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LIST OF ABBREVIATIONS AND TERMS 

Abbreviations: 
API – Application Programming Interface 
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Terms: 
 
Blockchain – a decentralised ledger for recording transactions across a peer-to- 
peer network [1]. 
 
Blockchain network – a decentralised system of computers/participants which 
records and shares transactions by using a consensus algorithm [2]. 
 
Blockchain network participant – an individual involved in a decentralised 
system that may contribute to transaction validation through a consensus 
algorithm. 
 
Smart contract – an executable digital contract written as a program code which 
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Blockchain oracle – a network service that connects blockchain network to 
external systems or data. 
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In the context of this work, the following terms are used with a specific 

meaning: 
 
Trust – firm belief of a participant in the reliability of software solutions [4] and 
trust between collaborating organisations and individuals [5] 
 
Partial trust – the trust required to participate in the collaboration and the 
decision to commit model and validation data files to the network, but not high 
enough to share training data outright. 
 
Machine learning security (ML security) – the ability to protect data and model 
assets, model usage and development procedures against attacks [6].  
 
Transparency – the ability to openly access and audit information [7]. 

 
Privacy preservation – ensuring non-disclosure of private information used in 
the machine learning model development process [8]. 

 
Collaborative machine learning – a machine learning process which has two or 
more participants that perform model development, model sharing or data 
sharing activities [9]. In the context of this dissertation, the overviewed methods 
and the presented solution are confined to the binary classification task. 
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INTRODUCTION 

Motivation 

The amount of data created worldwide is increasing as more and more people 
use network and communication technologies. To extract knowledge from such 
amounts of data effectively, automated data processing approaches must be 
developed. One such use case of data processing for various applications is machine 
learning. Machine learning solutions [10], [11], [12] are used successfully in computer 
vision, healthcare, predictive analytics and intelligent decision making, speech and 
pattern recognition, and other domains. With the increasing machine learning 
popularity, a growing number of parties try to solve similar machine learning 
problems, but, due to a limited quantity of high-quality data, they might not be able 
the achieve sufficient performance of machine learning models. Collaboration could 
be beneficial in all the machine learning development steps. Better performing models 
can be obtained by building more diverse datasets composed of multiple data sources; 
Model training would require less computational resources to achieve the model of a 
higher quality; Shared models could be reused, thus reducing the need to train new 
local models. Unfortunately, currently, machine learning model development is often 
contained in a single centralised environment with a limited amount of data. 

Decentralisation could resolve such problems, but the demand for data sharing 
and collaboration in machine learning could lead to privacy and data or model security 
issues. Multi-party collaboration environments should not reveal any personal or any 
other sensitive information about the real-world entities. The data transfer channels 
should be secured, and technologies and services used should be trustworthy for the 
participants. A wide range of solutions have been proposed to facilitate the distributed 
machine learning process. The distributed learning solution could allow cooperation 
and improved performance. Participation in the distributed machine learning process 
can still suffer from lack of trust between the participants and the services, and the 
potential participants might lack the motivation to participate. 

Distributed ledger technologies could be applied to solve trust and transparency 
issues. Distributed ledger technologies introduce interaction logging and might not 
require trusting network participants and services. Among the distributed ledger 
technologies, blockchain is the most prominent one. Blockchain technologies 
introduce data replication, which results in a system architecture that is more resistant 
to attacks. The trust issue is addressed by transaction logging, open access to stored 
data, and the immutability of blockchain networks. Every action performed on the 
blockchain is validated and logged, thus reducing the risk of malicious actors. An 
additional execution logic hosted on the blockchain can be introduced in the form of 
smart contracts. A smart contract enables the development of more diverse and 
complex distributed solutions. Smart contracts could also be extended by specialised 
services, which would allow distributing, reusing, and integrating the already existing 
solutions.  

Currently, no well-established methods exist that would enable collaboration in 
distributed machine learning on blockchain technologies and ensure privacy 
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preservation, while allowing to reuse the already existing machine learning 
implementations. 

Research objects and scope 

The dissertation research object is collaboration in distributed machine learning. 
The scope of this research is focused on two main research areas: 1) collaborative 
distributed machine learning methods, their architectures, and the application of 
blockchain; and 2) blockchain technology-based systems methods, tools, and 
approaches. 

Problem statement and research questions 

 Collaborative distributed machine learning approaches are limited by 
insufficient trust, limitations imposed by sensitive data, and a complex adaptation 
process for the currently existing machine learning solutions. To propose resolution 
methods for the aforementioned problems, this dissertation aims to answer to the 
following research questions: 

RQ1. Can distributed machine learning transparency and collaboration be 
improved and, if so, how? 

RQ2. How can blockchain technologies facilitate the collaborative distributed 
machine learning process?  

RQ3. What modifications to blockchain technologies are required to enable 
collaboration in distributed machine learning? 

RQ4. How can blockchain network participant data and model contributions be 
measured in collaborative distributed machine learning? 

RQ5. Can training data privacy preservation be improved in blockchain 
technology-based distributed machine learning? 

Aim and objectives 

The aim of this thesis is to improve collaboration in distributed machine learning 
by using blockchain technologies. A number of objectives to reach the defined aim 
have been outlined: 

1. Analyse distributed machine learning methods and collaboration approaches. 
2. Analyse blockchain technologies, and their applications for distributed 

machine learning processes. 
3. Propose a method for collaboration in distributed machine learning. 
4. Implement the solution for collaborative distributed machine learning 

according to the proposed method. 
5. Assess how the application of the blockchain technology affects distributed 

machine learning. 
6. Evaluate the method capabilities to perform collaborative distributed machine 

learning. 
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Research methodology 

The research was conducted by employing the constructive research method 
[13]. Based on the proposed method, the research was carried out in multiple stages: 

 During the first stage, the research object and scope were defined, which 
encompass privacy-preserving distributed machine learning methods, their 
architectures and the application of blockchain, blockchain technology-
based systems methods, tools and approaches. A research problem on 
collaboration in the distributed privacy-preserving machine learning process 
was identified. 

 The second stage was dedicated to defining the research potential – how the 
blockchain technology could assist in resolving collaboration and privacy-
preservation problems in distributed machine learning. 

 The analysis of the defined problem domain was performed in the third 
stage. Comparative analysis of the currently available research and solutions 
combining privacy-preservation methods, the blockchain technology and 
distributed learning was conducted. 

 The solution definition process was performed as step four, where the 
method for privacy preserving distributed machine learning was proposed, 
which provides means of collaboration when using private blockchain 
solutions and introduces methods to evaluate shared contributions. 

 The fifth stage was dedicated to the implementation, experimental 
evaluation, and feasibility evaluation of the proposed method for potential 
application areas – the blockchain solution for CDMLB was implemented 
by using the proposed method and experimentally evaluated, by measuring 
the runtime and machine learning solution performance. The performance 
evaluation tested the applicability of the proposed method for two banking-
related binary classification tasks. The performance of the developed 
classifiers for these datasets was experimentally tested. 

Defended statements 

1. The existing private blockchain architectures can be enhanced to support 
more diverse machine learning execution environments on a collaborative 
DML blockchain network. 

2. Contributions of models to the collaborative DML blockchain network for 
individual participants can be evaluated by using the Shapley-based 
weighting strategy. 

3. Knowledge distillation can be used to aggregate the model ensemble into a 
single model, without significantly reducing the performance of the classifier, 
in collaborative DML on a private blockchain network. 
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Scientific novelty 

1. The proposed collaborative distributed machine learning method expands the 
existing capabilities of distributed machine learning on blockchain by 
extending the system architecture with the machine learning inference oracle 
service. 

2. The proposed method introduces a Shapley value and performance-based 
ensemble weighting strategy as a solution to measure the network participant 
model contribution. 

3. The proposed method uses the student-teacher distillation approach to 
increase the model privacy by enabling the aggregation of knowledge 
accumulated on the blockchain network. 

Practical significance 

 
1. The proposed method allows integrating the already established machine 

learning technologies into the blockchain architecture via local off-chain 
oracle services.  

2. The proposed ensemble weighting strategy can be defined as a generalisation 
of performance weighting, which could be applied in any weighted ensemble 
development approach. 

3. The proposed ensemble weighting strategy increases the performance of the 
tested binary classification tasks which used tabular data, when compared to 
the centralized approach or other weighting strategies. 

4. The provided model usage scenarios enable privacy-preserving network 
knowledge extraction for individual usage or future development. 

5. The provided model combination method allows combining heterogeneous 
model types, thereby increasing the ensemble diversity and allowing for 
increased collaboration opportunities.  

Scientific approbation  

The dissertation results have been presented in 5 academic publications: two 
publications in a periodical scientific journal (MDPI Applied Sciences, Q2) and three 
in proceedings of international conferences. The complete publication list with the 
referral information can be found in the SCIENTIFIC JOURNAL AND 
CONFERENCE PUBLICATIONS section. 
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Structure of the dissertation 

The first chapter presents the results of exploratory analysis on distributed 
machine learning approaches, as well as the privacy preservation methods for the 
machine learning blockchain technology. Moreover, cooperative analysis of the 
currently existing blockchain-enabled collaborative distributed machine learning 
approaches is presented in this chapter. The second chapter defines the proposed 
collaborative distributed machine learning method and specifies requirements and 
procedures for the blockchain platform preparation, model and data deployment, and 
network knowledge usage parts of the method. Each individual method step is 
provided with a formal definition and a demonstration of its implementation. The third 
chapter presents empirical assessment of the proposed method. The dissertation 
conclusions are presented in the fourth chapter. The dissertation also provides a 
summary in Lithuanian, a list of references and scientific publications, and a 
conference list. 
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1. ANALYSIS OF EXISTING METHODS AND SOLUTIONS 

The analysis of the currently existing research and relevant solutions is 
presented in this chapter. As the research consists of a combination of a few research 
areas, all of them are overviewed individually as well as by adopting multidisciplinary 
approaches. The analysis starts by describing machine learning concepts and 
prominent research works in the distributed machine learning field. Whereas, in the 
second part, an overview discusses methods for collaboration in distributed learning 
and privacy-preservation methods applied to distributed learning. Lastly, analysis of 
the blockchain technology, its architecture, and solutions associated with distributed 
machine learning is presented. 
 Currently, organisations and people that could participate in the collaborative 
machine learning and would benefit from the high-quality models in their workflows 
might not be sufficiently motivated because of multiple reasons. Due to sensitive or 
private data used in the processes, the parties could be limited to the amount of data 
they can share with other participants. Data sharing in the competitive environment 
could also introduce risks of providing advantage to one’s competitors. This reduces 
the trust in the collaboration, and, if trust is not enforced by the developed system, the 
solution becomes not viable. Collaboration might also be hindered by security 
concerns, especially in the domains that contain sensitive data, such as healthcare and 
finances. Additional drawbacks exist for parties that are already using machine 
learning solutions in their domain(s), as the transfer from the local model usage to 
collaborative solutions might require additional development, which requires changes 
in the existing data management and model training pipelines. Such changes can 
disrupt the already developed solutions and procedures. Thus, the introduction of the 
collaborative process should bring significant improvements to negate the costs. 
Addressing these challenges and drawbacks requires a complex approach which is 
bound to focus on building trust among the participants, developing tools and methods 
to facilitate the adaptation and integration of the existing machine learning solutions 
into collaborative distributed machine learning environments. By addressing these 
challenges, collaborative distributed machine learning approaches can unlock the full 
potential of distributed data and resources, which would lead to more effective 
machine learning solutions. 

1.1 Machine Learning 

In the recent years, machine learning approaches have become more widely 
adopted [10], [11], [12] in various industries and research areas due to the ability of 
technologies to process large amounts of data and learn from patterns. Machine 
learning has been applied to image and speech recognition, with applications that are 
able to detect objects as well as text, and identify faces. Natural language processing 
is also another area of machine learning applications; research and application in this 
area introduced the usage of the language translation service, and chatbots of text 
analysis tools. Machine learning not only can make detection and classification tasks 
easier, but it has also been applied in such research areas as the healthcare, where it 
enables discovery and development of medical drugs and is even used to aid disease 
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diagnosis. Although some of the machine learning application areas are still 
developing, its usefulness and success have already been proven in such domains as 
finance and banking. All machine learning solutions apply some kind of a machine 
learning model. This model must be developed by providing data and computation 
resources. The machine learning model development procedure commonly consists 
of multiple stages (Figure 1). The machine learning model development procedure 
[14] consists of four main parts: data preparation, model tuning, performance 
evaluation, and model usage. 

 

 
Figure 1. General machine learning model development process [14] 

The data collection process is the first stage of the machine learning process. 
The data used in machine learning processes can be obtained by using multiple 
approaches [15], [16], ranging from crowd sourcing to data discovery or data 
synthesis. On the basis of the machine learning approach used, the collected data 
might require labelling. The labelling process maps the real-world objects to one or 
multiple labels. Labelling processes are required once the data have been collected, 
and the next step is to preprocess the dataset. 

Multiple approaches to data preparation can be employed, and the required 
procedures vary depending on the dataset structure and the data themselves. In 
general, data preparation removes empty or erroneous data instances, cleans the data 
by removing duplicates, and standardises the data instances. The features of the 
dataset are then explored and selected. The feature exploration reveals patterns 
occurring in the data and relationships between the variables if such exist. If a selected 
dataset contains categorical data, it requires encoding to modify data formats from 
text to numeric features [17], while text-represented data are encoded into numerical 
data creating the required number of numeric classes. The data preparation process 
concludes with a modified dataset that is ready to be used in the model training 
process. 

Typically, for tuning and performance evaluation, the dataset is divided into 
three parts: training, validation, and testing [18]. The training part is used to develop 
the model, validation is used in model training to tune the model hyperparameters, 
and the test dataset is used on the developed model to evaluate its performance. 
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Machine learning approaches can be divided into three categories based on the 
input data type and the application type. Supervised learning approaches use input 
data and the corresponding output data labels [19], [20]. Supervised learning 
approaches tune a function which maps the input data to a desired output [20], [21]. 
On the other hand, unsupervised learning approaches are only provided with 
unlabelled input data [22]. Unsupervised learning approaches develop a function that 
is used to describe the data structure of the input data and group them [23]. 
Unsupervised learning is commonly used to cluster data based on similarities and data 
patterns. Reinforced learning is a machine learning method that allows a program or 
a machine to perform actions in order to gain the maximum reward [24].  

Multiple types of machine learning models [25], [26] could be used in both 
supervised and unsupervised settings, such as logistic regression [27], Classification 
And Regression Tree (CART) classifiers, or neural networks [28]. Based on the type 
of the machine learning model selected, the training procedure is performed in batches 
or on a larger part of the original dataset. Training approaches that use an unbatched 
dataset, such as the logistic regression decision tree, usually try to fit a function to 
detect a data instance class on newly provided data. 

One of such approaches requiring data batching is the Stochastic Gradient 
Descent (SGD). The SDG algorithm minimises a loss function based on the model 
outputs by modifying the model parameters to follow the general trend of the negative 
gradient. The gradient is defined as stochastic due to the subset of data randomly 
selected for training. The common training procedure for SDG algorithms starts with 
the sampling of a batch of data to form a training dataset. Then, during training, the 
model predictions are calculated, and the model output is compared with the true 
output via the loss function. The gradient of the validation data batch is calculated, 
and the model parameters are adjusted repeatedly. Multiple loss functions are used to 
evaluate the model performance. For example, the most common metric in the binary 
classification is the Area Under the Curve (AUC) [29], [30] which is derived from the 
plot of the Receiver Operating Characteristic curve (ROC) [22] – [24]. Since the 
model output as a soft decision is a floating number between 0 and 1, the threshold is 
needed to arrive at the hard decision (predict the class – either ‘0’ or ‘1’). The default 
threshold of 0.5 may not be optimal; therefore, the testing of all possible thresholds 
provides a more comprehensive evaluation. A specific threshold results in a trade-off 
between the accuracy of the target class (true positive or hit rate) and the error of the 
nontarget class (false positive or miss rate). The ROC curve summarises all possible 
thresholds with their corresponding trade-offs. Often it is convenient to have a single 
number instead of a performance curve, and, in the case of ROC, this number is AUC. 
The statistical interpretation of AUC is as follows: the probability that the output of 
the classifier will have a higher value for a randomly chosen target class instance than 
for a randomly chosen nontarget class instance [31]. ROC curves are not always the 
most viable approach when the dataset class rate is highly disbalanced, and, in that 
case, other loss functions may produce better results. Another comprehensive 
performance metric for binary classification is the Binary Cross-Entropy (BCE), also 
known as the log-loss [32], [33].  
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Finally, the validation subset of the data is used to measure the performance of 
the classification or regression task on data that were not used in the training process 
in the performance evaluation step. After training the classifier and evaluating its 
performance, the parameter adjustment [34], [35] can be repeated. Model parameters 
can be tuned manually, but such a process is time consuming and complex as machine 
learning models contain a large number of parameters, and the relationships between 
multiple parameters may be unclear to the developer. Automated approaches [36] to 
tune parameters are more commonly used. 

When the parameter tuning has been completed, the model performance is 
evaluated on testing the data split. With sufficient performance, the model can be 
stored into a file, deployed into interactive environment, and used for the classification 
of regression tasks [37], [38].  

In every stage of the machine learning model development process, security 
must be ensured by the developer. As the machine learning process deals with training 
data that may contain sensitive information such as pictures, names, or even social 
security numbers of individuals, confidential information about the business, the 
security and privacy of such data must be ensured [39]. During the data management 
stage, the model developed must ensure the integrity of the data, apply the required 
data anonymisation actions, and ensure that the usage of the data would not reveal 
sensitive information [6]. Multiple data protection methods have been proposed to 
secure private information such as differential privacy [40], data encryption [41], and 
multiple others [39], [42], [43]. The model training procedure should also ensure that 
any data that are used remain undisclosed to external adversaries and do not reveal 
information about any individual or any other entity. Part of the model training 
security measures are designed to protect the loaded training data in the hardware 
performing the training procedures [44]. Other security methods which do not rely on 
hardware protection have also been proposed for secure model training to ensure the 
integrity of the system and protect the valuable assets [6], [39], [42]. The developed 
model can also be used in revealing sensitive data without the proper security 
measures via the membership inference [41] or model inversion attacks [42]. 

In the context of this dissertation, the overviewed methods and the presented 
solutions are confined to the machine learning classification task. Some approaches 
show better performance when more than one classifier type is being used. Multiple 
classifiers can be combined into a single classifier defined as a model ensemble [45]. 

1.1.1 Ensemble learning 

Ensemble learning is a technique where multiple machine learning models are 
combined in order to obtain a better performance model [46]. Many machine learning 
model types can be used to develop ensembles [45], [47]. One of the most popular 
approaches is ensembles developed by using CART [48] classifiers. The benefit of 
developed ensembles stems from the diversity of combined classifiers and how 
different classifiers can represent the same real-world entity in a different manner for 
the same training dataset. This is especially useful because decision tree classifiers are 
diverse in their development processes based on decisions and data partitioning. 
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The most popular CART classifier aggregation to ensemble methods is bagging 
and boosting [49]. The bagging method utilises the sampling of random subsets from 
the training dataset and uses these to train a single model for ensemble creation. 
Whereas, the boosting approach utilises iterative processes to continuously adjust 
weights of falsely classified samples. Another approach that uses a subset of the data 
to train parts of the ensemble classifier is called the random forest approach [45]. The 
random forest approach develops multiple CART classifiers by sampling not only 
subsets of data, but also a subset of features. 

The ensemble creation techniques display better performance than a model 
developed without ensembling. They are commonly used as local not distributed 
algorithms, which requires centralised data for ensemble building. However, some 
online ensemble development techniques exist and are capable of training by using 
data streams. Two examples of such a technology would be the online AdaBoost [50] 
or online Arcing [51] approaches. The latter approach [51] is closely related to online 
learning; it emphasises training on more recent data batches. The approach utilises a 
fixed-size ensemble of classifiers and builds a new one on new data batches. This 
newly created classifier then replaces the worst performing one from the fixed-size 
ensemble. Such a replacement is performed after the validation of new data. It can be 
achieved in two possible methods – either directly, by using the streaming ensemble 
algorithm [38] by using the majority weighting, or indirectly, by using the best 
performance-weighted classifiers, as in the performance-weighted ensemble [52]. 

There are many ensemble merging techniques in existence. One such approach 
is the weighted averaging of ensemble predictions [53]. Multiple strategies to tune the 
ensemble weights are available [47], [54]. The majority voting case allows using every 
classifier’s input [54], while the performance-based method evaluates the model 
performance and uses it to define weights [47], [55]. The performance-based 
weighting process consists of two steps: the model evaluation and the ensemble 
weights adjustment based on the model evaluation. Model stacking is another 
approach that can also be used to derive final ensemble predictions, as in the meta-
learning approach [56]. In a recent development, a novel approach for achieving an 
optimal ensemble was introduced in [26]. The approach involves combining the 
tuning of hyperparameters and weights specifically tailored for regression tasks. 
Additionally, the utilisation of effective weights can aid in arranging classifiers for 
ranking-based ensemble selection, thus effectively filtering out nonuseful classifiers 
as part of the ensemble reduction. It should be noted that search-based approaches 
generally outperform ranking-based methods in terms of accuracy, as highlighted in 
[25]. However, due to the optimisation process required for weight tuning, search-
based approaches are more computationally intensive compared to their ranking-
based counterparts. 

Ensemble development can be divided into two categories. Homogeneous 
ensembles use a single type of the machine learning model as in the random forest 
approach, whereas heterogeneous ensembles [45], combine multiple model types to 
develop an ensemble. The development of heterogeneous models is usually made up 
of two phases: the development of a diverse set of machine learning model types by 
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using the same training dataset, and the model selection for combining them into an 
ensemble. 

Although ensemble learning is a popular approach towards improving the 
classifier performance, it is usually still developed by using a single dataset and using 
a model development environment. To better solve machine learning problems that 
have multiple data producers or require collaboration between multiple data 
producers, distributed machine learning approaches have been proposed, which 
commonly build upon ensemble learning approaches.  

1.1.2 Distributed machine learning 

Distributed machine learning differs from centralised machine learning in the 
sense that it has multiple parties which produce data or train multiple or single models 
that are later combined into a single model. Similarly to ensemble learning, there are 
three types of information that can be combined in the distributed machine learning 
setting – classifiers, classifier representations, and classifier predictions.  

Based on the number of participants, the distributed machine learning solutions 
are divided into two categories: individual and collaborative. Solutions that are 
developed by a single entity by using a distributed setting that usually uses a 
centralised server to aggregate model or data artefacts from multiple devices or 
software-based solutions are defined as individual distributed machine learning. Such 
distributed machine learning approaches do not require defining complex 
collaboration processes and rules. Meanwhile, collaborative distributed machine 
learning combines input from multiple entities, and comprises multiple collaborating 
parties at any given time which would benefit from sharing data and machine learning 
models to receive a classifier of a higher quality. The key difference between the two 
approaches is that collaborative learning requires trusting the participating parties and 
used services as, for the individual approach, all services are naturally trusted. 
Collaborative distributed machine learning also requires additional security and 
privacy measures because other parties might be malicious, or communication 
between such parties could be compromised, by revealing models or data that are sent 
in the course of the communication. 

When combining machine learning model representations, a few limitations 
may arise. Machine learning models may be represented in a wide range of formats 
that are imposed by different learning libraries and development environments. To 
address these discrepancies between the model file representations, model 
representation unification strategies are employed. In the process of applying the 
unification strategy, some internal model context is lost [57]. The unified model can 
lose so much context that the data would become unusable after unification [57]. 

Contrarily, when combining classifier predictions, internal model representation 
is not as important because the predictions need to be presented in a unified format. 
Predictions can be represented either in the numeric or in the categorical format. The 
transformation between numeric and categorical data can be achieved by setting the 
numeric label for categorical data. 
 Similar strategies that were presented in the ensemble learning section can be 
achieved in a distributed setting, as distributed learning relies heavily on model 
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combination techniques, such as boosting [58], stacking [59], or meta-learning [60]. 
Based on the solution implementation architecture, distributed machine learning [61] 
can be divided into two categories:  

Centralised: it contains multiple data producers uploading raw or aggregated 
knowledge to aggregate information at a single location [62]. 

Distributed network: here, a peer-to-peer network with multiple participating 
members exchanges knowledge and participates in the network management [63]. 
Distributed networks can also operate by the collaboration of multiple participants 
who share data, machine learning models, or model representations. In the context of 
this thesis, distributed learning is defined as machine learning with multiple 
participants who share data and model artefacts in a peer-to-peer manner. 

From the standpoint of the machine learning model aggregation and the machine 
learning model development, the methods can also be divided into centralised and 
distributed. When the computations are completed by a single machine and contain a 
local dataset, such an approach is defined as centralised [61]. But, due to large 
amounts of data, or because of data distributed over multiple storage locations, a 
centralised approach is not always viable. The technologies that aggregate data from 
multiple sources or divide computations into multi-agent environments are defined as 
distributed solutions. Such solutions were popularised by the map-reduce framework 
[64]. Such a distributed computation model inspired the development of many 
distributed learning frameworks and libraries, such as PyTorch [65], Apache Spark 
[66], and others [67], [68]. The distribution of computations allows developing more 
complex models by using a higher amount of data when compared to centralised 
approaches. The application of such a technology is also explored in the proposed 
method implementation by using Apache Spark as one of the tested model 
development frameworks. The Apache Spark framework is only tested as a 
technology that enables distributed model development by the method participants by 
using their local environments. It is not used to distributed computations when models 
are used in the proposed blockchain platform. 

Some of the distributed learning solutions do not require the sharing of raw data 
[69], while others [70] rely on the sharing of small datasets for the testing or validation 
purposes [71]. One of the most common approaches in distributed learning is the 
federated learning solutions. 

1.1.3 Federated learning 

Federated learning represents a distributed machine learning technique which 
enables the training of models on a network of decentralised contributors. In contrast 
to the conventional machine learning methods relying on the centralisation of data for 
model development, federated learning works by training models on numerous 
decentralised devices [26]. Rather than uploading all data samples to a single server, 
devices retain their local data samples without sharing them with other devices [27] – 
[29]. Machine learning models are trained locally on edge devices, or by collaborating 
member environments and the produced model, which is sent to the model 
aggregation server. The model aggregation server receives multiple models from 
multiple providers and updates the global model. The model is then returned to the 
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network participants to use with an increased performance. Such an approach when 
the network contains multiple data or model information providers is defined as 
horizontal federated learning [72]. Horizontal federated learning is the most common 
application of federated learning, with a high amount of research interest in combining 
federated learning and the internet-of-things domains. Another federated learning 
approach is vertical federated learning, where, instead of providing multiple instances 
of the same data, the network participants provide different data features dedicated to 
the same machine learning problem. Due to its popularity and the dependency of the 
machine learning process on high quality and quantity data for machine learning, the 
analysis will focus on horizontal federated learning. Federated learning offers utility 
in these main aspects:  

 Load-balancing: here, load balancing is used to distribute computations for 
machine learning. As the machine learning computations are performed in a 
participant environment, the computational load is naturally distributed to be 
merged at the central server. 

 Privacy preservation: it allows for participation in the machine learning 
process without revealing the training data. The training data privacy in a 
federated learning process is provided by the retention of the training data in the 
participant devices. Similarly, model encryption and secure model aggregation 
can be applied to increase the privacy of the training data.  

Several innovative solutions have emerged to distribute the training process 
[71], [73], [74]. One such example is Google’s implementation, where they utilise the 
cloud infrastructure to distribute the Gboard (Google keyboard) [75] model across 
multiple devices. The model is initially deployed and later improved with the user 
data. The improving process is completed via model updates from the user-provided 
model gradients. These model updates are then combined in the cloud-based web 
service and incorporated to enhance the shared model even further. The underlying 
principles of this approach demonstrate that decentralisation can effectively support 
the training of a single common machine learning model. 

Nvidia presented another innovative solution for federated learning, aiming to 
create robust machine learning algorithms which enable different nodes to collaborate 
on the training model while maintaining data privacy [76]. In this approach, Nvidia 
employs a server-client framework where a centralised server acts as a 
manager/facilitator for various clients. By using the proposed architectures, the users 
can collaborate in the model training process while still retaining control over the local 
model training. The process of collaboration involves training local models on 
individual devices, followed by sharing local model weights, which are then used to 
update the global model based on the weights and historical contributions. Although 
the infrastructure supports the use of different models, it still relies on a centralised 
node to aggregate weights and update the shared model, which leads to a bottleneck 
in terms of resources and computational power. 

As federated learning systems are composed of many data producers, the 
domains that contain elements distributed in the physical space and domains that 
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require an increased privacy are the key application areas. For example, regarding the 
Internet of Things (IoT) [71], [73], healthcare [77] is one of the most popular areas of 
its application due to the distribution and the higher demand for privacy. In the context 
of IoT applications, federated learning is applied to improve on data sharing, security, 
and crowdsensing issues. Although federated learning is applied in multiple domains, 
the following challenges are still present in machine learning solutions [78]: 

 Federated learning solutions rely on centralised processing. Centralisation of 
the process may lead to the system being more susceptible to denial-of-service 
attacks, where negated access to the centralised server disrupts the ability to use 
the entire system [79], [80]. With centralisation come the performance scaling 
issues, as, with a greater number of data providers, the possibility of 
performance overload increases [79], [80]. 

 Federated learning approaches lack an incentive mechanism. Without sufficient 
motivation, the number of network participants can decrease. With sufficient 
incentives, the drawback could be alleviated, and new members could be 
motivated to join [43], [81]. 

 Many of the proposed solutions lack robustness and could be vulnerable to 
poisoning or Byzantine attacks. The results of such attacks could seriously 
reduce the accuracy of the system and even lead to the denial of service [82], 
[83]. 

The analysis of federated learning approaches revealed that federated learning 
can be applied to multiple domains, and that its approaches are popular in the Internet 
of things, healthcare, and other domains. Even though federated learning uses a 
separated network of data providers, most of the implemented solutions still rely on a 
centralised network architecture. This creates a weak point susceptible to attacks and 
might reduce performance with high user counts when comparing it to a distributed 
system. Furthermore, many of the proposed solutions use a single type of machine 
learning model or are dedicated to a single machine learning task, thus reducing the 
flexibility of the system, and hindering collaboration. 

1.1.4 Summary of machine learning approaches 

Each machine learning model training architecture could have advantages over 
another option based on the machine learning problem, the number of participants, 
and the specific requirements for the task. The local model development might be the 
most applicable in those cases of use where the model development can be completed 
with the local computational resources, and when the datasets used contain enough 
instances to develop the model. Multiple participants can collaborate in the local 
machine learning model development by merging datasets before training and sharing 
the developed model afterwards. Federated learning approaches are mainly applied 
when there are multiple data providers, and a single entity performs the model training 
and tuning. Federated learning mostly trains complex neural network architectures 
which can support a high amount of knowledge. The complex development and long 
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model tuning of federated learning limits the adaptability of other model types or the 
reusability of a single architecture for multiple machine learning problems. 
Distributed machine learning is capable to support both centralised and decentralised 
architectures and a wide range of collaboration approaches, from data sharing to 
model sharing. When collaborating via the data sharing, the data is merged before 
training as the model sharing approach requires more complex model merging 
strategies. The comparison of machine learning model training architectures is 
provided in Table 1. 

