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Abstract: Intelligent transportation systems represent innovative solutions for traffic congestion
minimization, mobility improvements and safety enhancement. These systems require various inputs
about vehicles and traffic state. Vehicle re-identification systems based on video cameras are most
popular; however, more strict privacy policy necessitates depersonalized vehicle re-identification
systems. Promising research for depersonalized vehicle re-identification systems involves leveraging
the captured unique distortions induced in the Earth’s magnetic field by passing vehicles. Employing
anisotropic magneto-resistive sensors embedded in the road surface system captures vehicle magnetic
signatures for similarity evaluation. A novel vehicle re-identification algorithm utilizing Euclidean
distances and Pearson correlation coefficients is analyzed, and performance is evaluated. Initial
processing is applied on registered magnetic signatures, useful features for decision making are ex-
tracted, different classification algorithms are applied and prediction accuracy is checked. The results
demonstrate the effectiveness of our approach, achieving 97% accuracy in vehicle re-identification for
a subset of 300 different vehicles passing the sensor a few times.

Keywords: intelligent transportation systems; vehicle re-identification; magnetic signature;
signal classification

1. Introduction and Related Work

Usage of magnetic sensing in intelligent transportation systems (ITS) is rapidly gaining
popularity [1–3] compared to more traditional video processing [4,5]. Various systems for
road traffic surveillance largely utilize MEMS (micro-electromechanical systems) magne-
tometers for the purpose of vehicle detection and classification [6,7]. Examples of such
applications include vehicle speed calculation [8,9], length estimation [10], classification
into defined categories [11], smart parking [12] and autonomous driving [13]. Wireless
magnetic sensor networks are a popular choice for information acquisition. This solution
has the advantages of low cost, low power consumption and miniaturization. Study [14]
highlights the drawback of magnetic sensing for a parking application, which is the weak
magnetic region under the vehicle. It is difficult to separate this magnetic signal from
ambient noise since the magnetometers are mounted in the middle of the parking lane. To
solve this problem, a UWB radio channel was proposed. The authors of [15] investigated
anomaly detection for a moving magnetic target in controlled laboratory conditions. The
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velocity–frequency relationship, direction angle and closest point of approach distance were
highlighted in this study. The mathematical relationship between the detection platform
and magnetic target was established to account for velocity differences [16].

Machine learning methods for magnetic signal analysis are gaining popularity. In [11],
a method for vehicle detection and recognition using machine learning, input vectors com-
posed from cestrum energy and Mel frequency cepstral coefficients was utilized. Vehicles
were classified into five defined categories with high accuracy, although the sample size for
training and testing was not very large. The authors of [17] defined vehicle classification
as the process of assigning each vehicle to a pre-defined vehicle class based on some fea-
tures extracted from its magnetic signature. The task of vehicle re-identification [18] was
applied in determining segment travel times. Using an inductive loop detector, the authors
implemented a decision tree using statistical features like lane speed and travel duration
estimation. Classification into four different classes was performed in [19]. The authors
extracted 10 different statistical features from the z axis of the triaxial magnetometer—such
as mean, variance and local minimums and maximums. Classification was performed
using different machine learning algorithms (BP NN, SVM, Random Forest) on a dataset
containing more than 4500 vehicle entries. The classification result reached 80%. Real-
time vehicle classification into nine classes was performed in [20] utilizing three-layer
feedforward artificial neural networks (ANN). The authors established that using only
time-domain features requires low computation and few memory resources, which enables
easier implementation and real-time operation. A frequent problem in vehicle classification
is an imbalanced dataset—certain types of vehicles like buses and motorcycles occur less
often compared to sedans and hatchbacks. A solution called SMOTE was proposed by the
authors of [21]. According to certain rules, the SMOTE algorithm randomly generates new
minority sample points, which will be merged into the original. Utilizing this algorithm
with a K-nearest neighbor (KNN) classifier, they managed to classify vehicles by magnetic
signatures into four classes with 95% accuracy. Balid, in [22], used various statistical mea-
surements to classify vehicles according to an FHWA scheme. Different classifiers were
tested, all reaching almost 98% accuracy.

