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Abstract: In this study, we investigated the efficacy of SiOx-doped diamond-like carbon (DLC) films
for enhancing the corrosion resistance of raster steel linear scales. The research work highlights the
significant role of DLC film materials in enhancing corrosion resistance, making them a promising
solution for various industrial applications. The Raman spectroscopy analysis of SiOx-doped DLC
films, synthesized via a direct ion beam technique with HMDSO vapor, revealed prominent D and G
bands characteristic of amorphous carbon materials, with a high degree of disorder indicated by an
ID/IG ratio of 1.85. X-ray diffraction patterns confirmed the amorphous nature of the SiOx-doped
DLC films and the minimal impact of the DLC deposition process on the underlying crystalline
structure of steel. UV–Vis-NIR reflectance spectra of SiOx-doped DLC on stainless steel demonstrated
improvements in the blue wavelength region compared to stainless steel with ripples alone, which
is beneficial for applications utilizing blue light. Corrosion tests, including immersion in a 5% salt
solution and salt spray testing, showed that SiOx-doped DLC-coated stainless steel exhibited superior
corrosion resistance compared to uncoated steel, with no significant signs of corrosion observed
after extended exposure. These findings underscore the potential of SiOx-doped DLC coatings to
provide long-term corrosion protection and maintain the structural integrity and surface quality of
steel components in harsh environments.

Keywords: SiOx-doped DLC film; corrosion protection; raster steel linear scales

1. Introduction

Recently, a novel fabrication technique of raster steel linear scales (Figure 1) for
reflective-type optical encoders was developed, applying ultrafast pico- and femto-pulse
lasers to produce near-subwavelength ripples on polished stainless-steel tape. Careful
selection of energy fluence near the ablation threshold [1] ensures that the ripples provide
diffuse light reflection and high contrast compared to the well-reflecting steel gaps between
the elements, thus ensuring the precision and reliability of the optical encoder measure-
ments. Reliable displacement measurements are often required in harsh environments
like marine, chemical, or food processing industries where steel corrosion phenomena
can appear, especially in laser-fabricated ripple areas. It is well known that stainless steel
corrosion resistance is determined by a very thin (1–3 nm) chromium oxide film [2], and
the formation of ripples can affect the steel microstructure, which influences the corrosion
resistance properties [3–5]. Ripples can create microenvironments on the surface of the
oxide layer where local variations in pH, oxygen concentration, chemical composition, or
other factors may occur, leading to localized corrosion, such as pitting or crevice corrosion,
which can compromise the overall protective action of the oxide layer. Ripples may disrupt
the continuity and integrity of the chromium oxide layer, exposing the underlying steel to
the corrosive environment.
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Figure 1. Raster steel linear scales for optical encoders.

Diamond-like carbon (DLC) coatings are known to have excellent anticorrosion prop-
erties because they are highly chemically inert and can withstand exposure to acids, bases,
salts, and other corrosive agents without undergoing degradation [6–8]. By forming a
dense and impermeable layer, DLC coatings prevent moisture, oxygen, and other corrosive
species from reaching the underlying substrate and causing corrosion. The exceptional
hardness and wear resistance of DLC coatings help to maintain the integrity of the coating
even under abrasive conditions, reducing the risk of coating damage that could compro-
mise corrosion protection. DLC coatings can be deposited on a wide range of substrate
materials, including metals, ceramics, and polymers, making them versatile for corrosion
protection applications in various industries [9,10]. DLC coatings offer comprehensive
corrosion protection for steel by combining barrier properties, chemical inertness, surface
passivation, hardness, wear resistance, and low friction characteristics [11–16].

In this work, we tested SiOx-doped DLC coatings for corrosion protection of raster
steel linear scales because these coatings offer key advantages compared to traditional
DLC coatings [17–19]. The addition of SiOx to DLC coatings increases their hardness
and wear resistance, and they exhibit improved adhesion to steel substrates compared to
those of pure DLC films [20–22]. This enhanced adhesion helps prevent delamination or
spalling of the coating from the substrate, ensuring long-term protection against corro-
sion and wear [23–25]. Furthermore, the presence of SiOx in DLC coatings enhances their
chemical stability and resistance to degradation in harsh environments. SiOx-doped DLC
films are less susceptible to chemical attack from acids, bases, and other corrosive sub-
stances, providing superior corrosion protection for steel components exposed to aggressive
operating conditions.

