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A B S T R A C T

The integration of renewable energy sources (RES) like solar photovoltaics (PV) into power grids is crucial for
global sustainability goals. As RES integration accelerates, energy storage systems, particularly electro-chemical
battery energy storage systems (BESS), become vital to address supply-demand gaps. This paper focuses on the
optimisation of day-ahead BESS operation dispatch in hybrid renewable energy systems (HRES) using convex
optimisation technique which ensures distinct charging and discharging states of BESS. Since this novel approach
involves BESS degradation into decision making process, it enables to dispatch the whole HRES by using BESS
lifecycle more efficiently and it also leads to a more accurate estimation of HRES economic feasibility. Our
proposed method is benchmarked with naive, self-consumption, mixed integer linear programming (MILP) and
linear programming (LP) models by using real data of HRES installed in Kaunas University of Technology,
Lithuania. The results of this case study showed that application of convex non-linear model allowed partial BESS
cycling, unlike other analysed methods. Consequently, BESS performed 2.36 times more cycles per year, which
led to increased IRR by up to 10 % compared to commonly used MILP and LP models. These outcomes underline
the importance of the development of new BESS dispatch optimisation strategies that lead to holistic approach in
overall HRES payback evaluation.

1. Introduction

The increasing integration of renewable energy sources (RES), such
as solar photovoltaics (PV), into power grids represents a pivotal global
transition toward sustainable and low-carbon energy systems [1]. This
shift aligns with the European Union [2] and United Nations [3] sus-
tainable development goals, emphasizing the need to address climate
change, ensure affordable and clean energy, and promote responsible
consumption and production. Under the International Renewable En-
ergy Agency (IRENA) 1.5 ◦C Scenario [4] would require a cumulative
global installed renewable electricity generation capacity of over 11
174GW of which 5457 GW is planned to receive from solar PV. How-
ever, as the integration of RES into power grids accelerates globally,
challenges emerge in aligning these ambitions with practical imple-
mentation, necessitating crucial investments into energy storage sys-
tems [5].

Energy storage plays a fundamental role in mitigating shortfalls

between the supply and demand of electricity generated from RES [6].
Various energy storage [7], including electrical [8], thermal [9], electro-
chemical [10], chemical (including hydrogen), hydro pumped [11] and
mechanical storage [12], contribute to ensuring the stability and reli-
ability of the grid [13]. Among these technologies, battery energy
storage systems (BESS), particularly electro-chemical BESS, stands out
as a major component for the integration of RES [6,7,10].

Electro-chemical BESS [10] are classified into types such as lithium-
ion, lead-acid, or nickel batteries, zinc bromine flow batteries, and
metal-air batteries [7,9]. Additionally, technologies like flow batteries,
supercapacitors, and superconducting magnetic energy storage also fall
under the category of electro-chemical BESS [8,9]. All these types [14]
can effectively store the generated electricity from RES [15,16].
Furthermore, due to their rapid response [17], flexible installation, and
short construction cycles [18], they are among the most widely adopted
energy storage technologies in electric power systems [10,19,20].

Different battery energy storage [16] technologies are utilized on a
commercial scale, chosen based on application-specific characteristics
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like charge-discharge rates, energy storage capacity, power, and
response time. One prominent technology is lithium-ion (Li-ion) [21]
batteries, functioning through the movement of lithium ions between
positive and negative electrodes during charging and discharging [22].
Li-ion batteries are characterized by high efficiency (almost 99 % [23]),
low self-discharge rate (2–8 % per month [24]), a long cycle life (higher
than 1000 cycles [25]), and wide operating temperature range (Li-ion
batteries may charge between 0 and 45 ◦C and discharge between − 40
and 65 ◦C [26,27]).

Since the capital costs of Li-ion batteries in power systems fall within
the range 200 to 500 Eur/kWh [28], the economic planning of such
BESS integration in hybrid renewable energy systems (HRES) is an
ongoing area of research and testing [29–31]. Li-ion based batteries,
with their higher life cycle and efficiency compared to the most popular
Lead-acid batteries, offer a preferable choice for HRES [32], especially
the ones, which include photovoltaic panels and aim to efficiently store
and utilize solar power [32,33].

There are two main types of HRES applications, namely, off-grid and
grid-connected HRES [34–36]. Many researchers [37–43] have worked
on the comparison between these systems in economic, technical,
environmental, and other aspects. Their results claim that while off-grid
systems offer complete energy independence, their limited capacity and
high battery costs make them suitable for sparsely populated remote
areas [41,42]. In contrast, grid-connected HRES ensure uninterrupted
energy supply by storing excess energy from RES and supplying it to the
grid when needed, including black-outs [37,39]. Therefore, for
enhanced energy stability, it is more beneficial to implement grid-
connected systems [38].

To increase the overall efficiency of HRES, optimisation techniques
are applied to both off-grid and grid-connected systems [40,43]. The key
focus of HRES design is BESS [44–46] as it provides such advantages, as
energy reliability by offering a buffer during periods when the renew-
able sources are not generating power [47,48], grid stability by helping
in peak cutting and load leveling [49,50] and optimised use of resources
by intelligently managing the energy storage to maximize the efficiency
of different energy resources [51].