In [23], researchers explored the potential of estimating vehicle location using a mag-
netic sensor array. Although the array consisted of only two sensors, the mathematical
principles can be extended to larger arrays. The vehicle, traveling parallel to the sensor
array, is modeled as a magnetic dipole, generating an ideal dipole magnetic signature.
While the overall accuracy was not specified, the study concluded that it is feasible to
detect vehicle location using a magnetic sensor array. Similarly, Kwong [24] developed a
system for the real-time estimation of travel time across the arterial segment of 1.5 km by
identifying the same vehicles. The matching procedure is based on a statistical model of
signature distance. The model can be used to predict rates of correct, incorrect and missed
matches. As stated by [25], vehicle re-identification (identifying the same exact vehicle
in traffic) can give essential information for traffic management about travel time and
origin–destination matrices. Real-time traffic data are essential for optimizing traffic flow
and reducing travel time and greenhouse gas emissions. The authors collected 261 temporal
magnetic signatures from 25 different vehicles in the parking lot. A total of 10 sensors with
25 cm spacing and 200 Hz sampling frequency were used. Their findings included that the
Euclidean distance and DTW (dynamic time warping) algorithms are suitable for same
vehicle identification; however, performance is linked to the lateral position of the vehicle
on the road.

Fourteen wireless magnetic sensors were installed in an array [26], and vehicle sig-
nature features consisting of a collection of peak values were collected. By comparing the
upstream and downstream detectors’ registered signatures and calculating different statisti-
cal features (mean, standard deviation), arrays were compared using distance metrics. The
authors suggested that using their developed algorithm, the mismatch rate is around 8%,
and, for congested traffic conditions, it reaches 14%. The authors of [27] utilized six mag-
netic sensors with 20 cm spacing for AVMR (automatic vehicle model recognition)—given
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an unknown vehicle’s signature and set of a database vehicle signatures, the goal is to
associate the correct vehicle model. Re-identification using DTW and machine learning
models (k-NN, LMD, Gaussian classifier) has shown promising results; however, there are
no experiments indicating how the algorithms would perform with new, unseen data.

The advantages of wireless sensor networks utilizing magnetic sensing are summa-
rized in [28]—they do not require an external power supply, they have a compact size,
they minimally damage the road surface and they have resistance to interference from
the urban environment. The authors emphasize as a disadvantage that magnetic sensors
do not provide information about the direction of the vehicles—available systems cannot
detect which gate the car entered the area through or left through. With our work, we try
to challenge this statement and demonstrate that it is possible to determine specific vehicle
traveling patterns in a specified area with great accuracy.

The available research is concentrated on single-magnetometer feature extraction
for vehicle classification to strictly defined categories. Not much work is available on
the vehicle re-identification problem—finding the same vehicle passing over sensors by
comparing its magnetic signature with previously recorded signatures. Articles revolving
around vehicle re-identification methods involved testing in restricted conditions or with
a small data subset. In this work, a feature extraction method for a magnetometer array
is proposed, and different machine learning methods are compared for same vehicle re-
identification in real traffic conditions. Focus is shifted to define better input features and
compare different classification algorithms.

2. Materials and Methods

Vehicles are registered using our system, presented in a previous work [29], updated
to 15 sensors with 10 cm spacing between sensors. The system constantly measures Earth’s
magnetic field with tri-axis magnetic sensors, each sampled at 1 kHz frequency. Measured
values are constantly detrended and register only change in the magnetic field. The
magnetometer’s measuring range is set to ±400 µT, and practical experiments showed that
the measured ambient noise is 1.5 µT when no vehicles or other metallic objects are near
the sensors. The system starts to register magnetic signatures, then the center sensor of the
array’s calculated module exceeds 5 µT and waits for a decrease in amplitude or timeout
condition. Collected signatures for all sensors (matrix consisting of 15 x/y/z arrays) are
transmitted to a central server. Additionally, images from a temporarily installed camera
with license plate recognition are collected and saved together with a .csv file.

In the preprocessing stage, raw collected x/y/z values undergo low-pass filtering
with a 100 Hz cutoff frequency in order to smooth the signal. Modules for every sensor are
calculated according to the following formula:

modn =
√

x2n + y2
n + z2n (1)

where modn—calculated module, x/y/z—raw registered values, n—sensor number.
Signature length depends on vehicle speed and vehicle length. Many feature extraction

methods and machine learning algorithms expect input data to be of uniform length. Signals
with a different number of points might lead to inaccuracies and inconsistencies in the
analysis. In the deployed signature collection system, vehicles travel with speeds ranging
from 30 km/h to 60 km/h. Most of the time, they are light passenger cars with an average
length of 4.5 m. The collected signatures sample count ranges from 600 to 1300 points.
Based on these observations, it was decided to resample all signals to a fixed number of
500 points. This process involves interpolating or resampling the signals so they all have
the same length regardless of the original number of data points. The vehicle signature
sampling process is initiated by a single magnetometer located in the center of the array;
other sensors values might be shifted with reference to this sensor depending on the angle
at which the vehicle is passing through the sensors. To address these issues, all signature
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values are cropped to a specified threshold—5 µT. The cropping and resampling process is
illustrated in Figure 1.
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Figure 1. Registered signature cropping and resampling process. Original calculated modules (a) and
cropped and resampled modules (b).

