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A B S T R A C T

The determination of river velocity is important for hydromorphological analyses and river monitoring systems. 
Indirect measurements of river velocity using videos recorded by unmanned aerial vehicles (UAV) allow fast and 
cost-effective processing of information about the river stretch. This paper presents a method for computing flow 
velocity of the river surface using deep supervised model RAFT to determine the optical flow in combination with 
image pre-processing by convolutional operations. Moreover, the windiness coefficients and variance score were 
proposed to evaluate reliability of the collected data and the obtained results of optical flow detection. Various 
image pre-processing techniques were applied, namely the selection of the analysed area and the number of 
convolutional operations to select the one with the lowest variance score. This score represents the consistency of 
the river flow velocity during the video and can be used to filter out unreliable results. The numerical experi
ments were performed using the videos and directly measured velocity values of 4 shallow rivers in Lithuania 
collected during the field surveys. The optical velocity estimation method showed good correspondence to the 
directly measured values for the velocity range from 0 m/s to 0.8 m/s in the points with low variance score up to 
0.192 that represents the first quartile of the variance. The optical flow method tends to underestimate the 
velocity up to 0.5 m/s for the quartiles with the higher variance scores. It was shown that in most cases the lowest 
variance score value was obtained using pre-processing techniques without convolutional operations. However, 
the need to analyse various pre-processing techniques arises from the different origin of the objects moving on 
the river surface.

1. Introduction

Rivers, with their complex water movements influenced by elevation 
gradients, morphology and wind dynamics, require accurate and precise 
determination of flow velocity for riparian ecosystem monitoring 
(Rusnák et al., 2022), water resource planning and disaster management 
during floods and droughts. Traditional methods such as current meters 
and floats have their limitations. These include high labour re
quirements, limited spatial coverage, challenges in extreme conditions, 
temporal limitations, high costs, reliance on human interpretation and 
difficulties in measuring subsurface velocities (Di Baldassarre and 
Montanari, 2009; Le Coz et al., 2012; Figuérez et al., 2021). To over
come these hurdles, unmanned aerial vehicles (UAV) (Kinzel and 
Legleiter, 2019; Eltner et al., 2020), satellites (Bjerklie et al., 2018; 
Zhang et al., 2022) and radar observations (Fulton et al., 2020) offer a 
transformative solution that improves the estimation of various river 

characteristics. The indirect estimation of river flow velocity enables the 
collection, processing and analysis of data over the entire river stretch in 
real time and reduces time and human-power recourses. Satellite-based 
approaches, which are often used in large-scale hydrological studies, are 
proving particularly valuable for the assessment of large water bodies. 
Meanwhile, unmanned aerial vehicles (UAVs) have gained importance 
in hydrology due to their high spatial and temporal resolution, which, 
unlike satellites, enables data collection for smaller water bodies as 
required (Vélez-Nicolás et al., 2021). UAVs can be used to estimate ve
locity fields over natural rivers (De Schoutheete et al., 2019; Koutalakis 
et al., 2019). These studies emphasise the efficiency of ground control 
points in rectifying and stabilising images for accurate analysis. 
Furthermore, the method developed to measure the surface velocity of 
rivers using a moving drone showed wide applicability for broad water 
bodies where the installation of a reference point is impractical (Yu and 
Lee, 2022).
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Many applications for indirect estimation of flow velocity in rivers 
are based on particle tracking (Koutalakis and Zaimes, 2022) or optical 
flow algorithms in combination with deep learning algorithms (Ho et al., 
2023; Jyoti et al., 2023). The estimation of the flow velocity at the river 
surface can be done using particle tracking or particle image velocimetry 
methods from videos recorded with terrestrial or aerial cameras (Eltner 
et al., 2020) or thermal image time series (Legleiter et al., 2017; Kinzel 
and Legleiter, 2019). The comparative analysis of different image 
velocimetry techniques to determine the flow velocity of rivers from 
UAV data has shown practically acceptable results (Wijaya et al., 2023). 
The particle tracking and particle image approaches are limited by the 
fact that natural or artificial tracers must be present on the water sur
face, in contrast to the optical flow method, which overcomes this issue 
by estimating the displacements of individual pixels (Jyoti et al., 2023). 
To estimate the flow velocity at the surface, an optical flow method with 
automatic feature detection and posteriori filtering was presented to 
obtain realistic trajectories (Tauro et al., 2018). Optical methods are 
sensitive to a variety of environmental conditions such as lighting, wind, 
debris and others (Jyoti et al., 2023) and the pre-processing steps should 
be implemented before the analysis or considered in the development of 
the model. The direct cross-correlation technique in particle image 
velocimetry has been replaced by convolutional neural networks (CNNs) 
to reduce the effects of environmental noise such as non-uniform illu
mination (Ho et al., 2023). Similarly, generative adversarial networks 
(GAN) and CNNs have been used to improve image quality and predict 
the flow velocity of rivers (Wang et al., 2022). The Deep supervised 
optical flow velocity model RAFT (Teed and Deng, 2020) was supple
mented with an attention mechanism and position encoding to make the 
velocity estimation more robust to reflections and flicker (Cao et al., 
2022). A framework combining hydrodynamic modelling and synthetic 
particle generation (Legleiter and Kinzel, 2024) were developed to 
provide an environment for comparing different velocimetry algorithms 
under different conditions.

