters where a majority sentiment (positive or negative) was
identified. As evident from Table 14, a clear majority sentiment emerged in a significant portion of clusters, either positive or negative.
For instance, in the iOS App Store dataset, 67.3 % of clusters exhibited a majority of positive sentiment, while 19.8 % had a majority of
negative sentiment. This information can guide developers in prioritizing the corresponding requirements or addressing the areas of
user dissatisfaction represented by the negative sentiment clusters.

Complementing the majority voting technique, the proposed approach incorporates a weighted ranking based on rating scores and
a frequency analysis of feature mentions. The weighted ranking considers the rating scores assigned by users to specific app features or
aspects, offering a more granular representation of user sentiment compared to binary positive/negative classifications. Table 15
presents the top-ranked app features or aspects based on the weighted ranking analysis, their weighted average rating scores, and the
frequency of mentions in the user feedback corpus. For example, "User Interface" ranked highest with a 4.21 rating in the iOS dataset,
reflecting positive user perception of design and usability. Mentioned 28,745 times, it emphasizes its importance. "Performance" (3.87
rating, 19,362 mentions) and "Battery Life" (3.72 rating, 15,842 mentions) followed, indicating users’ focus on app speed, respon-
siveness, and battery consumption for overall user satisfaction.

Additionally, the frequency of mentions provides insights into the relative importance or criticality of different features from the
users’ perspective. Features frequently mentioned, positively or negatively, are likely to be more salient and impactful to the overall
user experience and, thus, should be prioritized accordingly. The proposed approach was assessed using the Mean Reciprocal Rank
(MRR) metric. The MRR score for the iOS App Store dataset was 0.876, and for the Google Play Store dataset, it was 0.849. These high
MRR scores indicate that the proposed approach effectively ranked the most important and relevant app features at the top positions,
aligning with user preferences and priorities as expressed through their feedback. The proposed approach captures a comprehensive
view of user sentiments and preferences by considering the weighted average rating scores and the frequency of feature mentions.
Features with high-weighted average ratings are prioritized, as they represent aspects that users generally perceive positively.

Simultaneously, frequently mentioned features are prioritized, as they will likely significantly impact the overall user experience.
The proposed approach effectively addresses research question RQ2, as evidenced by the weighted ranking, frequency analysis results,
and high MRR scores. The approach can successfully resolve conflicts and prioritize requirements arising from contradictory user
feedback by employing these techniques. It provides developers actionable insights to enhance their mobile apps and improve user
experience.

RQ3 How can visualization and explanation techniques be employed to enhance the transparency and interpretability of the conflict resolution
process for stakeholders?

Improving transparency and interpretability in conflict resolution is vital for facilitating effective communication and decision-
making among stakeholders in mobile app development. The research question RQ3 addresses this aspect. To tackle this challenge,
the proposed approach leverages LIME to generate interpretable and realistic explanations for individual predictions by approximating
the complex model with a locally interpretable surrogate model. The effectiveness of LIME in enhancing the transparency and
interpretability of the conflict resolution process can be observed through various visualizations and textual explanations. Firstly,
consider the examples presented in Fig. 12, which illustrate LIME explanations for conflict detection decisions made by the proposed
approach.

In Fig. 12(a), the LIME explanation highlights the key phrases and terms that contributed to detecting a conflict between two user
feedback instances. The visualization clearly shows that the presence of antonyms such as "intuitive" and "confusing" in the feedback
instances was a significant factor in identifying the Conflict. This transparent explanation empowers stakeholders, such as developers
and product managers, to understand the reasoning behind the identified Conflict and take appropriate actions to address the con-
tradictory user preferences. Similarly, Fig. 12(b) demonstrates a LIME explanation for a conflict related to app performance. The
highlighted terms "fast" and "slow" indicate that the proposed approach detected a conflict due to the contrasting sentiments expressed
regarding the app’s loading times. Such visualizations provide stakeholders with a clear understanding of the specific aspects or

Table 12
Confusion matrix for conflict detection.

Predicted Non-Conflict Predicted Conflict

Actual Non-Conflict 1842 178
Actual Conflict 126 354

Table 13
Conflict detection performance.

Technique Combination Precision Recall F1-Score

RoBERTa + Sentence-BERT 0.832 0.738 0.781
RoBERTa + Word Mover’s Distance 0.794 0.692 0.738
BERT + Sentence-BERT 0.811 0.721 0.763
XLNet + Soft Cosine 0.796 0.684 0.735
RoBERTa + Antonym Detection + Negation 0.849 0.752 0.797
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features contributing to the identified conflicts, enabling targeted interventions and prioritization decisions.
In addition to visualizations, LIME generates textual explanations that summarize the rationale behind the conflict detection de-

cisions. For instance, a textual explanation might state: "A conflict was detected due to contradictory sentiments expressed regarding
the app’s user interface design. Users described the interface as ’intuitive and easy to navigate’ and ’confusing and difficult to use’." These
concise textual explanations complement the visualizations, offering stakeholders a comprehensive understanding of the identified
conflicts and the underlying factors that led to their detection.

