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Abstract: This paper presents a technique that can potentially help to determine the receptivity
stage of the endometrium from histology images by automatically measuring the stromal nuclear
changes. The presented technique is composed of an image segmentation model and the statistical
evolution of segmented areas in hematoxylin and eosin (HE)-stained histology images. Three
different endometrium receptivity stages, namely pre-receptive, post-receptive, and receptive, were
compared. An ensemble-based AI model was proposed for histology image segmentation, which is
based on individual UNet++, UNet, and ResNet34-UNet segmentation models. The performance
of the ensemble-based technique was assessed using the Dice score and intersection over unit (IoU)
values. In comparison to alternative segmentation architectures that were applied singly, the current
ensemble-based method obtained higher Dice score (0.95) and IoU (0.90) values. The statistical
comparison highlighted a noticeable difference in the number of nuclei and the size of the stroma
tissue. The proposed technique demonstrated the positive potential for practical implementation for
automatic endometrial tissue analysis.

Keywords: image segmentation; endometrial biopsy; histology image

1. Introduction

Infertility is the inability of a mature organism to produce offspring. The inability to
become pregnant after 12 months or more of frequent, unprotected sexual activity defines
this condition of the male or female reproductive system [1]. It is estimated that millions
of people and couples worldwide struggle with infertility. According to estimates, one
in six persons who are of reproductive age are impacted [1]. The prevalence of infertility
accounts for 17.5% of the worldwide population [2]. Medically assisted reproduction
(MAR), or in vitro fertilization (IVF), was developed to overcome the problem of infertility
and was introduced into clinical practice more than 40 years ago. MAR technologies
enable the fertilization of human oocytes and the creation of human embryos in vitro.
Viable embryos can then be transferred into the woman′s uterus, and the development
of intrauterine pregnancy begins upon successful implantation. Since the beginning of
successfully applying IVF in humans, these treatments have resulted in the birth of over 10
million children already. Several countries now see more than 3% of all births as a result of
MAR [3]. However, the success of MAR remains limited despite the rapid development of
related technologies [4–6].
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Changes in the cellular or molecular composition of the innermost lining of the uterus,
known as the endometrium, are critical for IVF success; its unique structure and receptivity
allow the embryo to be implanted [7,8]. The highest receptivity of the endometrial tissue
occurs during the so-called “window of implantation” (WOI) when optimal conditions
for embryo implantation are established. Prior to the WOI or past this time, the chance
of embryo implantation is scarce. Therefore, an endometrial receptivity assessment has
proven to be advantageous for the success of IVF. Transcriptomic biomarkers are most
commonly used to assess endometrial receptivity, as the expression levels of these biomark-
ers depend upon the receptivity status of the uterine tissue [9,10]. Hence, endometrial
tissue transcriptome testing allows an optimal time for the personalized embryo transfer
to be chosen [11,12]. In parallel, endometrial microbiota changes have also been shown to
affect embryo implantation, which can be evaluated by tissue profiling during IVF [13,14].
However, the most common and widely used endometrial tissue evaluation is performed
according to the Noyes dating criteria for histological sections [15]. These criteria are valid
to date and are used in clinical pathology: when assessing the endometrial phase, both
the glandular and stromal parameters must be evaluated [16,17]. Evaluating stromal cell
changes, such as the extent of edema, is subjective, and very small-sized stromal cell nuclei
cause further difficulties in their evaluation under standard light microscopy.

The clinical value of histological endometrial dating, which defines the individual WOI,
has recently been shown to benefit patients with recurrent pregnancy loss [18]. Nevertheless,
implementation of the latest technical breakthroughs in deep learning to establish AI-
powered technologies to optimize histopathology assessments of endometrial tissue for IVF
is still clearly lacking. Therefore, AI-driven clinical decision support tools for endometrial
tissue assessments may offer efficient, metric-driven, objective, and accurate diagnoses for
endometrial receptivity evaluation. The main aim of this research is to propose a computer-
aided system for the evaluation of endometrial tissues from endometrial histological slides,
which can be used as an automatic algorithm for endometrial receptivity assessments
and predictions. This research paper is organized into seven main sections. The state-
of-the-art in the current research topic is provided in the second section. Information
about the research object, the proposed AI model, and its validation are given in the third,
fourth, and fifth sections accordingly. The experimental setup and results are shown in the
seventh section. The discussion, conclusions, and references are provided at the end of the
research paper.

