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Abstract: Using instance segmentation and video inpainting provides a significant leap in real-
time football video broadcast enhancements by removing potential visual distractions, such as an
occasional person or another object accidentally occupying the frame. Despite its relevance and
importance in the media industry, this area remains challenging and relatively understudied, thus
offering potential for research. Specifically, the segmentation and inpainting of camera operator
instances from video remains an underexplored research area. To address this challenge, this paper
proposes a framework designed to accurately detect and remove camera operators while seamlessly
hallucinating the background in real-time football broadcasts. The approach aims to enhance the
quality of the broadcast by maintaining its consistency and level of engagement to retain and attract
users during the game. To implement the inpainting task, firstly, the camera operators instance
segmentation method should be developed. We used a YOLOv8 model for accurate real-time operator
instance segmentation. The resulting model produces masked frames, which are used for further
camera operator inpainting. Moreover, this paper presents an extensive “Cameramen Instances”
dataset with more than 7500 samples, which serves as a solid foundation for future investigations in
this area. The experimental results show that the YOLOv8 model performs better than other baseline
algorithms in different scenarios. The precision of 95.5%, recall of 92.7%, mAP50-95 of 79.6, and a
high FPS rate of 87 in low-volume environment prove the solution efficacy for real-time applications.
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1. Introduction

The role of computer vision (CV) in the world of sports has been significantly increas-
ing over the last couple of decades [1,2]. Employing automated video analysis in sports
may be a possible solution to satisfy the demands of fans and professionals for diverse types
of structured information. Sports video analysis has a wide range of applications, such
as player tracking [3], extraction of ball trajectory [4], 3D-TV streaming and on-demand
reconstruction [5], gameplay analysis [6], highlight extraction [7], player and referee action
and gesture recognition [8], real-time video broadcast enhancements [9], and many others.
The majority of viewers watch sports events via media streaming providers. Therefore,
the quality of the broadcast, especially the camera angle and the consistency of the scenes
captured, plays a crucial role in attracting and retaining the audience. However, profes-
sional camera control, effectively following the game flow, demands years of practice and
expertise; therefore, it is not easily achievable for many levels of sports broadcasting.

Football is one of the most popular sports [10], being broadcast to millions of spectators
around the world, varying from regional competitions to the World Cup, which is the most
viewed football contest. Also, lower-tier leagues often have a limited budget to employ
well-qualified broadcast teams. Consequently, their broadcast quality of service (QoS) may
suffer, attracting fewer viewers, therefore bringing less revenue. However, even highly
professional broadcast teams can run into these problems. One potential reason for the QoS

AI 2024, 5, 842–872. https://doi.org/10.3390/ai5020042 https://www.mdpi.com/journal/ai

https://doi.org/10.3390/ai5020042
https://doi.org/10.3390/ai5020042
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ai
https://www.mdpi.com
https://orcid.org/0009-0007-8980-8741
https://orcid.org/0000-0001-9990-1084
https://orcid.org/0000-0002-2809-2213
https://doi.org/10.3390/ai5020042
https://www.mdpi.com/journal/ai
https://www.mdpi.com/article/10.3390/ai5020042?type=check_update&version=1


AI 2024, 5 843

downgrade is visual distractions, such as unexpected intrusions of people or animals onto
the field, spectators covering the camera view with their bodies or fan attributes, and others.
Nevertheless, the most frequently overlooked and ignored issue in sports broadcasting
is the “camera operators cameo” or “camera operator shots”, when one camera operator
accidentally captures another camera operator in their shot. This phenomenon regularly
happens in live football broadcasts due to complex media standards and large broadcasting
teams, which often make errors. These errors are sometimes seen as unintentional or
unprofessional elements, which can detract from the viewing experience. This kind of issue
places severe constraints on the camera operator team, as they constantly have to film the
game while trying to avoid capturing other camera operators, which can lead to a loss of
the context of some game moments or makes the broadcast less dynamic and immersive. In
addition, camera operators sometimes have to intentionally include their colleagues in shots
to ensure critical moments are captured and the resulting game scene is consistent. Such
challenges create room for potential video broadcast enhancement by cutting out the camera
operator, or unwanted object, from the video frames to increase the broadcast quality of
experience (QoE) of the end users of the media system. Enhancements are already being
implemented in sports like hockey by camouflaging camera operators against the white
ice surface, so they can come out onto the ice rink and capture the scenes in detail during
timeouts, score celebrations, and other actions without causing visual distractions [11].
However, football scenes are usually characterized by higher contrast, the larger scope
of the game, and camera operators have much more complex types of equipment, which
are hard to camouflage. Additionally, camera operators in football are often situated in
close proximity to the action, making their continuous removal throughout the entire
game necessary, rather than just during specific time intervals. Therefore, handcrafted
means insufficiently eliminate distractions; hence, the application of CV enhancements is
an essential solution for addressing such challenges effectively.

According to the media and broadcast recommendations [12] defined by the Interna-
tional Association Football Federation (FIFA), there should be multiple cameras strategically
positioned across the stadium to provide optimal filming positions for the broadcaster while
being seamlessly integrated into seating areas to avoid obstructing spectators’ views. The
number of cameras required may vary depending on the requirements of the competition.
Figure 1 depicts the typical camera positions used during a football match. As it can be
seen, the number of camera points in prestigious tournaments starts at nine. The dotted
lines in the figure represent camera angles, indicating numerous overlapping camera angle
views, which contribute to the visual distraction issues described above.

The purpose of this study was to design a system that is capable of seamlessly remov-
ing camera operators from live football broadcast, eliminating visual distractions. The core
technology that lies in the process of cutting out camera operators from frames is called
video inpainting. According to research, all the state-of-the-art (SOTA) video inpainting
methods [13–17] are mask-aware, requiring masked frames with segmented camera opera-
tor instances along with video frames as the input to perform inpainting. Consequently,
the instance segmentation of football camera operators is required. This research is placed
as a subtask of the inpainting system, and its main objective was to develop a segmentation
algorithm that is be capable of performing real-time instance camera operator segmentation
when deployed in a low-volume environment.

The main contributions of this paper are as follows:

• A new “Cameramen Instances” dataset was created, which could be used by other
researchers to refine their image segmentation models;

• A finetuned YOLOv8 instance segmentation model was developed to accurately
segment camera operators during football broadcasts, producing masks that serve as
the first step in an approach to enhance the quality of the football broadcast;

• The experimental results demonstrate the effectiveness of the YOLOv8 model in
segmenting camera operators, providing the foundation for future integrations with a
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video inpainting model to seamlessly remove camera operators from broadcasts and
enhance overall broadcast quality.
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The subsequent sections of this paper are structured as follows: Section 2 provides a
background on previous research in the field of instance segmentation methods; Section 3
presents the materials used and the applied methodology; Section 4 details the experiments
and their results, providing insights into the effectiveness of the approach; Section 5
provides a discussion of the findings and marks potential prospects for future research.
Finally, Section 6 represents the conclusions, summarizing the key findings of this paper.

2. Literature Review

In the rapidly evolving domains of artificial intelligence and deep learning, the field
of CV has emerged with various outstanding approaches produced in the development
of instance segmentation techniques. In contrast to conventional image analysis methods,
instance segmentation provides detailed identification of individual-object instances down
to the pixel level with improved resolution and accuracy.

In recent years, multiple segmentation algorithms have been introduced. These are
FCN [18], Mask R-CNN [19], SegNet [20], DeepLab [21], PANet [22], PointRend [23], PSP-
Net [24], SOLO [25], and YOLACT [26]. Among these, FCN is a fully convolutional network
built upon existing classification networks such as AlexNet [27] and others and fine-tuned
for segmentation tasks. Mask R-CNN is an extension of Faster R-CNN [28], having the
capability to predict segmentation masks, with the RoIAlign module specifically designed
to eliminate alignment inconsistencies. SOLO, on the other hand, uses a direct prediction
method, eliminating the requirement for a region of interest (RoI) and, therefore, presenting
an efficient solution. SegNet is a deep fully convolutional neural network developed for
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pixel-wise segmentation, featuring a novel encoder–decoder module, where the decoder
uses max-pooling indices for nonlinear upsampling, which provides competitive segmen-
tation performance. The creators of DeepLab introduced novel techniques by applying
convolution with upsampled filters, proposing atrous spatial pyramid pooling (ASPP),
and combining deep convolutional neural networks (DCNNs) with probabilistic graphical
models to enhance segmentation performance. PANet enhances feature information flow,
providing robust support for small instances, while PointRed considers the segmentation
challenge as a rendering task, outputting high-quality details along object boundaries.
PSPNet exploits the features of global context information through a developed pyramid
pooling module. YOLACT is a segmentation model that generates a set of prototype masks
for the input image and linear combination coefficients for each detected object instead of
predicting raw masks for each instance.

