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Abstract: This study presents a fully automated railhead detection method based on a direct image
processing algorithm for use on a railway track. This method functions at a much faster pace than
artificial intelligence algorithms that process rail images on embedded systems or low-power devices,
as it does not require the use of significant computing resources. With the use of this method,
railheads can be analyzed to identify the presence of cracks and other defects. We converted color
images to halftone images, performed histogram equalizations to improve the contrast, applied a
Gaussian filter to reduce the presence of noise, utilized convolutional filters to extract any vertical
and horizontal lines, applied the Canny method and Sobel filters to refine the boundaries of the
extracted lines, applied the Hough transform technique to extract lines belonging to the railhead
images, and identified the segments with the highest brightness values to process the images of the
railheads under study. The method of railhead separation described in this article will allow for
further comprehensive diagnostics of the condition of rail threads to ensure the safe and sustainable
operation of railway transport. The implementation of intelligent maintenance systems and effective
monitoring of railway track conditions can reduce the negative impact on the environment and
contribute to the advancement of rail transport as a sustainable, safe, and more environmentally
friendly mode of transportation.

Keywords: sustainable railway; sustainable transport; railhead defects; image processing; halftone
images; rail image processing algorithm; segmentation of images; diagnostic system; non-destructive
testing

1. Introduction

In the modern world, railway networks play an increasingly important role in ensuring
the safe transport of passengers and freights to meet the growing economic and military
needs. Infrastructure, development, and maintenance are integral to the railway industry.
The railway track is one of the most important parts of the railway system and is influenced
by various factors, such as high train speeds and vibrations and climatic conditions, which
can cause severe damage and create problems related to transport safety and crucial social,
economic, and sustainability factors that must be considered.

When the rail and wheel interact, particularly on high-speed and heavily loaded tracks,
defects and damage to the rail are inevitable. A significant number of these defects appear
on the rolling surface of a railhead. These defects can develop rapidly and pose a serious
threat to train safety.

Figure 1 presents defective and acutely defective rails detected over one month on a
6147.7 km railway track at one of the regional branches of JSC Ukrzaliznytsia (Ukraine). To
ensure the trouble-free operation of the track and the timely detection of defects and damage
to the rails and turnout elements, domestic railways have developed and implemented a

Sustainability 2024, 16, 5109. https://doi.org/10.3390/su16125109 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su16125109
https://doi.org/10.3390/su16125109
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-0695-1304
https://orcid.org/0000-0001-8951-5542
https://orcid.org/0000-0001-8025-8172
https://orcid.org/0000-0002-5952-1594
https://doi.org/10.3390/su16125109
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su16125109?type=check_update&version=1


Sustainability 2024, 16, 5109 2 of 17

multi-stage non-destructive testing method based on technical diagnostics, including the
use of primary and secondary inspection equipment.
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This concept presents a synergistic property when the overall efficiency of a rail
diagnostic system is higher than the sum of the efficiencies of each diagnostic system. The
analysis of the information received from different flaw detection devices assessing the
same track section over a certain period of time allows for the real-time tracking of the rail
condition and introduces preventive measures for systematic track rehabilitation purposes,
eliminating (minimizing) the chance of sudden track failure occurring due to rail defects,
thus ensuring the incorporation of necessary train safety measures.

A clear and well-coordinated operation of the non-destructive testing complex and
systematic analysis of the causes of defects are some of the key aspects of ensuring the
safety of train traffic on the railway transport system.

Detachable tools that move along the tracks to simultaneously inspect two rail strands
and self-propelled flaw detection vehicles equipped with automated control equipment are
some of the devices used at present for rail flaw detection purposes.

Detachable rail inspection tools require the direct involvement of track maintenance
personnel who walk along the railway track and conduct non-destructive rail inspections.
This method allows operators to visually detect any defects on the rolling surface of
the railhead.

Non-destructive testing and technical diagnostics of rails at high speeds can be per-
formed using mobile rail inspection equipment. The use of mobile flaw detection equipment
significantly reduces the cost of rail operations due to lower inspection costs, increased
frequency of use, and the timely detection of defects.