Authors [52] raise the frequency related issues posed by the
increasing penetration level of RES. A study conducted in Texas high-
lights the increasing importance of grid-scale energy storage in meeting
flexibility and system inertia needs [53]. Another compelling example
showcasing the significance of day-ahead optimisation is the BESS
directly dispatched by grid operators to effectively provide active power
regulation services, such as, inertia frequency response, frequency
containment reserve, frequency restoration reserve, and peak regula-
tion, to contribute to economic benefits and enhanced grid reliability
[54]. Utilization of dynamic pricing optimisation in BESS operation
dispatch can also increase its versatility in minimizing operating costs
and maximizing benefits across applications like peak shifting, Demand

Response, and Time of Use [55].
The optimisation of the BESS design and operation dispatch is to

improve the matching of the battery capacity and charging/discharging
profiles with energy demands [56]. During charging, the energy storage
battery must receive a constant and adequate charging current. Under-
charging or overcharging can damage the battery [57] and reduce en-
ergy efficiency. During discharge, the system must avoid sudden power
spikes and drops and transfer the stored energy to the grid or the user in
a smooth and controlled manner. Discharge and charge management
with appropriate power management systems maintain efficiency and
extend battery life [58,59]. Battery cells may degrade over time and
therefore have a lower capacity than originally purchased.

As the optimisation of day-ahead BESS operation dispatch [55] in-
troduces intertemporal time constraints for charging and discharging
decisions at specific periods, addressing the challenge of non-
simultaneous charging and discharging becomes crucial [60]. To
tackle this, various authors employ nonlinear models, such as Mixed
Integer Linear Programming (MILP) [61–63]. However, using binary
variables introduces non-convexity, leading to less efficient solvers [64].
This non-convex nature can significantly escalate computational chal-
lenges, particularly in large-scale optimisation problems or when opti-
mising local controllers [65]. The computational burden associated with
non-convex formulations underscores the importance of exploring
alternative approaches that balance accuracy and computational effi-
ciency in practical implementation of optimisation techniques [66].

In this regard, [64] proposes a convex formulation of the problem by
incorporating penalty-based relaxation to discourage non-
simultaneousness. Authors [67,68] also highlight sufficient conditions
under which the penalty-based approach ensures non-simultaneousness.
The objective of this research is to enhance the precision and efficiency
of these existing models for the day-ahead operation dispatch of BESS by
incorporating its degradation costs. For this purpose, we propose a more
detailed nonlinear approach falling under the umbrella of convex
optimisation.

In this context, as BESS becomes essential for grid stability and the
economic feasibility of HRES, it is crucial to develop optimisation stra-
tegies that account for BESS degradation over its lifecycle. This research
introduces a convex nonlinear programming (NLP) model that ensures
distinct charging and discharging states while promoting partial cycling
of BESS, reducing degradation, and extending operational life. Our
model is benchmarked against naive, self-consumption, MILP, and LP
models using real data from an HRES at Kaunas University of Technol-
ogy, Lithuania. The results show that our model significantly increases
BESS cycles and the internal rate of return, underscoring the importance
of considering BESS degradation in optimisation for more accurate
economic feasibility assessments.

To demonstrate the economic benefits of our proposed method, this
paper is organized as follows: Section 2 introduces the mathematical
challenges related to day-ahead BESS operation dispatch optimisation
and degradation modeling. Following that, Section 3 presents the
methodology for developing test scenarios from validated real data and
their subsequent evaluation. Section 4 provides comprehensive case
study results, benchmarking our proposed model against naive and
baseline models, along with a sensitivity analysis. Finally, Section 5
offers conclusions based on the findings presented.

2. Mathematical models of HRES operation dispatch
optimisation

The optimisation of day-ahead dispatch poses a mathematical chal-
lenge due to intertemporal time constraints arising from a sequential
multistep decision-making process. Specifically, the BESS operation in-
volves charging and discharging decisions at specific time periods,
influencing subsequent states and available capacities. To address this
challenge, the mathematical formulation of the problem must explicitly
consider the time-varying constraints related to SOC evolution.

Nomenclature

ce Energy spot price (Eur/MWh)
ε Fixed grid usage charge for consumption (Eur/MWh)
pL Total load (consumption) (kW)
ppv Generated solar PV power (kW)
pcu Curtailed solar PV power (kW)
pbuy Power bought from the market (kW)
psell Power sold to the market (kW)
pch Power used for charging BESS (kW)
pdch Power discharged from BESS discharged (kW)
ηch BESS charging efficiency (decimal %)
ηdch BESS discharging efficiency (decimal %)
SOC State of Charge (kWh)
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The bidirectional power flow nature of energy storage makes the
day-ahead dispatch optimisation problem non-convex. To prevent
simultaneous charging and discharging, a common approach is to use
binary variables, transforming the problem into a MILP. As suggested by
[61–63], the constraints of such BESS dispatch optimisation problem
can be expressed as in Eqs. (1a)–(1e).