A separate note is required for architectures based on the transformer encoder–decoder
structure, which have proved their effectiveness in instance segmentation since the in-
troduction of DETR [29]. MaskFormer [30] demonstrates that using DETR-based mask
classification performs well and achieves SOTA performance in panoptic and semantic
segmentation. Mask2Former [31] also demonstrated the utility of such architectures for
image segmentation using mask classification formula. The creators of SegFormer [32] im-
plemented a powerful segmentation framework that unifies transformers with lightweight
multilayer perceptron (MLP) decoders. Other researchers developed OneFormer [33],
the first multitask universal image segmentation framework based on transformers and
task-guided queries that combines semantic, instance, and panoptic segmentation into a
single all-in-one architecture.

In addition, we overview the methods focused specifically on segmenting objects in
videos. Researchers presented a new computer vision task, called video instance segmenta-
tion. To handle this task, they introduced Mask-Track R-CNN [34], a method that was built
on top of Mask R-CNN with a novel tracking branch added. The network performs seg-
mentation and tracking tasks simultaneously. DVIS [35] is a novel approach that is able to
handle video instance, semantic, and panoptic segmentation tasks. The method decouples
segmentation into tracking, refinement, and segmentation steps. The novel components
of the model track objects frame-by-frame and produce spatiotemporal representations
based on prealigned features. Near-online video instance segmentation, or NOVIS [36],
is a transformer-based model that generates spatiotemporal masks for video clips and
performs instance tracking between frames via overlap embeddings. GLEE [37] introduces
a general object visual foundation method that is directly applicable to a wide range of
object-level image and video tasks, including instance segmentation. IDOL [38] is one of
the first successful frameworks for online video instance segmentation. The highlight of
this method is that it uses the learned information prior to the embedding to reidentify
missing instances due to occlusions to ensure the consistency of associations. Tube-Link [39]
is a near-online instance segmentation framework that processes video clips to generate
spatial–temporal tube masks. The method integrates tube-level linking with attention and
employs temporal contrastive learning for feature discrimination.

Other model series like You Only Look Once (YOLO) have also significantly con-
tributed to the development of instance segmentation methods. For example, YOLOv5-seg
was introduced as an adaptation of YOLOv5 [40] to handle mask predictions. Likewise,
YOLOv6-seg and YOLOv7-seg were released based on YOLOv6 [41] and YOLOv7 [42],
respectively, to handle instance segmentation tasks.

In addition to the above, there are many domains where instance segmentation algo-
rithms can be applied. In agriculture, it provides the possibility to automatically analyze
farmland fields, obtain plant biomass characteristics [43], detect plant diseases [44], and
perform other various optimization and automation tasks. In medicine, one of the critical
applications of instance segmentation methods is the timely detection of human organ
diseases, such as brain tumors [45] or polypoid lesions [46]. Instance segmentation is also
widely applied in robotics and autonomous driving to ensure scene understanding and
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road safety [47,48]. Furthermore, there has been rapid development of unmanned aerial
vehicle (UAV) technology, which triggered fundamental changes in different industries,
thus creating many possible applications for CV and instance segmentation. These include
obstacle detection [49], object tracking [50], aerial image analysis [51], vehicle detection [52],
and plenty of other areas where processes can be automated.

Another important realm of CV where the object should be localized is salient object
detection (SOD) [53]. SOD is a vital task the CV that focuses on accurately detecting and
segmenting visually distinctive image regions from the perspective of the human visual
system (HVS). Zhao et al. [54] investigated the use of multicontext deep features for SOD.
They employed two CNNs with similar structures to independently capture the global
and local contexts of each image superpixel. Kalboussi et al. [55] explored the use of
object proposals for segmenting salient objects in videos and presented a novel motion
feature based on the optical flow structure tensor to enhance video SOD. Gao et al. [56]
developed a method for cosaliency detection in IoT surveillance. The approach identifies
common and salient foreground regions in multiple images. The authors implemented a
multistage context perception scheme, fulfilled with two-path information propagation for
analyzing interimage similarities and differences and a stage-wise refinement process to
ensure semantic learning. Babahenini et al. [57] developed a new algorithm for saliency
detection that calculates a weight map by normalizing saliency values from input images
to distinguish between focused and defocused regions. Li et al. [58] employed multiscale
deep features to predict saliency maps. The deep features from three distinct scales were
combined and input into a stack of fully connected layers to calculate the saliency score.

Similarly, various studies have integrated CV into sports to enhance the quality of
broadcast streams or to generate diverse types of information. For example, Rifai et al.
adapted Mask R-CNN and video inpainting to identify badminton players to improve the
game analysis process [59]. Other researchers developed a method for real-time human
segmentation in sports videos, employing an online knowledge distillation process to
adaptively create match-specific networks without manual annotation [60]. The resulting
method exhibited exceptional effectiveness in football and basketball games. Notably, Gao
et al. presented a novel strategy called simple dual refinement feature pyramid network
(SDRFPN), which improved the abilities to handle athletes’ features on different scales
and fine details during basketball matches [61]. Another article [62] proposed the memory-
efficient instance segmentation system (MISS) framework, which effectively integrates a
visual prior for instance segmentation tasks, proving to be beneficial in settings with limited
data and computational resources. An article [63] presented a unified DeepSportLab frame-
work for player instance segmentation, ball detection, and other tasks in team games. For
player instance segmentation, DeepSportLab employes the Panoptic-DeepLab [64] network,
the first bottom-up and single-shot panoptic segmentation model that provides SOTA per-
formance. Watanabe et al. proposed a new method that implements foreground silhouette
extraction using dynamic object presence probability (DOPP) in sports scenes [65].

Remarkably, football has also seen a burst of research, which has produced advanced
solutions to boost various aspects of the game, a few of which are worth mentioning in the
context of instance segmentation. The authors of [66] applied the Two-Stage Mask R-CNN
approach to track players in football videos. The use of a combination of YOLOv3 [67]
and a simple online real-time (SORT) [68] player-tracking approach was developed [69]
for accurately tracking the detected object in football videos. Other authors enhanced the
performance for the player detection task [70]. They used the U-Net [71] architecture for
generating a player probability map. U-Net consists of contracting and extracting paths,
whose features are combined to obtain more precise segmentation.

Table 1 presents a comparison of the reviewed studies that further support the con-
ducted analysis of SOTA solutions. The comparison includes YOLOv5 [40], YOLOv8 [72]
and YOLOv9 [73] architectures.
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Table 1. Comparison of studies based on architectural approach, used backbone, performance
metrics, and segmentation tasks (IS, instance segmentation; SS, semantic segmentation; PS, panoptic
segmentation; VIS, video instance segmentation; VSS, video semantic segmentation; and VPS, video
panoptic segmentation).

Method Name Architectural
Approach Backbone Performance Metrics Segmentation Task

FCN [18] CNN-based ResNet/VGG-16 mIoU SS

Mask R-CNN [19] CNN-based ResNet mAP, AP IS

Mask-Track R-CNN [34] CNN-based ResNet-FPN mAP, AP, IoU VIS

SegNet [20] CNN-based VGG-16 mIoU, semantic
contour measure Pixel-Wise SS

DeepLab [21] CNN-based VGG-16/MobileNet/ResNet mIoU SS

PANet [22] CNN-based ResNet mAP, AP IS

PointRend [23] CNN-based ResNet-FPN mAP, AP, mIoU IS, SS

PSPNet [24] CNN-based ResNet mIoU, pixel accuracy SS

U-Net [71] CNN-based - IoU, warp, pixel, and
rand errors Biomedical IS

SOLO [25] CNN-based ResNet-FPN mAP, AP IS

YOLACT [26] CNN-based ResNet-FPN mAP, AP IS

DETR [29] Transformer-based ResNet mAP, AP IS, SS, PS

MaskFormer [30] Transformer-based ResNet/Swin-(L, B, S) mIoU IS, SS, PS

Mask2Former [31] Transformer-based ResNet/Swin mAP, AP, mIoU IS, SS, PS

SegFormer [32] Transformer-based MiT-B0 mAP, AP IS

OneFormer [33] Transformer-based Swin-L mAP, AP, mIoU IS, SS, PS

NOVIS [36] Transformer-based ResNet/Swin-L mAP, AP VIS

IDOL [38] Transformer-based Swin-L mAP, AP VIS

Tube-Link [39] Transformer-based Swin-L AP VIS

YOLOv5 [40] YOLO-based CSPDarknet53v1 mAP, AP IS

YOLOv8 [72] YOLO-based CSPDarknet53v2 mAP, AP IS, VIS

YOLOv9 [73] YOLO-based CSPNet mAP, AP IS, VIS

DVIS [35] Complex ResNet/Swin-L mAP, AP VIS, VSS, VPS

GLEE [37] Complex Swin-L/EVA02-L mAP, AP VIS, VSS, VPS

To complement the analysis provided in Table 1, Table 2 presents detailed performance
and accuracy metrics for each method.

