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INTRODUCTION 

Research object 

Ultrasonic radio frequency signal analysis for the thickness measurements and 
characterisation of melanocytic skin tumours. 

Relevance of research and scientific problem  

Melanocytic skin tumours (MSTs) are the pigmented skin lesions that arise 
from the melanocytic cells of the human skin (1). MST can be benign or malignant. 
Malignant melanoma (MM) is a tumour whose prevalence is rising worldwide. The 
incidence rate of MM is <10-20 per 100,000 population in Europe (1). According to 
World Health Organisation data 275 new MM cases were registered in Lithuania in 
2012 and 108 people died in the same year (2). Mean patient age is 55. Melanomas 
account for 90% of the deaths associated with cutaneous tumours (1, 3). The risk of 
developing melanoma correlates with genetic (family history of melanoma) and 
exogenous factors (sun exposure). Regular skin screening is the basis for early 
detection of melanoma. However, melanocytic nevi (MN) are benign lesions and can 
be very similar to MM during visual observation. Diagnostic accuracy of the 
melanoma is related to the experience of the dermatologist (4). The diagnostic 
accuracy achieved during visual observation is only slightly higher than 60% (5). 
Dermatoscopy can increase it by 10-27% (5). The clinical appearance of MM also 
varies according to the type of MM. In vivo differentiation between benign and 
malignant MST is one of the most important issues in clinical dermatology. 
Unfortunately, dermatoscopic images do not provide information about thickness 
(Breslow’s depth), which is the most important biomarker of MM. Vertical tumour 
thickness is measured on a histological specimen (1). Histological evaluation is the 
“gold standard” of diagnosis and thickness of MM. Complete excision of the lesion 
is required for the histological procedure if MM is suspected. This is an invasive, 
expensive and time consuming method. The probability of five-year survival when 
malignant melanoma is diagnosed at an early stage (thickness ≤1 mm) is 85-97% 
and in the case when the tumour exceeds 4 mm, the probability is only 14-50% (1, 6, 
7). The probability of survival is directly dependent on the degree of metastasis as 
well. Micrometastasis in the regional lymph nodes identified via sentinel lymph 
node biopsy, in the most cases is detected when the melanoma is thicker than 1 mm 
(1, 6, 7).  

Over the last thirty years ultrasonic imaging has become an important 
diagnostic tool in clinical dermatology. Ultrasound is a non-invasive and harmless, 
and provides the information in a real time. High-frequency (more than 20 MHz) 
ultrasound (HFUS) has been used in dermatology for the screening and thickness 
evaluation of skin tumours since 1979 (8). HFUS is widely used for the thickness 
estimation of MST (9-12). Several previous studies have shown that MST (at 
various stages and thickness from 1 up to 4 mm) thickness measurements carried out 
using HFUS has a strong correlation (Pearson’s correlation coefficient value in the 
range of 0.88-0.97) with Breslow depth (11, 13, 14). Unfortunately, the majority of 
studies established that thicknesses assessed using 20 MHz ultrasonography in thin 
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(<1 mm) MST are frequently overestimated when compared with histology (13). To 
our knowledge, MST measurements described previously have been performed 
manually using interactive markers on B-scan images obtained by commercial 
scanners (9-16). Also, there are only a few works, related to the MM 
characterisation and differentiation form MN possibilities by using ultrasonography 
(17, 18). The HFUS waves possibly could be characteristically affected during 
transmission through the melanocytic lesions due to the reorganisation of the skin 
structure and abnormality of melanocytic cells. Ultrasonic radiofrequency (RF) data 
analysis could be used for more accurate thickness measurements and to provide the 
information about tissue microstructure for quantitative MST tissue characterisation. 
So, there is the question, can we use ultrasound for the evaluation of MST thickness 
and for the assessment of supplementary information for the diagnosis of skin 
tumours? The working hypothesis of the thesis is that ultrasonic RF data analysis 
could be exploited for a more accurate non-invasive automatic thickness 
measurement and extended quantitative characterisation of melanocytic skin 
tumours.  

Automatic ultrasonic data analysis methods can supplement conventional 
diagnostic methods by quantitative decision support, and reduce the number of 
unnecessary surgeries and histological examinations. 

The aim of the research is to develop and investigate the automatic methods 
for the assessment of the parameters for a differential diagnosis of melanocytic skin 
tumours by using analysis of ultrasonic RF signals. 

Tasks of the research 

The following tasks were formulated in order to achieve the objective: 

1. to analyse the scientific literature related with the recent advances of modelling, 
thickness measurements and diagnostics of melanocytic skin tumours and the 
usage of the ultrasonic data for tissue boundary detection and tissue 
characterisation; 

2. to perform the modelling of melanocytic skin tumours and to develop and 
investigate the skin tissue-mimicking phantoms for high-frequency ultrasonic 
imaging; 

3. to develop a non-invasive thickness measurement and boundary detection 
method for early stage melanocytic skin tumours based on the analysis of the 
ultrasonic RF data and to investigate the method using real clinical data, also to 
evaluate the uncertainty of the proposed measurement method using 
experimental and modelled data;  

4. to develop ultrasonic data analysis methods for automatic characterisation and 
type (benign or malignant) differentiation of melanocytic skin tumours and to 
investigate the feasibility of the proposed methods using the clinical  
high-frequency ultrasonic data of the tumours. 
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Scientific novelty  

 The gelatine and fat-emulsion based skin tissue-mimicking phantoms were 
developed for the HFUS examinations. It was demonstrated that the fat-emulsion 
concentration dependent values of the acoustic properties are close to the values 
of the soft tissues.  

 The developed novel automatic boundary detection and thickness measurement 
method based on ultrasonic signal time-frequency analysis could be used for 
early stage (up to 1 mm) MST thickness evaluation. The results showed that by 
using the proposed method the thickness can be estimated more precisely 
(variance reduced twice) than manual B-scan image measurements performed by 
an experienced dermatologist, when histology is assumed as a reference.  

 The proposed set of methods is the first automatic approach for malignant 
melanoma recognition from benign melanocytic nevi by using ultrasonic data. 

Practical value of the work 

 The proposed flexible tissue-mimicking phantom could be used for mimicking of 
the superficial tissue of the human body and various lesions (tumours, ulcers, 
etc.). 

 The developed thickness measurement method could serve as a tool for the 
prognosis and surgery planning of MST.  

 The developed non-invasive automatic ultrasonic RF data analysis and melanoma 
recognition system can supplement existing non-invasive diagnostic methods in 
clinical dermatology, could help to avoid unnecessary histological evaluations 
and essentially save the critical time of treatment planning.  

The results of the research were presented in the following projects: 

 “Application of the innovative data fusion based non-invasive approach for 
management of the diabetes mellitus”. Work sponsored by the European Union 
under the Framework 7 project SkinDetector;  

 “The significance of high-frequency ultrasound and information technologies for 
diagnosis of melanocytic skin tumours (SkinTech)”. Work sponsored by the 
Kaunas University of Technology and Lithuanian University of Health Sciences 
under the joint grant. 

 “The significance of high frequency ultrasound and informative technology for 
diagnosis of the malignant skin tumours (SkinTechSoft)”. Work sponsored by the 
Kaunas University of Technology and Lithuanian University of Health Sciences 
under the joint grant. 

 “Ultrasonic, optical and spectrophotometric data fusion technology for the 
diagnosis of superficial tissue lesions (ImageFusion)”. Work sponsored by the 
Kaunas University of Technology and Lithuanian University of Health Sciences 
under the joint grant. 
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Statements under defence 

 The proposed superficial human tissue mimicking phantoms have acoustic 
properties close to the skin within defined limits and are suitable for  
high-frequency ultrasonic investigations. 

 The proposed automatic thickness measurement method of the skin tumours 
is appropriate for thickness measurements of thin (up to 1 mm thickness) 
tumours; the method measures the thickness more precisely (variance of 
differences with reference measurement reduced twice) than experienced 
dermatologist, which perform measurements manually by interactive 
markers.   

 The methods developed for automatic high frequency ultrasound data  
(RF signals and B-scan images) analysis, differentiate MM from suspicious 
MN with classification accuracy of 82%. 

Approbation 

In total, the results of the dissertation were published in 5 publications: 2 
papers were published in the foreign periodic journals referred in the Journals of the 
Master List of Thomson Reuters Web of Science (with impact factor), 1 paper was 
referred in to the periodic journal in the other international databases and two in 
reviewed proceedings of international scientific conferences. The results were 
presented in 6 international scientific conferences held in the Czech Republic 
(Prague) and Lithuania (Vilnius, Kaunas) and 1 national scientific conference.  

Structure and contents of the thesis 

The thesis consists of an introduction, 4 chapters, general conclusions, the list 
of the references and the list of publications of the author. The dissertation is 
organised as follows: 

1. Skin anatomy, stages, prevalence and clinically available non-invasive diagnostic 
methods of the skin tumours are overviewed. Also, the methods for soft tissue 
simulation and the usage of ultrasonic RF data analysis in tissue segmentation 
and characterisation are introduced in the first chapter. 

2. High-frequency ultrasonic system and its main parameters are presented in the 
second chapter. The computer modelling of the excited pressure field of 
ultrasonic transducer is described and compared with the measured field. Tissue 
mimicking phantoms and the model of skin tumours are presented as well.  

3. In the third chapter the automatic boundary detection and thickness measurement 
method of thin (up to 1 mm thickness) MST based on ultrasonic RF data analysis 
is presented. Applications of the developed method on simulated and real clinical 
data and metrological evaluation are described. 

4. The potentiality of differential diagnosis of MST using quantitative parameters 
derived from RF ultrasonic signals and B-scan images is presented in the fourth 
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chapter. The method is validated with real clinical data and the results of 
automatic classification are presented as well.  

5. General conclusions are presented in the fifth chapter.  

The overall dissertation volume is 105 pages, including 53 figures, 17 tables, 
40 formulas and 168 bibliographic references. 
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1. RECENT ADVANCES IN MELANOCYTIC SKIN TUMOUR 
DIAGNOSTIC 

 Early diagnosis of malignant melanoma is very important for patient survival. 
The non-invasive diagnosis helps to avoid unnecessary excisions, which is required 
for the histological procedure of MM. Moreover, non-invasive determination of 
tumour thickness is crucial in the surgical planning, since it can help to avoid 
incomplete excision and re-intervention. There are few non-invasive imaging 
technologies used in dermatology for the visualisation of melanocytic skin tumours 
(MST).  

This chapter introduces the anatomy of the skin and stages of MM.  
Non-invasive diagnostic methods of MST are presented in Section 1.2. HFUS 
method for MST examination and thickness evaluation are discussed. Simulation 
methods of soft tissues and tissue-mimicking phantoms for ultrasonic examination 
are presented in Section 1.3. Raw ultrasonic data parametrisation for more accurate 
tissue analysis is overviewed in Section 1.5. The related previous works, which were 
carried out in Prof. K. Baršauskas Ultrasound Research Institute, and the 
conclusions of the first chapter are presented in the last two sections.  

1.1 Anatomy and stages of MST 

The human skin consists of three main layers. The epidermis is the collagen 
rich superficial layer of the skin, which covers the layer of dead cells – stratum 
corneum. Basically, the epidermis consists of keratinocytes. Melanocytes are located 
in the basal layer of the epidermis (see Fig. 1.1). They produce the pigment melanin 
and protect from ultraviolet (UV) radiation. UV radiation can damage DNA and 
cause the malignant process in our skin. 

Epidermis
0.03 – 0.13 mm

Dermis
~1.1 mm

Subcutis
~1.2 mm

2-4 m
m

Malignant melanoma
stratum corneum

 
Fig. 1.1 Cross section of the skin (adopted from (19)) 

The second layer of the skin is the dermis (see Fig. 1.1). This layer mainly 
consists of collagen and elastin fibres, as well as a very rich blood supply. The 
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dermis can be divided into two anatomical regions: the papillary and reticular 
dermis. The papillary dermis is the upper layer of the dermis and consists of the 
smaller and more loosely distributed elastic and collagen fibrils (20). The density of 
collagen and elastic fibres are lower in the reticular dermis. The third layer of the 
skin is the hypodermis (subcutaneous fat). It is composed of fatty connective tissue 
(20). 

MST’s are composed of melanocytes, the pigment-producing cells that 
constitutively colonise the epidermis, and can be benign (melanocytic nevi, MN) and 
malignant (malignant melanoma, MM). MN are benign melanocytic tumours, which 
are more common in fair-skinned people. Changes of melanocytic cells in MN can 
determine the emergence of MM. However, only about 30 percent of MM evolves 
from nevi (21). In most cases, MM begins de novo as primary melanomas from 
melanocytes that are located in the healthy human skin. MM can be very similar to 
MN and is difficult to diagnose them during visual observation (22). The greater 
risks of MM is to fair-skinned people who receive a lot of sun exposure, with a high 
number of common nevi, congenital nevi and/or multiple atypical (dysplastic) nevi 
(1, 23). MM can be inherited, 5-10% of melanomas appear in families in which two 
or more first degree relatives are diagnosed with MM (1, 24). However, the most 
important risk factor is exposure to UV radiation (sun exposure) (1, 25).  

There are four main subtypes of MM, divided by clinical and histopathological 
features: superficial spreading, nodular, Lentigo maligna and acral lentiginous. The 
most common type is superficial spreading and includes about 75% of all 
melanomas (21). This type of MM is usually non-invasively and can be diagnosed 
on the basis of the ABCD criteria which will be discussed in the following 
subsection. On the contrary, nodular melanoma is characterised by an aggressive 
vertical grown phase. This type of melanoma is difficult to recognise clinically at the 
early stage.  

The stages of MM are based on vertical tumour thickness according to 
Breslow (1, 26) or invasion level according to Clark (1, 27). Survival prognosis and 
treatment strategy of a patient with MM is directly dependent on the stages or 
penetration depth (thickness) to the soft tissues (see Table 1.1.). The probability of 
five-year survival when malignant melanoma is diagnosed at an early stage 
(thickness ≤1 mm) is 85-95% and in the case when the tumour exceeds 4 mm, the 
probability is only 10% (1, 6, 7). The probability of survival is dependent on the 
degree of metastasis as well. Micrometastasis in the regional lymph nodes is 
identified via sentinel lymph node biopsy and in the most cases is detected when the 
melanoma is thicker than 1 mm (1, 6, 7). Distant metastasis to the internal organs 
has a very poor prognosis, median survival of untreated patients is only 6-9 months 
(1, 6). Vertical tumour thickness is the most important biomarker for the prognosis 
of the disease and it is measured on histological specimens after excision of the 
tumour. Other biomarkers are ulceration, mitotic rate and the level of invasion. Age, 
gender and location of the lesion influence the prognosis of the disease. The primary 
treatment of MM is surgical excision. Radiation and adjuvant therapy 
(immunotherapy, chemotherapy) are required for the patients with metastases. 
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Table 1.1 Relation of clinical stages (thickness) of the cutaneous melanoma and  
5-year survival probabilities (6, 7, 28) 
Clinical 

stage Thickness of the tumour Excision 
margins (cm) 

Probability of  
5-year survival 

I pT1 (≤0.75 mm or Clark level II) 
pT2 (0.76-1.5 mm or Clark level III) 

N0 M0 
N0 M0 0.5-1 85-95% 

II pT3 (1.51-4.0 mm or Clark level IV) N0 M0 1 70% 

III pT4 (>4.0 mm or Clark level V) N0 M0 
N1, N2 M0 2 50% 

<30% 
IV Any pT Any N, M1 2 <5-10% 

pT - pathological thickness (depth) of the tumour measured in mm according to Breslow or Clark 
level: I - tumour spread only in the epidermis (in situ); level II - the tumour infiltrates a part of the 
papillary layer of the dermis; level III - the tumour infiltrates to papillary-reticular dermal interspace; 
level IV - the tumour infiltrates to the reticular dermis; level V - the tumour infiltrates to the 
subcutaneous tissue, N0 - no regional lymph node metastasis, M0 - no distant metastasis,  
N1 - metastasis more than 3 cm or less in the greatest dimension in any regional lymph node,  
N2 - metastasis more than 3 cm or less in the greatest dimension in any regional lymph node, and/or 
in-transit metastasis, M1 - distant metastasis 

1.2 Non-invasive diagnostic methods of MST 

Histological evaluation is the “gold standard” of diagnosis of skin lesions. 
Complete excision of the suspected MM is required for the histological procedure, 
according to recommendations (1). If MM is diagnosed the excision must be 
repeated with surgical margins (1-2 cm from the edges of MM, see Table 1.1) in 
order to avoid local metastasis (1). Unfortunately, histological evaluation is an 
invasive method, it is expensive and time consuming as well.  

Despite extensive research, the clinical diagnostic accuracy remains 
suboptimal. Diagnostic accuracy of the MM is dependent on the experience of the 
dermatologist (4). An experienced dermatologist can diagnose MM with 60% 
accuracy during visual observation (5, 29). In order to improve the diagnostic 
accuracy and to reduce the number of unnecessary excisions, new non-invasive 
techniques were developed. The most popular and widely used are dermatoscopy. 
Newer technologies are confocal scanning laser microscopy (CSLM), optical 
coherence tomography (OCT) and HFUS. The comparison of the non-invasive 
technologies presented in Table 1.2.  
Table 1.2 Comparison of main parameters of the imaging technologies of the skin 
lesions  

Technique Resolution, µm Penetration depth, mm View of skin References 

Dermoscopy 
Depends on 

researchers eyes 
(or CCD camera) 

Epidermis (0.1) Horizontal (30, 31) 

Confocal laser 
scanning microscopy 0.5-1; 1-5 Papillary dermis (0.35) Horizontal (32, 33) 

Optical coherence 
tomography 10-15 

~1 (papillary dermis 
(reticular dermis with 

lower resolution)) 
Vertical (34-36) 

High frequency  
(20 MHz) ultrasound 

80-200  
(axial-lateral) 

reticular dermis  
(15-20) Vertical (9-13, 37, 

38) 
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1.2.1 Dermatoscopy 

Dermatoscopy (or dermoscopy) is based on standard magnifying optics (see 
Fig. 1.2). This method can help the dermatologist and increase the diagnostic 
accuracy by 10-27%. The American cancer society suggests a clinical diagnostic 
system of melanoma, based on the ABCD rule which considers the 4 main factors: 
A - describes asymmetry of the pigmented lesions, B - irregularities of the border,  
C - colour changes or multiple colours, D - diameter of more than 6 mm (29, 39).  

 Many of the algorithms were developed in order to simplify the processing 
and classification of optical images, which can automatically evaluate the 
parameters of the lesions and classify 
into benign and malignant groups (29, 
31). According to different authors the 
sensitivity of the automatic 
classification system can vary in the 
range 80-100% and the specificity 
61.6-98% (29-31, 40, 41). 
Unfortunately, dermatoscopic images 
do not provide information about the 
thickness, which is important for the 
prognosis of the lesion and surgery 
planning. An example of 
dermatoscopic image of MM is 
presented in Fig. 1.2.  

 MM is difficult to diagnose at the early stage because it may have similar 
clinical features to an atypical (dysplastic) melanocytic nevus (42). The described 
features usually characterise the superficial spreading melanomas and the other 
types of MM can be misdiagnosed. In order to improve the accuracy of early-stage 
diagnosis, a lot of algorithms were developed: the seven-point and three-point 
checklists and the CASH algorithm (30, 31). However, the accuracy of the automatic 
differentiation algorithms remain the same (67%-70.5%) (30). 

Multispectral skin tumour imaging or spectrophotometric intracutaneous 
analysis (SIA) is a modification of the conventional dermatoscopy. This technique is 
based on different wavelength light sources (red, blue, green and infrared), which 
are absorbed by skin chromophores (melanin, haemoglobin and collagen) up to a 
depth of 2 mm (papillary dermis). By using SIA it is possible to highlight the spatial 
distribution of the melanin, haemoglobin and collagen, and obtain additional 
information about tumour thickness, structure and blood flow. According to the 
literature, SIA features help to achieve the diagnostic sensitivity and specificity of 
the pigmented skin tumour up to 83% and 80% respectively, compared with 
histology (43). Tehrani et al., (44) shows that SIA can be used for the diagnosis of 
non-pigmented malignant skin tumours as well.  

1.2.2 Confocal laser scanning microscopy 

Confocal laser scanning microscopy (CLSM) was proposed in 1996 as a useful 
technique for pigmented lesion visualisation in vivo (45). CLSM allows microscopic 

 

Fig. 1.2. Dermatoscopic image of the 
malignant melanoma (adopted from (40)) 
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examination of the skin lesions. Up to 0.5 µm horizontal and 4 µm vertical 
resolutions can be obtained by using this technology. However, the penetration 
depth of the imaging method is only up to the papillary dermis layer (0.25-0.3 mm, 
see Fig. 1.1. and Table 1.2). CSLM focuses a low-power laser beam of visible or 
near infrared wavelength and detects the light reflected from the focal point. The 
beam is scanned horizontally over a 2-dimentional grid to obtain a horizontal 
microscopic section (an example of a CLSM image is demonstrated in Fig 1.3). The 
images acquired by using CLSM are parallel to the skin surface (46). 

Several previous studies have demonstrated that CLSM may improve the 
diagnostic accuracy of MM (47-51). 
However, the classification results 
depend on observer experience. Guitera 
et al., (51) reported the 77% sensitivity 
and 77% specificity for MM diagnosis 
(area under the receiver operating 
characteristic curve 0.83). The 
differentiation of basal cell carcinoma 
was more accurate (100% sensitivity 
and 89% specificity) (51). The observer 
performing the CLSM examination 
should have a good knowledge of the 
cytomorphology and architecture of 
melanocytes. 