SOC(t+1) = SOC(t) +Δt
[
ηchp

(t)
ch b

(t) − ηdchp
(t)
dch

(
1 − b(t)

) ]
(1a)

SOC ≤ SOC(t) ≤ SOC (1b)

0 ≤ p(t)ch ≤ pch (1c)

0 ≤ p(t)dch ≤ pdch (1d)

b(t) ∈ {0,1} (1e)

for all time t ∈ {1,…,N}. Hereinafter, the underscore and bar denote the
minimum and maximum allowed values of variables, which are
described in the Nomenclature section.

As detailed in [69], to solve a problem containing binary variable(s),
typically commercial solvers that implement Branch and Bound
methods or alternative methods are used. However, contrary to the
traditional MILP approach, convex optimisation techniques can offer
advantages through more efficient solutions without the need for
discrete variables and large combinatorial considerations. A generic
structure for a convex optimisation problem is expressed as in Eqs. (2a)–
(2c):

minf0(x) (2a)

subject to:

fi(x) ≤ bi, i = 1,…,m (2b)

fi(αx+ βy) ≤ αfi(x)+ βfi(y), i = 1,…,m (2c)

for all x, y ∈ ℝn and all α, β ∈ ℝ with α+ β = 1, α ≥ 1, β ≥ 1.
Authors in [60] analyse and conclude that using a convex approach

for BESS dispatch optimisation problem requires to penalize charging
and discharging in objective function using parameters α and β as
described in Eqs. (3a)–(3e). These parameters are specifically used to
prevent from simultaneous charging and discharging, which can occur
in HRES when generation exceeds consumption.

min
pch ,pdch

Δt
∑N

t=1

[(
p(t)ch − p

(t)
dch

)
c(t)e +αp(t)ch + βp(t)dch

]
(3a)

subject to:

SOC ≤ SOC(0) − Δt
∑t

n=1

(
ηdchp

(t)
dch − ηchp

(t)
ch

)
(3b)

SOC(0) +Δt
∑t

n=1

(
ηchp

(t)
ch − ηdchp

(t)
dch

)
≤ SOC (3c)

0 ≤ p(t)ch ≤ pch (3d)

0 ≤ p(t)dch ≤ pdch (3e)

for all time t ∈ {1,…,N}. These penalization parameters can in fact be
used to model BESS degradation phenomenon, which shall not be
neglected [70,71]. Such transformation turns the optimisation problem
into a trade-off between the economic benefits of energy spot price
spreads and the associated degradation costs by allowing not only full
but also partial cycling of BESS.

2.1. BESS degradation modeling

Integrating BESS degradation into the day-ahead dispatch optimi-
sation problem is crucial for assessing the impact of cycling on the BESS
lifetime. BESS lifetime is limited by the cumulative number of charge-
discharge cycles it undergoes, and this is linked to the DoD by non-
linear relationship. Although there is a variety of existing and
emerging energy storage technologies which possess different degra-
dation characteristics, our analysis focuses on, but is not limited to, one
of the most mature technologies as of the time of writing – the Li-ion
battery.

Fig. 1 illustrates the number of cycles and degradation (δ) at various
DoD levels of a typical Li-ion battery. To quantify this degradation
behaviour, two distinct fit functions are employed, namely, linear Eq.
(4a) and non-linear Eq. (4b).

δ = k⋅DoD (4a)

δ = a⋅DoDb (4b)

The linear fit function with a slope k = 0.075 is chosen for its
simplicity and efficiency in the context of MILP and LP methods. These
methods benefit from the linear relationship between the degradation
and DoD, enabling straightforward integration into the optimisation
models. However, it is important to note that the linear fit function is
more conservative than the power fit function. In optimisation models
where the linear fit function is implemented, BESS operation will be
more constrained compared to the case with the NLP model, which
utilizes the power fit function. This observation implies that LP models
are likely to exhibit lower levels of degradation and, consequently,
slower BESS payoff and lower HRES savings.

The power fit function, coefficients of which are a = 1.68 • 10− 5 and
b = 1.825 by [72], characterized by its non-linear nature, is selected for

Fig. 1. Li-ion BESS number of cycles (a) and corresponding degradation (b) (based on [72]).
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the proposed NLP model. The non-linear relationship between the
degradation and DoD is better captured by this function, making it
suitable for optimisation methods that can handle non-linear
constraints.

These fitted functions, tailored to the degradation characteristics of
Li-ion batteries, play a crucial role in developing optimisation models.
The choice of linear or power fit functions is driven by the specific re-
quirements and capabilities of the optimisation methods employed in
this study.

2.2. Mathematical formulation of different optimisation approaches

In this section, four distinct models are formulated: Naive (Self-
consumption) model, Baseline (MILP) model, Convex (LP), and our
proposed Convex (NLP) model.

2.2.1. Naive model
The Naive model, also known as Self-consumption mode [73], in-

volves no day-ahead dispatch optimisation. Mathematically, it is rep-
resented for each time step as shown in Fig. 2. The primary objective in
self-consumption mode is to maximize the utilization of locally gener-
ated renewable energy. This is achieved by storing surplus energy in the
BESS during periods of excess generation and utilizing it when renew-
able energy falls short of on-site demand, thereby enhancing the sus-
tainability of the energy system, irrespective of energy spot prices. The
Naive model is included for comparison reasons to illustrate the general
purpose and impact of different optimisation methods applied in this
paper.