In recent years, the YOLO model series has gained significant attention among many
researchers due to its good real-time detection capabilities. Particularly, the YOLOv8 models
stand out, providing several advantages on reviewed instance segmentation models. The
most significant strengths of YOLOv8 are its perfect balance between accuracy and speed,
lightweight design, and minimal requirements for computational resources. These aspects
place the given model as a suitable option for tasks that require real-time processing speed.
Furthermore, all the architectural features and other benefits of the YOLOv8 are analyzed
in the subsequent section.
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Table 2. Performance and accuracy metrics of reviewed methods based on dataset, key accuracy
metric, metric value, frames per second (FPS), and floating-point operations per second (FLOPS).

Method Name Dataset Key Accuracy Metric Metric Value FPS FLOPS (G)

FCN-8s (VGG-16) [18] PASCAL VOC mIoU 62.2 8 136

Mask R-CNN (ResNet-50) [19] COCO mAP 35.4 5 275

Mask-Track R-CNN (RestNet-50) [34] YouTube-VIS mAP 30.3 2 320

SegNet (VGG-16) [20] PASCAL VOC mIoU 59.1 7 286

DeepLab (ResNet-50) [21] PASCAL VOC mIoU 85.7 16 162

PANet (ResNet-50) [22] COCO mAP 35.1 4 290

PointRend (ResNet-50) [23] COCO mAP 35.8 2.5 400

PSPNet (ResNet-50) [24] PASCAL VOC mIoU 85.4 10 225

U-Net [71] PASCAL VOC mIoU 79.1 12 180

SOLO (ResNet-50) [25] COCO AP 37.1 12 230

YOLACT (ResNet-50) [26] COCO AP 29.8 33.5 93.8

DETR (ResNet-50) [29] COCO AP 42 28 86

MaskFormer (ResNet-50) [30] ADE20K mIoU 45.8 14 180

MaskFormer (Swin-L) [30] ADE20K mIoU 53.5 8 268

Mask2Former (ResNet-50) [31] COCO AP 42.7 10 236

Mask2Former (Swin-L) [31] COCO AP 50.5 5 340

SegFormer (MiT-B0) [32] ADE20K mIoU 37.4 50.5 8.4

OneFormer (Swin-L) [33] COCO AP 53 9 260

NOVIS (ResNet-50) [36] YouTube-VIS AP 41.3 20 200

NOVIS (Swin-L) [36] YouTube-VIS AP 59.8 8 260

IDOL (ResNet-50) [38] YouTube-VIS AP 49.5 15 210

IDOL [38] (Swin-L) YouTube-VIS AP 64.3 9 270

Tube-Link (ResNet-50) [39] YouTube-VIS AP 49.5 18 210

Tube-Link (Swin-L) [39] YouTube-VIS AP 64.6 9 270

YOLOv5-nano [40] COCO mAP 36.1 36.1 7.5

YOLOv8-nano [72] COCO mAP 30.5 96.1 12.6

YOLOv9-compact [73] COCO mAP 42.2 15 26.4

DVIS (Swin-L) [35] YouTube-VIS AP 56.5 11 -

GLEE [37] YouTube-VIS AP 56.5 15 210

Notably, during the preparation of this research, the YOLOv9 [73] model was released;
however, it is noteworthy that even its smallest model is not as lightweight as YOLOv8’s:
specifically 7.1 (M) params and 26.4 FLOPS (G) against 3.4 (M) and 12.6 FLOPS (G) for
YOLOv9 and YOLOv8, respectively. Given the fact that the main objective of this research
was to develop a segmentation algorithm that is capable of performing real-time instance
camera operator segmentation within a resource-constrained setting, YOLOv8 was chosen
for the baseline model despite the recent release of YOLOv9.

Also, there is the reasonable question as to why a video-segmentation-based method
was not considered as a baseline. The field of video instance segmentation is still relatively
new, and many of the existing methods require substantial computational resources or only
perform offline segmentation. Conversely, YOLOv8 handles video segmentation at decent
levels of speed and performance [74–76]. Furthermore, the aforementioned goal of this
study was to design a real-time video inpainting system, where the SOTA methods like
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that in [14] are quite demanding in terms of resources. Thus, it is critical for an instance
segmentation model to consume minimal time and computing resources to allow the video
inpainting component enough capacity to perform effectively in real time. Considering all
these factors, YOLOv8 was selected as the baseline for this research.

The conducted review of existing solutions indicated a wide range of applications for
CV, in particular, for instance segmentation across various domains [77–79], with a growing
trend of employing CV in sports, especially in football. However, there is still a noticeable
lack of research aimed at improving the quality of video broadcasts by eliminating visual
distractions and providing a more immersive experience, pointing to promising directions
for future exploration.

3. Materials and Methods
3.1. Cameramen Instances Dataset

Data collection is a crucial point in building accurate and robust solutions. Labeling of
an immense number of data is necessary to maximize the potential of the recent and most
advanced instance segmentation models. Therefore, aggregating a sufficient number of
training images is essential for solving the camera operator segmentation problem. In this
study, the data were collected from various online sources that distribute the records of
football video matches, highlights, and backstage edits.

Over 100 videos were examined. Frames with a football camera operator were identi-
fied within these videos. The presence of the camera operator in these frames led to visual
distractions and downgraded the QoS of the broadcast. Then, these frame segments were
extracted into frames to serve as the input for the dataset. The camera operators were
captured in diverse scenarios during different parts of football gameplay, half-time actions,
pregame greetings, and postmatch discussions. To enhance the scope of the dataset, the
images were collected under different weather and lighting conditions, camera angles,
football game time episodes, places in the stadium, and filming equipment. Furthermore,
camera operators were captured in different human poses, with different types of camera
equipment setups. It worth noting that the camera operators in the frames were considered
units that create visual distractions; thus, all their elements were annotated comprehen-
sively. This means not only a human object was included in the final annotation but also
any complex set of equipment they were handling, such as large camera units, protective
stands, and others. Moreover, if a camera operator’s assistant was present in the frame
and overlapped them, this was annotated as a single unit to maintain integrity. Conversely,
if the assistant was present separately from the camera operators, they were annotated
independently. All these steps were taken to reflect the diverse and complex scenarios
encountered in live football broadcasts and provide a robust training foundation for the
segmentation algorithms.

The images were captured in JPG format with a resolution of 854 × 480 pixels. The
choice of this resolution was guided by the end goal of designing a system that is capable
of real-time camera operator inpainting during football broadcasts. Based on the literature
review described in the previous section, it was found that SOTA video inpainting meth-
ods require significant processing power as their authors strove to present a generalized
solution, often limiting their feasibility for real-time applications. Therefore, the resolution
of 854 × 480 pixels was strategically selected to balance image clarity with segmentation
and inpainting processing efficiency. This lower resolution allows faster processing; at the
same time, the chosen resolution is sufficient to capture the necessary details to ensure high
broadcast QoS. The dataset was split into training, validation, and test sets in an 8:1:1 ratio.
As a result, 6542, 514, and 514 images were labeled for the training, validation, and test
datasets, for 7570 images in total. Some of the examples are depicted in Figure 2.
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Figure 2. Representative dataset samples from this camera operator segmentation study.

The annotations have one class—“camera operator”; the total number of annotations
is 11240. The object segmentation dataset format follows YOLO. Detailed dataset metadata
are available in Table 3.

Table 3. Dataset metadata.