2. State-of-the-Art Review

Endometrial histologic dating criteria, such as thickness, glandular density, and mat-
uration, are important in IVF, being crucial for the successful implantation of an embryo.
These criteria are important predictors of the pregnancy outcome in IVF cycles. The
endometrium is the innermost layer of the uterus and is the site of implantation of the fer-
tilized egg during pregnancy. For the development of automated segmentation techniques
for histologic images, several approaches merging computer vision and machine learning
technologies have been put forth over the years. The automatic evaluation of histology
images mainly depends on the target objects that have to be evaluated, such as cells, nuclei,
glands, or tissue type. An automated segmentation algorithm based on morphology is first
applied to light microscopy images stained with Hematoxylin and Eosin [19].

Image segmentation is the process of locating certain objects in an image or splitting
it into several areas, each of which represents a different object or portion of the image.
For the purpose of segmenting or dividing up images, deep learning techniques such
as autoencoders like UNet are utilized. Segmentation is based on the transformation of
a high-dimensional space to a lower-dimensional space [20]. Usually, two-dimensional
data are down-sampled to a one-dimensional vector and again decoded to its original
appearance. Researchers proposed several types of autoencoders, which are applied for
image segmentation tasks, including plain fully convolutional autoencoders, multi-loss au-
toencoders, fully convolutional variational autoencoders, and repeated fully convolutional
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autoencoders. Different autoencoders distinguish themselves with their own strengths
and weaknesses. Therefore, the selection of a specific structure of the segmentation model
depends on the task and image characteristics. Gondim, with a group of researchers,
proposed an assisting analysis tool that is used to examine the vascular network of bone
histologic images. The proposed automatic method is based on a convolutional neural
network (CNN) and random forest classifier (RFC) [21]. Novel segmentation methods are
applied in the detection of individual nuclei in stained breast histopathology images [22]
and segment whole biopsy slides [23]. The latter method employs a U-Net-like neural
structure that was trained on a large annotated dataset. Ali et al. proposed a multiscale
attention learning network (MSAL-Net) to segment individual nuclei in histopathology
images [24]. The proposed methods include mathematical morphology, convolutional
neural networks, random forest classifiers, and multiscale attention learning networks.
These methods have shown promising results in the automatic segmentation of histology
images. Several variants of U-Net have been proposed, each with its own strengths and
weaknesses. Many limitations can be overcome by combining different variants of U-Net
models and their strengths.

Our research investigates the potential of applying automatic histology image analysis
for differentiating between receptive and nonreceptive endometrial samples using a metric-
driven approach. Traditional assessment methods rely on a subjective evaluation by
pathologists, introducing potential inconsistencies. Automatic image analysis offers an
objective and quantitative alternative. This approach involves extracting the relevant
metrics from histological images, which can then be used to distinguish between receptive
and nonreceptive samples. This work explores the feasibility of this approach and paves the
way for developing a reliable and automated system for endometrial receptivity assessment.

3. Research Object and Dataset

In this work, custom datasets of endometrial biopsy (these were stained with HE
(Hematoxylin and Eosin)) histologic pictures in color were used. This dataset was produced
as part of the ReadUteru initiative, an international effort that includes medical facilities in
Lithuania and Estonia. The dataset included 150 whole-slide photos in color of endometrial
biopsies (see example in Figure 1), together with manually segmented images (ground
truth annotations). The endometrial samples from women receiving IVF therapy were
divided into pre-receptive, receptive, and post-receptive groups using molecular profiling
with the commercial beREADY test. Additionally, the majority of these biopsies were taken
during the hormonal replacement treatment (HRT) IVF cycles.