2.2.2. Baseline (MILP) model
The MILP model is widely adopted in various research articles

[61–63]. It utilizes a binary variable, as detailed in Eqs. (5a)–(5j), to
prevent simultaneous charging and discharging. Hence, it is designated
as the baseline model, serving as the benchmark. The objective function
of the Baseline model is designed to minimize the total HRES cost over
the days’ time span, which includes the linear fit function of BESS
degradation costs.

min
pch ,pdch ,pbuy ,psell ,pcu ,b

Δt
∑N

t=1

[
p(t)buy

(
c(t)e + ε

)
− p(t)sellc

(t)
e + γ

(
p(t)ch + p

(t)
dch

) ]
(5a)

subject to:

p(t)L − p(t)buy + p
(t)
sell+ p

(t)
ch b

(t) − p(t)dch
(
1 − b(t)

)
− p(t)PV + p(t)cu = 0 (5b)

SOC(t+1) = SOC(t) +Δt
[
ηchp

(t)
ch b

(t) − ηdchp
(t)
dch

(
1 − b(t)

) ]
(5c)

SOC ≤ SOC(t) ≤ SOC (5d)

0 ≤ p(t)ch ≤ pch (5e)

0 ≤ p(t)dch ≤ pdch (5f)

0 ≤ p(t)buy ≤ pbuy (5g)

0 ≤ p(t)sell ≤ psell (5h)

0 ≤ p(t)cu ≤ p(t)PV (5i)

b(t) ∈ {0,1} (5j)

For all time t ∈ {1,…,N}. Here, ε denotes the fixed grid usage charge
for consumption [Eur/MWh], which is normally higher for consumers at
low voltage levels compared consumers connected to medium and high
voltage levels. Also, γ here is expressed as γ = kξ

2 in [Eur/MWh], where ξ
denotes energy cells refurbishment costs related to degradation through
cycling [Eur/MWh].

The Baseline model without degradation considerations (Baseline-
NOD) maintains the same structure as the Baseline model, with the sole
modification in the objective function, as indicated in Eq. (6). This
variant is included for comparative analysis, demonstrating that
neglecting costs associated with BESS degradation leads to a lower
overall economic benefit. Validation for this model is omitted as it
represents a simplified version of the Baseline model.

min
pch ,pdch ,pbuy ,psell ,pcu ,b

Δt
∑N

t=1

[
p(t)buy

(
c(t)e + ε

)
− p(t)sellc

(t)
e

]
(6)

2.2.3. Convex model (LP)
A convex model (LP) that guarantees non-simultaneous charging and

discharging is similar to MILP model, except it does not have binary
variable in power balance equation Eq. (7b) and Eqs. (5c), (5d) are
replaced by Eqs. (7c), (7d) to enforce the SOC limit constraints. This
model is included to validate and showcase that convex approach can be
used to achieve the same BESS operation dispatch results as using MILP

Fig. 2. Naive (Self-consumption) model algorithm flowchart.
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method. This is particularly important step, because convex optimisa-
tion, in general, can deal with convex functions which can be non-linear,
for example, the power fit function of BESS degradation and DoD.

min
pch ,pdch ,pbuy ,psell ,pcu

Δt
∑N

t=1

[
p(t)buy

(
c(t)e + ε

)
− p(t)sellc

(t)
e + γ

(
p(t)ch + p

(t)
dch

) ]
(7a)

subject to:

p(t)L − p(t)buy+ p
(t)
sell+ p

(t)
ch − p

(t)
dch − p

(t)
PV + p(t)cu = 0 (7b)

SOC ≤ SOC(0) − Δt
∑t

n=1

(
ηdchp

(t)
dch − ηchp

(t)
ch

)
(7c)

SOC(0) +Δt
∑t

n=1

(
ηchp

(t)
ch − ηdchp

(t)
dch

)
≤ SOC (7d)

For all time t ∈ {1,…,N}.

2.2.4. Convex model (NLP)
The Convex model (NLP), representing our proposed approach,

shares identical constraints with the LP Convex model. However, it
differs in its objective function, where the degradation is accounted for
using the original power fit function, as presented in Eq. (8). This means
that, in addition to ensuring non-simultaneous charging and discharg-
ing, our proposed model considers the impact of BESS degradation over
time more accurately. The objective function is tailored to capture the
non-linear relationship between BESS cycling and degradation,
providing a more accurate representation of the real-world behaviour of
the energy storage system. This consideration is essential for optimising
the dispatch strategy while accounting for the long-term health and
performance of the BESS under varying operational conditions.

min
pch ,pdch ,pbuy ,psell ,pcu

Δt
∑N

t=1

[

p(t)buy
(
c(t)e + ε

)
− p(t)sellc

(t)
e + μ1

(
μ2p

(t)
ch

)b
+ μ1

(
μ2p

(t)
dch

)b
]

(8)

Here, μ1 is calculated as μ1 = aξλ
2 and is expressed in [Eur] and μ2 is

calculated as μ2 = 100
λ and is expressed in [%/MWh].

