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Linas Saikevičius, Vidas Raudonis *, Gintaras Dervinis and Virginijus Baranauskas

Automation Department, Faculty of Electrical and Electronics Engineering, Kaunas University of Technology,
44249 Kaunas, Lithuania; linas.saikevicius@ktu.edu (L.S.); gintaras.dervinis@ktu.lt (G.D.);
virginijus.baranauskas@ktu.lt (V.B.)
* Correspondence: vidas.raudonis@ktu.lt

Abstract: The development of non-contact techniques for monitoring human vital signs has significant
potential to improve patient care in diverse settings. By facilitating easier and more convenient
monitoring, these techniques can prevent serious health issues and improve patient outcomes,
especially for those unable or unwilling to travel to traditional healthcare environments. This
systematic review examines recent advancements in non-contact vital sign monitoring techniques,
evaluating publicly available datasets and signal preprocessing methods. Additionally, we identified
potential future research directions in this rapidly evolving field.

Keywords: non-contact measurements; remote sensors; image processing; vital signs; photoplethys-
mography

1. Introduction

In the past 15 years, advancements in camera technology have coincided with in-
creased availability and affordability, leading to an increasing interest in using these tech-
nologies in healthcare settings. Image-based monitoring methods can simultaneously
measure multiple vital signs using a non-contact sensor. Imaging photoplethysmography
(iPPG) is an optical technique that uses a simple camera to assess several vital functions,
such as heart rate and respiratory rate. Researchers have made significant efforts to reliably
estimate heart and respiratory rates. Currently, research is focusing on the remote estima-
tion of pulse, respiratory rate, oxygen saturation and blood pressure (BP). While there is
an increasing number of articles and research on pulse and respiratory rate monitoring,
there is also a limited number of publicly available publications on advancements related
to BP estimation. The most monitored vital signs using non-invasive methods are heart
rate, temperature, respiratory rate and oxygen saturation. Not so common and under
development is blood pressure.

There is an estimated dependency of the pulse amplitude of the heart cycle. A sugges-
tion is that depending on the blood pressure, there is a different length in systolic upstroke
and diastolic time and also pulse amplitude width. In theory, it should be possible to
estimate blood pressure from these key timings and amplitudes by adding blood pressure
to remote the vital sign monitoring domain. While pulse and respiratory rate are primary
health measurement data providers, blood pressure is a deep and more informative health
status. High blood pressure needs to be detected in the early stages as it shows no symp-
toms until heart disease or failure occurs or even lethal outcomes. Annually, high blood
pressure causes approximately 12.8% of deaths worldwide and 3.7% of disabilities that
are considered permanent [1]. A multitude of studies have provided confirmation that
this specific factor constitutes a substantial risk for the onset of numerous cardiovascular
ailments, including but not limited to coronary heart disease (CHD), ischemic heart disease,
atherosclerosis, myocardial infarction (MI) and hemorrhagic stroke.
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Throughout the 20th century, researchers made significant strides in improving the
sphygmomanometer, such as enhancing diastolic pressure readings and increasing device
durability [2]. Newer manometers successfully addressed the accuracy issues that plagued
their mid-century predecessors, producing precise measurements of mean arterial pressure
(MAP). However, over time, these automated oscillometric manometers also encountered
issues, causing significant discomfort for children, the elderly and those with medical
challenges [2]. Using infrared (IR) light, photoplethysmography (PPG) can measure changes
in blood vessel volume and provide valuable information about cardiovascular health. It
can even accurately estimate blood pressure changes. Typically, PPG devices have a light
source and sensor and measure reflected light in response to changes in blood volume [3].
Depending on the region of application, IR or light-emitting diode (LED) light sources are
usually used.

Multiple past reviews have concluded that various methods of measuring blood
pressure (BP) often require invasive devices or cumbersome equipment, which can be
inconvenient to carry around. A lack of annotated training data was identified as a key
application issue of machine learning-based methods. To address this issue, researchers
have explored the idea of measuring BP in a non-contact way. One promising solution
is remote photoplethysmography (rPPG), which utilizes color digital camera to capture
subtle changes in light reflected from human skin. This paper seeks to review the latest
deep learning applications in the non-contact monitoring of vital signs that are applicable
in a the context of a home environment and can be used with a conventional device, such
as, color cameras. This article is organized as follows. Section 2 presents the materials
and methodology used for the scientific article search and selection. Selected articles are
briefly reviewed in Section 3. Contextual analysis is performed in Section 4 and the article
is concluded with a discussion of the findings in Section 5.

2. Materials and Methods

This study was conducted using Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guidelines. The following section provides a detailed explanation
of this article’s search procedure.

2.1. Eligibility Criteria

Articles were selected based on the qualifying requirements listed in Table 1. Key
factors included quality, accessibility, comparability and methodological clarity. Metrics
such as the publishing language, paper type, complete paper availability, medical domain,
goal, use of data modalities, deep learning use and performance assessment were included
in the criteria. Articles were filtered using exclusion criteria based on the title, abstract and
keywords, followed by being thoroughly reviewed to assess their suitability.