Table 1. Comparison of the machine learning architectures and approaches 
Criteria Local model 

training  
Distributed 
machine 
learning 

Federated learning 

Data 
accessibility 

Offline Online Online 

Data sharing  - Not required / 
required 

Not required 

Complexity of 
support for 
new model 
types 

High High Highest 

Multiple 
participants 

No Yes Yes 

Possible 
system 
architectures 

Centralised Centralised or 
distributed 

Centralised or distributed 

Means of 
cooperation 

Model and data 
sharing 

Model and data 
sharing 

Model gradient sharing 

Limitations Collaboration 
requires 
complete data 
sharing and 
trust between 
the participants 

Requires model 
combination and 
may require 
significant 
development 
time to support 
new model or 
data types 

Inclusion of a new model or a new 
data type to federated learning 
networks is complicated due to 
required high model training and 
development time 

All machine learning architectures and methods, including distributed and 
federated learning, require security and privacy. Viable privacy preserving measures 
are overviewed in the next section. 

1.2 Privacy Preservation Methods in Machine Learning 

Privacy preservation is an important aspect in every stage of the machine 
learning pipeline. The importance of data privacy and security has been demonstrated 
by data standards [84] and legislation measures [85]. Different stages of the machine 
learning process deal with different privacy issues and demand distinct privacy 
ensuring measures. Data management and processing stages of the machine learning 
pipeline require secure and privacy-preserving data management to ensure that the 
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data are not revealed to the public or malicious adversaries. Model training procedures 
must ensure that neither the training process nor the developed model would reveal 
any sensitive training data. Model deployment should not reveal information about 
the training data in use and ensure that sensitive information is not accessible via 
derivative artefacts or model predictions. 

1.2.1 Privacy preserving machine learning 

The machine learning model development process utilises data representing 
real-world entities. The data for machine learning could represent publicly available 
data or private personal data. The disclosure of private data could have serious 
implications for people, companies, or governments. Therefore, when dealing with 
sensitive private data, privacy preservation measures and methods should be 
employed. Based on the used machine learning approach, all parts of the machine 
learning pipeline could require privacy preservation, ranging from private data 
acquisition and management to secure model deployment and usage. 

Data privacy methods are important in the machine learning model development 
process because attacks may reveal sensitive data. Three main groups of approaches 
to ensure privacy in machine learning processes are: anonymisation of the data [86], 
[87], [88], cryptographic approaches to secure transferred information [89], [90], and 
architectural approaches [91], [92], [93]. 

The first category of data privacy preservation approaches is to anonymise the 
training data [86], [87]. Traditional data anonymisation techniques, such as k-
anonymity [86], l-diversity [87], and t-closeness [88], define methods to select data 
that do not reveal identity information. 

Similar approaches which are designed to select a subset of data which would 
not reveal the identity of any individual data points are defined as differential privacy 
[40]. The security and integrity of the data preparation step performed should not 
disclose any sensitive information or modify the provided dataset to introduce new 
features or unique conditions which would reveal the identity of any real-world entity. 

The privacy preservation approach also depends on the selected model training 
implementation approach. When training the model in a local environment, data 
privacy is naturally ensured [94]. Model training privacy preservation requires the 
introduction of noise in a trained machine learning model so that not to reveal the 
identities of the training data by using model inversion attacks. Model training 
architectures and approaches requiring communication with external sources or an 
external training environment should ensure the security and privacy of the 
communication channels and the information that is transferred through these 
channels [89], [90]. Similarly, if the model training stage requires sending derivative 
information of the trained model, such as predictions or trained neural network 
gradients, the privacy of such artefacts must be preserved [68], [95]. In cases when 
the model developer and the user of such a model are separate entities, privacy-
preserving machine learning model deployment is required. In such a model 
deployment approach, model compression [91], model transformation [39], or 
knowledge transfer approaches are usually applied [92], [93]. 
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In the context of this dissertation, the data anonymisation and machine learning
model development steps are computed individually by each participant and 
performed in diverse self-managed environments. The privacy of such environments 
depends on the owners, and, as training data and model training processes should not
require any communication, their privacy should be naturally preserved [94]. The next 
section will overview the applicable privacy preservation approaches for the model 
deployment stage of the machine learning process.

1.2.2 Knowledge distillation approaches

After securing the training data and the machine learning model development 
processes, the solution developer should ensure privacy-preserving of the model 
deployment processes [40], [96]. Multiple solutions for private model deployment 
have been proposed [97], [98], [99]. Most of the proposed solutions apply a 
modification of knowledge transfer from single or multiple models to a new neural 
network model to secure sensitive model parameters. The propositions for such a
system defined as the Private Aggregation of Teacher Ensembles (PATE) were 
suggested by [92], [93]. The PATE approach (Figure 2) utilises multiple subsets of 
sensitive data to train a number of teacher models. The proposed method divides the
initial sensitive dataset into an N number of datasets and uses these subsets to develop 
multiple teacher classifiers. The developed teacher models are combined into a model 
ensemble. The ensemble predicts by voting with noise added to the voting histogram. 
The aggregated teacher delivers the predictions on the public dataset provided. These 
predictions are used to train the student model in conjunction with public unlabelled
data. The PATE model security relies on access restrictions. The data preparation and 
aggregate teacher development stage must not be accessible to malicious actors, as 
these artefacts contain sensitive information. After the creation of the student model, 
such restrictions are not required as the model cannot reveal any sensitive information 
about individual models or sensitive data on which it was trained, thus increasing 
privacy.

Figure 2. Overview of the PATE approach, proposed by [92]

Although the PATE approach proposes using a single dataset that is divided into 
subsets, a similar approach could be applied when multiple data producers are
collaborating on a defined machine learning solution, while using similar data 
structures [100], [101], [102], [103].

Solutions that expand the original proposition of PATE or utilise its concepts in 
different approaches have been proposed. In the field of federated learning, the authors
of [103] proposed a modification of the PATE approach. The updated knowledge 
transfer approach uses multiple data providers with individual datasets. The need of 
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unlabelled data for student model training is removed, and model distillation via a 
generative learning approach is defined. Distillation approaches can be divided into 
offline [104] and online [105] approaches. 
 Other modifications of the PATE approach have been proposed [106]. Some of 
the proposals (see, e.g., [106], [107]) also investigate the ability to model teacher 
knowledge as graphs which transfer information from teacher models to the student 
model. Other research concentrates its attention on the usage of a diverse group of 
teacher models for knowledge distillation [108], [109], [110]. Many other 
improvements and modifications exist which improve the initial proposition by 
shifting the research focus to data features [111], [112] or to attention [113].  

Multiple research papers have proposed a combination of knowledge distillation 
and blockchain technology. An overview of such research is presented in the 
following section. 

1.2.3 Knowledge distillation approaches and the blockchain technology 

Research combining knowledge distillation, federated learning, and the 
blockchain technology has been explored in [95], [114], [115]. Combining the 
blockchain technology can improve the security and robustness of the proposed 
system [95]. The introduction of knowledge distillation allows more diverse model 
types to be supported in a federated learning environment [95]. 

The authors of [95] proposed a knowledge transfer approach which enables the 
support of multiple types of machine learning models in federated learning. The 
authors utilized blockchain to mitigate the single-point-of-failure risk and provide 
logging of the network participant actions to an immutable ledger. The authors 
developed and experimentally tested two types of smart contracts. The first one is 
dedicated to managing federated learning processes, whereas the second type focuses 
on storage management. 

A novel decentralised federated learning method was proposed by [114]. This 
method is designed to reduce the amount of communication between the network 
participants and improve the network stability. The proposed method introduces a 
ring-based topology and uses Ethereum with the Interplanetary File System to store 
information about transactions and machine learning models, respectively. 
Knowledge distillation is also utilised to aggregate multiple models. 
 The continuous knowledge transfer approach for edge computing was also 
presented by [115]. The proposed method was implemented by using the Hyperledger 
Fabric blockchain and smart contracts. The blockchain was used to store data about 
the deep learning training process artefacts and network transactions. The network 
was experimentally evaluated the use of computer vision tasks and ensured that such 
solutions could be implemented in practice. 
 Most of the approaches that combine the blockchain technology apply it to 
mitigate the drawbacks of centralised federated learning approaches [114], [115]. A 
combination of federated learning, blockchain, and model aggregation has been 
proposed [70], [71], [82], [116]. But knowledge distillation is not the only privacy 
preservation approach that can be applied to federated learning on blockchain. In the 
next section an overview of approaches using other privacy preservation methods 
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when combining distributed learning, blockchain and privacy preservation measures 
is presented. 

1.2.4 Blockchain enabled privacy preserving machine learning 

Approaches combining blockchain with privacy preserving machine learning are 
overviewed in this section. The results of the compared research are presented in Table 
2. The approaches are compared on the grounds of the blockchain technology usage, 
privacy-preserving methods, machine learning model types, the blockchain 
technology, and the consensus algorithm. In addition, if the proposed approach or 
method were to include the network participants’ roles in the machine learning 
process, such roles are listed. Some of the overviewed approaches introduced an 
incentive mechanism into their process, either by providing blockchain tokens or 
monetary value to the network participants. Such incentive mechanisms are also 
considered as criteria because they could motivate participation. The application area 
criteria were defined if the proposed method was designed for a specialised application 
where single or multiple areas are listed; otherwise, the analysed approach is classified 
as universal. For those research propositions which do not specify the machine 
learning method, the definition was omitted. 
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Most of the overviewed approaches supplement the blockchain with novel 
consensus algorithms [70], [71], [82], [116] that are implemented in order to evaluate 
the performance of the distributed machine learning models. These approaches are 
usually implemented by using the public blockchain [117], [70] as the base technology 
and are mostly presented as only proof-of-concept approaches which require 
implementing new blockchain networks, that are complex and might be a non-feasible 
solution for practical implementation. With novel blockchain networks, some 
approaches also introduce new roles for the blockchain network participants, most 
commonly including roles for data contributor and data validator peers.  

The most common privacy preservation measure in the compared approaches is 
differential privacy and the encryption of communication channels. Differential 
privacy measures are applied in order not to reveal sensitive information about any 
single data instance used in the data pool. A similar purpose in context of privacy 
preservation serves various noise addition techniques that are used to remove patterns 
in data that could reveal sensitive information. In some overviewed solutions, privacy 
is ensured by data encryption (Encryption of model gradients, Zero-knowledge 
proofs). Such approaches are commonly used in public blockchain environments to 
make parts of information available only to the required participants while preventing 
data leaks. Zero knowledge proofs are used to verify the existence of information 
without decryption, thus simplifying the auditing and verification purposes. The third 
category for privacy preservation is provided by model aggregation, such as the l-
nearest aggregation and PATE-based approaches. Commonly, collaborative 
distributed machine learning approaches combine multiple privacy preservation 
methods in a single system based on the requirements. Even though part of the 
overviewed methods do not explicitly state the usage of encryption approach on the 
data, the communication channels and collaboration algorithms powering data sharing 
are usually encrypted due to the best practices of common security. For the method 
proposed in this thesis, it was defined that the most important privacy preservation 
drawback is the membership inference attack via the deployed model, which would 
enable access to training data information. Thus, the model distillation approach was 
selected. 

The application areas for most of the proposed approaches fall into two 
categories: domains requiring sensitive data preservation, as in the healthcare domain 
[117]; multiple data creation and usage parties that are distributed in a physical space 
with the need to collaborate on common tasks, as in the internet of things domain [71], 
[74]. Universal approaches that could be applied to multiple domains have also been 
proposed, but most of them are considered only for deep learning [120], [121] without 
support for other types of machine learning models. Most of the compared approaches 
are only implemented on a single machine learning environment without considering 
heterogeneous approaches, thus reducing the usability of the developed approaches. 
The proposed method is also commonly confined to a limited set of supported 
programming languages, while only supporting a smart contract-provided set. This 
limits the ease of access and increases the development costs for participants with the 
already existing machine learning solution support. Most of the overviewed solutions 
either use a relatively slow consensus algorithm, such as PoW or its modifications, or 
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propose the usage of a custom blockchain network and solutions whose 
implementation would require a significant development effort. Most of the 
overviewed research only experimentally dealt with a small part of the proposed 
method while commonly not including analysis of the blockchain network 
performance. The common evaluation topics of the proposed methods are the security 
and privacy analysis and the incentive provision methods.  

1.3 Blockchain Technologies for Machine Learning 

Distributed Ledger Technologies (DLT) have been proposed [122] and 
implemented in the business and scientific communities. But only the blockchain has 
received the mainstream appeal, starting with the cryptocurrency called Bitcoin 
introduced by Satoshi Nakamoto [123]. The blockchain is a network composed of 
multiple participant peers storing the transaction information in a state database called 
the ledger. The ledger records all interactions on the blockchain and is replicated to 
all the participants on the network for validation and safekeeping. Transactions are 
cryptographically hashed and then bundled into blocks and linked to each other. The 
blockchain ledger is powered by the blockchain data structure and cryptography 
approaches, such as hashing. The hashing algorithm can transform any amount of 
information and produces a unique fixed length value as a result [124]. To ensure that 
all transactions are composed correctly, the blockchain technology also employs a 
Merkle tree algorithm [125] which enables simpler verification of validity for multiple 
hash values. Such an approach allows us to use a single value to verify that nothing in 
the information composition has been changed. Blockchain uses hashing algorithms 
to uniquely identify block information and verify its integrity. The block structure 
stores information about the performed transactions in a given time frame. A block is 
composed of two types of information: the block header and the block body (Figure 
3). The block header stores meta information, such as the previous block hash, the 
version, the timestamp, the nonce, and the difficulty target. A previous block hash is 
a unique identifier which is used to associate the present blockchain block with the 
previous block, thus ensuring that the information is linked together. The timestamp 
is used to record the time when the block was created, and the Merkle tree root is used 
to verify that all the created transactions are correct. Nonce is a calculated value that 
is used in the block creation. The body of the block stores all information about the 
transactions. 
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Figure 3. Blockchain block structure [2] 

The Blockchain technology is designed to provide transparency, data 
consistency, verifiability, and data integrity [123], [126], [127]. The Blockchain 
technology utilises a distributed architecture, thus eliminating the need to rely on a 
centralised party. Distribution also increases the robustness of the solutions, which 
means that it is harder to deny service. Multiple copies of the ledger are distributed 
among the network participants for safekeeping. Such data replication ensures that the 
data are secure even though multiple parties can stop participating in the network. 

1.3.1 Blockchain platforms 

The Bitcoin cryptocurrency introduced a novel approach in the distributed 
ledger technologies combining transaction logging, peer-to-peer technology, and 
consensus algorithms into a single system [123]. Multiple other blockchain platforms 
were inspired and developed by the modification of the initial Bitcoin platform. The 
term blockchain [128] defines a data structure which uses cryptographic hashing 
algorithms to link multiple blocks of information in an immutable chain.  

The process of validating a single block of transactions and agreement on the 
validity of the block to add to the blockchain is defined as a consensus algorithm [2]. 
Communities managing data deployments which store copies of immutable blocks are 
called blockchain networks [2]. Blockchain networks can be classified according to 
their member acceptance model and the required level of trust [129] into public, 
private, and consortium networks.  

The public blockchain is openly accessible to any new members who wish to 
join the network. Every registered network member is able to participate in a 
consensus algorithm and is allowed to store a copy of the ledger. The public 
blockchain provides incentive mechanisms for network members who participate in 
the consensus algorithm by distributing tokens for contributions. The most popular 
examples of public blockchains are Bitcoin [123] and Ethereum [126]. As access to 
these networks is unrestricted, to ensure security and trust, networks require complex 
consensus algorithms. The two most prominent consensus algorithms used in public 
blockchain networks are Proof of Work (PoW) and Proof of Stake (PoS). The PoW 
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consensus algorithm introduces a mathematical puzzle with variable complexity that 
the users can solve. The puzzle solution is achieved by computing cryptographic 
hashes that satisfy the algorithm-dependent criteria. To calculate the result of the PoW 
consensus algorithm, a large amount of computation power is allocated. Such 
computations waste resources that could be used for other tasks and energy [109]. The 
Proof of Stake consensus algorithm omits the computation part of the consensus 
algorithm and introduces an algorithm where network participants lock a part of their 
owned crypto currency to verify their trust. The algorithm is defined to verify 
participants based on the amounts of locked currency, while trusting participants with 
higher amount of currency more. Other introduced consensus algorithms generally try 
to alleviate the drawbacks of the PoW and PoS algorithms [130]. 

Similarly, the private blockchain networks uses a distributed ledger and peer-to 
peer architecture, but restricts access to the network’s participants, as generally one 
or more parties decide on the access rights for other members [82]. The strict access 
rules increase the trust of the network members participating in the blockchain, thus 
reducing the need for complex consensus algorithms. This increases the transaction 
validation speed, resulting in a network with higher performance. The most prominent 
private blockchain networks are Hyperledger Fabric [127], Corda, and Ripple. The 
consensus algorithms in the private blockchain perform more efficiently with less 
computational power wasted [131]. Although private blockchains are more efficient, 
the motivation to develop such a blockchain network could be hindered by the 
requirement to trust the collaborating parties.  

The consortium blockchain [132] stands as a middle ground for public and 
private blockchain networks with the ability to control access to the blockchain 
network which operates as a public blockchain once the access has been granted. Both 
private and consortium blockchains are highly specialised, usually dedicated to a 
single application area with a limited number of participants. Private blockchains 
require a community of dedicated parties to set up and operate. 

The private blockchain technology is most appropriate for applications requiring 
efficient transaction verification and having partial trust between the collaborating 
parties. In the context of this work, the partial trust between the collaborating parties 
can be defined as the trust required to participate in the collaboration and the decision 
to commit model and validation data files to the network, but not high enough to share 
training data outright. Such trust is defined as ‘partial’ only as the collaborating parties 
should not trust each other to share the model training data directly, but be willing to 
collaborate to gain better quality machine learning models. Public blockchains are 
appropriated in applications when the parties do not trust each other, and all 
participants are required to have equal rights.  

1.3.1.1 Consensus algorithms 

With the introduction of the Bitcoin crypto currency, it required a means to 
evaluate the participants’ willingness to commit to the network, as well as to stop the 
double spending problem when logging transactions. To solve such problems, the 
Bitcoin introduced the Proof-of-Work (PoW) consensus algorithm. The purpose of 
consensus algorithms is to prevent alternative sources of truth in the blockchain. The 
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PoW consensus algorithms also provide proof that you are committed to the 
blockchain network and that you, as a network participant, can be trusted to validate 
the transactions if you complete the task. In the blockchain network, the transactions 
are added to each new block, and each such new addition must be validated via the 
consensus algorithm. To complete the task of transaction validation, network 
members must calculate a number which, added to the block, produces the correct 
one-way hash, where the hash is calculating a one-way hashing function [124], [125]. 
The validation of such a transaction in the Bitcoin blockchain network is called 
mining. The mining computation does not add any other value to the network except 
for ensuring that the network participants are willing to expend the required 
computational resources to prove their commitment to the network. The PoW 
consensus algorithm approach has been criticised [131], [133] for being slow, 
inefficient, and wasting computational power that could be allocated elsewhere. Even 
though this consensus algorithm is criticised, it still powers many popular blockchain 
networks, such as Bitcoin and other variants of cryptocurrency. 

Due to a higher level of trust, private blockchains do not need to have 
computationally demanding consensus algorithms. The most popular consensus 
algorithm among the private blockchains is the Byzantine Fault Tolerant consensus 
algorithm (BFT) or similar approaches [134]. The BFT algorithm enables the network 
to reach consensus regardless of whether some of the nodes participating in the 
process fail or act maliciously. Multiple research approaches [70], [118] have been 
proposed to integrate the machine learning model validation process as a consensus 
algorithm approach, but most of them provide only the formal definition of such an 
approach, or the performance of such an approach is only tested without implementing 
it into a full network.  

1.3.1.2 Smart contracts  

As the popularity of the blockchain technology increased, its application 
expanded to a number of domains. With applications to more diverse domains, it 
became clear that only performing transactions to transfer funds from one network 
party to another is not sufficient. To support more complex solutions, smart contracts 
were introduced to the blockchain. Smart contracts enable the development of more 
complex programs which could power a wider variety of the cases of use. The smart 
contracts were introduced in the Ethereum [126] blockchain that included executable 
command operations into blockchain blocks which could be used for a wider range of 
applications. Smart contracts are deployed in the blockchain and are invoked by 
performing a transaction in a blockchain block (Figure 4). The smart contract code is 
executed in a blockchain virtual machine. As any data stored in a blockchain are 
immutable, the deployed smart contract cannot be removed or modified, either. Smart 
contracts in the Ethereum blockchain network were first introduced with proprietary 
programming languages, specifically, Solidity [135], and Vyper [136]. The 
deployment of a smart contract and the execution of its logic on most public 
blockchains have an associated price commonly measured in the cryptocurrency. This 
price is commonly based on the complexity of the smart contract and the 
computational resources used for the execution [137]. This not only encourages smart 
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contract developers to optimise their code [138] for efficient execution, but also 
discourages extremely complex applications. Smart contracts also have built-in 
limitations, as the contract is executed by multiple network peers which have to verify 
the execution results, the results produced by the smart contract should be 
deterministic [139] for successful execution. For example, any function that uses 
random number generation could produce nondeterministic results [139]. A smart 
contract in private blockchain environments does not have a cost attached to either 
execution, or to deployment procedures. Thus, the development of more complex 
solutions via smart contracts is enabled. 

 

  
Figure 4. Smart contract deployment on public blockchain [140] 

The solutions utilising smart contracts to power their business processes require 
to store and access business-related data. Such data could range from simple key-value 
pair data to large datasets with multiple features. This means that the smart contract 
developer evaluates how the data could be accessed by the smart contract and possible 
data storage solutions. 

1.3.1.3 Data storage in blockchain and smart contract extensibility 

The supported data storage solutions can vary depending on the type of the 
blockchain network selected. Public blockchains, due to the trust requirement, support 
less diverse data structures and data storage approaches [141], when private and 
hybrid blockchain types provide support for more complex data structures, and may 
even support existing data storage solutions [141]. Public blockchain smart contract 
development requires code optimisation in order to reduce the execution costs [137]. 
In public blockchain systems, data storage is commonly reliant on third party storage 
solutions, such as the InterPlanetary File System (IPFS) [142], [143]. Solutions, such 
as Hyperledger Fabric [127], can rely on system-provided storage that can store data 
in key-value pairs, or by using CouchDB. When adapting the blockchain storage to 
facilitate machine learning procedures, CouchDB provides major advantages as 
CouchDB enables storing data by using JSON files. This expands the possibility of 
storing more complex data structures in blockchain networks. Hybrid approaches, 
such as Corda [144], can utilise the currently existing database technologies to store 
information.  
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1.3.1.4 Permissioned blockchain solutions 

Ripple [145] consortium blockchain was introduced as a solution for financial 
institutions to manage payment information. The Ripple blockchain introduced a 
faster consensus algorithm called the Ripple Protocol Consensus Algorithm (RPCA) 
which enables fast verifications of transactions. The Ripple blockchain was developed 
to include native crypto currency called XRP. The Ripple consortium blockchain 
supports custom logic via the smart contracts that can be developed by using the 
Python and JS programming languages. The Ripple blockchain supports blockchain 
oracles whose focus is dedicated to the access to centralised API that provide data to 
the blockchain network. The main limitation of the Ripple blockchain is its limited 
solution development when using smart contracts. 

Corda [144] is a consortium-distributed ledger platform which uses a global state 
to share data between the network participants. The Corda DLT uses existing data 
storage technologies, such as PostgresSQL, Azure SQL, Oracles and others. The 
Corda blockchain is powered by the Java virtual machine enabling the development 
of dedicated Corda applications. Corda is a permissioned blockchain which enables 
organisations to set user roles and permissions. The user identity is provided by 
providing X.509 certificates. The main drawback of the Corda DLT is that such 
systems lack replication between the participants, while only ensuring the complete 
data in the single node. Such a replication model is more common to the centralised 
systems in comparison to peer-to-peer blockchain networks. The Corda DLT supports 
local nodes and provides support for component deployment via containerised 
services. Smart contracts in Corda DLT can be developed by any language that can 
run in the Java virtual machine. The main drawbacks of Corda DLT are the limited 
security of the participant identity and the support for only limited transaction 
distribution among the participants, which removes the main benefits of a distributed 
system. 

Hyperledger Fabric [127] is a private blockchain framework developed by the 
Linux Foundation. The modular architecture of Hyperledger Fabric allows 
organisations to modify the technology and customise it based on the applied 
requirements. The Hyperledger Fabric private blockchain supports smart contract 
development by using the Go, Java, and JavaScript programming languages. Two 
storage types are also supported by Hyperledger Fabric: simple storage which allows 
storing data in key-value pairs, and CouchDB file storage which allows using the 
JSON format to store more complex data. As with other modular parts of Hyperledger 
Fabric, it also supports alternative consensus algorithms: BFT implemented by 
Apache Kafka [146] and PBFT [147] implemented by Raft. Smart contracts developed 
for Hyperledger Fabric support calls to external oracle services. The support for such 
calls is important when introducing novel components, developing complex solutions, 
and widening support for already existing programming environments on the 
blockchain network architecture.   
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Table 3. Comparison of the supported smart contract languages and support for 
oracle services on blockchain platforms 

 Hyperledger 
Fabric [127] 

Ethereum [126] Corda [144] Ripple 
[145] 

Smart 
contract 
languages 

Go, JavaScript, 
Java  

Solidity, Vyper, 
Yul 

Java, Kotlin  
 

C++ 

Network 
type 

Private 
 

Public Consortium Consortium 

Consensus 
algorithms 

BFT, RAFT 
(PBFT) 

PoW, PoS RAFT Unique 
Node List 

Supported 
storage 
technology 

Key-value, 
CouchDB 

Key-value H2, Postgres, 
SQL Server, 
Oracle 

Key-value 

Native 
currency 

No Ether No XRP 

Design 
architecture 

Containerised, 
Modular 

Node-based Service-based Node-based 

Support for 
oracles 

Supported Supported Supported Supported 

Limitations Requires 
definitions of 
roles 

Comparatively 
slow consensus 
algorithm, limited 
smart contract 
development 
languages 

Node information 
is not shared with 
the whole 
blockchain 
network.  

Low number 
of nodes in 
the 
blockchain 
network, 
limited 
smart 
contract 
functionality 

 
A comparison of blockchain technologies having the smart contract support, and 

a wide range of the supported storage solutions is presented in Table 3. Hyperledger 
Fabric supports calls to external services from the smart contract environment [148]. 
Hyperledger Fabric provides a comparatively fast consensus algorithm that does not 
waste high amounts of computational power [2]. Hyperledger Fabric is extensible by 
new components that enable integration of existing machine learning environments 
into blockchain network [148]. Hyperledger Fabric smart contract development 
environment is flexible and allows to develop complex solutions unlike limited Ripple 
smart contracts. The Hyperledger Fabric private blockchain also have full transaction 
sharing between the nodes, unlike the Corda blockchain. 

1.3.2 Blockchain oracles 

Blockchain networks were initially designed as self-contained solutions. Smart 
contracts usually only access the transaction information, or the information stored in 
blockchain storage. Smart contracts are incapable of storing a large amount of data; 
therefore, they have to rely on services such as blockchain oracles for data bridging. 
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Solutions for trusted data feeds and side chains [149] can also become viable with the 
blockchain oracle usage. To introduce the ability to obtain external data from the 
blockchain network design, a design pattern called oracle was developed [148], [150]. 
The blockchain oracle can be defined as a trusted third party service which provides 
information to smart contract functions and external sources [150]. Similarly to smart 
contracts, the data or computation results obtained from blockchain oracle have to be 
deterministic, as they are commonly used in the smart contract logic. Blockchain 
oracles can be divided by four main criteria [151], [152]: data source, data direction, 
design pattern, and interaction. The largest and broadest overview of blockchain 
oracles is provided by source [152], and the taxonomy presented in the solutions is 
provided in Figure 5. 

 

 
Figure 5. Taxonomy of blockchain oracles, proposed by [152] 

Data sources for blockchain oracles can be software-based, where the 
information is provided by a third-party API service or a local network component. In 
a human-based solution, the information is provided manually by inputting 
information via software services. The data source can be produced or supplied by 
hardware solutions [153], [154], such as sensors or IoT devices. Such data providers 
would be classified as hardware oracles.  

Different architecture approaches can be employed to develop blockchain 
oracles. The blockchain oracle can be developed as a centralised [155], [156], [157], 
[158] component, where a single service provides information to many users of the 
blockchain network. This presents multiple downsides, with the introduction of a 
single point of failure to a distributed system as the most crucial one. This means that 
the negation of access to a single centralised service could disrupt the usability of the 
whole blockchain network. Another drawback of centralised blockchain oracle stems 
from trust. Public blockchains are used for systems where users do not trust each other, 
even though trust is required in order to develop a trusted third-party service. Thus, 
introducing such a service in a public blockchain would reduce the robustness of the 
system and could discourage some potential network users from participating in the 
network. On the other side of the spectrum of centralisation, a decentralised 
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blockchain oracle architecture [159], [160] is proposed. Blockchain oracles can be 
decentralised by introducing multiple instances of third-party blockchain oracles. The 
use of decentralised oracles increases the reliability of the solution. Yet, trust issues 
persist even if the off-chain oracle is deployed on a peer-to-peer network. To increase 
the control of blockchain oracles, such services can be deployed as off-chain oracles 
on individual local network nodes. This also reduces the communication overhead as 
each node only communicates with a single or multiple dedicated service.  

 Blockchain oracles are classified according to the design patterns used. Three 
design patterns are the most prominent among the blockchain oracles [135]: there are 
the request-response, immediate read, and publish-subscribe types of oracles. The 
request-response design pattern defines a blockchain oracle which provides 
information only when requested. The publish-subscribe design pattern allows the 
smart contract to continuously receive information from the oracle service. This is 
usually reserved for information which undergoes many updates and is continuously 
provided. The design pattern called immediate read provides information that is small 
enough to keep in oracle storage and can be provided to smart contract functions on 
demand. Such information is usually required in a smart contract without intensive 
computations. 

The final way to classify oracles is based on the direction of the data flow. For 
the data received from external data sources into the blockchain, such oracles are 
defined as inbound oracles. Meanwhile, those oracles which receive information from 
the blockchain network and share it with other services or store it in a different 
environment are defined as outbound. A similar proposition to classify oracle services 
was proposed by source [148], where oracles are divided by their means of usage. The 
blockchain oracles that are used only to read or provide data could be defined as data 
oracles. Oracles that are designed to receive data and calculate the result based on the 
provided data could be defined as calculation oracles. 