For each calculated module index, we identify points where the amplitude exceeds
a pre-defined threshold. This search is performed from the beginning and the end of the
signal. A new array is then formed based on these identified indices. The middle of the
signal is not checked as the amplitude might drop below the threshold, but it still represents
an important part of the signal.

The pipeline for the experiments is outlined in Figure 2. A record is defined as one
unique vehicle passing once through the signature collection system and contains 15 x/y/z
signal arrays of registered magnetic distortions. The collected database contains numerous
different vehicles with multiple records. Information about vehicle make, model and
driving trajectory is taken from the registered image. For experimentation, we select
subsets from the database with the required number of vehicles n, each containing m
passing entries from passing through the system. Constraints are added so that no vehicles
of the same model should exist, and driving direction must be the same. One subset is
selected for training samples and another subset for testing. Record comparison, pair
generation, feature extraction, model training and evaluation are performed in parallel,
applying the same actions.
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Figure 2. Pipeline for experiments.

Record pairs labeled “same” are defined as pairs of records that refer to the signatures
from the same unique vehicle, while “different” records refer to pairs of records that refer
to signatures from different vehicles. In our experiment, we used these definitions to
evaluate the performance of our algorithm in distinguishing between matching (same) and
non-matching (different) records. An example of the records is shown in Figure 3.
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The comparison pair generation algorithm (Algorithm 1) involves two steps—generating
pairs for the same vehicles and, after that, pairs for different vehicles. Empty lists are initial-
ized to store references to records. Each vehicle is iterated, and all record pairs are added to
the list. Same records are not compared to themselves; in this way, the maximum number of
“same” labels are created. In order to have a balanced dataset, an equal number of different
record pairs should exist. For different record comparison pairs, two vehicles are randomly
selected and checked to see whether they are different, and then a random record is selected
for each vehicle. This process is repeated until different vehicle comparison pairs have an
equal number to the same vehicle comparison pairs. The condition exists that randomly
selected records cannot repeat.

Algorithm 1. Generate Comparison Pairs

1: Input: Database of n vehicles, each with m records
2: Output: Comparison pairs for each vehicle and between different vehicles
3: Initialize empty list sameVehiclePairs
4: Initialize empty list differentVehiclePairs

>Generate same-vehicle comparison pairs
5: for each vehicle v ∈ {1, 2, . . ., n} do
6: for each record ri ∈ {1, 2, . . ., m − 1} do
7: for each subsequent record rj ∈ {ri + 1, ri + 2, . . ., m} do
8: Add (v, ri, rj) to sameVehiclePairs
9: end for
10: end for
11: end for

>Generate different-vehicle comparison pairs
12: countSamePairs← length of sameVehiclePairs
13: while length of differentVehiclePairs ¡ countSamePairs do
14: Randomly select two different vehicles v1 and v2 from {1, 2, . . ., n}
15: if v1 ̸= v2 then
16: Randomly select one record ri from v1 and one record rj from v2
17: Add (v1, ri, v2, rj) to differentVehiclePairs
18: end if
19: end while
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After extensive analysis of the magnetometers axis values and modules comparison,
the decision was made to use the calculated signature modules processed as explained
earlier. An example of the registered magnetic signature modules for the same vehicle
driving through the system is shown in Figure 4. Based on the collected signal analysis,
it is evident that at least one side of the vehicle’s wheels is always presented in the single
passing vehicle record, as shown in figure by the red dotted line. Sensors which are affected
by the wheels register a distorted signature, usually with a much higher amplitude or
unpredictable shape. Data of such sensors should be omitted from direct signal comparison.
An example of different vehicles’ signatures is presented in Figure 5. It is evident that the
signatures’ shape and amplitudes are significantly different between these two records.
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Electronics 2024, 13, 2722 7 of 14

evaluate these similarities. Different feature extraction ideas were tested. Every vehicle
has a unique signature, although certain common attributes which are repeating between
different vehicles can be observed. The shape of the module initially is always rising and
reaches the maximum signal value or intermediate maximum. These ascents and descents
can look like a parabola or an inverted parabola. Different vehicles have different numbers
of intermediate maximum values in different locations. These amplitude values and loca-
tion indices could be used as feature values. Signature shape approximation and single
sensor values’ relations to neighboring sensors’ relations were investigated. These strate-
gies were evaluated using stem plot diagrams but yielded unsatisfactory results that are
not presented in this study. For vehicle re-identification, the following feature vectors were
composed which showed less overlapping between same and different vehicle records:

1. Module amplitude maximum location differences;
2. Five maximum corr-coefficients from correlation matrix;
3. Ten corr-coefficients from best diagonal;
4. Five corr-coefficients calculated using vehicle center sensor;
5. Ten corr-coefficients from best diagonal and ten Euclidean distance values.

All feature vectors were calculated with normalized signature modules. Normalization
was performed record-wise by taking all signatures of one record, finding the maximum
amplitude and dividing all signatures by this value. This is the most reasonable approach
because, if normalization were performed for every sensor separately, important informa-
tion about amplitude differences between neighboring sensors would be lost. Without
normalization, absolute amplitude difference information is presented which can better
distinguish the same vehicles; however, in this case, the dynamic range can be high and
unpredictable. To tackle this problem, it is feasible to perform value constraint in the feature
extraction step so the machine learning algorithm obtains values defined in a specific range.

Feature vector 1 consists of 15 differences between module maximum indices. The
idea is that same vehicle records will have smaller distance values compared to different
vehicles. The vector is calculated using the following formula:

mindk = loc(max(sig1k))− loc(max(sig2k) (2)

where mindk is the calculated distance value between indices for sensor k; sig1 corresponds
to the signature module for record 1 and sig2 for record 2; function max() returns the
maximum value of the array; function loc() returns the array index.

Other feature vectors are calculated using correlation and Euclidean distance matrices.
The matrices result in a 15 × 15 array while calculating values between all sensor pairs
according to the following formula:

ρXY(k, j) =
cov

(
Xk, Yj

)
σXkσY j

(3)

where cov
(
Xk, Yj

)
is the covariance between two time series—it measures the degree to

which two variables change together—and σXkσY j are standard deviations of the time series
for every sensor k ∈ {1, 2, . . . 15}, j ∈ {1, 2, . . . 15}. Analogically, the Euclidean distance
matrix is calculated using the following formula:

dXY(k, j) =
√(

Xk −Yj
)2 (4)

where d is the Euclidean distance value, and Xk , Y j are signature modules for every sensor.
An example of calculated matrices for same and different vehicles is shown in Figure 6.
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The assumption is made that same vehicle records will have higher correlation co-
efficients and smaller Euclidean distance values compared to different vehicles’ records.
Feature vector 2 is based on this assumption and uses the five highest correlation matrix
values as a feature. Additionally, as can be seen from Figure 6, for same vehicles, it is
possible to distinguish a single diagonal for the largest correlation coefficients and smallest
Euclidean distances just by looking at the first 10 maximum (minimum for Euclidean dis-
tance) values. In an ideal driving trajectory, when the same vehicle ideally passes sensors,
this diagonal should appear between the same sensor pairs—(0, 0), (1, 1), (2, 2) and so on.
However, depending on the vehicle trajectory, this diagonal could be shifted. For feature
vector 3, ten correlation coefficients taken from the diagonal are used, so the diagonal can
be offset by −5 to +5 indices from the center position. The algorithm for best diagonal
selection (Algorithm 2) is as follows:

The algorithm identifies the most significant diagonal in a given matrix by evaluating
the average values of diagonals shifted within a range from −5 to +5. For each possible
shift, the resulting diagonal average is calculated. For correlation values, the diagonal with
the highest average is selected, and, for Euclidean distance values, the diagonal with the
lowest average is selected. The resulting diagonal is an array with 10 values extracted from
the matrix. Feature vector 5 is similar; only values are taken from both matrices (correlation
and Euclidean).