3. Model validation

To address the challenges associated with handling a large dataset
for model validation, we propose the use of cluster analysis to generate
scenarios for testing BESS day-ahead dispatch optimisation methods
under diverse conditions. The categorisation of similar days is based on
the dynamics of energy spot prices, load, and PV generation. Specif-
ically, largest energy spot price spread (Δce ) and balance between
generated and consumed power (Δp,max), are computed using the Eqs.
(9a), (9b), respectively.

Δce = maxce − mince+ ε (9a)

Δp,max = max
(
Δp

)
= max

(
ppv − pL

)
(9b)

The constant ε is included in calculation of Δce since end consumers
are associated with fixed power consumption costs, which increases the
minimum energy spot price difference required to pay off the full cycle
of BESS. is positive in case of surplus generation and negative, in case of
deficit generation. Moreover, binary features are derived from each
historical day d out of the total number of historical days D, forming a

feature vector vd =
[
b(d)ce b(d)p

]
, where b(d)ce and b(d)p are defined in Eqs.

(10a), (10b), respectively.

b(d)ce =

{
1, if Δ(d)

ce > τ
0, otherwise

,∀d ∈ D (10a)

b(d)p =

{
1, if Δ(d)

p > 0
0, otherwise

, ∀d ∈ D (10b)

Here τ represents the BESS operation costs for performing a full cycle
or any maximum DoD allowed in a specific case. It acts as a threshold
value for model validation, ensuring that the model(s) perform a full
cycle if the energy spot price spread is larger than τ and a partial cycle or
none otherwise. This feature vector can be expanded to include more
energy spot price spreads specific to the market where the HRES is
operating.

Since features are extracted independently from each day, this
method ensures that information about the dynamics of energy spot
prices and PV generation/load is not lost. After forming the feature
matrix, a well-established hierarchical clustering procedure is applied
using the most suitable linkage method, which is case-specific. The data
normalization step can be omitted since the features are already binary.
The Euclidean distance between feature vectors of any two days i and j is
given by Eq. (11). The choice of Euclidean distance is common in cluster
analysis for its simplicity and effectiveness in capturing the geometric
relationships between feature vectors.

distanceij =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
b(i)ce − b

(j)
ce

)2
+
(
b(i)p − b(j)p

)2
√

, ∀i, j ∈ D (11)

To evaluate and compare the performance the models, five metrics,
namely, the mean absolute percentage error (MAPE), total yearly HRES
savings, total yearly HRES percentage savings, BESS yearly degradation
and IRR, are calculated using the hourly time step dataset of N = 1095
days (M = 3 years). MAPE is calculated with regards to actual nonlinear
objective function of minimizing test case HRES daily (24 time intervals)
costs, as provided in Eq. (12).

MAPE =
100
N

∑1095

i=1

⃒
⃒
⃒
⃒
y(i) − ŷ(i)

y(i)

⃒
⃒
⃒
⃒ (12)

where ŷ represents daily optimisation objective function value of the
analysed model. To calculate the total yearly HRES savings and total
yearly HRES percentage savings offered by each optimisation model to
the test case HRES, initially operational expenditures (OPEX) are
calculated as in Eqs. (13)–(14).

OPEX0 =
1
M

∑1095

i=1

∑24

j=1
f
(

Δ(i,j)
p

)
(13)

f
(

Δ(i,j)
p

)
=

⎧
⎨

⎩

Δ(i,j)
p c(i,j)e , if

(
Δ(i,j)
p

)
> 0

Δ(i,j)
p

(
c(i,j)e + ε

)
, otherwise

(14)

Then calculate the total yearly HRES savings and total yearly HRES
percentage savings can be expressed as in Eqs. (15)–(16).

savings = OPEX0 −
1
M

∑1095

i=1
ŷ(i) (15)

savingsp =
100
OPEX0

savings (16)

Yearly BESS degradation (δyearly) offered by each model is calculated
as in Eq. (17), where δ(i) represents actual daily BESS degradation, which
is evaluated using daily BESS operation dispatch optimisation results
with the power fit function Eq. (5b).

δyearly =
1
M

∑1095

i=1
δ(i) (17)

Finally, internal rate of return (IRR) is calculated as a universal
financial measure that does not require assumptions on discount rate.
It’s an analytical solution of Eq. (18).
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∑T

t=0

CFt

(1+ IRR)t
= 0 (18)

where CF represents yearly cash flows, considering the investment costs
in BESS at t = 0.

4. HRES CASE study

The test case HRES is installed in Kaunas, Lithuania. It comprises two
buildings with electrical load and rooftop solar PV power plants, which
are aggregated and treated as a unified load and solar PV generation
entity, as illustrated in Fig. 3. The rooftop PV plant comprises 20 power
inverters, each equipped with 1 or 2 strings of polycrystalline PV mod-
ules, each rated at 265 W. The total installed capacity of solar PV is
380.275 kW and the total allowable power for consumption and gen-
eration is capped at 540 kW. The net consumption and PV generation
amount to 1.86 GWh/year and 0.35 GWh/year, respectively.

The analysed historical period is three years (2020− 2022) with the
hourly time interval Δt = 1. The average energy spot price for the
analysed period in the given price area is 138.08 Eur/MWh. As the test
HRES is connected to the distribution network, the fixed grid usage
charge for consumption ε is equal to 48.44 Eur/MWh. These energy
characteristics result in an average net expenditure on energy of around
300 kEur/year.