Dataset Ratio Number Camera Operator
Annotations Format Resolution

(px)

Train 8 6542 9947

YOLO 854 × 480
Valid 1 514 640

Test 1 514 653

Total 10 7570 11,240

The photos were annotated manually by one annotator from the author team using the
Roboflow platform [80]. During the annotation process, the polygon tool was utilized to
mark the edges of the camera operators, which is required for instance segmentation. This
tool allowed us to draw precise polygons around the perimeter of each camera operator,
capturing the exact contours of the individual, their equipment, and assistants if present
in the frame. To ensure the consistency and accuracy of the polygons across the dataset, a
set of clear guidelines was defined for the annotator to follow. These guidelines specified
how to handle the instance annotations under various conditions, such as partial visibility,
overlapping with other objects, varying scales, lighting conditions, and camera angles.
The incoming discrepancies were resolved through discussion with other team members.
In addition to this, periodic consistency checks were conducted on a dataset to ensure
ongoing fidelity. These processes ensured the high quality and reliability of the annotations,
minimizing human error and variability in the dataset. Hereafter, the dataset is referenced
as “Cameramen Instances” for simplicity’s sake.
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3.2. Image Preprocessing

Expanding the dataset size through data augmentation can help with mitigating
overfitting during the training process and increase the model’s robustness, which, in
turn, improves the model’s generalization. During the data preprocessing step, multiple
techniques were employed to make the dataset more realistic. For example, adjusting the
brightness by a fraction helps the model to perform well under various lighting conditions.
Random rotation allows scenarios where objects appear in a variety of orientations. Mosaic
enhancement is an essential method that outputs a random combination of four images.
This procedure forces the model to learn to detect partially occluded and differently posi-
tioned objects. Enhancements such as cropping, mirroring, rotation by ±15%, grayscaling,
scaling, HSV adjustments, and mosaic augmentation were adopted to increase the size of
the dataset (Figure 3). Also, all the images were increased in width up to 864 pixels by
applying zero padding, as the image width had to be a multiple of the maximum stride of
32 to be a valid YOLOv8 input.
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By applying data augmentation, the dataset became more similar to real-world situa-
tions and cases, which elevated the dataset’s quality as well as the model’s generalizability.
The resulting dataset may serve as a resource for various specific tasks and facilitate better
model training, validation, and testing, providing more relevant and robust outputs in the
targeted domain of football camera operator segmentation.

3.3. YOLOv8 Network

To properly implement camera operator instance segmentation, the YOLOv8 [72]
network was employed. The main aim in improving the segmentation approach revolves
around strengthening the segmentation capabilities, with a particular focus on identifying
camera operators in football video broadcasts. To achieve this objective, the capabilities of
YOLOv8, an improved version of the original YOLO model, were utilized [81].

The YOLOv8 network is supported by Ultralytics [82], which has a convenient CLI
for utilizing recent YOLO versions. Identically to YOLOv5, the authors released five pre-
trained models distinguished by different scales, featuring varying channel depths and
filter numbers. The YOLOv8 framework performs various computer vision tasks, such as
object detection, instance segmentation, and object tracking.



AI 2024, 5 852

Built upon its predecessors, such as YOLOv3 and YOLOv5, YOLOv8 presents innova-
tive features and refinements to further enhance its productivity and flexibility. In contrast
to two-stage models, YOLOv8 facilitates the object detection process by directly predicting
class boundaries and probabilities. Therefore, it removes the need for a separate region
proposal network. Moreover, one of the highlights of YOLOv8 is its adoption of an anchor-
free, center-based model for object detection with a decoupled head to independently
handle object classification, and regression tasks. This, in turn, offers several benefits over
conventional anchor-based methods such as YOLOv5.

YOLOv8 employs an identical backbone network to YOLOv5 but with some changes
in the CSPLayers, which is now called the C2f module. It is worth noting that the original
6 × 6 convolution in the stem was replaced with a 3 × 3 convolution. For these modifica-
tions, refer to the design concept of YOLOv7 ELAN [42], which allows YOLOv8 to retain its
lightweight characteristics while gaining more information about the gradient flow, which
drastically improves model performance. The C2f module, or cross-stage partial bottleneck
with two convolutions, fuses high-level features with contextual information to maximize
detection accuracy. Consisting of two modules, ConvModules and “n” DarknetBottleNecks,
the C2f module is linked together through Split and Concat operations, where “n” stands
for the number of bottlenecks. The ConvModule is composed of the Conv2d-BatchNorm2d-
SiLU activation sequence [83]. The C2f module incorporates the bottlenecks’ outputs that
embed two 3 × 3 convolutional layers interconnected with residual links (Figure 4).
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YOLOv8 utilizes the spatial pyramid pooling fusion (SPPF). This module extracts the
contextual information from images at diverse scales, therefore significantly improving the
model’s generalization capabilities. The SPPF block is placed at the end of the backbone
and takes three max-pooling layers to collectively process features at different scales, which
enhances the network’s proficiency in feature abstraction (Figures 4 and 5).
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In this study, YOLOv8 was chosen as a baseline model. It comprises three core
elements: the backbone, the neck, and the prediction output head (Figure 4). The backbone
network consists of a 3 × 3 convolution module, a C2f module, and an SPPF module. The
neck network is placed between the backbone and the prediction output head and plays
a pivotal role in feature integration at different scales. It consists of the path aggregation
network (PAN) [84] and the feature pyramid network [85]. Contrary to previous YOLO
versions, YOLOv8 eliminates the 1 × 1 convolution before upsampling, merges the feature
maps obtained directly at separate stages of the backbone network, and then passes them
to the head. As opposed to the YOLOv5, which uses the linked head part, the head part of
YOLOv8 has a decoupled head structure, delineating the classification and segmentation
branches, hence changing the model from anchor-based to anchor-free. This move discards
the anchor concepts and employs an optimized method to define positive and negative
samples while exceeding the accuracy and processing speed of the anchor-based model.

During the training phase of the model, the TaskAlignedAssigner, employed from
task-aligned one-stage object detection (TOOD) [86], was used to assign positive samples
relying on weighted classification and regression scores, as shown in Equation (1):

t = sµ × uβ, (1)

where s stands for the predicted score corresponding to the identified class; u is the
intersection over union (IoU) between the predicted and the ground truth bounding box;
µ and β are weight values. When the weights are multiplied, the degree of alignment can
be evaluated.

The regression branch of the YOLOv8 employs complete intersection over union
(CIoU) loss [87] and distribute focal loss (DFL) [88]. CIoU takes into account the constraints
related to the center point distance and aspect ratio, and its equation as follows:

LCIoU = 1 − IoU +
ρ2(b,bgt)

c2 + αν

ν = 4
π2

(
arctan wgt

hgt − arctan wp

hp

)2

α = ν
(1−IoU)+ν

, (2)
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where α is used for trade-off balancing; ν is used to evaluate the aspect ratio consis-
tency; b and bgt are for the centers of the predicted and ground truth boxes, respectively;
wgt and hgt are the width and height of the ground truth container, respectively; wp and hp

are the width and height of the prediction container, respectively; ρ signifies the Euclidean
distance between the two center points; c denotes the length of the diagonal line of the area
that contains both ground truth and prediction boxes at the same time.

DFL operates by letting the model quickly focus on locations close to the target. The
distance within a point in a labeled box to the four edges of the predicted frame is assigned
to the regression value. DFL is employed to widen the probability distribution around
object y so that the network can quickly focus on pixels in the vicinity of the target location,
and its equation is as follows:

DFL(Sn, Sn+1) = −((yn+1 − y) log(Sn) + (y − yn) log(Sn+1))

Sn = yn+1−y
yn+1−yn

Sn+1 = y−yn
yn+1−yn

, (3)

where yn and yn+1 are the left and right sides of predicted object y, respectively,
yn ≤ y ≤ yn+1; Sn and Sn+1 are the probabilities of the yn and yn+1 values, respectively.

As for the classification branch, it leverages binary cross-entropy (BCE) loss, which
can be expressed as the following equation:

LBCE = −w[yn log(xn) + (1 − yn) log(1 − xn)], (4)

where w stands for weight; yn denotes the labeled value; xn signifies the predicted value
produced by the model.

YOLOv8 was chosen for multiple reasons. First of all, the given algorithm delivers
superior performance in instance segmentation tasks, which was our main reason for choos-
ing it for this particular camera operator segmentation challenge. Particularly, YOLOv8
provides real-time segmentation capabilities, which is crucial in the task of swift camera op-
erator segmentation during live football broadcasts to ensure the highest-quality end-user
experience. Secondly, the YOLO algorithms are easy to test and deploy. Finally, YOLOv8 is
a proven technique with a self-driven community, which opens new avenues for research
by providing accessible implementation resources.

3.4. System Model

Figure 6 illustrates the system model of the improved live football broadcast, which
involves multiple cameras strategically positioned across the stadium; the cameras are
operated by camera operators. The system is intended to improve the viewing experience
by eliminating the visual distractions caused by operators shooting at overlapping angles.