 1.2.3 Optical coherence tomography  

 Optical coherence tomography (OCT) is an optical method. However, the 
images obtained by this technique are analogous to ultrasound (vertical, sectional 
view). An example of an OCT image is presented in Fig. 1.4. The near-infrared light 
pulses (wavelength from 830 nm) are used for image acquisition. The OCT is based 
on the principle of Michelson interferometry. The axial resolution depends on the 
coherence length and is reported to be about 10-20 μm and visualisation depth varies 
from 1 to 1.5 mm (level of reticular dermis, see Fig. 1.1. and Table 1.2) (34-36). 
Recent technologies with ultra-short 
pulse laser sources provide resolution up 
to 2-4 μm (29). Gamblicher et al., (53, 
54) analysed the OCT images of the MM 
an MN and showed significant 
differences between their 
micromorphologic features. By using 
high-definition OCT they demonstrated 
the sensitivity of 74.1% and the 
specificity of 92.4% (54). However, the 
authors demonstrated that the 
performance of high-definition OCT is 
dependent on the thickness of the MST.  

 
Fig. 1.3. Confocal microscopy image of the 
malignant melanoma (adopted from (32)) 

 
Fig. 1.4. Optical coherence tomography 
image of the malignant melanoma, the 
evaluated thickness is marked by white 

arrows (adopted from (47)) 
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OCT has been used for in vivo thickness measurements of skin lesions as well 
(47, 55). The correlation coefficient was found to be 0.734 for thin melanocytic 
lesions (thickness in the rage of 0.06-1.5 mm, median 0.25) between thickness 
measured by using OCT images and histopathology (56).  

1.2.4 High-frequency ultrasound  

Conventional and high frequency ultrasound are used as supplementary tools 
in various areas of medicine, not only for imaging but for differential diagnosis of 
the lesions as well. HFUS has been used in dermatology for the screening and 
thickness evaluation of the skin since 1979 (8). Over the last thirty years, ultrasonic 
imaging has become an important tool in clinical dermatology. The ultrasonic 
transducers working at higher frequencies provide higher spatial resolution. 
Unfortunately, the penetration depth is low. The ultrasonic waves possibly could be 
characteristically affected during the transmission through the melanocytic lesions 
due to the reorganisation of skin structure (keratin, collagen and water content) and 
abnormality of melanocytic cells. Ultrasonic short wide-band pulses are emitted into 
the body and are scattered and reflected from the structures with different acoustic 
impedances. Reflected waves are collected with the same transducer (in the pulse-
echo mode). After demodulation and logarithmical compression, the ultrasonic 
signals are translated into a 2-dimenssional cross-sectional image (B-scan) which is 
available in most of the commercial ultrasonic systems (14). However, analysis of 
unprocessed ultrasonic RF data could provide additional information about 
abnormalities of the lesions (57-59).  

There are a few commercial ultrasonic systems for skin investigation. The 
characteristics of the systems are presented in Table 1.3. (14). All the systems use a 
mechanically scanned single element focused transducer for acquiring  
B-scan images of the skin lesions. Distilled water or/and ultrasonic gel is used as the 
coupling medium.  

Table 1.3 Characteristics of the commercial high-frequency (~20 MHz) ultrasonic 
systems (adopted from (14)) 

 Dermascan C, 
Cortex 

technology 

Episcan I-200, 
Longport, Inc. 

Dermcup 
2020, Atys 

Medical 

DUB-USB, 
Taberna pro 

medicum 
A/D converter, bits 8 8 8 8 

Sampling frequency, 
MHz 250 200 100 100 

Central frequency, 
MHz 20 20 20 22 

Scan length, mm 12.1 15 6 12.8 

Scan time, s 0.16 1 0.5 0.4 

Resolution at focus, 
µm (axial and lateral) 60 and 150 80 and 200 80 and 200 72 and 160 
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1.2.4.1 High-frequency ultrasound for the thickness evaluation of MST 

Alexander and Miller (8) where the first to show that HFUS is an accurate, 
simple and non-invasive method for thickness evaluation of human skin. Edwards et 
al., (60) demonstrated that the amplitude of ultrasonic A-scan signals are 
significantly different for the skin tumours in comparison to healthy human skin. 
They evaluated the possibility of using HFUS A-scan signals for thickness 
measurement of thin (up to 1 mm) benign and malignant skin tumours. The authors 
used an ultrasonic transducer working at 18 MHz centre frequency and found an 
excellent correlation (Pearson correlation coefficient 0.96) with histological tumour 
thickness.  

HFUS is a non-invasive tool which is used for preoperative thickness 
evaluation of MST (10, 12, 13, 38, 47) and for non-melanocytic skin tumours (55, 
61, 62) as well. Close to 20 MHz ultrasound is applied for the evaluation of skin 
tumours thicknesses in the majority of studies (10, 11, 13), since the best 
compromise between penetration depth and image resolution is achieved then. A 
strong correlation (Pearson’s correlation coefficient value from 0.9 to 0.99) was 
shown in several previous studies between MST thickness measured by using  
20 MHz ultrasound and histological (measured according to Breslow (26)) thickness 
(11, 13, 14). These studies were performed on MST of various stages and thickness 
in the range from <1 up to 4 mm. However, the majority of studies established an 
overestimation of the thickness assessed using 20 MHz ultrasonography in thin (less 
than 1 mm) MST (13, 63, 64). It is considered that this overestimation occurs due to 
subtumoural inflammatory infiltrate, surrounding the MST (10, 14) or due to  
pre-existing nevus cells in cases of melanoma (10-13). Skin annexes (hypertrophied 
sebaceous glands, hair follicles) also appear as hypoechogenic structures and can 
influence the overestimation of ultrasonically measured thickness in thicker than  
1 mm MST (9). In the case of thin (<1 mm) MST, a very strong correlation (r=0.99) 
with histological measurements has been observed using a 100 MHz ultrasound 
transducer (13, 14). In addition, MST thicknesses measured using 100 MHz, 
ultrasound provide better agreement with histology than in the case of 20 MHz (13, 
14). However, 100 MHz ultrasound penetration depth is only up to 1.5 mm and it is 
insufficient for thicker MST. In the case when tumour thickness exceeds 2 mm, a 
high correlation has been observed between the thickness of the tumour measured by 
an ultrasonic transducer of 14 MHz and histology (14, 15). However,  
V. Kucinskiene et al., (16) have demonstrated a low correlation (r=0.336) between 
the thicknesses measured by using 14 MHz ultrasound and histologically evaluated 
thicknesses in thin (<1 mm) skin tumours. To our knowledge, all MST 
measurements described previously have been performed manually adjusted 
interactive markers on B-scan images (9-16). Usage of unprocessed ultrasonic data 
and automatic thickness evaluation can improve the accuracy, especially of thin 
MST thickness measurements.  

1.2.4.2 Differentiation of MST by using high-frequency ultrasound  

The non-invasive differentiation between benign and malignant MST is one of 
the most important issues in clinical dermatology. There are only a few works 
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related to MST characterisation and MM differentiation from benign melanocytic 
skin lesions by using ultrasonography (17, 18, 60, 65). Ultrasonography has been 
reported in the assessment of cutaneous melanoma previously, but not yet as a 
reliable diagnostic tool.  

Harland et al., (17) evaluated the classification possibilities using B-scan 
images of seborrheic keratosis, melanocytic nevi and melanoma. Fifteen nevi 
(excluding dysplastic nevi) and 24 melanomas were compared in the study. They 
have reported less than 30% specificity of melanoma recognition from MN, 
assuming the threshold for the test has to be set at 100% sensitivity (17). They found 
greater echogenicity of the region of interest (ROI) and lower echogenicity under the 
ROI of the melanoma in comparison to benign nevi. The sensitivity and specificity 
was higher in the case of melanoma recognition from seborrheic keratosis (100% 
and 79% respectively). The authors remark, that MNs are mainly hypoechoic with 
many small echoes, symmetrical and usually well delimited from the adjacent 
dermis (17). Also they found that MM are homogeneous and hypoechoic, frequently 
more to compare with MN, and the shape of MM in most of the cases is different in 
comparison to MN (17). The authors used quantitative and semi-quantitative 
parameters for the lesion characterisation. The analysis of skin tumours was 
subjective. 

Dybiec et al., (66) analysed two clinical cases of suspicious skin lesions in 
order to demonstrate the usefulness of HFUS in the diagnosis of malignant and 
benign skin tumours and for early detection of recurrence or metastases during the 
follow-up period. They concluded that ultrasonography can be a helpful tool in 
differential diagnostics of MM. 

Rallan and colleges (65) proposed to use of 3-D high frequency ultrasound 
reflex transmission imaging for quantitative discrimination of the pigmented skin 
lesions. The principle of image acquisition and obtained images are presented in  
Fig. 1.5. They evaluate six quantitative parameters for each image in total. The study 
revealed that MM are more attenuating than other MN and also have a greater 
surface heterogeneity and lower intra-lesion heterogeneity (65). Surface 
heterogeneity was the most important discriminator of MM and benign pigmented 
lesions. The classification specificity (by using data of 25 MM and 38 benign 
pigmented lesions) was around 55% when sensitivity is set at 100%. In another 
article the authors present the potential to use the combination of ultrasound reflex 
transmission imaging and digital photography (white light) data for the pigmented 
skin lesion classification (67). They demonstrate that the combination of data 
obtained by different techniques (ultrasound and optical) may improve the 
diagnostic accuracy (67).  

Ultrasonography also can be used as a non-invasive diagnostic tool for the 
differential diagnosis of blue melanocytic nevi and cutaneous metastases of MM 
whose clinical appearance are the same (18). Samimi et al., (18) showed that 
sonography is more specific for the diagnosis of blue nevi and metastases of MM 
than visual examination by an experienced dermatologist (sonography - 71% 
sensitivity and 94% specificity, clinical examination - 78% and 77% respectively) 
and dermatoscopy (70% sensitivity and 74% specificity). In this study four 
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dermatologists described US images according seven features: location of the lesion 
within the skin layers, echogenicity (in comparison with the adjacent dermis), 
homogeneity, shape (dish-, egg- and potato- shaped lesions) of the lesion, definition 
of margins and acoustic features under the lesion. The significant differences 
between melanoma metastasis (n=18) and blue nevus (n=21) are found for location, 
homogeneity and shape features (18). In all the above studies, sonographic features 
were semi-quantitative and the results depended on the experience of the observers.  

 

Fig. 1.5. Ultrasound reflex transmission imaging method and three image planes: EEI - 
surface reflectance image, LBI - lesion reflection image and RTI - attenuation image (adopted 

from (65)) 

Content, configuration and distribution of collagen fibres are major 
determinants of echo pattern and echo-scattering elements and they are important 
factors in establishing the feasibility of tissue characterisation studies (68). Collagen 
fibres affect the acoustic properties, such as acoustic impedance and ultrasound 
wave velocity. A difference of collagen fibre density in different skin layers allows 
the layers to be distinguished on ultrasonic images. When fibres are located densely 
and aligned perpendicular to the sound wave propagation the backscattered signals 
have a greater amplitude (68). 

Angiogenic activity could be used as a feature for the diagnosis of malignant 
melanoma with high metastatic potential (69, 70). Angiogenesis is the process when 
small blood vessels are formed from pre-existing vessels, which are necessary for 
tumour survival and progression. Some studies have shown that the number and size 
of intra-tumour vessels could be visualised and evaluated by colour Doppler 
sonography (CDS), a Doppler frequency in rage 10-15 MHz, and they significantly 
correlate with the rate of metastasis of melanoma (69-72). Commonly, MM show 
increased blood flow within the tumour (see Fig. 1.6.). CDS has demonstrated its 
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usefulness for the study of intra-tumour vascularisation. Unfortunately, 
vascularisation is observed mainly in thick (>2 mm) MM (70). 

  
A B 

 
C 

Fig. 1.6. Invasive melanoma (mark *) penetrated into the dermis: A - ultrasonic image,  
B - colour Doppler ultrasound shows increased blood flow at the bottom of the tumour,  

C - histological image of the same melanoma (adopted from (72)) 

1.3 Modelling of interaction of ultrasound waves with soft tissue  

The ultrasonic pulse-echo technique is most frequently used in medical 
imaging for analysis of soft tissues. Short, wide-band pulses are generated, emitted 
into the body, backscattered and reflected depending on acoustic inhomogeneities in 
the medium. The received signal represents the distribution of the reflectors with 
different acoustic properties (different acoustic impedances, ultrasound velocity). 
Scattering occurs due to the structures, which are smaller than the wavelength. 
Computer simulation and tissue mimicking materials are frequently used for analysis 
of ultrasound waves and soft tissue interactions. So, in this section the computer 
modelling of ultrasonic transducer pressure field, acoustic wave propagation and 
scattering of ultrasound in biological tissues is briefly reviewed. The substitutes used 
for tissue mimicking phantoms are presented as well. The models of biological 
tissues are usually used for novel measurement method verification, for performance 
testing of ultrasonic systems or for the training purposes. 

A few methods can be used for computer simulation of soft tissue in order to 
demonstrate the relationship between acoustic pressure, tissue density and the 
ultrasound velocity. The numerical simulation methods used in acoustics are  
finite-difference and finite-element techniques. Unfortunately, these methods are too 
slow for high-frequency wave propagation modelling (73). However, linear system 
models are appropriate for the acoustic soft tissue modelling (74-79). The principal 
scheme of the linear system is presented in Fig. 1.7. The output of the time-invariant 
system (s(t)) is linearly dependent on the input (x(t)) and function of a system (h(t)). 
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Fig. 1.7. Principal scheme of the linear time-invariant system.  

Skin is a multi-layered structure (see Fig. 1.1.); different layers are 
characterised by different acoustic properties (see Table 1.4.). There are a number of 
parameters, which influence the tissue-ultrasound interaction: frequency-dependent 
attenuation and backscattering, frequency response of the scatters, anisotropy, 
scatterers distribution, ultrasound velocity etc. (80, 81). A good understanding of the 
factors, which take effect during ultrasonic wave propagation through the damaged 
tissues, is needed in order to obtain quantitative information about the tissues.  

Table 1.4 Acoustic properties of the skin and skin layers 

Skin layer Thickness, mm Longitudinal velocity, υL, 
m/s 

Attenuation, 
dB/mm/MHz 

Skin  6.4-8.8 1577 (usually assumed 
1580) (82) 

0.08-0.36 (81) 

Melanoma from ≤0.1 to >4 mm 1570 (1553-1588) (82) undetermined 
Epidermis 0.1 1540 (20) undetermined 
Dermis 2-5 1580 (20) 0.08-0.39 (58) 
Subcutaneous 
fat 0.4-4 1440 (20) 0.04-0.4 (58) 

Water - 1480 (20) 0.002 (83) 

Tissue-mimicking phantoms are widely used in the development of imaging 
systems and evaluation of image processing algorithms for training the technicians, 
to assist in the development of new ultrasound transducers, systems or diagnostic 
techniques (84). Also, by using phantoms it is possible to model ultrasonic images 
with speckle. Speckle is a particular texture and occurs as a result of the interaction 
of the ultrasonic waves with tissue structures, which are smaller than the 
wavelength. Tissue-mimicking phantoms are also used for recognition or extraction 
of suspicious regions. The phantoms emulate important properties of biological 
tissue for the purpose of providing a more clinically realistic imaging environment 
(85). In ultrasound imaging the most important phantom properties are the speed of 
sound within the material and the acoustic attenuation characteristic (85).  

1.3.1 Modelling of the propagation and scattering of ultrasound waves  

The parameters of the acoustic pressure field of ultrasonic transducers are 
important for the characterisation of ultrasonic systems. Manufacturers of 
commercial ultrasonic systems, especially those used in medicine, do not provide 
the information as it is considered a commercial secret. However, simulation of the 
transducer pressure field can provide information for ultrasonic investigation and 
modelling of the interaction of ultrasound and tissue (79). It is necessary to analyse 
the received pulse-echo pressure field of the transducer for the development of 

x(t) h(t) s(t) 
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ultrasonic signal processing algorithms or the creation of the new methods for the 
analysis of ultrasonic data. The simulation of scattered acoustic waves can help to 
understand the factors influencing the propagation and scattering of ultrasonic pulses 
and to derive quantitative tissue parameters. The simulation can be done by using 
different methods: analytical, semi-analytical and numerical. Numerical (finite 
element method, FEM) and semi-numerical (distributed point source method) 
techniques are widely used for non-destructive testing. However, in medical 
ultrasonic applications the usage of FEM is slow, as at high frequencies the waves 
are short and a very large number of finite elements are needed for adequate 
simulation (86).  

Several software packages were developed for the modelling of ultrasonic 
wave propagation through soft tissues. The k-wave and Field II software are 
implemented in C++ but have the interface with MATLAB and are widely used for 
ultrasonic soft tissue modelling (77-79). The k-wave software is based on the  
k-space pseudospectral method for time domain acoustic simulations (73).  
J. A. Jensen suggested the software Field II and published a number of articles to 
demonstrate the relevance of the computational package (77-79, 87). Field II is 
based on linear acoustics (based on the Stephanishen technique). The simulation of 
ultrasonic B-scan images using linear acoustics is used for studying focusing, image 
formation and flow estimation, and it has become a standard tool in ultrasound 
research (79). According to Tupholme (74) and Stephanishen (75, 76), the spatial 
impulse response is calculated for a specific point of the field. Fink and Cardoso 
(80) proposed the modified approach, which evaluate the impulse response at a fixed 
time on a specific plane.  

Calculation of the transducer incident field is based on the assumption that the 
field is generated only by the transducer and no other sources affect the field. The 
convolution method is used for incident field calculation. The output of the linear 
acoustic system s(t) is expressed as the convolution ( ) of the impulse response of 
the system h(t) and the input signal x(t) and could be expressed by: 

),()()( txthts   (1.1) 

The received signal s(t) and, in the same way the impulse response (h(t)), are 
dependent on the transducer design and on the acoustic properties of the propagating 
medium (ultrasound velocity, frequency dependent attenuation and backscattering 
etc.). Calculation of the impulse response according to Fink and Cardoso (80) is 
based on Huygens’ principle and the Rayleigh surface integral calculation (80). 
According to Huygens’ principle the acoustic field can be constructed from a 
superposition of the outgoing spherical waves. Diffraction impulse response is 
dependent on the location of the field point (Stephanishen technique (75, 76)) and 
may be defined as the convolution of delayed signal and appropriate impulse 
response (80).  

A concave transducer is described by its focal length F and by the radius of 
aperture a (see Fig. 1.8.). The position of the field point M is described by its spatial 
coordinates R and z. The spatial impulse response is determined according to 
equation (80): 



25 

),()()(
2

),,( maxmin ttYttYct
d
FctRzh 








 (1.2) 

where c is ultrasound velocity, Y(t) is the Heaviside step function, which is integral 
to the Dirac delta function, Φ(ct) is the angle that subtends the arc of the transducer 
points, which are equidistant from the field point M(z, R). Distance d(z, R) between 
the field point M(z, R) and the focus (F, 0) is expressed by using the equation: 

,)(),( 22 zFRRzd   (1.3) 

Regions I, II and III are used to describe the impulse response of the focused 
transducer (see Fig. 1.8.).  

a

e
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r0=ct0  .   θM(z,R) 

II

 

Fig. 1.8. Geometry of the focused pulse-echo transducer  

Region I includes the field inside the cone determined by the circular boundary of 
the transducer and the focal point (near-field). Region II is assumed when the points 
are inside the far-field of the transducer (z>F), and Region III deals with the field 
outside of the two cones (of region I and region II, see Fig. 1.8.). Propagation time 
between the field point M(z, R) and its projection on the transducer surface t0 is not 
defined for region III, and for I and II regions are evaluated according to equations: 

,/)(0 cdFt   when M(z,R) ϵ Region I 
(1.4) 

,/)(0 cdFt   when M(z,R) ϵ Region II 

The propagation times from M(z, R) to the closest and furthest edges of the concave 
transducer (t1 and t2) are expressed as:  

,/))()(( 22
1 cezRat   

(1.5) 
,/))()(( 22

2 cezRat   

where e is the thickness of the concavity of the transducer (see Fig. 1.8.) and is 
expressed by the equation: 
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,22 aFFe   (1.6) 

if M(z, R) ϵ Region I tmin=t0<t1<t2=tmax, cdFt /)(0   

if M(z, R) ϵ Region II tmin=t1<t2<t0=tmax, cdFt /)(0   

if M(z, R) ϵ Region III tmin=t1<t2=tmax,   

As expected, when the R value increases, the duration of the impulse increases as 
well. When t1 is equal to t2 that means that point is on the axis field, the impulse 
response is a constant, and is equal to (80): 

)()(),0,( 10 ttYttY
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The method is described in more detail in the studies of Penttinen and 
Luukkala (88) as well as Fink and Cardoso (80) and Jensen (87). It was shown that 
the simulated ultrasonic transducer pressure field corresponds to the measured field 
(79).  

Biological tissues are characterised by a fixed ultrasound velocity (usually 
1540 m/s for soft tissues) and by absorption and scattering. Absorption occurs due to 
the relaxation of translational and rotational vibration modes of macromolecules of 
the tissues (89). Scattering of the biological tissues corresponds to the Born 
approximation which is related to the small inhomogeneities in acoustic impedance 
of scatterers, which are randomly distributed (89). It is shown that the amplitude of 
demodulated ultrasonic RF signals, reflected from the randomly distributed 
scatterers, have a Rayleigh probability density function as well as real soft tissues 
(90). The amplitude of backscattered signals decreases if penetration depth 
increases, when ultrasonic waves propagate through the tissues. This amplitude 
attenuation is related with absorption, scattering, refraction and diffraction. 
Attenuation is frequency dependent as well. High frequencies are attenuated more 
than low frequencies.  