However, the non-destructive testing of rails requires the emitters and receivers of the
diagnostic system to be in continuous contact with the railhead surface. However, since
railhead surfaces can experience different types of damage and defects, this continuous
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contact is not always achieved, resulting in the difficulty and, at times, impossibility
of performing the non-destructive testing process. These are called non-testable rails.
According to the Classification and Catalogue of Defects and Damage of Rails in Ukrainian
Railways [1], surface defects include:

• crumbling and delamination of metal on the railhead’s rolling surface due to deficien-
cies in rail manufacturing technology (code 10.1–2) and the crumbling of metal on the
side working bend of the railhead due to insufficient contact fatigue strength of the
metal (code 11.1–2);

• slippage of rails by locomotive wheels (code 14.1–2);
• crumbling and delamination of metal on the rolling surface in the hardened layer (in

the absence of surfacing) (code 17.1–2);
• crumbling of the welded layer on the rolling surface of the railhead, included as a

result of the violations of welding rail connector technology (code 18.1–2) and non-
testable due to the presence of a significant number of defects and damage on the
rolling surface of the rail (code 19.1–2).

These problems frequently occur on railway tracks (see Figure 1) and are exacerbated
by passing tonnage and numerous technological and technical factors. For the timely detec-
tion of defective areas, it is necessary to perform additional inspections using removable
ultrasonic inspection equipment that detects internal damage.

Therefore, the aim of this study is to develop a direct rail image processing method for
railhead extraction purposes.

In view of the aims presented above, our study pursues the following objectives:

• Section 2 analyzes the current technical diagnostic methods for the physical and
mechanical characteristics of rails, which are used during different temperatures
and conditions.

• Section 3 describes the development of the direct rail image processing method algo-
rithm used to perform railhead extractions.

• Section 4 presents a comparsion of our developed railhead segment extraction method
and the method presented in the work of [2].

• Section 5 provides the conclusions and a discussion of the results of our investigation
and additional steps to improve the method developed in this study.

2. Analysis of the State of the Problem under Study

Based on the above considerations, and in accordance with the requirements for
identifying internal and surface rail defects described in [3], it can be concluded that there
is no universal method of the non-destructive testing of rails. Each method has its own
advantages and disadvantages. It is necessary to combine inspection systems to increase
the probability of detecting defects in rails. For example, paper [4] proposes a combined
study using electromagnetic detection and multi-frequency excitation, which will allow
detecting surface and near-surface defects in the heads. The authors of [5] propose to
combine Ground-Penetrating Radar (GPR) and Interferometric Synthetic Aperture Radar
(InSAR) methodologies and continue to explore the possibilities of integrating machine
learning to predict the condition of railway tracks and related maintenance. The use of
deep machine learning methods and three-dimensional recurrent models based on neural
networks for defect localization was investigated in [6]. The application of the decision
tree (DT) method, the use of automated systems, and modeling the service life of railway
sleepers to ensure railway transport safety are presented in [7,8].

Visual inspection is used to increase the probability of detecting surface rail defects.
For example, a general visual inspection is used to detect the presence of surface defects
while walking along the railway track. To create the best conditions for detecting defects
during such control, the rail should be illuminated, if necessary, with auxiliary lighting to
achieve a minimum of 160 lux, and the distance between the inspection site and the rail
surface may be more than 600 mm [3].
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It is most effective to use automatic visual inspection for rail inspection, which would
allow the automatic detection of defects on the rolling surface of the railhead. Visual
inspection can detect the following defects [3], which are classified according to [9]:

• horizontal/vertical cracking;
• corrosion;
• squats;
• wheel burns;
• head checks;
• shelling;
• corrugation;
• missing or damaged components associated with the rail (for example, fish plates,

insulated joints, chairs, or clips).

At present, several different technical diagnostic methods assessing the physical
and mechanical characteristics of metal structures under long-term operation at different
temperatures and under different environmental conditions exist [10].