Segmentation models are employed in order to divide the histological images into
three different areas, such as endometrial glands, stroma, and other parts of the endometrial
sample. The latter one is segmented based on the color, which is usually almost completely
white. Areas with endometrial glands are detected using an AI model, and everything that
is not glands or background is segmented as stroma. The endometrial glands’ locations
are indicated by the dark (grayish) regions (Figure 1 right). A team of pathologists from
two countries created ground truth images (annotated photos). At various magnification
settings, experts examined and annotated each whole-slide image. The original color
whole-slide pictures are the same size as the ground truth segmentation maps. When using
a 20× magnification, the size of a gland is typically not greater than 350 pixels. This region
is much smaller than the total image—more than 100 times smaller.

The whole-slide images of endometrial biopsy cannot be used as training inputs be-
cause of the limited computational resources. The appropriate image size is 576 × 576 pixels
when taking into account the available computing power and segmentation accuracy. The
choice of image size is influenced by the computational resources that are available for
image processing. Smaller image sizes can be processed quicker and require less mem-
ory, making them more suitable for resource-constrained environments. Additionally, the
selection of such size is influenced by the desired balance between the image resolution
and the processing speed. Larger image sizes can provide higher resolution inputs but
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at the cost of increased processing time and computational resources. The image parts
that correlate with the gland position are also reduced up to 30 times due to the direct
size reduction of the original whole-slide image to 576 × 576 pixels. It is challenging to
segment such a small area because textural and structural information about the glands
will be lost. We suggest using cropped regions of interest (RoI) of the whole-slide image
instead of shrinking it, with each RoI being selected using an overlapping sliding window
of size (576 × 576 pixels).
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The sliding window overlapping technique is a data augmentation method often
used in image processing. This technique involves creating overlapping windows of the
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original data to generate additional training samples for machine learning models. The
overlapping windows help to capture more diverse patterns and variations in the data,
thereby enhancing the model’s ability to generate accurate segmentation predictions and
partly solve overfitting problems. The sliding window with the overlap data augmentation
technique involves using a fixed window length to extract samples from the original
histology image with a certain degree of overlap with the consecutive window. We defined
the 30% overlap between RoIs in our study. There are various benefits of using RoIs rather
than whole-slide histology pictures. First, up to 15,000 pictures (RoIs with only black
pixels are eliminated) are generated for training and testing, which is a 100 times increase
compared to the required number of samples (from 150 whole-slide images). Second,
there is a decrease in the demand for computing resources. Third, the endometrial glands
retain their original size and shape. Overall, this technique contributes to improving the
robustness and performance of machine learning models by enriching the training dataset
with diverse samples.

The evaluation of the endometrium tissue is accomplished by estimating the size
and density of the nuclei displacement. Firstly, we estimate the density of the nuclei next
to the detected endometrium glands and, secondly, in the whole endometrium tissue
(see Figure 2). Detection is conducted using an ensemble-based segmentation model
that aggregates the outputs of three individual models (more info in Section 4). The
resulting output is a segmentation map where the endometrium glands and all other
tissues are segmented.

Metric-driven analysis is performed based on a segmentation map, which highlights
the positions of the endometrium glands. The nucleus density is calculated using two grids
of different densities, such as 30 and 50 µm (see Figure 3). Nuclei in the endometrium
image are HE stained; therefore, they appear as blueish areas in the image, therefore, we
estimate the size of a nucleus as a detected bluish area in the histologic image.
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4. Endometrial Tissue Segmentation Model