Furthermore, the proposed approach employs LIME to generate explanations for the conflict resolution and prioritization decisions,
as illustrated in Fig. 13. These explanations provide insights into the factors influencing the prioritization of specific app features or
requirements, such as user rating scores, frequency of feature mentions, and sentiment distributions. For example, Fig. 13(a) presents a
LIME explanation for prioritizing a photography app’s "Photo Editing" feature. The visualization highlights the high weighted average
rating score (51) and the frequent mentions of this feature in user feedback (37 mentions) as the key factors contributing to its pri-
oritization. Stakeholders can quickly grasp the rationale behind this decision, enabling them to align their development efforts with
user preferences and expectations.

Similarly, Fig. 13(b) illustrates a LIME explanation for prioritizing a productivity app’s "Notification Management" feature. The
explanation points out conflicting opinions about this feature, with a high frequency of mentions (43), suggesting potential user
dissatisfaction that requires attention. The proposed approach enhances stakeholder transparency and interpretability by incorpo-
rating LIME explanations throughout the conflict resolution and prioritization process. These explanations not only justify the de-
cisions made by the approach but also provide valuable insights into the underlying factors and user preferences that shaped those
decisions.

In summary, the proposed approach effectively addresses the research question RQ3 by employing LIME to generate visualizations
and textual explanations that enhance the transparency and interpretability of the conflict resolution process. These explanations
empower stakeholders, such as developers, product managers, and user experience designers, to understand the reasoning behind
identified conflicts, prioritized features, and resolution strategies. By promoting transparency and interpretability, the proposed
approach facilitates informed decision-making, aligns development efforts with user preferences, and ultimately improves user
experience and satisfaction in mobile app development.

Table 14
Majority voting results.

Dataset Clusters with Majority Positive Sentiment Clusters with Majority Negative Sentiment

iOS App Store 67.3 % 19.8 %
Google Play Store 62.1 % 24.5 %

Table 15
Top-ranked app features based on weighted ranking and frequency analysis.

Dataset App Feature Weighted Average Rating Frequency of Mentions

iOS App Store User Interface 4.21 28,745
Performance 3.87 19,362
Battery Life 3.72 15,842

Google Play Store User Interface 4.15 41,729
Stability 4.03 33,481
Functionality 3.94 27,619

Fig. 12. LIME explanations for conflict detection decisions.
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6. Discussion

The proposed approach demonstrates strong quantitative performance across various components. Firstly, in sentiment analysis,
the RoBERTa model achieved impressive F1 scores on both the iOS and Google Play datasets, outperforming other pre-trained models
like BERT, XLNet, and DistilBERT regarding the accuracy and macro-averaged F1 score. The topic modeling component also exhibited
high coherence and diversity scores, indicating semantically coherent and distinct topics representing different app features. The
conflict detection performance was evaluated using several combinations of sentiment analysis and semantic similarity techniques.
Combining RoBERTa for sentiment analysis and Sentence-BERT for semantic similarity achieved a competitive F1-score of 0.781.
However, incorporating antonym and negation detection techniques further boosted the performance, yielding an F1-score of 0.797,
outperforming other technique combinations.

Moreover, the weighted ranking based on rating scores and frequency analysis effectively identified top-ranked app features
aligned with user preferences and priorities, as evidenced by the high Mean Reciprocal Rank scores. Qualitatively, the proposed
approach leverages LIME to generate human-interpretable visualizations and textual explanations, enhancing transparency and
interpretability. For instance, LIME explanations highlight key factors like contrasting sentiments, antonyms, rating scores, and feature
mentions contributing to conflict detection, resolution, and prioritization decisions. These explanations empower stakeholders to
understand the reasoning behind identified conflicts and prioritized features, facilitating informed decision-making. The proposed
solution demonstrates several strengths compared to baseline methods or existing techniques. It integrates advanced NLP techniques,
including state-of-the-art language models and topic modeling algorithms, to identify and resolve conflicts from contradictory user
feedback. Additionally, providing interpretable explanations through LIME sets it apart, promoting transparency and stakeholder
understanding.

However, the proposed approach is not without limitations. Potential false positives or false negatives in conflict detection may
occur, and the performance depends on the training data’s quality and representativeness. Furthermore, biases or inconsistencies in
user feedback could potentially impact the accuracy and reliability of the results. Despite these limitations, the insights and in-
terpretations derived from the findings are valuable. Robust sentiment analysis and topic modeling performance lay a solid foundation
for accurate conflict detection and resolution. As demonstrated by the weighted ranking and majority voting analyses, the ability to
prioritize features based on user preferences aligns development efforts with user expectations, ultimately leading to improved user
experience and satisfaction.

In conclusion, the proposed approach presents a promising solution for addressing the challenges of conflict detection and reso-
lution in mobile app features through contradictory feedback analysis. While further refinements and improvements may be necessary,
integrating advanced NLP techniques, providing interpretable explanations, and aligning with user preferences position this approach
as a valuable tool for stakeholders in the mobile app development ecosystem.

7. Conclusion and future work

This research introduces a new method for identifying and resolving conflicts in mobile app features by analyzing contradictory
user feedback. The key contributions are as follows: The methodology uses advanced NLP techniques, such as RoBERTa for sentiment
analysis, NMF for topic modeling, and Sentence-BERT for semantic similarity, to detect conflicting sentiments and opinions accurately.
A novel conflict detection framework is introduced, combining sentiment analysis results with semantic similarity measures to identify
conflicts and contradictory feedback. The approach also includes techniques for antonym detection and negation handling to enhance
accuracy.