The method combining the oracle technology with machine learning which 
proposes the usage of blockchain oracles is provided by source [161]. The proposed 
method introduces a novel architecture combining the blockchain and oracle services 
to perform decentralised learning on the data provided by industrial Internet-of-things 
devices. The proposed architecture uses multiple blockchain networks: one for data 
governance, and the other for data storing. The prototype network was implemented 
by using XuperChain [162].  

Another method combining machine learning and blockchain oracles was 
proposed by source [163] which powers a novel secure voting system. The proposition 
utilises the Ethereum blockchain network and introduces machine learning blockchain 
oracles as network components which authenticate the network participants. 
Authentication is performed by using face recognition techniques. The research 
describes the architecture and does not provide any implementation details. This 
research also does not add oracle services into the network peer local environment 
and requires data to be provided from non-blockchain sources to oracle services. 

Blockchain oracles have been used to perform machine learning in the 
blockchain technologies, but several alternative research proposals have been made 
on improvements to the security and trust of the approaches. Those approaches which 
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do not apply oracle services and combine machine learning with the blockchain 
technology are further discussed. 

Although smart contracts enable more complex solutions on blockchain 
networks, they are limited by supported programming languages and can only obtain 
information from the blockchain network. To provide data from non-blockchain-
based systems and to increase the number of the supported execution environments, 
smart contracts can be extended by dedicated services called blockchain oracles that 
provide data to the blockchain or provide an environment for computations. 

1.3.3 Other blockchain technology-based machine learning solutions 

Combinations of machine learning and blockchain domains have been actively 
researched in many research domains, especially in the Internet-of-things (IoT) [164], 
[165], healthcare, and security domains [166], especially with the combination of 
distributed machine learning [72], [133], and privacy-preserving machine learning, 
where the blockchain technology can be used to increase trust and provide means to 
motivate the network participants.  
 The blockchain technology has been proposed as a viable solution to improve 
the transparency, auditability [118] and security [167] of the machine learning 
processes. The intrusion recognition method for federated learning has been proposed 
by source [167]. The utilised method permissioned the blockchain to enable 
transparency and increased auditability of federated learning. The authors used the 
MultiChain blockchain network and trained an autoencoder with three hidden layers 
which, in total, contain 3000 weights. The authors of the source note that even though 
the performance of the model training process was reduced in the range from 5 to 15 
percent, the introduction of blockchain provided beneficial transparency. For the 
implementation, the authors used the MultiChain blockchain, but Hyperledger Fabric 
and the smart contract were considered as a viable alternative. 

Another approach in which the authors combined deep learning models, the 
blockchain technology, and federated learning was proposed by source [118]. The 
blockchain in this approach was used to power the incentive mechanism and 
compensate the network participants for the training activities of the neural network 
model. Additionally, a new consensus algorithm based on Algorand called the 
blockwise-BA protocol was proposed. The defined solution was experimentally tested 
by evaluating the accuracy and throughput of the trained model of the developed 
system. To increase the security of the network, data encryption was also employed, 
and, as the authors note, the introduction of the blockchain to the federated learning 
process introduced transparency and auditability.  

Similarly, an approach to apply the blockchain technology to secure the neural 
network training process was proposed by source [168]. This method introduced a 
new blockchain block structure that would not only store blockchain operational 
information, but would also store cryptographic information and neural network 
weights. The authors describe this new structure as DeepRing. A novel validation and 
consensus approach was also defined by the authors, which relies on hashing the 
weights and linking them together just as blockchain blocks are linked together. 
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The blockchain application to increase the security of deep learning model 
training was proposed by source [166]. The approach employs the Stellar blockchain 
and is used to provide incentives, anonymise the identities of network participants, 
and log the participant activities. The introduction of multiple roles for the participants 
in the network such as the model contributor and the data contributor was done by 
utilising smart contracts. 

The machine learning approach combined with Hyperledger Fabric was 
proposed by source [169]. A proposal to improve the Hyperledger Fabric endorsement 
policy by employing a machine learning approach was outlined. The implemented 
machine learning approach was used to detect anomalies in the validation actions of 
the participating nodes. The k-NN classifier was applied to detect malicious nodes, 
and the experiments were executed by using the OpenMalaria dataset. Although the 
authors experimented with anomalous worker detection, the research suggests that 
machine learning when combined with blockchain technologies is relevant and 
achievable. 

Internet-of-things researchers applied machine learning methods to classify IoT 
device usage in the form of blockchain transactions [164]. Such classification could 
be viewed as a type of attack to identify possible IoT devices. To reduce the possibility 
of such an attack, the authors proposed three timestamp obfuscation approaches that 
utilised blockchain. 

Table 4. Comparison of blockchain applications for machine learning 
Reference [168] [169] [164] [166] [167] 
ML 
approach 

Deep 
learning 

k-NN 
classifier 

Any 
classifier 

Deep 
learning 

Deep 
learning 

Blockchain Corda Hyperledger 
Fabric 

Undefined Stella MultiChain 

Blockchain 
Type 

Consortium Private Undefined Private Private or 
Public 

Application 
area 

Computer 
vision 

Blockchain 
processes 

IoT Autonomous 
self-driving 

Federated 
learning 

Smart 
Contract 

- + - + - 

Storage - IBM’s 
Cloudant 

Undefined IPFS [142] IPFS [142] 

Limitations Limited 
application 
area, 
complex 
blockchain 
structure 

Limited set 
of tested 
machine 
learning 
solutions 

Limited 
application 
area, limited 
set of tested 
machine 
learning 
solutions 

Single 
complex 
machine 
learning 
model type 
usage, 
dependency 
to external 
data storage 
solution 

Security 
oriented 
application, 
dependency 
on external 
data storage 
solution 
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The majority of solutions are tailored to a specific model type, with a primary 
focus on enhancing the security of the system or offering incentive mechanisms 
through blockchain tokens. 

1.3.4 Participant contribution calculation mechanisms 

Systems relying on participant contribution try to encourage participation by 
providing monetary or other motivation to the participants called the incentive. This 
incentive should be based on the members’ contributions and distribute the value 
gained or donated to the network fairly. Incentive can also be provided for the work 
completed by the network members. Incentive can be classified into two categories: 
positive and negative. The positive incentive motivates the network participants that 
provide quality contributions, whereas the negative incentive punishes misbehaving 
participants. Collaboration evaluation techniques were firstly studied as a part of the 
game theory studies such as [170], [171], [172], where the goal is to evaluate the 
collaborator’s contribution. Such collaboration evaluation techniques are widely 
applied and researched in the field of economics [173], machine learning [174] and 
others [175]. The modified Shapley value calculation approach is used as a weight 
selection strategy in the proposed CDMLB method. 

1.3.4.1 Shapley value 

The Shapley value [170] was first introduced as a game theory metric to evaluate 
the members’ contribution in a collaborative economic game according to the game 
theory. The Shapley value was defined as a formula, where the contribution of a 
coalition participant n is calculated (1):  

 (1)

where v is the coalition members’ contribution. N is the total set of contributions 
and S is a subset out of the total contributions  defined as a coalition. 

 represents a marginal contribution of a single coalition member. 
The main benefit of the Shapley method is that it evaluates all possible 

permutations of a member contribution set and provides an average contribution of 
each member. The downside of this approach is that the computation complexity 
grows exponentially with each new participant. To reduce the computational 
complexity of this solution, many Shapley value approximation methods have been 
proposed [176]. The permutation sampling-based Shapley approximation method is 
an example of such approximation and enables the calculation of the Shapley values 
in linear time [176].  

In the field of machine learning, Shapley values have been applied to multiple 
problems. The most common application is used in the dataset feature exploration 
[174], [177], [178]. Data importance evaluation methods where dataset sharing is 
considered as the coalition member contribution and the reward is defined by model 
performance can also employ Shapley values [179], [180]. In this case, it allows 
measuring the impact of the data on the performance of the model.  
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Similarly, the model valuation [180] in a machine learning model ensemble has 
been proposed, where the performance of an individual model is the contribution, and 
the impact to the ensemble performance is evaluated by the Shapley value.  

There are many propositions to use the Shapley value for model performance 
evaluation or model contribution evaluation when forming a model ensemble [180]–
[181]. A comparison of such propositions is presented in Table 5. 

Table 5. Model and Data performance valuation via Shapley-based methods 
Research Measure of 

contribution 
Approximation  Application area 

Rozemberczki et 
al. [180] 

Prediction voting + Model importance 
quantification for model 
ensembling  

Ykhlef et al. 
[182] 

Classifier accuracy - Method to select 
ensemble 

Wang et al. [183] Classifier accuracy + Data importance 
evaluation method  

Chen et al. [181] Generalized Shapley - Credit risk management 
with heterogeneous 
machine learning 
ensemble 
 

 
 The Shapley value as an incentive measure that could be used with the 
blockchain technology has already been proposed by [184], [185], [186]. The most 
complete research defining the incentive which uses Shapley as a basis for the 
calculations is presented in [184]. The researchers of this source presented evaluation 
of data shared to cloud services and defined methods how to transform this evaluation 
into an incentive. The participants’ contribution in their denoted method was the 
increment of the value as the participant takes part in the coalition. The blockchain in 
this approach is used to control the access rights for the participants. The authors 
evaluated the proposed incentive measure by benchmarking its performance with 
varying contributor sizes and measuring the performance of the k-NN and SVM 
classifiers. Their experiments confirmed that the proposed incentive measure is able 
to provide a higher compensation to its participants, thereby proving the effectiveness 
of the selected approach. Even though Shapley is utilised as the classical method to 
evaluate contribution, many other incentive measures were proposed that were 
adapted for blockchain technologies.  

1.3.4.2 Incentive mechanisms in the blockchain technology 

The incentive in the blockchain technology was introduced with the Bitcoin 
cryptocurrency. This incentive encouraged the network participants to verify 
transactions and participate in the PoW consensus algorithm. In this incentive system, 
the participants are rewarded based on the number of committed blocks, which 
correlates to their committed computational resource input when validating a new 
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blockchain block. Other consensus algorithms provide similar incentives for the 
participation and the execution of smart contracts [130]. 

An example of such an incentive method is proposed by source [187] for the 
edge-computing-based approach. This approach allows blockchain miners to utilise 
edge service providers to obtain additional computational power. The authors base 
incentive calculations on the Stackelberg [171] game between the participants in the 
blockchain network and the providers of edge computing resources. The authors 
proved that such an incentive mechanism can be effective, and experimentally tested 
their proposed solution. 

A similar approach for incentives for IoT and edge computing was proposed by 
source [188]. The authors analysed the connection between the blockchain network 
and the network participants and proposed an algorithm to find the Stackelberg 
equilibrium point. The authors experimentally tested the performance of their 
proposed algorithm and defined a reward pricing strategy. The research proved that 
Stackelberg equilibrium can be achieved by using their proposed strategy and 
provided the performance results of the experimentally tested methods. 

Another example of an incentive developed for blockchain technology 
processes was presented by source [189]. This research proposed an incentive 
mechanism allowing to secure the verified content from the miners who are validating 
the blockchain blocks. The authors defined the execution cost evaluation strategy in 
order to address possible collusion attacks. 

Another research demonstrating that incentive methods using the blockchain are 
viable and can be applied to data sharing was described in source [190]. The authors 
employed smart contracts to develop their incentive mechanism. The proposed 
incentive mechanism is based on evolutionary game incentives, where the participants 
are presented with the choice to participate in data sharing or not. The blockchain 
technology in this research is used to store data-sharing transaction logs and provide 
participation cost requirements on demand. Blockchain is also used to store the 
developed system logic using smart contracts. Even though many blockchain 
approaches employ an incentive as part of their method, in the context of this work, 
we are only focusing on calculating the measures of contribution. By using these 
contribution measures, the incentive can be defined by using personalised 
requirements of the participating organisations. 
 

1.4 Summary of Analysis 

The analysis of machine learning approaches revealed that the majority of the 
analysed approaches are developed by a single entity not employing collaboration. 
This reduces the diversity of the used data to develop machine learning solutions. The 
focus on individual development in distributed machine learning stems from security 
and privacy issues. Moreover, most of the distributed learning approaches found in 
the analysis are highly specialised, dedicated to addressing a single machine learning 
problem, and they typically employ only one specific type of a machine learning 
model. The limited machine learning model type usage restricts the possibilities for 
collaboration and engagement in a broader range of applications. 
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When analysing privacy preserving solutions that are applied to enable 
collaboration, the results indicated that most of the solutions concentrate their efforts 
on safeguarding the communication channels and the sensitive training data. As a 
result, most of these approaches separate the model training and deployment 
environments to ensure the privacy of the sensitive data. Another approach how 
transparency and trust could be enhanced is the introduction of the blockchain 
technology to the distributed machine learning pipeline. The blockchain consensus 
algorithm could enforce the validation of the performed computations by ensuring the 
correctness of the performed calculations and the provided results. 

The analysis of blockchain technology applications for collaborative distributed 
machine learning revealed that most of the existing propositions and applications 
utilise the blockchain as an incentive mechanism. In such an approach, the 
cryptocurrency issued by the blockchain is used as an incentive measure and is 
provided to the participants for executing tasks or collaborating in the process. Or else, 
the blockchain is used as an immutable transaction log preventing the loss of 
information about artefacts stored in the blockchain and logging the ownership 
changes. These incentive solutions are frequently highly specialised, defined for a 
single community, or involving solutions with only limited or even no integration with 
smart contracts. The development of distributed machine learning applications on 
blockchain technology-based solutions is also hindered by the limited support of the 
currently existing machine learning environments and approaches. 

To address this limitation, oracle services in blockchain-based distributed 
machine learning can be applied. Oracle services can bridge the gap between on-chain 
and off-chain data, thus allowing smart contracts on the blockchain to access external 
data sources. By using blockchain oracles, the applicable set of technology and 
environment for machine learning on the blockchain could be extended, thus 
improving the ability to develop solutions. The combination of distributed machine 
learning, privacy preservation methods, and blockchain technologies with blockchain 
oracles would provide means for solutions that improve trust and transparency and 
strengthen collaboration, as proven by sources [165], [166], and [191]. 

Based on these analysis results, it was decided to modify the thesis objectives to 
reflect the usage of the private blockchain technology to power the collaborative 
distributed machine learning. The updated research objectives are: 

1. Analyse machine learning and collaboration in distributed machine learning. 
2. Analyse blockchain technologies and their capabilities to be applied for 
distributed machine learning processes. 
3. Analyse training data privacy preservation methods and implementations in 
machine learning. 
4. Propose a method for collaboration in distributed machine learning utilising the 
private blockchain technology. 
5. Implement the solution for collaborative distributed machine learning using 
blockchain technology according to the proposed method. 
6. Evaluate the capabilities of the methods to perform collaborative blockchain-
based distributed machine learning.  
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2. METHOD FOR COLLABORATIVE DISTRIBUTED MACHINE 
LEARNING ON BLOCKCHAIN  

The Method for Collaborative Distributed Machine Learning on Blockchain 
(CDMLB) enables multiple organisations to participate in distributed machine 
learning and is proposed in this chapter (the method was also presented in research 
articles [192], [193], and [194]). The CDMLB method uses a private blockchain 
network and is designed for organisations which would like to collaborate in machine 
learning tasks but lack trust to develop a trusted third-party centralised solution. The 
CDMLB method utilises the already existing machine learning technologies, models, 
and datasets to enable collaboration on a private blockchain network. The introduction 
of a private blockchain network increases the transparency of the model deployment 
process, by allowing to access all the data and audit the activity logs of the action 
performed in a blockchain. Additionally, the private blockchain also enables trust in 
the collaboration process because the model prediction set calculation results are 
verified by multiple parties. The utilisation of the blockchain technology also 
increases the system resilience to external threats by removing a single point of failure 
that could arise when using a centralised third-party architecture.   

The CDMLB method also provides means to ensure data privacy by defining 
multiple specialised environments and introducing a specialised model deployment 
and usage process. The proposed method encapsulates multiple environments (see 
Figure 6): a) private model development environment; b) blockchain-based model 
deployment environment (on-chain environment); and c) network contributor node 
environment (off-chain environment). 

 

 
Figure 6. Environments of CDMLB private blockchain platform 

The private model development environment, in the scope of the method, is 
solely dependent on the model developer’s needs, and such an environment has no 
prerequisite requirements. This environment ensures that the data management and 
model training parts remain private and allows the user to adapt the training 
environment based on the individual requirements. The decision to perform model 
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training in a private non-blockchain environment is defined by the need to protect 
sensitive training data.   

Model training can also require a significant amount of computational power as, 
based on the consensus algorithm of a selected blockchain network, it can require 
repeating this process for at least 51% of the network participants, thus further 
increasing the demand for computational resources. This would significantly increase 
the time to train the models. The developed smart contract must return deterministic 
results, and, in the model training case, such determinism is not possible without using 
exactly the same training data. For this reason, the proposed method model training 
process is not completed on the blockchain so that not to increase the number of the 
required computations. The CDMLB method uses blockchain in the model 
deployment and model usage parts of the model development process. Such a 
distribution of the model deployment process allows combining models from different 
sources, which can lead to more diverse models. Such diversity can lead to a classifier 
of a higher quality. The distribution of the deployment process also ensures the 
validity of the provided model and data as the model inference calculations are 
verified by multiple network participants. 

The blockchain model deployment environment (henceforth referred to as 
on-chain) aims to provide a transparent, activity logging environment for model 
sharing. Every call to a function on the blockchain network is recorded in the 
distributed ledger, thus providing the ability to audit the user’s actions at any given 
time. The data and the models uploaded to the blockchain network are distributed to 
all network parties and are always accessible to the network contributors. The 
combination of action logging and openly accessible distributed machine learning 
artefacts promotes the transparency for all the participating contributors. The 
blockchain also increases the robustness of the system by providing data replication 
among the network participants. The process execution of the machine learning model 
deployment logic is provided by the blockchain environment, which is implemented 
by using smart contracts. 

The network contributor local node environment (henceforth referred to as 
off-chain) is introduced to support a more diverse set of machine learning 
programming environments. Together with the blockchain model deployment 
environment, it leverages a wider support of machine learning model types, as well as 
enables customisable model development environments. The customisation of the 
model development parameters allows contributors to develop more diverse models. 
The off-chain environment also enables the decentralisation and distribution of 
complex model computations using deployed oracle services that are integrated by 
using smart contracts. 

To enable a diverse ecosystem of the currently existing machine learning 
programming environments using the blockchain technologies, the CDMLB method 
introduces a network contributor local node environment. This off-chain environment 
allows transferring the complex model inference computations to oracle services that 
are accessed by smart contract functions. Multiple instances of off-chain 
environments can be present in the CDMLB blockchain network architecture. This 
allows the network participants to select different implementation environments for 
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machine learning solutions, thereby giving an opportunity to tailor the environment 
for each task individually. 

The conceptual scheme of the proposed CDMLB method is presented in Figure 
7. In the CDMLB method, the contributor uses a dataset to develop the machine 
learning model. The contributor divides the collected data into training, testing, and 
validation datasets. The training dataset is used to develop machine learning models 
which use labelled data and features in the numeric format, and these models are later 
used for computing predictions on the testing data. In total, the CDMLB method 
requires the contribution of two artefacts: 1) machine learning model, and 2) 
validation dataset. The contributed model is used to calculate the predictions on the 
validation dataset. These predictions are used to evaluate the input of a contributor in 
the CDMLB blockchain, defined as contribution. Contributions are evaluated by 
measuring the performance of the model. Similarly, data contributions are evaluated 
by measuring the impact on the ensemble performance which contains a single best-
performing model from each contributor. By using data and model contribution 
scores, incentives can be derived. The incentives can be used to divide monetary, or 
any other, value recorded by the blockchain network. The requirements for the 
incentive highly depend on the collaborating organisations and the described incentive 
calculation rules. Such rules and requirements are not part of the CDMLB method. 
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To utilise the CDMLB method, the collaborating organisations need to agree on 
the requirements for the solution implementing the method before the start of the 
blockchain network development.  

 Select a private blockchain technology which supports API calls from the 
smart contract execution environment to external oracle services. 

 Define the requirements for data and model structures and storage formats, 
which are agreed upon by all the governing organisations. 

 Define the communication channels, collaboration rules, and roles for the 
collaborating organisations. 

 Define the procedures required to implement and approve the local oracle 
services and smart contracts developed by the collaborating organisations. 

 Define the requirement for a blockchain oracle factory service which 
provides smart contracts and local oracle services. 

 Define the procedures for managing the developed services and the security 
provision of said services which should be ensured by the collaborating 
organisations.  

Component initialisation and the required preparation processes which are 
necessary to be completed before the CDMLB activities could be performed are 
detailed in Figure 8. The collaborating parties should select the private blockchain 
technology with the consideration of the smart contract development environments 
and the consensus algorithm usability. After setting the requirements for the 
blockchain technology to be used, the organisations should define models and datasets 
that the collaboration would be based upon. This is required to start working on the 
smart contracts and the services which depend on the model and the data format as 
well as the dataset structure. Additional support to the model types and datasets can 
be defined after the deployment of the network as well. The private blockchain 
requires access management and the definition of the network roles; such role 
definitions should be completed before the network development starts. The two final 
steps of the requirements for preparation involve requiring information about the 
smart contract and oracle development rules. The functions provided by the 
blockchain oracle service in the CDMLB method are called from the smart contract, 
hence, the integration between two such components should be specified. 
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Figure 8. The required initialization procedures for the CDMLB method 

 The defined requirements of the smart contract and blockchain oracles are then 
used in their development. Both smart contracts and blockchain oracles are developed, 
tested, and deployed to the oracle factory component. The blockchain oracle factory 
component then distributes the required smart contracts and the blockchain oracle on 
demand to new or already existing network participants. The oracle factory 
component should be developed to track versions of the deployed smart contracts and 
oracle services, as any version mismatch could prevent the network members from 
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reaching the consensus. The oracle factory service should be distributed, and each 
participating organisation should contain such a service. 

 
 

Figure 9. Development process of the proposed CDMLB method services and smart 
contracts 

Figure 10 lists the network knowledge usage stages which are performed after 
all the prerequisite operations have been completed. The proposed CDMLB method 
consists of the CDMLB platform preparation, model and data deployment, and the 
network knowledge usage stages. 

The method defines the procedures and requirements for the ways how the 
machine learning model is to be developed, deployed on the blockchain network, and 
then used. The method is presented from the perspective of a single network 
contributor. Multiple contributors must exist to successfully collaborate while using 
the CDMLB private blockchain platform. The proposed method can be followed to 
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develop multiple CDMLB solutions that are hosted on the same blockchain network. 
This allows contributors to submit multiple datasets or machine learning model files, 
as well as use the knowledge stored on the blockchain. The method keeps track of the 
currently best-performing models and re-evaluates all the submitted models when 
presented with new validation data. For every network model and data change, the 
contribution measures are calculated and stored in the blockchain storage. This allows 
monitoring the evolution of the contributor input. Only the most recent contribution 
measure is used when evaluating the contributors’ shared model performance. The 
outdated contribution measures are stored in the blockchain and can be used to trace 
the participants’ contribution history.  

The CDMLB method enables usage of multiple machine learning model types 
simultaneously. Each new machine learning model type requires the development of 
a dedicated smart contract and the development of a dedicated oracle service which 
are distributed to all network participants. The CDMLB method enables the usage of 
such model types in a homogeneous ensemble or by combining different model types 
into heterogeneous ensembles. A single private blockchain network can contain 
multiple organisations collaborating by using multiple smart contracts. 
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Figure 10. Process of the CDMLB method 
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The CDMLB blockchain platform preparation stage encapsulates processes for 
the development of machine learning artefacts which will be later deployed into the 
blockchain network. This stage also includes the processes required to deploy and 
connect to the CDMLB blockchain platform. The network artefact preparation starts 
with data preparation and is performed in a private model development environment 
(see Figure 6). The network contributor based on the agreed-upon data requirements 
of the collaborating organisations prepares a dataset. During the data preparation step, 
a training dataset is prepared, as well as validation subset that will be uploaded to the 
blockchain network and used for model validation. If the network contributor cannot 
obtain the dataset, the data preparation process can be omitted from the method. 
Similarly, if the contributor is not able to share the validation dataset due to any 
privacy or security limitations, the dataset split into separate subsets can be omitted. 
The prepared training dataset is used to train a classifier model. Since the method does 
not restrict the model training process, different model development environments can 
be used with various hardware and software configurations and different model 
development parameters. Although the model training process does not depend on the 
method, the resulting model representation must adhere to the model and format the 
requirements defined by the collaborating organisations. Once the machine learning 
artefact development is complete, the network contributor connects to the blockchain 
network; this may require the deployment of the CDMLB platform. To complete the 
model deployment step, the contributor must also provide a specification of the dataset 
required for the validation data and obtain the required permissions from the 
collaborating organisations. The platform preparation part of the method is concluded 
with the connection to the private blockchain network.  
 The model and data deployment stage encapsulates the processes required to 
share machine learning artefacts, namely, the model and the data, with the blockchain 
network and the procedures performed to evaluate the quality of these shared artefacts. 
All the actions performed in this step are implemented by using smart contracts and 
are called the collaborating application. The application users are authorised by using 
private blockchain identities. Once authenticated, model and data artefacts may be 
contributed to the network by uploading a dataset or a model to the network via the 
distributed application. The dataset format is transformed to save space on the 
blockchain storage, and, if any machine learning model exists on the blockchain 
storage, the uploaded dataset is used to calculate the model predictions. The model 
predictions are then stored in the blockchain storage. Similarly, the model upload 
procedure starts by uploading the machine learning model stored into a model file on 
the blockchain network via the distributed application. The model file information is 
then transformed into text-based information and stored in the blockchain storage. If 
the upload procedure for the model or the dataset is successful, the uploaded artefacts 
are replicated among the network nodes. To keep track of the input of the contributors 
into the overall network, the performance of each uploaded contribution is evaluated. 
Such contribution scores are used to derive the incentive. These incentive measures 
are used to define the amount of the value the contributor should be provided for their 
input. 
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The final stage of the CDMLB method is dedicated to using the model 
knowledge stored on the blockchain. Two different approaches are outlined on how 
the models can be utilised. The first approach aggregates models into a single model 
ensemble, and, by applying weighted averaging, produces prediction on the testing 
data provided by the contributor. The ensemble is produced by a specialised 
blockchain oracle service, and the testing data used for calculating predictions never 
leaves the blockchain contributor’s local environment. Additionally, the produced 
model prediction file is stored in the contributor’s local environment. Such an 
approach allows ensuring the privacy of the validation dataset and predictions, while 
still recording the transactions of the machine learning model utilisation. The second 
approach utilises the knowledge distillation approach to train an aggregating model 
on the model ensemble knowledge. The approach uses combined validation data and 
the model ensemble to train a new neural network model. The produced model 
prediction set is used as an input to the student neural network model, and its 
performance is validated by using combined validation data. The distilled model file 
is stored in the contributor’s local environment, and it can be further developed 
individually by using the validation data, or merely used ‘as is’ in order to make 
predictions without further training. The knowledge distillation approach provides 
privacy preservation for machine learning models stored on the blockchain. 

The introduction of the blockchain technology to the collaborative distributed 
learning process allows an organisation to analyse blockchain transactions and 
blockchain artefacts at any given time, thus enhancing transparency. The CDMLB 
method differs from the other currently existing solutions by enabling support to 
different supervised learning model types and machine learning tasks instead of 
developing a blockchain network for each specialised task or model type. The 
CDMLB method requires only a small part of the data for validation, thus removing 
the need to share any sensitive training data to the blockchain network. The CDMLB 
method also supports two network knowledge usage solutions, thus enabling privacy-
preserving usage of the model. Ultimately, the CDMLB method enables the 
contributing organisations to evaluate contributions to the selected machine learning 
task. 

The proposed network distillation method is designed as a countermeasure to a 
membership inference attack against the network. Even though most of the 
overviewed research applied differential privacy to defend from membership 
inference attacks, it is not viable in the CDMLB approach as such an approach does 
not send the training data to the blockchain network. The only data that are provided 
to the network are the anonymised validation dataset. The organisations managing the 
blockchain network should enable access to it only to the partially trusted parties 
because adversaries with an access to the blockchain ledger could perform model and 
feature extraction and model identification attacks. Table 6 lists threats which could 
be attack vectors in the course of the CDMLB process. Possible countermeasures to 
these attacks are described with the counter-measure provider, whether it be aspects 
of the blockchain or specific network knowledge usage scenarios. Most of the 
provided security measures are provided by the private blockchain access 
management as well as by the ensemble weight selection strategy. 
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In the next sections, the CDMLB method is presented in more detail. Each 

method stage is defined with an activity diagram denoting the required actions, their 
inputs, and the resulting outputs.  

2.1 Blockchain platform preparation 

The model and network preparation stage consists of four steps (see Figure 11): 
data preparation, model preparation, deployment of the CDMLB blockchain platform, 
and connection to the blockchain network. The data preparation and model training 
steps are conducted in a private model development environment, while the 
deployment and connection to the blockchain steps provide the network contributor 
with the blockchain network identity and the required services for the subsequent 
method stages. The data preparation or the model training steps can be omitted if the 
network contributor already has access to the model, or does not have any datasets 
that could be shared with other contributors. The blockchain platform deployment step 
ensures that all the required blockchain components and services are deployed and are 
ready to be used for collaboration purposes. Moreover, during the connection to the 
blockchain network, an instance of the blockchain ledger in the network contributor’s 
local environment is created, which also deploys the required smart contracts for 
collaboration purposes. The smart contracts implement all the required model and 
upload procedures as well as calls to the required oracle services. Due to the fact that 
the smart contract contains model and data validation and contains calls to oracle 
services, new contracts should be developed when new model types or new oracle 
services have been added to the CDMLB platform. 
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Figure 11. CDMLB blockchain platform preparation part of the proposed method 

The CDMLB Blockchain platform preparation steps are further elaborated upon 
in the upcoming sections. 

2.1.1 Dataset preparation 

As in any machine learning process, the data preparation stage consists of data 
standardisation, data cleaning, feature selection, and data partitioning into the training, 
validation, and testing data subsets. The validation data subset should represent the 
original dataset in both class and value distribution. If the validation dataset is 
sensitive, the appropriate anonymisation and privacy preservation steps should be 
taken before the data file is deployed to the blockchain network. Currently, the 
CDMLB method supports tabular data only; thus, any categorical values should be 
transformed into numeric values by using the available encoding techniques. 
Additionally, it is essential that the dataset conforms to the format and structure 
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requirements outlined by the collaborating organisations. This includes the definitions 
of all data features, as well as the class label column. 

The proposed CDMLB method can support multiple data structures dedicated 
for different machine learning problems at the same time. Smart contracts that 
implement data structure validation, upload and reading functions must be developed 
for every existing structure. Every model inference smart contract and local oracle 
service must be developed or updated to support new data structures. The proposed 
CDMLB method requires to store data in a text format, namely, in the JSON structure; 
thus, any data that are provided in the non-textual format should be encoded or 
transformed into the text format to enable the possibility to use the data in the 
blockchain network. 