Table 1. Article eligibility criteria.

Inclusion Criteria Exclusion Criteria

Published in English Business
Journal articles Veterinary Medicine
Full text available Arts and Humanities
Article is published Agriculture and Biological Science
Year of study between 2016 and 2024 Chemical engineering

Chemistry
Immunology and Microbiology
Economics
Pharmacology
Earth and Planetary Science
Psychology
Decision Science
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2.2. Article Search Process

Primary and secondary search tactics were employed using electronic databases such
as Scopus and Web of Science. The primary search was conducted on the 25th of March
2024 and considered articles published had to have been published since 2019. The most
significant abbreviations (such as RPPG, PPG, HR) were incorporated in Boolean logic
queries that were defined by concatenating words using the OR gate and combining term
categories using the AND gate. Several phrases (such as Econ, EART and so on) were
used in order to include or exclude research papers and area symbols and guide the search
results. The search query was limited to the abstract and title.

The whole search code used was the following:
((“blood pressure”) AND (“remote”) AND (“vital”) AND (“heart rate”) AND (“video”)

AND (“photoplethysmography”) AND (rppg)) AND PUBYEAR > 2016 AND PUBYEAR < 2024
AND (EXCLUDE (SUBJAREA, “VETE”) OR EXCLUDE (SUBJAREA, “ARTS”) OR EXCLUDE
(SUBJAREA, “AGRI”) OR EXCLUDE (SUBJAREA, “BUSI”) OR EXCLUDE (SUBJAREA,
“CENG”) OR EXCLUDE (SUBJAREA, “CHEM”) OR EXCLUDE (SUBJAREA, “IMMU”) OR
EXCLUDE (SUBJAREA, “ECON”) OR EXCLUDE (SUBJAREA, “PHAR”) OR EXCLUDE
(SUBJAREA, “EART”) OR EXCLUDE (SUBJAREA, “PSYC”) OR EXCLUDE (SUBJAREA,
“DECI”)) AND (LIMIT-TO (LANGUAGE, “English”)) AND (LIMIT-TO (DOCTYPE, “ar”)
OR LIMIT-TO (DOCTYPE, “cp”) OR LIMIT-TO (DOCTYPE, “ch”)).

Excluded areas included the fields of Veterinary Medicine, Arts, Agriculture, Busi-
ness, Economics, Pharmacology and Psychology. We looked at the final stage of each
selected paper. Some papers were wrongly named, where instead of the article there
was some commercial like for FLIR cameras or a World Health Organization overview.
References discovered in articles from the initial search were examined again and manually
included during the secondary search, contingent upon their relevance as determined by
the eligibility criteria.

2.3. Selection Process

Selection was made from the Scopus and IEEE databases, the main articles were taken
from Scopus, although many were found in the IEEE. The title, authors, publication date,
paper type, article venue, complete abstract and keywords were among the search data.
Duplicate articles were removed using the Microsoft® 365 Excel tool and checking for
repetitive titles. Excluded articles also included those that were not in journals or in the
English language. The remaining publications’ titles, abstracts and keywords were filtered
using the standards listed in Table 1. After reading every article, those that did not fit the
requirements were eliminated. A PRISMA flow diagram is presented in Figure 1.

2.4. Selection Summary

The type of data was determined by the review’s objectives. Some article metadata
could be found in online databases, but the following information was extracted dur-
ing a full article read in order to quantitatively evaluate the articles: objectives, subject
and classes, methodology, initial sample count, training sample count, preprocessing and
machine learning methods. Regretfully, several publications failed to provide the neces-
sary information. Consequently, assumptions regarding the absent data were made as
the following:

• Number of training samples—If this number was not provided, the initial sample
count was taken into account when evaluating the dataset location;

• Application of preprocessing techniques—It is deemed that none were applied.
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3. Results

When searching the Scopus and Web of Science databases 1024 articles were found.
After duplicate articles were removed, 948 original articles remained. Titles, abstracts and
keywords were compared to the qualifying criteria in this group (Figure 1). The entire
texts of the remaining 948 articles were assessed using the same set of criteria. In the end,
110 articles were chosen, and 26 more were added as a consequence of forward snowballing
and reference reviews in related review articles. This section displays the analytical results
for the articles listed below. The results of the searches are represented in Figure 2, which
shows the distribution of articles by date. It is clear that interest in this area of study has
been growing for the previous five years.

It is obvious and mentioned in most of the articles that this field of interest became
needed more and more with the COVID-19 pandemic to monitor vital signs without
primary contact with the patient. Today, as modern society gets older, it is needed to
monitor elderly people from their homes. Contact measurements mostly have some
discomfort or body intrusion elements, while contactless ones can even be unnoticed. Most
publications on the subject are coming from China and the United States, as shown in
Figure 3.