1.3.2 Tissue-mimicking phantoms for ultrasonic investigation 

A tissue-mimicking phantom (TMP) emulates the important properties of 
biological tissue for the purpose of providing a more clinically realistic imaging 
environment. In ultrasound imaging the most important material properties are 
ultrasonic wave velocity and the acoustic attenuation coefficient (85). Acoustic 
properties of the tissue-mimicking material must be near to those of the real tissue. It 
is assumed that in soft tissue, the average speed of sound is 1540 m/s (85). The 
ultrasound velocity of the skin is slightly higher and assumed to be 1580 m/s (82). 
The attenuation coefficient has been shown to be frequency-dependent (58, 85, 91, 
92). The average value of the attenuation in healthy human dermis in the forearm 
region is 0.21 dB/mm/MHz (in the range of 14-50 MHz) (58). Both, ultrasound 
velocity and attenuation are related to collagen content in the skin tissue (14, 58). 
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Various materials have been previously used to produce commercial or 
specific TMP including agar, gelatine, n-propanol and oil gel, condensed milk, 
urethane rubber, etc. (91, 93, 94). Hydrogels are efficiently used for  
tissue-mimicking phantom design (85, 91, 93, 95). They are attractive for 
biomedical applications due to their mechanical properties. The hydrogel is used for 
commercial phantoms as well. Gelatine (or agarose) based TMP is the earliest 
material used for ultrasound imaging. In order to mimic acoustic tissue properties, 
different concentration of gelatine/agarose or evaporated milk can be used to achieve 
appropriate attenuation. Different concentrations of alcohol changing ultrasound 
velocity and graphite powder are used in order to achieve sufficient backscattering. 
The speed of sound can be in the range of 1520 and 1650 m/s at room temperature 
and the attenuation coefficient can vary between 0.2 and 1.5 dB/cm at 1 MHz 
depending on the concentration of mixture components in gelatine/agarose-based 
TMP (93, 94, 96). Various preservatives are used in order to avoid bacterial 
invasion. 

Other authors developed skin phantoms for investigation of other non-invasive 
techniques (34, 97). Mazolli et al., manufactured optical skin phantoms with 
different thicknesses of melanoma-like insertions and aimed to mimic the optical 
absorption and scattering (97). The latest research trend is 3-D printed phantoms for 
high frequency ultrasound system examination (98). The phantoms proposed by 
Jasquet et al., (98) closely mimic human skin (ultrasound velocity 1617 m/s 
attenuation 3.9 dB/mm at 20 MHz). However, until now a commercial ultrasonic 
skin phantom mimicking pigmented skin lesion has not been developed and an 
acoustic property has not been investigated. 

1.4 Overview of computer-aided diagnosis methods based on ultrasonic RF 
data analysis  

During the last 25 years, non-invasive computerised analysis and  
computer-aided diagnosis (CAD) methods have become more popular in various 
areas of medicine. Basically, the development of CAD methods of medical images 
consists of the following stages: image segmentation, feature extraction and 
selection and classification.  

The most of commercial ultrasonic systems do not permit RF signals to be 
obtained, therefore the majority of proposed automated segmentation and tissue 
characterisation algorithms are applied to conventional B-scan images (99). 
However, in the last decade presented studies are dedicated to automated lesion 
segmentation and tissue characterisation on the basis of the ultrasonic RF data (99). 
RF data analysis becomes more popular. This can be explained by the fact that 
frequency-dependent features of unprocessed ultrasonic signals may have the 
information about tissue microstructure (concentration, size, shape and density of 
the scatterers in the tissue). It is very important for the segmentation and 
characterisation of the small lesions.  

Segmentation and tissue characterisation methods of the lesions by using 
ultrasonic RF data analysis and machine learning methods used for differential 
diagnosis will be overviewed in this section. The automatic methodologies are 
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objective and eliminate intra- and inter-observer variability. The results are not 
dependent on the observer experience and saves time of qualified dermatologist. 

1.4.1 Tissue segmentation in ultrasound data 

In most cases, ultrasonic image segmentation is based on B-scan image 
analysis, which is converted from envelopes of ultrasonic RF signals after 
logarithmical compression (100). The early segmentation methods were focused on 
grey level histogram thresholding or texture analysis. Unfortunately, ultrasonic 
images have a poor quality due to speckle noise, the differences between 
neighbouring tissues due to similar acoustic properties are slight and hardly 
distinguishable. It makes the automatic segmentation difficult. The review of the 
segmentation algorithms of the ultrasonic images are presented by Noble and 
Boukerroui (100).  

To our knowledge, MST thickness measurements presented previously have 
been performed manually using interactive markers on B-scan images (9-16). There 
are only a few studies related to the automatic or semi-automatic segmentation of 
skin melanoma (101). Pereyra et al., (101) propose an original Bayesian algorithm 
combined with a Markov chain Monte Carlo method for the high-frequency skin 
lesion ultrasound image segmentation. The method was applied to the 2-D and 3-D 
skin melanoma images in vivo and the potential to be used for the segmentation was 
shown. Fig. 1.9. illustrates the segmentation results of the skin lesion algorithms by 
using the Pereyra et al., method in 2-D case and other edge based level set (101, 
102).  

 
A 

  
B C 

Fig. 1.9. Conventional ultrasonic B-scan images of skin melanoma tumour: A - the red 
rectangle outlined ROI, B - ROI with expert annotations, C - green curve is the contours 

obtained by 2-D Bayesian algorithm (101) and red curve - by edge-based level set method 
(102) (Adopted from (101)) 
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There are no studies related to the MST segmentation by using ultrasonic RF 
data. Phase and frequency information is lost due to envelope detection algorithms 
used for B-scan image formation. Several authors proposed the use of the properties 
of the local ultrasonic RF signal spectrum, such as the local mean central frequency 
(MCF) and integrated backscatter (IBS), for the ultrasonic image segmentation (103-
105). These acoustic parameters provide the information about the echogenicity 
properties of the scatterers. IBS is the most frequently used as the parameter which 
is related to the acoustic impedance, and it can help to detect the boundaries of the 
lesions (67, 115, 117). Both MCF and IBS can be evaluated through the short-time 
Fourier analysis, applied on the segment of RF signal, and can be used for tissue 
characterisation as well. These parameters are expressed by (104): 

,)(
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where BW is the effective bandwidth of the transducer usually used at -20 dB level 
and P(f) is the power spectral density. Davignon et al., (104) proposed to combine 
the envelope images of the ultrasonic data with the acoustical parametric images in 
order to improve the quality of the segmentation. The results were demonstrated by 
using different (simulated and physical) phantoms. The usage of the local frequency 
spectra of the RF signals reflects the structural differences of the tissues. The authors 
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Fig. 1.10. Simulated ultrasonic images: envelope (A) and integrated backscattering (B) after 
logarithmic compression, mean central frequency (C) images and the histograms of the all 

three images (D) (adopted from (105))  
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had shown that the parametric IBS image provides a better segmentation results than 
the envelope alone on simulated data (104).  

Ng et al., (103) proposed to use the method of spectrum dispersion for 
boundary detection of the fat layer. The authors have demonstrated that with respect 
to classical envelope-based detection, spectral analysis of the ultrasonic RF data can 
substantially improve non-invasive measurements, biological tissue characterisation 
and boundary detection (103-107). Boukerroui et al., (105) present a multiparametric 
and multiresolution segmentation algorithm for 3-D ultrasonic data. They analysed 
textural (entropy and angular second moment of grey-level co-occurrence matrix) 
and acoustical (IBS and MCF) parametric images. Simulated ultrasonic images are 
presented in Fig. 1.10. The segmentation results shown that by using only IBS 
parametric data the percent of correctly classified pixels is >90 and is close to the 
results when all the features (acoustical and textural) are involved in the 
segmentation process. 

1.4.2 Ultrasonic tissue characterisation  

Ultrasonic tissue characterisation is complicated due to the interactions with 
biological tissues, which are an inhomogeneous medium (99). Attenuation and 
backscattering are frequency dependent, diffraction effects make spatial and spectral 
beam characteristics depth dependent (99). However, there are a number of acoustic 
and textural parameters which are used for ultrasonic tissue characterisation purpose 
(57, 58, 99, 108-115).  

Quantitative features extracted form ultrasonic images (logarithmically 
compressed envelopes) and from RF ultrasonic data are widely used for various 
internal tissue characterisations. Unfortunately, there are only a few works related 
with skin tumours tissue characterisation and differentiation (17, 18, 60, 65, 111, 
116). The studies are overviewed in section 1.2.4.2. 

Lizzi et al., (59, 110, 117, 118) extensively analysed the use of ultrasonic 
spectrum analysis for tissue characterisation. They show that spectral parameters can 
be used to estimate physical properties of tissue (size and concentration of 
scatterers). Two acoustical functions are the most popular for tissue characterisation; 
attenuation and backscattering. The local attenuation in vivo can be estimated by 
using spectral shift, spectral difference methods or modifications of these methods 
(spectral log difference and hybrid) (58, 110, 119, 120). The frequency domain 
methods are usually used with the assumption that diffraction and refraction are 
negligible and the scatterers type is constant in the ROI. Diffraction effects can be 
compensated for by using a reference phantom. A reference (or calibration) 
spectrum is a spectrum of echoes reflected from the perfect reflector (glass plate, 
stainless steel) placed in the focal zone of the transducer. Such calibration removes 
the influence associated with the system transfer function and transducer. Reference 
spectra are used for attenuation and backscattering evaluation (58, 110) and for 2-D 
spectra analysis (113-115) as well. Local attenuation with the spectral difference 
method is evaluated using a sliding window with 50% overlap through the ROI. The 
power spectrum is obtained from each window and divided by the reference power 
spectrum. In the case of the spectral difference method the local frequency 
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dependent attenuation is estimated by using Fourier analysis of the two windowed 
ultrasonic signals reflected from the surface and bottom edges of the ROI. The 
obtained spectra are divided by the reference spectrum. Linear regression analysis is 
applied usually at the -6 dB bandwidth in order to evaluate two basic parameters of 
the attenuation curve: intercept (in dB) and slope (in dB/MHz).  

 The decreasing trend of attenuation coefficient of the skin is observed with 
age (81), and differences of attenuation respective to skin location. Raju et al., (58) 
evaluated attenuation and backscattering functions of healthy human dermis and 
subcutaneous fat in vivo. They showed that the attenuation slopes of the dermis and 
fat are similar (58). However, Guittet et al., (81) obtained different results. They 
reported a lower value of the attenuation slope for subcutaneous fat. The 
backscattering coefficient is estimated from the power spectrum of the signals and 
linear fit is applied as well. These acoustic parameters were used for the liver, breast, 
prostate, myocardium and eye melanoma tissue characterisation (57, 112, 118, 121-
123). 

The parametric colour-coded images 
display local values of the parameters and 
can be used in order to evaluate the 
probability of malignancy for the 
ultrasound-guided biopsy (see Fig. 1.11.). 
Schmitz et al., (57) analysed RF and 
demodulated ultrasonic signals aiming to 
extract the tissue characterisation 
parameters of the prostate and to represent 
them as colour-coded images with the 
estimated probability of malignancy. The 
spectral parameter images are formed using 
a sliding Hamming window along each RF 
signal of scan line. At each window, all 
spectral parameters are evaluated and 
encoded in colour. Tissue type (benign or 
malignant) is indicated by using a 
classifier.  

For more extensive tissue microstructure characterisation, Liu et al., (113-115) 
proposed to use 2-D spectrum parameters for sub-resolution tissue-characterisation. 
They showed that 2-D spectrum analysis provide axial and lateral information of 
tissue microstructure and it is capable of characterising the structures which are 
smaller than the ultrasound wavelength (113). Also they demonstrated that 2-D 
spectrum properties are suitable for prostate and ocular tumour characterisation and 
have the potential to be informative for differential diagnosis (113-115). Liu et al., 
(113-115) propose the use of two spectral functions for quantitative tissue 
characterisation: radially integrated spectral power (RISP) and angularly integrated 
spectral power (AISP).  

The number of independent resolution cells (echoes) used to obtain the 
estimate influences the precision of the spectral parameters. Oelze and O’Brien (119, 

 
Fig. 1.11. Colour-coded image shows a 
probability of malignancy of prostate 

(adopted from (110)) 
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124) as well as Lizzi et al., (117) showed that the standard deviation of spectral 
parameter estimates decreases with the increasing size (number of independent 
resolution cells) of the ROI or increasing length of the time window used to compute 
the power spectra. They show that averaging before logarithmic conversions 
decreases the bias and variance of the spectral parameters. The precision of the 
spectral estimators is important for the classification task. Large variances of the 
estimates influence a large overlap of the parameters and poor classification of tissue 
types. The bias may occur due to an incorrect classification model used or if the 
estimator of the parameters is flawed. The variance of spectral features can depend 
on the biological variability of the tissues, low number of samples through the ROI 
or low signal to noise ratio (SNR). The variance and bias of the spectral parameter 
estimates depend on the data collection and processing as well. Spatial compound 
(averaging of several spectra obtained from independent scan lines), usage of 
reference spectrum and sufficient window length and window type can reduce the 
variance and bias of spectral estimates (117, 124). 

1.4.3 Automatic differential diagnosis  

The classifier is the last component of the CAD system. The classification task 
is to recognise lesion from non-lesion or malignant cases from benign. A lot of 
methods were proposed in order to solve this problem. A lot of CAD systems were 
developed for the analysis of dermatoscopic images. The sensitivity of the analysis 
of dermatoscopic images varied in the range 75-100% and specificity 61-98% 
according to different authors and by using different CAD systems (31). The most 
popular classifiers for dermatoscopic features are artificial neural networks, support 
vector machines and decision tree classifiers (40). The same classification methods 
are used for lesion recognition by using ultrasonic images. CAD based on ultrasound 
image analysis is successfully applied for the breast, prostate, liver, kidney etc. 
lesions (38, 57, 125). However, it has never been used for skin tumour classification.  

Linear methods are simple to implement, fast and effective for linearly 
separable data. Unfortunately, the performance is poor for linearly non-separable 
data. Linear methods have a poor adaptability for complex problems (126). Linear 
regression analysis (LR) can help to understand the machine learning algorithms. LR 
is based on a linear combination of feature vectors which best separate the classes 
(126). A linear discriminator is based on a simple “neuron” model, which is the 
basis for other classification methods. The optimal vector of feature weights is found 
in the case of linear regression: 

XwX  Tf )( , (1.10) 

where f(X)=Y is the output value which is closer to one of two classes, wT is the 
transposed weights vector for each selected feature and X is the testing sample 
(feature) matrix. The optimal weight vector is found by the iterative gradient descent 
method by minimising the sum of squared errors: 
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Support vector machines (SVM) are a relatively new classification method 
proposed by C. Cortes and V. Vapnik (127). This method is used for pattern 
recognition and machine learning (126, 128-132). According to the literature data, 
the SVM provide higher classification accuracy than an artificial neural network and 
are almost 700 times faster than neural networks (126). The SVM classifier is 
searching for an optimal separating hyperplane on the higher dimension feature 
space between two classes and minimising the risk of misclassifying examples of the 
test data set. At the same time, the margins (distance between the two classes) are 
maximised (see Fig. 1.12.). The decision function is described according to the 
following equation (127): 
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where input data x ϵ Rn belongs to one of two classes yi ϵ{-1, 1} for i=1,…,L and  
z ϵ Z is the corresponding feature space vector. Scalar b ϵ Rn is determined from the 
Kuhn-Tucker conditions (133), w is the weights vector of the optimal hyperplane in 
the feature space (w ϵ Z), K(xi,x) is a kernel function (polynomial, radial basis 
function, etc.), which is used in order to convert the linear SVM into nonlinear, αi 
for i=1,…,L is the variable of positive Lagrange multipliers and xi is the 
corresponding support vectors. The key point is to find such w and b pair, that the 
point xi would be classified for one of two classes according to: 
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The optimal hyperplane is obtained when the margins between the projections of the 
training points of the classes are maximised. It is needed to solve the optimisation 
problem when the data cannot be separated without errors: 
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where the first component of the sum describes the margin maximisation and the 
second minimises the training error. C is the regularisation parameter and when C is 
large, the hyperplane minimises the margins and the number of misclassified points 
and, on the contrary, when parameter C is small, the distance 1/||w|| is maximised. 
Overall, the aim is to find such C that minimises the training error and maximises 
the margin for the correctly classified vectors.  

Nonlinear SVM uses the various kernel functions in order to achieve a better 
generalisation performance. Gaussian radial basis kernel function is the most 
frequently used for linearly non separable cases (128, 129). However, by using 
different segmentation methods, features and classifiers the classification results are 
different. Widely used classification performances are classification sensitivity and 
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specificity. The sensitivity is the ability of the classifier to correctly identify patients 
with disease as diseased, and the specificity shows the ability to recognise the 
disease-free patients. It can be evaluated using confusion matrix (see Table 1.5.). 
There are four possible outcomes of a classifier: true positive (TP) when the positive 
instance is classified as positive, false negative (FN) when the positive instance is 
classified as negative, true negative (TN) when negative instance is classified as 
negative, and when the negative instance is classified as positive it is counted as a 
false positive (FP). Classification performance is evaluated by using these estimates: 
sensitivity, specificity; error rate, positive predictive value and negative predicted 
value (see Table 1.5.). 

 

Fig. 1.12. An example of a support vector machine classifier in a 2 dimensional feature space 
(adopted from (128)) 

The receiver operating characteristic (ROC) curve with an area under the ROC 
curve (Az) is the most accepted method for classifier performance description. The 
ROC curve shows the trade-off between true positive fraction (or sensitivity) against 
false positive fraction (1-specificity). An Az value equal to 1 indicates a perfect 
classifier and when the value is 0.5, ROC indicates an entirely random classifier 
(119, 134). Sensitivity and specificity values are obtained as a specific point on the 
corresponding ROC curve, usually when the cut-off value is equal to 0.  

Table 1.5 Confusion matrix for evaluation of suitability of classifier 

 Positive predicted Negative predicted Prevalence 

Positive actual True positive (TP) False positive (FP) 
Positive predictive value 

)( FPTP
TP


 

Negative actual False negative (FN) True negative (TN) 
Negative predictive value 

)( FNTN
TN


 

 Sensitivity 

)( FNTP
TP


 
Specificity 
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TN


 
Error rate 
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1
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1.5 Related works in Prof. K. Baršauskas Ultrasound Research Institute 

Prof. K. Baršauskas Ultrasound Research Institute mostly focuses on non-
destructive testing related research. The researches in medical ultrasonics were 
started in 2002. The ultrasonic system has been created for the investigation of the 
blood coagulation process in collaboration with Lithuanian University of Health 
Sciences (135). From 2008 the institute, with its partners, had international projects 
related to intraocular (“A non-invasive expert system for diagnosis of intraocular 
tumours, NICDIT”) and skin (“Diagnosis of skin cancer based on information and 
communication technologies tools, SKINMONITOR”) tumour visualisation systems 
by using ultrasound, also for the detection, diagnosis and monitoring of the 
complication of diabetes mellitus (“Application of the innovative data fusion based 
non-invasive approach for the management of diabetes mellitus, SkinDetector”).  

During the NICDIT project a non-invasive system was developed for 
intraocular tumour diagnosis, consisting of innovative device-attachment, 
conventional non-invasive ultrasonic diagnostic equipment, innovative digital 
ophthalmoscope and sophisticated software. The ocular tissue characterisation 
algorithm was based on the analysis of ultrasonic B-mode images and RF signals 
(136, 137). Classification into three classes was performed with a decision tree, and 
the achieved classification rate was 3.8% (26 clinical cases).  

The objective of the SKINMONITOR project was to develop a novel  
non-invasive expert system for skin tumours (melanoma and carcinoma) differential 
diagnosis by analysing and fusing information from digital optical images and 
ultrasound data. The aim of the project SKINMONITOR was to investigate the 
valuable combination of optical dermatoscopy, narrowband optical imaging and C-
scan ultrasonic images (138). Such system could possibly improve the diagnostic 
accuracy of malignant skin tumours, and save the expensive time of experienced 
dermatologist, and avoid unnecessary biopsies. During the project, the 3-D HFUS 
system and the image fusion software was developed. The DUB-USB HFUS 
equipment was also purchased during the project (14, 138). 

Also, the researchers of the ultrasound institute (including the author of this 
thesis) in collaboration with researchers of the Lithuanian University of Health 
Sciences, Department of Skin and Venereal Disease, have implemented the projects 
“The significance of high frequency ultrasound and informative technology for 
diagnosis of the malignant skin tumours”, SkinTech and SkinTechSoft (2014 and 
2015) and the project “Ultrasonic, optical and spectrophotometric data fusion 
technology for the diagnosis of superficial tissue lesions, ImageFusion” (2016), 
which were supported by the research, development (social, cultural) and innovation 
fund of Kaunas University of Technology and Lithuanian University of Health 
Sciences.  

1.6 Conclusions of the 1st chapter and the tasks of the research 

1. The stages of MM are divided based on thickness, which is the most important 
biomarker for the surgery planning and prognosis of melanoma. Classification 
accuracy during visual observation by an experienced dermatologist is insufficient; a 
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lot of time and financial resources are wasted for histological procedures of false 
diagnosed benign tumours. 

2. Tissue-mimicking phantoms and/or computer modelling of the lesions are 
important for the understanding of ultrasonic wave propagation effects and 
interaction with soft tissue (absorption, attenuation and scattering) and for the 
evaluation of uncertainties of developed measurement methods. Unfortunately, there 
are no commercially available physical phantoms for HFUS (≥20 MHz) examination 
of superficial tissue. Also, there are no described computer models of multi-layered 
skin tissues for uncertainty evaluation of the thickness measurement method. 