In the following section, the proposed gland detection method is described. The
application of deep encoder–decoder CNN architectures of different depths and complexity
was inspired by the complex appearance of the target object. The uterus endometrium
has glands that highly vary in size, shape, and structure. These glands are tubular in
shape and have ciliated columnar epithelium lining them. Due to the estrogen release and
depending on the menstrual cycle, the appearance of the glands is changing. In this study,
the ensemble-based detection model is investigated and built using segmentation model
variants such as U-Net, U-Net++, and Residual U-Net. These models are selected due to
their ability to capture intricate features and patterns within medical images, making them
suitable for segmentation tasks. When used on various histology images, each segmentation
model has a certain level of accuracy that it can achieve. These restrictions may manifest as
slices of endometrial biopsies that are not of the same thickness, are not evenly lit, have
varied image noise that may obscure key imaging findings or are simply taken at different
times of the menstrual cycle. To increase accuracy and produce results that are reliable,
all models that were trained on the same dataset are combined into one ensemble. The
risk of complex model overfitting is managed through the size of the training dataset and
the employment of regularization techniques. To mitigate overfitting, techniques such as
dropout, batch normalization, and data augmentation were used. The resulting output,
i.e., the predicted segmentation map of endometrial glands, is acquired using a weighted
sum of all three individual segmentation maps. The weights are calculated by minimizing
the criterion using the pseudo code given in Figure 4. The inverse of the intersection over
unit (IoU) value is used as an optimization criterion in our work (1-IoU). The optimization
starts from generating α and β values in the range from 0 to 1. The gamma (γ) weight is
estimated as the difference between 1 and the sum of the α and β values. The weighted
model output or prediction P is calculated in step 4, where PUNet++ is the prediction map
given by the UNet++ model, PResnet34-UNet is the prediction map given by the residual
model, and PUNet is the predictions of the UNet segmentation model. The intersection over
unit value is estimated between manually annotated mask M and weighted prediction P.
Optimized weights are estimated when the criterion meets the condition given in step 5.
Final weights α*, β*, and γ* are given in step 6. The final prediction map is calculated using
the given weights: α = 0.346, β = 0.250, and γ = 0.404.
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Figure 5 displays the proposed ensemble’s functional diagram. The ensemble com-
prises the three deep neural network models ResNet34-UNet, UNet, and UNet++. The
segmentation model processes the input image, and as a result, an output segmented image
of the same as the input size is produced [25], called a segmentation map. The deep neural
network encodes input data (color image) through the down-sampling path, decodes a
segmentation map through the up-sampling path, and skips connections. A max-pooling
layer and a sequence of convolutional layers with decreased size are used to build the
down-sampling route. The down-sampling route effectively reduces the high-resolution im-
age to low-resolution. The contextual information is extracted in the left part of the network
(down-sampling path), and the spatial information is reconstructed in the right part of the
network (up-sampling path). The output map, or segmentation map of the endometrial
glands, is produced using the U-Net network’s up-sampling route and is the same size
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as the input picture. A high-resolution picture was created in the up-sampling step by
decoding the low-resolution image (or features). The color images of size 576 × 576 pixels
are used as inputs. The size of the input images is gradually reduced; depth is gradually
increased until the size of the features reaches 18 × 18 × 512 pixels. The middle convolu-
tional layer is used as a bottleneck, and it is positioned between the encoder and decoder
paths. The “bottleneck” consists of convolutional and batch-normalization layers. Through
the concatenation of feature maps from the down-sampling side to the up-sampling side,
skip connections are employed to transmit local features. The final output layer consists of
a convolutional layer with a softmax activation function and a convolutional filter size of
1 × 1. The resulting output segmentation map consists of grayish blobs on a white back-
ground, which correspond to the area of the endometrial glands in a colored, HE-stained
histology image. Adam optimizer and binary cross-entropy (BCE) loss function were used
to train a U-Net network with 7.7 trainable parameters.
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Figure 5. An illustration of the proposed ensemble-based segmentation model’s functionality.