This paper presents a method for pre-processing UAV images to 
improve the flow patterns recognition. The research focuses on esti
mating the flow velocity at the surface of a shallow river using aerial 
videos captured by a drone. The main aim of this study is therefore to 
estimate the flow velocity as a flow vector considering environmental 
factors at a given point supported by direct measurements. The proposed 
technique is based on the state-of-the-art recurrent neural network ar
chitecture RAFT, where the model is trained and tested on various an
notated video stream datasets such as Kitti (Geiger et al., 2013) and 
Sintel (Mayer et al., 2016). Of course, such a model can be trained with 
river flow data and fully adopted for the river scale context. The moti
vation behind determining the flow velocity at a target point is based on 
the following factors:

• the automatic processing of high-resolution images of short local 
segments and the combination of the results allows long river 
stretches to be analysed with reasonable computational resources, 
which would be impossible if long river stretches were processed 
directly;

• collecting high-resolution images in a local area does not require 
expensive specialised equipment that is needed for capturing large 
geographical areas;

• local conditions may require different image pre-processing tech
niques, and specific point-based flow velocity estimation in small 
areas may be more appropriate.

2. Methodology

This section presents the general workflow of a research methodol
ogy, including data collection, its calibration and georeferencing, optical 
flow measurement in the river and analysis of the results. The general 
scheme of the methodology is shown in Fig. 1. After the steps of data 
collection, calibration and georeferencing, the river flow velocity was 

estimated using the optical flow method in the environment of each 
point of interest for the pre-processed images of different time intervals. 
The set of the obtained results was employed to evaluate the reliability 
of the velocity estimation results. The obtained results are generalised 
for the entire river stretch.

2.1. Data collection

The river stretches of four Lithuanian rivers were selected for the 
determination of the flow velocity on the basis of drone imagery (video 
records). Lithuania falls within the mid-latitude climate zone, which is 
characterised by a humid continental climate with predominantly warm 
summers. Accordingly, the average annual temperature for the area is 
7.4 ◦C and the annual precipitation is 695 mm (Lithuanian Hydrome
teorological Service under the Ministry of Environment (2021)). 
Although precipitation is evenly distributed throughout the year, there 
is slightly more precipitation in the summer months than in the other 
months. These conditions ensure that the rivers are supplied with water 
all year round. The selected river stretches represent different hydro
logical and physico-geographical conditions at the local scale, as the 
study sites are located in different hydrological regions and consist of 
different components in the riverbed, from clean riverbeds to dense 
aquatic vegetation and the presence of boulders. Such a selection in
cludes the diversity of possible natural hydraulic conditions in order to 
avoid monotonous and uniform flow conditions and to adapt the arti
ficial intelligence (AI) model to different natural flow situations. Ex
amples of the images of the river stretch with reference to their locations 
can be found in Fig. 2.

All study data was collected during the field surveys. The collected 
data consisted of hydrological parameters and drone videos over the 
target area. The Valeport 801 electromagnetic flowmeter was used to 
measure river flow velocity. Point measurements of surface flow velocity 
were taken at 10 cm depth for 10 s to estimate the average velocity of 
surface movement. The geographic coordinates of each point were 
collected using the GeoMax Zenith 40 GNSS GPS receiver and X-PAD 
Ultimate Survey software and georeferenced with the flow velocity 
measurements in ArcGIS 10.5. In addition, the coordinates of 4 ground 
control points (GCP) were measured for each water surface to integrate 
the aerial imagery into a known geographic coordinate system and to 
maintain the scale for estimating flow velocity from optical data. The 
accuracy of the coordinates is ± 0.015 m. The aerial videos were 
captured using a DJI Mavic 3 multispectral drone with a 4/3-inch CMOS 
sensor RGB camera with a resolution of 3840 x 2160 pixels.

In order to evaluate the instantaneous changes in velocities at a given 
point of the river caused by physical uncertainties such as turbulence or 
visual changes in the river surface due to wind gusts or cloud cover, two 
independent video streams (with different viewing positions) longer 
than 25 s were collected at each stretch. Later, each stream was divided 
into 3 independent sub-streams of 5 s, using a time interval of 5 s be
tween the sub-streams, see Fig. 3. This finally leads to 6 independent 

Fig. 1. The general scheme of the proposed methodology.
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sub-streams (5 sec equal to 150 frames) for each location to be analysed.
The flow direction of the river was not determined during the field 

study. Therefore, only the comparison between the measured and 
optically estimated scalar values was carried out and the calculated flow 
direction was optically analysed.