3. Melanocytic skin tumour thickness can be measured non-invasively by using 
HFUS. According to the literature, by using ≥20 MHz ultrasound, a strong 
correlation (Pearson correlation coefficient in the range of 0.88-0.97, by measuring 
tumours with various thicknesses) was observed between thicknesses evaluated 
manually on ultrasonic images and histologically. All measurements in previous 
studies have been performed manually by using interactive markers on B-scan 
images by experienced dermatologists. This examination is time-consuming and 
depends on experience of the observer. 

4. The methods of non-invasive differential diagnosis of benign and malignant 
lesions can be applied for melanocytic skin tumours. The analysis of the literature 
showed, that spectral parameters of ultrasonic RF signals substantially improve 
boundary detection compared with classical envelope based detection in other 
applications. Quantitative features extracted from ultrasonic data can provide the 
information about tissue microstructure and be informative for the characterisation 
of the skin tumours as well.  

The analysis of the literature enables the formulation of the following tasks of 
the thesis: 
 to perform the modelling of melanocytic skin tumours and to develop and 

investigate the skin tissue-mimicking phantoms for high-frequency ultrasonic 
imaging; 

 to develop a non-invasive thickness measurement and surface and bottom 
boundaries detection method for the early stage melanocytic skin tumours 
based on the analysis of the ultrasonic RF data and to investigate the method 
using real clinical data, also to evaluate the uncertainty of the proposed 
measurement method using experimental and modelled data;  

 to develop ultrasonic data analysis methods for automatic characterisation and 
type (benign or malignant) differentiation of melanocytic skin tumours and to 
investigate the feasibility of the proposed methods using the clinical  
high-frequency ultrasonic data of the tumours. 
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2. COMPUTER MODELLING OF ULTRASONIC SIGNALS AND 
TISSUE MIMICKING PHANTOMS OF MELANOCYTIC SKIN 
TUMOURS 

This chapter presents a computer model of ultrasonic RF signals and tissue 
mimicking phantoms of MST. Computer models of soft tissues will be used for the 
evaluation of errors and uncertainties of the developed measurement method, which 
is presented and discussed in the third chapter.  

The literature analysis showed that there is a lack of skin tissue mimicking 
phantoms, which could be appropriate for high frequency ultrasonic systems. The 
second part of this chapter presents the skin tissue mimicking phantoms, which were 
developed for high-frequency ultrasonic imaging system investigation and 
evaluation purposes. The data collected scanning the phantoms were used in the 
measurement method development procedure.     

2.1 Computer modelling of ultrasonic radiofrequency signals of melanocytic 
skin tumours 

2.1.1. Parameters of high-frequency ultrasonic system used for investigations  

There are a few commercial ultrasonic systems for dermatology, however, 
DUB-USB (Taberna pro medicum, Lueneburg, Germany) allows RF ultrasonic 
signals to be obtained and it was used for ultrasonic examinations of the phantoms 
and clinical ultrasonic MST data collection (see Fig. 2.1.). Computer modelling 
requires a deep knowledge of the properties of the ultrasonic scanning system 
(excitation, probe geometry, focusing etc.). The parameters of the DUB-USB system 
presented in this section were employed to perform the computer modelling of MST.  

 
Fig. 2.1. High-frequency ultrasonic data acquisition setup 
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The system is equipped with a mechanically scanned single element focused 
transducer. The structure of the ultrasonic system is presented in Fig. 2.1. The 
transducer working at the centre frequency of 22 MHz was placed perpendicularly 
above the lesion (or phantom). The scan was acquired, when the deepest  
cross-section of the tumour is found, during clinical examination of MST by a 
dermatologist. Distilled water is used as the coupling medium. The ultrasonic beam 
is focused at the surface of the skin maintaining a constant distance between the 
transducer and the skin. The imaging window is 8 mm and is adapted manually for 
each subject by the dermatologist performing the examination. Ultrasound velocity 
is set to 1580 m/s during the scanning, while the general velocity for the whole 
human skin is higher than the speed of sound in soft tissues (1540 m/s) (82). 
Ultrasound velocity equal to 1580 m/s is assumed in most studies describing 
thickness measurements of skin lesions (12, 15, 139, 140). The acquired digitised 
raw RF signals are stored on the hard disk of the computer. All the main parameters 
provided by the manufacturers of the ultrasonic system DUB-USB used for data 
acquisition of MST are presented in Table 2.1. 

Table 2.1 Parameters of the commercial ultrasonic system (provided by the 
manufacturer) used for ultrasonic data acquisition  

Centre frequency  22 MHz  
Sampling rate 100 MHz 
Bandwidth  approx. 12-28 MHz  
Focal depth 11 mm 
A/D converter 8-bit 
Amplification  28 dB 
Scan time Less than 0.4 sec. 
Scan length 12.8 mm 
Scanning step 33 µm 
Resolution at centre frequency (axial and lateral)  70 µm, 160 µm (theoretical) 

2.1.2 Model of assessment of the ultrasonic transducer pressure field 

Manufacturers of the commercial ultrasonic systems do not provide the 
information about the transducer pressure field, and even the geometries of the 
transducer. However, the transducer parameters (focal depth, dimensions of acoustic 
element etc.) should be known for the modelling of the ultrasonic data. For the 
digital simulation, it is important to select an appropriate spatial discretisation as 
well, while skin tumours have a spherical curvature surface and this may result in 
the appearance of diffraction effects. The acoustic pressure field of the transducer 
was simulated with a selected optimal spatial discretisation, and the obtained echo 
dynamic curves were compared with the measured field curves. 

Two-dimensional modelling (diffraction model) of the single element focused 
transducer was performed using MATLAB (MathWorks Inc., MA United States). 
The single element focused transducer, described in section 2.1, was modelled. The 
modelling was performed by using the method described in section 1.3.1. Signal 
reflected from the spatial point in pulse echo mode is obtained by convolving the 
incident signal with the impulse response of the transducer, which is calculated 
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according to equation 1.2. So, at first, the incident ultrasonic signal x(t) has been 
simulated as a sine waveform gated with the Gaussian envelope according to the 
equation: 

)2sin()(
2)( ftetx bta  , (2.1) 

where f = 22 MHz is the fundamental frequency of the signal, a and b is calculated 
by using equations: 
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were ka is the asymmetry coefficient (ka=1), ps is the number of pulse periods (ps=3).  
The impulse response gives the ultrasound field at a specific point as a 

function of time, when the transducer is excited by a Dirac delta function (see 
equation 1.2). The response at specific field points is found by applying convolution 
of the spatial impulses response at a particular point in space with the excitation 
function (see equation 1.1). The impulse response varies as a function of position 
relative to the transducer. The received signal reflected from the spatial elementary 
reflector M(R, z) in pulse-echo mode can be found by using the double convolution 
of the transducer incident ultrasonic signal (x(t)) and the spatial impulse response 
(h(t, R, z)) of the transducer aperture.  

The diffraction effects arising due to natural boundary curvature of MST were 
investigated as well. MSTs usually are characterised by spherical curvature 
compared to the healthy skin. Examples of B-scans of the skin tumours with 
different surface curvature are presented in Fig. 2.2.  

  
A B 

Fig. 2.2. An example of the ultrasonic B-scans of two clinical cases of superficial 
spreading melanoma with different angles of surface curvature 

At the initial stage of modelling, the reflections from the plane segment 
(reflecting layer), which was constructed by using different size elementary 
reflectors, located at the focus of the transducer were calculated (see Fig. 2.3. A). 

30o 
47o 



40 

This step was done in order to determine an appropriate spatial discretisation (size of 
elementary reflectors) for the modelling of the transducer pressure field. The plane 
surface of the segment of 1 cm length was simulated as a set of elementary 
reflectors, with length di and width dp (see Fig. 2.3 A). The width of the segment di 
was set to 1 mm. Amplitudes of reflected signals from simulated segment composed 
of elementary reflectors were evaluated by varying the incidence angle from 0o up to 
60o (see Fig. 2.3. B). The analysis of 52 real clinical MST cases revealed that the 
curvature of the lesions should not exceed 50 degrees and this angle was considered 
as the limit of meaningful analysis range. 

Direct ultrasonic wave reflection from elementary reflectors of the segment 
was calculated by using convolution of the incident signal x(t) and the spatial 
impulse response of the concave transducer, evaluated according to equation 1.2. 
The complete echo-signal from the segment is computed by summing the reflection 
signals from elementary reflectors (see Fig. 2.3. A). Ultrasonic reflection from the 
segment consisting of n elementary reflectors can be found according to equation: 
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where symbol indicates the convolution operation and h(t, Ri, zi) is spatial impulse 
response of the focused transducer at point M(Ri, zi), when i=1…n. The amplitude of 
the reflection depends on the area ds of the reflector under the beam. The area of the 
elementary reflector orthogonal projection to the scanning axis is calculated by using 
the equation: 

),cos( dpdids  (2.4) 

where α is the angle between the plane orthogonal to the beam and the reflector.  

 

  
A B 

Fig. 2.3. Reflection amplitude (peak-to-peak) dependence on the incidence angle by using 
different spatial discretisation of the segment: A - simulation schema, B - dependence of 

normalised signal peak to peak amplitude on reflector width (dp), legend indicates different 
width of the elementary reflectors (dp); width of the segment, which is composed of 

elementary reflectors, in all cases were 1 cm 
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The relationship between incidence angle ( 



2
) of the ultrasonic beam and 

the segment was evaluated (see Fig. 2.3. B). The relationship of the width of the 
elementary reflector dp and normalised peak-to-peak amplitude of the reflected 
signal were established by varying incidence angle as well (Fig. 2.3. B). The results 
have shown that 10 µm special discretisation is sufficient and it was used for the 
computer modelling of the transducer pressure field. It has been determined that the 
diffraction effects should not be a significant error source at angles lower than 50o.  

In the next stage, the transducer pressure field was simulated. This step was 
accomplished in order to verify the modelling algorithm. The modelled pressure 
field of the transducer has been compared with the measured field of the DUB-USB 
probe used for clinical MST data collection. The field was generated at the focus 
zone of the transducer. The modelled field dimensions were [-2 2] mm according to 
the lateral (scanning) axis, when it was assumed that the transducer is located at  
0 mm. The field was calculated from 8 up to 15 mm (focal zone at 11 mm) 
according to axial direction. Sizes of the elementary reflectors were 30 µm at the 
lateral direction with the same step at the axial direction.  

  
A B 

Fig. 2.4. Echodynamic curves of modelled and measured ultrasonic transducer pressure fields: 
A - according depth axis, B - according to lateral axis at the focal point (11 mm) 

The ultrasonic pressure field of the system DUB-USB was measured by using 
the acoustic intensity measurement system (AIMS) (ONDA corp., USA). AIMS 
consists of the water tank, membrane hydrophone (HMA0200, frequency range  
0.5-45 MHz, nominal sensitivity -260 dB respective 1V/µPa), axis motion controller 
(three degrees of freedom), temperature probe, digital oscilloscope and computer. 
The acoustic pressure field was acquired by changing the position of membrane 
hydrophone by 0.02 mm step according lateral axis (x) and 0.0233 mm according 
depth axis (z). The obtained echodynamic curves of the pressure fields (measured 
and modelled) according to the depth axis (A) and lateral axis at 11 mm (B) are 
presented in Fig. 2.4. It was established that the diameter of the concave transducer 
is 3.2 mm. The main difference is that the simulated field at the focus is narrower 
than the measured field. The simulated and measured lengths of the focal zones 
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(according to the axial direction) at -3 dB were the same and equal to 4.7 mm. The 
widths of the simulated and measured focal zones at -3 dB were slightly different. 
This could possibly be explained by the fact that the ultrasound attenuation was 
assumed as negligible in the model. It can be concluded that the modelled pressure 
field is adequate for a concave transducer. The ultrasonic beam is focused at the 
surface of the skin during the clinical examination, the focal length overly all the 
MST (if the MST are up to ~2 mm thickness). 

2.1.3 Modelling of melanocytic skin tumours  

Skin tumours with different thicknesses were modelled for the uncertainty 
evaluation of the proposed measurement method. The simulation of ultrasonic wave 
interaction with skin tissues was performed including several assumptions:  
o reflectors are scattered stochastically (Born approximation); 
o acoustic impedances of different skin layers (epidermis and dermis) are 

different (reflection and transmission coefficients); 
o attenuation of the ROI is assumed as negligible (the focal spot overlap MST at  

-3 dB); 
o the ultrasonic beam is focused on the surface of the skin (at the chord of the 

circle or second layer of reflectors, at 11 mm, see Fig. 2.5. A, B); 
o ultrasound velocity is constant through the modelled skin with tumour and is 

assumed as 1580 m/s. 
Soft tissues are described as homogeneous medium, with or without 

attenuation and usually by having a constant ultrasound velocity when modelling 
tasks are performed. However, for multi-layered media, such as human skin, where 
the epidermis is basically composed of keratinocytes and collagen-rich dermis 
overlies subcutaneous fat, it is necessary take into account layered heterogeneous 
distributions of scatterers density. In the proposed case the elementary reflectors, 
which are acting as secondary sources (according to the Huygens principle) and 
reflect a part of spherical ultrasonic waves, are arranged respective to the depth axis 
in five layers with different spatial distribution (normal 2-D distribution)  
(see Fig. 2.5 A). Spatial distribution of the elementary reflectors is presented in  
Fig. 2.5 A. Each layer is composed of the same number (1706 of the width of  
6.5 µm in one layer) spatially distributed scatterers with different variance according 
depth axis (axial direction). The different distribution in depth axis allows the 
simulation of the variable density of the scatterers in a particular layer. The 
distribution of density of the skin layer determines the content of elastin and 
collagen fibres (see 1.1 section). The variance of scatterers set the distribution of the 
first and second layers (they simulate the epidermis layer, and the surface and 
bottom of the lesion) was λ/2 (where λ is the wavelength, λ=c/f), third – λ,  
fourth – 1.5λ, fifth – 2λ. The layers were located at different depths (see Fig. 2.5). 
The first layer of scatterers representing MST was modelled as circularly convex 
with a chord of length l. The length of the chord was the same by simulating B-scans 
of different thickness MST and was equal to 7 mm. The different thickness of MST 
was simulated by changing the angle φ from 3o up to 11o (the thicknesses from  
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0.21 mm up to 0.97 mm). Varying the angle allowed the evaluation of the 
uncertainty of the proposed ultrasonic thickness measurement method (see Chapter 
3).  

 
  
A B 

Fig. 2.5. Layered model of the skin tumour: A - layers of reflectors used for model creation; 
B - two-dimensional model with normally distributed reflectors of the layers 

The echo signal is calculated as a sum of reflections scattered from the 
spatially distributed reflectors located at different depths (see Fig. 2.5. A) and 
oriented at different angles respective to the horizontal of the surface line. The 
amplitude of the backscattered signal depends on area dsi of the projected reflector 
(see equation 2.3). The transducer acts as a linear summator and produces an RF 
echo signal as a result. It is obvious that if the differences of propagation times of 
echoes are smaller than the duration of the pulse, the individual scatterers cannot be 
distinguished. The scatterers density (number of scatterers within resolution cell) of 
the model should be high enough, in order to ensure that the envelope of the 
ultrasonic RF signals meets a Rayleigh distribution (SNR equal to 1.93) as well as 
ultrasonic images of human tissues (SNR is 1.91 (141)). One resolution cell contains 
92 elementary reflectors of one layer in the case presented. The acoustic energy is 
reflected when the ultrasound waves penetrate through the layers having different 
acoustic impedances. The impedance Z=ρc depends on the ultrasound velocity (c) 
and density (ρ) of the scanned media (95). The reflection (R) and transmission (T) 
coefficients of water-melanoma and melanoma-derma interfaces were included in 
the model of the layered structure, in order to get a more realistic model of the skin. 
The coefficients could be expressed as: 
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where Z1 (Z=ρc, ρ - material density, c - ultrasound velocity) is the acoustic 
impedance of the first material (water), Z2 is the acoustic impedance of the second 
material (lesion). The simulated B-scan image of MST is demonstrated in Fig. 2.6 A 
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and the backscattered ultrasonic signal with an envelope is shown in Fig. 2.6 B. The 
B-scan image was constructed by modelling the lateral movement of the focused 
transducer ± 5 mm from the centre of the lesion with a step of 33 µm as in the real 
DUB-USB system. In total, the B-scan image consists of 304 scanning lines  
(A-scans). Twelve ultrasonic datasets were modelled. The thicknesses of the MST 
models were changed in the range from 0.22 mm up to 0.97 mm. MST models were 
used for metrological evaluation of the proposed thickness measurement method 
(see subsection 3.4). 

A B 

Fig. 2.6. Modelled ultrasonic image of the skin tumour: A - B-scan image of melanocytic 
skin tumour model; B - modelled ultrasonic signal of MST at 0 mm of scanning axis, the 

real thickness of the presented modelled tumour is 0.54 mm 

This is the first attempt to simulate the multi-layered structure of tissue for 
ultrasonic examination. The model is flexible and can be used for simulations of 
various lesions for different tasks. The model could be extended by including the 
attenuation component.  

2.2 Superficial tissue-mimicking phantoms for ultrasonic investigation  

A lot of commercial phantoms are developed for ultrasonic system verification 
and characterisation. Unfortunately, commercial phantoms are not customisable for 
the specific applications, and for the high-frequency ultrasonic system evaluation. 
The developed ultrasonic skin tissue-mimicking phantoms (TMP) with acoustic 
properties (ultrasound velocity and attenuation) close to the skin are presented in this 
subsection. The TMP were described and published (142).  

The same ultrasonic system (DUB-USB, Taberna pro medicum) was used for 
ultrasonic examinations of manufactured skin melanoma mimicking phantoms. The 
pulse-echo experimental set-up and digital photography of the developed phantom 
are show in Fig. 2.7. The ultrasound beam was focused at the surface of the 
phantom. The scanning beam was orthogonal to the dish during scanning of four 
developed phantoms. 

The proposed phantoms were developed using three different ingredients, 
listed in Table 2.2. The distilled water, gelatine and Intralipid® 20% IV fat emulsion 

MST thickness 

bottom surface 

Modelled MST 
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(Fresenius Kabi, Austria) were mixed in different proportions thus manufacturing 
four skin TMP having different acoustic properties. 

Table 2.2 Concentrations of the ingredients used for manufacture of skin  
tissue-mimicking phantoms 

The mixtures were poured into Petri dishes and placed into a cold chamber 
(T=5oC) for about 20 minutes. The mixtures were taken out when a solid state was 
achieved. A scalpel was used to make cylindrical holes of approximately 5 mm 
diameter and 3.8 mm thickness (to the bottom of the dish). In the next stage the 
melanoma mimicking material was prepared. It is known that melanomas appear 
like anechoic structures in B-scan ultrasound images and respectively only water and 
gelatine were mixed for mimicking melanoma-like insertions (see Table 2.2). The 
melanoma-mimicking mixture was coloured by using liquid Indian ink (negligible 
amount compared to the concentrations of the main ingredients) in order to separate 
an insertion from the surrounding media visually. The mixture was poured into the 
cylindrical holes which were made in the centres of the skin tissue mimicking 
phantoms (see Fig. 2.7 B). Finally, phantoms were placed for cooling again. 

A B 

Fig. 2.7. A - digital picture of the phantom surface; B - experimental set-up for the speed of 
sound and attenuation evaluation, cross-section at the indicated dashed line in A. Average 
thickness of phantom (L2) was 3.8 ± 0.56 mm (4 cases), distance up to the focus (L1) was  
11 mm, all three materials have different acoustic impedances - Z1 (acoustic impedance of 

water), Z2 (acoustic impedance of phantom), Z3 (acoustic impedance of Petri dish) 

Phantom Water, % 
(mw/mgeneral) 

Intralipid, % 
(mi/mgeneral) 

Gelatine, % 
(mg/mgeneral) 

Density, g/ml 

I 46 40 14 1.07 
II 36 50 14 1.05 
III 26 60 14 1.02 
IV 16 70 14 1.02 

Insertion 83 - 17 0.98 

Cylindrical hole 

Melanoma-like 
insertion 
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The acoustic properties (speed of sound and attenuation) of the phantoms were 
experimentally investigated. For accurate determination of the speed of sound in the 
phantom layer, the reference ultrasound time of flight (TOF) Δtw was measured (see 
Fig. 2.8 A). The speed of sound in the phantom (cph) was determined by measuring 
the time between the echoes reflected from the Petri dish and the surface of the 
phantom: (82, 85): 
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 where, Δtph and Δtw are the times of flight in the phantom material and in the 
cylindrical hole filled with distilled water respectively (see Fig. 2.8. B, C),  
cw =1490.2 m/s is the ultrasound velocity in water (at 22.8oC ± 0.5oC), L2 is the 
thickness of the phantom (L2=cwΔtw/2). The speed of sound in the insertion ci was 

evaluated at the same thickness as in phantom (
i

i t
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

 22
). A convex deformation of 

the insertion surface appeared due to the tension, which occurred during cooling (see 
Fig. 2.8. D). The thickness of the insertion Li was evaluated by summing the 
thickness of the phantom (L2) and the thickness of the deformation through which 
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The frequency-dependent ultrasound attenuation can be estimated by using 
Fourier analysis of the signals. The echo-signals from the surface and bottom of the 
phantom were gated using Hamming window before application of the fast Fourier 
transform. The frequency dependent attenuation was estimated according to the 
following equation (58, 91): 
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where αph(f) is the frequency-dependent ultrasound attenuation of the phantom in 
dB/mm, A(f) is the magnitude of the spectrum of echo reflected from the  
water-phantom interface, A0(f) is the magnitude of the spectrum of echo reflected 
from the phantom-Petri dish interface, L2 is the thickness of the phantom in mm, R is 
the total signal losses in the three layer medium (at the water-phantom and  
phantom-dish interfaces) and is expressed as:  

,
232112

12

RTT
R

R


  (2.9) 

where R23 is the reflection coefficient of ultrasonic waves at the interface between 
the phantom and the Petri dish (calculated in a similar way as (2.5)) and T21 is the 
transmission coefficient of ultrasonic waves through the phantom-water interface 
(calculated in a similar way as (2.6)). The density of the Petri dish is 1.18 g/ml and 
the speed of sound is 2672 m/s (Petri dish material poly(methyl methacrylate)) 
(143).  
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A B 

  
C D 

  
E F 

Fig. 2.8. Ultrasound B-scan images and A-scan signals of the phantoms: A - the B-scan 
image of the region with cylindrical hole containing distilled water; B - the reflected A-scan 

signal from water-phantom interface; C - the reflected A-scan signal from water-dish 
interface; D - the B-scan image of the region with melanoma-like insertion; E - the reflected 
A-scan signal from interfaces of the phantom; F - the reflected A-scan signal from interfaces 
of the insertion region. The circles placed on B-scans and A-scans denote the boundaries of 

the phantom, which were detected by the amplitude threshold of the reflected ultrasonic 
waves. 