The workflow of this approach involves several key phases: Firstly, during the live
stream, there might be the case when “Camera Operator A” is captured in the camera angle
of “Camera Operator B”. This point highlights the importance of handling the overlapping
shooting angles and eliminating unwanted visual distractions. Secondly, Camera Operator
A is segmented from the video sequence using YOLOv8. By accurately detecting and further
isolating the presence of operators in the footage, the system provides the foundation for
their removal. Finally, the camera operator is inpainted from the video sequence based on
the input video and masked camera operator frames. This phase seamlessly cuts out the
camera operator from the video content, therefore improving the overall QoE level for the
end users.

One of the most important modules in the system is a YOLOv8 instance segmentation
algorithm. The model was meticulously trained to identify and segment camera operators
in real time, ensuring accurate mask generation for subsequent inpainting. The training
process exploited a robust dataset containing a variety of operator instances in different
poses, sizes, and lighting conditions. YOLOv8 was fine-tuned to ensure it can distinguish
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camera operators from other entities such as players and spectators, regardless of their
shapes and positions.
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After the YOLOv8 model segments the operators, it outputs masks delineating their
presence in each frame. These masks are then processed with a video inpainting model
based on the End-to-End Framework for Flow-Guided Video Inpainting (E2FGVI) [14]. The
authors of the framework managed to reach SOTA accuracy in removing the objects from
the videos relying on masked frames. Video inpainting is a complex process that involves
the reconstruction of the background in a way that seamlessly fills in the areas previously
occupied by camera operators. E2FGVI performs well in maintaining temporal consistency
between frames, ensuring that inpainted areas blend naturally with the surrounding video
content. This is achieved by leveraging flow-guided information that helps with preserving
the dynamic nature of live football broadcasts.

Comprehensive experiments were conducted to validate the effectiveness of the ap-
proach. The YOLOv8 model was thoroughly evaluated on a specially collected dataset
consisting of football broadcast coverage with annotated operators. The evaluation met-
rics included segmentation accuracy, robustness, and real-time processing capability. The
YOLOv8 model achieved competitive average precision in camera operator instance seg-
mentation, demonstrating high accuracy in various scenarios, with detailed metrics and
performance results described in the subsequent sections.

Furthermore, the robustness of the system was tested on additional video footage
from football and other sports games to ensure its generalization capabilities. The sys-
tem performed well, accurately segmenting and inpainting operators in diverse sports
scenes. The quality of inpainting was assessed using subjective methods, such as viewer
surveys, and objective metrics, including peak signal-to-noise ratio (PSNR) and the struc-
tural similarity index (SSIM). The results demonstrated that the inpainted frames main-
tained high visual fidelity with minimal artefacts, providing a clear and distraction-free
viewing experience.

The entire system operates in real time, which is crucial for live broadcast scenarios.
This live performance ensures that the processed frames are immediately available for
streaming, allowing spectators to enjoy an uninterrupted experience of the game.

By removing the camera operators from the video sequence, the end users can have
a more immersive and distraction-free viewing experience of the live stream. The criti-
cal point is that football broadcasting requires capturing dynamic and riveting footage;
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therefore, cases of overlapping cannot be avoided by manually changing the camera angle,
as meaningful video shots may be missed, which may lead to context loss of the game.
Therefore, machine learning (ML)-based solutions should be applied to keep the spectators’
QoE at an acceptable level.

The main focus of this study was segmenting camera operators from live football
streams. By applying YOLOv8 in the given broadcast system, the ultimate goal was to
provide spectators with a real-time, distraction-free playback that allows them to fully
embrace the excitement of the game without any visual interference.

4. Experimental Results
4.1. Experimental Environment and Evaluation Metrics

The experimental environment used in this study can be seen in Table 4.

Table 4. Experimental environment setup.

Name Version

CPU Intel Core i7-11700 @ 2.50 GHz (Intel Corporation, Santa Clara,
CA, USA)

GPU Nvidia RTX 3080 Ti, 12 GB (Nvidia Corporation, Santa Clara,
CA, USA)

Memory 32 GB

Operation System Ubuntu 22.04, 64-bit

Deep Learning Framework Python 3.8, Pytorch 2.2.1, CUDA 12.1

Evaluation metrics are crucial for the quantitative assessment of a model’s perfor-
mance. For instance segmentation tasks, metrics such as precision (P), recall (R), and mean
average precision (mAP) are commonly applied . These metrics were utilized due to their
relevance in assessing instance segmentation models. Moreover, the metrics are standard
in evaluating YOLO-based solutions and allow consistent comparison with other models
as they are widely used in SOTA solutions. The precision and recall measures offer insights
into the model’s accuracy and the ability to detect all salient instances, which are crucial for
maintaining broadcast quality. The mAP gives a thorough understanding of the model’s
performance at different levels of segmentation difficulty. Also, this research proposes
assessing metrics such as floating-point operations per second (FLOPS), model size, sec-
onds per frame (SPF), and frames per second (FPS). These criteria were employed as they
were primary standards in evaluating the real-time capabilities of our model, reflecting
its computational efficiency, processing speed, and frame handling effectiveness in a live
sports broadcasting context.

In combination, all the mentioned metrics ensured a comprehensive evaluation of the
solutions, as they align with common practices in the instance segmentation field, enabling
a meaningful comparison with other existing methods.

Precision and recall are calculated with Equations (5) and (6):

P =
TP

TP + FP
, (5)

R =
TP

TP + FN
, (6)

where TP stands for true positives, or the number of objects correctly identified as a camera
operator, indicating accurate detection and labeling; FN, or false negatives, refers to the
number of camera operator objects that were present but not accurately detected; FP (false
positives) represents the number of objects that were incorrectly classified as a camera
operator, highlighting the regions that were misidentified as football camera operators.
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Precision measures the proportion of precisely labeled camera operators out of all
the predicted cases of occurrence. It is a metric that assesses prediction accuracy. In real-
time camera operator segmentation, precision denotes the level of confidence in correctly
identifying positive instance segmentation. Greater precision reduces false detections,
which results in a higher-quality football broadcast.

Recall signifies the proportion of objects detected. For camera operator segmentation,
this metric is also significant as a higher value indicates that more episodes in the broadcast
are delivered with maximum quality to the spectators. In other words, recall denotes the
ratio between correctly identified targets out of the total number of targets.

The mAP metric is based on the precision–recall criterion, which operates on multiple
object classes and determines positive predictions by employing the intersection over union
(IoU). It picks a given IoU threshold and calculates the mean of the precision values
observed at different recall thresholds. IoU is commonly used for computer vision and
image processing tasks to quantitatively assess the degree of overlap between two regions,
serving as a measure of similarity. IoU can be calculated as in Equation (7):

IoU(A, B) =
|A ∩ B|
|A ∪ B| , (7)

The average precision (AP) is calculated as a weighted average of the precision for
each threshold; weight is the increase in recall over the previous threshold. AP is expressed
as follows in Equation (8):

AP = ∑n(Rn+1 + Rn)·Pn, (8)

mAP0.5 denotes the AP value when the IoU threshold is set to 0.5. To yield mAP0.5 :
0.05 : 0.95, the AP for each IoU threshold value ranging from 0.5 to 0.95 in an increment of
0.05 was calculated and averaged, as represented in Equation (9):

mAP0.5 : 0.05 : 0.95 =
APIoU=0.5 + APIoU=0.55 + . . . + APIoU=0.95

n
, (9)

With help of mAP0.5 and mAP0.5 : 0.05 : 0.95, the model segmentation capabilities in
the football camera operator domain was evaluated at distinct IoU threshold values. For
the sake of simplicity, the designation of mAP50-95 is used in the manuscript instead of
mAP0.5 : 0.05 : 0.95; also, mAP50 is used instead of mAP0.5.

In addition, the performance of the suggested model was evaluated using its number
of training parameters, which reflects the model size. Furthermore, the FLOPS, FPS, and
SPF metrics were employed. FLOPS is a measure of model computational performance
and a gauge of its complexity, while FPS signifies the speed at which the model can process
each frame for camera operator instance segmentation in a football video stream, which
can help with analyzing the model from the perspective of real-world applications. SPF
was employed as it offers a direct measure of the time required to process a single frame.
By expressing performance using SPF, it might be easier to observe and quantify small
differences in model throughput during comparative analysis.

4.2. Experimentation Settings

The YOLOv8 algorithm was applied to the previously created camera operator dataset.
All the experiments were conducted using the environment described in Table 2. A subset
of the dataset (2000 images) was used to train the model for a limited number of epochs to
analyze the model’s behavior based on the experimental changes in hyperparameters and
architecture while preserving time and computational resources. The model was trained for
15 epochs, using an 8/1.5/0.5 train/validation/test split of the camera operator subdataset.
The experiments were divided into optimizer experiments, model size experiments, batch
size and learning rate experiments, and layer freezing (Table 5).
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Table 5. YOLOv8 experiment plan: architecture modifications and hyperparameter tuning for camera
operator segmentation study.