Currently, the test case HRES does not include BESS. To perform the
case study, necessary assumptions for optimisation are outlined in
Table 1. The degradation costs through cycling (ξ) for Li-ion BESS fall
within the range of 50 kEur/MWh to 400 kEur/MWh, as suggested by
[74,75]. Therefore, we assume an intermediate value of 150 kEur/MWh.
The installed capacity (λ) is constrained to 100 kWh, a relatively small
capacity given the HRES size, dictated by spatial restrictions. Addi-
tionally, to extend the Li-ion BESS lifetime, tests conducted by [76]
involve varying the minimum state of charge (SOC) from 0 % to 15 %,
and the maximum state of charge SOC from 80 % to 95 %. In line with
[77], which recommends charging the BESS to 95 % SOC to prevent
lithium plating, we assume SOC and SOC to range between 5 % and 95
%, respectively. Finally, typical efficiency values for Li-ion BESS
charging (ηch) discharging (ηdch), set at 90 % and 95 %, respectively, are
assumed [78,79].

The historical data for energy spot prices, load, and PV generation
were sourced from various databases. The energy spot prices were

obtained from the market operator Nordpool, load data were provided
by the distribution system operator (DSO), and PV generation data was
acquired from a solar PV inverter cloud service. The gathered data were
validated by checking for outliers or anomalies, which were not iden-
tified. The minimum, average and maximum values of each data
parameter are given in Table 2.

Fig. 4 illustrates the average dynamics of energy spot prices, PV
generation, and load throughout the day. Additionally, it provides first-
to-third quartile values for each hour, offering insights into potential
deviations across different seasons. Notably, two significant energy spot
price spreads, namely the Night-Morning Spread and Midday-Evening
Spread, are observed. Furthermore, there are instances when PV gen-
eration surpasses the load during noon. This comprehensive overview
aids in understanding the variations and patterns in the data over
different periods as well as it suggests that two energy spot price spreads
should be used in feature extraction described in the Methodology
section.

4.1. Test scenarios development

In the context of the test case HRES case, we developed three model
validation scenarios using cluster analysis applied to three years of
historical data. The dataset involved 1095 days of energy spot price, PV
generation, and load, all provided at hourly intervals. The formulation
of these scenarios involved capturing the characteristic day dynamics

through feature vectors vd =
[
bd,0− 12
ce bd,12− 24

ce bd,0− 24
p

]
, d ∈ 1…1095.

In binarization process of energy spot price spreads during the Night-
Morning Spread (00:00 to 12:00) and Midday-Evening Spread (12:00
to 24:00), where threshold value τ = 161.14 Eur/MWh was calculated
as in Eq. (19).

τ = ξa⋅100b+ ε (19)

The resulting scenarios (clusters) are visually represented in Fig. 5
and can be summarized as follows: Cluster 1 represents a situation where
PV generation does not exceed the load throughout the entire day, and
both energy spot price spreads are lower than τ measuring at 58.12 Eur/
MWh and 55.19 Eur/MWh. In Cluster 2, PV generation also does not
surpass the load for the entire day. Concerning energy spot prices, the
spread between the night bottom price andmorning peak price is greater
than τ at 181.17 Eur/MWh, and the spread between midday bottom
price and evening peak price exceeds that of scenario 1 but remains
below τ measuring at 145.92 Eur/MWh. In Cluster 3, PV generation
surpasses the load for 3 h during the day. Similar to scenario 1, con-
cerning energy spot prices, both spreads are lower than τ measuring at
38.56 Eur/MWh and 51.05 Eur/MWh.

Concerning the BESS degradation costs through cycling, the optimal

Fig. 3. a) Schematic diagram and b) photo of test case HRES.

Table 1
Test case HRES assumptions related to BESS.

Parameter Value Unit

ξ 150 kEur/MWh
λ 0.1 MWh
pch 0.1 MW
pdch 0.1 MW
SOC(0) 0.05 MWh
SOC 0.005 MWh
SOC 0.095 MWh
ηch 90 %
ηdch 95 %

Table 2
Description of validated data.

Parameter Minimum Average Maximum

Price [Eur/MWh] − 56.55 138.08 4000.0
Solar PV output [kW] 0.0 39.95 328.22
Load [kW] 49.08 212.42 424.28
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BESS operation dispatch is expected to exhibit the following strategy:
Models should suggest BESS to stay in idle mode or perform a partial
cycle in scenario 1, more than one or more than one full cycle in scenario
2 (except for Naive model as there is no surplus PV generation), and
again as in scenario 1, to stay in idle mode or perform a partial cycle in
scenario 3. In case BESS degradation costs are disregarded (Baseline-
NOD model), at least one full BESS cycle should be suggested regardless
of scenario.