Results. The speed of sound and the attenuation dependence on the frequency of the 
manufactured phantoms were evaluated. The ultrasound velocity dependence on 
Intralipid fat emulsion concentration is presented in Fig. 2.9 A. It was observed that 
the ultrasound velocity in the phantom material varies from 1534 m/s up to 1566 m/s 
depending on Intralipid fat emulsion concentration. The ultrasound velocity in 
melanoma-like insertion was 1602 ± 24 m/s (mean ± SD). Measurements were 
performed in four phantoms (mixture of insertion was the same). As expected, it was 
observed that the speed of sound decreases in increasing concentrations of Intralipid. 
Accordingly, this acoustic property could be controlled in the process of physical 
modelling of the human skin. It could be noticed that the speed of sound in tissue 
mimicking phantom is close to real skin tissue (see Table 2.3 and Table 1. 4).  
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Table 2.3 Comparison of the acoustic properties of the developed phantoms and skin 

 Speed of sound, m/s Attenuation coef., dB/mm/MHz 

I phantom 1566 0.18 
II phantom 1560 0.28 
III phantom 1556 0.32 
IV phantom 1534 0.41 
Insertion 1602 ± 24 0.16 ± 0.02 

Human skin Epidermis 1540;  
dermis 1580 (92) 0.21 (58) 

Melanoma  1553-1588 (82) Undetermined 

The acoustic attenuation was determined in the range from 12 up to 28 MHz. 
Calculated αph(f) dependences were linearly approximated, while the acoustic 
attenuation in the human tissues is assumed as linearly dependent on the 
frequencies, and the parameters (slope, intercept and midband-fit) of the line are 
used for quantitative tissue characterisation (117). The regression lines were 
obtained using the method of least squares fitting. Fig. 2.9 B shows the dependence 
of the attenuation versus frequency (linear approximation of the attenuation 
dependence) in skin tissue phantoms with different concentrations of Intralipid and 
insertion. The attenuation coefficient in the range of 0.18-0.4 dB/mm/MHz was 
estimated in the phantoms. The attenuation in melanoma-like insertion region was 
0.16 ± 0.02 dB/mm/MHz (mean ± SD). The attenuation coefficient is close to that 
measured in other human tissues by other authors (0.04-0.36 dB/mm/MHz) (58, 85, 
92). The acoustic properties of the skin layers are presented in Table 1.4. 

Discussion. A limitation of this study is that only four phantoms with different 
concentrations were manufactured and investigated. The repeatability of the 

  
A B 

Fig. 2.9. The relationship between: A - ultrasound velocity in the phantoms with different 
concentrations of Intralipid fat emulsion; B - linear approximations of frequency dependent 
attenuation in the phantoms. The legend indicates the phantoms with different Intralipid fat 

emulsion concentrations (Table 2.2) and melanoma-like insertion 
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phantom properties, and the long-term stability of the acoustic properties of the 
phantom were not evaluated. Usually, phantoms should be stored at low 
temperatures for maintaining their mechanical stability, since gelatine dissolves in a 
warm environment. Also, the proposed phantoms are stable for only about 1 week, 
until bacterial growth starts. Various preservatives can be used for extending the 
stability period (e.g. p-methyl and p-propyl bendzoid acid, n-propanol) (84). 
However, it should be mentioned that our expectation was to manufacture the 
phantom which will be used for acquisition of B-mode images, therefore it is 
sufficient if the phantom is stable for the time taken for the scanning data of the  
B-mode image to be recorded. The gelatine based phantoms have a potential to be 
the promising tools not only for preclinical ultrasonic investigations of the skin 
melanoma, but also for other soft tissue lesions as they possess echogenic properties 
that would make it ultrasonically detectable.  

The long-term superficial TMPs with inclusions located at different depths 
were proposed for ultrasonic examinations as well. These phantoms were 
constructed by using Aqualene low attenuation elastomer (Olympus corporation, 
USA), which was recently designed specifically for ultrasonic applications (144), 
and silicone rubber sheets (Renqui Jingmei Rubber & Plastic Products Co. Ltd., 
China). Two TMP were manufactured. The base of the first phantom was elastomer 

A C 

  
B D 

Fig. 2.10. Long-term phantoms: A - elastomer-based phantom, B - is the ultrasonic  
B-scan image of the cross section of elastomer-based phantom (dashed line in figure A),  

C - silicone-based phantom, D - is the ultrasonic B-scan image of the cross-section of 
silicon-based phantom (dashed line in figure C). 
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and inclusions were made using 2 mm thickness plates of silicone (see Fig. 2.10. A). 
The second phantom was manufactured using two plates of silicone (thickness of 
each layer - 3 mm, density - 1.3 g/mm3) and insertions were made from elastomer 
(2.3 mm thickness, density 0.97 g/mm3) (see Fig. 2.10. C). The plates of phantoms 
were glued with sanitary silicone (density - 0.97 g/mm3). The estimated ultrasound 
velocities of the silicone and elastomer materials are provided in Table 2.4. The 
speed of sound of the inclusions was determined by measuring the time duration 
between the echoes reflected from the surface and the bottom of the base material 
sheet. The measurements were performed at each size and location of the inclusions. 
The phantoms are described in more detail in (145). The estimated ultrasound 
velocity and properties of the proposed long-term superficial tissue mimicking 
phantoms are presented in Table 2.4. The investigation shows that the elastomer 
material is suitable for tissue phantom manufacturing and can be used for ultrasonic 
examinations.  

Table 2.4 Properties of the materials used for long-term tissue mimicking phantoms  

 Ultrasound 
velocity, m/s 

Density, 
g/cm3 

Acoustic impedance, 
MRayls 

Silicone 978 ± 17 1.3 1.27 
Elastomer 1537 ± 17 0.92 1.42 

2.3 Conclusions of the 2nd chapter 

1. The multi-layered computer model of melanocytic skin tumours was proposed 
for the uncertainty evaluation of novel thickness measurement methods. The 
model is composed of five layers with spatially distributed (according to normal 
distribution) point reflectors. 

2. The analysis of modelled ultrasonic signals reflected from segments of 
scatterers with different spatial sampling and different orientation, revealed that 
spatial sampling of the reflectors for computer modelling should be up to  
10 µm aiming to avoid diffraction effects. 

3. In order to verify that the real parameters of the transducer and the parameters 
used for simulation are the same, the comparison of modelled and measured 
pressure fields of the focused transducer (22 MHz) was performed. Moreover, 
the computer modelling and measurement of high frequency transducer 
pressure field shows that the focal spot (0.24 x 4.7 mm, at -3 dB) overlies thin 
(~2 mm) MST, when the ultrasound beam is focused at the surface of the skin. 

4. Gelatine-Intralipid based skin tissue-mimicking phantoms suitable for 
investigations of high-frequency ultrasonic imaging were developed. The 
parameters of the developed tissue mimicking phantoms are close to the values 
observed in human tissues, speed of sound in the range 1534-1566 m/s and 
attenuation coefficient in range 0.18-0.41 dB/mm/MHz, when the ultrasound 
velocity of human tissues varies in the range 1540-1570 m/s and frequency 
dependent attenuation in the range 0.04-0.36 dB/mm/MHz. The acoustic 
properties can be controlled by changing the concentration of Intralipid.  
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3. METHOD FOR BOUNDARY DETECTION AND THICKNESS 
MEASUREMENT OF MELANOCYTIC SKIN TUMOURS  

Ultrasonic B-scan images have been used for MST thickness measurements 
for a few decades, but no works related to the automatic thickness measurement in 
vivo using RF ultrasonic data have been published so far. Automatic MST thickness 
evaluation algorithms can help to save the expensive time of qualified 
dermatologists, it is independent on the examiner experience as well.  

Ultrasonic echo signals depend on the concentration, size and shape of 
scatterers in the tissue and contain information about tissue microstructure. 
Parametric IBS mapping could possibly highlight the boundaries of the MST, 
because tumours correspond to echo-poor regions compared with the epidermis and 
derma, which are rich of collagen and elastic fibres. However, the manual 
measurements are complicated due to lymphocytic infiltrate, which occurs under the 
tumours as the reaction of the organism. An example of B-scan images of different 
thickness MST are presented in Fig. 3.1. The infiltrate also appears as an echo-poor 
region in some B-scan images. So, the IBS was employed for purpose of MST 
boundary detection.  

 
A B 

Fig. 3.1. An example of the B-scan images of melanocytic nevi, T and Ti marks the 
histologically evaluated thicknesses of the tumour and tumour with lyphocytic infiltare, 

respectively, arrows marks the thicknesses on B-scan images: A) T=0.5 mm and Ti=0.7 mm; 
B) T=0.3 mm and Ti=0.6 mm 

Automatic lesion boundary detection is a part of the decision support system. 
In this section, the automatic boundary detection and thickness evaluation method 
for MST is presented. The method was tested on real clinical data of early stage (up 
to 1 mm thickness) MST, while the thicker the lesion, the greater the chances that it 
has already metastasised to lymph nodes and distant sites. A sentinel lymph node 
biopsy is recommended if the MM is thicker than 1 mm (1, 6). 

Ti 

T 

T 
Ti 
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3.1 Proposed boundary detection and thickness evaluation method 

The proposed boundary detection and thickness evaluation method of MST is 
based on analysis of RF ultrasonic signals. The thickness evaluation method of MST 
was carried out in the following steps (see Fig. 3.2.). At first, the width of the MST 
is defined manually under the scanning axis in order to remove the A-scans, which 
are not intersecting the lesion, in order to reduce the computation time. The 
rectangular ROI is outlined by using interactive markers. Next, the power spectral 
density (PSD) is computed in order to evaluate IBS, which is related to the 
echogenicity of the tissues. The surface and bottom (at defined area) boundaries of 
the lesions are detected using the percentage threshold of parametric IBS signals and 
polynomial approximation after outlier correction. Finally, the automatic thickness 
estimation of the tumour is performed.  

 
Fig. 3.2. Stages of the proposed thickness measurement algorithm  

Detection of bottom boundary points is non-trivial because of the complex 
structure of the dermis and subtumoural infiltrate. Time-frequency analysis was used 
for the enhancement of ultrasonically detected boundaries. IBS served as an RF data 
spectrum parameter, evaluated from PSD. PSD is obtained from the discrete Fourier 
transform, applied to short segments of each RF signal, using the following 
equation:  

,][][1][
2

1

0

2









N

n

kn
N

j
emnwnx

N
kP



 (3.1) 

where P[k] is the power spectral density, x[n] is the input RF signal, w[n] is the 
Hamming window of length m, k is the frequency (k=1, 2, …. N-1).  

IBS highlights boundaries between different echogenicity areas, since it has 
been observed that at the boundaries higher frequencies correspond to relatively 
higher power. After the PSD had been computed, the IBS was calculated at the  
-20 dB level, using the equation (58, 104): 
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where k1 and k2 upper and lower frequencies at the effective -20 dB bandwidth. 
The proposed method based on IBS calculation of ultrasonic RF signals was 

tested by using ultrasonic RF signals of developed gelatine-based phantoms (the 
phantoms are described in more detail in section 2.4) and the modelled ultrasonic 



53 

signals of MST. Parametric IBS signals were calculated by using equation 3.2. 
Examples of ultrasonic RF signals together with IBS signals are presented in  
Fig. 3.3. 

  
A D 

  
B  E 

 
C F  

Fig. 3.3. Parametric IBS signals of the modelled ultrasonic data: A - B-scan images of the 
proposed MST mimicking phantom, dashed lines mark the lines of B and C A-scans;  

D - is modelled B-scan image of MST, dashed lines mark the lines of E and F A-scans; 
solid black lines are the RF signals and red lines are the parametric IBS signals. 
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The examples demonstrate that the parametric IBS signals highlight the reflections 
from the boundaries and suppress low echo signals, which are the result of integral 
diffuse reflections from microstructures. The IBS contains information about the 
number and structure of the scatterers, while it estimates the backscattered energy 
(105).  

The surface and bottom of the tumour was found by using percentage 
threshold on parametric IBS signals. First of all, the peak, higher than the defined 
threshold, was found. The surface point was accepted when the IBS signal from the 
detected peak had decreased down to the selected threshold. Bottom points were 
detected analysing the segment of IBS signals from the detected surface point to the 
end of the IBS signal. The bottom of the MST was accepted when the IBS signal 
had reached a predefined threshold level (see Fig. 3.4. A and B).  

  
A B 

  
C D 

Fig. 3.4. Detection of MST boundaries in real clinical cases: A - RF signal marked at 
maximal thickness in C and D images (pointed line); B - parametric IBS signal of the same 

A-scan. Circles mark detected maximal thickness of the MST. C - conventional B-scan 
image (logarithmically compressed envelope), D - logarithmically compressed parametric 

IBS image with amplitude values in the range of 30 dB. Solid red lines marks MST surface 
and bottom boundaries extracted 

Real skin tumours typically do not have expressed boundaries between the 
tumour and surrounding healthy skin tissues, especially at the bottom. It should be 
mentioned that some detected boundary points were false. In order to avoid outliers, 
a set of detected boundary points was corrected using a 5th order median filter. 
Optimal least-squares polynomial approximation (see Fig. 3.4., red lines in C and D) 
was assumed as final detected boundaries. Optimal polynomial approximation was 
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selected in the range of 1th up to 7th order by finding the minimal sum of differences 
between polynomial and detected data points: 
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where Dapprox is the sum of differences between polynomial approximation and data 
points y[m], an - are the coefficients of the polynomial of degree n, x[m] is the term 
of polynomial.  

 Finally, detected maximal TOF values between surface and bottom 
polynomials were recalculated into the thickness. A logarithmically compressed 
ultrasonic B-scan image and parametric IBS image of the MST with amplitude 
values in the range of 30 dB are presented in Fig. 3.4. C and D, respectively, 
together with extracted MST boundaries. 

3.2 Investigation of the thickness measurement method using real clinical data  

Experimental data. Real clinical ultrasonic data of MST were collected at the 
Department of Skin and Venereal Diseases of Lithuanian University of Health 
Sciences (LUHS). The cases of clinically suspected MM were included in the study 
only if the histologically measured thickness had been up to 1 mm. In total 52 
patients (36 women (69%) and 16 men (31%)) were selected for this study. After 
histological examination of the 52 suspicious MST, 6 (11%) melanomas and  
46 (89%) melanocytic nevi (of which 14 were junctional, 36 compound and 2 
dermal nevi) have been diagnosed. The study had been approved by the regional 
ethics committee. In most cases, MST have been located on the trunk (63%), upper 
limbs (24%) and lower limbs (13%).  

 The thicknesses of the MST were estimated using three different metrics: 
histological Breslow thickness (pT, with and without infiltrate), manually measured 
ultrasonic thickness (mT), and automatically measured ultrasonic thickness (aT) by 
using the proposed method. All measurements were carried out with the approval of 
the institutional review board after the patient’s informed consent had been obtained 
and in accordance with the Declaration of Helsinki. 
Ultrasonic examinations. The DUB-USB ultrasound system, previously described 
in section 2.1, was used for clinical examination of MST. The acquired and digitised 
raw ultrasonic signals were stored on the hard disk of the computer. The 
examination was performed by an experienced dermatologist. The maximal tumour 
thickness was manually evaluated by measuring the vertical distance between the 
lower edge of the entry echo and the deepest point of the posterior margin of the 
hypoechoic zone (Fig. 3.5. A). It was done using the original program of the 
manufacturer as shown in Fig. 3.5.  
Histologic assessment. After ultrasonic examination, all excited MST were fixed in 
buffered 10% formalin solution, sectioned through the centre of the lesions and 
slides prepared and stained with hematoxylin-eosin in the usual manner for 
histological evaluation of skin tumours. The vertical distance was measured from the 
uppermost level of the stratum granulosum in the epidermis to the lowest point of 
the tumour without infiltrate (histological tumour thickness, Breslow index, pT) (see 
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Fig. 3.5. B). The thicknesses of a tumour with subtumoural infiltrate were measured 
histologically as well. The histological measurements were done by two 
pathologists.  

 
A B 

Fig. 3.5. Example of the measurements: A - manual measurement by the DUB-USB program 
on B-scan images (mT), dashed lines mark the surface and bottom of the melanocytic skin 

tumour; B - histological image of MST, solid black line marks pT and dashed line marks pT 
with infiltrate 

MST thicknesses measured by two pathologists were slightly different (see 
Table 3.1): the mean measured pT of the first pathologist was 0.51 ± 0.23 mm, and  
0.52 ± 0.22 mm was obtained from the second. The mean of histological Breslow 
thickness measured in melanomas (n=6) and melanocytic nevi (n=46) were  
0.74 ± 0.18 mm and 0.48 ± 0.22 mm respectively (first pathologist). Subtumoural 
infiltrate was determined in 28 MST and the mean thickness was 0.19 ± 0.12 mm 
estimated by the first pathologist. As a reference, we used measurements carried out 
by the more experienced, first, pathologist. 

Table 3.1 Results of histological measurements of MST 

 
 
 

n 

Vertical tumour thickness (pT), 
first pathologist, mm 

Vertical tumour thickness (pT), 
second pathologist, mm 

mean SD min-max mean SD min-max 

Tumour 52 0.51 0.23 0.08-1.0 0.52 0.22 0.1-1.0 
Infiltrate 28 0.19 0.12 0.02-0.55 0.20 0.13 0.03-0.5 

n - number of investigated cases; pT - estimated histological thickness according to Breslow;  
SD - standard deviation; min-max range of values. 
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Statistical analysis. In total 52 ultrasonic data sets of MST were used for the method 
verification and statistical analysis. All measured values were expressed as a mean 
value ± standard deviation (SD). The Kolmogorov-Smirnov test shows that the data 
are normally distributed (p<0.05). Pearson’s linear correlation coefficient (r) was 
used to determine the relationship between thicknesses measured using different 
methods. 

The sensitivity (Se) and specificity (Sp) was evaluated in order to demonstrate 
the thickness measurement method reliability (mT and aT compared with pT). The 
other researchers (16, 139) divided skin lesions into two groups - thin (<1 mm) and 
thick (>1 mm). In this study, all MST were up to 1 mm thickness, so the MST were 
divided into groups according to the mean value of the histologically measured 
thickness without infiltrate (<0.5 mm and >0.5 mm) for Se and Sp evaluation. 
Sensitivity and the specificity were evaluated by using equations proposed in Table 
1.5, where true positive (TP) is the situation when pT and T are ≤0.5, false negative 
(FN) was determined when pT ≤0.5 and T >0.5, true negative (TN) is the situation 
when pT and T are more than 0.5, and false positive (FP), when pT >0.5 and T ≤0.5. 
Differences between the thicknesses measured histologically and using ultrasound 
were analysed applying the Bland-Altman method (146). The Bland-Altman plot is a 
simple method to evaluate a bias (systematic error) between the mean differences, 
and to estimate the 95% limits of agreement (1.96 SD). 
Determination of the parameters of the algorithm. In the time-frequency analysis, 
it is important to find the compromise between the time and frequency resolution, 
which are inversely related. The resolution was improved by using a bell-shaped 
window (Hamming window), as the spectral leakage is reduced (147). The 
relationship between PSD window length and the correlation obtained by comparing 
the histological measurements with the proposed approach was investigated (see 
Fig. 3.6.) by using all 52 clinical cases. The analysis demonstrated that 38 Hamming 
window samples (0.14 mm and is equal to double axial resolution) with a 50% 
overlap of the previous window is optimal for PSD calculation.  

 

Fig. 3.6. Relationship of window length with correlation coefficient obtained between 
histologically evaluated thicknesses and automatically measured thicknesses 

The amplitude thresholding of the parametric IBS signals was used for the 
detection of surface and bottom boundaries. The relative threshold levels of the 
maximum amplitude value of each IBS signal from 0.01 up to 0.1 was tested by 



58 

calculating its relationship with the correlation coefficient between the histologically 
evaluated thickness and automatically measured thicknesses. The analysis 
demonstrated that 0.05 is an optimal threshold level (see Fig. 3.7.).  

Results. The average of the manually measured ultrasonic MST thickness (mT) was  
0.57 ± 0.27 mm, and it was overestimated in 31 cases (59.6%). The correlation 
coefficient between mT and pT was 0.64 (statistically significant, p<0.001), and 
correlation of pT with infiltrate was slightly higher (r=0.68, p<0.001). The 
differences between the manually measured thickness and the histological thickness 
(first pathologist) are presented in Fig. 3.8. A, via the Bland-Altman plot.  