2.1.2 Model training 

After the dataset has been prepared, the model training takes place, which is 
performed in a private model development environment. The method utilises the 
supervised learning approach, during which, a dataset with labelled data is used. 
During model training, we derive function  from the training data which labels  
values of the data with the corresponding prediction. The relationship between  and 

 could be defined as  
 (2)

where  is the class label and ,  is the d-dimensional vector . The 
classification function is found such that its application minimises the loss metric 
which is specific to the chosen classifier: 

 (3)

where  is a set of learnable parameters,  is a single instance of the training data, and 
 is its respective class label. The trained parameter set  (the trained model) is 

obtained by minimising the loss function for a set of data instances N by using 
Formula (4): 

 (4)

The training dataset is used to train the classification function , and the test data are 
used to benchmark the performance of the developed function. When provided with 
the novel descriptors, the function is used to predict a target value. 

Machine learning methods supported by the proposed CDMLB method must be 
suited for the supervised learning machine learning tasks. The machine learning 
method needs to be able to serialise the model into a file. The serialised file formats 
must be compatible with the developed oracle services. The predictions of the used 
model should be represented as a Bayesian probability of the class membership. 
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2.1.3 Deploying CDMLB platform and connecting to blockchain 

 The connection to the blockchain network starts with obtaining the permission 
to join an existing private blockchain network, provided an appropriate private 
blockchain exists. In case no such private blockchain exists, a new private blockchain 
network should also be developed and deployed. The developed private blockchain 
network supports the execution of multiple smart contracts and the ability to deploy 
additional smart contracts after the network setup stage is complete. This provides the 
ability to develop the blockchain network for a wide range of machine learning 
problems without the need to create multiple instances of the blockchain network. For 
each smart contract used by the network, an integrated local off-chain oracle service 
should exist on the same network.  

The CDMLB network, presented in Figure 12, is composed of collaborating 
organisations which issue permissions and identities to the contributors and offer 
access to the blockchain oracle factory component which deploys smart contracts with 
the required local oracle service components. The factory component providing 
oracles and smart contracts is required to unify the used version of the components 
between the contributors. Any discrepancies of the smart contract or oracle versions 
might prevent a contributor from participating in the network. The provided smart 
contracts are used to calculate the model predictions and store the model and data 
files. These functions power the collaboration process. Oracle services are required 
for the smart contract to power the model prediction calculation on different 
programming environments from the one provided by the smart contracts. The 
contributor provides multiple submissions to the collaborating application and, in 
turn, to the blockchain network (Figure 13). The contributor can submit datasets to 
the network or submit machine learning models. A single contributor can be assigned 
additional roles, but the minimum requirements are the submission of data and model 
artefacts, and the ability to use the produced ensembles or distilled models. Each 
individual collaborating organisation also operates an internal identity providing 
service.  

 
Figure 12. User roles in CDMLB network 
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Figure 13. Minimal required functions for distributed application 

To set up the CDMLB network, at least two collaborating organisations (Figure 
12) need be present in the network, but the number of collaborating organisations can 
be extended to any size. The initial step of setting up a private blockchain consists of 
establishing organisation-based roles, communication channels like ones present in 
Hyperledger Fabric, developing the initial private blockchain structure, and deploying 
the network. Additionally, the blockchain network is initialised, and the collaborating 
organisations must agree on the machine learning tasks that will be supported and 
define the supported data and model structures. Based on data structure definitions, 
the collaborating organisation or multiple organisations develop smart contracts and 
the local oracle services.   

Creating local oracles that are trusted by the blockchain network and possess a 
distributed architecture capable of receiving data from the blockchain network 
requires a custom approach. The blockchain network itself produces the data for the 
oracle, and the oracle functions only transform the provided data in a different 
programming environment which is not supported by the blockchain network.  

The oracle service only applies computations and presents the results back to 
the smart contract. The oracle follows the request-response principle; the data and 
their calculations are provided after a request has been made from the smart contract. 
The oracle service is deployed to an individual network peer node.  

Each smart contract and the respective local oracle is deployed by organisation’s 
oracle factory service (Figure 15). Network contributors use this service to obtain the 
required smart contracts and the local oracle services. Oracle services in the proposed 
solution are separated from the blockchain network environment and divided into two 
types: data providers and computation oracles. Oracle services are replicated in each 
node and are deployed in the local node environment. This is the key difference from 
the computation oracles proposed in source [148]. In the CDMLB method, blockchain 
oracles are not divided into data and computation oracles; they only provide 
computations, whereas the validation data are obtained from the blockchain network. 
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Oracle services are distributed by deploying them to the local network participant 
node environments. 

 
Figure 14. General component scheme of CDMLB network components 

Source [150] introduces a smart contract factory pattern. Such a pattern is 
designed to deploy instances of smart contracts. The CDMLB method proposes a 
modification of the smart contract factory design pattern [150] with its component 
diagram presented in Figure 14. Instead of using the design pattern to deploy multiple 
instances of the same smart contract, this pattern is used to deploy local off-chain 
oracles and the required smart contracts. To keep track of the versions of the deployed 
smart contracts, a contract registry [150] design pattern with a smart contract factory 
is employed. This design pattern allows organisations to track the issued smart 
contracts and oracle services and allows organisations to manage the local oracle 
service development and maintenance. The oracle and smart contract deployment 
instances are tracked in the RegistryEntry entity, with the software version and data 
information. The registry entry also tracks which contributor submitted the code, by 
logging their identity. The oracle factory API provides functions dedicated to listing 
smart contracts and oracle services as well as the initialisation and update 
management. 
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Figure 15. Concepts and operations of the oracle factory network component 

After the blockchain initialisation, the user performs the smart contract 
deployment. The contributor node requests smart contracts and local oracle services 
from the oracle factory component (Figure 15) which downloads and compiles the 
requested smart contract from the network as well as the local oracle services. In the 
proposed method, each organisation should contain an oracle factory component and 
provide the oracle services to the organisation members. For every collaborating 
organisation, the versions of components that are being distributed must match and be 
synchronised. Every organisation can collaborate with multiple other organisations or 
participate in two blockchain networks. The organisations can collaborate with 
multiple other organisations simultaneously. 

 The provided oracle services allow the collaborating organisations and 
contributors to use the existing machine learning technologies such as Python, R, or 
other popular machine learning environments to develop their models. This reduces 
the development time for machine learning solutions and allows the existing models 
to be reused. After the initialisation, smart contracts are deployed in a local network 
peer environment. At the final step, the contributor tests the availability of the locally 
deployed oracle service operations. The setup and testing phase of the blockchain 
oracle deployment step is mandatory for all users joining or reconnecting to the 
blockchain, as any discrepancies in terms of the blockchain oracle implementation 
may result in a failed consensus algorithm. 

The network connection stage is complete when the contributor has successfully 
obtained a network identity and established the required services and smart contracts 
(Figure 16). To successfully run the CDMLB method, a minimum of 4 services are 
required. The model inference service is dedicated for the evaluation of models and 
datasets after they have been contributed to the blockchain network. This model 
inference service also calculates the Shapley values and stores them in the blockchain 
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network storage. Shapley values are only calculated when new data or model artefacts 
are provided to the blockchain network and used from the blockchain storage if 
required. The blockchain knowledge usage requires two services. The ensemble usage 
service uses network knowledge in the form of an ensemble to calculate the model 
predictions on novel data and stores the results in the contributors’ local environment. 
The alternative to the ensemble usage service is the knowledge distillation service 
which uses the same inputs, but provides the network contributor with a new neural 
network model for usage and further development. 

By using the proposed method, the contributor may be part of multiple 
collaborative applications on the blockchain network and would only need to obtain 
the identity once. If the data structures used by the network differ in a number of 
features, or if they have multiple features represented in different formats, the network 
would need to join additional collaboration solutions, or an entirely new blockchain 
network may be developed. The provided identities must be submitted to the local 
distributed web application to successfully connect to the blockchain network and 
execute smart contracts. 

 
Figure 16. Components of the contributor node environment required for the CDMLB 

method 

2.2 Model and Data Deployment 

The model and data deployment to the blockchain network is performed by 
using the developed collaborating organisation application. The application identifies 
the contributor and enables the contributor to perform data or model file upload 
operations.  

The user roles and a list of the supported functions for such an application are 
presented in Figure 13. The CDMLB method enables the data and model sharing 
process which is detailed in Figure 17. Data owners are able to share data in order to 
participate in evaluating the overall quality of the shared models, while the model 
owners are provided with means to use a larger dataset for determining the quality of 
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the model and with access to a distilled model developed by using the best-performing 
set of models. Contributors are also provided with means to use the network 
knowledge by predicting via the weighted ensemble. 

 
Figure 17. Model and data deployment part of the CDMLB method 

2.2.1 Contribution to blockchain network 

Two different contributions to the network are possible – uploading a dataset, or 
uploading a model. The data upload step starts with the contributor uploading a dataset 
file to the local web application. The local web application checks if the file is of a 
supported format, and checks if the uploaded dataset structure adheres to the defined 
structure. The blockchain oracle service then performs the testing operations with any 
valid model provided by the contributors. If multiple models are presented from a 
single contributor, the model with the highest performance will be used in testing. 
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Similarly, the uploaded machine learning model file is tested by the local web 
application, and then validated on a dataset sample to check the compatibility between 
the uploaded model and a data sample. Such a test ensures that the model file is 
compatible with the used oracle service and that it is presented in the correct file 
format. Both uploaded artefacts are stored on the blockchain and replicated among all 
the participants. The artefacts are transformed to reduce the amount of the required 
storage space; specifically, the dataset file is transformed by splitting the data feature 
and label columns and storing them into a data matrix as well as discarding any meta 
data contained in the data files. The ML model file is encoded into the text format, 
which can later be decoded by the local off-chain oracles.  

To ensure the data correctness and usability, every uploaded file is validated via 
the dedicated function in the local oracle solution. The validation procedure also 
discards any mismatched classifier types or file formats. The model contribution 
evaluation function calculates the model’s performance, and any poorly developed 
models are not included into the model ensemble. The data validation procedure must 
be designed to discard any data that include empty values and could be developed to 
check other data quality metrics. Similar to the model evaluation, the proposed method 
also evaluates the data impact on the model’s performance, and any dataset not 
meeting the imposed requirements could be rejected by the validation. The 
collaborating organisations should also agree and develop functions which would 
define logical limitations to data features which exist in datasets. Such an approach 
would reduce the amount of erroneous and highly biased data form being used in the 
proposed method. Based on the common trust and access right management, any 
collaborating parties that would repeatedly provide erroneous or biased data could 
also be removed from the collaboration process. 

Data and model contributions are stored in the respective model and data 
structures and are stored in the blockchain storage. For every combination of the 
validation data and an ML model, a dedicated off-chain blockchain oracle service 
calculates the model prediction set and returns the response to the smart contract 
which, in turn, stores these predictions in the blockchain storage. The calculated 
predictions are then used to obtain the model performance metrics, such as cross-
entropy [195], or binary cross-entropy [39]. 

The proposed CDMLB method combines models by averaging their predictions. 
The model predictions are defined as:  

 (5)

where  is a predicted value (output), x defines a feature vector (input),  is an 
individual classifier. To calculate an average prediction for the classifier , the average 
prediction is calculated by: 

 (6)

where n is the number of classifiers in the ensemble and  is their predicted value. 
The averaging of predictions is applied for each data row in the used dataset, and it is 
used to calculate the classifier training loss measure. 
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Cross-entropy was first introduced as a measure to calculate differences 
between two probability distributions. It was first applied in the field of information 
theory and developed by using the concept of entropy [196]. In the context of machine 
learning, cross-entropy is usually used as a loss function [197]:  

 (7)

where M is a total number of the predicted classes, is the predicted probability of 
the class, and is the ground-truth class value, which is a one-hot encoding indicator 
of the true class. Such a loss function can be used for multiclass classification tasks. 
In the context of this work, only binary classification tasks were considered; thus, the 
Binary Cross-Entropy (BCE) measure was selected as the main loss function. To 
apply the proposed method for multiclass classification tasks, the BCE measure 
should be replaced by the CE loss function. 

Binary cross-entropy was selected on the basis of its popularity in classification 
tasks. Binary cross-entropy quantifies the difference between the predicted class 
probability and the ground truth class, by representing the target class as ‘1’ and the 
non-target class as ‘0’. Binary cross-entropy can be calculated by using the following 
formula: 

 (8)

where  characterizes the ground-truth class label and  represents the model’s 
class probability prediction. The calculated BCE metric is appended to every instance 
of the model prediction set recorded to the blockchain storage. 

By using the proposed CDMLB method, the evaluation of each network 
participant for both data and model contributions can be made. As both the data and 
the model are required to produce predictions, the network participant which deploys 
the smart contract should provide at least one instance of both artefacts. 

2.2.2 Contribution calculation 

The existing propositions [10], [11] suggest that data importance to the overall 
ensemble performance can be quantified. The CDMLB method measures an 
individual contributor’s dataset impact  for the network contributor n by evaluating 
the model ensemble performance subtracted from the performance of the model 
ensemble N containing all other datasets except for the dataset n: 

 (9)

The produced contribution score values are also scaled by dividing all the data 
contributions from the combined total sum of all scores, and thus producing the scaled 
contribution value : 

 (10)
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Those network members that produce a value higher than the limit set by the 
collaborating organisations could be compensated for their datasets based on the 
contribution. The need by the contributors to gain the most accurate machine learning 
solution provides motivation to keep sharing the testing data, while ensuring that the 
uploaded models do not lose their performance due to task shift or noisy validation 
data. 

The CDMLB method combines best-performing models into an ensemble and 
employs Shapley value calculations to evaluate each model’s impact to the overall 
ensemble performance. Reciprocal BCE is used as a performance metric to measure 
an ensemble member’s contribution impact, and it corresponds to: 

 (11)

The Shapley contribution score of a model  is calculated as follows: 

 (12)

where  is the set of classification models, and sub-ensemble  is a subset of , 
and it represents a coalition. The reciprocal BCE corresponds to the coalition 
contribution . Marginal contribution of a single coalition member  is represented 
by . The empty coalition  measure was derived from comparing 
random guessing predictions of 0.5 and compared to validation data class labels (see 
Formula 7) For datasets containing classes in nearly equal proportions, the empty 
coalition measure should be exactly 0.693. A lower performance score than 0.693 
would denote that the classifier performance is lower than the random guessing 
approach. For datasets containing classes of unequal proportions, the empty coalition 
value can be calculated by setting all prediction to 0.5 and calculating the BCE value. 
The model ensemble for evaluation is developed for an individual machine learning 
task. If the network participant has contributed multiple models, in order to reduce the 
amount required to compute the Shapley values, only a single model with the best 
contributor score is included. All models which do not increase the performance of 
the ensemble are omitted by setting their weight to zero according to Formula 12. 
Such an approach is defined as positive Shapley (posShap):  
 

 (13)

 
where  is obtained by using Formula (12), and the posShap transformation of  is 
identical to the rectified linear unit activation function ReLU [198]. 

 The alternative approach which changes the resulting prediction class based on 
the defined rules for the model prediction set has been proposed, and it is calculated 
by: 
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The alternative strategy to resolve negative Shapley values was based on the 
assumption that the model developer switched class labels while training. Such a 
switch would result in a negative Shapley value and would decrease the performance 
of the overall ensemble. Based on the assumptions about the developed classifier, a 
model prediction inversion strategy was proposed, where p is the classifier output. 
Such a strategy will be referred to as the Shapley value with maximum inclusion 
(maxShap). 

An overview of the evaluation process is presented in Figure 18, which consists 
of 4 stages. At the first stage, contributors train their models on sensitive private data 
in the local private model development environment. During the second stage, the 
trained classifiers are validated by using the validation data deployed to the blockchain 
network. In the third stage, the predictions are made and used to evaluate the 
performance of the models by using the Shapley-based method. Shapley weights are 
then stored in the blockchain network. The produced Shapley-based ensemble weights 
and the contributed machine learning models are combined into a model ensemble 
during the ensemble usage stage or when applying the model distillation approach. 
The final weighted model ensemble using local off-chain oracle services can be used 
to calculate predictions when provided with validation data. 

After both the data and the model contribution score have been calculated for 
the contributors, the incentives can be derived and distributed. The incentives may 
include monetary or token-based funds, thus providing motivation for the contributors 
to keep contributing datasets and models to the network. 

 

 
Figure 18. Overview of the proposed ensemble evaluation strategy 

Contribution calculations have been implemented by using the proposed 
CDMLB solution, and two proposed model contribution evaluation strategies have 
been experimentally tested. The implementation details are presented in Section 3. 

 

 (14) 
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2.3 Network Knowledge Usage 

The CDMLB method provides two approaches to how network knowledge can 
be used to model prediction calculations, with a detailed usage process being 
described in Figure 19. Both approaches calculate model predictions by using testing 
data. Both of the described approaches require information about the models, and their 
produced results are stored in the contributor’s local environment. 

The first approach involves aggregating multiple models into a unified 
ensemble. This ensemble is created by a specialised blockchain oracle service. 
Through weighted averaging, predictions are generated on testing the data contributed 
by the users without the need for the data to leave their local environments, thereby 
ensuring data security and privacy while recording model usage information on the 
blockchain. Such usage of the weighted ensemble will be defined as the predicting 
using weighted ensemble approach. 

 In the second approach, knowledge distillation is employed to train an 
aggregating model using the previously calculated model predictions. By combining 
the validation data and the models merged into an ensemble, a new neural network 
model is developed, and the distilled model file is stored locally on the contributor’s 
node. The distillation process preserves the privacy of the training data that were used 
to develop contributed machine learning models on the blockchain. Such training data 
privacy preservation is especially important in model usage cases outside the 
blockchain network. 

 
Figure 19. Proposed procedures for blockchain network knowledge usage 
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The prediction using weighted ensemble enables the usage of network models 
by providing the testing data to the specialised component. Such usage is 
recommended when a user is not planning to apply the results in the separate 
environment as the ensemble can potentially disclose information about the training 
data in use. For knowledge transferring to external non-blockchain environments, 
network usage via the distilled model is recommended. 

 The network usage via the distilled model allows extracting knowledge into a 
more simplistic representation and enables additional model tuning for further 
improvement. Such a distilled model can be deployed for usage in non-blockchain 
environments, thereby allowing for an increased amount of the possible application 
areas. 

2.3.1 Predicting using network ensemble 

The prediction using the network ensemble approach uses model files and 
Shapley-based weights stored in the blockchain ledger to predict the use of the testing 
dataset without sharing the data to the blockchain network. The approach uses a local 
off-chain oracle. Local oracle procedures are invoked from the model selection smart 
contract and are provided with the models. The model section algorithm evaluates the 
model performance and selects a single model for each network contributor. These 
models are then aggregated into an ensemble. The ensemble then predicts by 
combining all the model predictions with Shapley weights by using the weighted 
arithmetic mean: 

 (15)

where  is a single model prediction, and  is the Shapley value for that model in 
an ensemble. 
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Figure 20. Ensemble creation process 

After the model selection step, the contributor provides the testing dataset to the 
local web application and calculates predictions in the contributor’s local environment 
by using the usage oracle This interaction with the blockchain oracle ensures that the 
transaction is recorded, but only the information about the access to the model file is 
saved. All the prediction results are stored in the user’s local environment, thus 
preserving the user’s privacy. The process should always return positive results for 
other network participants and allow them to only verify the model file and the 
validation data access fact. 

The network knowledge usage approach with a weighted ensemble has been 
evaluated in two experiments, by comparing it with other ensemble weighting 
strategies, and comparing it with the other approach where network knowledge is 
transferred into a new neural network model. The implementation details are provided 
in Section 3, while the experiment results are described in Section 4. 

2.3.2 Network knowledge distillation approach 

To use the knowledge stored on the blockchain, the proposed method applies 
the knowledge distillation [199] approach on the model predictions sets stored on the 
blockchain ledger. The blockchain network knowledge distillation approach (Figure 
21) allows the contributors to make predictions by using the model trained on the 
network. Knowledge distillation is employed to reduce the risk of revealing sensitive 
training data contained in the contributed machine learning models. To obtain the 
model prediction sets from the blockchain network, the organisation provides access 
and smart contracts which calculate model prediction sets. By using the smart 
contract, the model predictions are transferred to the local off-chain component called 
the knowledge distillation service (Figure 16). The service uses model predictions of 
every model with the positive Shapley value shared to the network and trains the 
neural network. The neural network uses a loss function which combines the 
distillation loss (the teacher loss) with the loss of the neural network predictor that is 
in development (the student loss).  

The Kullback-Leibler (KL) divergence [199] is a statistical measure which 
evaluates the distance between two probability distributions with one being the 
teacher model class probabilities , and the other being the student model class 
probabilities  

 (16)

Class probabilities   softmax( ) and   softmax( ) in the experiments were 
calculated as softmax outputs [98]: 

 (17)

where  represents the predictions of the teacher that is being distilled and   are the 
predictions of the student classifier. T represents the distillation temperature that 
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allows ensuring harder or softer probability distribution over the classes. reaches 
0 only when the predicted class probabilities are identical ( ). 

The final loss for model tuning is calculated by introducing the  measure which 
allows modifying the ratio between the simple neural network model loss when

  and only using the blockchain network ensemble predictions to train the model 
when    

 (18)

where  represents the student loss and represents the distillation loss. 
A model trained by using this strategy allows the network contributors to utilise 

the network knowledge without the need to use the model ensemble constructed on a 
blockchain network. This also prevents the disclosure of the knowledge to sources 
outside the blockchain network, as the distilled model does not provide any 
information about the other ML artefacts recorded in the blockchain ledger. 
Additionally, it allows network participants to use the network knowledge in a more 
versatile approach, when transferring a machine learning solution to other application 
environments. 

 

   
Figure 21. Knowledge distillation architecture 

Due to the limitations of the blockchain technology, the blockchain network is 
not able to verify the result of the distillation process and will be incapable of 
evaluating the classifier performance or verify the correctness of such a process. The 
model created by the distillation process can be further developed by using private 
contributor data in a non-blockchain environment, outside the CDMLB method. The 
improved model should then be used to make predictions by using the validation data 
with a higher performance. 

2.4 Summary 

The method for collaborative distributed machine learning on the blockchain 
has been proposed. It enables collaboration via the model deployment and inference 
processes. The proposed method defines three stages in which the collaborating 
parties prepare the private blockchain network, participate in the collaboration, and 
utilise the network knowledge via the weighted ensemble usage or the distilled neural 
network model. The CDMLB method uses blockchain smart contracts to facilitate 
model and data deployment to the blockchain network and introduces the local 
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blockchain oracle architecture which enables local execution environments in 
programming languages that are not supported by the blockchain platform. The 
proposed CDMLB method introduces automated performance evaluation of the 
shared model and data artefacts. Such a model contribution is obtained by evaluating 
the model’s performance while using binary cross entropy as a contribution measure 
in the Shapley value weight selection strategy. The data contribution is defined by 
measuring the impact on the model ensemble performance. Finally, the proposed 
method allows its users to utilise knowledge from the blockchain network directly, by 
weighted ensemble, or indirectly, by the student-teacher distillation approach. 

2.5 Limitations of the CDMLB Method 

The proposed CDMLB method introduces additional flexibility when compared 
to the smart contract-only based solutions. The method allows integrating the already 
existing popular machine learning environments and libraries via the application of 
the local off-chain oracles, although this introduces additional development efforts 
and complexity required to create and maintain such a solution for the collaborating 
organisations. This could increase the upkeep costs of the presented method and 
discourage possible applicants from using this method.   

The introduction of new off-chain components may present additional security 
and software development challenges. The distribution of the blockchain oracle 
services by the governing organisation should be considered a priority, as the attacker 
of the distribution could affect multiple participants at once. The developers of the 
off-chain contracts should also consider possible tampering of the local services as 
the services will be deployed in a local participant’s environment. 

The motivation to use private blockchain requires partial trust between the 
involved parties to develop collaborative solutions. The utilisation of a private 
blockchain and the introduction of an organisation entity requires upfront trust 
between the parties. Yet, the collaborating parties should remain competitive enough 
to not commit into sharing the training data outright so that to make the usage of the 
proposed method viable. The proposed method could simply be replaced by a trusted 
third-party application if the collaborating parties would trust each other enough to 
share the training data outright. 

The testing data stored on the blockchain are accessible to all the participating 
organisation contributors and could be used to develop adversary models trained on 
these data or used to generate synthetic validation data which are similar in structure. 
If some incentive measures exist, both of these attack vectors could be used by 
malicious network participants to try and exploit incentive measures for unfair gains. 

The proposed CDMLB method requires defined validation data and model 
structures that are supported by smart contracts and local oracle components. The need 
to develop solutions based on defined structures may lead to delays in applying the 
updated data structure or new model types and may require improving or introducing 
additional components, such as local oracles or smart contracts. 

Currently, the computational complexity of the proposed CDMLB methods is 
O(N!) based on the most complex exact Shapley value calculation component. The 
method specifies that, for every network participant, only a single best performing 
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model is evaluated, even though, with this precaution in mind, each new network 
member would significantly reduce the performance of the blockchain network. Such 
computation complexity could be reduced by the usage of the Shapley value 
approximation algorithms, but their application and effect on the proposed method 
have not been evaluated yet.  

The scalability of the proposed CDMLB method might be limited by the 
modular architecture in use. In the proposed architecture, every new component is 
developed by using a separate runtime environment; thus, the sharing of the common 
runtime costs between the components is not possible. Because of this, the increased 
number of the local oracle components could reduce the performance and non-
efficiently utilise the existing computational resources. Another drawback of 
scalability in the proposed method stems from the used oracle factory component that 
is decentralised, but only used by the members of a single organisation. It means that 
if the size of the participating organisation happened to grow, the computational 
demand for the oracle factory component would increase with the addition of each 
new member. 
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3. IMPLEMENTATION OF THE CDMLB METHOD  

3.1 Dataset Preparation 

For the implementation of the method, a data partitioning strategy was used, 
which is presented in Figure 22. The selected dataset was prepared by performing 
categorical data reduction on selected features which combined multiple categories 
into an aggregated category, and one-hot encoding of the categorical text-based data. 
The dataset was randomly shuffled, and the data were split into training, validation, 
and testing data. By using the strategy, 80% percent of the original dataset was 
dedicated for model training and 20% was assigned for testing. The testing dataset 
was shared to the blockchain network for model performance evaluation. Based on 
the individual requirements and parameters of the contributor’s dataset, the proposed 
data partitioning strategy can use other ratios. The training data were further divided 
into the training and validation subsets to measure the performance of the 
classification models during its training stage. 

 
Figure 22. Proposed splitting strategy for the contributors’ data 

The demonstrated data splitting strategy was applied to two banking-related 
datasets. In the next step, the prepared training dataset is used during supervised model 
training. 
 

3.2 Implemented Classifiers 

The proposed method was implemented by utilising two base learners:   
 Classification And Regression Tree (CART) [48]; 
 binary logistic regression [27].  

The learners were selected based on their popularity in the classification tasks 
and their popularity in the ensemble-based machine learning approaches and the fast 
model inference calculation time, which allows evaluating a larger blockchain 
network without wasting computational resources. Binary logistic regression was also 
selected based on its common usage in the financial domain. The small file 
representation size of the selected classifiers also exerted influence on the selection of 
CART and the binary logistic classifier. The selected classifier training can also be 
completed with a relatively low amount of computational resources, thus enabling a 
higher possibility of collaboration. The CART classifier was also selected by its 
explainability. The CART classifier utilises data partitioning to develop a tree-like 
structure. In this classifier, the leaf nodes contain predicted values for the input vector. 
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The intermediate nodes contain data splitting decisions. Every decision rejects some 
potential sequential points and additionally discards some classification choices. The 
traditional decision tree classifier is developed by using a greedy split algorithm and 
a Gini impurity measure applied to the learning data. The following formula is used 
to calculate the Gini impurity: 

 (19)

where  is a list of all classes, k is a specific category after the split, and  is a 
probability of the category  having the class . 
 Decision tree classifiers differ from other machine learning models by a clear 
definition of data splitting decisions that can be displayed in a graph format. Such 
graphs can be easily analysed, thus denoting the criteria that led to the classifier 
decision. An example of such a graph is presented in Figure 23. The CART classifier 
is commonly used when combining multiple classifiers into ensembles [200], [201], 
[202].  

 
Figure 23. Visualisation of a decision tree classifier for Bank Marketing dataset, where the 
darker is the colour of the node, the more target class cases of the training data exist there 

The second classifier empirically tested in the CDMLB method was the binary 
logistic regression. The binary logistic regression is one of the traditional approaches 
[203] to the binary classification problem. It models the linear expectation of vector 

 belonging to class  as , where: 

 (20) 
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 (21) 

 
The logistic regression model fits the weighting coefficients  

in a manner which minimises the logistic loss (log-loss) function: 

 (22) 

The CDMLB method can also support other classifiers, but only the decision 
tree and the logistic regression classifier were implemented. The model training step 
is concluded by storing the machine learning model into a file. 

3.3 Implemented CDMLB Blockchain Platform  

The prototype blockchain network was developed by using the Hyperledger 
Fabric private blockchain framework. Hyperledger Fabric uses a service-based 
architecture and deploys services using containerisation. Such a deployment method 
allows us to introduce new services in the developed blockchain environment that can 
be replicated and developed as a separate service. The Docker container management 
environment was used to deploy and manage the blockchain network services and 
blockchain oracle components. The prototype network implementation used two 
organisations containing multiple network contributors. Each organisation contained 
an identity service to authenticate the contributor nodes. A single communication 
channel was deployed between the two organisations. 

A model inference smart contract was developed as proof-of-concept 
implementation and deployed to all the network contributor nodes. By using the 
Docker container management service, a proof-of-concept oracle factory service was 
developed by deploying the required local oracle services for all the existing network 
contributors. Similarly, a local web application incorporating a smart contract allowed 
uploading the machine learning model and the data. Additional off-chain oracle 
services were deployed into each individual network contributor node environment. 

 The local replicated application was implemented as a website using the Go 
[204] programming language by using a web page templating library [205]. The 
developed website used the contractapi [206] library to access the smart contract 
functions. The developed prototype local web application was deployed into the 
contributor’s node local environment while using a dedicated container service. Every 
network participant obtains such a local web application from their organisation. The 
local web applications are replicated identically for all network users and offer exactly 
the same functions. 

The network initialisation stage contained the following steps:  
 The contributor would initialise the blockchain network with the provided 

identity. 
 The contributor would create an instance of the blockchain ledger. 
 The contributor would connect to the created Hyperledger Fabric 

communication channel. 
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 The contributor would obtain the organisation-provided smart contracts, the 
local web application and the required oracle services from the oracle factory. 

 The contributor would initialise smart contracts and oracle services. 

After the initialisation, the network participants are ready to contribute data and 
model files via the local web application. 