Studies are made mostly in Computer Science and Engineering, as remote vital sign
monitoring includes visual data interpretation in mathematical ways to obtain and check
differences between arrays of pixels and colors in taken pictures or video streams. All
this data must be mathematically, or with the help of AI, summarized and presented to
the user in a simple number or trend format. Also, data must be accurate because they
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are related to human health. To make data more accurate data from medicine were used.
One of the datasets entailed premade video streams taken during different human stress
and calm states with information on the heartbeat taken by a professional, medical-grade
HR monitoring device. The Physics and Astronomy subject area is shown as separate,
but uses the same methods as Engineering and Computer science—data gathering, signal
processing as RGB or motion analysis processed with different mathematical algorithms.
The detailed articles spread by their area are represented in Figure 4.
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From representation of results in Figures 2–4 there were excluded other systematic
reviews like [123–127].

Connected Papers exploration is a technique used to discover and navigate the aca-
demic literature in the field of non-contact vital sign monitoring. Paper exploration started
from key research articles in the research field. The citation tracking tool was used to find
other related research papers to the initial one. Finally, a connection network of research
was created that explored the development and advancement in non-contact vital sign
monitoring technologies. This exploration is helping to understand the current state of
the field, identify emerging trends and see how different research groups are contributing
to the technology. Connected Papers exploration is based on a starting article written
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by Wenjin Wang, “Algorithmic Principles of Remote PPG”, whose principles were cited
677 times in the following years after publication. It is obvious that subequal articles one
way or another use a primary one as the start state and add their own approaches and
variations. How articles reference each other, or their relations, are shown in Figure 5.
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To categorize and organize the information from articles, a Systematic Literature
Review (SLR) coding scheme was used. It is applied to the detailed sorting and labeling
of a large amount of information from academic papers. Firstly, categories and groups of
information like the vital signs, technology and devices used, patient experience during
examination and feasibility of the method were decided upon. Then, articles were sorted
according to these groups and categories. Once articles were sorted, information in it like
a paragraph, meaning and method was labeled as belonging to the appropriate category.
Doing this helped to sort and analyze the data further on. Statistical analysis was also
conducted. For this categorization and labeling, the MaxQDA tool was used. Important
in creating a coding scheme was separating non-contact methods and looking for ways
and methodologies to have non-contact or remote vital sign monitoring, including by
considering the following factors: what studies were made; how simple the method was;
what their feasibility was; how practical the method was when applied; what technologies
were used in the study; what devices were used; what vital signs were measured; and how
common the method was compared to other studies.

3.1. Performance Metrics

For the purpose of evaluating the model and comparing it to the articles of other
authors, several common performance indicators were employed. This section provides the
specifics of the most commonly used metrics and their derived methods. Only the metrics
that were listed in tables including evaluated papers and that were utilized by more than
five (inclusive) articles will be detailed. The effectiveness of the proposed approach was
assessed using a number of quality criteria, such as the mean error (ME), standard deviation
(STD), mean absolute error (MAE), root mean square error (RMSE) and mean absolute
percentage error (MAPE). The metrics shown in Table 2 represent the error between the
estimated (es) XR and the ground truth (lb) values, where X ∈ [H (heart), R (respiratory)].

Table 2. Model performance metrics.

Metric Formula Description

Mean error (ME) ME = 1
N

N
∑

t=1
(XRlb(t)− XRes(t))

Mean error between the estimated and
ground truth signal

Standard deviation (STD) STD =

√
1
N

N
∑

t=1
(XRes(t)− ME)2

Standard deviation between the
estimated signal and ground truth

Mean absolute error (MAE) MAE = 1
N

N
∑

t=1
|XRlb(t)− XRes(t)|

Mean absolute error between the
estimated and ground truth signal

Root mean square error (RMSE) RMSE =

√
1
N

N
∑

t=1
(XRlb(t)− XRes(t))2

Root mean square error between the
estimated and ground truth signal

Mean absolute percentage error (MAPE) MAPE =
1
N

N
∑

t=1

∣∣∣∣XRlb(t)− XRes(t)
XRlb(t)

∣∣∣∣ Mean absolute percentage error between
the estimated and ground truth signal

Performance metrics were analyzed in all articles, and it was found that 90% of articles
could be compared by using the MAE, while less than 70% of articles, with RMSE. The
unit of beats per minute or bmp is often used to represent the physical difference between
estimated and ground truth heart rates (HRs). The breaths per minute or bmp is often
used to represent the physical difference between estimated and ground truth respiratory
rates (RRs). The mean absolute percentage error is represented with units of percentage
(%). The units of millimeters of mercury or mmHg is used to measure differences in other
vital signs such as the systolic blood pressure (SBP) and diastolic blood pressure (DBP).
Blood oxygen saturation level is measured in percentage (%) units. The following Table 3
provides summaries of reviewed articles filtered by the subject “heart rate”.
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Table 3. Summary of papers in non-contact vital sign monitoring analyzing heart rate.