The maximum thickness of the MST was measured in parametric IBS image 
automatically, using the algorithm described above. The average of the 

 

Fig. 3.7. Relationship of threshold level with correlation coefficient obtained between 
histologically evaluated thicknesses (with and without infiltrate) and automatically measured 

thicknesses  

 
A B 

Fig. 3.8. Bland-Altman plots showing differences between histologically and ultrasonically 
(manually and automatically) measured thicknesses: A - differences between histologically 
and manually measured ultrasonic thicknesses; B - differences between histologically and 

automatically measured ultrasonic thicknesses using the proposed algorithm. 
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automatically measured ultrasonic thickness (aT) was 0.46 ± 0.2 mm. On the 
contrary, aT was underestimated compared to the histological Breslow thickness  
(pT < aT in 20 cases or 38.5%). The correlation coefficient was higher (r=0.83,  
p<0.001) than in the case of mT. In the case of pT with infiltrate, the correlation was 
slightly lower (r=0.78). The Bland-Altman plot (see Fig. 3.8 B) shows the 
differences between the automatically measured thickness and the histologically 
measured thickness. 

The sensitivity of the automatic thickness measurement algorithm was 90% 
compared with thickness measured by the first pathologist and 97% by the second. It 
was higher than the manually measured ultrasonic thicknesses sensitivity (compared 
with the first pathologist measurements - 73%, and the second - 76%). The 
specificity of aT (compared with the first pathologist - 73%, and the second - 78%) 
and mT (compared with the first pathologist - 73%, and the second - 74%) varied 
less. 
Discussion. Manually measured thin MST thicknesses were overestimated in  
31 (59.6%) cases. The same tendency has been found by other researchers (15, 64). 
The authors discuss the influence of the surrounding subtumoural infiltrate or  
pre-existing nevus cells in cases of melanoma for the ultrasonic overestimation (15, 
64). This study shows that the tendency of ultrasonic thickness overestimation was 
non-significantly related to the presence of subtumoural infiltrate. However, 
histologically measured MST thickness with subtumoural infiltrate was evaluated 
measuring it down to the deepest cell of the infiltrate. The density of the 
lymphocytic infiltrate is irregular and the infiltrate is the densest right behind the 
lesion. After envelope detection and logarithmical compression, the small echoes 
from the normal skin cells are not distinguishable and it is difficult to differentiate 
the bottom boundary of the lesion during the evaluation of MST. The accuracy of 
the ultrasonically estimated MST thickness highly depends on the resolution of the 
transducer or the fundamental frequency. Gambichler et al., (13) shows that 
overestimation (positive bias) by using 100 MHz ultrasound is smaller than using  
20 MHz ultrasound. 

In this study, the histologically evaluated tumour thickness was higher than the 
automatically evaluated thickness in 26 cases, pT was lower in 20 cases and in  
6 cases the thicknesses were about the same. The underestimation over 0.1 mm was 
in only 13 cases. Underestimation can occur in the cases, when small groups of 
melanocytic cells penetrate the dermis. The curved spatial shape of the polynomial 
fitting during the approximation of the detected set of MST bottom boundary points 
reduces the thickness in these cases. However, the systematic bias has not been 
observed. The underestimation can occur due to random errors. This is not a 
significant rule in the presented case.  

Histological and manual ultrasound thicknesses are dependent on the 
experience of the clinician (12). However, Guitera et al., (12) have shown that the 
differences from two experienced dermatologist manual measurements on the basis 
of ultrasonic B-scan images are negligible and a high correlation was obtained 
(Pearson correlation coefficient 0.98 according Guitera et al.). So, in this study 
measurements carried out by two pathologists were compared, while the manual 
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ultrasonic measurements had been carried out by a single experienced dermatologist. 
The dermatologist stores the data collected from the mid-section of MST in one 
direction, assuming that is where the skin tumour is thickest. However, it is 
recommended to collect data from several regions in a few orthogonal directions in 
order to satisfy the assumption that the maximal skin tumour thickness is measured, 
or apply volumetric assessment of the MST.  

The algorithm was developed on the basis of the acquired raw ultrasound data, 
without the application of non-linear time gain compensation and therefore it could 
be easily translated into other laboratories in the case of the same signal acquisition 
circumstances. In general, the results, by using the same ultrasonic frequency band, 
should also be the same. However, if the scanning settings (frequency, non-linear 
gain) are altered it may influence the results and therefore calibration would be 
preferred.  

The issue on how to improve the quality of the ultrasonic image and extract 
more objective features of the MST is very important, especially for the detection of 
early stage tumours. Phase and frequency parameters extracted from ultrasonic RF data 
could be indicators to enhance the quality of the image and improve the diagnostic 
potential of skin tumours in vivo. The ultrasonic image interpretation presented by 
different investigators in general has not been identical and even differs 
substantially. The algorithm developed for automatic ultrasonic assessment of skin 
tumours could be improved adapting other ultrasonic RF data parameters. Automatic 
MST boundary detection will be used for feature extraction, in order to diagnose the 
melanoma on the basis of RF data.  

3.3  Metrological evaluation of the proposed thickness measurement method 

Reliable measurements in diagnostic ultrasound are very important, since the 
decisions are based on the measurement results. The results are usually comparable 
with the results evaluated by using other techniques as a reference or with real value 
of measurand. The ISO-GUM (Guide to the Expression of Uncertainty in 
Measurement) defined the uncertainty as “parameter, associated with the result of a 
measurement, that characterises the dispersion of the values that could reasonably be 
attributed to the measurand” (148). The measurement uncertainty indicates a 
deficiency of information, and incomplete knowledge about measurands. The 
uncertainty describes measurement reliability if all systematic effects (or bias) are 
well defined. Unfortunately, estimation of bias and uncertainty is difficult, when 
digital signal processing algorithms are used (149) in the measurement procedure. In 
this subsection, the proposed thickness measurement method will be evaluated 
metrologically by using real clinical data and the modelled ultrasonic data of MST. 
The random errors of non-invasive thickness measurement may occur when the 
ultrasonic transducer is not exactly orthogonal to the deepest point of the lesion. 
Histological samples may be damaged before thickness measurement due to serial 
procedures before examination. These errors are unavoidable. 
Uncertainty of the reference (histological) measurement. In section 3.3 the 
automatically and manually evaluated thicknesses of MST using ultrasonic B-scan 
data were compared with the histologically evaluated thicknesses of MSTs, while 
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histological evaluation is assumed as the “gold standard” in clinical practice. Corona 
et al., (150) show substantial agreement (kappa value 0.76) between tumour 
thicknesses measured by four experienced histopathologists. However, histological 
thickness measurements are strongly dependent on the experience of the pathologist, 
and on the physiological and psychological condition of the expert. Many factors 
can influence the accuracy of histological thickness measurement, such as irregular 
skin surface or non-orthogonal measurement.  

Other authors (151) discuss skin tissue shrinkage, which occurred after 
excision due to natural skin retraction. It was shown that histopathologically 
assessed tumour thickness is slightly lower than the thickness evaluated using 
ultrasonic B-scan images in vivo (152). The authors show a relative change of 
thicknesses evaluated by using ultrasonography before excision (1.0 ± 0.2 mm) and 
histopathologic measurements after fixation (0.98 ± 0.16 mm) (152). However, these 
changes are not a decisive factor in histological thickness measurements. 

A series of procedures are carried out through the preparation of the 
histological sample. The samples may be damaged during fixation, paraffin 
embedding, and sectioning. These factors are critical for accurate histological 
tumour thickness measurement. Also, the fixed materials are divided into two parts, 
where it is expected that the tumour is the thickest, before paraffin embedding.  

Histological tumour thickness evaluation may be influenced by the limited 
resolution or scale of hardware (microscope), as well. In this study, an Olympus 
BX43 (Germany) optical microscope and 10x magnification ocular with micrometer 
was used. The scale interval of the micrometer is 0.01 mm and its leads to the type B 
standard uncertainty of histologically measured thicknesses of 0.005 mm.  

All these factors, which may influence histologically evaluated thickness are 
assumed to be negligible in medicine, while histologically measured thickness is 
assumed to be the “gold standard” (the reference measurement) and it was used as 
the reference measurement in this study.   
Uncertainty of the proposed measurement method. Measurand d in this case is the 
automatically evaluated tumour thickness (aT) by using the proposed method. The 
thickness is not determined directly, the algorithm measures the TOF of the 
ultrasonic waves, which are reflected from the MST boundaries. The thicknesses in 
mm are evaluated by using the TOF value (Δt) and a constant ultrasound velocity  
(c=1580 m/s): 

.
2

tcd 
  (3.4)  

The results of the previous section showed that the proposed automatic 
thickness measurement method give the results (differences between thicknesses 
measured by two methods) with smaller variance to the manual measurements on  
B-scan images by using interactive markers when comparing the thicknesses with 
histopathology (Fig. 3.8.). The systematic error (or bias) of the measurement method 
(n=52) and A type uncertainty of the error was evaluated in the cases of manual and 
automatic measurements (see Table 3.2). Differences of measured thicknesses were 
distributed according to normal distribution.  
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Table 3.2. Systematic error of automatically and manually on ultrasonic B-scan 
images measured thicknesses comparing the measurements with histopathology 

 n Systematic error 
(bias), mm 

Standard 
uncertainty, mm 

Manual US vs. Histological 52 0.06 0.03 
Automatic US vs. Histological 52 -0.05 0.02 

Type A standard uncertainty of the systematic error (mean thicknesses differences) 
was evaluated according equation (153):  

,)(
)1(

1)( 2

1
dd

nn
du

n

k
k 


 


 (3.5) 

where kd  is the difference between measurement results of the two methods  
(pT -mT and pT -aT), k=1….n is the number of cases (n=52), d  is the mean of the 
differences of two measurement methods, evaluated according to equation: 
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where dpT is the thickness evaluated histologically, and daT/mT is the thickness 
evaluated automatically by using the proposed method (aT) or evaluated manually 
by an experienced dermatologist (mT). The systematic error describes the mean of 
the differences between the MST thicknesses measured by using the proposed 
method (aT) and the average of the real MST thicknesses (pT). According to the 
requirement of the ISO GUM the measurement results should be corrected 
(eliminated or minimised), when the systematic error is known (148, 154). Also, the 
uncertainty of the evaluation of the systematic error should be assessed and 
combined with the other combined uncertainty components of the measurement 
values. However, in the discussion of the proposed measurement method (subsection 
3.2) it was mentioned that the underestimation of the measured thicknesses is not a 
decisive rule and can be related with the physiology of the MST, not with the 
measurement method. So, the systematic error could not be eliminated from the 
measurement results in this study by the additive correction coefficient. However, 
after a large-scale study, the systematic error could possibly be eliminated through 
the measurement process.  

The proposed method is based on time-frequency analysis of ultrasonic RF 
data. The time delay of the ultrasound of the melanoma is measured by applying the 
threshold on the parametric IBS signal. Additional uncertainty components occur 
due to IBS parameter estimation in the frequency domain. The type of window 
influences the resolution observed in both the time and frequency domain. In this 
case a Hamming window was used in order to obtain a trade-off between time and 
frequency resolutions. A suitable window and interpolation reduce spectral leakage 
caused by the sampling process (147). Usage of the threshold brings additional 
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errors as well. So, the combined uncertainty of the method will be evaluated on the 
modelled ultrasonic MST signals.  

The thicknesses of MST (n=52) were measured in the range from 0.07 mm up 
to 1 mm. The relationship between thicknesses measured by reference and proposed 
methods together with a linear approximation is presented in Fig 3.9. The MSTs 
were divided in to 4 thicknesses groups (based on reference measurements) for the 
evaluation of type A standard uncertainty. A division criterion of the thicknesses 
groups was that all groups should have at least 10 cases of MST. The thicknesses 
groups and number of cases in all groups are presented in Table 3.3. The average of 
n independent observations and the type A standard uncertainty are presented in the 
table. The uncertainty was evaluated according to the equation: 
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where i (i=1, 2, 3, 4) is the index of thicknesses group, n is the number of cases in 
thicknesses group n=1, 2…k, id is the average thickness of i-th thicknesses group, 

kid ,  is the thickness of MST.  

The analysis shows that the uncertainty as well as mean difference between 
automatically measured thicknesses (aT) and reference measurement (pT) increases 
with increasing the thicknesses of MST. However, the relative standard uncertainties 
vary slightly in the groups (see Table 3.3). 

 
Fig. 3.9. The relationship between thicknesses measured by reference and proposed 

methods together with a linear approximation (solid line), circles with error bars mark the 
means of the thicknesses groups with the experimental uncertainty 
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Table 3.3. Type A standard uncertainty of the proposed thickness measurement 
method for thicknesses groups  

No. Range, mm n Mean difference 
(aT-pT), mm 

Mean of 
aT, mm 

Type A standard 
uncertainty (uaT), 

mm 

Relative standard 
uncertainty 

(uaT/aT) 
1 0<pT≤0.3 12 -0.02 0.26 0.02 0.09 
2 0.3<pT<0.5 13 0.04 0.37 0.02 0.05 
3 0.5≤pT<0.7 16 0.06 0.51 0.03 0.06 
4 0.7≤pT≤1 11 0.13 0.72 0.06 0.08 

pT - histologically measured thickness, aT - automatically measured thickness, n - number of cases 

Uncertainty due to ultrasound velocity. Ultrasound velocity of human skin is 
assumed to be 1580 m/s and is usually used in thickness measurements of MST (14, 
82). However, M. Weichenthal et al., (82) determined, that the ultrasound velocity in 
melanoma tissue may be slightly lower than in human skin. These differences can 
affect ultrasonic thickness measurements. The authors have shown that the speed of 
sound in MM varies between 1553 m/s and 1588 m/s with a mean of 1564 m/s (82). 
However, the ultrasound velocity value of benign melanocytic lesions is not known. 
The authors measured the ultrasound velocity only of four different MM specimens 
ex vivo (82). So, a rectangular distribution is assumed for the evaluation of type B 
standard uncertainty. Standard uncertainty due to ultrasound velocity difference in 
the tissues is expressed as (148): 

32
cu c


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where Δc ((1588-1553) m/s) is the difference of the measured ultrasound velocity by 
Weichenthal et al., (82). The differences of the ultrasound velocity in melanoma 
tissue influenced the emergence of the B type standard uncertainty of Δc=10 m/s. 
Predicted errors due to changes in ultrasound velocity are in the limits of 6.4 µm for 
MST possessing 1 mm thickness. The uncertainty due to constant ultrasound 
velocity is linearly dependent on thickness, and varies according to 
function ddu c 02.0)(  . The speed of sound depends on the mechanical properties 
(stiffness and density) of human tissue, if it is assumed that the temperature of 
human skin is the same. Also, the mechanical properties of the skin are dependent 
on the skin layer and on the persons age (20). However, to date, it is not defined how 
the ultrasound velocity of MST varies due to the physiology of the skin. The 
ultrasound velocity of the skin tumours is difficult to evaluate, while the excised 
tumours are fixed in a formalin solution for histological procedure immediately. 
There is the possibility of damaging the exited tumour before histological 
examination if high frequency ultrasonic scanning is applied. The ultrasound 
velocity is dependent on the temperature of the material through which the 
ultrasonic wave propagates. The temperature of the human skin varies slightly and 
the distilled water used for coupling was at room temperature (22o) throughout the 
clinical ultrasonic data collection of MST. Therefore, the uncertainty component due 
to temperature is assumed as negligible.  
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Uncertainty due to time discretisation. The TOF in ultrasound can be measured by 
using various digital methods, such as zero-crossing, cross-correlation, threshold etc. 
The measurement of TOF uncertainty (also the thickness uncertainty, when 
ultrasound velocity is constant) is related with the sampling frequency. In this study 
the system with 100 MHz sampling frequency was used. This caused the 
discretisation time interval of Δt=0.01 µs, and the uncertainty of time discretisation 
is uΔtd=5 ns. The proposed thickness measurement algorithm is based on PSD 
calculation. In the case of PSD, the signal spectrum is evaluated through a time 
window, which is sliding with a specified overlap. The time resolution is reduced 
then. In order to increase the resolution for TOF measurements, the interpolation 
technique was used. The discretised time interval was interpolated twice up to 5 ns, 
and then uΔtd=2.5 ns, this leads to the type B standard uncertainty of 2 µm for the 
thickness measurements.  
Uncertainty due to non-orthogonal position of the transducer. A dermatologist 
performing the examination determines the position of the transducer. The 
transducer is moved thought the lesion by searching the thickest cross-section of the 
tumour. It is obvious that this examination and ultrasonic data collection is observer 
dependent. However, the uncertainty component due to the non-orthogonal position 
of the transducer is unavoidable and irregular, while the tumours have no irregular 
shape.  

3.4 Uncertainty evaluation of the proposed measurement method by using 
modelled ultrasonic data 

 The method validation was made in order to estimate the systematic error, 
without random errors, of the model and to compare it with the error of experimental 
measurements performed on real clinical data. This analysis can provide the 
information about random errors, which appear during clinical examination of MST 
(ultrasonic data collection, histological evaluation) and basically depends on 
observers. The modelling avoids the uncertainty components due to non-orthogonal 
position of the transducer, and uncertainty of the histologically measured thickness. 
The ultrasound velocity was assumed as constant while performing the simulation. 
So, the systematic error of the thickness measurement method and the type A 
uncertainty can be evaluated by using the analytically simulated data. 

The backscattered signals from the skin tumours were simulated as described 
in section 2.3. A large number of reflectors were used in order to get a more realistic 
model of the skin tumours. The average coordinates of the reflectors, located in the  
-6 dB focal zone (0.6 mm) of the transducer, were found by moving the averaging 
window with a step equal to the transducer scanning step (33 µm), and assumed as 
the real boundaries of the tumour. The spatially distributed scatterers and the 
simulated ultrasonic B-scan image with the determined coordinates of the scatterers, 
which were used for the proposed thickness measurement method validation, are 
shown in Fig. 3.10. The different thicknesses MST (in the range from 0.2 mm up to 
1 mm, 12 ultrasonic datasets) were modelled in order to get the range of the 
systematic error and the combined uncertainty of the proposed measurement 
method. 
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A B 

Fig. 3.10. A - spatially distributed scatterers of MST model with real determined coordinates of 
surface and bottom boundaries; B - the modelled B-scan image of MST with the real 

coordinates of surface and bottom boundaries, the real thickness is 0.39 mm 
The simulated ultrasonic RF signals were used for time-frequency analysis and 

recalculated into parametric IBS signals (see Fig. 3.11). In this case, the tumour 
thickness was measured from the peak of the surface reflection to beginning of the 
bottom reflection. In the case of real skin tumours, the surface of the skin is covered 
by stratum corneum, which consists of dead cells (see Fig. 1.1). Possibly this layer 
reflects the most part of the ultrasonic waves energy. Therefore, in the case of real 
clinical data, the surface was assumed, when the IBS signal decreases down from the 
peak to the selected threshold (0.05 level of maximum amplitude value of parametric 
IBS signal). However, the total thickness of the epidermis is on average 0.1 mm (see 
Fig. 1.1.) and the 22 MHz ultrasound wavelength is 0.07 mm. Therefore, it is 
impossible to distinguish different layers of the epidermis. The bottom of the lesion 
has been found applying the same procedure as in the method used for real clinical 
ultrasonic data of MST. 
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Fig. 3.11. Simulated ultrasonic RF signal at the mid-line of MST model, dreal is the real 

thickness of the simulated MST, daT is the thickness measured by using the proposed method 
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The time-frequency analysis of the simulated ultrasonic signals, which 
intersect the simulated MST (at the limits of the scanning axis from -3 up to 3 mm), 
was performed. The thickness of MST was evaluated at the mid-line of the MST 
model. The results of the thickness measurements on the simulated ultrasonic MST 
signals are presented in Fig. 3.12 via the Bland-Altman plot, which shows the 
systematic error (-0.03 mm, solid black line) and its evaluation uncertainty (pointed 
line) and the range of agreements (1.96 SD), within which 95% of the differences 
between the automatic method and real thickness are found. The correlation 
coefficient of the measured thicknesses and real thicknesses of the modelled MST 
are 0.99 (p<0.001).  

The analysis of the thickness measurement method on the modelled ultrasonic 
data has shown that the method slightly overestimates thin tumours (in the range  
0-0.4 mm) and underestimates the thicker (in the range 0.6-1 mm). This can be due 
to the window used for time-frequency analysis, threshold and polynomial 
approximation (1-7 order). 

 
Fig. 3.12. The results of the differences of thickness measurements on the simulated skin 
tumours by using the proposed method compared with the real thicknesses of the model, 

solid black line shows the systematic error of the measurement method 

The proposed algorithm validation on the simulated data revealed a smaller 
systematic error and the smaller type A standard uncertainty of the systematic error 
(systematic error -0.03 mm, uΔd′=0.02 mm) by comparing it with the measurement 
results of the real clinical data of MST (mean difference of -0.05 mm,  
uΔd=0.02 mm). The uncertainty of the systematic error obtained by using the 
modelled data will be used for the evaluation of the combined and expanded 
uncertainty of the measurement method and compared with the uncertainty obtained 
by analysing the real clinical data.  

The discussed components of the uncertainty are not correlated. The combined 
uncertainty can be evaluated by combining the individual standard uncertainties 
(arising from type A and type B evaluation). The combined uncertainty is composed 
of three sources of standard uncertainty and is evaluated according to the equation: 

Systematic error 

Uncertainty source due to 
difference from the reference 

measurement, uΔd 
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where W is the sensitivity coefficient of the uncertainty component, and it can be 
found through partial derivatives. In this study, the sensitivity coefficients of all 
uncertainty components are assumed to be 1. All the standard uncertainties are 
presented in Table 3.4. The analytically evaluated combined uncertainty depends on 
the estimated thickness linearly according to the equation ucomb=(0.02d+0.02) mm, 
where d is the evaluated thickness of skin tumour (Fig. 3.13 A, dashed line, y2). For 
MST of 0.1 mm the combined uncertainty is 0.02 mm and when the thickness is  
1 mm the uncertainty is 0.04 mm.  