Feature vector 4 focuses around center sensor and two neighboring sensors from both
sides. As explained in our previous work [25], it is complicated to decide which sensor is
in the middle of the vehicle. The purpose of focusing on the center sensor is to mitigate
the influence of the vehicle wheels on the magnetic signature, as described earlier. If the
center sensor is correctly labeled, there is no need to calculate the matrix for all sensor pairs,
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but only for corresponding sensors. This simplifies calculations and directly returns five
element feature vectors. Records used for analysis were manually inspected, and the center
sensor position was labeled. An example of two different vehicles’ signatures revolving
around the center sensor and without wheel influence is shown in Figure 7. Vehicle 1 is an
Opel hatchback, and vehicle 2 is a VW panel van; however, the processed and resampled
signature modules visually are similar because of the first rising edge (samples 0–130). A
similar signature shape raises the correlation coefficients, which are around 0.94. Usually
this high a correlation value suggests that the compared records originate from the same
vehicles. Although the signature shape follows a similar pattern, the amplitude differs,
and the Euclidean distance matrix can help separate it into different vehicles because
maximum values are not concentrated on the diagonal but are chaotic. Based on this
observation, feature vector 5 was composed containing ten maximum correlation values
and ten minimum Euclidean distance values extracted from the best diagonal.

Algorithm 2. Find Best Diagonal in Matrix

1: procedure FindBestDiagonal(matrix)
2: avg arr← []
3: for shift in [−5, 5] do
4: diagonal← GetDiagonal(matrix, shift)
5: avg←Mean(diagonal)
6: avg arr.append(avg)
7: end for
8: ind← ARGMAX(avg_arr)
9: best_shift← ind – 5
10: best diagonal← GetDiagonal(matrix, best shift)
11: return best diagonal
12: end procedure
13:
14: procedure GetDiagonal(matrix, shift)
15: diagonal← []
16: for i in [0,15 − |shift|] do
17: if shift > 0 then
18: diagonal.append(matrix[i, i + shift])
19: else
20: diagonal.append(matrix[i + |shift|, i])
21: end if
22: end for
23: return diagonal
24: end procedure
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During the experiments, different methods for feature extraction were analyzed, and
it was noticeable that the Pearson correlation coefficient and Euclidean distance emerged
as the optimal parameters based on their computational efficiency, which allowed for
the accurate comparison of records while minimizing processing time. Feature sets are
composed of calculated feature vectors for generated comparison pairs.

In the results section, there is a comparison of accuracy, and calculation time is eval-
uated for the presented feature sets. Accuracy is evaluated by calculating the confusion
matrix and accuracy metrics.

3. Results

The used dataset consists of 300 different vehicles passing the sensor in the same
direction three times in real traffic conditions. Comparison pairs were generated, as
explained earlier, resulting in 900 entries for same vehicle record pairs and 900 entries for
different vehicles. Of all the pairs, 70% were used for training and 30% for testing. A feature
boxplot of correlation coefficient features using the diagonal with the preselected center
sensor (feature vector 4) is presented in Figure 8. For different vehicle records, correlation
values had a wide range but were concentrated below 0.95. For the same vehicle records,
the median was above 0.97; however, outliers existed. After inspecting the comparison
pairs for the same vehicles with low correlation values, it was noted that incorrect center
sensor selection generates more outliers in same vehicle comparison pair features. This
suggests that, in order to reduce outliers, it is necessary to perform relabeling for the
selected center sensor, oruse a magnetic sensor array with smaller spacing or a different
similarity evaluation method which is not affected by wheel-distorted signatures.
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Seven different machine learning models for the classification problem were tested
using the earlier-defined input feature sets. Linear regression was the simplest model. After
training, model weights were calculated, which were used on input data, and summed
together, and the activation function was applied. After training the model with simple
feature sets (one value for one sensor pair) for correlation and amplitude differences and
sorting calculated weights by importance, no significant sensor was noted—every time, a
different sensor had the highest weight.

The nearest neighbor algorithm complexity is determined by value k. A higher value
can give more accurate classification; however, the model might become overfitted and
poorly generalize new unseen data. Value k = 3 was empirically selected after exploring
small training/testing subsets. The KNN algorithm computes distances between input
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features and trained samples and, based on majority vote, finds the closest neighbor sample.
Intuitively, features for the same vehicle are closer together than for different vehicles.

The support vector machine model creates a hyperplane separating input features
into two categories for same and different vehicles. Although the model is more aimed at
high-dimensional feature space where the feature count exceeds sample count, it worked
correctly in the vehicle re-identification task. Different kernel functions can be used to
capture complex feature relationships. A linear kernel was selected.

The Naïve Bayes classifier works with probabilities based on Bayes’ Theorem. The
Gaussian Naïve Bayes classifier was used. The model was fitted by finding the mean and
standard deviation of the two vehicle classes’ input features.

A decision tree aims to create a tree-like model for decisions based on input features.
Values are best split into homogeneous subsets with respect to the target variable. These
models are transparent and intuitive, allowing us to understand and explore relationships
within the data. By constructing multiple instances of decision trees during training time, a
Random Forest classifier is achieved.