Furthermore, a multi-faceted strategy for resolving conflicts is proposed, including majority voting, weighted ranking, and fre-
quency analysis of feature mentions. LIME generates visualizations and textual explanations for the conflicts, resolution strategies, and
prioritized features, enhancing transparency and interpretability. The approach’s effectiveness is demonstrated through an extensive

Fig. 13. LIME explanations for conflict resolution and prioritization decisions.
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evaluation of user feedback datasets from app stores, outperforming existing methods.
Remarkably, there is no doubt that research on conflict detection and resolution in user feedback has significant implications for

mobile app development and user experience. Developers can prioritize requirements that align with user preferences by effectively
identifying and resolving conflicts among app features based on user feedback, creating mobile apps that better cater to user needs.
This can result in improved user satisfaction, increased app adoption, higher retention rates, and potentially more significant revenue
generation. Extracting actionable insights from user feedback can streamline the app development process, reduce costs, minimize
rework, and accelerate time-to-market for new app releases or updates. Moreover, the approach has broader applications in other
industries that rely on customer feedback, such as e-commerce and hospitality. However, there are limitations, such as the reliance on
textual feedback and the focus on English language feedback.

Future research directions include incorporating additional data sources, handling multilingual feedback, exploring alternative
algorithms, integrating multimodal data, developing interactive interfaces, and enabling real-time conflict resolution. Addressing
these limitations and exploring future research directions could strengthen the approach and broaden its impact across various
industries.
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Appendix A. Full Analysis of App Features/Aspects and Associated Sentiment Distributions

App Feature/Aspect Positive Sentiment Instances Negative Sentiment Instances Neutral Sentiment Instances

Photo Editing Tools 1234 (65.2 %) 527 (27.9 %) 131 (6.9 %)
Camera Features 2017 (71.8 %) 386 (13.7 %) 407 (14.5 %)
User Interface 1628 (58.1 %) 919 (32.8 %) 256 (9.1 %)
Battery Life 421 (18.9 %) 1712 (76.8 %) 96 (4.3 %)
Performance 1103 (49.5 %) 874 (39.2 %) 252 (11.3 %)
Search Functionality 876 (43.8 %) 987 (49.4 %) 137 (6.8 %)
Notifications 1532 (61.3 %) 784 (31.4 %) 184 (7.3 %)
Data Privacy 687 (34.4 %) 1203 (60.2 %) 110 (5.4 %)
Social Sharing 1876 (75.0 %) 412 (16.5 %) 212 (8.5 %)
In-App Purchases 543 (27.2 %) 1324 (66.2 %) 133 (6.6 %)

(continued on next page)
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(continued )

App Feature/Aspect Positive Sentiment Instances Negative Sentiment Instances Neutral Sentiment Instances