Experiment No. Batch Size LR Optimizer Momentum Epochs Model Frozen Layers

1 16 0.01 SGD 0.937 15 nano --
2 16 0.001 Adam 0.9 15 nano --
3 16 0.02 AdamW 0.9 15 nano --
4 16 0.02 AdamW 0.9 15 small --
5 8 0.0001 SGD 0.9 15 nano --
6 28 0.1 SGD 0.99 15 nano --
7 16 0.01 SGD 0.937 15 nano 15
8 16 0.01 SGD 0.937 15 nano 20

The rationale for hyperparameter selection was taken from [89], where the authors
performed hyperparameter tuning for YOLOv5 for underwater detection. Thus, the ob-
jective of this batch of experiments was to investigate whether the model with alternative
hyperparameters outperformed the one with the default settings, when applied to the
Cameramen Instances dataset. The first experiment in Table 4 was assumed as the default
YOLOv8 hyperparameter setting.

The YOLOv8 “nano” and “small” models were selected for experimentation due to
their lightweight nature and the limitations of the experimental environment. The models
were pretrained on the COCO [90] dataset; the full model configuration is described in
Table 6.

Table 6. Characteristics of YOLOv8 iterations employed during the hyperparameter tuning experiments.

Model mAP50-95 Params
(M)

FLOPS
(G)

Model Size
(MB)

YOLOv8n-seg 30.5 3.4 12.6 6.7
YOLOv8s-seg 36.8 11.8 42.6 22.8

After completing the hyperparameter tuning experiments, the optimal parameters
were selected for the YOLOv8 model. Then, the model was trained on the full dataset to
create a solution capable of segmenting the camera operator instances. The outcomes of
this training phase were extensively analyzed and compared with the quantitative results
of the other existing SOTA approaches. Notably, all the models were pretrained on the
COCO dataset and then further fine-tuned on the developed Cameramen Instances dataset
for the sake of experimental integrity. The detailed plan of the experiments is outlined in
Table 7.

Table 7. Comparison plan of segmentation performance of different models on the camera operator
instances dataset.

Model Pretraining Dataset Training Dataset

YOLOv5n-seg [29]

COCO Cameramen Instances dataset

YOLOv7-seg [31]
YOLACT [28]

Mask R-CNN [19]
YOLOv6n-seg [30]

YOLOv8n-seg

The models taken for comparison were trained using the same set of hyperparameters
as the models we used for our experiments.
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4.3. YOLOv8 Experiments

To correctly analyze the hyperparameter tuning results for the YOLOv8 method, some
additional metrics were considered to supplement the ones described at the beginning of
the section. These were segmentation loss, classification loss, and training time. Table 8
lists the results of the experiments by providing the key metrics for each model.

Table 8. YOLOv8 hyperparameter tuning: evaluating performance and outcomes.

Experiment No. P
(%)

R
(%) mAP50 mAP50-95 Segmentation

Loss
Classification

Loss Training Time (h)

1 94.2 85.4 92.7 68.9 0.873 0.4191 0.070
2 88.6 90.8 94.9 71.2 0.827 0.3451 0.071
3 79.2 82.5 89.9 64.5 1.288 0.6849 0.071
4 84.7 82.7 89.0 62.4 1.488 0.8898 0.128
5 69.9 63.9 72.5 51.7 1.492 2.258 0.083
6 87.1 76.7 89.0 57.7 1.522 0.7802 0.086
7 83.3 83.4 87.1 61.5 1.193 0.6159 0.057
8 68.4 66.2 72.8 47.7 1.494 0.9455 0.082

Experiment 1 and Experiment 2 exhibited commendable precision and recall values;
however, the second experiment had in a higher mAP50-95 value, indicating its superior
performance among all the experiments in this batch. The experiments with the full model
size required dramatically longer training times, resulting in performance decreases, in
comparison to those of previous experiments; however, this observation is in line with
the expected behavior, as larger models may tend to converge slower due to their higher
complexity and parameter count. During Experiment 7, it was agreed to freeze the first
15 layers of the YOLOv8 network to check if the model would benefit from preserving low-
level features and allowing certain adaptations to mid-level features. The given experiment
is noteworthy for the balanced precision and recall metrics, denoting this hyperparameter
setup may be a good trade-off between generic and task-specific features. Moreover, the
mAP value was comparable to that of the frontrunner experiments, and the resulting model
had the shorter training time. This combination of results makes it an attractive choice
in comparison to the other experiments. The rest of the experiments yielded suboptimal
results: a higher number of frozen layers downgraded the performance (Experiment 8).
Changing the batch size and learning rate to extreme values resulted in increased losses
and reduced performance (Experiments 5 and 6).

After the analysis of the conducted experiments with hyperparameter tuning for
YOLOv8 in the task of camera operator instance segmentation, we chose Experiment 2 as
the best hyperparameter set due to its remarkable balance between precision, recall, and
segmentation accuracy, supported by the highest mAP50-95 value of the candidates. The
main hyperparameters used during Experiment 2 were as follows: a batch size of 16, a
0.001 learning rate, and the Adam optimizer with 0.9 momentum. Also, the model was
trained for 15 epochs. Therefore, based on the analysis, the defined hyperparameter set is
the most promising option for training the model, which enables real-time camera operator
localization by providing accurate masks of the target object.

4.4. Comparison Experiments

In the experiments outlined in the previous section, the optimal hyperparameter
settings were defined as follows: the batch size of 16, a 0.001 learning rate, and the Adam
optimizer with 0.9 momentum. Therefore, this configuration was used to train the resulting
model for 50 epochs, aiming to achieve maximal performance. The training graph is
depicted in Figure 7, indicating a gradual mAP improvement during the first 30 epochs.
The highest mAP50-95 was captured during the 42nd epoch.
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Afterward, the performance metrics of the resulting model were evaluated and com-
pared to those of different algorithms such as YOLOv5, YOLOv6, YOLOv7, YOLACT, and
Mask R-CNN (Table 9). Table 9 presents a detailed comparison of the several existing
segmentation algorithms, providing their precision, recall, mean average precision, number
of trainable parameters, FPS, SPF, FLOPS, and model size.

Table 9. Comparative analysis of different algorithms: performance testing of YOLOv5, YOLOv6,
YOLOv7, YOLACT, Mask R-CNN, and proposed YOLOv8.

Name P
(%)

R
(%) mAP50 mAP50-95 Params

(M)
FLOPS

(G) Model Size (MB) FPS SPF

YOLOv5n-seg 77.0 82.9 85.8 56.0 2.0 6.7 15.7 62 0.016
YOLOv6n-seg 69.2 91.5 92.6 64.5 4.9 25.46 64.6 30 0.033

YOLOv7 96.9 93.3 98.2 68.7 37.8 141.9 340.0 23.31 0.043
YOLACT 62.8 75.3 65.7 40.83 39.5 158.26 123 19.8 0.050

Mask R-CNN 73.4 89.2 90.5 68.5 44.4 134.3 176.2 24.6 0.040
YOLOv8n-seg 95.5 92.7 97.9 79.6 3.4 12 6.8 87 0.011

Based on the collected metrics, YOLOv8 produced superior performance compared
with other models like YOLOv5, YOLOv6, and YOLACT. Notably, YOLOv7 and Mask
R-CNN exhibited competitive results in terms of mAP, precision, and recall; particularly,
YOLOv7 achieved the results that were most comparable to those of YOLOv8 in the task
of camera operator segmentation. However, their relatively high FLOPS and SPF values
and low FPS values (134.3, 0.040, and 24.6 for Mask R-CNN, and 141.9, 0.043, and 23.31 for
YOLOv7) collectively indicate the poor ability of these models to perform in the described
test environment in real time due to their computational complexity.

On the test dataset, YOLOv8 achieved exceptional performance with the following
results: 95.5% precision, 92.7% recall, and 79.6 mAP50-95, demonstrating the ability to
accurately segment camera operators in video frames. Moreover, YOLOv8 emerged as the
optimal choice for real-time football broadcast systems requiring camera operator inpaint-
ing based on the FLOPS, SPF and FPS metrics, which were 12, 0.011, and 87, respectively.
Specifically, the SPF value for YOLOv8 can be decomposed into multiple stages, such as
preprocessing (0.1 ms), inference (1.0 ms), and postprocessing (1.4 ms). The postprocessing
step takes the longest time compared to the other components, suggesting potential areas
for future optimization research. In general, with an inference time of 1.0 ms, the model
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very efficiently uses its neural network architecture. The YOLOv8 algorithm not only
provides high-accuracy segmentation but is also employable in real time, making it the
definitive approach for camera operator segmentation tasks.