The non-destructive testing of rails can be divided into methods [11,12] based on eddy
currents, as well as ultrasonic, visual inspection, thermal, X-ray, magnetodynamic, and
direct current (DC) methods, all of which have their advantages and disadvantages.

The eddy current method involves eddy current monitoring and magnetic flux dissi-
pation. This method measures the response of a material to an induced electromagnetic
field; the presence of a surface or internal (below-the-surface) defect creates a distributed
electromagnetic field that can be measured. This is a non-contact method and is very
sensitive to the detachment of the probe from the surface of the samples being tested [12].
This method can detect the presence of surface or near-surface transverse cracks; however,
it is not suitable for the detection of longitudinal cracks, and its effectiveness is affected by
the selected scanning speed [13].

The railway industry uses ultrasonic methods for the mobile diagnostics of railway
track defects to check for any internal defects and to monitor rails in operation [14,15].
The disadvantages of this method include the contact between the rail surface and the
piezoelectric emitter, which prevents the detection of surface defects on rails. The possibility
of obtaining inaccurate results increases when rail surfaces become rough due to corrosion.
Surface irregularities can also create dead zones that cannot be read by the sensors. Standard
sensors do not distinguish linear defects that run parallel to their beams, and control sensors
are not suitable for processing coarse-grained materials, as evidenced by the research
materials of Zetec, a world leader in the field of non-destructive testing (NDT).

Thermal methods employ the change in the thermal properties of the rail to detect the
presence of a defect. A single frame or a video of the surface temperature distribution of
the test sample is used to determine the presence of any defects [16].

Radiographic methods allow for a visual analysis of the internal structure of a rail or
weld. This method detects cracks, defects, and thickness reductions in great detail, but it is
a hazardous, expensive, and time-consuming approach [13,15].

The magnetodynamic method, also known as the magnetic flux leakage (MFL) method,
is currently used in countries, including the United Kingdom, Iran, and the USA, for the
detection and characterization of defects on railway tracks [17].

The eddy current (EC) testing method is also widely used in many countries. However,
despite its advantage of everyday use, its results are negatively affected in the presence of
multiple cracks located close to each other on a rail [18].

The operation of flaw detectors using the magnetodynamic method has also revealed
their main limitation: the presence of an air gap between magnet poles and the rail.
Increasing this gap to 20–23 mm for traffic safety reasons leads to a significant weakening of
the magnetic flux in the rail. At the same time, due to an increase in the scattering flux, all
the structural elements of the rail track become clearly visible, and the operator receives a
false impression of the normal functioning of the structure. Moreover, the dimensions of the
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electromagnets of the rail magnetization system, which completely occupy the inter-wheel
space of the inductor trolley, and their power consumption values may also be affected.

Visual inspections can be performed by a railway worker by walking along the railway
tracks and searching for surface defects, since methods for the automatic recognition of
defects on the rolling surface of rails need to be developed.

The surfaces of railheads can have various forms of damage and defects that can make
non-destructive testing difficult, or even impossible, to perform. Areas with complicated
or impossible contact control are referred to as non-testable rails. The number of these
areas on a railway track increases with the volume of passing tonnage and various other
technological and technical factors.

Video inspection using mobile rail testing equipment is one way of detecting non-
testable defects on the rolling surface of rails [19]. The primary task of this method is to
isolate the rail and its head in the image. Existing rail detection solutions using artificial
intelligence (neural networks) [20–22], which requires the use of many test images with
highlighted features and their descriptions for training, demand substantial resources
for implementation purposes. As a result of these shortcomings, the potential for the
widespread adoption of this method and its use in a real-time setting are complicated.

Study [23] presented a laser scanning methodology that enables the automatic deter-
mination of the position and geometry of rails determined from the three-dimensional (3D)
data of the rail point cloud. By comparing it with rail position standards (IFCs), the method
can identify position deviations smaller than 3 cm, but it does not have the capability to
identify defects within the rails themselves.