Offline Mode 1243 (62.2 %) 634 (31.7 %) 123 (6.1 %)
Customization Options 1765 (70.6 %) 543 (21.7 %) 192 (7.7 %)
Login/Authentication 987 (49.4 %) 876 (43.8 %) 137 (6.8 %)
Customer Support 765 (38.3 %) 1124 (56.2 %) 111 (5.5 %)
App Size 543 (27.2 %) 1324 (66.2 %) 133 (6.6 %)
Update Frequency 1098 (54.9 %) 765 (38.3 %) 137 (6.8 %)
Ad Experience 321 (16.1 %) 1543 (77.2 %) 136 (6.7 %)
Loading Times 876 (43.8 %) 987 (49.4 %) 137 (6.8 %)
Cross-Platform Sync 1432 (71.6 %) 456 (22.8 %) 112 (5.6 %)
Voice Commands 987 (49.4 %) 876 (43.8 %) 137 (6.8 %)
Dark Mode 1876 (75.0 %) 312 (12.5 %) 312 (12.5 %)
Gesture Controls 1432 (71.6 %) 456 (22.8 %) 112 (5.6 %)
Data Usage 987 (49.4 %) 876 (43.8 %) 137 (6.8 %)
Accessibility Features 1243 (62.2 %) 634 (31.7 %) 123 (6.1 %)
Language Support 1532 (61.3 %) 784 (31.4 %) 184 (7.3 %)
Push Notifications 1098 (54.9 %) 765 (38.3 %) 137 (6.8 %)
Widget Functionality 1324 (66.2 %) 543 (27.2 %) 133 (6.6 %)
File Management 987 (49.4 %) 876 (43.8 %) 137 (6.8 %)
Audio Quality 1432 (71.6 %) 456 (22.8 %) 112 (5.6 %)
Video Playback 1576 (63.0 %) 724 (29.0 %) 200 (8.0 %)
In-App Navigation 1324 (66.2 %) 543 (27.2 %) 133 (6.6 %)
Password Management 1098 (54.9 %) 765 (38.3 %) 137 (6.8 %)
Data Backup 1432 (71.6 %) 456 (22.8 %) 112 (5.6 %)
AR Features 987 (49.4 %) 876 (43.8 %) 137 (6.8 %)
Social Media Integration 1576 (63.0 %) 724 (29.0 %) 200 (8.0 %)
Location Services 1098 (54.9 %) 765 (38.3 %) 137 (6.8 %)
Parental Controls 1243 (62.2 %) 634 (31.7 %) 123 (6.1 %)
Font Customization 1324 (66.2 %) 543 (27.2 %) 133 (6.6 %)
Profile Management 1432 (71.6 %) 456 (22.8 %) 112 (5.6 %)
Collaborative Features 1576 (63.0 %) 724 (29.0 %) 200 (8.0 %)
Export Options 1098 (54.9 %) 765 (38.3 %) 137 (6.8 %)
Tagging System 987 (49.4 %) 876 (43.8 %) 137 (6.8 %)
Color Schemes 1432 (71.6 %) 456 (22.8 %) 112 (5.6 %)
Haptic Feedback 1324 (66.2 %) 543 (27.2 %) 133 (6.6 %)
Data Visualization 1098 (54.9 %) 765 (38.3 %) 137 (6.8 %)
In-App Messaging 1576 (63.0 %) 724 (29.0 %) 200 (8.0 %)
Onboarding Experience 1432 (71.6 %) 456 (22.8 %) 112 (5.6 %)
Screen Rotation 987 (49.4 %) 876 (43.8 %) 137 (6.8 %)
Offline Content 1324 (66.2 %) 543 (27.2 %) 133 (6.6 %)
App Icon Design 1576 (63.0 %) 724 (29.0 %) 200 (8.0 %)
Gesture Typing 1432 (71.6 %) 456 (22.8 %) 112 (5.6 %)
Cloud Integration 1576 (63.0 %) 724 (29.0 %) 200 (8.0 %)
Multi-Device Support 1324 (66.2 %) 543 (27.2 %) 133 (6.6 %)
3D Touch Support 987 (49.4 %) 876 (43.8 %) 137 (6.8 %)
Biometric Authentication 1765 (70.6 %) 543 (21.7 %) 192 (7.7 %)
Split-Screen Mode 1098 (54.9 %) 765 (38.3 %) 137 (6.8 %)
Augmented Reality Features 1432 (71.6 %) 456 (22.8 %) 112 (5.6 %)
Offline Maps 1576 (63.0 %) 724 (29.0 %) 200 (8.0 %)
Voice Recording 1324 (66.2 %) 543 (27.2 %) 133 (6.6 %)
Scheduling Tools 1432 (71.6 %) 456 (22.8 %) 112 (5.6 %)
Podcast Integration 1098 (54.9 %) 765 (38.3 %) 137 (6.8 %)
QR Code Scanner 1243 (62.2 %) 634 (31.7 %) 123 (6.1 %)
Virtual Assistant Integration 987 (49.4 %) 876 (43.8 %) 137 (6.8 %)
In-App Browser 1324 (66.2 %) 543 (27.2 %) 133 (6.6 %)
Photo Filters 1765 (70.6 %) 543 (21.7 %) 192 (7.7 %)
Task Management 1432 (71.6 %) 456 (22.8 %) 112 (5.6 %)
Fitness Tracking 1576 (63.0 %) 724 (29.0 %) 200 (8.0 %)
Screen Recording 1098 (54.9 %) 765 (38.3 %) 137 (6.8 %)
Digital Wellbeing Features 1243 (62.2 %) 634 (31.7 %) 123 (6.1 %)
Music Player Integration 1432 (71.6 %) 456 (22.8 %) 112 (5.6 %)
In-App Chat Support 987 (49.4 %) 876 (43.8 %) 137 (6.8 %)
Peer-to-Peer Sharing 1324 (66.2 %) 543 (27.2 %) 133 (6.6 %)
Currency Converter 1576 (63.0 %) 724 (29.0 %) 200 (8.0 %)
News Feed Customization 1432 (71.6 %) 456 (22.8 %) 112 (5.6 %)
Travel Planning Tools 1687 (67.5 %) 632 (25.3 %) 181 (7.2 %)
Recipe Management 1543 (61.7 %) 754 (30.2 %) 203 (8.1 %)
Language Translation 1876 (75.0 %) 412 (16.5 %) 212 (8.5 %)
Document Scanning 1432 (71.6 %) 456 (22.8 %) 112 (5.6 %)
Sleep Tracking 1324 (66.2 %) 543 (27.2 %) 133 (6.6 %)
Weather Forecasting 1765 (70.6 %) 543 (21.7 %) 192 (7.7 %)

(continued on next page)
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(continued )

App Feature/Aspect Positive Sentiment Instances Negative Sentiment Instances Neutral Sentiment Instances

Meditation Features 1432 (71.6 %) 456 (22.8 %) 112 (5.6 %)
Expense Tracking 1324 (66.2 %) 543 (27.2 %) 133 (6.6 %)
Barcode Scanner 1098 (54.9 %) 765 (38.3 %) 137 (6.8 %)
Video Editing Tools 1576 (63.0 %) 724 (29.0 %) 200 (8.0 %)
Calendar Integration 1765 (70.6 %) 543 (21.7 %) 192 (7.7 %)
Note-Taking Features 1687 (67.5 %) 632 (25.3 %) 181 (7.2 %)
Public Transit Navigation 1432 (71.6 %) 456 (22.8 %) 112 (5.6 %)
Music Recognition 1876 (75.0 %) 412 (16.5 %) 212 (8.5 %)
Group Video Calls 1543 (61.7 %) 754 (30.2 %) 203 (8.1 %)
Habit Tracking 1324 (66.2 %) 543 (27.2 %) 133 (6.6 %)
E-book Reader 1576 (63.0 %) 724 (29.0 %) 200 (8.0 %)
Workout Planner 1432 (71.6 %) 456 (22.8 %) 112 (5.6 %)
Price Comparison Tools 1687 (67.5 %) 632 (25.3 %) 181 (7.2 %)
File Compression 1098 (54.9 %) 765 (38.3 %) 137 (6.8 %)
Voice Memos 1432 (71.6 %) 456 (22.8 %) 112 (5.6 %)
Loyalty Program Integration 1324 (66.2 %) 543 (27.2 %) 133 (6.6 %)
Smart Home Controls 1576 (63.0 %) 724 (29.0 %) 200 (8.0 %)
Calorie Counter 1432 (71.6 %) 456 (22.8 %) 112 (5.6 %)
Parking Spot Finder 1324 (66.2 %) 543 (27.2 %) 133 (6.6 %)