4.5. Effect of Different Image Resolutions on Camera Operators Segmentation

To investigate the impact of input resolution on the segmentation results of the trained
YOLOv8 network, several experiments were conducted with various input image sizes that
are commonly used during broadcasts with an adaptive bitrate to cover as many users with
different devices, as possible: 640 × 360 pixels, 854 × 480 pixels, 1280 × 720 pixels, and
1920 × 1080 pixels. A separate small test dataset containing about 100 images was collected
for these experiments. The YOLOv8-based model tested in this experiment was trained on
an 854 × 480 pixel dataset, described in Table 2. Table 10 provides a detailed overview of
each image resolution’s segment precision, recall, mAP, and inference time in milliseconds.

Table 10. Comparative analysis of network segmentation results for different input resolutions.

Resolution (px) P
(%)

R
(%) mAP50 mAP50-95 Inference Time (ms)

640 × 360 96.5 74.3 85.8 60.6 129.8
854 × 480 96.4 76.9 90.7 64.9 198.4

1280 × 720 83.1 82.9 91.8 68.9 461.4
1920 × 1080 70.7 72.4 80.7 60.0 1026.8

The results show a general decrease in precision as the resolutions increase, degrading
from 96.4 at 854 × 480 to 70.7 at 1920 × 1080, indicating the model struggles to maintain
accuracy with increasing resolution. However, the recall increased when the resolution
was changed from 854 × 480 to 1280 × 720 and then dropped at the highest resolution,
indicating that the model can detect more true positives at a slightly higher resolution, but
fails as the resolution significantly exceeds the training conditions.

The pattern for mAP50-95 depicts peak performance at 1280 × 720 resolution, indicat-
ing the model’s better generalization at this resolution before downgrading the performance
level at the highest resolution tested. In addition, there was an expected increase in infer-
ence time with the growth in resolution, reflecting the substantial increase in time between
1280 × 720 and 1920 × 1080 resolutions.

This batch of experiments shows that the model demonstrates optimal performance at
854 × 480 and 1280 × 720 resolutions, where it reaches efficient precision, recall, and mAP
levels. These resolutions offer satisfactory segmentation performance and a reasonable
inference time.

4.6. Cross-Sport Evaluation of Camera Operator Segmentation

We extended the evaluation of the YOLOv8 camera operator instance segmentation to
other sports. Table 11 summarizes the performance metrics, such as precision, recall, and
mean average precision, for the analyzed sport types (rugby and lacrosse) for 100 movie
sequences each, which were parameterized and processed in the same manner as described
in Section 3.1.

Table 11. Performance metrics for camera operator segmentation in various sport broadcasts.

Sport Type P
(%)

R
(%) mAP50 mAP50-95 Resolution (px)

Rugby 96.3 83.3 90.5 69.6
854 × 480Lacrosse 93.8 79.4 88.2 65.0

The model achieved high precision and a notable recall rate for the both sports,
resulting in competitive mAP50 and mAP50-95 values, suggesting that the model is effective
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at correctly identifying and segmenting the camera operator with minimal false positives.
The conducted experiment shows that the model generalizes well across different sports
with varying visual contexts.

4.7. Statistical Tests

Statistical tests were performed to evaluate the conducted experiments to determine
whether the observed differences in performance metrics like mAP50-95, precision, and re-
call were due to the specific adjustments made in the experiments rather than being a result
of random variability in the data (all the details are available in the repository referenced
in the Data Availability Section). The one-sample t-test method was applied to compare
the target metric scores of the used YOLOv8 model against the average metric scores of
the other experiments. The one-sample t-test was selected as it simplifies the process of
comparing a target model against other experiments. Moreover, the test is particularly
suited for small sample sizes and offers a straightforward analysis that provided inputs
for the focused assessment in the conducted experiments. This approach allowed us to
quantify how much better or worse the proposed model was compared to the other models.
The t-statistic from the test measures the magnitude of the difference in units of standard
error, while the p-value gives the probability that the observed difference in performance
occurs by chance. Such quantification helps to define not just if the proposed model is
different but also how significant that difference is in a statistical context.

Table 12 presents the results of the t-tests for the YOLOv8 hyperparameter tuning
experiments. The null hypothesis was that any difference in the mAP50-95, precision, or
recall score observed for Experiment 2 was due to random chance or variability in the data,
rather than a significant effect of the hyperparameter tuning performed in that specific
experiment.

Table 12. One-sample t-test results for hyperparameter tuning experiments: evaluating significance
of mAP50-95, precision, and recall scores.

Metric p-Value t-Statistics Magnitude p-Value Threshold

MAP50-95 0.0051 4.291
0.05Precision 0.0723 2.177

Recall 0.0064 4.082

The t-test results show that Experiment 2 significantly outperformed the others in
two out of three key evaluation metrics: mAP50-95 and recall, with p-values of 0.0051 and
0.0064, respectively, which are both below the 0.05 threshold, so the null hypothesis was
rejected for these metrics. At the same time, the magnitude of the t-statistics was substantial
enough to provide a high level of confidence in the results. Therefore, the difference in the
mean mAP50-95 and precision between Experiment 2 and the other experiments implies
that the changes made in Experiment 2 positively influenced the model’s performance.
Although the enhancements in precision did not reach statistical significance, with a p-value
of 0.0723, it did exhibit a positive trend that may be useful in practical applications.

Table 13 presents the results of the t-tests for the comparative analysis of the YOLOv8
method against the other SOTA approaches. The null hypothesis was that any difference
in the mAP50-95, precision, and recall score observed for the YOLOv8 model was due
to random chance or variability in the data rather than a genuine effect or improvement
brought about by the YOLOv8 model.

The t-test results in the SOTA comparison indicate that the performance metrics of the
YOLOv8 model were significantly better than those of the other models. With a p-value
of 0.0192 and a t-statistic magnitude of 3.789 for mAP50-95, and a p-value of 0.0271 and a
t-statistic magnitude of 3.406 for precision, we rejected the null hypothesis for these metrics,
confirming that the proposed enhancements were statistically significant. The recall metric,
however, with a p-value of 0.1301, did not surpass the p-value threshold of 0.05, indicating a
slightly less robust difference compared to the other models. Nevertheless, the recall value
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of the YOLOv8 method was relatively high and comparable with that of the considered
SOTA models.

Table 13. One-sample t-test results for SOTA comparison experiments: evaluating significance of
mAP50-95, precision, and recall scores.

Metric p-Value t-Statistics Magnitude p-Value Threshold

MAP50-95 0.0192 3.789
0.05Precision 0.0271 3.406

Recall 0.1301 1.901

4.8. Visualization

Figure 8 visualizes some results of the applied method on the Cameramen Instances
dataset. The selected images represent the common frames that are frequently captured
during football broadcasts. These include the moments when the players enter the field
to start the game and several moments when the primary camera operator captures side
angles, which are on the edge of the football field. Notably, the model demonstrates
great detection and segmentation capabilities, avoiding false positive outputs. The model
effectively handles images containing multiple camera operator instances, which is a
regular case in real-world scenarios.

Figure 9 illustrates a visual contrast of the different algorithms used for comparison
with the YOLOv8 model. As mentioned before, YOLOv5, YOLOv6, YOLOv7, YOLACT,
and Mask R-CNN were selected to qualitatively assess the visual outputs of the proposed
method. Here, the YOLOv5 and YOLOv6 models suffered from numerous false positives in
the segmentation results, mixing up instances like coaches, assistants, referees, and others.
Moreover, they generated erratic mask outputs, which often contained redundant areas
in the images. The YOLACT network aggregated the segmentation results relatively well;
however, it produced severe mask expansion beyond the ground truth regions for most of
the test dataset.

Mask R-CNN and YOLOv7 had the closest results to those of the YOLOv8 model.
YOLOv7 had minimal trouble with accuracy in the segmentation masks and sometimes
failed to fully encompass the objects. Mask R-CNN generated fairly accurate masks but
had a sufficient number of false positive detections that were closely located to the ground
truth objects. In contrast, YOLOv8 exhibited superior performance, generated relatively
accurate masks, and avoided false detections, which were evidenced by both the qualitative
(as illustrated in Figure 8) and quantitative results detailed in the previous subsection.