2.2. Data calibration and georeferencing

As mentioned in 2.1, the data for each region was collected from a 
different perspective. An example of the initial orientation of the video 
view for the location Jūra-S2 can be found in Fig. 4 (in the left part). The 
streams for each location were orientated approximately perpendicular 
to the river. The accuracy of the coordinates is ± 0.015 m. To obtain a 
uniform georeferenced dataset, the first frame for each flow was scaled 
to 1px = 0.01 m and the centres of the markers were linked to the exact 
pixels in the frame, see Fig. 5.

It should be noted that despite the stabilisation systems used in UAV, 
the position of the drone may change slightly over time due to the wind 
and that the georeferenced information based on the first frame may 
contain errors. In order to be able to calibrate the entire video stream 
properly, a 200 x 200 pixel image was cropped for each frame based on 
the GCP position marker of the first frame. The image size represents to 
2 x 2 m and was chosen assuming that the displacement does not exceed 
1 m. Using the optical flow detection model (RAFT, see section 2.3), the 

shift of the marker centre between the frames was automatically 
calculated and the pixels of the marker centres were adjusted for the 
next frames before georeferencing. Fig. 5 shows the position changes of 
the Jūra-S2 marker in an interval of 5 s, whereby the 150th frame is 
visualised with the determined marker centre (red point). The blue point 
represents the position of the marker centre in pixels of the first frame, 
the black points represent the movement of the marker centre in time 
(changes between the 0 and 150 frames).

To evaluate the level of windiness at different locations, the averaged 
displacement of the ground control points (GCP) within the frames was 
measured: 

uw =

∑N
i=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

|xi − xi− 1|
2
+ |yi − yi− 1|

2
√

N − 1
(1) 

here, x and y represent the coordinates of the GCP centre in the i-th 
frame of N frame series, uw for the averaged displacement of the GCP 
point in the image during the video stream. It should be noted that such 
calculations represent the wind conditions in the exact position and are 
highly dependent on the initial conditions of the experiments. For 
example, different characteristics of the UAV stabilisation or differences 
in the quality of the georeferenced images may cause changes that 
cannot be attributed to the wind. In this case, however, the wind con
ditions were not measured during the field surveys, and the metric uw 

Fig. 2. Study area and objects.

Fig. 3. The scheme of splitting video into the sub-streams.
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was calculated to eliminate wind-independent factors, as the same drone 
was used at height range of 10.5–31.0 m above the surface to capture the 
video streams.

2.3. Optical flow velocity

Determining the velocity of a river from an aerial video leads to the 
problem of optical flow velocity (Horn and Schunck, 1981), since 
changes in the exact point between frames in pixels directly represent 
point displacements. In this study, RAFT was selected as the core model 
for the optical flow detection problem (Teed and Deng, 2020).

Using the pair of two frames labelled as I1 and I2, the model provides 

the optical flow map 
(

f1, f2
)

in which each pixel with coordinates (x, y)

of I1 is expressed as a pixel (x́ , ý ) in I2 as: 

(xʹ, yʹ) = (x + f1(x), y + f2(y)) (2) 

If the images are georeferenced with the actual distance in metres da 

between the pixels, and the time interval between the frames are known 
tf , the actual velocity of the exact pixel between two frames can be 
expressed as follows: 

vx,y =

(
f1(x)*da

tf
,
f2(y)*da

tf

)

(3) 

here vx,y is the velocity vector at the pixel (x, y). Finally, the scalar ve
locity at the exact pixel ṽx,y is expressed as an Euclidean vector norm 
ṽx,y = ‖vx,y‖ and is measured in m/s.

Fig. 4. Example of georeferencing the first frame of Jūra-S2 stream.

Fig. 5. Example of the georeferencing of the Jūra-S2 stream according to the first and last frame.
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2.4. Optical flow velocity measurement at river

In this study, the objective was to create a static map of the flow 
velocities on the surface of the selected river segment. The main 
assumption is that the velocity in the same area maintains the same 
direction and magnitude over a short period of time. An example of the 
sequence of the area around the point of interest (Mūša-S2) is provided 
in Fig. 6.