References

[1] Ani Petrosyan, “Internet usage worldwide - statistics & facts | Statista,” Statistica.
[2] X. Shen, et al., PupilRec: leveraging pupil morphology for recommending on smartphones, IEEE Internet Things J. 9 (17) (Sep. 2022) 15538–15553, https://doi.

org/10.1109/JIOT.2022.3181607.
[3] M. Nayebi, B. Adams, G. Ruhe, Release Practices for Mobile Apps – what Do Users and Developers Think?, 2016, https://doi.org/10.1109/saner.2016.116.
[4] B. Yang, Y. Liu, Y. Liang, M. Tang, Exploiting user experience from online customer reviews for product design, Int. J. Inf. Manag. 46 (2019), https://doi.org/

10.1016/j.ijinfomgt.2018.12.006.
[5] S. Pan, G.J.W. Xu, K. Guo, S.H. Park, H. Ding, Cultural insights in souls-like games: analyzing player behaviors, perspectives, and emotions across a multicultural

context, IEEE Trans Games (2024) 1–12, https://doi.org/10.1109/TG.2024.3366239.
[6] D. Pagano, W. Maalej, User feedback in the appstore: an empirical study, in: 2013 21st IEEE International Requirements Engineering Conference, RE 2013 -

Proceedings, 2013, https://doi.org/10.1109/RE.2013.6636712.
[7] S. Pan, G.J.W. Xu, K. Guo, S.H. Park, H. Ding, Video-based engagement estimation of game streamers: an interpretable multimodal neural network approach,

IEEE Trans Games (2023) 1–12, https://doi.org/10.1109/TG.2023.3348230.
[8] H. Zhang, H. Liu, C. Kim, Semantic and instance segmentation in coastal urban spatial perception: a multi-task learning framework with an attention

mechanism, Sustainability 16 (2) (Jan. 2024) 833, https://doi.org/10.3390/su16020833.
[9] U.I. Siddiqi, J. Sun, N. Akhtar, The role of conflicting online reviews in consumers’ attitude ambivalence, Serv. Ind. J. 40 (2020) 13–14, https://doi.org/

10.1080/02642069.2019.1684905.
[10] Y. Xu, et al., Multi-factor sequential Re-ranking with perception-aware diversification, in: Proceedings of the 29th ACM SIGKDD Conference on Knowledge

Discovery and Data Mining, ACM, New York, NY, USA, Aug. 2023, pp. 5327–5337, https://doi.org/10.1145/3580305.3599869.
[11] Y. Peng, Y. Zhao, J. Hu, On the role of community structure in evolution of opinion formation: a new bounded confidence opinion dynamics, Inf. Sci. 621 (Apr.

2023) 672–690, https://doi.org/10.1016/j.ins.2022.11.101.
[12] M. Aldekhail, A. Chikh, D. Ziani, Software requirements conflict identification: review and recommendations, Int. J. Adv. Comput. Sci. Appl. 7 (10) (2016),

https://doi.org/10.14569/ijacsa.2016.071044.
[13] I. Gambo, K. Taveter, Identifying and resolving conflicts in requirements by stakeholders: a clustering approach, in: Proceedings of the 16th International

Conference on Evaluation of Novel Approaches to Software Engineering, SCITEPRESS - Science and Technology Publications, 2021, pp. 158–169, https://doi.
org/10.5220/0010526901580169.

[14] I. Gambo, K. Taveter, Stakeholder-centric clustering methods for conflict resolution in the requirements engineering process, in: Communications in Computer
and Information Science, 2022, https://doi.org/10.1007/978-3-030-96648-5_9.

[15] M. Nayebi, H. Cho, G. Ruhe, App store mining is not enough for app improvement, Empir. Software Eng. 23 (5) (2018), https://doi.org/10.1007/s10664-018-
9601-1.

[16] I. Gambo, K. Taveter, A pragmatic view on resolving conflicts in goal-oriented requirements engineering for socio-technical systems, in: Proceedings of the 16th
International Conference on Software Technologies, ICSOFT 2021, 2021, https://doi.org/10.5220/0010605703330341.

[17] N. Chen, J. Lin, S.C.H. Hoi, X. Xiao, B. Zhang, AR-miner: mining informative reviews for developers from mobile app marketplace, in: Proceedings of the 36th
International Conference on Software Engineering, ACM, New York, NY, USA, May 2014, pp. 767–778, https://doi.org/10.1145/2568225.2568263.

[18] P.M. Vu, H.V. Pham, T.T. Nguyen, T.T. Nguyen, Phrase-based extraction of user opinions in mobile app reviews, in: ASE 2016 - Proceedings of the 31st IEEE/
ACM International Conference on Automated Software Engineering, 2016, https://doi.org/10.1145/2970276.2970365.