The detection of cracks in railway structures is the primary task in railway analysis. In
study [24], the authors proposed a cost-effective solution to address crack-related issues
using radio frequency control. This approach detects track defects that occur periodically,
whether by natural or artificial means. Natural causes include significant rail expansion
that occurs due to temperature increases or flooding, while artificial causes include events
such as terrorist attacks. Figure 2 presents common surface defects on and damage to the
sections of main railway tracks that are considered non-testable.
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To summarize, it can be argued that the development of flaw detection tools, together
with measures aimed at improving the processing and systematization of data on the causes
of rail defects, is ultimately one of the main ways to improve train safety, cargo delivery
times [25], and passenger schedules [26].

The analysis shows that, over the years, various methods have been developed to
diagnose the condition of rails and turnouts. The solutions available at present do not
fully meet the requirements of railway infrastructure operators for traffic safety moni-
toring purposes; thus, this area requires further research to improve railroad efficiency,
increase the probability of detecting defects, and allow for the predictive maintenance of
railway infrastructures.

3. Materials and Research Methods

Recently, methods based on the detection of surface defects on rails, also known as
the machine vision, have gained importance in the field. This method consists of the
preliminary processing of rail images, which consists of removing unnecessary objects,
such as parts of sleepers, rail soles, crushed stone, or other loose material on which the
rail pair is laid. In addition, it is necessary to remove the background from the image and
highlight the rail and its head to effectively present the damage present on its surface.

We selected a direct image processing method for isolating the rail and its head in
the image, as the algorithm on which this method is based does not require significant
computational resources and can operate on embedded systems or low-power devices.
This is particularly important for real-time image processing or when the processing speed
is a critical factor. An additional advantage of the method we selected is the independence
of the direct image processing algorithm from complex learning algorithms, and, as a
consequence, it produces fewer errors.

To perform the railhead detection study using the described algorithm, we selected
color images of rails at 500 × 500 pixels. At the initial stage of the assessment, the original
image was converted into a grayscale image, which contained information about the
brightness and did not contain information about the color of the pixels, in order to reduce
the influence of colors on further processing stages.

In the color image, each pixel was a combination of three values ranging from 0 to 255
corresponding to red, blue, and green. To convert the image from color to grayscale, it was
necessary to transform the color values of each pixel into a single gray value within the
same range of 0 to 255. As a result, each pixel will have one color value instead of three.
The simplest method is to select the average of the three values of red, green, and blue for
each pixel. This study presents the developed algorithm for the direct image processing
method, which is schematically depicted in Figure 3.

The first stage of this algorithm, the conversion of a color image into a halftone image,
aims to increase the efficiency of image processing by reducing the number of operations
required to process it, which will improve the processing quality. The grayscale, which has
256 gradations of brightness, can accurately represent an object in an image.

The second stage of the algorithm, image histogram equalization, is performed to
increase the contrast between image objects, which allows for a more accurate selection of
the required objects.

The third step of the algorithm, Gaussian filtering, removes small objects from the im-
age and reduces the impact of noise, which also improves the quality of railhead detection.

The subsequent step is convolutional filtering, which is used to remove lines from the
image that may not belong to rail images. As a result of this filtering activity, the processed
image usually presents lines that can belong to rails, rail soles, and sleepers.

The application of the Canny method and Hough transform, which are the subsequent
steps of the algorithm, allow for the selection of lines that belong to the rails.
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Figure 3. Algorithm of the direct rail image processing method for railhead extraction.

The selection of median lines, created from group of lines that are closely spaced
and/or overlap, allows the removal of unnecessary selected lines and only the lines that
delimit the railheads remain; the selection of the brightest segment between the lines is
the railhead. However, the human eye perceives colors differently, for example, green is
perceived to be ten times brighter than blue. The conversion of a color image to grayscale
is conducted using the following formula:

Y = 0.2126R + 0.7152G + 0.0722B (1)

where Y is the original color value of a pixel in a halftone image, R is the value of the red
color of the pixel, G is the value of the green color of the pixel, and B is the value of the blue
color of the pixel. As a result of the conversion stage, each pixel has a single value in the
range from 0 to 255. Figure 4 presents one of these images and its halftone transformation.
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The subsequent step of the image processing algorithm is the enhancement of the
image in terms of increasing the contrast of the edges and contours in the images. The
equalization (leveling) of the brightness histogram was performed [27,28]. Since the bright-
ness level is a discrete function used for processing halftone images, the probability of
occurrence of the brightness level, rk, is calculated using the following formula [29]:

p(rk) =
nk

M × N
, k = 0, 1, . . . , m − 1 (2)

where M × N is the size of the input image, nk is the number of pixels with a brightness
level, rk, m is the number of possible brightness levels of an image (for example, 256 for an
8 bit image), and p is an empirical probability density function. A histogram of the number
of pixels, nk, with brightness levels, rk, is shown in Figure 5.
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The cumulative probability density function of the brightness levels can be calculated
using the following formula [28,29]:

h(r) =
k

∑
j=0

p
(
rj
)

(3)

Based on the results obtained for the analysis of images and their luminance his-
tograms, it can be concluded that an image with a uniform distribution of the luminance
range will be better for perception purposes. The histogram equation requires the re-
estimation of the cumulative probability density function of the brightness levels using the
following formula [29]:

sk = (m − 1)
k

∑
j=0

pk
(
rj
)
=
(m − 1)
M × N

k

∑
j=0

nj , k = 0, 1, 2, . . . , m − 1 (4)

Figure 6 presents histograms of the stages before and after the equalization was performed.
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Indeed, following the histogram equalization process, function p(x) presents a linear
form. The image with improved contrast is presented in Figure 7.
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The subsequent step of the algorithm is the application of a Gaussian filter to reduce
noise and remove small details from the image, which is based on the use of the Gaussian
as a kernel for image convolution purposes [30]:

G(x) =
1

2πσ
e

x2+y2

2σ2 (5)

where x, y is the distance from the origin to the pixel, and σ is the standard deviation of the
Gaussian distribution.
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To speed up the calculations, the central pixels [31,32] are usually selected for each
image element. The subsequent step of the algorithm requires the extraction of the contours
of the vertical and horizontal lines, which is performed by applying convolutional filters
to the image [33,34]. These filters are called ‘horizontal’ and ‘vertical’ filters, respectively,
and have a dimension of 5 × 5 (Figure 8); the results of applying vertical and horizontal
convolutions to the image with the rail are shown in Figure 9.
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In the convolution process, the input image is convolved pixel by pixel with the
appropriate filter (kernel) based on the multiplication and addition of values. This operation
produces an output image (or feature map) that reflects the important features (in our case,
lines) detected in the input data.

Many lines can be selected when using convolutions. They can overlap and/or be
spaced very close to each other (Figure 10).
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Figure 10. Lines that overlap (a) and are spaced close to (b) each other (photographs taken by the
authors).

We used the Kenny method to refine the boundaries (contours) of the selected lines [35,36].
This method is one of the most widely used in the field and is based on the application of
the Sobel operator [37]. Its concept is as follows: Let the 3 × 3 envelope of a certain image
element be represented by brightness values, as shown in Figure 11.

Sustainability 2024, 16, x FOR PEER REVIEW 11 of 17 
 

Many lines can be selected when using convolutions. They can overlap and/or be 
spaced very close to each other (Figure 10). 

  
(a) (b) 

Figure 10. Lines that overlap (a) and are spaced close to (b) each other (photographs taken by the 
authors). 

We used the Kenny method to refine the boundaries (contours) of the selected lines 
[35,36]. This method is one of the most widely used in the field and is based on the appli-
cation of the Sobel operator [37]. Its concept is as follows: Let the 3 × 3 envelope of a certain 
image element be represented by brightness values, as shown in Figure 11. 

𝑧ଵ 𝑧ଶ 𝑧ଷ 

𝑧ସ 𝑧ହ 𝑧 

𝑧 𝑧଼ 𝑧ଽ 

Figure 11. Brightness values of the image element’s surroundings. 

The Kenney method is used to move the mask from one point in the image to another. 
The movement occurs in the direction of the brightness gradient, which indicates the di-
rection of its fastest change. The Sobel operator uses masks, as shown in Figure 12. 