Reference Methodology Dataset Results

Song et al., 2020 [4]
remote photoplethysmography
super-high resolution imaging up to
2704 × 1520 pixels

public UBFC-RPPG (43 videos of
42 different subjects)
self-collected video (15 videos of
15 different individuals)

1 m distance, highest
resolution, r = 0.993;
3 m distance, highest
resolution, r = 0.863;

Cheng et al., 2021 [5] remote photoplethysmography
deep learning techniques - -

Mehmood et al., 2023 [6] CNN based model Welltory dataset (21 video and
ECG recordings)

MAEHR = 5.91
MAESpO2 = 2.01
MAERR = 3.11

Tong et al., 2023 [7]
Imaging Photoplethysmography (IPPG)
remote RGB observations
Biorthogonal wavelet decomposition

UBFC-rPPG dataset
Real scenario (7 individuals) Correlation coefficient = 0.92

Duan et al., 2023 [8] Imaging Photoplethysmography (IPPG)
PURE
VIPL-HR
UBFC-RPPG
MAHNOB-HCI

MAPE = 4.65
RMSE = 4.17
MAE = 3.45

Lin et al., 2023 [9] remote photoplethysmography
convolutional neural networks - -

Karthick et al., 2023 [10] remote photoplethysmography (rPPG) Custom dataset -

Qayyum et al., 2023 [11] remote photoplethysmography (rPPG) Custom dataset 18 participants -

Molinaro et al., 2023 [12] single digital camera Custom dataset MAE < 5 bpm
MAE < 3.42 bpm

Ouzar et al., 2023 [13]
imaging photoplethysmography
end-to-end spatio-temporal
network (X-iPPGNet)

BP4D+
MAHNOB-HCI
UBFC-rPPG
MMSE-HR

MAEHR = 4.10
MAEUBFC = 4.99
MAEMAHNOB = 3.17

Zhang et al., 2023 [14] remote photoplethysmography (rPPG) Custom dataset Acc = 94.5%

Liu et al., 2023 [15] remote photoplethysmography (rPPG)
convolutional neural network

MAHNOB-HCI
PURE

MAE = 3.12 bmp
SD = 3.78

Firmansyah et al., 2023 [16] remote photoplethysmography (rPPG)
1D convolutional neural network

Custom dataset (10 subjects)
Custom dataset (10 subjects) MAE = 2.78 bpm

Smiley et al., 2023 [17] Image-based photoplethysmography (iPPG) - -

Guler et al., 2023 [18]
remote photoplethysmography (rPPG)
reducing signal-to-noise ratio
noise filter selection

Custom dataset (300 recordings) -

Ontiveros et al., 2023 [19]
remote photoplethysmography (rPPG)
contact-based photoplethysmography
(cPPG)

Custom dataset -

Shenoy et al., 2023 [20] Imaging photoplethysmography (iPPG)
unrolling proximal gradient descent MMSE-HR MAE = 1.11 bmp

RMSE = 2.97 bmp

Zhalbekov et al. 2023 [21] remote photoplethysmography (rPPG)
blood volume pulse (BVP) LGI dataset MAE = 5.39 bmp

Xu et al., 2023 [22] illumination variation robust
remote-photoplethysmography (Ivrr-PPG) Custom (NIR light source 940nm) RMSE1 = 2.94

RMSE4 = 9.11

Hu et al., 2023 [23] Photoplethysmography (PPG) Custom dataset -

Revanur et al., 2023 [24] Video-based physiological signal estimation Vision-for-Vitals (V4V)
benchmark MAE = 13.0 bmp

Hu et. al., 2022 [25] remote photoplethysmography (rPPG)
spatial-temporal attention network

PURE
MMSE-HR
UBFC-rPPG

MAE = 0.23
RMSE = 0.48
R = 0.99

Jorge et al., 2022 [26] non-contact camera-based monitoring Custsom MAEHR = 2.5 bmp
MAERR = 2.4 bmp

Wang et al., 2022 [27]
remote photoplethysmography (rPPG)
anti-motion interference method
T-SNE-based signal separation (TSS)

UBFC-RPPG
VIPL-HR

MAEUBFC = 1.64 bpm
MAEVIPL = 4.76 bpm

Wiffen et al., 2022 [28] remote photoplethysmography (rPPG) Custom dataset with patients data
1950 participants -

Przybyło, 2021 [29] Video-plethysmography (VPG)
Long Short Term Memory (LSTM) Custom MAE = 3.62 bpm

Liu, 2022 [30] remote photoplethysmography (rPPG)
Face tracking and SVM PURE MAE = 2.52 bpm
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Table 3. Cont.

Reference Methodology Dataset Results

Han et al., 2022 [31]

structural sparse representation method to
reconstruct the pulse signals
structural sparse representation method to
reconstruct the pulse signals

UBFC
COHFACE MAE = 2.57 bpm

Qiao et al., 2022 [32] remote photoplethysmography (rPPG)
web-camera based solution

TokyoTech rPPG
PURE

MAEHR = 1.73 bpm
MAEHRV = 18.55 ms
MAESpO2 = 1.64%

Sun et al., 2022 [33] remote photoplethysmography (rPPG)
Unsupervised learning

PURE
UBFC-rPPG

MAEUBFC = 0.64 bpm
MAEPURE = 1 bpm
MAEOBF = 0.51 bpm

Ding et al., 2022 [34]

remote photoplethysmography (rPPG)
multi-physiological signals estimation
network (SMP-Net) based on
multimodal fusion

multi-vital sign (MMVS)
VIPL-HR

MAEHR = 1.12 bpm
MAERR = 2.08 bpm

Das et al., 2022 [35] remote photoplethysmography (rPPG)
spatial-temporal filtering method