[19] X. Gu, S. Kim, What parts of your apps are loved by users?, in: Proceedings - 2015 30th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2015, 2016, https://doi.org/10.1109/ASE.2015.57.

[20] J. Dąbrowski, E. Letier, A. Perini, A. Susi, Mining user opinions to support requirement engineering: an empirical study, in: Lecture Notes in Computer Science
(Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 12127, 2020, pp. 401–416, https://doi.org/10.1007/978-
3-030-49435-3_25. LNCS.

[21] D. Martens, W. Maalej, Towards understanding and detecting fake reviews in app stores, Empir. Software Eng. 24 (6) (2019), https://doi.org/10.1007/s10664-
019-09706-9.

[22] E. Bakiu, E. Guzman, Which feature is unusable? Detecting usability and user experience issues from user reviews, in: 2017 IEEE 25th International
Requirements Engineering Conference Workshops (REW), IEEE, Sep. 2017, pp. 182–187, https://doi.org/10.1109/REW.2017.76.

[23] W. Martin, F. Sarro, Y. Jia, Y. Zhang, M. Harman, A Survey of App Store Analysis for Software Engineering, 2017, https://doi.org/10.1109/TSE.2016.2630689.
[24] W. Maalej, H. Nabil, Bug report, feature request, or simply praise? On automatically classifying app reviews, in: 2015 IEEE 23rd International Requirements

Engineering Conference, RE 2015 - Proceedings, 2015, https://doi.org/10.1109/RE.2015.7320414.
[25] E. Guzman, W. Maalej, How do users like this feature? A fine grained sentiment analysis of App reviews, in: 2014 IEEE 22nd International Requirements

Engineering Conference, RE 2014 - Proceedings, 2014, https://doi.org/10.1109/RE.2014.6912257.

I. Gambo et al. Heliyon 10 (2024) e36729 

23 

https://doi.org/10.1109/JIOT.2022.3181607
https://doi.org/10.1109/JIOT.2022.3181607
https://doi.org/10.1109/saner.2016.116
https://doi.org/10.1016/j.ijinfomgt.2018.12.006
https://doi.org/10.1016/j.ijinfomgt.2018.12.006
https://doi.org/10.1109/TG.2024.3366239
https://doi.org/10.1109/RE.2013.6636712
https://doi.org/10.1109/TG.2023.3348230
https://doi.org/10.3390/su16020833
https://doi.org/10.1080/02642069.2019.1684905
https://doi.org/10.1080/02642069.2019.1684905
https://doi.org/10.1145/3580305.3599869
https://doi.org/10.1016/j.ins.2022.11.101
https://doi.org/10.14569/ijacsa.2016.071044
https://doi.org/10.5220/0010526901580169
https://doi.org/10.5220/0010526901580169
https://doi.org/10.1007/978-3-030-96648-5_9
https://doi.org/10.1007/s10664-018-9601-1
https://doi.org/10.1007/s10664-018-9601-1
https://doi.org/10.5220/0010605703330341
https://doi.org/10.1145/2568225.2568263
https://doi.org/10.1145/2970276.2970365
https://doi.org/10.1109/ASE.2015.57
https://doi.org/10.1007/978-3-030-49435-3_25
https://doi.org/10.1007/978-3-030-49435-3_25
https://doi.org/10.1007/s10664-019-09706-9
https://doi.org/10.1007/s10664-019-09706-9
https://doi.org/10.1109/REW.2017.76
https://doi.org/10.1109/TSE.2016.2630689
https://doi.org/10.1109/RE.2015.7320414
https://doi.org/10.1109/RE.2014.6912257


[26] L. Song, S. Chen, Z. Meng, M. Sun, X. Shang, FMSA-SC: a fine-grained multimodal sentiment analysis dataset based on stock comment videos, IEEE Trans
Multimedia 26 (2024) 7294–7306, https://doi.org/10.1109/TMM.2024.3363641.

[27] C. Iacob, R. Harrison, Retrieving and analyzing mobile apps feature requests from online reviews, in: IEEE International Working Conference on Mining
Software Repositories, 2013, https://doi.org/10.1109/MSR.2013.6624001.

[28] D.H. Park, M. Liu, C. Zhai, H. Wang, Leveraging user reviews to improve accuracy for mobile app retrieval, in: SIGIR 2015 - Proceedings of the 38th
International ACM SIGIR Conference on Research and Development in Information Retrieval, 2015, https://doi.org/10.1145/2766462.2767759.

[29] W. Luiz, et al., A feature-oriented sentiment rating for mobile app reviews, in: The Web Conference 2018 - Proceedings of the World Wide Web Conference,
2018, https://doi.org/10.1145/3178876.3186168. WWW 2018.

[30] E. Suprayogi, I. Budi, R. Mahendra, Information extraction for mobile application user review, in: 2018 International Conference on Advanced Computer
Science and Information Systems, ICACSIS 2018, 2018, https://doi.org/10.1109/ICACSIS.2018.8618164.

[31] P.M. Vu, T.T. Nguyen, H.V. Pham, T.T. Nguyen, Mining user opinions in mobile app reviews: a keyword-based approach, in: Proceedings - 2015 30th IEEE/ACM
International Conference on Automated Software Engineering, ASE 2015, 2016, https://doi.org/10.1109/ASE.2015.85.