The calculated velocity between frames at time t0 and frames at time 
t0 +kΔt for small values of k is, as expected, the same. Here Δt is the time 
interval between two adjacent frames, k represents the number of frames 
from the first frame t0. It is important to maintain a small value of k, as it 
may be impossible to visually recognise movement in images with larger 
time interval. However, due to environmental factors, such as wind 
gusts, the calculated velocities differ between the pairs of frames. Thus, 
a set of velocities V is created out of the scalar velocity values ṽt0 ,t0+iΔt , 
i = 1, k calculated in the area of interest between the frame at time t0 and 
k frames ahead: 

V = {ṽt0 ,t0+Δt;⋯; ṽt0 ,t0+kΔt} (4) 

In this study, the level of the velocity variability is measured as a 
ratio of the standard deviation σV and mean μV of the set V and inter
preted as the velocity variance score. The smallest value of the variance 
score means that the velocity values calculated for the same point and 
different pairs of frames are the most similar. Such a value therefore 
represents the most accurate and reliable results. The variance score r is 
expressed as: 

r =
σV

μV
(5) 

In general, optical flow can be detected as an entire moving surface 
or as individual particle movements. If the velocity is recognised as a 
moving surface, the velocity of the exact point or the velocity averaged 
over a small area may be regarded as the velocity ̃v at a point. However, 
if the velocity is determined from the moving particles around the point, 
the velocity of a single particle determines the velocity of the river 
(flow). The velocity ṽ is calculated as the maximum value of the veloc
ities in the analysed area and prevents the risk of not detecting the 
movement at a certain point by using the optical flow: 

ṽ = argmax
v∈P

(‖v‖) (6) 

here P means the set of pixel velocities in the area to be analysed. Of 
course, a larger area can lead to more generalised results, which is not 
preferred as the velocity at the exact point is an object of interest. In this 
case, therefore, the size of the area to be analysed is a parameter that is 
later selected according to the variance score r. From the square image 

NxN pixels, the area of interest is obtained by creating a circular mask of 
radius R proportional to N divided by the coefficient α. Examples of a 
full-surface velocity map and an area limited by a circular mask with α =

{2,3,4} can be found and are provided in Fig. 7.
If the data set used in the analysis is large enough, the image pre- 

processing part can be included in the artificial intelligence (AI) 
model to learn which pattern best fits the situation to determine the 
flow. However, in our case, the training data is limited and the different 
pre-processing techniques are used with the already trained RAFT 
model, while the best one for the exact position is obtained using the 
variance score. Having a large dataset would enable to adjust the RAFT 
model for the specific conditions, but the data collection procedure is 
expensive, and it is not possible to augment the dataset to the size that 
enables to fully train the model. The aim of the image pre-processing 
was to enlarge moving small particles in the river flow to improve 
their detection with the RAFT model. The initial frames I1 and I2 were 
modified according to the masks calculated as their threshold differ
ences D1 = I1 – I2 and D2 = I2 − I1 and magnified using c 2D convolution 
operations with a filter of a 3x3 matrix of ones. An example of the results 
for different c values is presented in Fig. 8.

In general, various pre-processing techniques can be applied. In this 
research, the pre-processing is based on analysing the optical flow in 
different areas and performing a different number of convolutional op
erations to enlarge the moving particles. Therefore, the set of image pre- 
processing cases is defined as M and contains all possible combinations 
of:

a) different radiuses of the circle under analysis R;
b) logical variable diff ∈ {0;1} which represents whether the image 

pre-processing part with calculating threshold differences and 
convolution operations is applied;

c) c ∈ C, here C is the set of number of convolutions if diff value is equal 
to 1.

The applied combination ma is the one that results in the minimum 
variance score: 

ma = argmin
m∈M

(rm) (7) 

here, the rm is a variance score obtained using m ∈ M image pre- 
processing method. The method for selecting the image pre-processing 
technique ma for the specific point when the velocity between the 
initial frame at time t0 and k = {2,4,6} frame intervals with radius R =

N/2 is calculated and visualised in Fig. 9. The top left part shows the 
sequence of the initial frames. A scheme for determining the optical flow 
between the frames when image pre-processing has not been used, diff =

0 is presented in the left bottom part. The right part of Fig. 9 disclosed 

Fig. 6. A sequence of images generated based on the point of interest.

A. Krǐsčiūnas et al.                                                                                                                                                                                                                             International Journal of Applied Earth Observation and Geoinformation 134 (2024) 104154 

5 



the case with enabled image pre-processing, diff = 1, c = 4 applied 
convolution operations. Finally, the lower part of Fig. 9 represents the 
selection of ṽ as the averaged value of the calculated velocity with the 
minimum variance score r.

This procedure can easily be extended to other sequences to be 
processed. In general, several video streams for geographic point p may 
be combined to obtain the most suitable fm for the exact location. Here, 
the vel set used to calculate the reliability score can consist of frames 

starting at different initial times and even independent video streams, 
see Section 2.1 and 2.3.

3. Results

3.1. Data collection, pre-processing and evaluation of windiness

The study was conducted for data streams from 4 different rivers, 

Fig. 7. Scheme of optical flow detection between two frames and resulting velocity maps for areas limited with the velocity maps.