4.2. Model validation

The models are validated in Python 3 [80] environment. The Gurobi
interface [81] is used to solve MILP problem, while the cvxpy library
[82] is utilized for convex optimisation problems. Fig. 6 illustrates the
model validation outcomes for scenario 1. As expected, the Naive model,
as well as both the Baseline (MILP) and Convex (LP) models, recommend
keeping the BESS in idle mode throughout the entire day. This sugges-
tion is based on the observation that both energy spot price spreads fall

below the threshold value τ. On the other hand, the NLP model suggests
performing a partial cycle, involving charging to 76.1% during the night
and discharging during the morning and evening peak prices. This
strategy results in a net HRES savings of 1.54 Eur (equivalent to 0.21 %),
inclusive of BESS degradation costs (equivalent to 1.52 Eur) during the
24-hour time window from scenario 1.

In contrast, the Baseline-NOD model, which does not account for
BESS degradation costs, recommends a full cycle. However, this
approach leads to a net HRES loss of 5 Eur (equivalent to 0.68 %), which
is caused by BESS degradation costs (equivalent to 9.91 Eur).

Fig. 7 illustrates the model validation outcomes for scenario 2. As
expected, the Naive model, recommend keeping the BESS in idle mode
throughout the entire day, while Baseline (MILP) and Convex (LP)
models suggest performing one full cycle by charging at night and dis-
charging in the evening. This strategy results in a net HRES savings of
3.74 Eur (equivalent to 0.28 %), inclusive of BESS degradation costs
(equivalent to 9.91 Eur) during the 24-hour time window from scenario
2.

Convex (NLP) suggests not only making use of Midday-Evening price
spread by performing an additional partial cycle in the middle of the
day, but also perform the charging and discharging in more and smaller
steps, this way exploiting the non-linear relationship between BESS
degradation and DoD. This strategy results in a net HRES savings of 8.22
Eur (equivalent to 0.62 %), inclusive of BESS degradation costs
(equivalent to 3.47 Eur).

Baseline-NOD (MILP) uses both spreads to perform two full cycles
over the day. However, this approach leads to a net HRES loss of 2.70
Eur (equivalent to 0.20 %), which is caused by BESS degradation costs
(equivalent to 19.83 Eur).

Fig. 8 illustrates the model validation outcomes for scenario 3. As
expected, similarly as in scenario 1, both the Baseline (MILP) and
Convex (LP) models, recommend keeping the BESS in idle mode
throughout the entire day due to energy spot price spreads that fall
below the threshold value τ. On the other hand, since in this scenario
solar PV surplus generation occurs during the midday, Naive model
strategy results in a net HRES savings of 3.74 Eur (equivalent to 0.28 %),
inclusive of BESS degradation costs (equivalent to 9.91 Eur) during the
24-hour time window from scenario 3.

Convex (NLP) accounts for the smallest price spread out of all

Fig. 4. Daily dynamics of energy sport price, PV generation and load.

Fig. 5. Cluster analysis results (a) and corresponding representative sce-
narios (b).

J. Vaičys et al. Journal of Energy Storage 97 (2024) 112941 

7 



validation scenarios and suggests performing only two partial cycles.
Although Night-Morning Spread is larger than the Midday-Evening
Spread, the BESS performs a larger partial cycle during the second
half of the day due to surplus energy accumulated during the midday.
This strategy results in a net HRES savings of 2.63 Eur (equivalent to
0.69 %), inclusive of BESS degradation costs (equivalent to 2.36 Eur).

Baseline-NOD (MILP) uses both spreads and surplus solar PV gen-
eration to perform two full cycles over the day. However, this approach
leads to a net HRES loss of 8.52 Eur (equivalent to 2.23 %), which is
caused by BESS degradation costs (equivalent to 16.03 Eur).

4.3. Overall results

After the model performance is validated, the optimisation models
are applied to the whole three years dataset and generalized metrics are
calculated and provided in Table 3. Starting with the Naive (Self-con-
sumption) model, it demonstrates a Mean Absolute Percentage Error
(MAPE) of 0.87 %, indicating that it is a relatively accurate model. The
corresponding net savings for the HRES amount to 0.90 % per year, with

costs and BESS degradation at 0.15 % and 3.00 % per year, respectively.
The Internal Rate of Return (IRR) for this model is recorded at 12.18 %.
Such low IRR value is the result of BESS being charged solely during
periods of surplus PV generation, leading to an average of only 0.234
cycles per day.

The Baseline (MILP) and Convex (LP) models, both exhibit similar
MAPE values of 0.65 %, suggesting comparable optimisation accuracy.
The net savings for the HRES are 1.54 % and 1.55 % per year for the
MILP and LP models, respectively. Costs for both models hover around
0.54 %, while BESS degradation is more pronounced in the MILP model
at 10.67 %, compared to the LP model at 10.52 %. The IRR for these
models is notably higher, reaching 28.10 % and 28.29 %, respectively.
This is caused by the increased engagement of BESS, resulting in an
average of 0.47 cycles per day.

In contrast, the Convex (NLP) model outperforms all other models
with a perfect MAPE of 0 %. Since, this model by nature prefers partial
cycling, it makes 1.1 cycle per day on average, leading to the highest net
savings among analysed models, standing at 1.99 % per year, with costs
and BESS degradation at 0.44 % and 8.77 % per year, respectively.

Fig. 6. Model validation using scenario 1.

Fig. 7. Model validation using scenario 2.
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Consequently, the IRR for the Convex (NLP) model is also the most
substantial, reaching 38.03 %.