3.3.1 Implemented smart contracts  

To implement the proposed CDMLB platform, the smart contract for 
collaboration was developed by using the Go programming language. The smart 
contract specification is provided in Figure 24. The specified functions are used by 
the local web application; they are used by employing Hyperledger Go API. The 
developed smart contract contains data structures for models, data and model 
inference. Each model, data and results are connected to the owner structure which 
defines its provider. All of these structures can also be bundled into key value pair 
structures that are used to combine them into addressable slices. The ensemble 
weights are stored in the weights data structure. The smart contract provides functions 
to initialise the model, the data files as well as the results calculation. The model and 
data validation functions are designed to test the format and the structure of the 
provided data and the model files. All the defined data structures can be obtained via 
the smart contact via the developed functions. The model inference results are 
calculated via the calculate predictions file. The Shapley weights are updated every 
time the calculateShapleyWeight function is called, with such calls being included in 
the data and model initialisation. The initDatafile, initModel file and initResults 
functions depend on the blockchain oracle-provided functions. 
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Figure 24. Smart contract implementation for Shapley weight calculation 

3.3.2 Implemented oracle services 

 Two oracle services have been implemented to test the proof-of-concept 
implementation of the proposed CDMLB. The developed oracle services contained 
the following functions: 1) the data validation function; 2) the model file and model 
encoding validation function; 3) the model inference calculation function; and 4) the 
component setup validation function. The data validation function was designed to 
test if the provided data file format is correct as well as to compare the provided data 
batch with the example data structure. The model validation function applies similar 
actions by testing the model file format as well as the validation if the model can create 
inference with the defined sample data structure. Both of these functions are called 
before the smart contract calls the model inference function, thus ensuring that all the 
network participants are able to perform the inference calculation action. If such a test 
successfully completes the model inference calculation, the procedure uses the tested 
data and model files and returns the model inference set to the smart contract. The 
smart contract, after a successful call, stores the inference results in a CouchDB 
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database. These model inference results are then used in a Shapley weight calculation 
smart contract function on the model usage request. 

 The first blockchain oracle was implemented by using the Python 
programming language and with the API service implementation using the Flask 
library and machine learning procedures implemented by using the PySpark library. 
The second blockchain oracle was implemented by using the R language, by 
implementing the API service via the Plumber library and the powering machine 
learning functions by the MLR3 library. 

3.4 CDMLB Blockchain Platform Usage 

3.4.1 Contributing to the blockchain network 

By using the local web application developed by the contributing organisation, 
the machine learning artefacts were contributed to the blockchain network. The 
application allows network contributors to upload data in the CSV file format [207]. 
The dataset file is divided into the feature and label parts. The metadata of the 
presented dataset are discarded, such as the row numbers and the feature names, to 
save the storage space. Then, the data are stored in the JSON format [208] in the 
blockchain storage. The switch between the CSV format to JSON is also motivated 
by the JSON file format support in CouchDB on the chain storage. 

The machine learning classifiers were developed by using the MLR3 and 
PySpark machine learning libraries and compressed into ZIP files which were 
deployed to the network. The aforementioned files were encoded into the text-based 
format by using the BASE64 algorithm and stored in the blockchain ledger. For both 
data and model representations, the identification of the network contributor was also 
stored in a JSON-encoded structure. When this model file is being used to produce 
predictions, the file is decoded from the text-based structure and used to predict on 
new data instances. 

3.4.2 Contribution evaluation 

Due to the currently existing research which proposes means to evaluate the 
contribution of machine learning datasets [179], [180], the CDMLB method focused 
on developing and testing the model contribution approach.  

Additionally, the method proposes an approach for the model contribution 
evaluation. The model contribution evaluation approach was implemented by using a 
machine learning ensemble of logistic regression and decision tree classifiers. The 
classifiers were developed by using the Python and R programming languages and the 
PySpark and MLR3 machine learning libraries, respectively. More than one 
implementation language was chosen to denote the flexible nature of the 
implementation environments available by using the proposed blockchain oracle 
architecture. The evaluation of the model performance using model ensembles was 
developed by using a Shapley-based ensemble weighting strategy. By applying 
Shapley values, they can be used to assign the contribution scores for an individual 
machine learning model in an ensemble. The model contributions were evaluated by 
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developing a decision tree and binary logistic regression classifier ensembles, as well 
as heterogeneous ensembles which combine the two tested classifiers into a single 
ensemble.  

 Contribution calculations with decision tree models and their combination 
into ensembles were implemented in a proof-of-concept blockchain network with the 
local web application [209]. This web application enabled network participants to 
upload data files, model files, and overview changes in the model performance 
presented in the Area Under Curve (AUC) measure.  

3.4.3 Implemented weighted ensemble usage approach 

The implemented weighted ensemble usage approach was designed to allow the 
network participants to use the network knowledge by providing testing data to the 
local web application. The ensemble usage approach was implemented by using two 
machine learning classifiers. The first implementation used the Python programming 
language and the PySpark machine learning library. The second implementation used 
the R programming language and the MLR3 machine learning library. Both 
implementations were developed for two banking-related tasks.  

The ensembles are developed by using a decision tree and logistic regression 
classifiers. Both homogeneous ensembles were tested as along with heterogeneous 
ensembles mixing the two selected classifier types. The developed weighted ensemble 
was compared with the single model approach and other popular weight selection 
strategies. Moreover, the CDMLB approach was compared with the most similar 
Shapley-voting based strategy. 

3.4.4 Implemented distilled knowledge usage approach using the three layer 
perceptron architecture 

The knowledge distillation approach was implemented by adapting the solution 
proposed in source [98]. The implementation of the distilled model used the Python 
programming language and the Keras machine learning library as well as the 
framework provided in source [210]. The trained neural network contained two 
hidden layers: first with 16 hidden nodes, and second with 8 hidden nodes and a binary 
output layer.  

The neural network was trained by using validation data as well as the used 
ensemble predictions as the training datasets. The distillation approach used models 
developed for the ensemble weight calculation experiment. A validation dataset that 
could be donated to the blockchain network was used to test the produced neural 
network’s performance. The resulting neural network performance was compared to 
the weighted ensemble which represented the network knowledge usage approach and 
the single model approach. The knowledge distillation approaches were evaluated at 
three different levels of distillation. The first configuration  included no 
blockchain network knowledge and only trained the neural network classifier on the 
combined validation dataset. This configuration would allow us to evaluate how the 
inclusion of network knowledge affects the classifier’s performance. The second 
configuration  included only a small amount of the blockchain network 
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knowledge. The third configuration  used neural network predictions on the 
validation dataset and the blockchain network knowledge with the equal ratio. 

3.4.5 Implemented distilled knowledge usage approach using the deep learning 
architecture 

To test the classifier performance difference from the shallow neural network 
architecturedeep learning neural network architecture was implemented.. The 
implementation used  an already existing TabNet [211] neural network architecture 
tailored to tabular data tasks. Such an architecture was selected based on its 
compatibility with the existing Python model development environment as well as its 
high performance on the experimentally tested Bank Marketing dataset. The 
implemented neural network modified the code provided in source [212], by 
implementing the ensemble prediction loading and knowledge distillation loss 
calculation functions. The developed architecture used the TensorFlow 1.2 machine 
learning library to train its model. The implemented deep neural network architecture 
contained 4 layers, where each layer was composed of the full connection layer, 
proceeded with the normalisation layer, and finished with the Generalised Linear Unit 
nonlinear activation layer. 

The neural network training procedure was similar to the three-layer perceptron 
training procedure and used the same datasets and models. The comparison with 
different alfa values set during the training and baseline classifiers matched the 
procedure performed with the three-layer perceptron classifier. 
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4. EXPERIMENTAL EVALUATION OF CDMLB METHOD 

The experimental evaluation of the proposed method was conducted in three 
stages. Each stage was dedicated to testing a part of the proposed CDMLB method 
and evaluating the implementation of the method processes. 

The first stage was dedicated to evaluating the possibility to implement the 
method’s CDMLB blockchain platform preparation step and the system architecture 
based on the local oracles. An experiment defined in source [194] was conducted to 
test whether the local oracle approach could be a viable solution in the existing 
blockchain technology and how the introduction of new components into the 
blockchain network could affect the performance of the system (the experiment results 
were also published in paper [194]).  

The second stage was allocated to testing the contribution calculation part of the 
method. The experiments concentrated efforts to develop the model evaluation part 
due to the already existing propositions which evaluate the data contributions [179], 
[180]. The experiments [192] compared two proposed ensemble weighting strategies 
with the existing commonly used strategies and the most similar Shapley-voting based 
weighting approach (the experiment results were also published in paper [192]). 

The third stage evaluated the part of the network knowledge usage by measuring 
the performance of both method usage solutions. The experiment used models 
developed in the second stage and developed a distilled neural network model. The 
distilled model was developed by using three distinct configurations, and they were 
compared to the performance of the ensembles created in the second stage of the 
experiment.Performance Evaluation of Model Inference via Local Off-chain 
Blockchain Oracles 

The model inference calculation algorithm development is a key procedure in 
the model deployment stage. The goal of the experiment was to evaluate the 
performance impact of the introduced local off-chain oracle components and to 
evaluate the model inference calculation algorithm implementation when using the 
private blockchain technology. The model inference algorithm was implemented by 
using smart contract and oracle services. To compare the proposed architecture with 
the already existing solutions, model inference was implemented by using two 
architectural approaches. The first approach was implemented by using only smart 
contracts, which covered all the logic for the model inference calculation. The second 
approach was implemented by using the smart contract and extended with local off-
chain oracle components, which relocated the inference calculations and only 
provided results to the smart contract. 

The Hyperledger Fabric blockchain network was used as a framework and the 
experiment execution environment. The Hyperledger Fabric private blockchain was 
chosen due to its modular architecture, the consensus algorithm which does not incur 
any cost attached to the smart contract execution, and the ability to call external 
network components from smart contract services. The Go programming language 
was chosen as the smart contract development language, since the Hyperledger Fabric 
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blockchain provides native support for this language. Two solutions implementing the 
model inference calculations were developed: a solution using exclusively the smart 
contract; and a solution using the smart contract extended with the computation 
transfer to the local off-chain oracle service component which was implemented as 
the RESTful microservice. 

The logistic regression model type was utilised in the experiments as the 
classifier of choice. Such a model type was selected due to the small model 
representation when stored into a file, and due to the quick model inference calculation 
performance. The low model inference calculation time requirement was introduced 
to evaluate the introduced network communication overhead in more detail, rather 
than focusing on the model inference calculation execution time efficiency. The 
machine learning models used in this experiment were trained in a separate 
environment. This environment simulated the local model development environment, 
and the results of the model development stage were stored into the file format. The 
model training process represented the proposed model development steps presented 
in the CDMLB method, where no training data are exported from the local 
environment. The completed experiments compared the performance of only the 
model inference calculation part of two different implemented approaches. The model 
predictions in the context of the proposed CDMLB method are recalculated when a 
new model or new data are shared to the blockchain network. 

The experiment was executed by uploading the validation dataset file to 
Hyperledger Fabric CouchDB by using smart contract functions called from the 
command line interface. The model files developed in a separate local model 
development environment were then uploaded to the blockchain by using the same 
procedure. During the model upload, the model inference calculation function was 
executed. The execution time of the function was measured. The model upload 
procedure was repeated 100 times, and the performance overhead was measured by 
using the Formula: 

 (23) 

where T represents a set of runtimes which were calculated over 100 iterations 
by using logistic regression models. The overhead was calculated by measuring the 
percentage of performance increase over the chaincode configuration. The model was 
developed by utilising the GoML library [38] randomly sampled data batch. The 
model inference execution time would start from the initial call of the model inference 
calculation function and would finish when the function provided results evaluating 
the total time spent in the model inference calculation function. 

To fairly evaluate the performance of the local oracle components, the defined 
experiment steps were performed on a new Hyperledger Fabric network instance 
which did not contain any information about the previously performed experiment 
part. The benchmarking experiment for local off-chain oracle computations also 
measured the model inference execution time on a smart contract which transferred 
the model inference calculation logic to the separate local oracle component, and the 
introduced API calls to that service from the smart contract environment. 
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4.1.1 Experiment settings 

The experiments were conducted on a server with the following configuration:  
8 Intel Xeon Silver 4114 CPU, 16 GB of RAM, SSD data storage. The experiments 
used the Ubuntu 18.04 operating system, Docker 19.03.6 containerisation 
environment that was running Hyperledger Fabric 1.4.9 with CouchDB 2.3.1 as the 
network database. To reach the consensus, the transactions had to be validated by all 
the existing network participants. All the peers were connected to a single organisation 
structure. 
 The model inference smart contract was developed by using the Go 
programming language. The local oracle was implemented by using the Go 
programming language as a RESTful service API component by utilising the Go 
net/http library. The local oracle implementation was identical to the smart contract 
developed for local computations, by only replacing the model inference calculation 
with external calls to the off-chain oracle service. 
 

 
Figure 25. System configuration for the blockchain network components 

The experiment prototype deployment configuration is presented in Figure 25. 
All the components were hosted on the Ubuntu Linux server, with all of the blockchain 
network components running in a Docker environment. Hyperledger Fabric CLI 
(command-line interface) was running in a single network peer node which was used 
to call the smart contract functions. The orderer and certificate authority nodes were 
managed by executing commands from the CLI component. The certificate authority 
manages the network participant access rights, and the orderer component distributes 
the transaction validation commands for the consensus algorithm. Every network peer 
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node contained a smart contract for the model inference and a copy of the distributed 
ledger. The local off-chain oracle service was also deployed to every network member 
node. 

 Two datasets were used to benchmark the performance of the developed model 
inference solutions. 
1. The synthetic dataset was composed of the generated data with values 

representing the coordinates in a two-dimensional space resulting in two features. 
The values were distributed in the non-linear fashion in crescent -like shapes and 
were generated with the make_moons function from the scikit-learn Python 
library [213]. 

2. The EEG eye state dataset [214] was composed of 14 features. The dataset was 
developed by recording the signal outputs of 14 channels of the EMOTIV EEG 
Neuroheadset, and the test subject eyes were either open or closed during the 
recording. 

The data sets were selected according to the suitability for the binary classification 
task. The synthetic dataset was selected due to its flexibility in generating any number 
of data instances, which allowed testing the performance drawbacks of datasets of 
larger sizes. The EEG eye state was selected to represent an example dataset for 
sensitive data that could be used in collaboration from the healthcare field. The dataset 
contained a sufficient amount of data instances and a balanced target against the non-
target class balance.  

Both datasets were divided into smaller subsets, by following the list: {1024; 
2048; 4096; 8192; 16384; 32768}. The EEG dataset only contained 14980 instances; 
so, in order to obtain the required amount of data, the set of rows had to be expanded. 
This expansion was completed by bootstrapping new data based on the original 
dataset, by appending duplicate rows while preserving the original ratio of the positive 
and negative classes. The data were stored in the blockchain storage with data 
indexing, which enabled to speed up the reading process. The dataset record sizes 
when stored in the blockchain storage are presented in Table 7. The number of the 
network nodes participating in the blockchain network was set according to the 
following list: {3; 5; 7; 9; 11; 13}. Such amounts of network nodes were selected to 
represent the gradual growth of the network size, and the maximum value was set 
based on the available computation resources. For each data and network member 
count combination, the blockchain network was reset to remove any remaining 
artefacts from the previous configurations of the experiment. 
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Table 7. Tested dataset configurations and data size. 
Data Records Synthetic Dataset (kB) EEG Eye State Dataset (kB) 

1024 114 510 

2048 227 1023 

4096 453 2049 

8192 905 4097 

16 384 1809 14 446 

32 768 3650 16 384 

To accurately measure the performance, each operation in the experiment was 
repeated for 100 iterations; on each tested data and node configuration setting, the 
median value of all the tested iterations is presented as the experiment result. 

4.1.2 Benchmarking results for the synthetic dataset 

The median model inference calculation time for all the tested network member 
and dataset configurations are presented in Figure 26 and Figure 27. The model 
inference calculation time depends on both the network node count and the dataset 
size as this is indicative in Figure 27. A sharp increase in the model inference 
execution time can be seen after the dataset size has reached more than 8192 rows. 
The performance of the calculation only increased in a linear fashion when datasets 
contained 16384 or 32768 rows.  

 
Figure 26. Model inference calculation time comparison. Synthetic dataset 

Even though the two calculations of time surfaces are similar in shape (Figure 
27) and size when separated based on the network size (Figure 26), a clear difference 
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can be seen, which confirms that a small amount of the overhead is introduced when 
the calculating was relocated to the local off-chain oracle service. 
 

 
 
Figure 27. Model inference calculation runtime. Synthetic dataset: smart contract (left) and 

the local off-chain oracle service (right) 

The largest tested data amount presents a linear relationship between the 
network node count and the model inference execution time (Figure 26), except for 
the outliers which were always produced from the initial run of the tested 
configuration. The outliers for the smart contract implementation produced a 
constantly quick calculation time as, for the local off-chain oracle service 
implementation, the outlier values were more distributed, particularly on the network 
configurations with the member count higher than eight.  

The longest execution time was achieved with the highest amount of network 
nodes and the largest dataset settings. The experiment results for all iterations are 
presented in Figure 28. The statistical analysis presented in Table 8 reveals that the 
execution runtime central tendencies (the mean and the median) have no statistically 
significant difference. The extended statistical analysis of the performance results is 
also presented in Appendix A. The difference in the computation time might have 
been introduced due to the communication with the local off-chain oracle service. 
During this communication, data from the blockchain storage to the oracle service 
were being transferred as well as the result back to the smart contract. Such 
communication might have affected the consensus algorithm speed, thus introducing 
an overhead. Most of the execution time was clustered around 79 s for both 
implemented solutions for a network of 13 nodes with 32768 instances of synthetic 
data. The lowest execution times presented in this graph were both achieved as the 
first iteration in the experiment, as the network nodes were still free of tasks. 
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Figure 28. Distribution of the calculation time results with a network composed of 13 
members and 32768 instances of synthetic data in the model validation experiment 
with a median calculation time of 1 minute 19 seconds for the smart contract (left) 

and 1 minute 19 seconds for the oracle service (right) 

 

Table 8. Equality of central tendencies using independent sample tests: case of 
synthetic dataset 

    Statistic df p 

Runtime  Student’s t  -0.211  198  0.833  

   Mann-Whitney U  4953    0.910  

Note. Hₐ μ Chaincode ≠ μ Oracle service 

The model inference calculation performance overhead presented in percentages is 
provided in  
  
Table 9. these results denote that, on the synthetic dataset, the calculation overheads 
were both negative and positive. The total median overhead was 1.99%. The results 
presented that, on all the network member count configurations with low dataset sizes 
(1024–8192 records), the computation overhead ranged from −4.31% to 6.59%. The 
validation times for these settings were relatively low, whereas the variability in 
performance overhead was quite high. When the dataset size reaches at least 16384 
records, the variability in the overhead is reduced in all the tested network 
configurations, and it is in the range from 0.73% to 4.28%. With the largest dataset 
size tested (32768 records), the variability in the model inference calculation times 
drops significantly, only resulting in the highest overhead of 2.79% on the network 
configuration that only contained three network nodes. The remaining network 
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configurations for this dataset size resulted in less than 1% (0.03–0.73%) overhead. 
The results display that the overhead diminishes once the member count and the 
dataset size increases. The higher variability of the model inference calculation 
overhead for smaller datasets was observed for all the tested network member count 
configurations. 
  
Table 9. Performance overhead for the local oracle service approach when compared 
to the smart contract approach (in %) results for the synthetic dataset 

Data records Number of peers in the blockchain network 
3 5 7 9 11 13 

1024 2.66 2.56 6.28 -4.31 -1.51 6.59 
2048 2.18 4.48 -0.63 3.72 4.99 5.31 
4096 1.17 5.61 3.93 5.37 4.27 4.89 
8192 3.16 5.01 2.85 3.79 2.96 3.59 
16348 4.28 1.20 0.32 1.36 1.02 0.77 
32768 2.79 0.73 0.63 0.40 0.05 0.03 

 
The benchmarking experiment results in the tested simulated blockchain 

network displayed a reduction of the performance overhead in the local oracle 
components on larger datasets. The results for medium-sized networks (5–9 peers) 
displayed the performance overhead in range from 6.28% to a performance increase 
of 4.31%. A large network of 11 to 13 members presented a performance decrease in 
the range of 0.03% to 6.59%. 

4.1.3 Benchmarking results for EEG eye state dataset 

The median model inference calculation time for all the network member and 
dataset configurations tested is presented in Figure 29 and Figure 30. The results 
present a similar pattern to the results produced on the synthetic dataset. As with the 
synthetic dataset, the medians presented the biggest increase in the calculation time 
when the dataset size reached 8192 or more. The higher number of data features and 
the bigger dataset size in the blockchain storage increased with the time required to 
calculate the model inference, thus displaying higher median values for the EEG eye 
state dataset. Just like in the synthetic dataset results, the linear dependency to the 
dataset size and the network member count to the performance was only noticeable 
for the two largest dataset configurations (16384 and 32768). 
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Figure 29. Model inference calculation time when using EEG eye state data 

For a dataset with 32768 rows, the linear dependency of the calculation time to 
the network member count is apparent (Figure 29). Except for the outliers which were 
produced by the initial run of the defined network configuration, the outlier 
distribution is similar to the synthetic dataset where the outliers in the smart contract-
only approach are fixed at a constant low calculation time, while the outliers of the 
local off-chain oracle service fluctuate. 

 

Figure 30. Model inference calculation runtime. EEG eye state dataset: smart contract (left) 
and the local off-chain oracle service (right) 

The calculation execution time for the largest amount of data is presented in 
Figure 31. The statistical analysis presented in Table 10 reveals that the mean runtime 
has no statistically significant difference, while the median runtime shows a 
statistically significant difference. The extended statistical analysis of the 
performance results is also presented in Appendix A. The initial iteration of the 
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experiment presented the lowest calculation times in both approaches, thus 
demonstrating that the calculation overhead is introduced by the oracle service. The 
experiment results are clustered around 1 min 24 s mark for the smart contract 
validation and around 1 min 25 s for the local oracle service approach. 

 
Figure 31. Distribution of the runtime results when using a network of 13 peers with 

the dataset of 32768 records in the model testing experiment. The median runtime 
for model validation was 1 minute 24 seconds for the smart contract (left) and 1 

minute 26 seconds for the oracle service (right) 

 

Table 10. Equality of central tendencies using independent sample tests: case of 
EEG eye state dataset 

    Statistic df p 

Runtime  Student’s t  -1.37  198  0.173  

   Mann-Whitney U  2677    < .001  

Note. Hₐ μ Chaincode ≠ μ Oracle service 

 
The results of the oracle service for larger datasets and network sizes are 

presented in Table 11, where the performance overhead is presented in percentages. 
The oracle service increased the calculation time over all the tested data and network 
configurations with the total median performance overhead of 4.06%. The results 
demonstrate that the calculation overhead for networks with lower member counts (3–
7 members) and dataset sizes (1024–32768 records) was in the range of 2.16 to 9.67%. 
The highest overhead was present on the configuration with the lowest dataset size 
(1024 records), whereas the lowest amount of overhead was observed on the highest 
amount of data records (32768 records). For the network sizes with 9 to 13 members, 
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an overhead in the range of 0.80–6.91%, the peak overhead was observed when the 
dataset size was of the medium size (2048–8192 records) with 6.91% for nine peers, 
6.53% for 11 peers, and 6.76% for 13 peers. The lowest performance downgrade of 
0.80% was detected in the network which contained 11 members, and the size of the 
data set was 32768. In total, the highest amount of the performance overhead ranged 
from 0.80% to 9.67%. 

Table 11. Performance overhead for the local oracle service approach compared to 
the smart contract approach (in %) results for the EEG eye state dataset 

Data records Number of peers in the blockchain network 
3 5 7 9 11 13 

1024 9.32 7.69 9.67 3.52 1.93 4.61 
2048 4.83 4.36 2.80 6.91 5.89 4.95 
4096 2.13 6.88 5.67 6.19 6.53 5.41 
8192 5.73 5.05 7.01 6.65 6.09 6.76 
16384 4.06 2.97 2.35 2.34 1.54 2.69 
32768 2.17 3.63 2.16 1.76 0.80 1.82 

4.1.4 Summary of experimental results 

 The model inference calculation execution time comparison results for the 
synthetic dataset show a minor increase of the runtime overhead of ~2% and the mean 
results for individual configurations of less than 6.60%. Datasets with a lower size 
presented higher performance overheads due to the higher data transfer time when 
compared to the model inference calculation time. With higher sizes of the network 
member nodes and larger datasets, the performance overhead diminished because the 
ratio of the inference calculation execution became significantly larger than the 
required data transfer duration. 
 The model inference calculation time comparison of the smart contract and the 
oracle-based results for the EEG eye state dataset resulted in the total median increase 
of the execution overhead by ~4%. When considering the means for both tested 
datasets and the network member count configurations, the results were distributed 
from 0.8% to 9.7%. Despite the feature dimensionality of the EEG eye state dataset 
being 7 times larger than the synthetic datasets, and the instance count was 4 times 
larger over all the tested configurations, the total mean only increased by 2%, which 
confirms that the local oracle calculation time depends on both the calculation time 
allocated for the model inference rather than the dataset and the result transfer. 
Overall, the model inference calculation performance is not as affected by changes of 
the dataset size as it is affected by the increase of the network member count. The 
experiments revealed that each additional network member adds an additional 6 s of 
the calculation time when tested with the dataset of the highest size. 
 The results of the conducted experiment reveal that the model inference 
calculation time increases due to additional communication between the smart 
contract and the oracle services are not as significant when compared to the flexibility 
which the oracle services introduces. Whereas, it enables users to run model inference 
calculations by using the established machine learning environments and solutions. 
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Regardless, the model inference calculation trade-offs should be evaluated by the 
organisations looking to adopt the blockchain technology and oracle services to decide 
whether the faster execution time of an exclusively smart contract solution is 
sufficiently lower than the local off-chain oracle service solution which allows to 
adopt the already established ML solutions and components. 

4.2 Shapley-based Ensemble Weighting Strategies Performance Evaluation 

The experiments for the Shapley-based ensemble weighting strategy were 
designed to test whether the model contributions to the blockchain network could be 
evaluated and measured. The experiments focused on the model performance 
evaluation rather than on the contributed data evaluation. Ensemble-based model 
aggregation methods were selected for a combination of multiple model types, and 
they would not require the unification of the model types. The experiment tested the 
performance of two Shapley-based performance ensemble weight selection strategies 
and compared this performance to the most commonly used weighting strategies, as 
well as other Shapley-voting based strategies. The blockchain local off-chain oracle 
components using the R and Python programming languages were chosen as the 
experiment implementation environments. Classifiers were developed by the MLR3 
machine learning library in the R language environment and the PySpark machine 
learning library in Python. Two banking-related datasets were used to train classifiers 
and evaluate their performance. 

The presented CDMLB method enables the usage of multiple model types 
developed by using a wide range of technologies in the collaboration process. To test 
how a combination of model types would affect the ensemble performance, the 
weighting strategy experiment tested an ensemble composed of a single model type 
(homogeneous ensembles) and ensembles composed of multiple model types 
(heterogeneous ensembles). The experiment began by shuffling the dataset and 
dividing two selected datasets into the training, testing, and validation subsets. The 
training subset was further divided into a number of parts matching the number of the 
trained models. The divided dataset files were stored into files and were used to train 
models on their allocated training data on both implementations. The implementations 
using multiple machine learning environments allowed us to demonstrate the 
flexibility of the proposed method and to test how multi-environment blockchain 
oracles can be implemented and what changes are required to the smart contract 
development procedures to implement such a system. 

The model predictions calculated on the testing dataset were stored into files. 
The ensemble validation dataset and the developed model predictions were then used 
to combine the models into an ensemble and measure its performance. The binary 
cross-entropy performance measures were used as an input for the Shapley value 
calculations. Based on the Shapley value results, the ensemble weights were 
developed. The tested ensemble weighting strategies and the monolith single model 
approach were then benchmarked by using the validation dataset. 
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4.2.1 Settings for the experiments 

Experiments containing a homogeneous ensemble type were conducted with two 
classifiers: the decision tree (CART) [48] and the logistic regression [27]. 
Heterogeneous ensembles combined both model types into a single ensemble. The 
hyperparameters for the tested model types are presented in Table 12. The logistic 
regression model had two common parameters, a defined epsilon constant, and the 
number of iterations was set to 25. For the MLR3 library, the singular.ok parameter 
defined that the strategy to resolve singular design matrices are enabled, and the trace 
parameter disabled the additional information logging. For the PySpark library, the 
parameters set were the regularization parameter (regParam), the aggregation depth 
(aggregationDepth) with its default value, the prediction threshold parameter 
(threshold) was set to 0.5, the ElasticNet (elasticNetParam) mixing parameter was set 
to 0, and the bias inclusion into the model (fitIntercept) was enabled. For the decision 
tree classifier, the common parameters were the maximum depth of the decision tree 
set to 30, and the model training gain was set to 0.01. For MLR3 implementation, the 
minimal weights required in a node to be evaluated before splitting was set to 20, the 
number of competing splits (maxcompete) maintained in the output was set to 4, the 
number of surrogate splits (maxsurrogate) maintained in the output was set to 5, the 
surrogate selection method was set to 0 (surrogatestyle), and the surrogate usage style 
was set to 2 (usesurrogate), whereas the number of cross-validations (xval) was set to 
10. The decision tree classifier type had the parameters (minInstancesPerNode), 
standardisation was disabled, the minimal weight (minWeightFractionPerNode) for 
each node could be obtained after the split was set to 0.0. The minimal number of 
instances after splitting which each node (minInstancesPerNode) was required to 
obtain was set to 1. The number of different bins (maxBins) to split features into was 
set to 32, and the implementation used the Gini (Formula 18) impurity measure which 
was used in deciding when to split the tree. 

Table 12. Model training hyperparameter metrics for the used ML model types 

Model 
type 

Common 
parameters 

Implementation-specific parameters 

Logistic 
regression 

E = e *108 
iterations = 25 

MLR3 
singular.ok = True; trace = False 
PySpark 
regParam = 0.0; aggregationDepth = 2; 
threshold = 0.5; elasticNetParam = 0.0; fitIntercept 
= True 

Decision 
tree 

maxDepth = 30 
minInfoGain = 0.01 

MLR3 
minSplit = 20; maxcompete = 4; maxsurrogate = 5; 
surrogatestyle = 0; usesurrogate = 2; xval = 10 
PySpark 
minInstancesPerNode = 20; Standardisation = False; 
minWeightFractionPerNode = 0.0; 
minInstancesPerNode = 1; maxBins = 32; impurity 
= 'gini' 
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Two datasets were used to train the five ensemble weighting strategies: Bank 
Marketing and BNG-Credit_a. The dataset parameters and sources are presented in 
Table 13. These datasets were selected based on the dataset compatibility with the 
binary classification task and a representation of the finance field which could be 
improved by the collaboration. Bank marketing was selected to represent datasets with 
a skewed target to non-target class ratio, while the BNG-Credit_a dataset was selected 
to test the ability of the proposed methods to perform with large datasets. In contrast 
to the datasets used in the performance evaluation experiment, the selected datasets 
contained categorical data which expanded the feature list. 