Fig. 8. Schematic of pre-processing of images using convolution operations and the resulting velocity maps for a circular mask R=N/2.
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each with 2–4 water surfaces at the same discharge to cover areas with 
various hydrodynamic features, using the methodology described in 
sections 2.1 and 2.2 (Table 1). To estimate the movement of the drone 
during data collection, the formula (1) was applied to calculate the 
windiness coefficient and evaluate the reliability of the results. The 
average windiness coefficients were calculated for all GCPs of each river 
surface (4 GCPs per surface and stream) and for video streams consisting 
of 6 streams with 5 s each (Table 1). The highest windiness coefficients 
were determined for the Šušvė River surfaces. The range of estimated 
coefficients was between 4 and 8, describing rough flight conditions that 
strongly affected the quality of the collected data and also made frames 
processing difficult. This described the high instability of air movements 
and the effects of wind gusts during the field surveys. In contrast, the 
surfaces of the Mūša River showed the best results in terms of windiness 
conditions. The windiness coefficients on both studied surfaces did not 
exceed 0.74 and were characterised by low variability.

To demonstrate the instability caused by the wind, Fig. 10 visualises 
the movement of the GCP within the frame during the cases with the 
lowest (Mūša-S2) and highest (Šušvė-S1) windiness coefficients for the 
first five seconds. The GCP movement for Mūša-S2 showed almost per
fect results, as all 150 video frames fitted within the centre of the ground 
marker with very low relative and absolute distribution. In contrast, the 
frames for the Šušvė-S1showed a large dispersion with respect to the 
GCP that moved ± 10 cm. This emphasises the importance of the effects 

of environmental factors such as wind and its gusts on the reliability of 
the collected data. This analysis can be a solution for the primary 
overview of the drone footage to determine and select the most suitable 
video streams with the smallest windiness coefficient for subsequent 
processing. It also enables to mitigate the impact of the drone instability 
by adjusting the necessary frame part with respect to the GCPs. How
ever, the other environmental factors such as lighting, debris, and water 
turbidity can also result in a high variance score.

3.2. Image pre-processing

Different pre-processing methods were used to minimise the error in 
the variance score. All points from the dataset were processed with 
different pre-processing methods m ∈ M, and the one with the minimum 
variance score was selected as the final one, see formula (8). The fre
quency of the pre-processing methods m used for the final estimation is 
provided in Fig. 11. The three positions in the labels in Fig. 11 represent 
respectively the values α = {2,3,4}, diff = {0,1} and c = {0,1,2, 3,4}
(see Section 2.5 for a detailed explanation). No image pre-processing 
and α equal to 2 or 4 were the most common combinations considered 
in the final estimation. Image pre-processing was also applied a 
considerable number of times and therefore shows the benefits of ana
lysing different pre-processing techniques.

3.3. Variance score calculation and optical flow velocity

The boxplots of the variance scores r for the points in the different 
data streams and the relationship between median values of the variance 
scores and the windiness coefficients are provided in Fig. 12. The vari
ance scores of the cases with high windiness coefficients (Šušvė all 
surfaces) reached higher values compared to those with low windiness 
coefficients (Mūša-S1, Mūša-S2, Jūra S3). On the other hand, wind is not 
the only factor that affects the reliability of the results. This is clearly 
illustrated by the fact that cases with small windiness coefficients had a 
high median variance score at turbulent surfaces (Jūra-S1, Jūra-S2). The 
best example is the Jūra-S3 surface, which differed from the other two in 
its median and the amplitude of the variance score. For the mentioned 
surface, almost 40 % of the video area was shaded by trees and consisted 
of the reflection of the clouds and a lot of rippling on the water surface, 

Fig. 9. Selection procedure of the image pre-processing technique. The upper left part shows the initial frames, the bottom left part shows the results of the optical 
flow recognition, the right part disclosed the results of the optical flow recognition after applying the convolution. The lower indices represent α, diff and c values 
respectively. The result is the averaged value of the calculated velocities with minimum variance score evaluation.

Table 1 
Windiness coefficients for different data streams.

No. River- 
Surface

Discharge (m3/ 
s)

Windiness 
coefficient

Flight height 
(m)

1. Jūra-S1 3.24 1.97 19.2
2. Jūra-S2 3.24 2.07 17.2
3. Jūra-S3 3.24 1.87 19.7
4. Mūša-S1 0.548 0.74 24.1
5. Mūša-S2 0.548 0.62 31.0
6. Šušvė-S1 0.491 8.03 10.6
7. Šušvė-S2 0.491 7.56 13.0
8. Šušvė-S3 0.491 6.9 12.5
9. Šušvė-S4 0.491 4.01 12.8
10. Verknė-S1 1.42 2.54 21.9
11. Verknė-S2 1.42 5.21 16.2
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which increased the amplitude, but the remaining area had a lot of 
particles to track, which improved the median of the final result. The 
Jūra River surfaces with high median variance (S1 and S2) were char
acterised by turbulent water flow patterns. The relationship between the 
median variance score and the windiness coefficient was well expressed 
when considering the exceptional cases described above, such as Jūra-S1 
and Jūra-S2. In addition, Mūša-S2 was characterised by its turbulence, 

so that the variance value increased with a similar windiness coefficient 
compared to Mūša-S2. For the Verknė River, the difference resulted from 
the reduction of the study area, with Verknė-S1 representing a larger 
area and Verknė-S2 being a detailed part of S1 by reducing the flight 
height from 21.9 to 16.2 m above the surface. These results draw 
attention to the selection of the target surface, which has its own optical 
characteristics depending on the roughness and turbulence of the water 