Lastly, the Baseline-NOD (MILP) model, which disregards BESS
degradation costs, exhibits MAPE of 1.07 %. The net savings are lower
than the proposed model at 0.55 % per year, while costs increase
significantly to 2.27 %. Due to the fact that this model allows almost 2
cycles per day, the BESS degradation, is remarkably high at 45.17 % per
year, which results in the lowest IRR of all models, equal to 1.68 %. This
highlights the importance of considering degradation costs in the overall
economic analysis of the HRES.

4.4. Sensitivity analysis

The sensitivity analysis of BESS degradation to parameters ε (the

fixed grid usage charge) and ξ (BESS investment costs) is depicted in
Fig. 9. The examination reveals that the implementation of either LP or
NLP BESS operation dispatch optimisation methods in HRES influences
BESS degradation in a linear relationship as ε increases. This linear
relationship can be explained by the nature of ε, which can be consid-
ered a component that increased the energy spot price spread at which
BESS cycling is profitable. Consequently, the larger the price spread
required for cycling, the fewer cycles are executed per year, resulting in
reduced BESS degradation.

In contrast to the linear relationship, degradation demonstrates an
exponential decrease as ξ increases, leading to minimal BESS exploita-
tion when investment costs surpass 500 Eur/kWh. In comparison to
linear models, our proposed method is dominant, as it utilizes partial
cycling and enables increased BESS degradation, especially, if ξ exceeds

Fig. 8. Model validation using scenario 3.

Table 3
Summary of model performance comparison.

Optimisation model MAPE [%] BESS cycles [cycles/day] HRES net savings [%/year] HRES costs [%/year] BESS degradation [%/year] IRR [%]

Naive (self-consumption) 0.87 0.23 0.90 0.15 3.00 12.18
Baseline (MILP) 0.65 0.47 1.54 0.54 10.67 28.10
Convex (LP) 0.65 0.47 1.55 0.53 10.52 28.29
Convex (NLP) 0 1.1 1.99 0.44 8.77 38.03
Baseline-NOD (MILP) 1.07 1.96 0.55 2.27 45.17 1.68

Fig. 9. BESS degradation sensitivity analysis.
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250 Eur/MWh. This approach allows for a more flexible and adaptive
management of BESS in response to varying investment costs, offering a
more tailored solution for HRES.

The sensitivity analysis of BESS IRR to parameters ε and ξ is depicted
in Fig. 10. In negative correlation to previous sensitivity analysis results,
as ε increases, the IRR also increases. This can be explained by the fact,
that as ε increases, the total test case HRES costs related to purchased
power also increases and, thus, since BESS is degraded less, the costs
associated with it also decreases and the net savings per year increases,
resulting in increasing IRR. Naturally, as the ξ increases, IRR decreases
exponentially. Once again, implementation of our proposed method
allows increasing the IRR of HRES.

The sensitivity analysis of BESS IRR to parameters ε and ξ is illus-
trated in Fig. 10. In contrast to the previous sensitivity analysis results,
there is a negative correlation between ε and IRR. As ε increases, the IRR
also increases. This can be explained by the fact that as ε increases, the
total HRES costs related to purchased power also increase. Conse-
quently, since BESS is degraded less, the costs associated with it
decrease, leading to an increase in net savings per year and, ultimately,
an increase in IRR.

5. Conclusions

Involvement of degradation costs into BESS operation dispatch
optimisation problem is crucial. Without this consideration, total HRES
operational costs could increase, potentially leading to non-profitable
investment in BESS. Baseline (MILP) and Convex (LP) models yielded
identical results, confirming that convexity rules can effectively address
BESS dispatch optimisation problem. Our proposed Convex (NLP)
model, in contrast to other commonly used models, accurately accounts
for BESS degradation, resulting in more frequent activation of BESS at
partial cycling. This is significant because partial cycling tends to
degrade BESS at a slower rate than full cycling due to the nonlinear
relationship between BESS degradation and DoD.

Exploiting this phenomenon, the Convex NLP model can adapt to a
wide spectrum of daily energy spot prices, solar PV generation, and load
dynamics scenarios. As a result, the application of our model in eco-
nomic feasibility studies enables a more precise evaluation of the ex-
pected BESS return. The integration of the proposed algorithm into the
energy management system demonstrates a significant increase in the
number of BESS cycles, specifically 2.36 times more compared to
commonly used MILP and LP models. Consequently, integrating such an
algorithm into the HRES energy management system could lead to an
increased IRR value of the project by up to 10 %, as evidenced in our
case study. Furthermore, as the BESS state of health decreases over the

years, more cycles are performed annually, resulting in higher energy
throughput of BESS over its lifetime.

The capabilities of the proposed method will be further investigated
in more complex applications, such as stochastic optimisation and
optimal sizing of BESS. Additionally, the convexity feature presents
opportunities for testing Machine Learning applications. This includes
utilizing optimisation with forecasts and enhancing computational
speed, addressing potential challenges in larger-scale applications.
Finally, to further enhance the model accuracy, we will explore the
convexity of the BESS degradation function, incorporating additional
important parameters, such as temperature and C-rate.
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