2. Materials and Methods

Near-subwavelength ripples (Figure 2) were fabricated on a hardened and tempered
stainless steel tape SANDVIK 7C27Mo2–SGH CHROMFLEX (type AISI 420 + Mo) using
picosecond laser beam irradiation (λ = 532 nm, τp = 8 ps, laser fluence = 1.55 J/cm2).

Before deposition of the SiOx-doped DLC film, the stainless-steel tapes were ultrasoni-
cally cleaned in fresh acetone (10 min) and isopropyl alcohol (10 min) at 35 ◦C to remove
surface contamination. SiOx-doped DLC films were deposited on the stainless-steel scales
by a direct ion beam at room temperature using a closed-drift ion source. Hexamethyl-
disiloxane (HMDSO) vapor was used as a source of hydrocarbons, silicon, and oxygen.
Hydrogen (H2) was used as a carrier gas for HMDSO and was passed through the bubbler
at a pressure of 450 Torr. The detailed deposition conditions of SiOx-doped DLC films are
given in Table 1.
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Figure 2. SEM images of near-subwavelength ripple areas under different magnifications: (a) 8000×
and (b) 1000×.

Table 1. Deposition conditions of the SiOx-doped DLC films.

Substrate Stainless Steel

Reagents Hexamethyldisiloxane (C6H18Si2O) + H2
Base pressure 2 × 10−4 Pa
Work pressure 2 × 10−2 Pa

Ion beam energy 1000 eV
Ion beam current density 50 µA/cm2

Deposition time 10 min

The thickness and refractive index of the deposited films were measured by a laser
ellipsometer Gaertner L115 (λ = 633 nm).

X-ray photoelectron spectroscopy (XPS) measurements were conducted using an
XSAM800 spectrometer manufactured by Kratos Analytical Ltd., Manchester, United King-
dom (Kratos Analytical Ltd., Manchester, UK). XPS spectra were acquired utilizing non-
monochromatized Al Kα radiation (hν = 1486.6 eV).

Stainless steel scales with laser-fabricated ripples were characterized by the scan-
ning electron microscope e-LiNEplus (Raith GmbH, Dortmund, Germany) and the atomic
force microscope NanoWizard® 3 (JPK Instruments AG, Bruker Nano GmbH, Berlin, Ger-
many). Corrosion behaviour was analyzed using a calibrated optical microscope B-600MET
(OPTIKA Srl, Ponteranica, Italy) with a digital CCD video camera, Optika™ Vision Pro
(OPTIKA Srl, Ponteranica, Italy).

The crystallographic nature of the stainless steel and SiOx-doped DLC film coated
stainless steel samples was determined using a D8 Discover X-ray diffractometer (Bruker
AXS GmbH, Berlin, Germany) with a Cu Kα (λ= 1.54 Å) X-ray source. Parallel beam
geometry with a 60 mm Göbel mirror (i.e., an X-ray mirror on a high precision parabolic
surface) was used. The primary side also had a Soller slit with an axial divergence of 2.5◦

and a slit of 1.0 mm. The secondary side had a LYNXEYE (1D mode) detector with an
opening angle of 2.16◦ and a slit opening of 6.0 mm. The X-ray generator voltage and
current were 40.0 kV and 40 mA, respectively. Coupled θ/2θ scans were performed in
the range of 30.0–90.0◦ with a step size of 0.043◦, a time per step of 19.2 s, and an auto-
repeat function enabled. Processing of the resultant diffractograms was performed with
DIFFRAC.EVA V7 software.

Raman spectra were recorded using an inVia Raman spectrometer (Renishaw,
Wotton-under-Edge, UK) equipped with a CCD camera and confocal microscope (50×
objective). The Raman spectra were excited with 532 nm radiation from a semiconductor
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green laser at 5% output power in order to avoid damaging the sample. The 2400 lines/mm
grating was used to record the Raman spectra.