Fig. 10. Cases of movement visualisation with minimum and maximum windiness coefficient: a) Mūša-S2 (0.62); b) Šušvė-S1 (8.03).

Fig. 11. Distribution of the selected pre-processing methods, the first, second, and third positions represent α, diff, and c values respectively.

Fig. 12. Boxplots of the variance score for the points in different data streams (left), and plot of relation between median variance score and windiness coefficient for 
different data streams (right).
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surface, scaling, weather conditions (clouds), time of day and year, 
shading and other surrounding features that can cause optical differ
ences in the detection of flow velocity.

Fig. 13 demonstrates the estimated velocity field for the cases of 
minimum (Fig. 13a) and maximum (Fig. 13b) variance scores, repre
sented by the median value of the variance score of the points in the 
analysed surfaces. The estimated velocity vectors for Mūša-S1 showed a 
consistent decrease in velocity due to the increase in river depth. The 
estimates for a flow close to zero m/s reflected the barrier effect that 
occurs under the influence of boulders (Fig. 13a). In the case of ̌Sušvė-S4 
with a high variance score, the velocity was also close to zero at several 
points. However, their estimates were not consistent with the general 
flow pattern, which consisted of uniformly distributed velocities with 
low variability. In the applied optical velocity calculation, the velocity 
vectors obtained from analysing different pairs of frames were averaged. 
Therefore, the random vectors resulted in a velocity close to zero.

3.4. Optical flow velocity comparison with direct measurements

The comparison between the optically estimated flow velocity and 
the direct measurements was carried out taking into account the quar
tiles of the variance score. The mean absolute errors (MAE) of the 
measured and estimated velocities were compared for the points with 
the variance scores from different quartiles (Fig. 14). The results from 
the first quartile of variance showed the best performance, where the 
MAE was only 0.13. The optically detected flow was clearly related to 
the measured values in the entire velocity range from almost 0 m/s to 
0.8 m/s. However, when comparing the other quartiles with the higher 
variance scores, the detection became worse, especially at low velocities 
up to 0.4 m/s. The same applies to the fourth quartile, which was 
characterised by the fact that most velocities up to 0.5 m/s were 

underestimated in the optical detection. These results reflect the di
versity of the selected river surfaces with different environmental and 
hydraulic features, which should be taken into account to improve the 
final result. Most of the measured velocities that did not reach 0.4 m/s in 
the fourth quartile were associated with the surfaces that had the highest 
variance scores and windiness coefficients during optical detection. 
These conditions once again draw attention to the surfaces where the 
reliability of the collected data was questionable.

Fig. 14 shows that a higher variance score means lower reliability 
and thus higher MAE values. The tendency for the optically estimated 
flow values to be lower than the measured values is also particularly 
evident in the untrustworthy results (Fig. 14d). These values can 
therefore be excluded from the analysis as not reliable. Fig. 15 repre
sents the optically estimated velocities for several river segments. Only 
velocity vectors whose variance score is below the median value were 
visualised in order to present reliable results. The example of the Šušvė- 
S4 surface clearly indicated the case where only some optically detected 
flow velocity estimates fall within the range of reliable data at the lo
cations of the point measurement. This tendency illustrates the high 
variance score in practise and how this value defines unreliable data. On 
the other hand, other surfaces, such as Mūša-S2 and Jūra-S3, showed 
better performance of optically detected flow velocities, where most of 
the estimated values were considered as reliable. In addition, the 
instream roughness due to aquatic vegetation or near the river banks or 
the boulder effect was common in all studied river sections and was 
associated with unreliable data. The same was found for the Verknė-S1 
surface, which was characterised by dense aquatic vegetation in the 
middle of the riverbed. These vegetation areas shaded the flow patterns 
so the velocity values reached the threshold for variance score threshold 
and were considered as unreliable. Of course, the variance score 
assessment threshold could also be set in other ways, e.g. by defining an 

Fig. 13. Velocity field of the cases with minimum (a) Mūša-S1, 0.14) and maximum (b) Šušvė-S4, 0.29) variance scores.
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acceptable accuracy. However, the measurement and the optical flow 
may differ due to physical characteristics, as the measurements were 
taken 0.1 m below the water surface and consist of scalar data only.