Custom dataset (25 persons)
COHFACE (160 videos
40 persons)

RMSECOHFACE = 2.41
RMSEcustom = 0.82

Zheng et al., 2022 [36]
remote photoplethysmography (rPPG)
Compensation algorithm of ambient light
and body motions

Custom dataset with facial videos MAE = 4.32 bpm

Abbas et al., 2021 [37] remote photoplethysmography (rPPG) Custom dataset (75 volunteers) MAEHR = 10 bpm
MAERR = 4 bmp

Ryu et al., 2021 [38] remote photoplethysmography (rPPG)
singular spectrum analysis and sub-band UBFC-RPPG dataset correlation coefficient = 0.89

Kado et al., 2020 [39] remote photoplethysmography (rPPG)
Spatial-Spectral-Temporal Fusion Custom dataset MAE < 5 bpm

Zhang et al., 2020 [40]
remote photoplethysmography (rPPG)
3D model-based compensation algorithm of
motion artefacts and varying lightening

Custom dataset that employs
multimodal 3D imaging system -

Liu et al., 2020 [41]

video-based monitoring
drastic facial unsteadiness
disturbance-adaptive orthogonal matching
pursuit (DAOMP) algorithm

Custom dataset (268 subjects for
training) (67 subjects for testing)
MAHNOB-HCI

MPEcustom = 1.55 bpm
MPEMAHNOB = 1.26 bpm

Tran et al., 2020 [42] remote photoplethysmography (rPPG) Custom datset RMSESBP = 7.942
RMSEDBP = 7.912

As seen from Table 3, using the rPPG, it was possible to obtain data accuracy close
to 5 bpm from certified or tested contact-based photoplethysmography using common
datasets. By using custom or their own datasets, article authors claimed to obtain an
accuracy of 1–2 bpm, which is truly remarkable, but based on the dataset size, it is obvious
that the authors used a personalized dataset and personalized results. In common datasets
with higher variability, results were less accurate for the whole array of tests.

For blood pressure estimation from rPPG, custom datasets were mostly used. Table 4
displays the filtered results. In summary, the outcomes of tests in this area were unknown
or hidden. Of the published results, the highest accuracy was 75–80%. This is unusable in
medical testing. By medical device usage certification, there were three levels:

• adequate for a “high-accuracy” device (defined as resulting in a mean BP difference be-
tween the reference and test device measurement and its associated standard deviation
of 0 ± 3–6 [mean ± SD] mmHg), as it would have <14% chance to fail;

• inadequate for a “moderate accuracy” device (difference of 4 ± 5 mmHg), as it would
have 28% of a chance to fail, which is unacceptably high;

• adequate for a “low accuracy” device (difference of 6–8 ± 5 mmHg, or 0 ± 10–12 mmHg,
or 4–6 ± 8 mmHg), as it would have 94% chance to fail.

From the results of reviewed articles, the closest results on customer datasets had a mod-
erate accuracy, which could be used in preliminary BP testing but not final health estimation.
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Table 4. Summary of papers in non-contact vital sign monitoring analyzing blood pressure.

Reference Methodology Data Set Results

Das B. et al., 2022 [1] remote photoplethysmography
(rPPG) MIMIC III 53,423 of subjects -

Steinman et al., 2021 [2] remote photoplethysmography using
smartphone and cameras - -

Gao et al., 2023 [43]
remote photoplethysmography (rPPG)
long short-term memory
network (LSTM)

IIP-HCI dataset
UBFC-Phys dataset
LGI-PPGI dataset
Custom dataset

-

Van Putten et al., 2023 [44] remote photoplethysmography (rPPG)
100 discriminating feauters

Custom dataset
(4500 measurement)

Acc = 79% of all individuals
with hypertension

Wu et al., 2023 [45]
remote photoplethysmography (rPPG)
Windkessel model and hand-crafted
waveform characteristics

Chiao Tung BP (CTBP) dataset MAESBP = 6.48 mmHg
MAEDBP = 5.06 mmHg

Bousefsaf et al., 2022 [46]
imaging photoplethysmographic
(iPPG)
deep U-shaped neural network

BP4D+ (140 participants)
Custom dataset 57 participants
based-on AMM and BHS

MAEDBP = 5.1 mmHg;
MAESBP = 6.73 mmHg

Wiffen et al., 2023 [28] developing a measurement protocol Custom dataset with patients data
1950 participants -

Qiao et al., 2022 [32] web-camera based solution PURE dataset
MAEHR = 1.73 bpm
MAEHRV = 18.55 ms
MAESpO2 = 1.64%

Wuerich et al., 2022 [47] remote photoplethysmography
(rPPG) Custom dataset MAESBP = 5.5 ± 4.52 mmHg