Optical characterization of the stainless steel and SiOx-doped DLC film-coated stain-
less steel samples was performed employing UV–Vis-NIR spectroscopy. The reflectance
spectra were measured in the wavelength range of 300 to 900 nm (measurement resolu-
tion of 1.4 nm) using the AvaSpec-2048 (Avantes, Apeldoorn, The Netherlands) optical
spectrometer and the combined deuterium/halogen light source AvaLight-DHc (Avantes,
Apeldoorn, The Netherlands). Reflectance was measured with the standard small-tip
reflection probe FCR-7UVIR200-2-1.5 (Avantes, Apeldoorn, The Netherlands) at an angle
of 90 degrees.

The salt spray test was carried out on stainless steel and SiOx-doped DLC film-coated
stainless steel samples with a 5% NaCl solution at 100% relative humidity at 35 ◦C, accord-
ing to ASTM B117-03. Photographs of the samples were taken at regular 24-h intervals over
a 72-h period of the experiment to document their condition. Additionally, two sets of sam-
ples, one of uncoated stainless steel and the other of SiOx-doped DLC film-coated stainless
steel, were immersed in a 5% NaCl solution at room temperature. Images of each sample
were taken at ten equally spaced time intervals over a 24-h period. The corroded area
percentage was visually estimated from these images to quantify the extent of corrosion
over time.

3. Results and Discussion

Figure 3 shows the X-ray diffraction (XRD) patterns of the stainless-steel sample (black
pattern) and the SiOx-doped DLC film deposited on the same steel (red pattern). The
XRD pattern for the AISI 420 stainless steel exhibits peaks at 44.845◦, 65.074◦, and 82.358◦,
which correspond to the (1 1 0), (2 0 0), and (2 1 1) crystallographic plane orientations
of a body-centered tetragonal (BCT) structure (ICDD PDF # 00-044-1289), confirming the
presence of the full martensitic phase [26], with the space group I4/mmm. This XRD pattern
indicates the complete transformation of steel to the martensitic phase, with no observable
retained austenite or carbide phases. For the SiOx-doped DLC film coated AISI 420 stainless
steel, the XRD pattern shows peaks at 44.878◦, 65.113◦, and 82.356◦, which align with the
same BCT crystallographic plane orientations as the uncoated sample. This slight shift
in peak positions suggests the introduction of residual stresses due to the SiOx-doped
DLC film coating process. The refined lattice parameters for the uncoated and SiOx-doped
DLC-coated stainless steel samples are nearly identical, with the values for the uncoated
steel being a = 2.860 Å and c = 2.828 Å, while the DLC-coated steel shows a = 2.858 Å
and c = 2.829 Å. The slight differences indicate minimal impact from the DLC deposition
process, suggesting that the crystalline structure of the underlying steel remains largely
unaffected. The absence of additional peaks in the XRD pattern of the SiOx-doped DLC
film-coated sample confirms that the SiOx-doped DLC film is amorphous. This observation
is in line with previous studies, which have consistently shown that SiOx-doped DLC
films do not exhibit crystalline peaks due to their amorphous carbon structure [27]. The
amorphous nature of SiOx-doped DLC film is known to enhance tribological properties,
such as wear resistance and friction reduction, by providing a smooth and hard surface
layer [28,29].

The Raman spectrum of SiOx-doped DLC film, synthesized using a direct ion beam
technique at room temperature with HMDSO vapor as the precursor, is shown in Figure 4.
The spectrum displays two prominent peaks characteristic of amorphous carbon materials,
identified as the D and G bands, located at approximately 1427 cm−1 and 1507 cm−1,
respectively. The deconvolution of these bands shows that the D band, associated with sp3

carbon atoms in rings, has a larger area and width compared to the G band, associated with
sp2 carbon pairs in both rings and chains. The intensity ratio ID/IG was found to be 1.85,
indicating a significant degree of disorder within the carbon network. The broader bands,
with widths of 167 cm−1 for the D band and 126 cm−1 for the G band, are associated with a
higher degree of disorder and a more significant presence of sp3 hybridized carbon [30]. The
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peak positions suggest that the incorporation of SiOx influences the bonding environment,
with the G band shift towards a higher wavenumber indicating the decrease in the fraction
of sp3 bonds and the formation of more six-ring-like sp2 clusters [31–33]. The high R-squared
value (0.9939) confirms the reliability of the peak fitting and subsequent analysis.
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Figure 3. XRD patterns of stainless steel (a) and SiOx-doped DLC film-coated stainless steel (b) samples.
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Figure 4. Raman spectrum of the SiOx-doped DLC film. The blue and green lines show the deconvo-
luted D and G bands, respectively.