4. Discussion

Research into the development of unmanned aerial vehicles (UAVs) 
and their measurement technologies is taking place on various fronts 
and at many levels (Tosi et al., 2020). Scientists are closely examining 
various aspects of the optical detection process, uncovering complicated 
relationships and proposing innovative and more effective solutions for 
processing of areal imagery. In particular, the optical measurement of 
river flow velocity is characterised by its numerous advantages over 
direct measurement methods (Koutalakis and Zaimes, 2022; Jyoti et al., 
2023). First and foremost, the use of UAV technology enables the 
recording of videos in otherwise inaccessible or difficult landscapes and 
overcomes the limitations of direct measurement methods (Laghari 
et al., 2023). Furthermore, the integration of automated velocity esti
mation enables the rapid processing of large datasets, facilitating the 
analysis of extensive river sections within a reasonable timeframe 
(Eltner et al., 2021). This automated approach not only increases effi
ciency but also minimises human intervention, thus reducing ‘opera
tional’ costs (Laghari et al., 2023). However, direct measurement is a 
conventional technique whose results can be considered ground truth 
with much higher accuracy (Akstinas et al., 2022). In this study, our 
results emphasise the sensitivity of optical detection methods imple
mented in modern software frameworks, especially under various hy
draulic conditions of the river surfaces. The results were assessed using 
the median values of the variance score, with the lowest variance in this 
study defining to the most reliable results. The proposed variance score 

provides a quantitative method for evaluating the accuracy of the 
optically detected flow velocities. Additionally, techniques such as a 
constant threshold can also be applied. We not only point out these 
challenges, but also explore strategies to mitigate them by either 
addressing the underlying problems directly, developing alternative 
methods, or refining existing solutions. For example, Khalid et al. (2019)
have shown that optical flow is suitable for tracking the movement of the 
river surface and emphasised the importance of accurate reconstruction 
of the trajectory despite sensitivity to outliers and systematic errors. 
Their study demonstrated the ability to reconstruct trajectories similar 
to reference paths and identified large-scale rotational movement pat
terns caused by river flow around obstacles.

Environmental factors significantly limit monitoring approaches, 
especially those that are sensitive and vulnerable for hydrometeoro
logical events. High-tech tools are water resistant at various degrees, but 
in rainy weather their application is limited to a certain threshold of 
event severity. Drones, despite their technical characteristics, are pri
marily suitable for good weather conditions, with exceptions where 
there are technical limitations. Approaches based on image analysis 
remain susceptible to environmental variables such as wind and light 
conditions (Burdziakowski and Bobkowska, 2021). Jyoti et al. (2023)
drawn attention on the image resolution and light conditions that the 
pixel displacement should be above two pixels in order to generate more 
accurate flow velocity estimation during good visibility. Whereas 
ambient light conditions cause the ability to estimate water surface state 
based on drone imagery (Flynn and Chapra, 2014). But these conditions 
require to be evaluated separately with additional light sensors 
considering all possible ranges of the lighting conditions at the same 
hydraulic state. Surface velocity is also highly influenced by external 
factors such as wind, which can alter the fixed ratios between surface 

Fig. 14. MAE of optically estimated and directly measured flow grouped in quartiles regarding the variance score: a) Q1; b) Q2; c) Q3; d) Q4.

A. Krǐsčiūnas et al.                                                                                                                                                                                                                             International Journal of Applied Earth Observation and Geoinformation 134 (2024) 104154 

10 



and average flow velocity, known as velocity coefficients (Eltner et al., 
2020), as it is advisable to avoid measuring surface velocity in windy 
conditions. An improvement in measurement accuracy and reliability 
can be achieved by increasing the seed density with detectable particles 
(Detert et al., 2017). However, only natural particles were used in this 
study, which did not cover the entire cross-section of the river, resulting 
in data gaps that made it difficult to derive all flow values from the 
sparsely distributed velocity vectors. Bandini et al. (2022) also 
concluded that the measurements have a low reliability, especially in 
situations where the roughness of the water surface is mainly caused by 
wind. Challenges include limitations due to different environments, 
wind-induced changes in the measurement of surface velocities and the 
need for improved measurement accuracy under complex natural con
ditions, especially in strong winds.