According to the GUM (148) requirements the expanded uncertainty of the 
measurements should be available with an appropriate level of confidence. The 
expanded uncertainty is obtained by multiplying the combined uncertainty by a 
coverage factor, which is usually in the range of 2 up to 3 (148). According to the 
European Accreditation recommendations of the evaluation of the uncertainty of 
measurement in calibration (155) the coverage factor equal to 2 can be assumed 
when the combined uncertainty have a normal distribution. The normal distribution 
is assumed if at least three uncertainty components derived from normal or 
rectangular distributions are contributing to the combined uncertainty. So, the 
expanded uncertainty with the coverage factor k=2 and the probability of 
approximately 95% can be described as (d ± 0.04d+0.03) mm, where d is the MST 
thickness measured by using the proposed automatic thickness measurement 
method. 

Discussion. The uncertainties of the proposed thickness measurement method were 
evaluated by using the ultrasonic data of real (n=52) and modelled ultrasonic data of 
MSTs (n=12). The analytically evaluated combined uncertainty was lower than the 
experimentally evaluated uncertainty of the four thicknesses groups (see Fig. 3.13 
B). This can be explained by the random errors, which occur during the clinical 
ultrasonic examination (non-orthogonal positioning of the transducer during 
scanning, different scanning plane in respect to the one analysed by pT, etc.) of the 
MST.  

Table 3.4. Uncertainty components of the proposed thickness measurement method 

Source of uncertainty Distribution Standard uncertainty, mm 
Systematic error (due to difference 
from the reference measurement), uΔd 

Normal 0.02 (A) 

Sampling, uΔtd Rectangular 2∙10-3 (B) 
Constant ultrasound velocity, uc Rectangular uc(d)=0.02d (B)* 
Combined uncertainty  
(analytically evaluated) Normal ucomb(d)=0.02d+0.02* 

Experimentally evaluated 
uncertainty, uaT Normal uaT (d)=0.07d+0.02(A)* 

Expanded uncertainty uexp(d)=0.04d+0.03* 
*d - is the measured thickness in mm  
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Fig. 3.13. Combined uncertainty of the proposed thickness measurement method:  
A - experimentally (y1, solid black line is the linear approximation) and analytically (y2, 

dashed line is the linear approximation) evaluated uncertainties of the thicknesses 
measurements; B - experimentally and analytically evaluated relative combined uncertainty 

The simulation results have shown that the measurement results do not have 
the error, are systematically repetitive in all measurements (see Fig. 3.11), and 
which can be eliminated from the measurement results. However, the average of the 
results is slightly biased (-0.03 mm). This bias could possibly be explained by the 
presence of tissue-like speckles (spatial distribution of reflectors). The analysis of 
the relative combined uncertainties showed the mismatch of experimentally 
evaluated uncertainty with theoretical tendency (analytical evaluation, see Fig. 3.13 
B). The relative uncertainty of relatively thick (0.7 mm ≤ pT ≤1 mm) tumours was 
higher than that of the medium thickness. After visual analysis of the ultrasonic 
images of MST which belong to the fourth thicknesses group, it can be concluded 
that the mismatch of the thicknesses is possibly due to incorrectly acquired 
ultrasonic data (the B-scan does not represent the widest part of the tumour) or due 
to inaccurate histological measurements. This error is observer-dependent and it 
cannot be evaluated analytically. The error due to the non-representable scanning 
plane can be eliminated by using 3-D scanning (through the whole volume of the 
tumour). However, 3-D scanning is not easily realised in the case of high frequency 
ultrasound, when a single element focused transducer is used. The measurement 
error of real clinical data of MST can be influenced by the anatomy of the skin 
tumours (density of the lymphocytic infiltrate under the tumour) as well. 

It should be mentioned that the uncertainties of the experimental data were 
evaluated through four thicknesses groups, this may lead to a larger uncertainty 
through the range of thicknesses. In order to evaluate the experimental uncertainty 
more precisely, more ultrasonic datasets (orthogonal scanning planes) of the same 
lesion should be registered. 

The use of higher (20-100 MHz) ultrasonic frequencies, 3-D ultrasonic data 
collection and the wider knowledge of the acoustic parameters (ultrasound velocity 
and attenuation) of the tumour could help to reduce the uncertainty of the thickness 
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measurement by using the proposed method or even upgrade the method for more 
precise measurements. 

3.5 Conclusions of the 3rd chapter 

1. The method for automatic MST thickness measurement, based on the 
evaluation of the ultrasonic time-frequency parameter (IBS), was developed. 
The measurement method was tested with the real clinical data (n=52), 
thicknesses compared with the “gold standard” histologically measured 
thicknesses. 

2. The results show that measurements of thin (up to 1 mm) MST thicknesses 
(n=52) using the proposed algorithm, are closer to the histologically evaluated 
thicknesses in comparison to the manually evaluated MST thicknesses on 
ultrasonic B-scan images by an experienced dermatologist (standard uncertainty 
of the systematic error decreased from 0.03 mm down to 0.02 mm). 

3. The experimental and analytical combined uncertainties of the proposed 
automatic thickness measurement method were evaluated, the results show that, 
the value of uncertainty is linearly dependent on the measured thickness 
(experimentally - 0.07d+0.02, analytically - 0.02d+0.02, where d is the 
measured thickness). The accuracy of the measurement results is strongly 
influenced by the random factors, such as transducer position during scanning. 
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4. SET OF METHODS FOR ULTRASONIC CHARACTERISATION AND 
DIFFERENTIATION OF MELANOCYTIC SKIN TUMOURS 

As mentioned above, ultrasonic waves are reflected and scattered by small 
structures as they propagate through the biological tissue. Various features such as 
density, size or distribution of the reflectors affect the scattering. Quantitative 
features of ultrasonic B-scan images obtained by means of texture analysis could be 
informative parameters in order to characterise the type of tissue and its pathological 
state. Spectral RF ultrasonic parameters could be used for a more detailed analysis, 
as well. Quantitative tissue characterisation combining parameters derived from RF 
ultrasonic signals and B-scan images is a multiparametric approach. The goal is to 
evaluate a lot of parameters and then select the most informative for further tissue 
differentiation tasks. The potentiality of differential diagnosis of MST using 
quantitative parameters derived from RF ultrasonic signals and B-scan images is 
presented in this chapter. The diagram of the proposed set of methods for MST 
ultrasonic parameter evaluation and classification is presented in Fig. 4.1.  

 
Fig. 4.1. Diagram of the proposed set of methods for differential diagnosis 



72 

 Experimental data. For the examination of the proposed system 120 (78 women 
and 42 men) patients of 18 to 89 years of age with clinically suspicious MST were 
involved. Histological examinations had shown that there had been 49 melanomas 
(25 superficial spreading, 1 lentigo maligna, 5 acral lentiginous, 2 nodular 
melanoma, 2 spindle cells, 3 in situ and 11 unidentified morphological types), 71 
had been MN, of which 35 were dysplastic melanocytic nevi. Histological 
thicknesses of MST varied from 0.25 up to 2.5 mm (median of 0.64 mm). Data had 
been collected at the Department of Skin and Venereal Diseases of the Lithuanian 
University of Health Sciences (LUHS). The study had been approved by the regional 
ethics committee (No. P2-BE-2-25/2009). All data had been collected with the 
approval of the institutional review board after the consent of informed patients had 
been received in accordance with the Declaration of Helsinki.  

 The B-scans were acquired scanning one cross-section or two orthogonal 
cross-sections. Each scan was obtained when the deepest cross-section of the tumour 
was found during clinical examination of the MST by a dermatologist. In this study 
160 ultrasonic datasets (80 of melanoma and 80 of benign nevi (40 of them were 
dysplastic)) of 120 patients (49 MM and 71 MN) were analysed: 80 patients had a 
single dataset (B-scan consisting of 382 scanning lines) and 40 had two datasets 
(two orthogonal B-scans). The acquired datasets are presented in Table 4.1. 
Examples of B-scan of MM and MN are presented in Fig. 4.2.  

  
A B 

  
C D 

Fig. 4.2. An example of B-scan images of MST: A - B-scan image of superficial spreading 
melanoma, B - of acral lentiginous melanoma, the histologically evaluated thicknesses of 

both (A and B) melanomas were 0.5 mm; C - the B-scan image of compound nevus, D - of 
dysplastic compound nevus, histologically measured thicknesses of both nevus were 0.6 mm 

MM 
MM 

MN MN 
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Table 4.1 Number of acquired ultrasonic datasets used for examination of the 
proposed methods 

Datasets MM (n=49) MNN (n=36) DMN (n=35) Total 
Single B-scan 18 32 30 80 
Two orthogonal B-scans 31 4 5 40 
Total 80 40 40  

MM is malignant melanoma, MNN - other melanocytic nevi, DMN - dysplastic melanocytic nevi,  
n - number of cases  

4.1 Investigation of ultrasonic parameters for MST characterisation  

The boundary detection algorithm based on the ultrasonic signal time-frequency 
analysis described in Chapter 3 was used in the proposed set of methods for ROI 
extraction. Twenty-nine quantitative ultrasonic parameters based on spectral analysis 
of RF data and envelope statistics have been evaluated for each segmented 
ultrasonic dataset of the lesion region. The summary of the features is presented in 
Table 4.2.  

Table 4.2 Potential features evaluated for melanocytic skin tumour characterisation 
and differentiation 

Parameter group Description References 

Acoustical 
parameters 

2-D spectral 
parameters 

Peak of RISP (RISPpeak) 
Width of RISP (RISPwidth) 
Slope of AISP (AISPslope) 
Intercept of AISP (AISPitercept) 

(113-115) 

Spectral parameters 

Peak value of frequency (fpeak) 
Mid-band value of attenuation (att) 
Attenuation slope (attslope) 
Attenuation intercept (attintercept)  
Backscattering slope (bslope) 
Backscattering intercept (bintercept) 
Backscattering coefficient (bsc) 

(57, 58, 110, 
112, 119)  
 

Shape parameters 
Circularity (C) 
Perimeter (P) 
Area of lesion (A) 
Fourier descriptor (FD) 

(126, 130) 

Textural 
parameters 

First-order 
parameters 

Maximum value (max) 
Minimum value (min) 
Average (mean) 
Variance (var) 
Kurtosis (kurt) 
Skewness (skew) 
Entropy (Ent) 
Signal-to-noise ratio (SNR) 
Full width at half maximum of 
histogram (FWHM) 

(57, 112, 
126, 131) 

Second-order 
(GLCM) 
parameters 

Contrast (Con) 
Correlation (Corr) 
Energy (E) 
Homogeneity (Hom) 
Entropy (EntGLCM) 

(57, 112, 126) 
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These parameters had been used successfully by the authors for ultrasonic 
tissue characterisation in other applications, such as the characterisation of prostate 
tissue, breast tumour, liver tissue, ocular tumour etc. (57, 58, 110, 112-115, 119, 
126, 130, 131). However, they have not been used for MST characterisation up to 
now.  

The parameters can be divided into three groups: acoustical, shape and 
textural. All the features are briefly described below and the average values  
(± standard deviation) for benign and malignant tumours are presented together with 
the results of Stjudent’s paired-sample t-test (p value) (Figures 4.6, 4.9, 4.11-4.13). 

4.1.1 2-D spectral parameters 

The two-dimensional (2-D) spectrum parameters of RF signals have been 
widely explored by Liu et al., (113-115). In the study using phantoms, the authors 
have demonstrated that 2-D spectra are sensitive to scatterers that are smaller than 
the wavelength of the ultrasonic beam (113). The size and the shape of the cells 
change in the case of MM. Possibly, these changes can be detected by using the 2-D 
fast Fourier transform (FFT). The quantitative parameters of the 2-D spectra can be 
informative for the MST characterisation. 

Spectral analysis of the segmented backscattered ultrasonic RF signals had 
been performed. Segmented RF signals were gated by the Hamming function along 
the range (axial) and cross-range (lateral) direction. In order to get the rectangular 
area of interest (AOI), the signals had been zero padded up to equal length (see Fig. 
4.1).  

First of all, the reference spectrum for the 2-D spectrum calibration along the 
range direction had been evaluated using signals reflected from the flat Aqualene™ 
low attenuation elastomer (Olympus corporation, USA), which had been designed 
specifically for ultrasonic applications (144). Spectrum calibration allows the tissue 
dependent characteristics to be obtained. The effects of transducer (diffraction) and 
the system are compensated via deconvolution. Reflections from a “perfect” 
reflector (optically flat glass plate) are usually used for the calibration spectrum 
computation. However, the elastomer was used in this study in order to get the 
reference signal using the same gain setting as had been used during acquisition of 
tissue echo signals. The elastomer plate was placed orthogonally to the beam axis at 
the focal zone of the transducer. The average reference spectrum was computed 
using 100 A-scan signals. Averaging increases the SNR, and the electronic noise 
level is reduced. The reference spectrum is presented in Fig. 4.3. The frequencies f1 
and f2 were assumed to be the lower and upper of the informative range of reference 
spectrum at -6 dB (see Fig. 4.3.), which was later used for parameters derivation. 
The estimated range was from 18 MHz up to 29 MHz (at -6 dB). One-dimensional 
FFT was applied along each scan line of the AOI and divided by the 1-D calibration 
spectrum in order to remove the effects of the transducer and system. The resulting 
complex spectra from the axial transform is then transformed with respect to  
cross-range.  
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Fig. 4.3. The reference spectrum, used for calibration and the estimated informative 

frequency range (upper and lower frequencies f1 and f2) 

Two spectral functions, radially integrated spectral power (RISP) and 
angularly integrated spectral power (AISP), proposed by Liu et al., (113-115), were 
used in this study for quantitative characterisation of MST. RISP can be defined as 
integral of 2-D spectral power along radial lines as a function of its angle φ (see  
Fig. 4.4 A) according to the equation (113-115): 
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where cfk /2  is a spatial frequency along the range direction (depth axis), 
k1=71.6 mm-1 and k2=115.3 mm-1 is the lower and upper spatial frequencies of the 
reference spectrum at -6 dB respectively, c=1580 m/s is the speed of sound, 

)tan( nkl  is a spatial frequency along the cross-range direction, φn is the angle 
within the frequency range and varies in range from -7.2o up to 7.2o, and S2D is the 
calibrated 2-D power spectrum in dB units. Two spectral parameters were evaluated 
by the RISP function: the peak value of RISP (dB) and width of RISP (degrees) at  
-3 dB level (see Fig. 4.4.).  

A B 
Fig. 4.4. An example of 2-D power spectrum (A) with lines of the integration for 

acquisition of radially integrated spectral power function (B) 

f1 f2 
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AISP is obtained by integrating spectral power over an arc (with radius 
22)/2( lcfR nn   , centre of the circle is equal to 0) at temporal frequencies fn, in 

the range of the reference spectrum at -6 dB (18-29 MHz) and calculated using the 
following equation (113-115):  
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where ϕ is the angle that intercepts the arc (φmax-φmin), and ds is the segment of the 
arc. Two spectral parameters were evaluated by the linear approximation of AISP 
function: slope (dB/MHz) and intercept (dB) (see Fig. 4.5, B). RISP and AISP are 
assumed to be sensitive to the scatterers size and shape along the range (axial) and 
cross-range (lateral) directions (113) and provide more information than in the case 
of 1-D spectrum analysis. The averaged values with standard deviation of 2-D 
spectral parameters of benign and malignant MST are presented in Fig. 4.6. The 
analysis has shown that only the peak value of RISP function have a significant 
(p=0.024) difference between two classes (benign and malignant MST). 

 
A B C D 

Fig. 4.6. Comparison of 2-D spectral parameters for two groups (MM - malignant melanoma 
and MN - melanocytic nevi): A - peak value and B - width of radially integrated spectral 

power function, slope (C) and intercept (D) of angularly integrated spectral power function. 
Results presented as mean with standard deviation, p value is the significance level of 

difference between two classes  

  
A B 

Fig. 4.5. An example of 2-D power spectrum (A) with arcs used for computation of 
angularly integrated spectral power function (B), pointed line mark linear approximation of 

the function 
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4.1.2 Spectral parameters 

It is supposed that spectral functions (attenuation and backscattering) are 
related to the collagen and water content in the tissues (58) and have the potential to 
be an informative features for MM diagnosis. However, in vivo estimation of the 
spectral parameters is complicated due to the different thicknesses of the lesions and 
variability of the acoustic impedances of the skin layers. Frequency dependent 
attenuation and backscattering functions of the lesions were evaluated in the 
frequency range of the reference spectrum at -6 dB (18-29 MHz) as well as RISP 
and AISP.  

The frequency-dependent ultrasound attenuation was estimated by using 
Fourier analysis of the reflections from the surface and the bottom (see Fig. 4.7.) at 
the mid A-scan line of the tumour (58, 119, 142, 156) according to the following 
equation: 
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where α(f) is the frequency-dependent ultrasound attenuation in dB/mm, d is the 
estimated thickness of the lesion, Asurface(f) is the magnitude of the spectrum of echo 
reflected from the surface of the lesion, and Abottom(f) is the magnitude of the 
spectrum of echo reflected from the bottom of the lesion, both normalised by the 
maximal value of Abottom(f). The equal length echo-signals reflected from the surface 
and from the bottom of the lesion were segmented and gated using the Hamming 
window before the application of the FFT (see Fig. 4.7.). The length of the segments 
of the signal was 0.14 mm, and it should be sufficient, while the theoretical size of 
the independent resolution cell in our case was 0.144 mm axial (≈2λ) and 0.26 mm 
lateral (119, 157). Also, the signals were zero padded in order to achieve higher 
frequency resolution.  

 
Fig. 4.7. Segments of the mid-line A-scan used for frequency dependent attenuation 

estimation 

Attenuation trends were linearly approximated over the bandwidth of the 
reference spectrum using the least squares fitting, while the attenuation is assumed 
to be linear in soft tissues. Three parameters were estimated by using a linear fit: the 
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mid-band value (Att, Fig. 4.9 B), the slope (attslope, Fig. 4.9 C) and the intercept 
(attintercept, Fig. 4.9 D). The limitation of this attenuation estimation technique is that 
it is impossible to evaluate the transmission and reflection coefficients of the skin 
layers (unknown density). An example of the attenuation function of MST is shown 
in Fig. 4.8. A. 

The backscattering function as well as 2-D FFT requires the compensation of 
the spectra. The same reference spectrum as described above in the section 4.1.1. 
was used for the calibration. The backscattering function was estimated as the ratio 
of the mean power spectrum S(f) of the signals backscattered at the ROI (all 
segmented signals) and reference power spectrum Sref(f) according to the equation 
(58): 
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Both power spectra were normalised by the maximum value of Sref (f). A linear 
fit was used for the estimation of the slope (bslope, Fig. 4.9 F) and the intercept 
(bintercept, Fig. 4.9 G) of the backscattering function (see Fig. 4.8. B). An integrated 
backscattering coefficient (bsc, Fig. 4.9 E) was estimated by integrating the 
backscattering function in the frequency range of the bandwidth of the reference 
spectrum. The peak value of the averaged spectrum (fpeak, Fig. 4.9 A) of the ROI was 
included as an additional acoustic parameter. All segmented signals reflected from 
the ROI were used for the spectrum estimation. 

 

A B 

Fig. 4.8. Examples of acoustical functions used for quantitative tissue characterisation:  
A - attenuation function (solid line) with linear fit (dashed line); B - backscattering 

function (solid line) with linear fit (dashed line) 

Mean and standard deviations of spectral features of MM and MN lesion 
classes are presented in Fig. 4.9. The differences of the attenuation parameters of 
benign and malignant MST groups were not significant in this study. It is not 
surprising, because the attenuation estimation is almost impossible in the small 
(thin) tissue sample (such as skin tumours) being interrogated. However, all the 
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parameters of the backscattering function have a statistically significant difference 
between the two groups. 

A B C D 

   
E F G 

Fig. 4.9. Comparison of values of the acoustical parameters for two groups (MM - malignant 
melanoma and MN - melanocytic nevi): A - peak value of the averaged amplitude spectrum, 

B - mid-band value of attenuation, C - slope of attenuation curve, D - intercept of 
attenuation, E - backscattering coefficient, F - slope of backscattering function, G - intercept 
of backscattering function. Results presented as mean with standard deviation value, p value 

is the significance level of the difference between the two classes 

4.1.3 Shape parameters 

Machet and colleges (158) have noticed that the shape of an MM, on the 
ultrasonic images is frequently different compared to an MN. The shape of an MST 
can be different due to the growing phases and angiogenesis of malignant tumours. 
It can be determined by analysing the bottom boundary irregularity of the extracted 
contour of the lesion. Shape parameters of the detected boundaries of lesions are 
used for ultrasonic diagnosis of breast and prostate tumours as well (112, 121, 159).  

The Fourier descriptor (FD) was used to evaluate the bottom boundary 
irregularity in the proposed approach. The differences with standard deviation 
between benign (MN) and malignant (MM) groups of FD value are presented in Fig. 
4.11 D. The first amplitude coefficient of the Fourier transform was included as the 
quantitative parameter. An irregular boundary (expected lower value of FD) can be a 
sign of malignancy (see Fig. 4.10) (160, 161). 