The average values of thickness and refractive index of the SiOx-doped DLC film,
measured by the laser ellipsometer, were found to be 80 nm and 1.88, respectively.

The XPS survey spectrum and calculated surface atomic concentrations of SiOx-doped
DLC film are shown in Figure 5 and Table 2, respectively. The composition analysis
indicated that oxygen (O 1s) constituted 27.27% and silicon (Si 2p) was present at 20.44%.
These results suggest a significant presence of oxygen and silicon dopants in the DLC film.
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Table 2. Calculated surface atomic concentrations of the SiOx-doped DLC films.

O 1s C 1s Si 2p

27.27% 52.29% 20.44%

A quantitative study of the surface morphology of stainless-steel scales was performed
using an atomic force microscope. AFM topographic images and height profiles of stainless
steel with ripples and SiOx-doped DLC film on stainless steel with ripples are shown in
Figure 6. Due to the increase in temperature, melting, and local material removal during
the laser beam irradiation, clearly visible ripples with a period close to 450 nm and a
height of 90 nm were formed on the surface of the steel tape (Figure 6a,c). The ripples
were well defined and nearly parallel. The direct ion beam deposition of SiOx-doped DLC
films on stainless steel with ripples caused only minor changes in surface morphology
(Figure 6b,d). Smoothing of the grooves during the coating process resulted in a decrease
in the amplitude of the ripples on the DLC-coated scales to 80 nm. Thus, the amplitude
change did not exceed 10 nm, and the ripples still had a significant influence on the scale
surface roughness.

Figure 7 shows UV–Vis-NIR reflectance spectra of stainless steel, stainless steel with
ripples, SiOx-doped DLC film on stainless steel, and SiOx-doped DLC film on stainless steel
with ripples. The spectra reveal significant modifications in reflectance characteristics due
to the presence of the SiOx-doped DLC film. For uncoated steel (Figure 7a), the reflectance
is highest, averaging 58.13%, with a reflectance range of 65%. This high reflectivity is
typical of metallic surfaces. Introducing surface ripples (Figure 7b) reduces the reflectance
to an average of 43.13% and narrows the range to 50% due to increased diffuse scattering
caused by the textured surface. When a SiOx-doped DLC coating is applied to steel
(Figure 7c), the average reflectance decreases to 37.5%, with a range of 40%. The most
significant reduction in reflectance is observed with SiOx-doped DLC film on steel with
ripples (Figure 7d), averaging 24.38% and exhibiting a reflectance range of 30%. Importantly,
the SiOx-doped DLC on stainless steel with ripples (Figure 7d) shows higher reflectance
in the blue wavelength region compared to stainless steel with ripples alone (Figure 7b).
This enhancement in the blue region is particularly beneficial for applications such as
modern linear scale encoders [34–36], which exploit blue light due to its shorter wavelength
and better photon penetration. Blue light improves the resolution and signal amplitude,
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reduces harmonic distortion, and minimizes jitter, resulting in sharper imaging and higher
precision. The reduced diffraction of blue light, as compared to red or infrared light, further
accentuates these advantages.
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Corrosion is a pervasive issue affecting the longevity and performance of metallic ma-
terials, particularly in harsh environments such as those containing salt solutions. Figure 8
shows corrosion evolution on stainless steel and SiOx-doped DLC film-coated stainless
steel over a 24-h period of immersion in a 5% salt solution. The time-lapse images captured
at regular intervals provide visual evidence of the corrosion processes, enabling a detailed
comparative analysis.
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Figure 8. Corrosion evolution on stainless steel (a) and SiOx-doped DLC film-coated stainless steel
(b) over a 24-h period of immersion in a 5% salt solution. The time-lapse images were captured at
regular intervals from 1 to 10. Mark size: 500 µm.