A U-Net++ type network serves as the second deep neural network in the ensemble of
models. Nested and thick linkages serve as the model’s foundation. It has skip connections
that incorporate convolutional layers for passing semantic information from the encoder
(down-sampling) to the decoder (up-sampling) paths. The dense skip connections are
used to improve the gradient flow, i.e., training [26]. The U-Net++ model is efficient at
collecting the fine features of 2D pictures used to define endometrial glands. The number of
convolutional blocks is controlled by deep supervision. It prunes and adjusts the complexity
of the network, keeping high performance (segmentation accuracy) and inference time.
A segmentation map with a resolution of 576 × 576 pixels is the output of the U-Net++
model. This model was trained using the Adam optimizer with the loss function BCE and
has around 9.1 million trainable parameters. The third pretrained ResNet34-Unet network
is used as a part of the ensemble-based method. The ResNet34-based network is used
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as the semantic features encoding part of the segmentation model (the down-sampling
path). A residual network is built from serially connected residual blocks that have skip
connections. The enhanced attention module and a decoder block (the up-sampling route)
make up the network’s decoding section. There are two connections from the input for each
residual block. Convolutional layers, batch normalization, and linear functions are applied
to the initial input. The second input omits the further addition of the convolutions and
functions. In order to preserve segmentation accuracy and resilience, residual networks
assist in resolving the vanishing gradient problem that is typical in big and complicated
networks. The residual U-Net model’s up-sampling path resembles that of U-Net from the
preceding description. Through skip connections, the up-sampling component receives the
local data and concatenating features. This model was trained using the Adam optimizer
with the loss function BCE and has around 21.6 million trainable parameters.

All mentioned models and ensemble-based segmentation methods segment only a
small portion of the whole biopsy image. In order to reconstruct all the segmentation
maps that correspond to the whole biopsy image, several processing steps have to be
undertaken. There are three basic processes in this reconstruction flow: Each patch is
stitched back onto the canvas in the same way that it was cropped from the original picture,
and average prediction values are generated in the areas where patches overlap. The
predictions are obtained from each image patch using the proposed segmentation model.
Finally, a threshold value is used to determine the segmentation map of the expected glands.
For purposes of paper representation, white was used to designate the pixels for which
predictions were higher than 0.5; otherwise, white was used to mark the pixels.

5. Validation Metrics of Tissue Segmentation Model

The proposed segmentation model is evaluated using intersection over union (IoU)
and Dice coefficient criteria. IoU is a performance metric often used in object detection
and image segmentation applications to measure the accuracy of predicted bounding
boxes. IoU estimates the intersection rate between predicted areas (segmentation maps
produced by neural networks) and ground truth (provided by manual labeling). The range
of intersection over union values is 0 to 1, with 0 denoting no overlap and 1 denoting a
perfect overlap. In the case when comparative pixel-by-pixel analysis is performed, IoU is
the first metric in the list, and it is defined using Formula (1).

IoU =
TP

(TP + FP + FN)
, (1)

where TP is a true positive, FP is a false positive, and FN is a false negative (see Table 1 for
a deeper explanation). The TP, FP, and FN terms are used to evaluate the object detection
results because these values correspond to image areas (or the number of pixels).

Table 1. Model performance metrics.

True Positive (TP) TP = GT ∧ S It is a region of intersection between the manually labeled ground truth picture
(GT) and the predicted segmentation map (S), which is the model output.

False Positive (FP) FP = (GT ∨ S)− GT False positive refers to the anticipated area in the final segmentation map that is
outside of the experts’ provided ground truth areas.

False Negative (FN) FN = (GT ∨ S)− S False negative refers to the quantity of pixels in the segmentation model’s
unpredicted area of the ground truth.

The Dice coefficient (DC) is a metric used in image segmentation and object detection
tasks that measure the similarity between predicted and ground truth maps (the output of
the models). The DC value ranges between 0 and 1, where 0 indicates the overlap between
GT and S, and 1 indicates a perfect overlap (100% similarity). The Dice scores can be
expressed through definitions of precision and recall (see Table 2).
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Table 2. Description precision and recall terms.

precision TP
TP+FP Precision in object detection is the fraction of true positive detection among all positive detections.

recall TP
TP+FN

Recall refers to the fraction of relevant instances that were successfully retrieved by the object
detection system.

A high degree of accuracy means that the detection model produces fewer false
positive detections than real positive detections. Recall gauges how well the endometrial
glands were all properly identified in the histology picture using the glands identification
model. Using Formula (2), the Dice coefficient is calculated. As recall and accuracy are
averaged, DC reveals the model’s overall performance or its capacity to identify and
accurately categorize items in an image.