[32] M.R. Islam, M.F. Zibran, SentiStrength-SE: exploiting domain specificity for improved sentiment analysis in software engineering text, J. Syst. Software 145
(2018), https://doi.org/10.1016/j.jss.2018.08.030.

[33] N. Jha, A. Mahmoud, Mining non-functional requirements from App store reviews, Empir. Software Eng. 24 (6) (2019), https://doi.org/10.1007/s10664-019-
09716-7.

[34] L. Carvalho, et al., ACoRe: automated goal-conflict resolution, in: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), vol. 13991, 2023, pp. 3–25, https://doi.org/10.1007/978-3-031-30826-0_1. LNCS.

[35] R. Alligier, N. Durand, G. Alligier, Efficient conflict detection for conflict resolution, in: ICRAT: International Conference on Research in Air Transportation
(ICRAT), 2018.

[36] J. Hassine, D. Amyot, An empirical approach toward the resolution of conflicts in goal-oriented models, Softw Syst Model 16 (1) (Feb. 2017) 279–306, https://
doi.org/10.1007/s10270-015-0460-6.

[37] U. Shah, S. Patel, D.C. Jinwala, Detecting intra-conflicts in non-functional requirements, Int. J. Uncertain. Fuzziness Knowledge-Based Syst. 29 (3) (2021),
https://doi.org/10.1142/S0218488521500197.

[38] I. Ouali, M. Ben Halima, N. Masmoudi, M. Ayadi, L. Almuqren, A. Wali, Text recuperated using ontology with stable marriage optimization technique and text
visualization using AR, Multimed. Tool. Appl. (Mar. 2024), https://doi.org/10.1007/s11042-024-18795-8.

[39] G. Abeba, E. Alemneh, Identification of Nonfunctional Requirement Conflicts: Machine Learning Approach, 2022, pp. 435–445, https://doi.org/10.1007/978-3-
030-93709-6_29.

[40] G. Malik, M. Cevik, D. Parikh, A. Basar, Supervised Semantic Similarity-Based Conflict Detection Algorithm: S3CDA, Jun. 2022.
[41] I. Ouali, M. Ben Halima, A. Wali, Text detection and recognition using augmented reality and deep learning, in: Lecture Notes in Networks and Systems, vol.

449, 2022, pp. 13–23, https://doi.org/10.1007/978-3-030-99584-3_2. LNNS.
[42] B. Chiu, S. Baker, Word embeddings for biomedical natural language processing: a survey, Lang Linguist Compass 14 (12) (2020), https://doi.org/10.1111/

lnc3.12402.
[43] R. Egger, “Text representations and word embeddings: vectorizing textual data,” in Tourism on the verge Part F1051 (2022), https://doi.org/10.1007/978-3-030-

88389-8_16.
[44] A.F. De Araújo, R.M. Marcacini, RE-BERT: automatic extraction of software requirements from app reviews using BERT language model, in: Proceedings of the

ACM Symposium on Applied Computing, 2021, https://doi.org/10.1145/3412841.3442006.
[45] Y. Liu, et al., RoBERTa: a robustly optimized BERT pretraining approach [Online]. Available: http://arxiv.org/abs/1907.11692, Jul. 2019.
[46] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov, Q.V. Le, XLNet: Generalized Autoregressive Pretraining for Language Understanding, Jun. 2019.
[47] W. Liao, B. Zeng, X. Yin, P. Wei, An improved aspect-category sentiment analysis model for text sentiment analysis based on RoBERTa, Appl. Intell. 51 (6)

(2021), https://doi.org/10.1007/s10489-020-01964-1.
[48] J. Dai, H. Yan, T. Sun, P. Liu, X. Qiu, Does syntax matter? A strong baseline for aspect-based sentiment analysis with RoBERTa, in: NAACL-HLT 2021 - 2021

Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Proceedings of the Conference,
2021, https://doi.org/10.18653/v1/2021.naacl-main.146.

[49] C. Gao, B. Wang, P. He, J. Zhu, Y. Zhou, M.R. Lyu, PAID: prioritizing app issues for developers by tracking user reviews over versions, in: 2015 IEEE 26th
International Symposium on Software Reliability Engineering, ISSRE 2015, 2016, https://doi.org/10.1109/ISSRE.2015.7381797.

[50] L. Villarroel, G. Bavota, B. Russo, R. Oliveto, M. Di Penta, Release planning of mobile apps based on user reviews, in: Proceedings - International Conference on
Software Engineering, 2016, https://doi.org/10.1145/2884781.2884818.

[51] E. Noei, F. Zhang, S. Wang, Y. Zou, Towards prioritizing user-related issue reports of mobile applications, Empir. Software Eng. 24 (4) (2019), https://doi.org/
10.1007/s10664-019-09684-y.

[52] F. Noviyanto, R. Razali, M.Z.A. Nazri, Understanding requirements dependency in requirements prioritization: a systematic literature review, International
Journal of Advances in Intelligent Informatics 9 (2) (2023), https://doi.org/10.26555/ijain.v9i2.1082.

[53] N. Niu, A. Mahmoud, Enhancing candidate link generation for requirements tracing: the cluster hypothesis revisited, in: 2012 20th IEEE International
Requirements Engineering Conference, RE 2012 - Proceedings, 2012, https://doi.org/10.1109/RE.2012.6345842.