The images of the uncoated stainless-steel samples (Figure 8a) reveal a progressive
and marked change in surface appearance due to corrosion. Initially (Figure 8a, time point
from 1 to 5, 0–12 h) the sample exhibits a relatively uniform blue-green hue, indicative
of light diffraction from raster ripples. However, early signs of corrosion appear as small
brown spots, indicating the onset of rust formation. By the 12-h mark (Figure 8a, time
point 5, 12 h), the corroded area expands to approximately 30% of the surface. Corrosion
accelerates significantly in the later stages (Figure 8a, time point from 5 to 10, 12–24 h),
with the corroded area covering 90% of the surface by the end of the 24-h period. The color
transitions to a dominant brown, and the texture becomes rougher and more irregular,
indicating severe degradation of the material. The early-stage (Figure 8a, time point from 1
to 5, 0–12 h) corrosion rate is calculated at 2.5% per hour, while the later-stage (Figure 8a,
time point from 5 to 10, 12–24 h) rate escalates to 5% per hour, indicating accelerated
corrosion progression.

The images of the SiOx-doped DLC film-coated stainless steel sample (Figure 8b)
demonstrate a stark contrast in corrosion resistance. The sample maintains a consistent
greyish tone with no visible signs of corrosion during overall the 24 h period. This suggests
that the SiOx-doped DLC film coating effectively prevents the initiation of corrosion even
in a saline environment.
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Optical microscope images of the uncoated and SiOx-doped DLC film-coated stainless
steel surface over a 72-h period of the salt spray testing are presented in Figure 9. It is
evident that the harsh test conditions cause notable surface corrosion of the uncoated
stainless steel (Figure 9a). Degradation of the steel surface occurs in the form of localized
pitting corrosion, starting at individual points and spreading laterally, forming brown spots
that grow and eventually merge. In contrast, the SiOx-doped DLC film-coated stainless
steel surface (Figure 9b) demonstrates much greater resistance to corrosion. Over the 72-h
period in the salt spray chamber, no significant signs of corrosion were observed on the
surface of the SiOx-doped DLC film-coated stainless steel. This confirms the suitability of
SiOx-doped DLC coatings for corrosion protection of stainless steel scales.
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(b) over a 72-h period of salt spray testing. Optical microscope images were captured at regular 24-h
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These findings highlight the superior corrosion resistance provided by the SiOx-doped
DLC film coating, making it a highly effective solution for enhancing the durability of
raster steel linear scales in corrosive environments. The SiOx-doped DLC film-coated steel
maintains its structural integrity and surface quality, showcasing the potential of such films
in applications where corrosion resistance is critical.

4. Conclusions

This study demonstrates the effectiveness of SiOx-doped diamond-like carbon (DLC)
films for enhancing the corrosion resistance of raster steel linear scales. Raman spectroscopy
displayed prominent D and G bands at 1427 cm−1 and 1507 cm−1, respectively. The
intensity ratio ID/IG of 1.85 indicated significant disorder within the carbon network, with
broader band widths (167 cm−1 for the D band and 126 cm−1 for the G band) suggesting
a higher degree of sp3 hybridized carbon. The surface atomic concentrations of the SiOx-
doped DLC films for O 1s and Si 2p were found to be 27.27% and 20.44%, respectively.
XRD analysis confirmed the amorphous nature of SiOx-doped DLC film and indicated that
the DLC deposition process did not significantly affect the crystalline structure of stainless
steel. The SiOx-doped DLC on stainless steel with ripples showed higher reflectance in the
blue wavelength region compared to stainless steel with ripples alone, which is beneficial
for applications utilizing blue light, such as modern linear scale encoders, improving
resolution and signal quality. Time-lapse imaging in a 5% salt solution over 24 h revealed
that uncoated stainless steel exhibited severe rust formation, with corroded areas covering
90% of the surface by the end of the period. In contrast, SiOx-doped DLC-coated stainless
steel showed no visible signs of corrosion, maintaining a consistent greyish tone throughout
the 24-h period. After three days of salt spray testing, optical microscopy confirmed that
the coated samples exhibited no significant signs of corrosion, unlike the heavily corroded
uncoated samples. Overall, SiOx-doped DLC coatings provide substantial improvements
in chemical stability and corrosion resistance, making them ideal for applications requiring
enhanced durability and reliability in aggressive environments.
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