DC =
2

1/recall +
1/precision

(2)

6. Experimental Setup and Results

In total, 15,000 annotated image sections were created by cropping whole-slide images
with fixed-size sliding windows (see Section 4). All image samples of whole-slide histology
images were taken from different menstrual cycle phases. The prepared training dataset
is used to train the model to segment endometrial glands, irrespective of the menstrual
cycle. The whole-slide picture parts from the custom dataset were split into the following
groups at random: 70% of the data were provided for model training, 10% for model
validation, and the remaining 20% were utilized for model testing. An Intel i7 CPU and an
Nvidia RTX4090 GPU graphics card were used in a desktop PC for all computing, training,
and testing. The segmentation results of the endometrial glands are shown in Figure 6.
Several random image regions are shown that are taken from the test dataset. Additionally,
from left to right, color image regions of a real histology image, ground truth annotation,
and the model outputs are given (the U-Net, ResNet34-UNet, U-Net++, and ensemble-
based methods) accordingly. In the given figure, endometrial glands are highlighted with
dark-color pixels and the surrounding tissues with white-color pixels.

6.1. Histology Image Segmentation Results

The experimental findings show that various segmentation models provide various
prediction outcomes or anticipated segmentation maps. In some instances, endometrial
glands are appropriately and reliably segmented; however, in other instances, studied
models were unable to detect fuzzy endometrial gland borders. On the other hand, com-
bining the weighted predictions from three independent models produces outcomes that
are superior to those of the individual models (see Figure 6).

The average IoU was 0.90 according to the ensemble-based technique. Among the
three segmentation networks, this result is the best. When all three separate models are
unable to reliably identify the endometrial glands from surrounding tissues, the IoU value
of the ensemble-based model plummets dramatically. A Dice score of 0.95 on average was
shown by the ensemble-based model. Comparing the ensemble-based approach to the
other three deep neural networks, the given Dice score of the ensemble-based technique
is the best (Table 3). When none of the three models successfully separate endometrial
glands from their surroundings, such as other tissues, the Dice score of the ensemble-based
technique suffers significantly. Table 3’s bolded text highlights the examined approaches’
best segmentation performance. The suggested ensemble-based strategy produced the
best segmentation results, with IoU and Dice scores of 0.90 and 0.95, respectively. On
the customized dataset, the U-Net deep neural network had the lowest accuracy, with
IoU = 0.77 and Dice = 0.85 as a result.
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Figure 6. (From left to right): Original image section, corresponding ground truth annotation,
endometrial glands segmentation results using the U-Net model, endometrial glands segmentation
results using the residual U-Net model, endometrial glands segmentation results using the U-Net++
model, and endometrial glands results using the ensemble-based method.

Table 3. The ensemble-based model and its average output from three neural networks.

Performance Metric U-Net RestNet34-UNet U-Net++ Ensemble

IoU 0.77 0.79 0.85 0.90
Dice Score 0.85 0.88 0.89 0.95

Figure 7 shows the detected positions of endometrial glands on whole-slide images
obtained using the ensemble-based technique (the histology image is zoomed in for clarity).
Above a colored, HE-stained histology picture, blue contour color patches indicate the
probable sites of the endometrial glands.

Appl. Sci. 2024, 14, 5715 11 of 16 
 

combining the weighted predictions from three independent models produces outcomes 

that are superior to those of the individual models (see Figure 6). 

The average IoU was 0.90 according to the ensemble-based technique. Among the 

three segmentation networks, this result is the best. When all three separate models are 

unable to reliably identify the endometrial glands from surrounding tissues, the IoU value 

of the ensemble-based model plummets dramatically. A Dice score of 0.95 on average was 

shown by the ensemble-based model. Comparing the ensemble-based approach to the 

other three deep neural networks, the given Dice score of the ensemble-based technique 

is the best (Table 3). When none of the three models successfully separate endometrial 

glands from their surroundings, such as other tissues, the Dice score of the ensemble-

based technique suffers significantly. Table 3’s bolded text highlights the examined ap-

proaches’ best segmentation performance. The suggested ensemble-based strategy pro-

duced the best segmentation results, with IoU and Dice scores of 0.90 and 0.95, respec-

tively. On the customized dataset, the U-Net deep neural network had the lowest accu-

racy, with IoU = 0.77 and Dice = 0.85 as a result. 