The Gradient Boosting Machine (GBM) is a powerful ensemble machine learning
technique suitable for classification tasks. The boosting method converts weak learners
into strong learners.

Models were compared using accuracy, precision and recall metrics, which are sum-
marized in Table 1. It is notable that different methods yielded varying levels of accuracy
across different feature sets. For instance, the Random Forest and Gradient Boosting Ma-
chine consistently demonstrated higher accuracy across most features compared to other
methods. In this re-identification task, it was important to capture all positive indices
(recall)—vehicle records which correspond to the same vehicle. While some methods
exhibited high precision but lower recall (e.g., Naïve Bayes), others achieved a balance
between precision and recall (e.g., Gradient Boosting Machine). The performance of each
method varied across different features, indicating the importance of feature selection.

Table 1. Used features and machine learning method evaluation.

Feature 1 Feature 2 Feature 3 Feature 4 Feature 5

Linear
Regression

Accuracy 0.817 0.856 0.908 0.869 0.972
Precision 0.774 0.776 0.845 0.812 0.983

Recall 0.894 1.0 1.00 0.961 0.961

KNN
Accuracy 0.844 0.942 0.972 0.903 0.978
Precision 0.888 0.904 0.947 0.876 0.989

Recall 0.789 0.989 1.00 0.939 0.967

SVM
Accuracy 0.822 0.872 0.933 0.900 0.953
Precision 0.776 0.796 0.882 0.860 0.96

Recall 0.906 1.00 1.00 0.956 0.944

Naïve
Bayes

Accuracy 0.819 0.947 0.958 0.869 0.969
Precision 0.767 0.917 0.923 0.812 0.988

Recall 0.917 0.983 1.00 0.961 0.950

Decision
Tree

Accuracy 0.769 0.933 0.897 0.889 0.972
Precision 0.765 0.882 0.839 0.857 0.967

Recall 0.778 1.00 0.983 0.933 0.978

Random
Forest

Accuracy 0.897 0.942 0.953 0.911 0.986
Precision 0.874 0.896 0.914 0.889 0.973

Recall 0.928 1.00 1.00 0.939 1.00

Gradient
Boosting
Machine

Accuracy 0.883 0.936 0.928 0.908 0.978
Precision 0.856 0.887 0.874 0.889 0.967

Recall 0.922 1.00 1.00 0.933 0.989

Different machine learning models were compared using a Receiver Operating Char-
acteristic (ROC) curve. It illustrates the performance of a binary classification model across
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different discrimination thresholds. The true-positive rate is plotted against false-positive
rates at various thresholds. ROC curves for different analyzed feature sets are shown in
Figure 9. Feature sets that only include correlation coefficients or amplitude evaluations
tend to perform worse compared to feature sets that combine both types of features. This
highlights the benefit of mixing signature amplitude and shape evaluation. These find-
ings underscore the significance of feature engineering in signature re-identification tasks,
emphasizing the critical role played by feature selection and combination strategies.
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4. Discussion

In this paper, a novel methodology for feature extraction and signature comparison
using a magnetometer array is presented. Raw registered signals were preprocessed and
different feature sets extracted.

Using only correlation features and ignoring amplitudes gives bad re-identification
accuracy because different vehicle signatures can have a similar shape. Alternatively, when
using only amplitude difference, same vehicle records might appear as different because
registered amplitude values fluctuate based on driving pattern.

Combining correlation coefficients with amplitudes for specific sensor pairs gives the
best re-identification accuracy, which reaches 98% with the Random Forest algorithm.

Choosing a machine learning algorithm is not critical. With a good feature set, all
tested algorithms perform well, with accuracy reaching 97%, while, with a bad feature set,
the accuracy gap is more visible—achieving accuracy values of 76–93%. The best accuracy
is reached with the Random Forest algorithm and KNN. In all cases, the traditional decision
tree’s performance is the worst.

The proposed method does not require the intensive computation associated with
deep learning models, making it more suitable for real-time applications and deployment
in resource-constrained environments. Unlike deep-learning-based methods, our approach
ensures anonymity by not relying on image or video data, which often contain personally
identifiable information.

5. Conclusions

Our findings can be summarized in the following conclusions:

1. Using only correlation coefficients or amplitude features for specific sensor pairs, the
re-identification accuracy is about 93%.

2. Feature selection has a higher impact than the machine learning method used.
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3. Same vehicle identification accuracy using correlation coefficients combined with
Euclidean distances can reach 97%.
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