Additional visual analysis experiments were conducted to assess the model’s adapt-
ability and generalization by applying our model to other sport broadcasts where the
problem addressed in this research may be relevant. Figure 10 illustrates a visual com-
parison using rugby and lacrosse as examples. These selected sports have similar field
sizes and operator positions during the game. The results are promising and exhibit the
model’s effectiveness in camera operator segmentation in diverse sports environments.
This extended evaluation provides insights into the model’s potential for wider application
in live sports broadcast environments, paving the way for future enhancements in the field
of automated sports broadcasting.
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Figure 8. Segmentation results for the proposed YOLOv8 model for single- and multi-camera
operator instances in the aggregated dataset’s test images: (a) original images; (b) ground truth binary
mask; (c) segmented camera operators outlined in red contour; and (d) segmented camera operator
binary mask.
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Figure 9. Segmentation results of the compared models for single- and multi-camera operator instances
in the aggregated dataset’s test images (outlined in red contour): (a) original images with ground truth
segmentations; (b) YOLOv5 segmentations; (c) YOLOv6 segmentations; (d) YOLOv7 segmentations;
(e) YOLACT segmentations; (f) Mask R-CNN segmentations; (g) YOLOv8 segmentations.
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Figure 10. Segmentation results for the proposed YOLOv8 model for single- and multi-camera
operator instances in the aggregated dataset’s test images for other sport types: (a) original im-
ages; (b) ground truth binary mask; (c) segmented camera operators outlined in red contour; and
(d) segmented camera operator binary mask. Images (1)–(6) represent rugby, and images (7,8)
represent lacrosse.
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5. Discussion and Future Research
5.1. Evaluation of Findings

Our integration of YOLOv8 into computer vision tasks achieved higher accuracy
than previous iterations of YOLO models, highlighting it as a flexible and efficient ap-
proach for solving a variety of tasks such as object detection, instance segmentation, and
image classification. A recent YOLO release introduced new features and enhancements
to further optimize its performance and flexibility, including a new backbone network,
an anchor-free detection head, and a revamped loss function. YOLOv8 exhibits superior
accuracy, producing a competitive solution compared with other SOTA instance segmenta-
tion models. Also, the proposed model is exceptionally efficient and can be deployed in
a low-volume environment, which makes it a perfect candidate for completing real-time
segmentation tasks.

This research underscores the significance of timely camera operator detection in live
football broadcasts to be able to remove them from video frames. The camera operator
inpainting technique is capable of leading the revolution not only in football broadcasting
but also in a broader domain of live sports streaming. By effectively cutting out unwanted
objects from videos and hallucinating the background behind them, this technology can
stimulate innovation in the realm of sports broadcasts for the development of new ap-
proaches and methodologies for shooting gameplay scenes. Further research in this area
can introduce a new era in sports broadcasting where the emphasis is shifted from captur-
ing the ongoing action to creating an immersive and uninterrupted viewing experience.
The implementation of camera operator inpainting can lift the restrictions on broadcast
companies so they can experiment with innovative angles, perspectives, and other effects
to bring the game to life in previously unexplored ways.

Thus, these potential innovations can produce a more dynamic and thrilling playback
experience for the end users. Camera operators would be able to capture more moments in
the game in the smallest detail without being concerned about camera angles cluttered with
unwanted objects, which would otherwise result in the loss of important shots and context.
In addition, the application of camera operator inpainting can be further extended to
processing not only sports gameplay but also pre- and postmatch action, offline processing
of highlight reels, and postmatch analysis. Also, one important use of inpainting is restoring
archival footage, which can revive outdated recordings of classic matches.

The YOLOv8 method demonstrates exceptional performance in camera operator
segmentation compared with other methods. Through experimental studies, the optimal
hyperparameters for this task were identified: a learning rate of 0.001, the Adam optimizer, a
momentum of 0.9, and a batch size of 16, as delineated in Table 8. In a comparative analysis,
YOLOv8 outperformed several SOTA segmentation algorithms, as mentioned in Table 9.
In particular, the presented YOLOv8 model is characterized by high precision (95.5%),
recall (92.7%), and mAP50-95 (79.6) values. These outcomes highlight the advantages of
the YOLOv8 model in this domain and its potential to improve the quality and efficiency
of camera operator segmentation in a variety of applications.

The YOLOv8 system was employed to ensure optimal data flow, proficiently cap-
turing the relevant subtleties for segmenting camera operators and reducing redundant
computational workload. Such a meticulously developed architecture enables smooth
video frame processing without affecting accuracy. Furthermore, the use of the “Cam-
eramen Instances” dataset in this study not only increased the validity of the obtained
results but also highlighted the generalization capabilities of YOLOv8 when dealing with a
wide range of datasets. By using cutting-edge training approaches and data augmentation
techniques, YOLOv8 was designed to learn from various datasets, which is essential for
segmenting camera operator instances, in which whose shape, size, appearance, pose, and
illumination of the operator are highly variable. The adaptability of the model markedly
improves its generalization ability and robustness, resulting in improved performance
on previously unseen data. The YOLOv8 model represents a cutting-edge solution that
was designed upon the previous YOLO iterations and improved by introducing structural
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updates and modifications that eliminate old, resource-heavy modules of the predecessors
and, as a result, refine its accuracy and performance, thus demonstrating its superiority in
the segmentation domain.

5.2. Future Research

The presented approach highlights the significant potential of applying video inpaint-
ing to enhance broadcast QoS. This study sets the foundation for several promising avenues
for further investigation. One such avenue of research involves increasing the number
of samples in the created “Cameramen Instances” dataset, so the YOLOv8 system can
capture and inpaint camera operators across a broader range of scenarios, for instance,
across various lighting conditions or crowd densities.

Furthermore, the proposed system should not be considered limited to football” it
could also be applied for other dynamic sports, where delivering immersive broadcasts
is a key factor in retaining users on the stream. These sports are the ones that require
complex media broadcasts, such as futsal, basketball, American football, rugby, and others.
These games conventionally require multiple camera operators strategically placed all
over the stadium to capture every scene. Thus, the use cases outlined in this research
are similar, which indicates the designed system may be employed in related domains as
well. Additionally, future advancements may include not only the inpainting of camera
operators but also of other objects that create visual distractions during the stream.

These enhancements would involve hyperparameter tuning for YOLOv8, so, in our
forthcoming research, there is a plan to design an evaluation framework to facilitate more
comprehensive statistical analyses. The implementation of this framework will include the
implementation of complex statistical tests to delve into the relationships between model
characteristics and performance metrics, with an emphasis on comparing models such as
YOLOv8 using progressive methodologies. This approach is intended to provide a more
in-depth assessment of their effectiveness in diverse scenarios and domains.

6. Conclusions

In this study, YOLOv8 was employed for camera operator segmentation as a first
step in their further inpainting from video frames during live football broadcasts. This
research focused on camera operator instance segmentation. The resulting approach
involves several key phases: Firstly, during the live stream, overlapping shooting angles
may occur, creating the need to remove visual distractions, such as the camera operator
instances. Secondly, the target camera operator is segmented from the video frames using
YOLOv8, providing the foundation for its further inpainting. Finally, the camera operator
is cut out from the broadcast based on masked frames with the captured target object.
This research also highlights the motivation and significance of timely camera operator
segmentation and removal from video streams, which may open prospects in the sports
media broadcasting realm, as denoted in Section 5. In addition, during this study, a diverse
dataset of “Cameramen Instances” was created, which includes more than 7500 samples
and more than 11,000 annotations, which can serve as a foundation for further research.

The YOLOv8 model was chosen as the deep learning architecture due to its exceptional
accuracy, performance, and low computational resource requirements. Also, various data
augmentation techniques were employed that increased the diversity and robustness
of the training dataset, which further improved the model’s performance. During the
process of optimizing the proposed approach, the optimal hyperparameter set for YOLOv8
camera operator segmentation was experimentally defined (Table 8). Metrics including
precision, recall, mAP50-95, FLOPS, FPS, and others were employed for the evaluation
of the compared models. The evaluation of the results shows that among the considered
algorithms such as YOLOv5, YOLOv6, YOLOv7, YOLACT, and Mask R-CNN, YOLOv8
stands out with a precision of 95.5%, recall of 92.7%, mAP50-95 of 79.6, FLOPS of 12, SPF of
0.011, and FPS of 87 (Table 9), making it a promising choice in the task of real-time camera
operator segmentation.
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This study has the potential to serve as a groundwork for future research in unwanted
object segmentation and inpainting during live sports broadcasts, not only in the football
realm but also in related fields. The dataset constructed in this research may substantially
accelerate the development of media streaming technologies.
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