Table 3. The ensemble-based model and its average output from three neural networks. 

Performance Metric U-Net RestNet34-UNet U-Net++ Ensemble 

IoU 0.77 0.79 0.85 0.90 

Dice Score 0.85 0.88 0.89 0.95 

Figure 7 shows the detected positions of endometrial glands on whole-slide images 

obtained using the ensemble-based technique (the histology image is zoomed in for clar-

ity). Above a colored, HE-stained histology picture, blue contour color patches indicate 

the probable sites of the endometrial glands. 

 
 

Figure 7. Example of histology image with detected endometrial glands. 

6.2. Metric-Based Evaluation Results of Endometrial Sample 

The size, density of the nucleus, and histograms of these measurements in the endo-

metrial sample were chosen as objective metrics, which can be applied for the receptivity 

assessment. The size of the nucleus in the stroma tissue is equal to the blueish area of the 

HE-stained image. Squared pixel values are translated to squared micro-meters. Our in-

vestigation has shown that the stromal cell nucleus in the endometrial sample is of a size 

ranging from 0.005 to 0.68 µm2 in the post-receptive stage. The nucleus size from the pre-

receptive stage varies from 0.005–0.90 µm2, and in the receptive stage, from 0.005–0.67 

µm2. The histogram of the nucleus size is shown in Figure 8, where the rational number 

of nuclei is given on the vertical axis, and the size of the nucleus is set aside on the hori-

zontal axis. The black color curve represents the receptive stage, the red dashed line 

Figure 7. Example of histology image with detected endometrial glands.



Appl. Sci. 2024, 14, 5715 11 of 15

6.2. Metric-Based Evaluation Results of Endometrial Sample

The size, density of the nucleus, and histograms of these measurements in the en-
dometrial sample were chosen as objective metrics, which can be applied for the receptivity
assessment. The size of the nucleus in the stroma tissue is equal to the blueish area of
the HE-stained image. Squared pixel values are translated to squared micro-meters. Our
investigation has shown that the stromal cell nucleus in the endometrial sample is of a size
ranging from 0.005 to 0.68 µm2 in the post-receptive stage. The nucleus size from the pre-
receptive stage varies from 0.005–0.90 µm2, and in the receptive stage, from 0.005–0.67 µm2.
The histogram of the nucleus size is shown in Figure 8, where the rational number of nuclei
is given on the vertical axis, and the size of the nucleus is set aside on the horizontal axis.
The black color curve represents the receptive stage, the red dashed line represents the
pre-receptive values, and the post-receptive stage values are presented with the blue curve.
The histogram suggests that the nucleus is bigger in the post-receptive stage when they are
compared with the nuclei from other stages.

Figure 9 represents the rational histograms of the stromal cell’s nucleus derived using
(a) a 30 µm grid, (c) a 50 µm grid, (b) at the 30 µm range from endometrial glands, and (d) at
the 50 µm range from endometrial glands. The number of grid cells is given on the vertical
axis, and the number of stromal nuclei is shown on the horizontal axis. The histograms
show that the highest nucleus density is higher in the receptive samples. Moreover, more
nuclei can be detected next to the endometrial glands (these being the nuclei of stromal
cells): for instance, on average, up to 12 nuclei can be detected next to the glands and, on
average, 4 in all tissue areas.
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7. Discussion

For the purpose of the assessment of receptive and nonreceptive endometrial stages,
we proposed a metric-driven approach, which is based on an image segmentation model
and evaluation of nucleus size and density. Utilizing a customized dataset obtained
through collaboration with Tartu University and the Lithuanian University of Health
Sciences, the proposed technique and three additional deep architectures were tested.
There are several issues that can induce misdetection and misclassification. The quality
of the image collection used to segment the endometrial glands has a direct influence on
the accuracy of the segmentation. It should be noted that various specialists may annotate
the identical whole-slide picture of an endometrial biopsy differently due to differences in
opinion on the borders of the glands. The accurate segmentation of endometrial tissue is a
difficult task that requires several years of practice to master if it is conducted manually.
Furthermore, histological image aberrations, uneven biopsy slide lighting, and image noise
can all contribute to erroneous segmentation of endometrial glands.