The Bank Marketing dataset had to be pre-processed, as the dataset consisted of 
text-based categorical data. The categorical data were transformed into new dataset 
features by using one-hot encoding approach. The class labels for this dataset were 
also transformed from the text-based classes into the number-based classes. 

The BNG-Credit_a (BNG) dataset also had to be pre-processed as some features 
contained a wide range of unique instances. To reduce the number of new features 
after the application of the one-hot encoding approach, the dataset features with 
25,000 entries for feature A6 and 89,044 entries for feature A7 were combined into a 
new ‘other’ category. Feature A6 contained information about the customer’s 
occupation, whereas A7 contained information about the last contact information 
about the customer. After successfully reducing the number of unique instances in 
text-based data features, the one-hot encoding approach was used to transform data 
instances into a new feature set 

Table 13. Dataset parameters. Categorical features were obtained by using the one-
hot encoding approach, thus resulting in multiple new features 

Data Characteristic Bank Marketing [215] BNG-Credit_a [216] 
Initial features 16 15 
Categorical features 10 10 
Total features 51 33 
Total instances 45 211 1 000 000 
Classes 2 2 
Target class proportion 0.120 0.544 

To compare the ensemble-based machine learning models with a monolith 
model, a two-step data-splitting strategy was implemented. The first step divided the 
data into training and testing subsets with a ratio of 80% to 20%, respectively. The 
training dataset was used to train a monolith model; it was also used to develop models 
which will later be combined into model ensembles. The testing data were reserved to 
fairly evaluate and compare two approaches: the monolith and the weighted ensemble. 
The second step divided the testing data subset into two new subsets, specifically, the 
ensemble training and the ensemble validation. The larger part of the ensemble 
training data was reserved for ensemble model training and using divisive split into 
smaller batches based on Zipf’s law distribution with its exponent value set to s = 0.2, 
where the Zipf values were calculated by Function (24): 
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 =  (24) 

where is the amount of data rows allocated to a specific participant, the 
participant’s rank is , s is an exponent (a parameter controlling the shape of 
distribution); N is the total number of participants; and  is the normalisation 
constant (the generalised harmonic number). 

Models for the ensemble were trained on an individual batch and tested on the 
ensemble validation dataset to measure its performance in BCE. 

For each new experiment iteration, the data instances in the training data batches 
were randomly distributed. The baseline model for comparing homogeneous results 
with heterogeneous results was selected based on the best homogeneous classifier 
performance. The monolith model creation approach was selected based on the 
highest overall performance.  

 

 
Figure 32. Data splitting strategy for ensemble and monolith development 

The Python and R languages were chosen on the basis of the popularity and the 
amount of the machine learning solutions available in their ecosystem. MLR3 version 
0.13.3 was used to develop machine learning models in the R environment. PySpark 
version 3.1.2 was used to develop a machine learning model in the Python 
environment. The unified and implementation specific model training parameters 
used in this experiment are described in Table 12.  

The experiments compared the classifier performance of the weighting strategies 
defined in Section 2.2.2 as the positive Shapley (posShap) and the maximum Shapley 
(maxShap). These strategies were compared with the monolith approach (Mono) and 
the four established ensemble weighting strategies: the random weighting (Rand), the 
equal weighting strategy (Equal), the performance-based weighting (Perf), and 
Voting-based, as presented by Benedek Rozembecky and Rik Sarkar (Roz) [180]. 
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 Each experiment results are presented by using two diagrams. The first diagram 
presents the ensemble performance evolution based on the ensemble model size. The 
second diagram presents the classifier ranks based on their average performance. 
  The monolith (Mono) is a single model developed on the monolithic dataset 
approach and provides baseline capabilities of the classifier without applying 
ensembling or weighting strategies.  

The models with a negative impact on the ensemble performance were required 
for the maxShap strategy, but they did not occur in the BNG_credit-a dataset; thus, 
the maxShap strategy is only represented in the Bank Marketing dataset results.  

The critical difference diagram compared the classifier performances. It was 
developed by using the library, as presented in source [217]. The comparison 
employed the Friedman’s test [218] to determine if any statistical significance exists 
between the model results. In case the results presented statistical significance, the 
proposed solution applied pairwise analysis, as described in source [219] by replacing 
the average rank comparison with the Wilcoxon signed-rank test [220] adjusted with 
Holm’s alpha correction [221]. Instead of comparing the distribution difference, the 
Wilcoxon signed-rank test additionally adds the assumption of a symmetric 
distribution. Meanwhile, Holm’s alpha correction adjusted the p-value from the 
individual test to maintain control over the family-wise error rate. 
 The detailed experiment results are presented in Appendix B. The following 
sections will compare the median experiment results and the rankings of the classifier 
performance.  

4.2.2 Experiment results for homogeneous ensembles 

Ensembles composed of logistic regression classifiers that were developed by 
using the BNG-Credit_a dataset are presented in Figure 33. The lowest log-loss (BCE) 
value was produced by the monolith model with a result of 0.326. All the tested weight 
selection strategies resulted in a similar loss for all the tested ensemble size 
configurations. The aggregated ensemble performance ranks are presented in a critical 
difference diagram (Figure 34). The model ranks specify that most of the weight 
selection strategy results were statistically similar to the Roz strategy. This indicates 
that the performance increase provided by weighting was low for the logistic 
regression classifier. The monolith approach was ranked as the best performing 
classifier, with the posShap approach coming second best. 
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Figure 33. Performance comparison of homogeneous logistic regression ensembles 

developed by using BNG dataset 

 

 
Figure 34. Ranking of homogeneous logistic regression ensembles developed by using BNG 

dataset for Python (top) and R (bottom) implementations 

The single model monolith approach was surpassed in terms of performance by 
all the ensemble weighting strategies when homogenous decision tree classifiers were 
developed by using the BNG_credit-a dataset (Figure 34). Performance differences 
between the monolithic approach and the ensemble approaches increased with larger 
ensemble member counts. Compared to the posShap strategy with the highest 
performance, the difference ranged from 0% to 4.8%. When comparing the 
performance of only the ensemble weight selection strategies, the results on 
ensembles with 2 and 3 members revealed that there is no noticeable difference 
between the tested strategies. For ensembles with 5 members or more, the posShap 
strategy produced the best performance, resulting in 0.317 log-loss (BCE). The 
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performance difference is also evident in the rank-based comparison presented in 
(Figure 35) with the posShap strategy presenting the highest ranking. The Roz and 
Equal strategy results were statistically indifferent, as well as the Perf and Roz strategy 
results implemented in Python. The performance produced by the R language 
implementation was the highest of all the tested homogeneous configurations and 
implementations. When comparing the monolith approach and the largest ensemble 
size of 13 models, the Perf and posShap weighting strategies improved the 
performance by 4.1% and 4.8%, respectively. 

 
Figure 35. Performance comparison of homogeneous decision tree ensembles 

developed by using the BNG dataset 

 

 
Figure 36. Ranking of homogeneous decision tree ensembles developed by 

using BNG dataset for Python (top) and R (bottom) implementations 
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The experiment results of logistic regression ensembles trained by using the 
Bank Marketing dataset (Figure 37) produced nearly identical results for ensemble 
sizes 2, 3 and 5 for both implementation languages. As the Bank Marketing dataset 
contained negative Shapley values, the maxShap strategy was applied. The 
performance of the maxShap value sharply decreased when the ensemble size reached 
8 or more members. The distinction between the Mono and other ensemble creation 
strategies became apparent only when the ensemble member count reached 8 or more 
members. The performance difference remained small at only less than 0.1%. The 
highest performance of all the tested ensemble sizes and implementations by using 
logistic regression and the Bank Marketing dataset were a BCE value of 0.236. The 
ranking of the ensemble results is presented in Figure 38. The PosShap weighting 
strategy was ranked as the strategy with the best performance, while Perf produced 
the second-best results. Both the posShap and Perf strategies had higher ranks than 
the monolith approach, which indicated that the performance-based weighting 
produced better results for the model and dataset configuration. The resulting 
performance increase of 0.4% might be considered negligible, which is further 
highlighted by the lack of statistical significance between most of the strategies tested. 

 
Figure 37. Performance comparison of homogeneous logistic regression ensembles 

developed by using Bank Marketing dataset 
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Figure 38. Ranking of homogeneous logistic regression ensembles developed by 

using the Bank Marketing dataset for Python (top) and R (bottom) implementations 

An ensemble composed of decision tree classifiers trained on the Bank 
Marketing dataset results is presented in Figure 39. With the ensemble composed of 
3 or more models, the log-loss (BCE) produced by the maxShap weighting strategy 
decreased and kept decreasing for higher ensemble model counts. The monolith 
approach was outperformed by all the ensemble weighting strategies in the Python 
implementation for ensemble sizes 2 to 8. For ensembles with 13 aggregated models, 
the posShap strategy presented the best performance, resulting in BCE of 0.264 for 
Python and 0.274 for R implementations. When using R implementation posShap, 
Equal and Perf weighting strategies produced lower BCE values than the monolith 
approach for every tested ensemble size. The best performance was reached by an 
ensemble composed of 8 models and resulted in BCE of 0.251. The rankings of the 
tested ensemble weighting strategies are presented in Figure 40. The highest-ranking 
approach was posShap when the ensemble was implemented in R and second-best for 
the Python implementation. The results presented by Roz and Random strategies show 
no statistical significance. A similar lack of statistical difference was also present 
between the posShap and Equal strategies when implemented in Python. 
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Figure 39. Performance comparison of homogeneous decision tree ensembles developed by 

using Bank Marketing dataset 

 

 
Figure 40. Ranking of homogeneous decision tree ensembles developed by using Bank 

Marketing dataset for Python (top) and R (bottom) implementations 

4.2.3 Summary of results for homogeneous ensembles 

The summary of the ranks for all implementations and datasets is provided in 
Table 14, and the results show that the decision tree classifier ensembles benefited 
more from the weighting strategies than the logistic regression classifier ensembles. 
The performance increase for decision tree-based ensembles when compared to the 
base monolith model was 1.9% for the Bank Marketing and 4.8% for the BNG_credit-
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a datasets, the performance of the logistic regression results in minimal gains of 0.2% 
and 0.002%, respectively. Even though the weighting strategy was not as successful 
in increasing the performance for logistic regression classifier ensembles, the posShap 
strategy still performed similarly to the Perf strategy, which produced the best 
performance of all the tested strategies. The best performance for the Bank Marketing 
dataset resulted in BCE of 0.236, which was produced by the Perf strategy with the 
ensemble containing 13 members; with the same configuration, the posShap 
weighting strategy presented the result of BCE of 0.238. The results for the 
BNG_credit-a dataset was similar, where the posShap and Perf loss values were BCE 
of 0.317 and 0.318, respectively. The posShap weighting strategy was more effective 
in increasing the performance of the ensembles composed of a higher number of 
models. Contrary to the results of the posShap strategy, maxShap produced the worst 
results of all the tested approaches for ensemble sizes of 8 and 13. In all the tested 
data and implementation configurations, the posShap strategy surpassed or at least 
matched the performance of the Roz [180] strategy. 

Table 14. Ranking position results from all the tested data and implementation 
configurations. Bold numbers denote the classifier with the highest rank 

Model type Logistic 
regression 

Decision tree Logistic 
regression 

Decision tree 

Dataset BNG_credit-a dataset Bank Marketing dataset 
               Implementation 
  
Weighting strategy        

Python R Python R Python R Python R 

Mono 1 1 6 6 3 3 6 7 
Rand 5 5 4 3 7 7 5 5/6 
Equal 6 6 5 5 6 6 2 4 
Perf 4 3 2 2 2 2 1 2 
Roz 3 4 3 4 4 4 4 3 
MaxShap - - - - 5 5 7 5/6 
PosShap 2 2 1 1 1 1 3 1 
Model type Logistic 

regression 
Decision tree Logistic 

regression 
Decision tree 

Dataset BNG_credit-a dataset Bank Marketing dataset 

               Implementation 
 
 Weighting strategy        

Python R Python R Python R Python R 

Mono 1 1 6 6 3 3 6 7 
Rand 5 5 4 3 7 7 5 5/6 
Equal 6 6 5 5 6 6 2 4 
Perf 4 3 2 2 2 2 1 2 
Roz 3 4 3 4 4 4 4 3 
MaxShap - - - - 5 5 7 5/6 
PosShap 2 2 1 1 1 1 3 1 
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To test how the proposed method would work with ensembles composed of 

multiple classifier types, an experiment with heterogeneous ensembles was 
completed, and its results are presented in the next chapter. 

4.2.4 Experiment results for heterogeneous ensembles 

Results for heterogeneous ensembles which were developed by using the Python 
programming language and trained on the Bank Marketing dataset are presented in 
Figure 41. The ensemble with the highest performance utilised the equal weighting 
strategy and produced a BCE value of 0.233 for the highest ensemble size of 16 
models. The lowest performance of all the tested weighted strategies was produced 
by the maxShap strategy. The maxShap strategy produced a negative impact on the 
performance of the model ensemble with a decrease in performance with higher 
ensemble sizes. The opposite result was presented by the posShap ensemble weight 
selection strategy, even though posShap performed similarly for ensembles with 4 and 
6 models. In ensembles with 10 or more models, the performance of the posShap 
strategy was greater than that of the monolithic approaches. For the highest ensemble 
model count of 16 models, the posShap strategy also produced better performance 
than the Perf approach. Such an increase of performance indicates the ability of the 
Shapley values to measure the model contribution more precisely than merely the 
performance-based approach. This precision increase is enabled by evaluating the 
total existing permutations, evaluating the model combinations which would 
otherwise not be compared by the simple performance evaluation. The ensemble ranks 
are presented in Figure 42, and the results exhibit that the equal strategy outperformed 
the other tested approaches. The second-best performing strategy was Rand, with Perf 
and posShap taking ranks number three and four, respectively. The rank-based 
comparison also reveals that the differences between the posShap, Perf, and Roz 
strategies were statistically insignificant. 
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Figure 41. Heterogeneous ensemble performance comparison for a range of ensemble sizes 

developed by using Python implementation and Bank Marketing dataset 

 
Figure 42. Rank-based comparison of heterogeneous ensemble weighting strategies for 

models developed in Python environment and by using Bank Marketing dataset 

The heterogeneous weighted ensemble results developed by using the BNG-
credit_a dataset and the Python implementation are presented in Figure 43. The 
presented results are similar to the results of the homogeneous ensembles (Figure 35) 
as both were produced by using the identical dataset. Log-loss (BCE) was further 
reduced with the introduction of logistic regression models and the application of 
weighting strategies. The best-performing weighting strategy was posShap with a 
median BCE of 0.312. Both the Perf and Equal strategies presented similar results. 
This is confirmed by the lack of statistical significance of the results presented in the 
critical difference diagram (Figure 44). Both the Perf and Equal results were also 
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statistically insignificant from the Roz results. The effect of weighting is clear, as all 
of the tested ensemble weight selection strategies outperformed the monolith model 
approach. For an ensemble composed of 16 models, the gain over the monolith 
approach was 1.3% for Equal, Perf, Rand strategies, and 1.4% for the posShap 
strategy. 

 
Figure 43. Heterogeneous ensemble performance comparison for a range of ensemble sizes 

developed by using Python implementation and BNG dataset 

 
Figure 44. Rank-based comparison of heterogeneous ensemble weighting strategies for 

models developed in Python environment and by using BNG-credit_a dataset 

The results for the R language implementation of heterogeneous ensembles for 
the Bank Marketing dataset are presented in Figure 45. The results indicate that the 
posShap strategy for ensembles with model counts of 10 and 16 presents better 
performance than the Mono single model approach. The weighting strategy with the 
best performance for all the tested configurations of ensembles was Equal with a BCE 
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value of 0.233. For ensembles with 10 or 16 models, the posShap weighting strategy 
presents better performance than the performance-based approach Perf, and it results 
in the same median loss as the random strategy with a BCE value of 0.235. Even 
though the ensemble weighting only results in the overall performance gains of 0.6% 
for all the tested weight selection strategies, except for maxShap, it still presents worse 
results than the monolithic approach. The ranking of the ensemble performance is 
presented in Figure 46, and it displays that, when the results are aggregated across all 
the sizes of ensembles, the Equal strategy exhibits the best performance. The posShap 
strategy was ranked similarly to the Mono approach with maxShap resulting in the 
lowest rank. 

 
Figure 45. Comparison of heterogeneous ensemble performance for the range of ensemble 

sizes developed by using R implementation and BNG dataset 

 
Figure 46. Rank-based comparison of heterogeneous ensemble weighting strategies for 

models developed in R environment and by using Bank Marketing dataset  

The results of the R language implementation of heterogeneous ensembles 
developed by using the BNG-credit_a dataset are presented in Figure 47. The results 



117 

indicate that all the ensemble weighting techniques present a lower performance than 
the monolith approach. All the tested ensemble weighting approaches result in similar 
performance, with no statistical significance between the results. The best results for 
all the weighting strategies tested on any model size was reached by the Rand strategy 
with a BCE value of 0.339. The performance of the posShap strategy was reduced 
when the ensembles model count reached 16, but, for ensembles with 6 and 10 
members, it presents the best performance. The ensemble ranking (Figure 48) shows 
that, between all the weighting approaches, no statistical significance was found. The 
monolith approach is the approach with the highest performance, with the Roz 
approach being ranked as the worst-performing one. 

 
Figure 47. Heterogeneous ensemble performance comparison for a range of ensemble sizes 

developed by using R implementation and BNG dataset 

 
Figure 48. Rank-based comparison of heterogeneous ensemble weighting strategies for 

models developed in R environment and by using BNG dataset 

4.2.5 Summary of results for heterogeneous ensembles 

 The summary of all ensemble ranks is presented in Table 15. The summary 
reveals that, for heterogeneous approaches, the selection of the correct model type is 
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as important as selecting the correct weighting strategy. As shown in Figure 47, the 
Mono approach outperformed all the tested weighting strategies. The performance 
difference between the Mono approach and the weighting strategies ranged from 1.3% 
to 2.2%. 

Table 15. Ranking of the results of the Friedman test for the heterogeneous 
experiment. Bold numbers denote the classifier with the highest rank. 

Dataset BNG_credit-a  Bank Marketing  
                       Implementation  
Weighting strategy        Python R Python R 

Mono 6 1 6 4 
Rand 5 4 2 2 
Equal 4 5 1 1 
Perf 3 3 4 3 
Roz 2 6 3 6 

MaxShap - - 7 7 
PosShap 1 2 5 5 
Dataset BNG_credit-a  Bank Marketing  
                       Implementation  
Weighting strategy        Python R Python R 

Mono 6 1 6 4 
Rand 5 4 2 2 
Equal 4 5 1 1 
Perf 3 3 4 3 
Roz 2 6 3 6 

MaxShap - - 7 7 
PosShap 1 2 5 5 

 
The introduced discrepancy of the performance results when comparing the 

Mono approach and other weighting strategies observed in two implementations for 
the BNG_credit-a dataset was influenced by implementation-specific hyperparameter 
values, as the weighting strategy performance was greater when the Python 
implementation was used (Figure 43), whereas the opposite was observed in the R 
language approach (Figure 47). The implementations were nearly identical when 
comparing Figure 41 and Figure 45. The results of these implementations were in the 
range of BCE from 0.233 to 0.269, and, in both implementations, the equal weight 
selection approach produced the best results. The combination of the model ensemble 
types increased the performance of three out of the four tested datasets and model type 
configurations. When compared to the highest performing ensemble in homogeneous 
experiments which presented a BCE value of 0.236, the heterogeneous ensembles 
increased the performance to BCE of 0.233. The Mono approach was surpassed in 
terms of performance by the ensemble weighting strategies in three out of the four 
tested dataset and model type configurations, thus denoting the performance benefits 
of the weighted ensembling approaches. The proposed posShap strategy outperformed 
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the Roz strategy in 3 tested heterogeneous experiment configurations, except for the 
Python implementation for the models developed by using the Bank Marketing dataset 
where both of the strategies presented identical results. The worst performance was 
achieved by the maxShap weighting strategy, which shows that assumptions about the 
prediction correction only worsen the ensemble performance. As more values were 
modified by the maxShap strategy in larger ensembles, the performance drawbacks 
became more evident. 

4.2.6 Evaluation of Shapley calculation algorithm complexity 

A server running Intel Xeon Silver 4114 CPU consisting of 10 CPU cores and 
2.20 GHz processor speed with 32 GB of RAM was used as the experiment 
environment. Ubuntu 18.04 was used as the operating system with two model 
development environments: R 4.1.3 and Python 3.6.9. 
 

 
Figure 49. Shapley value calculation runtime comparison between the approximation method 

used by Roz [180] (EMC) and posShap (Exact) strategies 

The algorithm complexity when calculating the Shapley values without any 
approximation measures is O(N!). The complexity of the expected marginal 
contributions (EMC) approximation algorithm [19] is O(N).  

The Shapley value calculation time is presented in Figure 49. Even though the 
exact calculation time was nearly identical to the approximation approach for 
ensembles containing only 2–5 members, the computation time increased 
exponentially with larger sizes of the ensemble model. For ensembles sized 13, the 
average time for the exact Shapley calculation was 13.612 s, whereas, for the EMC 
approximation approach, the time was 0.002 s. The exponential increase in the 
Shapley calculation time could be resolved by using the currently existing 
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approximation algorithms [176], [222] which are similar to the one used in the Roz 
[180] approach, or by using model count reduction approaches before combining them 
into ensembles without considerably lowering the ensemble performance [199].  

Nevertheless, if any approximation approach were applied, the posShap weight 
selection method would result in a simpler computation procedure as the method 
calculations would be performed with data combined into batches rather than on a 
single data point level as in source [180]. 

4.2.7 Summary of experiment results 

The most prominent performance increase when compared to the monolith 
approach using homogeneous ensembles was achieved by the posShap weighting 
strategy on the ensemble which was composed of 13 models: 4.8% and 1.9% for 
BNG_credit-a and Bank Marketing datasets, respectively. Compared to the commonly 
used performance-based weight selection approach (Perf), the proposed posShap 
strategy increased the ensemble performance by 0.7%. The ensemble ranking revealed 
that the posShap strategy was ranked as the best strategy, except for a single 
configuration of the Python programming language, the decision tree classifier, and 
the Bank Marketing dataset. Similar, results for the posShap weight selection strategy 
were obtained in the heterogeneous ensembles, reaching a performance increase of 
1.4% when compared to the Mono approach for the BNG_credit-a dataset setting. For 
the Bank Marketing dataset, the posShap produced gains of 0.4%, but the best 
performing weighting strategy was of equal weighting with an increase of 
performance of 0.6% when compared to the monolith approach. 

Of the two proposed ensemble weighting strategies, only posShap produced 
positive results, as the performance of the maxShap strategy was surpassed by all the 
tested strategies. This reveals that the applied prediction correction methods did not 
improve the performance, and the exclusion of non-performing ensemble members 
was a more beneficial strategy. The performance of posShap varied based on the 
dataset and model type configurations, but the experiment results indicate that the 
posShap strategy surpassed or was at least similar when compared to other tested 
weighting strategies, including the Shapley vote-based strategy (Roz). 

4.3 Performance Evaluation of Knowledge Distillation Approach Using Three 
Layer Perceptron 

The experiment tested how the knowledge distillation approach impacts the 
performance of the classifier and whether it can it produce results comparable to the 
ensemble prediction. The distilled models were developed as a neural network model 
type by using blockchain ensemble predictions as the input. The goal of the knowledge 
distillation performance evaluation experiment was to measure the impact of model 
compression on the classification performance. 

The experiment was conducted in two stages: the model preparation stage, and 
the knowledge distillation performance evaluation stage. The first stage used machine 
learning model predictions developed in the Shapley-based weight selection 
experiment as the training data for the distilled model. Only models developed by 
using the Python programming language were used in this experiment. The 
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experiment used a model ensemble containing 13 classifiers and utilised the posShap 
strategy to select their weights. The ensemble predictions and developed posShap 
weights were stored as files and used in the knowledge distillation algorithm. 

The second stage consisted of neural network model development and its 
performance evaluation. The neural network model was developed by using weighted 
ensemble predictions produced on two already tested datasets: Bank Marketing and 
BNG_credit-a. The predictions produced from the ensemble model were used as the 
input to the student model. The neural network was trained iteratively with the amount 
of the iterations set being based on the parameters of the dataset in use. 

The performance of the trained neural network models was evaluated by using 
the validation subset for each used dataset. To compare the performance of the 
distilled model, its performance was compared to the monolith single model approach 
and the posShap approach. The PosShap approach performance results indicate the 
performance of using the distilled model CDMLB methods approach step. The neural 
network model was developed with three different alfa parameter settings: 0.5, 0.75, 
and 1. The alfa parameter represents the loss ration that is calculated by using the 
teacher loss and the student loss, and it is used as a scaled distillation loss measure 
[98]. The alfa value of ‘1’ means that the scaled loss only used the training loss of the 
trained neural network. Other alfa parameters denote different ratios of the neural 
network loss inclusion in the training process with 0.75 and 0.5 denoting 75% and 
50%, respectively, of the used neural network (student) loss. The results were 
compared by using the Friedman ranking technique, and the classifier performance 
results were presented by using graphs to overview the differences in the performance 
distribution and median values. 

4.3.1 Experiment settings 

The models were developed by using the PySpark machine learning library 
version 3.1.2. The model parameters were identical to those used in the Shapley 
weighting strategy performance evaluation experiment (cf. Table 12). 

The neural network architectures are presented in Figure 50, with the main 
difference being in the configuration of the solution in terms of the number of input 
parameters for each network. The selected architectures were developed according to 
the best practices presented in source [223], with the layer count selection based on 
the described best practices. In the selected architectures, the first layer matched the 
feature set count in the respective dataset, and the following hidden layers diminished 
in terms of the neural network node count. The distillation model development 
parameters are presented in Table 16, where, due to the large dataset size 
BNG_credit-a, a lower number of training iterations and a higher training and 
validation batch size were used. The batch size of the validation split data was lower 
for the Bank Marketing dataset so that to preserve a larger amount of the training data 
due to the smaller amount of data instances. The experiment using the Bank Marketing 
dataset was computed by using 100 iterations, whereas BNG_credit-a used 50 
iterations with the data split being based on a strategy defined in the Shapley-based 
ensemble weighting experiment presented in Section 4.2. The distillation was 
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implemented by using the Keras 2.10.0 machine learning library [224], by modifying 
the example provided in source [210]. 

Table 16. Student model training parameters for the knowledge distillation approach 

Dataset  
Parameter 

Bank 
Marketing 

BNG_credit-a 

Dataset size 45211 × 51 1000000 × 33 
Percentage of target class 0.12 0.54 
Validation split  0.1 0.2 
Batch size 512 4096 
Number of epochs 100 200 
Number of runs for BCE 100 50 

 
 

  
(a) Bank Marketing dataset (b) BNG_credit-a dataset 

 
Figure 50. Compact neural network architectures tested for the student model. Presented by 
using the keras plot_model function with the boxes representing neural network layers, with 
information about the used activation function and the number of neural network nodes in a 

layer 

4.3.2 Experiment results 

The experiment results for the distilled decision tree models, developed by using the 
Bank Marketing dataset are presented in  
Figure 51. The results compare the performance between the monolith (Mono), the 
ensemble usage (posShap) approach proposed in Section 3.4.2 and the distilled model 
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with different alfa parameters (dist0.5, dist0.75, dist1). The alfa parameter indicates 
the amount of knowledge introduced into the loss function, with dist05 including an 
equal amount of the student (neural network)-to-teacher (ensemble knowledge). 
Meanwhile, dist1 indicates the baseline performance of the tested neural network 
classifier, without knowledge distillation. The results are presented by plotting the 
performance of the classifiers measured in BCE and the difference of the median 
values of the said classifiers. The baseline classifier for the differences was the Mono 
approach. The results indicate that the distilled model configurations performed worse 
than the Shap and Mono strategies when comparing the median performance values. 
Out of all the tested distilled model configurations, the dist0.75 model provided the 
best median value in BCE of 0.296. The Shap method was the best-performing 
approach with a BCE value of 0.253, while, in comparison, the distillation approach 
dist0.75 reduced the performance in BCE of 0.043. 
 

 
Figure 51. Prediction performance distribution of distilled decision tree classifier ensemble  

comparison with the posShap and Mono approaches. Bank Marketing dataset 

The ensemble performance rankings (Figure 52) reveal that the performance of 
the dist05 approach yielded the lowest BCE of 0.329. The results between dist075 and 
dist1 were statistically insignificant. The posShap ensemble weighting strategy was 
the best-performing approach. The performance difference between the posShap and 
the Mono approaches was 16.99%. 

 

 
Figure 52. Performance ranking of distillation approaches and baseline models developed by 

using a decision tree classifier. Bank Marketing dataset 
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The performance results for logistic regression using the same Bank Marketing 
dataset (Figure 53) reveal that the performance loss for the distillation approaches 
was higher, with the median in BCE ranging from 0.294 to 0.32. The distillation 
approaches with the alfa values of 0.75 and 1 performed similarly with the median in 
BCE of 0.294 and 0.295, respectively. The results of dist0.75 are more clustered 
around the median when compared to dist1, which might indicate that the inclusion 
of predictions allows developing a more focused model. 

 

 
Figure 53. Prediction performance distribution of distilled logistic regression classifier 
ensemble comparison with the posShap and Mono approaches. Bank Marketing dataset  

The classifier ranks for the approaches built by using logistic regression resulted 
(Figure 54) in a larger difference between the best-performing distilled model and the 
best-performing approach of BCE equal to 0.054. As the performance benefits 
introduced with the Shapley-based weighting were less evident in ensembles 
containing logistic regression, the Mono and posShap strategy results are statistically 
indifferent. The difference between the results of dist075 and dist1 was also 
statistically insignificant, which means that the introduction of the student model 
trained by using the predictions of the network does not significantly reduce the 
performance. The best-performing distillation strategy with an alfa value of 1 
produced results in BCE of 0.294. 

 

 
Figure 54. Performance ranking of distillation approaches and baseline models developed by 

using a logistic regression classifier. Bank Marketing dataset 
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The knowledge distillation for the BNG_credit-a dataset results (Figure 55) 
displayed a smaller performance reduction when compared to the Bank Marketing 
dataset with the median value of the dist1 and dist0.75 results of 0.350 and 0.344 
presented in BCE, respectively. The lowest BCE was produced by using the dist0.5 
approach, which resulted in a median value of 0.390. The posShap value representing 
the ensemble usage without knowledge distillation presented a median value in BCE 
of 0.317. 