 

−1 −2 −1 

 0  0  0 

 1  2  1 

 

Figure 12. Sobel operator masks. 

The approximate values of the derivatives at the (x, y) point in a digital image are 
used to calculate the gradient: 𝐺௫ = ሺ𝑧 + 2𝑧଼ + 𝑧଼ሻ − ሺ𝑧ଵ + 2𝑧ଶ + 𝑧ଷሻ 𝐺௬ = ሺ𝑧ଷ + 2𝑧 + 𝑧ଽሻ − ሺ𝑧ଵ + 2𝑧ସ + 𝑧ሻ (6)

Then, the gradient is expressed as follows: 𝐺ሺ𝑥ሻ = ට𝐺௫ଶ + 𝐺௬ଶ (7)

To determine the direction of the gradient, the angle between its direction and the 
axis, 𝑂௫, is calculated as follows: 

−1 0 1 

 2 0 2 

−1 0 1 

Figure 11. Brightness values of the image element’s surroundings.



Sustainability 2024, 16, 5109 11 of 17

The Kenney method is used to move the mask from one point in the image to another.
The movement occurs in the direction of the brightness gradient, which indicates the
direction of its fastest change. The Sobel operator uses masks, as shown in Figure 12.
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The approximate values of the derivatives at the (x, y) point in a digital image are used
to calculate the gradient:

Gx = (z7 + 2z8 + z8)− (z1 + 2z2 + z3)
Gy = (z3 + 2z6 + z9)− (z1 + 2z4 + z7)

(6)

Then, the gradient is expressed as follows:

G(x) =
√

G2
x + G2

y (7)

To determine the direction of the gradient, the angle between its direction and the axis,
Ox, is calculated as follows:

Θ = tan−1
(

Gx

Gy

)
(8)

The direction of the path at the (x, y) point is always perpendicular to the gradient.
This improves the method’s ability to detect the boundary. Subsequently, the threshold
filtering technique is applied, in which pixels with a gradient that exceeds the threshold
are retained, and the remainder are discarded. The threshold can be set by the user or
automatically selected using the algorithm [35,38]. To determine straight lines for the
boundaries, which correspond to the rails in the images, we used the Hough transform
method [39,40]. Each point of the boundary is represented as (x, y) in the image, for which
possible parameters (angle and/or radius) are generated that define a geometric shape that
passes through this point, such as a line or a circle (in our case, a line), i.e., an ‘accumulation
matrix’ or ‘accumulation space’ is created, in which each possible set of parameters (angle,
radius, etc.) is represented as a value in this space.

The local maxima are determined for each point of the boundary corresponding to
certain values of the selected parameters. The peaks corresponding to the local maxima
indicate the parameters (number, position, etc.) that best fit the detected geometric shape—
in our case, a line.

The Hough method does not distinguish among lines that belong only to railheads but
can also detect extraneous lines, such as those formed by the shadow of a rail. Therefore,
after applying the Hough transform method, it is advisable to filter the several lines that
appear in the image (Figure 13a,c).

To perform this step, the lines are grouped according to their distance from each other,
forming groups of closely spaced lines, and the median line is calculated in each group.
Thus, one line is selected from each group of lines (Figure 13b,d). The selected lines belong
to the rails (Figure 14).
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The next stage of computation is performed to distinguish between the straight lines,
the parts of the image that represent railheads. For this stage, we compared the brightness
of the selected segments. Since the railheads present the highest brightness level relative to
the entire rail, the average brightness level of the segments between the lines is calculated,
and the segment with a brightness level that is higher than the average is selected.

The brightest segment of the image between the two lines corresponds to the image of
the railhead (Figure 15).
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4. Comparison of the Results of the Developed Method and the Prototype

The railhead segment extraction method developed in this study was compared to the
method presented in the work of Kang Zhao [2]. His work [2] also described a direct image
processing method used for detecting railheads. Kang Zhao’s algorithm is based on the
image threshold method. The segmentation threshold is determined based on the grayscale
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diagram of the image. It was observed that the grayscale value of the rail surface was high
and the change in values in the adjacent area was small compared to the transition from
rail to non-rail surfaces. Therefore, the grayscale level at the junction changes abruptly
(Figure 16). The image threshold method was applied to the input image (Figure 17a),
which created a binary image (Figure 17b).
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Figure 17. Input (a) and binary (b) images of the rail [2].