Wind is a common phenomenon that can occur quickly and signifi
cantly affect flight and measurement accuracy (Wang et al., 2019). The 

assessment of windiness was a crucial factor in this study for the 
determination of the optically based flow velocity, as it had a significant 
impact on the perception of the variance score of the estimated flow 
velocities assessing the reliability of the results. It was proposed to use 
the windiness coefficient based on the migration of the ground control 
points within the selected frames of the video stream. This approach 
revealed the environmental influences caused by the wind, which 
significantly affected the position of the drone during the stationary 
video recording. In some cases, the exact position of the drone was 
difficult to maintain despite the RTK flight support during the field 
surveys. Accordingly, the study sites with a higher windiness coefficient 
showed poorer flow velocity detection and a higher score of variances. 
Unfortunately, the wind conditions were not measured during the field 
surveys, and there was a lack of understanding of how important this 
parameter is for determining the flow velocity, even during seemingly 
smooth flight. Therefore, measuring the actual wind conditions (at a 

Fig. 15. Rivers stretches (a – Mūša-S2, b – Šušvė-S4, c – Jūra-S3, and d – Verknė-S1) with optically determined flow velocity at measured points, where the green 
arrows represent velocity directions with a variance score less than 0.245, red points represent cases with a higher variance score (unreliable). (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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specific measurement time) would be beneficial for a more accurate 
estimation of the flow velocity of the river under various wind condi
tions. For example, recent studies have proposed the use of drones 
equipped with different anemometer technologies to perform short-term 
wind speed measurements in the atmospheric boundary layer (Thielicke 
et al., 2021). In summary, the lack of wind measurements during the 
field surveys emphasises the importance of including this parameter to 
improve the accuracy of flow velocity estimation based on optical ap
proaches. Future research should consider it and focus on comparing the 
actual wind conditions with the windiness coefficients derived from the 
drone footage to improve the reliability of the data and the accuracy of 
the flow velocity.

This study provided important insights into the selection of video 
streams and emphasised the importance of capturing footage at the 
certain time periods (e.g., 5 s videos with 5 s time gap) to mitigate 
systematic biases associated with continuous recording. The proposed 
framework opens up future research pathways in related topic by sug
gesting to automate the analysis of the entire video to identify the time 
periods with the lowest windiness coefficients and variance score, and 
thus apply them to increase the accuracy of flow velocity determination. 
Therefore, factors such as video sampling, ortho-rectification parame
ters, motion analysis settings and applied filters can significantly influ
ence velocity measurements (Bodart et al., 2022). In addition, the 
current optical flow detection model can be refined with river-specific 
data so that indicators can be customised to specific environmental re
quirements. Several studies (Dal Sasso et al., 2021; Alongi et al., 2023), 
including the present one, have shown that focussing processing on a 
strategically selected, well-defined part of the recorded video signifi
cantly improves the performance of Large-Scale Particle Image Veloc
imetry, including seeding and recording, image pre-processing and post- 
processing. This targeted approach not only reduces the computational 
effort, but also improves the accuracy and reliability of the flow velocity 
measurements. In addition, the future can be extended by including 
measurements of flow direction as the current ground truth data does 
not consist of velocity vectors. Therefore, the study was limited to 
comparing only scalar values and evaluating the validity of velocity 
directions based on expert opinion only. Considering the measured ve
locity vector would facilitate the interpretation of the results. In 
response to this finding, our study proposes an innovative methodology 
that accounts for the unique characteristics and spatio-temporal vari
ability of tracer particles throughout the video dataset. These results 
underline the importance of customised data processing strategies to 
improve the capabilities of optical flow analysis techniques for flow 
research.

5. Conclusions

This paper presents a novel view to methodology for determining the 
river flow velocity at the surface using the recurrent neural network 
architecture RAFT for optical flow and convolutional operations for 
image pre-processing. By analysing various combinations of image pre- 
processing techniques and areas of interest, the methodology identifies 
the optimal combination for specific environmental conditions. The 
approach not only determines the direction of the flow velocity, but also 
evaluates its reliability using a variance score that allows inconsistent 
velocity vectors to be filtered out during the analysis period.

The methodology was validated by numerical experiments carried 
out on video streams from four shallow rivers in Lithuania. The results 
were compared with direct measurement data collected during field 
surveys. The experiments showed that the optically estimated velocity 
closely matched the directly measured surface velocities with a low 
variance score, proving the suitability of the method for preliminary 
estimation of flow velocity in rivers.

The Mean Absolute Error (MAE) calculated for the quartile of data 
points with the lowest variance score was 0.13. This MAE was signifi
cantly lower – 1.6, 2.23, and 2.46 times – compared to the MAEs for data 

points from the second, third, and fourth quartiles, respectively. This 
highlights the methodology’s effectiveness in providing accurate surface 
flow velocity with high reliability at the river surfaces with low variance 
score.

The proposed methodology for estimating river flow velocity utilises 
the strengths of recurrent neural networks and convolutional operations 
and provides a robust and reliable tool for environmental monitoring. 
The results of the study emphasise the importance of selecting appro
priate image pre-processing techniques and highlight the benefits of 
variance evaluation to improve measurement accuracy. This study 
contributes to hydrological studies by providing a practical and efficient 
method for estimating surface flow velocity that can be used in various 
environmental and engineering applications.
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