 
Figure 55. Prediction performance distribution of the distilled ensemble of decision tree 

classifiers comparison with the posShap and Mono approaches. BNG_credit-a dataset case 

The rank comparison of the tested knowledge distillation and ensemble creation 
approaches when using the BNG_credit-a dataset and the decision tree classifier is 
presented in Figure 56. The posShap and Monolith approaches were ranked as the 
best and the second-best performing approaches. Similarly to other model type and 
dataset configurations, the differences between the results produced by dist075 and 
dist1 were statistically insignificant. The approach with the worst performance was 
the dist05 approach with a median BCE of 0.390. 

 
Figure 56. Performance ranking of distillation approaches and baseline models developed by 

using a decision tree classifier. BNG_credit-a dataset 

For the same BNG_credit-a dataset, the distillation results of the logistic 
regression models (Figure 57) resulted in performance loss for all the tested 
distillation configurations compared to the decision tree classifier type. The median 
values for the best-performing distillation strategy dist1 and the second-best strategy 
dist075 presented in BCE were 0.366 and 0.378, respectively. In this configuration, 



126 

the Shap approach and the Mono approach presented similar results in BCE of 
0.32647 and 0.32650.  

 
Figure 57. Prediction performance distribution of the distilled logistic regression classifier 
ensemble comparison with the posShap and Mono approaches. BNG_credit-a dataset case 

The ranking comparison of the distillation approaches and the weighting 
strategies is presented in Figure 58. The rankings reveal that the results of the dist05 
and dist1 distillation strategies did not show statistical significance, which means that 
the increase in the amount of the model prediction did not reduce the performance as 
much as in the other datasets and the model type configurations tested. Similarly, no 
statistical significance was discovered between the Mono and the Shapley approaches. 
Nevertheless, the distillation process reduces the performance levels, as the best-
performing distillation strategy reduced the performance by BCE of 0.04. 

 
Figure 58. Performance ranking of distillation approaches and baseline models developed by 

using a logistic regression classifier. BNG_credit-a dataset 

A summary of the results obtained in all the tested experiment configurations is 
presented in  

Table 17 as the median values presented in BCE. The result comparison 
indicates that the best overall performance was achieved by the logistic regression 
model developed by using the bank marketing dataset and utilising the mono approach 
– with a BCE of 0.24. The best performing knowledge distillation strategy for the 
Bank Marketing dataset was achieved by the logistic regression model type and the 
dist1 approach – with a BCE of 0.294. In the BNG_credit-a dataset, the decision tree 
classifier type produced the best performance of BCE 0.344 by using dist1. 
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Table 17. Comparison of the median BCE results for knowledge distillation 
experiments. The values in bold indicate the BCE value of the best-performing 
classifier. 

Dataset Bank Marketing BNG-credit-a 
Model Logistic 

regression 
Decision tree Logistic 

regression 
Decision tree 

Mono  0.240 0.282 0.326 0.339 
Shap 0.238 0.253 0.326 0.317 
Dist0.5 0.320 0.329 0.387 0.390 
Dist0.75 0.295 0.296 0.378 0.350 
Dist1 0.294 0.299 0.366 0.344 

4.3.3 Summary of experimental results 

The experiment results demonstrated that the knowledge distillation approach 
reduces the performance of the ensemble classifier by at least 16.99% for the Bank 
Marketing dataset, and at least 10.41% for the BNG_credit-a dataset when comparing 
the posShap strategy to the dist0.75 approach. The dist0.75 approach was selected for 
a comparison because it retained a similar accuracy to the ensemble model while 
including the training approach which was chosen to comparison. The comparison of 
the alfa parameters revealed that the inclusion of ensemble predictions in the loss 
function in a higher ratio (dist05) to have a balanced variant of distillation resulted in 
the worst performance among all the strategies tested. The differences between the 
BCE medians of the distillation strategies dist075 and dist1 were statistically 
insignificant in 3 out of 4 experimental configurations. The similarities between the 
results display that a minor increase of the network ensemble prediction does not 
dramatically change the classifier performance. Even though the knowledge 
distillation reduces the performance with respect to the ensemble, it should still 
improve privacy according to source [106] and provide a pre-trained neural network 
model for further fine-tuning with individual participant data, if need be. If no further 
tuning is required, the usage of the Shapley-weighted ensemble for inference provides 
a higher accuracy for the model usage in the proposed CDMLB method. 

4.4 Performance Evaluation of Knowledge Distillation with the Deep Learning 
Model 

To complete the evaluation of knowledge distillation, an approach of the 
experiments with deep learning model architectures was conducted. Instead of 
developing a novel neural network architecture, we selected an already existing deep 
neural network architecture TabNet [211]. The TabNet architecture was selected 
based on the displayed performance on the Bank Marketing dataset [211], as well as 
the capability to perform binary classification tasks with high performance levels. 
Alternatively, any deep learning architecture that is designed to work with tabular data 
and can be used in the distillation process, for example, as shown in sources [225], 
[226]. The selected neural network architecture was developed for machine learning 
tasks employing tabular data. The TabNet architecture consisted of an encoder with a 
feature transformer, an attentive transformer, and feature masking. The implemented 
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deep neural network architecture contained 4 layers, where two of the layers were 
shared across the decision steps, whereas two of the layers were decision-dependent. 
Each out of the 4 layers contained a full connection layer, while proceeding with a 
normalisation layer, and finished with a Generalised linear unit nonlinear activation 
layer. A split block divides the processed representation for the attentive transformer 
of the subsequent step and the overall output. The feature selection mask offers 
interpretability, and aggregated masks provide the global feature importance. The 
decoder includes a feature transformer block at each step. An attentive transformer 
block example uses the prior scale information, whereas sparsemax serves for 
coefficient normalisation, which results in the sparse selection of the salient features. 
The implemented architecture is described in more detail in Article [211].  

 
Figure 59. TabNet encoder architecture [211] 

The experiment execution procedure followed the exact structure of the 
experiment defined in Section 4.3 Performance Evaluation of Knowledge Distillation 
Approach. The experiment with the deep learning model used the same base model 
predictions and ensemble posShap weights as the input for knowledge distillation. 
The model ensembles used in distillation contained 13 classifiers. The provided 
predictions and ensemble weights were provided to the neural network training 
procedure in batches. 

The deep neural network training algorithm was developed by using the 
example provided in source [212] while adding the scaled distillation loss function 
introduced by source [98]. The network training parameters are introduced in Table 
18. The dataset parameters remained the same as in the shallow neural network 
experiment, and the number of runs for the BNG_credit-a dataset increased from 50 
to 100 iterations. Due to a lower instance count in the Bank Marketing dataset, the 
batch size and the feature transformation dimensionality were lower. The developed 
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neural network training process used the Adam [227] algorithm in its training 
optimisation. 

 
 

Table 18. Deep learning model training parameters for tested datasets  

Dataset  
Parameter 

Bank 
Marketing 

BNG_credit-a 

Dataset size 45211 × 51 1000 000 × 33 
Percentage of target class 0.12 0.54 
Validation split  0.2 0.2 
Batch size 256 1024 
Feature transformation 
dimensionality 
(feature_dim) 

64 128 

Epochs 100 200 
Learning rate 0,02 0,02 
Decay rate 0.95 0.95 
Decay every 50 50 
Number of runs  100 100 

4.4.1 Experiment results 

The performance results of the distilled decision tree classifier into a deep 
learning model, developed by using the Bank Marketing dataset (Figure 60), provided 
insights that distillation improved the performance over the posShap method in both 
dist075 and dist1 cases. The increased performance of the dist1 case where neural 
network models were trained without including pre-trained model distillation 
demonstrated that the deep learning model was more successful than the ensembling 
or the monolithic approach. This indicates that the deep learning model is the most 
capable machine learning model type for this dataset, from all the tested model and 
ensemble configurations producing a median BCE result of 0.245. By including 
knowledge from the posShap decision tree ensemble, the performance increased even 
further to a median BCE result of 0.234. The distillation process when compared to 
Shap increased the performance of the classifier by 3.95% for dist075 configuration 
and decreased the performance by only 2.77% for the dist05 configuration. Such 
results indicate that, based on the selected distillation method, the losses could be 
minimal, or the performance would not decrease at all for the selected dataset. 
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Figure 60. Performance distribution for distilled decision tree classifiers developed by using 
the Bank Marketing dataset. The main results clusters contained: dist1 – 92%, dist075 – 87%, 

dist05 – 87% out of the total results  

The performance ranking of the deep learning classifiers for the Bank Marketing 
and decision tree classifier configuration (Figure 60) revealed that the dist075 
approach offered the highest overall performance. The dist1 configuration was the 
second best, with results not statistically different from the dist075 configuration. The 
median decrease in BCE when compared to Shap for dist075 and dist1 configurations 
was 0.008 and 0.01, respectively. The dist05 configuration reduced the BCE value of 
the classifier by 0.007. All the tested distillation and ensemble development strategies 
surpassed the performance of a single model (the Mono approach). 
  

  
Figure 61. Ranking of the classifier performance based on the used distillation solutions 

Bank Marketing and decision tree base model case 

The deep learning model developed by using logistic regression as its base 
distillation model for the same Bank Marketing dataset presented different results 
(Figure 62). All the tested distillation strategies, including the dist1 strategy, did not 
surpass the Shap and Mono classifiers in terms of performance. Similarly to the 
decision tree classifier case when comparing distillation configurations, dist075 
presented the best performance, while dist1 was the second-best performing classifier. 
The highest decrease of performance over Shap was observed in the dist05 classifier 
of 9.2%, while the decrease was only 4.2% and 2.52% for dist1 and dist075, 
respectively. Such results indicate that the deep learning model was more fit to 
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knowledge distillation because it reduced the performance loss form at least 16% to a 
maximum of 9.2% for the Bank Marketing dataset. 

 
 

 
Figure 62. Performance distribution for distilled logistic regression classifiers developed by 

using the Bank marketing dataset. The main results clusters contained: dist1 – 84%, dist075 – 
89%, dist05 – 88% out of the total results 

The performance ranking results (Figure 63) are similar to the rankings of the 
tested shallow neural network architecture (Figure 53). The Mono and Shap 
classifiers produced statistically indifferent results with a median BCE value of 0.24 
and 0.238, respectively. The median BCE reduction for dist075 and dist1 was 0.006 
and 0.010. The performance distribution and ranking reveals that the logistic 
regression classifier performance results decreased after distillation. 

 

 
Figure 63. Ranking of the classifier performance based on the used distillation amount. Bank 

Marketing and logistic regression base model case 
 

 The results of the distilled decision tree models in a deep neural network case 
of the BNG_credi-a dataset are presented in Figure 64. The performance results 
clustered around three main points. Such clustering makes the interpretation of the 
results more challenging, but the performance trends which are present in the Bank 
Marketing dataset, such as dist075 presenting the best results with dist1 resulting in 
the second best and dist05 with the worst results are clear as well. The median increase 
of BCE for dist075 over the Shap classifier was 4.42%, while the median dist1 value 
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reduced the performance by 45%, even though around one third of the results for the 
dist1 classifier were similar to the dist075 classifier results.  

 

 
Figure 64. Performance distribution for distilled decision tree classifiers developed by using 
the BNG_credit-a dataset. The result cluster containing the highest performance contained: 

dist1 – 41%, dist075 – 57%, dist05 – 60% out of the total results 

 
Even though the performance distribution displays a performance increase in 

dist075 over the Shap classifier, the performance ranking (Figure 65) indicates the 
Shap classifier as the best-performing with a median BCE of 0.317, even though the 
median results indicate that dist075 had the highest performance with a BCE value of 
0.303. The dist075 method’s overall rank is reduced by the outlier cases. The ranking 
test also indicates that the differences between the results of dist05, dist1, and dist075 
cases were statistically insignificant, which means that the performance differences 
were minimal. When comparing the performance differences in terms of BCE, the 
median value of dist075 outperformed the Shap classifier by only -0.025, while the 
dist05 performance was only lower by a BCE value of 0.01. Such results indicate 
similarities between the median values, thus denoting that the performance loss or 
performance gain was minor. 

 
Figure 65. Ranking of the classifier performance based on the used distillation amount 

BNG_credit-a and the decision tree base model case 

The results of the distilled logistic regression model for the BNG_credit-a 
dataset case are presented in Figure 66. Distilled logistic regression models also 
produced results clustered into three distinct clusters. Even though the part of the 
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dist05 and dist075 classifier results surpassed the Mono and Shap classifier 
performance, the median performance of the distilled classifiers was lower by 1.53% 
and 42%, respectively. Surprisingly, the median value had a higher performance over 
the Shap classifier by 7.975%. Similarly to the Bank Marketing dataset when 
comparing the logistic regression model type results to the decision tree classifier 
results, distillation is not as effective in preserving the classifier performance. 

 

 
Figure 66. Performance distribution for distilled logistic regression classifiers developed by 

using the BNG_credit-a dataset. The result cluster containing the highest performance 
contained: dist1 – 66%, dist075 – 61% dist05 – 70% out of the total results 

 
 The logistic regression classifier ranking (Figure 67) reveals that the 
performance levels of all classifiers were similar. The dist1 classifier rank was similar 
to the Mono approach, and no statistical significance was found between all the tested 
distillation classifier results. This indicates that even tough Mono was the best 
classifier, distillation successfully produced results similar to the Shap ensemble. The 
median results for the Shap ensemble were 0.326, while dist05 and dist1 produced 
BCE values of 0.331 and 0.300, respectively. 

 
Figure 67. Ranking of the classifier performance based on the used distillation amount 

BNG_credit-a and the logistic regression base model case 
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4.4.2 Summary of experimental results 

The experiment results of ensemble knowledge distillation into a classifier 
powered by a deep learning architecture demonstrated that the usage of such an 
architecture decreases the performance loss. When comparing results of a shallow 
neural network to deep learning for the dist075 classifier while using the Bank 
Marketing dataset, one can observe a performance increase from 16.99% to a 
performance loss of only 3.95% with part of the results, which indicates no 
performance loss. When comparing the distillation classifier performance the in 
BNG_credit-a dataset case, the differences between the results were statistically 
similar. The distillation performance for dist075 on the BNG_credit-a dataset ranged 
from a decrease of 45% to an increase of 4.41%. Such a huge margin between the 
results was introduced by the performance outliers, even though at least 40% to 70% 
of the test runs even surpassed or presented similar values to those of the Shap 
classifier performance. By using the deep learning neural network architecture, even 
the usage of the median distillation (dist05) classifier becomes viable with its 
performance loss ranging from 9.24% to 1.53%.   

The results indicate that a model with a more complex inner model 
representation, such as the decision tree model type, is more suitable for distillation, 
as, in such a configuration, only a single classifier performed worse than the Mono 
classifier. It is clear that the deep learning architecture performed better than the 
shallow neural network architecture. This indicates that the knowledge distillation 
method should be used in combination with deep learning architectures to preserve 
ensemble performance while transferring the model from the blockchain network to 
other application areas.  

4.5 Answers to Research Questions  

The experimental results provided the following answers to the defined research 
questions (as presented in Section Problem statement and research questions): 
RQ1: The distributed machine learning transparency has been improved by 
implementing the process using the private blockchain network and enabling network 
participants to read a shared ledger, which enables their ability to audit transactions, 
submitted models, data, and inference results. The collaboration for distributed 
learning has been improved by allowing the network participants to reuse the already 
existing machine learning solutions with a minor modification on the blockchain 
network, thus increasing the possibility for collaboration. Contribution evaluation has 
also improved the collaboration by providing means to quantify the quality of the 
shared models and data. 
RQ2: Blockchain technologies could facilitate the collaborative distributed machine 
learning process by allowing the participants to deploy machine learning models and 
validation data via the smart contract automation and automated performance 
evaluation. The proposed contribution evaluation could potentially increase the 
motivation of the participants. 
RQ3: The blockchain network should contain dedicated smart contracts which 
implement the collaboration process. The blockchain network technologies should 
also be modified to include support for the currently existing machine learning 
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solutions for their easier integration into the collaborative distributed machine 
learning environment. This can be achieved by using local blockchain oracle services 
which enable support for the common programming environments in blockchain 
networks.  
RQ4: The model contributions could be evaluated by combining shared models into 
an ensemble and evaluating the performance of all possible variants of an ensemble 
by using the Shapley weight calculation strategy. Data contributions could be 
evaluated by measuring the drop in the ensemble performance due to new data 
inclusion into the shared data pool. 
RQ5: The training data privacy can be improved by separating model training and 
model deployment environments and only sharing the already trained models to the 
blockchain network, which facilitates the distributed machine learning process. To 
further increase the privacy of the training data, an individual model is obfuscated 
through ensembling and further distilling with the student-teacher approach.  

4.6 Threats to Validity 

Threats to the performance evaluation of the model inference calculation via the 
local off-chain blockchain oracles experiment can be outlined as the usage of a virtual 
environment and the limited size of the tested network. The architecture of the local 
off-chain oracles was tested only in a virtual environment. This negated any latency 
which would be introduced into the physical system and could have affected the 
results of the experiment. The performance limitations were also imposed by resource 
sharing while performing the consensus algorithm and data distribution over network 
peer nodes. The highest number of blockchain network nodes tested due to the limited 
computational resources was 16, even though multiple network configurations were 
tested to evaluate the performance effect of additional network nodes. An increased 
number of network nodes could affect the performance of the consensus algorithm 
protocol as well as the speed of data replication. In order to reduce the chances of 
failed experiments due to the limited performance, most of the experiments were 
conducted in a blockchain network containing 13 peers. Such a network configuration 
was chosen based on the available CPU and RAM resources required to run 
containerised blockchain services in a virtualised environment. In addition, the 
experiment evaluation did not include stress testing and limitation analysis of the 
existing data storage approach in the selected blockchain network solution and was 
only using up to 20000 data instances at any given time. The performance evaluation 
and the scalability of the proposed system should be evaluated in the further research. 

The performance of the components could have been negatively impacted as the 
virtual components shared the computational resources, whereas, in a physical system, 
the resources would be individual. The increased network size could also increase the 
amount of communication required to reach consensus and introduce additional 
latency. Although, the results of the experiment presented a gradual increase in the 
network participant count and tested many different configurations with the maximum 
configuration adhering to the known limitations. 

The Shapley-based ensemble weighting performance evaluation experiment 
involved the following threats: a small number of the tested datasets, lack of model 
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tuning, single data distributed for ensemble model training, and a limited Shapley 
value calculation speed.  

A limited number of datasets have been utilised to evaluate the performance of 
the ensembles developed. The experiment results could depend on the size of the 
dataset and the extent of the class imbalance, even though the two datasets employed 
were different with respect to these aspects. Bank marketing provided insight into how 
the proposed method would perform on medium-sized datasets with strong class 
imbalance. Meanwhile, the BNG_credit-a dataset displayed how the method would 
perform on large datasets with balanced classes.  

The model training procedure did not include the model parameter tuning step 
of the machine learning pipeline. The model tuning step could further improve the 
performance of the machine learning model, but, as the model with the same 
parameters was being used in the experiments, the results should not be affected. The 
Shapley-based ensemble weighting performance evaluation experiment utilised a data 
splitting strategy based on the Zipf law distribution. The data distribution might affect 
the performance of the ensemble classifier and the effectiveness of the weighting 
strategies. 

 The selected Shapley exact calculation approach due to its computational 
complexity would limit the number of the model that could be combined into an 
ensemble. To reduce the exponential growth of Shapley value calculations, 
approximation measures should be introduced, which might introduce deviations to 
the results, thereby decreasing their performance. 

Threats to performance evaluation of the knowledge distillation experiment can 
be outlined as lack of the neural network model parameter tuning. The experiments 
only tested a single neural network architecture without evaluating a different range 
of development parameters. The neural networks with different architectures and 
different model development parameters might affect the performance of the 
distillation approach. The neural network was only tested by using binary 
classification tasks.  
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5. CONCLUSIONS 

1. The analysis of distributed machine learning approaches and methods has 
demonstrated that, currently, most of the proposed architectures rely on 
centralised components, which reduces the robustness of the architecture and 
requires trust among the collaborating parties. Furthermore, most of the 
proposed distributed learning approaches are highly specialised, dedicated to 
a single machine learning problem, and they usually employ a single machine 
learning model type, which reduces possibilities and their engagement in 
collaboration. 

2. Analysis of the applicability of blockchain technologies for distributed 
machine learning purposes has indicated that most of the known approaches 
use blockchain to engage the network participants, as well as to store 
ownership and transfer information via a shared ledger. The main limitations 
involved are that the solutions are highly specialised. This limitation can be 
alleviated by the introduction of oracle services in distributed machine learning 
based on the blockchain technology.  

3. A method for collaborative privacy-preserving distributed machine learning 
has been proposed, thus enabling the blockchain network participants to 
collaborate via the model deployment process. The proposed method 
quantifies the contributions of the participants and enables the usage of 
knowledge accumulated on the blockchain network via the weighted ensemble 
or the knowledge distillation approaches. Proof-of-concept implementation 
has been developed by using the Hyperledger Fabric private blockchain 
network architecture, thus demonstrating the feasibility of collaborative 
distributed machine learning. The architecture features local oracle-based 
components which enable the usage of the currently existing machine learning 
environments, thus eliminating the need to rely on the limited set of machine 
learning development environments supported by blockchain technologies. 

4. The method has been experimentally evaluated by benchmarking the 
performance of the binary classification models in the model inference task in 
two approaches – an approach developed only by using smart contracts, and 
by combining smart contracts with blockchain oracles. The results of the 
experiment have demonstrated that, on average, the network slowed by 2.07% 
when using two datasets with the logistic regression classifier. The 
introduction of the oracle components increased the flexibility to use common 
machine learning algorithm implementations in the blockchain network. 

5. The performance evaluation of the ensemble weighting strategy suggests that 
the contribution of each participant could be quantified and used as a basis for 
constructing an incentive mechanism for the motivation of the participant. The 
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experiment results have revealed that a Shapley-weighted ensemble increased 
the performance by 4.8% and 1.9% for the two tested datasets compared to 
using a single large model, and by 0.7% compared to a simple performance-
based weighting in the form of the reciprocal of binary cross-entropy. This 
strategy can be used for contribution evaluation and also for obtaining weights 
for a simple decision-level fusion in ensemble learning with similar success or 
even better than other weighting strategies compared. The introduced Shapley-
based strategy can also be seen as a generalisation of the performance-based 
weighting.  

6. The results of the knowledge distillation experiment with a three-layer 
perceptron have proven that the application of such an approach did not present 
any significant improvement over directly combining the network models into 
an ensemble. The performance decreased from 10.41% to 23.9% with respect 
to the tested classifier and the used dataset. In contrast, the results of 
knowledge distillation into the deep learning neural network demonstrated 
that, for the student model, a more complex architecture outperforms a simple 
one and better preserves the teacher model (ensemble) knowledge. Notably, 
the distilled TabNet classifier (student) even surpassed the performance of a 
weighted ensemble (teacher) to some degree. Weak distillation (alpha=0.75) 
of the logistic regression ensemble deteriorated the student by 3.95% for the 
Bank Marketing and by 42% for the BNG-credit_a datasets, whereas the 
distillation of the decision tree ensemble deteriorated the student by 2.52% for 
the Bank Marketing and improved the student by 7.98% for the BNG-credit_a 
datasets. The performance results of separate runs for the Bank Marketing 
were distributed normally, while the results for the BNG-credit_a dataset tend 
to cluster at three different levels, noticeably, superior performance over the 
teacher was achieved for 57% and 61% of runs for the logistic regression and 
decision tree ensembles, respectively. Knowledge distillation was found to be 
beneficial, and more complex model architectures are recommended for the 
student model. 
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6. SANTRAUKA 

6.1 ĮVADAS 

Pasaulyje sukuriama vis daugiau informacijos, o norint prasmingai panaudoti 
tokį informacijos kiekį, būtina naudoti automatizuotus duomenų apdorojimo 
sprendimus. Vienas iš būdų apdoroti didelius duomenų kiekius yra mašininio 
mokymosi metodai. Mašininio mokymosi metodai [10], [11], [12] sėkmingai taikomi 
daugelyje sričių, tokių kaip vaizdų atpažinimas, medicina, sprendimų analizė, 
rekomendacinės sistemos, kalbos technologijos, bei kitur, kur taikoma atpažinimo 
teorija. Dėl populiarėjančio mašininio mokymosi naudotojai gali kurti tokius pat 
mašininio mokymosi sprendimus, tačiau nepasiekia tokios kokybės mašininio 
mokymosi modelio, kokios galėtų pasiekti turėdami daugiau ir įvairesnių duomenų. 
Šiai problemai spręsti galėtų pasitarnauti bendradarbiavimas visuose mašininio 
mokymosi sprendimų kūrimo etapuose: didesni ir įvairesni duomenų rinkiniai galėtų 
būti sukurti panaudojant skirtingus šaltinius; mašininio mokymosi modeliai galėtų 
būti išmokomi panaudojant mažiau skaičiavimo išteklių ir būti geresnės kokybės; 
pasidalinti modeliai galėtų būti pakartotinai naudojami sumažinant poreikį kurti 
naujus lokalius specializuotus modelius. Deja, šiuo metu mašininio mokymosi 
modelių kūrimas dažnai vykdomas vienoje centralizuotoje modelio kūrimo aplinkoje, 
panaudojant tik ribotą duomenų kiekį.  

Mašininio mokymosi paskirstymas galėtų padėti spręsti šias problemas, tačiau  
dėl poreikio dalintis duomenims ir bendradarbiauti kuriant mašininio mokymosi 
sprendimus gali kilti saugumo ir privatumo užtikrinimo problemų. Naudojama 
bendradarbiavimo aplinka privalo neatskleisti privačios ir jautrios informacijos apie 
esybes ir asmenis. Duomenų perdavimo kanalai turi būti apsaugoti ir užtikrinamas 
pasitikėjimas naudojamomis sistemomis ir technologijomis. Šiuo metu egzistuoja 
daug paskirstyto mašininio mokymosi sprendimų, leidžiančių vykdyti privatumą 
užtikrinantį bendradarbiavimą. Paskirstyto mokymosi sprendimai turėtų įgalinti 
bendradarbiavimą ir pagerinti mašininio mokymosi sprendimų kokybę, tačiau šie 
sprendimai vis tiek yra neatsparūs atakoms ir turi pasitikėjimo problemų. Taip pat 
paskirstyto mokymosi proceso dalyviai gali būti nepakankamai motyvuoti dalyvauti 
ir dėl to pasitraukti iš proceso. 

Siekiant spręsti pasitikėjimo, skaidrumo ir patikimumo problemas, gali būti 
taikomos paskirstytųjų duomenų technologijos (angl. Distributed Ledger 
Technology). Paskirstytųjų duomenų technologijos leidžia sistemos naudojimosi metu 
registruoti transakcijas į duomenų žurnalą (angl. ledger) ir taip padidinti pasitikėjimą 
tarp tinklo dalyvių ir paslaugų. Tarp paskirstytųjų duomenų technologijų blokų 
grandinės technologijos (angl. Blockchain technologies) yra populiariausios ir 
plačiausiai taikomos. Blokų grandinės technologijose naudojamas duomenų 
replikavimas leidžia kurti sistemas, atsparesnes tinklo veiklą siekiančioms sutrikdyti 
atakoms. Tarpusavio pasitikėjimo problemą blokų grandinės technologijos sprendžia 
suteikdamos galimybę naudotojams laisvai peržiūrėti transakcijų informaciją ir kitus 
saugomus duomenis. Kiekviena transakcija, atliekama blokų grandinėje, yra 
patvirtinama kelių tinklo naudotojų ir užregistruojama, taip sumažinant galimybę 
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kenkėjiškai veiklai tarp tinklo narių. Sudėtingesnė veiklos logika blokų grandinėse 
gali būti realizuota naudojant išmaniuosius kontraktus (angl. smart contracts). 
Išmanieji kontraktai taip pat gali būti papildomi specializuotomis paslaugomis, kurios 
leistų paskirstyti,  pakartotinai naudoti ir integruoti jau sukurtus mašininio mokymosi 
sprendimus. Šiuo metu nėra nusistovėjusių metodų, kurie leistų vykdyti 
bendradarbiavimą paskirstytose mašininio mokymosi sprendimuose, sukurtuose 
naudojant blokų grandinės technologijas, kurios užtikrintų duomenų privatumą ir 
leistų pakartotinai naudoti jau sukurtas mašininio mokymosi technologijas. 

Tyrimo sritis ir objektas 

Šios disertacijos tyrimo objektas yra bendradarbiavimas vykdant paskirstytą 
mašininį mokymą. Tyrimo sritis susideda iš dviejų pagrindinių sričių:  

1) bendradarbiavimu grįstu paskirstyto mašininio mokymosi metodų ir 
architektūrų;  

2) blokų grandinės naudojimo būdų ir įrankių, skirtų mašininiam mokymuisi 
vykdyti. 

Spendžiama problema ir tyrimo klausimai 

Bendradarbiavimui skirti paskirstyto mašininio mokymosi sprendimai yra 
ribojami mažo dalyvių pasitikėjimo, apribojimų dėl jautrių duomenų naudojimo ir 
sudėtingų egzistuojančių mašininio mokymosi technologijų adaptavimo galimybių. 
Norint pasiūlyti metodą šioms problemoms spręsti, šios disertacijos metu buvo iškelti 
šie tyrimo klausimai: 

1. Ar paskirstyto mašininio mokymosi proceso skaidrumas ir 
bendradarbiavimas gali būti patobulintas? Jei taip, kokiu būdu? 

2. Kaip blokų grandinės technologija gali būti pritaikyta palaikyti 
bendradarbiavimui skirtus sprendimus paskirstytam mašininiam mokymuisi 
vykdyti? 

3. Ar privatumo užtikrinimas gali būti patobulintas vykdant blokų grandinės 
technologijomis grindžiamą paskirstytą mašininį mokymąsi? 

4. Kaip galima pamatuoti blokų grandinės tinklo nario duomenų ir modelio 
indėlį vykdant bendradarbiavimu grindžiamą paskirstytą mašininį 
mokymąsi? 

5. Kaip galima patobulinti mokymo duomenų privatumo užtikrinimą vykdant 
paskirstytą mašininį mokymąsi blokų grandinėje? 

Tyrimo tikslas ir uždaviniai 

Šios disertacijos tikslas – pagerinti bendradarbiavimą vykdant paskirstytą 
mašininį  mokymąsi panaudojant blokų grandinės technologijas 

Šiam tikslui pasiekti buvo išsikelti šie uždaviniai: 
1. Išanalizuoti mašininį mokymąsi, paskirstytą mašininį mokymąsi ir 

bendradarbiavimo būdus vykdant paskirstytą mašininį mokymąsi. 
2. Išanalizuoti blokų grandinės technologijas ir galimybes jas pritaikyti 

paskirstytam mašininiam mokymuisi vykdyti. 
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3. Pasiūlyti bendradarbiavimu grindžiamą paskirstyto mašininio mokymosi 
metodą, naudojantį blokų grandinės technologijas. 