Subsequently, the output image was produced by comparing the pixels of the input
and binary images. The pixels of the input image remained unchanged if they corresponded
to white pixels in the binary image, and the pixels of the input image that corresponded
to black pixels in the binary image were converted to black. The result is an image with a
highlighted railhead (Figure 18).
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One of the disadvantages of the described algorithm is its high dependence on the
brightness of other elements present in the image. This means that bright details may
appear in the original image that are not actually related to the rail. During the image
processing step, such elements can be mistakenly interpreted as forming part of the railhead.
In comparison, the algorithm presented in this study has an important advantage: it does
not depend on the brightness of other elements that are not related to the rail object in
the image. This allows maintaining the accuracy and reliability of the processing results,
avoiding erroneous interpretations and ensuring the clear identification of the railhead
regardless of the additional, bright details present in the input image. In addition, the
machine vision system developed by Kang Zhao for railhead detection purposes is directly
dependent on the image quality; therefore, it has high requirements for image acquisition
and rail illumination and should be approximately 4600 lux, unlike the developed system,
which is independent of the illumination of the rail.

To summarize, it can be argued that the research focusing on developing flaw detec-
tion tools, coupled with initiatives aimed at enhancing the processing and systematization
of data regarding the causes of defects, is ultimately a key factor influencing sustain-
able railway transport, train safety, cargo delivery times [25], and passenger transport
schedules [26].

5. Conclusions

This study analyzed the existing problems in rail image processing methods and
identified the main disadvantages that affect their speed and quality. For example, the
use of neural networks in image processing techniques requires a high computation and
complex learning algorithms that increase the likelihood of errors. The use of ultrasonic
rail inspection methods, electromagnetic waves, and eddy currents can detect internal rail
defects but do not detect surface cracks or surfaces with deep faults. The method proposed
in this study allows the selection of railheads for further processing in order to identify
defects located on rail surfaces based on the direct image processing method.

As a result of the experiment, it was determined that the developed method can
identify the railheads, regardless of the placement of the rail in the image; however, if the
position of the rail in the image is known in advance, i.e., it is horizontal or vertical, the
processing time of the rail image can be accelerated by applying a specific convolution
of the boundary search. If the rail is photographed from above, perpendicular to the
rolling surface of the railhead, the images are processed faster, because less time is spent on
correcting the position of the rail. The dependence of the processing speed on the position
of the rail in the image (Figures 10, 13 and 14) is presented in Figure 19.
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Figure 19. Dependence of image processing speed on rail orientation in the image.

The railhead detection method we developed was compared with the prototype
method [2]. The main disadvantage of the prototype method is that the method focuses on
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the brightness of the rail surface and can mistakenly highlight bright elements that are not
related to the rail.

It was experimentally proven that the presence of other bright elements in the image
(Figures 13 and 14) did not affect the processing result, since the algorithm focused on clear
longitudinal lines (straight lines) and did not pay attention to other details (Figures 14 and 15).

The developed method serves not only as an effective tool for processing rail images
to extract railheads but also as a basis for further scientific research. The main emphasis
in the future will be placed on automating the detection of various types of defects on the
rolling surface of railheads and assessing their impact on train safety. The development of
research in this area presents additional opportunities to improve the sustainability and
efficiency of railway transport.

We implemented software based on the direct processing method of rail images for
railhead detection and the algorithm described in detail in this study. The results are
illustrated in the figures presented above.

To summarize, it can be argued that research focused on developing a suite of flaw
detection tools, coupled with initiatives to enhance the processing and systematization
of data regarding causes of defects, is ultimately one of the key factors influencing sus-
tainable railway transport, train safety, cargo delivery times [25], and passenger transport
schedules [26].
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