Malignant tumours usually have irregular borders and relatively larger 
perimeter (P), which can be associated with the likelihood that the tumour is 
malignant (see Fig. 4.10.). The perimeter (P, Fig. 4.11 B), area (A, Fig. 4.11 C) and 
circularity (C, Fig. 4.11 A) of the detected boundaries of the lesion were used as 
quantitative shape parameters as well. 
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A B 

Fig. 4.10. An example of detected contour (solid line) of malignant (A) and benign MST (B) 

 Samimi et al., (18) have distinguished three types of shape for the melanoma 
metastasis recognition. They have shown that the shape of the lesion significantly 
differs in the case of melanoma metastasis and blue nevus. Circularity (C, Fig. 4.11 
A) was used as the potential quantitative shape parameter of the detected boundaries 
of the lesion in this study. The circularity is within the range 0-1 (low circularity - 
high circularity) and it was evaluated according to the equation: 

2
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P
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Mean values with standard deviations of the shape parameters of MM and MN 
classes are presented in Figure 4.11. The analysis showed statistically significant 
differences between the two classes in all of the shape parameters.  

  
A B C D 

Fig. 4.11. Comparison of shape features values of detected lesion boundaries for two 
groups (MM - malignant melanoma and MN - melanocytic nevi): A - circularity,  

B - perimeter, C - area, D - Fourier descriptor of the bottom boundary. Results presented as 
mean with standard deviation, p value is the significance level of the difference between the 

two classes 

4.1.4 First order image analysis parameters 

The MST are described as echo-poor compared with the echo-rich epidermis 
and the dermis. Harland and colleagues (68) have found that the average 
echogenicity of melanomas is significantly greater when compared with that of nevi. 
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The small echoes in the intra-tumour region can provide information about the 
lesion type.  

First-order texture parameters provide the information about the brightness of 
the sonogram of the ROI and are used in different tissue characterisation tasks (57, 
89, 125, 141). The statistics describe the grey level histogram of the segmented 
region without considering the spatial relationship of the pixels. First-order 
statistical features are sensitive to the system settings and gain or time-gain 
compensation. In our case, all images were collected with the same settings.  

   
A B C 

  
D E F 

  
G H I 

Fig. 4.12. Comparison of first order image features values for two groups (MM - malignant 
melanoma and MN - melanocytic nevi): A, B, C - maximal, minimal and average amplitude 
values respectively, D - kurtosis, E - variance, F - skewness, G - entropy, H - signal-to-noise 
ratio, I - full width at half maximum of the image histogram. Results presented as mean with 

standard deviation, p value is the significance level of difference between two classes 

Eight first-order statistical parameters were evaluated for each ROI: maximal 
(max, Fig. 4.12 A), minimal (min, Fig. 4.12 B) and average (mean, Fig. 4.12 C) 
amplitude values, kurtosis (kurt, Fig. 4.12 D), variance (var, Fig. 4.12 E), skewness 
(skew, Fig. 4.12 F), entropy (Ent, Fig. 4.12 G), signal-to-noise ratio (SNR, Fig. 4.12 
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H), and full width at half maximum (FWHM, Fig. 4.12 I) of the histogram. Mean 
values with standard deviation of all first order image analysis parameters of the two 
classes of the lesions are presented in Fig. 4.12. The results have shown that three 
parameters of the first order image analysis have no statistically significant 
differences between malignant and benign classes: maximal grey scale amplitude 
value (max), variance of grey scale amplitude values (var) and full width at half 
maximum (FWHM) of the grey level histogram (p>0.05, see Fig. 4.12). 

4.1.5 Second order image analysis parameters  

The dependency of first and second order texture parameters on scatterer 
density was presented on simulated B-scan images in 1986 (141, 162, 163). Until 
now the parameters of the grey level co-occurrence matrix (GLCM) have been 
successfully used for texture analysis and tissue characterisation (57, 112, 163). In 
contrast to the first-order texture parameters, the second-order texture parameters are 
based on the spatial relationship between pixel grey levels, and can describe the 
spatial distributions of information in data (112). The parameters of GLCM depend 
on the number of scatterers and speckle size, and can reflect the changes of the 
internal structure of MM and MN. The co-occurrence matrix was computed for the 
axial direction. The co-occurrence matrix parameters used in this study were as 
follows: contrast (Con, Fig. 4.13 A), correlation (Corr, Fig. 4.13 B), energy (E,  
Fig. 4.13 C), homogeneity (Hom, Fig. 4.13 D) and entropy (EntGLCM, Fig. 4.13 E). 
The mean values of the parameters of GLCM are presented in Fig. 4.12. The 
significant differences between MM and MN groups were found for two parameters 
of GLCM: energy (E) and entropy (EntGLCM) (p<0.05). 

A B C D E 

Fig. 4.13. Comparison of second order image features values for two groups  
(MM - malignant melanoma and MN - melanocytic nevi): A - contrast, B - correlation,  

C - energy, D - homogeneity, E - entropy. Results presented as mean with standard deviation,  
p value is the significance level of difference between the two classes 

4.2 Informative ultrasonic parameters selection and classification of MST  

The large number of the features can reduce classification accuracy, obscure 
important features, and increase computational complexity. Feature selection or 
variable elimination techniques help to reduce the computation requirements, the 
effect of dimensionality and improve the prediction performance. All possible 
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feature subsets (2N) must be tested in order to select an optimal feature set. 
Unfortunately, it is confronted with an NP-hard problem (non-deterministic 
polynomial time). In order to remove irrelevant features, the relevance of each 
feature can be evaluated by feature selection criteria. The usage of feature selection 
criteria is a suboptimal method, however, it can remove redundant features and 
reduce the computation time. 

There are a lot of methods proposed for suboptimal feature selection (164). 
Basically these methods can be divided into filter and wrapper (164). The filter 
approach evaluates probabilistic measures and the wrapper uses the classification 
rate. The filter-type feature selection algorithm based on the Mahalanobis distance 
(MD) measurement between two classes was used in this study (57, 164-166).  

First of all, the feature vectors are normalised in order to get the features at the 
same scale and to avoid bias by using the following equation (165): 
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where µj is the average of the input features xj vector, and σj is the standard deviation 
of xj, Xj is the normalised feature vector, j=1, 2…m is the number of features for the 
sample. The MD value of the features between the two classes was evaluated 
according to the following equation:  
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1 M , and S is the covariance matrix, Mj is the normalised feature 

vector of MM (Xj of the MM class), Nj is the normalised feature vector of MN and 
i=1, 2…n is the number of samples. The two data sets are more similar and 
overlapping if the MD value is smaller.  

The MST were classified as benign and malignant using the previously 
proposed tissue characterisation parameters, the linear regression and SVM 
classifiers. The method of linear regression classifier is described in subsection 
1.4.3. This method is simple to realise, fast and helps to understand how the more 
difficult classification methods work. The SVM classifier (presented in more detail 
in subsection 1.4.3) was used hoping to improve the classification results. SVM has 
proved to be an efficient method for differentiation problems and it is widely used 
for CAD (126, 128-132). Linear-SVM was used in this study. It was determined that 
linear kernel performs best by experimental comparison. Aiming to obtain a good 
performance, it is important to choose the regularisation parameter C (167). This 
parameter maximises the margin with a low training error value. The optimal value 
of the parameter was selected experimentally. The ten-fold cross-validation method 
and the ROC curve analysis with an index of the area under the ROC curve (Az) 
were used to estimate the performance of CAD. First of all, 160 ultrasonic datasets 
were randomly divided into 10 groups (each group had 16 datasets). The first group 
was set as the testing group and the remaining nine (k-1) groups were used to train 
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the linear regression classifier or linear-SVM. The trained classifier was tested on 
the first group. This process was repeated until all k groups in turn were set as a 
testing group. Ten iterations of the ROC curve were calculated and averaged. 

4.3 The results obtained by testing the system  

The set of selected informative parameters consisted of the features, the 
normalised MD value of which exceeded 0.3 between two classes (the 
experimentally selected threshold, which was established for the best performance 
(see Fig. 4.14.)). Seven features from 29 have been selected as possibly informative 
for differentiation purpose: RISPpeak, bsc, C, A, FD, kurt, EntGLCM. It should be 
mentioned that all selected features have statistically significant differences 
(according to t-test results) between benign and malignant MST groups. 

 

Fig. 4.14. Normalised Mahalanobis distance values of 29 quantitative ultrasonic parameters 
between two classes (MM and MN), the solid line marks the threshold for the parameters 

selection 

The inter-correlation analysis of the feature set was performed in the next 
stage. It was determined that the circularity and area of the tumour are significantly 
correlated (correlation coefficient 0.79, p<0.001). One of these two features was left 
(C) and used for the classification of MST. In total six quantitative ultrasonic 
parameters were used for classification (RISPpeak, bsc, C, FD, kurt, EntGLCM). In 
accordance with the proposed CAD system results, the ROC curves have been 
plotted (see Fig. 4.15.). The ROC curves demonstrate that the linear-SVM classifier 
gives slightly better classification results as a linear regression classifier. According 
to the results, the achieved Az1 of the linear regression classifier is 0.87 (SD=0.005) 
and Az2 of SVM is 0.9 (SD=0.006).  

Classification error rate, sensitivity, specificity, positive predictive value and 
negative predictive value have been used as objective parameters to estimate the 
performance of the CAD system. The parameters are defined according to the 
equations presented in Table 1.5 (subsection 1.4.3). The proposed linear-SVM 
classifier achieved an overall classification error rate of 18%, the sensitivity and 
specificity of 86% (95% confidence interval 84% to 88%) and 80% (95% 
confidence interval 78.5% to 81.5%) respectively. The positive predictive value has 
been 78% and the negative predicted value 87%. In comparison, classification error 
rate of the linear regression classifier has been 19%, the sensitivity and specificity 
85% and 78% respectively, the positive predictive value has been 77% and the 
negative predicted value 85%.  
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Fig. 4.15. ROC curve of the classification of melanoma (n=80) and benign melanocytic nevi 

(n=80) using quantitative ultrasonic parameters: pointed line - ROC curve of the linear 
regression classifier (averaged area under the ROC curve Az1=0.87 ± 0.005);  

solid black line - ROC curve of the linear support vector machine classifier (averaged area 
under the ROC curve Az2=0.9 ± 0.006) 

According to the study of Oelze and O’Brien (124), a trade-off exists between 
the size of the ROI (number of independent resolution cells) and the bias and 
variance of spectral parameter estimates. The lower size of the independent 
resolution cells through ROI influences a larger bias and variance. The relationship 
between spectral parameters and the size of the tumours was analysed. The 
automatically estimated thicknesses of the skin tumours were in the range of  
0.24 mm to 2.9 mm (min - max) with a median of 0.64 mm. A larger variance of the 
spectral parameters was observed in the cases of thin skin tumours (thickness up to 
0.64 mm) (see Fig. 4.16). The larger distributions of attenuation parameters were in 
the case of thin tumours. On the contrary, the standard deviation of backscattering 
parameters (bintercept and bsc) of thin tumours was lower than in the case of tumours, 
the thickness of which exceeds 0.64 mm.  

 
Fig. 4.16. Dependence of normalised spectral parameters standard deviation on tumour 

thickness, the results presented as mean value and standard deviation 



86 

The confusion matrix statistics were compared with lesion thicknesses (see 
Table 4.3), since the standard deviation of RF spectral parameters of thin (up to  
0.64 mm thickness) MST was larger. However, the confusion matrix has shown that 
the classification results are not related with MST thickness in this study.  

Table 4.3 Dependency of confusion matrix statistics on skin tumour thickness 

Thickness, n (MM) n (MN) TP FN FP TN Se, % Sp, % 
≤0.64 mm 23 57 18 4 5 53 82 91 
>0.64 mm 57 23 49 9 8 14 84 64 

MM is malignant melanoma, MN - melanocytic nevi, TP - true positives, FN - false negatives,  
FP - false positives, TN - true negatives, Se - sensitivity, Sp - specificity 

In addition, the possibility to differentiate MM from the dysplastic 
melanocytic nevi (DMN) and from other types of benign melanocytic tumours 
(MNN) has been estimated. To investigate this, 40 randomly selected datasets of 
MM have been classified from: 1) 40 datasets of MNN (Fig. 4.17 solid line, Az1);  
2) 40 datasets of DMN (Fig. 4.17 dashed line, Az2). The same six selected features 
have been used for classification. The possibility of differentiating DMN from MNN 
has been examined as well (Fig. 4.17 pointed line with Az3). The results have been 
obtained by using linear-SVM and five-fold cross-validation (each group had 16 
datasets). Averaged (10 iteration) ROC curves are presented in Fig. 4.17. The 
achieved averaged classification error rate of the differentiation between MM and 
MNN is 20% (case 1) and 19% while differentiating MM from DMN (case 2). 
However, the error rate is 42% in the case of discrimination between MNN and 
DMN. By using other parameters as informative the result could possibly be better. 
The informative parameters were selected for MM and MN (MNN + MND) groups. 
Possibly these parameters are not sensitive for MNN and DMN differentiation. 

 
Fig. 4.17. Averaged ROC curves (10 iterations) of the classification of malignant melanoma 
(MM) and melanocytic nevi (MN): solid line (Az1) - MM (n=40) differentiation from benign 

melanocytic lesions, excluding dysplastic (n=40), dashed line (Az2) - MM (n=40) 
differentiation from dysplastic melanocytic nevi (n=40), pointed line (Az3) - dysplastic 
melanocytic nevi (n=40) differentiation from other benign melanocytic nevi (n=40). Az 

denotes the area under the ROC curve. 
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Analysis was conducted to find out which group of parameters is the most 
specific for melanoma differentiation from benign melanocytic lesions. The results 
of this analysis are presented in Table 4.4. To conduct this analysis, all data sets 
(160, of which 80 were melanomas) and the 10-fold cross validation have been used. 
For the analysis, the features of the subclasses or classes have been used as 
informative. The results have shown that the shape features are the most sensitive 
for the recognition of MM.  

Table 4.4 Classification results of different subclasses of the features 

Class of the features Subclass of the features Az1 ± SD Az2 ± SD 

Acoustical 
2-D spectral (4) 0.64 ± 0.01 

0.82 ± 0.008 
Spectral (7) 0.7 ± 0.011 

Shape (4) 0.88 ± 0.003 

Textural 
First order (9) 0.70 ± 0.005 

0.8 ± 0.012 
Second order (5) 0.72 ± 0.008 

Az is the averaged (10 iterations) area under the ROC curve, SD is the standard deviation 

It is possible that the estimates of the classification model (trained classifier) 
error may over-fit the data and yield biased predictions. The set of data used for the 
training of the classifier should be a trade-off between high bias (under-fitting) and 
high variance (over-fitting). It is necessary to test the cross-validation and training 
error dependency on the training set (testing set size is the rest of the data) size in 
order to avoid the over-fitted classification model. It was evaluated in the case of 
linear SVM classifier. The analysis was performed by changing the testing set size 
from 1 up to 50 by using 6 selected parameters (see Fig. 4.18 A) and by using all 29 
evaluated parameters (see Fig. 4.18 B). It was shown that when the testing set size 
increase, the cross-validation error decrease, and the training error increase (high 
variance, data over-fit). Also, the variance is higher, when all 29 parameters are used 
for classification (see Fig. 4.18 B, over-fitted data). In this study, we used 16 
datasets for testing, which is sufficient in order to achieve enough low bias and 
variance (see Fig. 4.18 A), when 6 selected features are used for classification.  

  
A B 

Fig. 4.18. Cross-validation and training errors dependency on testing set size (learning 
curves): A - 6 selected parameters are used for classification, B - all 29 parameters are 

used for classification 
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Discussion. The parameters derived from the raw RF ultrasonic signals and 
demodulated signals as well as the shape parameters of automatically detected 
boundaries of the lesions have been used in this study. By using the MD as feature 
selection criterion, 6 parameters have been selected as informative ones. 

The size, shape and distribution of the melanocytes are different in melanomas 
(21). The superficial spreading melanoma is characterised by the poor 
circumscription, random and aberrant distribution of melanocytes. The irregular 
distribution is in contrast to the benign melanocytic proliferation that is characterised 
by the regularly spaced nests of melanocytes (21). These morphological differences 
between the benign and malignant melanocytes have been quantified using 
acoustical and textural parameters. It should be mentioned that the bias and variance 
of the applied spectral RF parameters is comparatively large and the value of 
spectral estimator is limited in the case of MST due to the small number of 
independent resolution cells through the ROI. This limitation can be mitigated either 
by using a higher centre frequency ultrasound (for example 50 or 100 MHz), or by 
applying compounding and windowing techniques, as was performed in this study. 
The performed investigation showed that the classification errors and lesion 
thicknesses were not related, but it should be noticed that only two RF spectral 
parameters (peak value of RISP and backscattering coefficient) were found as 
informative in the study. Attenuation parameters have been uninformative. The 
acoustic attenuation evaluation is complicated due to the different penetration depths 
of the MST and differences of the inflammatory infiltrate density under the MM. 
Different skin layers are characterised by different acoustic properties due to the 
differences in collagen and keratin density (20). The acoustic impedance might 
depend on the density of the lymphocytic infiltrate as well.  

Shape parameters of the detected boundaries have been found as the most 
informative in this study. This may be explained by the fact that 51% of melanomas 
were the superficial spreading subtype. This subtype of melanoma is characterised 
by the lateral spreading of malignant melanocytes within the epidermis, and the 
shape, in most cases is different from that of nevi. An asymmetrical inflammatory 
infiltrate surrounding an invasive MM is frequently seen, but is atypical for MN 
(21). A benign melanocytic nevus is represented by the very sharp lateral margins 
(21). These features are evaluated quantitatively by using the shape parameters of 
the detected boundaries of the lesion. However, no relationship between the type of 
MM and classification results has been determined.  

Hoffman et al., (168) have analysed a large number of MM and benign 
melanocytic nevi ultrasonic images and they have not observed significant 
differences between benign and malignant MST. However, the proposed automatic 
evaluation of quantitative ultrasonic parameters has shown the reliable possibility to 
be used in differential diagnosis. Moreover, the proposed CAD system has 
demonstrated the possibility of discriminating the MM from dysplastic melanocytic 
nevi, which is difficult to differentiate from MM when dermatoscopic images are 
used. 
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4.4 Conclusions of the 4th chapter 

1. A set of methods for automatic ultrasonic characterisation and differentiation of 
melanocytic skin tumour was developed. Automatic analysis of interior echoes 
of the lesion, shape properties of detected boundaries and statistics of 
segmented B-scan images (envelopes) was applied in order to evaluate 29 
parameters for tissue characterisation.  

2. The proposed set of methods was investigated with 160 ultrasonic datasets of 
benign and malignant skin tumours. The possibility to differentiate malignant 
melanoma from benign MST with 86% (95% CI 84% to 88%) sensitivity and 
80% (95% CI 78.5% to 81.5%) specificity was demonstrated, by using 
parameters selected as informative and linear-support vector machine 
classifiers. 

3. The study has proved that there is no parameter in the tested set that alone 
would be sufficient to reliably discriminate melanoma from other types of 
melanocytic skin lesions. Therefore, multi-feature ultrasonic data analysis is 
required.  

4. The proposed set of methods for skin tumour characterisation and 
differentiation can supplement the existing non-invasive diagnostic methods in 
clinical dermatology. However, future prospective large-scale studies and the 
evaluation of other quantitative tissue characterisation parameters are required 
for the development of a reliable and accurate MM ultrasonic diagnostic 
system. 
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5. GENERAL CONCLUSIONS 

1. The analysis of the literature has shown that all previous thickness 
measurements of melanocytic skin tumours were performed manually, by using 
interactive markers on B-scan images by an experienced dermatologist. Until 
now there have been no proposed methods for the automatic evaluation of 
ultrasonic parameters of the skin tumours using analysis of the ultrasonic RF 
data. 

2. A multilayered computer model of skin tumours was proposed. The model is 
composed of layers with spatially distributed point reflectors and a spherically 
curved surface. Skin tissue-mimicking phantoms were developed for high 
frequency ultrasonic imaging. The investigation has shown that the phantoms 
have the acoustic properties (ultrasound velocity in the range of 1534-1566 m/s, 
attenuation 0.18-0.41 dB/mm/MHz) close to the human skin (ultrasound 
velocity in range 1540-1580 m/s, attenuation 0.08-0.39 dB/mm/MHz). 

3. The non-invasive automatic thickness measurement and boundaries detection 
method of melanocytic skin tumours, based on time-frequency analysis of the 
ultrasonic RF signals was developed and verified with thin (up to 1 mm 
thickness) skin tumours (n=52). The experimental investigation has shown that: 

a) the method evaluates the thickness of melanocytic skin tumours more 
precisely (variance of differences with reference measurement 
reduced twice) than the manual measurements performed by an 
experienced dermatologist using B-scan images, and using 
histopathological measurements as reference; 

b) the correlation coefficient between the thicknesses measured using the 
proposed method and histopathology was higher than the manual 
measurements and histopathology (0.83 and 0.64 respectively, p-value 
in both cases <0.001); 

c) uncertainties of the proposed measurement method were evaluated by 
using the measurement results of real clinical data and the modelling 
results. The analysis showed that, the value of uncertainty is linearly 
dependent on the measured thickness (experimentally 0.074d+0.015, 
analytically 0.019d+0.017, where d is the measured thickness). 

4. The proposed set of methods for characterisation and differentiation of 
melanocytic skin tumours is based on the analysis of high-frequency ultrasonic 
data. The experimental investigation with real clinical RF signals of 80 datasets 
of malignant melanoma and 80 datasets of melanocytic nevi revealed that 
melanoma could be differentiated from nevi with 86% (95% CI 84% to 88%) 
sensitivity and 80% (95% CI 78.5% to 81.5%) specificity (the area under the 
ROC curve 0.9 ± 0.006 by using 6 established informative parameters). 
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