MAEDBP = 3.7 ± 2.86 mmHg

Schrumpf et al., 2021 [48] remote photoplethysmography (rPPG)
deep learning techniques MIMIC-III (12000 records of PPG) MAEAlexNet = 15.7 SBP mmHg

MAEREsNet = 13.02 SBP mmHg

Shirbani et al., 2021 [49] video-based photoplethysmography
(vPPG)

Custom dataset (10 subjects video
records of face and palm) PTT-BP Correlation coefficient = 0.8

Tran et al., 2020 [42] Custom datset RMSESBP = 7.942
RMSEDBP = 7.912

Fan et al., 2020 [50] remote photoplethysmography (rPPG)
Gaussian model Custom dataset rSBP = −0.84

rDBP = −0.66

For remote blood pressure monitoring, there were the lowest-accuracy results; on
the other hand, for SpO2 monitoring, there were quite high-accuracy results. In Table 5,
the represented results of SpO2 estimation from various articles are shown. It can clearly
be seen that oxygen saturation could be measured with a 1.64% error or higher than 95%
accuracy level using standard datasets like PURE or large customer datasets, as in Wiffen
et al.’s article [28].

Table 5. Summary of papers on non-contact vital sign monitoring analyzing SpO2.

Reference Methodology Dataset Results

Mehmood et al., 2023 [6] Model based on visual transformers MTHS dataset (62 videos and
SpO2 recordings)

MAEHR = 5.91
MAESpO2 = 2.01
MAERR = 3.11

Wu et al., 2023 [51] Color camera
Custom dataset (60 subjects)
Recorded with mobile phone,
webcam and industrial camera

MAEphone = 4.39
MAEwebC = 4.45
MAEcamera = 4.22

Wu et al., 2023 [51] K-nearest Neighbor (KNN)
Custom dataset (60 subjects)
Recorded with mobile phone,
webcam and industrial camera

MAEphone = 4.39
MAEwebC = 4.45
MAEcamera = 4.22

Qayyum et al., 2023 [11] Remote photoplethysmography (rPPG) Custom dataset (18 participants) –

van Gastel et al. (2022) [52] Camera-based measurements Custom dataset
Accuracy of normal SpO2
level > 95%
Accuracy of low SpO2 level < 90%

Wiffen et al., 2022 [28] Developing a measurement protocol Custom dataset with patient data
of 1950 participants –

Qiao et al., 2022 [32] Webcam-based solution PURE dataset
MAEHR = 1.73 bpm
MAEHRV = 18.55 ms
MAESpO2 = 1.64%
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The majority (around 80%) of research articles focused on remote heart rate estimation
and a bit less on remote respiratory rate estimation. Less than 20% of research focused
on remote blood pressure monitoring. Remote photoplethysmography (rPPG) technology
served as the basis for remote monitoring of vital signs. Measuring technologies such as
video-based photoplethysmography (vPPG), video plethysmography (VPG) and imaging
photoplethysmography (iPPG) refer to the same remote monitoring technique. Respiratory
rate, heart rate, heart rate variability and oxygen saturation were estimated by measuring
the skin surface of the subject’s face. The pulsatile pressure wave was measured in the
areas of the neck artery or the palmar artery. Blood pressure, both systolic and diastolic,
was estimated by focusing image sensors into two body areas that were at a certain dis-
tance from each other, such as, the forehead and palm. Estimated values of vital signs
were compared with values that were acquired using contact diagnostic devices, such as,
electrocardiographs, finger blood pressure monitors, etc. Current solutions, which rely on
remote PPG analysis, were adapted to specific scenarios by utilizing limited public and/or
custom datasets. There is a lack of research on the deep learning-based vital signs used to
estimate a model’s resilience and capacity for generalization.

3.2. Datasets

Although deep learning models reduce the need for manual feature engineering, they
increase the number of model parameters. These kinds of models require large datasets for
training, and while public, general-purpose datasets have accumulated sufficient samples,
the availability of publicly available medical data restricts the applications of deep learning.
Inference time constraints and the hardware a model will run on also limit a model’s
development. Ethical considerations restrict the acquisition of medical pictures, and the
absence of retrospective patient approval constricts the use of already-existing imagery. In
this setting, scientists are encouraged to work together with healthcare facilities and other
researchers to obtain new annotated samples or to repurpose reliable, openly accessible
data. This section aims to account for major publicly available data by listing datasets
reported in the reviewed research.

Table 6 lists all datasets that were made publicly available. We identified some limita-
tions and shortcomings of the aforementioned rPPG datasets, and some of them appeared
as follows. The majority of publicly available datasets provided labels for heart rate and
respiratory rate only. The MTHS dataset contained an acceptably sufficient number of
samples (enough to train a neural network-based classifier) but provided labels for HR and
SpO2 only. More significantly, the availability of only a few publicly accessible video-PPG
datasets would limit the ability to evaluate the generalization capacity, accuracy and re-
silience of any deep learning system for vitals estimation. This is why a new and sizable
dataset on video-PPG is required. The majority of available datasets used a straightforward
video-collecting technique. For example, samples within a single set were gathered under
constant conditions, and incorporating videos from other datasets might have helped im-
prove dataset variety. Diverse patient ethnicities, lighting settings and recording equipment
contribute to a variety that is advantageous for a classification model intended for usage by
non-professionals with commercially accessible smartphones at home.