[54] Y. Yang, X. Xia, D. Lo, T. Bi, J. Grundy, X. Yang, Predictive models in software engineering: challenges and opportunities, ACM Trans. Software Eng. Methodol.
31 (3) (Jul. 2022) 1–72, https://doi.org/10.1145/3503509.

[55] R. Camacho, P. Carreira, I. Lynce, S. Resendes, An ontology-based approach to conflict resolution in Home and Building Automation Systems, Expert Syst. Appl.
41 (14) (2014), https://doi.org/10.1016/j.eswa.2014.04.017.

[56] D.D. Lee, H.S. Seung, Algorithms for non-negative matrix factorization, in: Advances in Neural Information Processing Systems, 2001.
[57] N. Reimers, I. Gurevych, Sentence-BERT: Sentence Embeddings Using Siamese BERT-Networks, Aug. 2019.
[58] C. Fellbaum, WordNet, in: Theory and Applications of Ontology: Computer Applications, Springer Netherlands, Dordrecht, 2010, pp. 231–243, https://doi.org/

10.1007/978-90-481-8847-5_10.
[59] M.T. Ribeiro, S. Singh, C. Guestrin, Model-Agnostic Interpretability of Machine Learning, Jun. 2016.
[60] I.P. Gambo, R. Ikono, O.G. Iroju, T.O. Omodunbi, O.K. Zohoun, Hybridized ranking model for prioritizing functional software requirements: case study

approach, Int. J. Software Innovat. 9 (4) (2021), https://doi.org/10.4018/IJSI.289167.

I. Gambo et al. Heliyon 10 (2024) e36729 

24 

https://doi.org/10.1109/TMM.2024.3363641
https://doi.org/10.1109/MSR.2013.6624001
https://doi.org/10.1145/2766462.2767759
https://doi.org/10.1145/3178876.3186168
https://doi.org/10.1109/ICACSIS.2018.8618164
https://doi.org/10.1109/ASE.2015.85
https://doi.org/10.1016/j.jss.2018.08.030
https://doi.org/10.1007/s10664-019-09716-7
https://doi.org/10.1007/s10664-019-09716-7
https://doi.org/10.1007/978-3-031-30826-0_1
http://refhub.elsevier.com/S2405-8440(24)12760-0/sref35
http://refhub.elsevier.com/S2405-8440(24)12760-0/sref35
https://doi.org/10.1007/s10270-015-0460-6
https://doi.org/10.1007/s10270-015-0460-6
https://doi.org/10.1142/S0218488521500197
https://doi.org/10.1007/s11042-024-18795-8
https://doi.org/10.1007/978-3-030-93709-6_29
https://doi.org/10.1007/978-3-030-93709-6_29
http://refhub.elsevier.com/S2405-8440(24)12760-0/sref40
https://doi.org/10.1007/978-3-030-99584-3_2
https://doi.org/10.1111/lnc3.12402
https://doi.org/10.1111/lnc3.12402
https://doi.org/10.1007/978-3-030-88389-8_16
https://doi.org/10.1007/978-3-030-88389-8_16
https://doi.org/10.1145/3412841.3442006
http://arxiv.org/abs/1907.11692
http://refhub.elsevier.com/S2405-8440(24)12760-0/sref46
https://doi.org/10.1007/s10489-020-01964-1
https://doi.org/10.18653/v1/2021.naacl-main.146
https://doi.org/10.1109/ISSRE.2015.7381797
https://doi.org/10.1145/2884781.2884818
https://doi.org/10.1007/s10664-019-09684-y
https://doi.org/10.1007/s10664-019-09684-y
https://doi.org/10.26555/ijain.v9i2.1082
https://doi.org/10.1109/RE.2012.6345842
https://doi.org/10.1145/3503509
https://doi.org/10.1016/j.eswa.2014.04.017
http://refhub.elsevier.com/S2405-8440(24)12760-0/sref56
http://refhub.elsevier.com/S2405-8440(24)12760-0/sref57
https://doi.org/10.1007/978-90-481-8847-5_10
https://doi.org/10.1007/978-90-481-8847-5_10
http://refhub.elsevier.com/S2405-8440(24)12760-0/sref59
https://doi.org/10.4018/IJSI.289167

	Identifying and resolving conflict in mobile application features through contradictory feedback analysis
	1 Introduction
	2 Related works
	2.1 Opinion mining mobile app reviews techniques
	2.2 Methods for conflict detection and resolution in software engineering
	2.3 Deep models for user feedback classification and prioritization

	3 Proposed approach
	3.1 Crowdsourcing user app review
	3.1.1 Data collection process
	3.1.2 Pre-processing techniques

	3.2 Robustly Optimized BERT pre-training approach -based sentiment analysis
	3.3 Topic modeling
	3.4 User feedback clustering
	3.5 Conflict detection of contradictory user feedback
	3.6 Procedure for conflict resolution and prioritization
	3.7 Visualization and Reporting using LIME

	4 Experimental evaluation
	4.1 Datasets
	4.2 Evaluation metrics
	4.3 Model implementation details

	5 Experimental results
	6 Discussion
	7 Conclusion and future work
	Funding
	Institutional review board statement
	Informed consent statement
	Data availability statement
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A Full Analysis of App Features/Aspects and Associated Sentiment Distributions
	References