The minimum DPI (dots per inch) for input images is important for our endometrium
segmentation model’s accuracy. Higher resolution generally leads to better results. How-
ever, the computational resources should be considered. The selection of image size is
influenced by the desired balance between image resolution and processing speed. In
our research, we selected an image resolution of 4 pixels per 1 µm. The ensemble-based
method’s attained detection accuracy comes at the expense of processing time. Since the
ensemble technique is based on three deep neural networks, it takes three times longer to
provide predictions. On a GPU graphics card, three separate segmentation models were
trained and tested. The Nvidia RTX4090 with 24 GB of internal RAM was utilized. The
identical custom training dataset and hyperparameters were used to train all three neural
networks. To train the U-Net autoencoder that consists of 7.7 trainable parameters, less
than 22 h is needed. The training of residual U-Net (21.6 trainable parameters) required
up to 50 h. On average, 29 h are needed to train the U-Net++ (9.1 trainable parameters)
segmentation network. In total, it took 105 h (less than 5 days) to train all ensemble-based
segmentation models. Several strategies can be employed to potentially improve the overall
performance when all three models demonstrate poor outcomes. The proposed endometrial
assessment method can be used for a deeper analysis of images. By using the metric-driven
approach, we could objectively demonstrate that the receptive endometrium had a higher
density of stromal cell nuclei next to the endometrial glands compared to the pre- or post-
receptive phases. This is in accordance with the generally applied pathohistological dating
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criteria that describe increasing stromal edema in the post-receptive endometrium as the
fluids push the stromal cells further apart. An interesting additional finding is the smaller
stromal cell size in the receptive stage compared to the pre- and post-receptive stages. The
pathohistologist is normally incapable of routinely measuring the stromal cell sizes, which
are very small. Ensemble methods enhance histology image segmentation by combining
predictions from multiple models. This combination leads to higher accuracy, capturing
intricate tissue details. It also boosts robustness, making segmentation more reliable despite
image noise or staining variations. The ensemble further controls overfitting to specific
training data, enhancing its ability to handle new histology images. These advantages make
ensemble segmentation a positive choice for digital pathology tasks like cell classification,
tumor analysis, and tissue composition studies. The next step would be the application of
an automatic algorithm that is capable of evaluating the differences between endometrial
samples that are in the receptive stage and not. The endometrial gland’s structure and size
changes during the menstrual cycle and glands from post-receptive samples are different
from pre-receptive glands. A computer-aided receptiveness forecasting method should be
developed for further use in this practical application.

8. Conclusions

For computer vision and AI researchers, the automated segmentation, recognition, and
assessment of endometrial tissues remains a difficult task. In this work, we suggest using
a metric-driven approach based on ensembles to automatically differentiate endometrial
glands using group predictions. In order to create a training and testing dataset that is
more statistically significant and to lower the computing resource needs, we also suggest
an image processing phase. We used a dataset amassed during actual clinical practice to
construct our experimental research. The suggested ensemble-based technique showed
comparatively high endometrial gland identification accuracy. The ensemble-based model
outperformed other designs, including U-Net, ResNet34-UNet, and U-Net++, with higher
Dice score (0.95) and IoU (0.90) values. The metric-driven approach highlighted that the
nuclei density is higher in the receptive samples. Endometrial stromal cell nuclear size
and cell-to-cell distance are potential candidate criteria for the metric-driven automated
evaluation of the endometrial phase. Moreover, more nuclei can be detected next to
endometrial glands than in other parts of the tissue. Future studies will focus on the
segmentation of more endometrial cells and/or structures, such as stroma and blood
vessels. The current dataset will also be augmented with new whole-slide images of
endometrial biopsies and expert-based annotations in order to build a better and more
precise segmentation algorithm.
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