Table 6. Available datasets for rPPG research.

Database No. of Subjects No. of Videos Data Type Task/Conditions Ethnicity

BP4D+
[128] 140 1400

25 fps, 1040 × 1392 pixels, 3D,
2D, thermal and
physiological data sequences

Emotion
elicitation

Latino/Hispanic,
White,
African American,
Asian and Others

MAHNOB-HCI
[129] 27 527

61 fps, eye gaze, physiological
sensors measuring ECG, EEG
(32 channels), respiration
amplitude and
skin temperature

Emotion elicitation Caucasian and Asian
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Table 6. Cont.

Database No. of Subjects No. of Videos Data Type Task/Conditions Ethnicity

UBFC-rPPG
[130] 42 42

30 fps, 640 × 480 pixels,
CMS50E transmissive
pulse oximeter

Interaction –

MMSE-HR
[131] 40 102 25 fps, 1040 × 1392 pixels,

blood pressure signal Emotion elicitation

Latino/Hispanic,
White,
African American,
Asian and Others

BUT-PPG
[132] 12 48 30 fps, smartphone camera,

ECG signals Interaction –

AFRL
[133] 25 300 30 fps, 658 × 492 pixels,

contact reflective PPG sensor
Interaction
Head motion –

NBHR
[88] 257 1130

30 fps, photoplethysmograph
information, heart rate and
oxygen saturation level

Sleeping infants at
0–6 days old

COHFACE
[134] 40 160 20 fps, 640 × 480 pixels, heart

rate and breathing rate Interaction –

VIPL-HR
[135] 107 2378 (VIS)

752 (NIR)
Visible light and near-infrared
light videos, BVP sensor data Interaction Caucasian and Asian

TokyoTech rPPG
[81] 9 9 300 fps, 640 × 480 pixels,

contact PPG sensor Interaction Caucasian and Asian

3.3. Architectures of Regression Models

Vital sign estimation based on deep neural networks is a commonly used backbone
term to describe the regression part of state-of-the-art articles. Vital sign monitoring plays
a crucial role in healthcare, and AI-based regression models in this field are more accu-
rate and efficient. These models estimate vital signs (heart rate, blood oxygen saturation,
etc.) by analyzing various signals like remote photoplethysmography (rPPG). The most
common and prominent approach utilizes deep learning architectures, particularly convo-
lutional neural networks (CNNs). These models process an input signal through a series
of convolutional layers, extracting features that correlate with vital signs. Techniques like
residual connections and a discrete cosine transform (DCT) and other transformations are
incorporated to enhance feature extraction. Deep neural networks (DNNs), particularly
convolutional neural networks (CNNs), dominate the field. A major challenge is the limited
size of datasets in vital sign estimation research. Training DNNs effectively often requires
vast amounts of data. A survey of articles indicates that the size of the datasets, which are
small, limits researchers to mostly relying on pretrained, known feature extraction and
regression architectures. To address this issue, researchers leverage pretrained models,
typically trained on large, generic datasets for image recognition or other tasks. These
pretrained models act as powerful feature extractors, capturing essential patterns within the
data. Subsequently, these features are finetuned for the specific task of vital sign estimation.

While pretrained models offer a solid foundation, some researchers opt for custom
convolutional neural networks (CNNs) in combination with data transformations. This
approach allows for greater control over feature extraction specific to the vital signs of
interest. Data transformations, like discrete cosine transform (DCT), can further enhance
a model’s ability to identify relevant patterns in its input signals. The custom CNN
approach is particularly appealing when there is a need for increased efficiency. By
carefully designing network architectures and potentially reducing the number of pa-
rameters, researchers are developing models suitable for deployment on mobile devices
or resource-constrained environments.

Another area of focus is designing compact and efficient models suitable for deploy-
ment on mobile devices. This enables continuous monitoring and promotes accessibility.
Researchers achieve this by reducing the number of parameters in a model or employing
lightweight architectures. Researchers are actively exploring ways to improve both ac-
curacy and efficiency using lightweight architectures, transfer learning and explainable
AI., including the following factors: designing models with fewer parameters for deploy-
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ment on resource-constrained devices; leveraging knowledge gained from estimating one
vital sign to improve the estimation of others; and developing models that explain their
reasoning behind vital sign estimations, fostering trust and improving clinical decision-
making. AI-based vitals estimation models offer a promising technique. The choice of
architecture depends on the desired balance between accuracy and computational efficiency.
Researchers strive to develop AI-based regression models that are not only accurate but
also efficient and interpretable for vital sign estimation, paving the way for wider adoption
in healthcare settings.

4. Future Research

If an rPPG signal were accurate and reliable to acquire through not only BPM readings
but also cardiogram trends like from an ECG, this would further prove the efficacy of
using this method in clinical applications. With the current discussed method, there is the
possibility of measuring heart rate variability (HRV). In recent research, the conclusion
was made that HRV is heavily related to autonomic nervous system functionality. HRV
depression has been observed in various clinical situations, such as autonomic neuropathy,
heart transplantation, congestive heart failure, myocardial infarction (MI) and other cardiac
and noncardiac diseases. It is crucial to understand that the clinical significance of HRV
analysis has only been clearly acknowledged in two specific clinical situations: as a means
of predicting the risk of arrhythmic events or sudden cardiac death following an acute
myocardial infarction, and as a clinical indicator of developing diabetic neuropathy. More
recently, its significance in the assessment and treatment of heart failure has also been
acknowledged. It is crucial to acknowledge the constraints of HRV in terms of its current
clinical usefulness. The standardization of HRV methodology has been inadequate [136].

Looking forward in terms of research possibilities, by obtaining reliable rPPG readings
in the form of oscillometric pressure pulse waves, this would open up even more medical
information about the tested person, like their history of arrythmia or blood pressure [137].
In the overviewed PPG articles, there were attempts to obtain blood pressure by measuring
the time between the heart cycle start, pulse peak and heart cycle end, like in Figure 6.
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In such a way, using mathematical calculations, it is possible to obtain a somewhat
estimated blood pressure. By integrating deep learning techniques, it is possible to improve
the accuracy of readings. However, as of the publication of this article, the results obtained
are still below the acceptable medical threshold when considering the universally accepted
criteria for validating blood pressure measuring devices [138].

5. Conclusions and Discussion

For most remote vital sign monitoring articles, video and RGB image processing
using cameras were mentioned, where each color range extracts a specific part of an
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image difference based on blood vessels’ proximity to outer skin. From exploring the
color of outer skin, it was noticed that the closer the blood vessel is to it, the more bluish
the color of the outer skin becomes. By employing image recognition and mathematical
calculation as well as AI algorithms, it is possible to compare video frames and from them,
by processing differences in color, it is possible to determine pulse. As blood pressure
changes, so does vessel diameter change and so does its closeness to outer skin. Respiratory
rate was measured by changes in body movements. It is the easiest vital sign to measure,
as even if a human is covering their face with a mask, it is possible to check their breathing
rate by mask or bodily micro-movements. Based on the examined articles, the accuracy
of measurement of vital signs using remote photoplethysmography methods depends
on factors including human skin color, ambient light signs taken from the face and the
direction of the human gaze. By combining camera image processing using algorithms
with additional convolutional neural network (CNN) processing, the reliability of data is
increased dramatically. Additional light can be introduced, if possible, to increase accuracy.

There was a lack of deeper research on blood pressure (BP) and the methods and
possibilities around its use. Most of the articles that did mention it only did so in the
results of their investigation, and not in the methods themselves. There is a need for
open-source databases and code availability to be approachable by more scientific studies
and universities; that way, there will be an increased amount of research and articles
with more reliable methods. Further investigation is required regarding remote blood
pressure measurements, specifically to address concerns regarding accuracy, validation in
various environments, long-term reliability, repeatability, and user behavior comprehension.
The accuracy of remote methods such as video-based photoplethysmography has to be
compared with traditional arm cuffs, which are the gold standard for blood pressure
measurement. While some research shows promising results, larger and more diverse
populations need to be included to ensure accuracy across various demographics and
health conditions. The majority of experimental investigations were executed in controlled
clinical settings. However, real-world use at home or in remote areas might introduce
variations due to user techniques, environmental factors or device limitations. More
research is needed to see how these remote-sensing technologies perform in everyday
scenarios. State-of-the-art research often focuses on short-term use. Extended monitoring
over weeks or months is needed to assess if remote technologies provide consistent and
reliable readings. Remote monitoring might capture average blood pressure, but it might
miss important fluctuations that traditional cuffs can detect. More research is needed to
understand if remote technologies can effectively capture this variability. The success of
remote monitoring depends on user adoption and adherence. Research on user behavior
can help identify factors that influence compliance and develop strategies to improve it.

These are just some of the areas where deeper research is needed for remote blood
pressure measurements. Nowadays, every article covers its own approach to problem
solving, and most of them are theoretically based on simulations like MATLAB’s Simulink
or Python, and not on real-world applications. While simulations are valuable tools, the
overemphasis on theoretical approaches in articles can lead to a gap between theory and
practice. Simulations enable researchers to isolate and manipulate variables to understand
their individual and combined effects on a system. This level of control can be difficult
to achieve in real-world experiments. Simulations allow for a quick exploration of mul-
tiple design options. Researchers can test different configurations and identify the most
promising ones efficiently. Many articles do not however provide enough detail on how
to translate simulated solutions into real-world implementations and how their proposed
method was validated in real-world settings. Real-world systems are complex and can be
influenced by unforeseen factors not captured in a simulation. Simulations might miss
crucial details that could impact the final outcome. Findings from simulations conducted
on specific scenarios might not be generalizable to broader real-world applications.
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