4. Realizuoti sprendimą, įgalinantį bendradarbiavimu grindžiamą paskirstytą 
mašininį mokymąsi panaudojant blokų grandinės technologijas pagal 
pasiūlytą metodą. 

5. Ištirti, kaip blokų grandinės technologijų taikymas paveikia paskirstytą 
mašininį mokymąsi. 

6. Įvertinti pasiūlyto metodo tinkamumą vykdyti bendradarbiavimu grindžiamą 
paskirstytą mašininį mokymąsi blokų grandine. 

Tyrimo metodika 

Tyrimas buvo vykdomas konstruktyvaus tyrimo metodu [13]. Remiantis šiuo 
metodu, tyrimas buvo vykdomas atliekant tokius žingsnius: 

 Pirmajame žingsnyje buvo apibrėžtas tyrimo tikslas ir objektas, kuris apėmė 
bendradarbiavimą užtikrinančio paskirstyto mašininio mokymosi metodus, 
jų architektūras ir taikymą blokų grandinėse bei blokų grandinės 
technologijomis grindžiamų įrankių ir sprendimų vertinimą. Galiausiai buvo 
apibrėžta tyrimo problema, vyraujanti privatumą užtikrinančiame 
bendradarbiavimu grįstame paskirstyto mašininio mokymosi procese. 

 Antrasis žingsnis buvo skirtas apibrėžti tyrimo potencialui, įvertinant, kaip 
blokų grandinės technologijos gali būti taikomos spendžiant  
bendradarbiavimo ir bendradarbiavimo užtikrinimo problemas vykdant 
paskirstytą mašininį mokymąsi. 

 Trečiajame žingsnyje buvo išanalizuota apibrėžta tyrimo problema. Tam 
atlikti buvo pasitelktas lyginamosios analizės metodas, peržvelgiant esamus 
sprendimus, jungiančius privatumo užtikrinimo metodus ir blokų grandinės 
technologijas, paskirstyto mašininio mokymo kontekste. 

 Ketvirtajame žingsnyje buvo pasiūlytas metodas, skirtas bendradarbiavimu 
grindžiamam paskirstytam mašininiam mokymuisi, kuris taiko privačios 
blokų grandinės technologijas ir leidžia įvertinti dalyvių indėlių vertę. 

 Penktasis žingsnis buvo skirtas realizacijai ir eksperimentiniam vertinimui 
bei metodo taikymo sričių paieškos galimybių tyrimui. Buvo realizuotas  
blokų grandinės technologijomis grindžiamas sprendimas bendradarbiavimu 
grindžiamam paskirstytam mašininiam mokymuisi vykdyti, remiantis 
pasiūlytu metodu. Sprendimo veikimas buvo įvertintas eksperimentiškai, 
pamatuojant sprendimo greitaveiką ir modelių kokybę (angl. model 
performance). Kokybės vertinimas buvo atliktas sprendžiant dvi su bankais 
susijusias klasifikavimo problemas. 
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Ginamieji teiginiai 

1. Egzistuojančios privačios blokų grandinės gali būti patobulintos 
specializuotomis lokaliomis orakulų paslaugomis, leidžiančiomis 
palaikyti įvairesnes mašininio mokymosi aplinkas. 

2. Tinklo dalyvių modelių indėliai, pateikiami blokų grandinės tinkle, 
skirtame bendradarbiavimu grįstam paskirstytam mašininiam mokymuisi 
vykdyti, gali būti įvertinti kiekvienam tinklo nariui, panaudojant Shapley 
kolektyvo svorių apskaičiavimo strategiją. 

3. Žinių distiliavimas gali būti panaudotas tinke sukauptoms žinioms 
agreguoti iš modelių kolektyvo į vieną neuroninio tinklo modelį, 
smarkiau nesumažinant jo tikslumo. 

Mokslinis naujumas 

1. Pasiūlytas bendradarbiavimu grįstas paskirstytas mašininis mokymosi 
blokų grandinėje metodas (CDMLB) išplečia esamas paskirstyto 
mašininio mokymosi, grindžiamo blokų grandinės technologijomis, 
galimybes, papildant sistemos architektūrą mašininio mokymosi modelių 
rezultatų skaičiavimo paslauga. 

2. Pasiūlytas CDMLB metodas naudoja Shapley reikšmėmis ir modelio 
tikslumu grįstą kolektyvo svorių apskaičiavimo strategiją kaip būdą 
pamatuoti tinklo nario pateikiamų modelių indėlį į bendrą tinkle sukauptą 
modelių kolektyvą. 

3. Pasiūlytas CDMLB metodas naudoja mokinio ir mokytojo modelių 
distiliavimo sprendimą, kuris leidžia padidinti modelių privatumą, 
suspaudžiant modelius, kaupiamus blokų grandinės technologija 
grindžiamuose sprendimuose. 

Praktinė reikšmė 

1. Pasiūlytas CDMLB metodas leidžia sujungti dažnai naudojamas 
mašininio mokymosi technologijas su blokų grandinių technologijomis, 
panaudojant lokalias, už blokų grandinės tinklo ribų esančias orakulo 
paslaugas. 

2. Pasiūlyta kolektyvo svorių apskaičiavimo strategija gali būti traktuojama 
kaip tikslumu grįsto svorių apskaičiavimo generalizacija ir gali būti 
taikoma visiems kolektyvams, naudojantiems svorius. 

3. Pasiūlyta kolektyvo svorių apskaičiavimo strategija padidina išbandytos 
binarinės klasifikavimo užduoties rezultatų tikslumą, kai naudojami 
lentelės tipo duomenys, palyginti su centralizuotu sprendimu ar kitomis 
svorių apskaičiavimo strategijomis. 



143 

4. Pateikiami modelio panaudojimo scenarijai leidžia užtikrinti modelių 
informacijos privatumą, išgaunant suspaustą modelį iš blokų grandinės 
technologija grindžiamo sprendimo tolesniam naudojimui ar tobulinimui. 

5. Pristatytas modelių sujungimo metodas leidžia sujungti heterogeninius 
modelių tipus, taip padidinant naudojamų modelių įvairovę ir įgalinant 
didesnę aibę bendradarbiavimo galimybių. 

Rezultatų aprobavimas 

Tyrimo rezultatai buvo paskelbti 5 moksliniuose leidiniuose: dvi publikacijos 
periodiniame moksliniame žurnale MDPI Applied Sciences ir trys publikacijos 
konferencijų leidiniuose. 

Disertacijos struktūra 

Disertacijos dokumento pirmajame skyriuje pateikiami tiriamosios analizės 
rezultatai, apibūdinantys mokslines ir taikomąsias žinias apie paskirstyto mašininio 
mokymosi ir privatumo užtikrinimo metodus, mašininio mokymosi, realizuoto 
panaudojant blokų grandinės technologijas, sprendimus. Taip pat skyriuje pateikiama 
lyginamoji esamų sprendimų, jungiančių blokų grandinės technologijas su privatumą 
užtikrinančiais metodais ir paskirstyto mašininio mokymosi metodais, analizė. 
Antrasis skyrius apibrėžia bendradarbiavimu grįsto paskirstyto mašininio mokymosi 
blokų grandinėje metodą ir aprašo reikalavimus ir procedūras blokų grandinės 
sistemos paruošimui, modelių ir duomenų pateikimui ir tinkle sukauptų žinių 
panaudojimui. Kiekvienas metodo žingsnis pateikiamas detaliu aprašu ir realizacijos 
pristatymu. Trečiasis skyrius pristato atliktų eksperimentinių tyrimų konfigūracijas ir 
rezultatus. Ketvirtajame skyriuje pateikiamos disertacijos išvados. Disertacijoje taip 
pat pateikiama disertacijos santrauka lietuvių kalba, šaltinių sąrašas ir mokslinių 
publikacijų ir konferencijų sąrašas. 

6.2 EGZISTUOJANČIŲ METODŲ IR SPRENDIMŲ ANALIZĖ 

6.2.1 Mašininis mokymasis 

Mašininio mokymosi modelio kūrimo procesą [14] sudaro keturi pagrindiniai 
etapai: duomenų apdorojimas, modelio derinimas, modelio kokybės vertinimas bei 
modelio diegimas ir naudojimas. 

Duomenų apdorojimo etapas susideda iš kelių žingsnių, kurie yra: duomenų 
išgavimas, duomenų paruošimas ir požymių tyrimas. Duomenų išgavimo procesas yra 
pirmasis mašininio mokymosi proceso etapas. Duomenys, naudojami mašininio 
mokymosi procese, gali būti išgaunami įvairiais būdais [15], [16] – nuo sutelktinio 
duomenų rinkimo iki sintetinių duomenų generavimo. Atsižvelgiant į naudojamą 
mašininio mokymosi metodą, surinktus duomenis gali reikėti sužymėti. Žymėjimo 
metu realaus pasaulio objektai priskiriami vienai ar kelioms klasėms. Žymėjimo 
procesas užbaigia duomenų išgavimo procesą, ir toliau vykdomas duomenų rinkinio 
paruošimas. Duomenims paruošti gali būti taikomi įvairūs metodai ir procedūros, 
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kurių taikymas gali skirtis, priklausomai nuo duomenų rinkinio. Dažniausiai duomenų 
paruošimo metu pašalinami tušti ar klaidingi duomenys, pašalinami dublikatai ir 
standartizuojami duomenų tipai. Paruošus duomenis, atliekamas duomenų rinkinio 
požymių tyrimas. Tiriant požymius, atskleidžiami pasitaikantys duomenų 
dėsningumai ir ryšiai tarp kintamųjų, jei tokie egzistuoja. Jei atrinktame duomenų 
rinkinyje yra kategorinių duomenų, priklausomai nuo naudojamo mašininio 
mokymosi sprendimo, juos gali reikti transformuoti į naujus požymius. Šios 
transformacijos metu duomenyse esančios kategorijos pakeičiamos iš tekstinės 
informacijos į naujus duomenų rinkinio stulpelius su skaitinėmis reikšmėmis [17]. 
Duomenų paruošimo procesas baigiamas, kai išgaunamas tinkamas duomenų 
rinkinys, kuris yra paruoštas naudoti mašininio mokymosi modelio mokymo procese. 

Paprastai modelio derinimo ir kokybės (angl. model performance) vertinimo 
tikslais duomenų rinkinys padalijamas į tris dalis: mokymo, validavimo ir testavimo 
[18]. Mokymo dalis naudojama modeliui sukurti, validavimo dalis naudojama 
modelio mokymo metu, siekiant suderinti modelio hiperparametrus. Galiausiai, 
atliekant modelio kokybės vertinimo etapą, testavimo duomenų poaibis naudojamas 
atliekamos klasifikavimo arba regresijos užduoties rezultatų tikslumui įvertinti, kai 
modeliui pateikiamas testavimo duomenų rinkinys, kuris nebuvo naudojamas 
mokymo procese. Nepasiekus norimo modelio kokybės, modelio parametrų derinimą 
galima pratęsti ar jį kartoti, iki bus pasiekta tinkama kokybė. Esant pakankamai 
modelio kokybei, modelį galima išsaugoti faile ir naudoti regresijos ar klasifikavimo 
užduotims atlikti [37], [38]. Sukurti modeliai gali būti naudojami pavieniui arba 
modelių kolektyvuose, kur daugiau nei vienas modelis yra  sujungiami, siekiant gauti 
tikslesnius spėjimus. Taip pat informacija apie modelius gali būti siunčiama ir 
naudojama kituose sprendimuose. Vienas iš būdų keletą modelių vienam mašininio 
mokymosi uždaviniui yra paskirstytas mašininis mokymasis. 

6.2.2 Paskirstytas mašininis mokymasis 

Paskirstytas mašininis mokymasis skiriasi nuo centralizuoto mašininio 
mokymosi tuo, kad jame dalyvauja keletas subjektų, kurie dalinasi duomenimis arba 
individualiais modeliais, kurie vėliau sujungiami į vieną modelį. Panašiai, kaip ir 
kolektyvo mokymosi atveju, paskirstyto mašininio mokymosi aplinkoje galima 
sujungti trijų tipų informaciją – klasifikatorius, klasifikatorių reprezentacijas ir 
klasifikatorių prognozes. 

Federacinis paskirstytas mokymasis yra populiariausias paskirstyto mašininio 
mokymosi tipas, kuris naudojamas privatumui užtikrinti ir tolygiau paskirstyti 
skaičiavimo resursų panaudojimą. Federacinis mokymasis dažnai naudojamas kartu 
su kitais privatumo užtikrinimo metodais ir blokų grandinės technologijomis. 

Pagal egzistuojančių dalyvių skaičių paskirstytojo mašininio mokymosi 
sprendimuose juos galima suskirstyti į dvi kategorijas: individualų ir 
bendradarbiavimu grindžiamą. Individualų paskirstytąjį mašininį mokymąsi kuria 
vienas subjektas, kuris paprastai naudoja centralizuotą aplinką. Šioje aplinkoje 
agreguojami modelio ar duomenų artefaktai iš daugelio įrenginių ar programinės 
įrangos sprendimų. Toks paskirstytasis mašininio mokymosi metodas nereikalauja 
sudėtingų bendradarbiavimo procesų ar pasitikėjimo tarp tinklo dalyvių, nes yra 
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valdomas vieno subjekto. Bendradarbiavimu grindžiamas paskirstytasis mašininis 
mokymasis jungia atskirų subjektų modelių ar duomenų įvestis. Bendradarbiavimas 
ir dalinimasis duomenimis ir modeliais leidžia išmokyti / gauti aukštesnės kokybės 
modelį. Pagrindinis skirtumas tarp šių paskirstyto mašininio mokymo kategorijų yra 
tas, kad bendradarbiavimu grindžiamas mokymasis reikalauja pasitikėjimo tarp tinklo 
dalyvių ir naudojamų paslaugų, o taikant individualų požiūrį pasitikėjimas nėra 
aktualus. 

6.2.3 Privatumo užtikrinimo metodai 

Duomenų privatumo užtikrinimas yra svarbus aspektas mašininio mokymosi 
modelių kūrimo procese, nes atakos, nukreiptos prieš šį procesą, gali atskleisti jautrius 
duomenis. Trys pagrindinės privatumo užtikrinimo mašininio mokymosi procesuose 
metodų grupės yra šios: duomenų nuasmeninimas [86], [87], [88], kriptografiniai 
metodai perduodamai informacijai apsaugoti [89], [90] ir privatumui užtikrinti skirti 
specializuoti sprendimai [91], [92], [93] 

Vienas iš tokių privatumo užtikrinimo specializuoti sprendimų yra žinių 
perdavimo architektūra [92]. Ji taikoma mašininio mokymosi procese, siekiant 
apsaugoti modelio diegimo etapo metu naudojamą jautrią informaciją. Privatumui 
užtikrinti yra pasiūlyta keletas sprendimų [98]-[100]. Dauguma siūlomų sprendimų 
taiko žinių perkėlimo iš vieno ar kelių modelių į naują neuroninio tinklo modelį būdus, 
siekiant apsaugoti jautrius modelio parametrus. Sprendimai taip pat siūlo privataus 
mokytojų ansamblių agregavimą (angl. Private Aggregation of Teacher Ensembles, 
PATE) [104], [105]. PATE metodas naudoja jautrių duomenų rinkinius išmokyti 
keliems mokytojų modeliams, kurie vėliau naudojami agreguojančiam mokinio 
modeliui mokyti. Taip sukurtas agreguojantis klasifikavimo modelis neatskleidžia 
duomenų apie jam sukurti naudotus modelius, taip užtikrinant privatumą. 

Privatumui užtikrinti taip pat galima taikyti ir duomenų nuasmeninimą, jų 
užšifravimą ar net blokų grandinės technologijas. Šioje disertacijoje koncentruotasi į 
paskirstytą bendradarbiavimu grindžiamą mokymą, buvo apžvelgti siūlymai ir 
sprendimai, jungiantys privatumo užtikrinimą, blokų grandinės technologijų 
naudojimą ir federacinio mokymosi metodus. Šios analizės metu buvo nustatyta, kad 
dauguma siūlymų papildo blokų grandinės technologijas specializuotais konsensuso 
algoritmais [70], [71], [82], [116], kurie siekia validuoti paskirstytų mašininio 
mokymosi modelių ir jų kūrimo kokybę. Šie metodai paprastai realizuojami naudojant 
viešąsias blokų grandines [117], [70] ir dažniausiai pateikiami tik kaip koncepcijos 
įrodymai, kuriems reikia realizuoti naujus blokų grandinės tinklus. Naujų tinklų 
kūrimas yra sudėtingas procesas, dėl šios priežasties tokių sprendimų panaudojimas 
praktikoje gali būti sunkiai pasiekiamas. Kuriant blokų grandinės tinklus, siūlymuose 
taip pat dažnai įvedami nauji duomenų teikėjo, duomenų tvirtintojo ar validavimo 
dalyvių vaidmenys blokų grandinės tinkle. Šie vaidmenys leidžia paskirstyti tinklo 
dalyvių atsakomybes ir apibrėžti vykdyto darbo atlygio apskaičiavimo būdus. 
Dažniausia privatumo išsaugojimo priemonė apžvelgtuose metoduose yra 
diferencinis privatumas ar informacijos, perduodamos ryšio kanalais, šifravimas. 
Diferencinio privatumo priemonės taikomos siekiant išsaugoti perduodamų jautrių 
duomenų privatumą. Daugumos siūlymų taikymo sritys skirstomos į dvi kategorijas: 
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sritys, kuriose reikia apsaugoti jautrius duomenis, kaip, pavyzdžiui, sveikatos 
priežiūros srityje [99]; sritys, kur yra daug fizinėje erdvėje pasiskirsčiusių duomenų 
ar modelių naudotojų, kurie bendradarbiauja, siekiant sukurti bendrą mašininio 
mokymosi sprendimą, kaip, pavyzdžiui, daiktų internetas [71], [74]. Taip pat yra 
siūlomi ir universalūs metodai, kuriuos būtų galima pritaikyti keletui sričių, tačiau 
dauguma jų skirti tik giliajam mokymuisi vykdyti [120], [121] ir nepalaiko kitų 
mašininio mokymosi modelių tipų. Dauguma lygintų metodų realizuojami tik vienoje 
mašininio mokymosi aplinkoje, neatsižvelgiant į kelių modelių tipų sujungimo 
metodus, todėl šių metodų pritaikomumas bendradarbiavimu grįstam paskirstytam 
mašininiam mokymui vykdyti yra ribotas. 

6.2.4 Blokų grandinės technologijos 

Blokų grandinės technologijos buvo išpopuliarintos Bitcoin kriptovaliutos, o 
augant technologijos brandai, buvo pradėtos taikyti ir kitose srityse. Terminas „blokų 
grandinė“ [128] apibrėžia duomenų struktūrą, kurioje, naudojant kriptografinius 
maišos algoritmus, įrašoma transakcijų informacija, jas sugrupuojant į blokus, o šiuos 
vėliau dar ir į blokų grandinę. Transakcijų validavimo ir naujo bloko įtraukimo į blokų 
grandinę procesas apibrėžiamas kaip konsensuso algoritmas [2]. Bendruomenės, 
valdančios blokų įtraukimą ir saugančios paskirstyto žurnalo kopijas, vadinamos 
blokų grandinės tinklais [2]. Blokų grandinės tinklus pagal jų narių prisijungimo 
būdus ir reikalaujamą pasitikėjimo lygį [129] galima skirstyti į viešuosius, privačius 
ir konsorciumo. 

Išmanieji kontraktai buvo sukurti įgalinti, kurti ir vykdyti sudėtingesnėms 
programoms pasinaudojant blokų grandinės tinklu. Išmanieji kontraktai visų pirma 
buvo pristatyti Ethereum blokų grandinėje. Šie kontraktai, kaip ir transakcijos, įrašomi 
į blokų grandinėje esančius blokus ir vėliau gali būti vykdomi iškviečiant kontrakto 
funkcijas, o šie kvietimai užregistruojami kaip transakcijos. Kadangi į blokų grandinę 
įrašyti duomenys yra nekintami, į blokų grandinę įdiegti išmanieji kontraktai taip pat 
negali būti pašalinti ar pakeisti. Ethereum blokų grandinės išmanieji kontraktai yra 
kuriami naudojant specializuotas programavimo kalbas: Solidity [135], Vyper [136]. 
Taip pat išmaniųjų kontraktų diegimas ir vykdymas daugumoje viešųjų blokų 
grandinių yra apmokestintas. Apmokestinimo dydis priklauso nuo išmaniojo 
kontrakto sudėtingumo ir vykdymui reikalingų skaičiavimo išteklių kiekio [137]. Tai 
ne tik skatina išmaniųjų sutarčių kūrėjus optimizuoti savo kodą [138], kad jis būtų 
vykdomas kuo efektyviau, bet ir riboja sudėtingesnių programų kūrimą. Išmanieji  
kontraktai taip pat turi kūrimo apribojimų, nes programinį kodą vykdo tinklo dalyviai, 
kurie turi patvirtinti išmaniojo kontrakto vykdymo rezultatus, todėl, norint sėkmingai 
įvykdyti išmanųjį kontraktą ar jo funkcijas, gaunami rezultatai turi būti 
deterministiniai [139]. Tarkim, funkcija, kuri naudoja atsitiktinių skaičių generavimą, 
grąžina nedeterministinius rezultatus [139] ir dėl to negali būti realizuojama naudojant 
išmaniuosius kontraktus. Privačiose blokų grandinėse naudojamų išmaniųjų kontraktų 
vykdymo kaina nustatoma tinklą valdančios organizacijos, kuri gali pasirinkti juos 
vykdyti be jokio atlygio juos diegiant ir vykdant. Taigi, naudojant išmaniuosius 
kontraktus, galima kurti sudėtingesnius sprendimus be papildomų išlaidų, skirtų kodui 
vykdyti. 
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Išmanieji kontraktai nėra pritaikyti dideliems duomenų kiekiams saugoti ir 
apdoroti, o norint išspręsti šią problemą yra naudojamos blokų grandinės orakulo 
paslaugos. Orakulo paslaugos sudaro galimybę gauti arba teikti duomenis, reikalingus 
išmaniųjų kontraktų vykdymui, todėl jos apibrėžiamos kaip išmaniųjų kontraktų 
išplėtimo projektavimo šablonas [148], [150]. Blokų grandinės orakulus galima 
skirstyti pagal keturis pagrindinius kriterijus [151], [152]: duomenų šaltinio tipą, 
duomenų teikimo kryptį, orakulo projektavimo šabloną ir sąveiką su blokų grandine. 

Mašininio mokymosi ir blokų grandinės sričių deriniai aktyviai tiriami 
daugelyje mokslinių tyrimų sričių, ypač daiktų interneto (IoT) [164], [165], sveikatos 
priežiūros ir saugumo srityse [166]. Dažnai blokų grandinės technologijos derinamos 
su federacinio mokymosi sprendimais [72], [133], kai blokų grandinės technologija 
naudojama siekiant padidinti pasitikėjimą ir suteikti priemonių tinklo dalyviams 
motyvuoti. Blokų grandinės technologija yra perspektyvus sprendimas, siekiant 
padidinti mašininio mokymosi procesų skaidrumą, palengvinti audito vykdymą ir 
padidinti saugumą. 

6.3 BENDRADARBIAVIMU GRĮSTAS PASKIRSTYTO MAŠININIO 
MOKYMOSI METODAS BLOKŲ GRANDINĖJE 

Bendradarbiavimu grįstas paskirstyto mašininio mokymosi metodas blokų 
grandinėje (68 pav.), naudojantis blokų grandinės technologiją (angl. collaborative 
distributed machine learning on blockchain, CDMLB), skirtas organizacijoms, kurios 
nori bendradarbiauti, spręsdamos mašininio mokymosi problemas, tačiau 
nepakankamai pasitiki kitais proceso dalyviais, kad tiesiogiai dalintųsi duomenimis ar 
mašininio mokymosi modeliais. CDMLB metodo tikslas yra suteikti galimybę 
vykdyti privatumą užtikrinantį bendradarbiavimą vykdant paskirstytą mašininį 
mokymąsi, panaudojant blokų grandinės technologijas. CDMLB metodas palaiko 
esamas mašininio mokymosi technologijas, modelius ir duomenų rinkinius, 
įgalindamas bendradarbiavimą privačiame blokų grandinės tinkle. Naudojant privatų 
blokų grandinės tinklą, padidėja modelių diegimo proceso skaidrumas. Be to, 
privačios blokų grandinės naudojimas padidina pasitikėjimą procesu, nes modelio 
spėjimų (angl. model inference) apskaičiavimo rezultatus tikrina keletas tinklo 
dalyvių. Blokų grandinės technologijos naudojimas taip pat padidina sistemos 
patikimumą, nes, sutrikdžius vieno tinklo komponento veikimą, nėra sutrikdomas viso 
tinklo darbas, kas galėtų įvykti naudojant trečiosios šalies architektūrą.   

CDMLB metodas taip pat suteikia priemonių duomenų privatumui užtikrinti, 
nes apibrėžia kelias specializuotas aplinkas ir specializuotą modelių diegimo ir 
naudojimo procesą. Siūlomas metodas vykdomas keliose aplinkose: privataus 
modelio kūrimo aplinkoje; blokų grandinės (angl. on-chain) aplinkoje, naudojamoje 
modeliams diegti; lokalioje tinklo mazgo (angl. off-chain) aplinkoje. 

Privataus modelio kūrimo aplinka nėra tiesiogiai integruojama į metodą ir yra 
valdoma modelių kūrėjų. Šios aplinkos parametrai ir konfigūracijos priklauso tik nuo  
modelio kūrėjo poreikių. Ši aplinka užtikrina, kad mokymo duomenų valdymas ir 
modelio mokymas išliktų privatus, ir leidžia naudotojui organizuoti mokymą pagal 
individualius poreikius. Sprendimą atlikti modelio mokymą privačioje ne blokų 
grandinės aplinkoje lemia poreikis apsaugoti jautrius mokymo duomenis. Vieninteliai 
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apribojimai, taikomi šiai aplinkai, – tai gaunamų duomenų ir modelių failų formatai 
ir jų struktūra, kuri turi būti suderinta su bloko grandinės tinkle nurodytais pavyzdžiais 
ir reikalavimais. 

Modeliams diegti naudojama on-chain aplinka, siekiant sukurti skaidrų, veiklą 
registruojantį procesą, skirtą dalintis mašininio mokymosi modeliais ir duomenimis. 
Joje atliekami veiksmai registruojami paskirstytame žurnale, leidžiant stebėti 
vykdymą, taip padidinant proceso skaidrumą. Šioje aplinkoje modelio diegimo 
procesai realizuojami išmaniaisiais kontraktais. 

Lokali off-chain aplinka naudojama siekiant palaikyti platesnę aibę mašininio 
mokymosi programavimo technologijų ir sprendimų. Naudojant kartu su blokų 
grandinės modelių diegimo aplinka, ji leidžia palaikyti daugiau mašininio mokymosi 
modelių tipų, taip pat suteikia modelių kolektyvo panaudojimo galimybę bei suteikia 
galimybę decentralizuoti ir paskirstyti sudėtingus modelių skaičiavimus, naudojant 
off-chain orakulo paslaugas. 

Pasiūlyto CDMLB metodo procese egzistuoja dalyviai, kurie valdo duomenis ir 
moko mašininio mokymosi modelius. Prieš prasidedant bendradarbiavimo procesui 
dalyviai paskirsto modelius į mokymosi, testavimo ir validavimo dalis. 
Pasinaudodami mokymosi duomenų imtimi tinklo dalyviai moko pasirinktus 
klasifikatorius, kuriuos įkelia į blokų grandinės tinklą pasitelkdami išmaniaisiais 
kontraktais ir juos naudojančiomis paslaugomis. Norėdami vykdyti 
bendradarbiavimą, dalyviai su blokų grandinės tinklu turi pasidalinti ne tik modelių 
failais, bet ir validavimo duomenimis. Pasinaudodami šiais dviem artefaktais, 
išmanieji kontraktai apskaičiuoja kiekvieno dalyvio modelių ir duomenų indėlį. 
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CDMLB blokų grandinės platformos paruošimo etapas apima mašininio 
mokymosi artefaktų, kurie vėliau bus įdiegti į blokų grandinės tinklą, kūrimo 
procesus. Šis etapas taip pat apima procesus, reikalingus CDMLB blokų grandinės 
platformai įdiegti ir prie jos prisijungti. Tinklo artefaktų paruošimas prasideda nuo 
duomenų parengimo ir yra atliekamas privačioje modelio kūrimo aplinkoje. Tinklo 
kūrėjas, atsižvelgdamas į duomenų reikalavimus, parengtus bendradarbiaujančių 
organizacijų, paruošia duomenų rinkinį. Šio etapo rezultatas yra parengti mokymo ir 
validavimo duomenų rinkiniai. Mokymo duomenų rinkinys bus naudojamas modeliui 
sukurti, o validavimo – bus įkeltas į blokų grandinės tinklą ir naudojamas modelio 
tikslumui tikrinti. Jei tinklo dalyvis negali pateikti duomenų rinkinio, duomenų 
rengimo procesas gali būti praleistas. Atitinkamai, jei dalyvis negali dalintis 
validavimo duomenų rinkiniu dėl privatumo ar saugumo apribojimų, duomenų 
rinkinio skaidymo į atskirus duomenų rinkinius taip pat galima nevykdyti. Parengtas 
mokymo duomenų rinkinys naudojamas klasifikatoriaus modeliui mokyti. Kadangi 
CDMLB metodas neriboja modelio mokymo proceso, galima naudoti skirtingas 
modelio kūrimo aplinkas su įvairiomis aparatinės ir programinės įrangos 
konfigūracijomis ir skirtingais modelio kūrimo parametrais. Nors modelio mokymo 
procesas nepriklauso nuo metodo, gauto modelio failo formatas ir struktūra turi atitikti 
bendradarbiaujančių organizacijų nustatytus modelio failo formato reikalavimus. Kai 
mašininio mokymosi modelio ir duomenų kūrimas baigtas, tinklo dalyvis prisijungia 
prie blokų grandinės tinklo. Tam gali prireikti įdiegti CDMLB platformą, jei tinklo 
dalyvis jungiasi prie platformos pirmą kartą. Metode esanti platformos parengimo 
dalis baigiasi prisijungimu prie privataus blokų grandinės tinklo. 

Modelio ir duomenų diegimo etapas apima procesus, reikalingus dalintis 
mašininio mokymosi artefaktais, t. y. modeliu ir duomenimis, blokų grandinės tinkle, 
ir procedūras, atliekamas siekiant įvertinti šių artefaktų kokybę. Visi šiame etape 
atliekami veiksmai realizuoti naudojant išmaniuosius kontraktus. Norint pradėti 
naudotis modelių diegimo aplinka privačioje blokų grandinėje, visų pirma reikia 
prisijungti, pateikiant organizacijų suteiktus prieigos duomenis. Prisijungus, modelio 
ir duomenų artefaktus galima įtraukti į tinklą, įkeliant duomenų rinkinį arba modelį 
naudojant paskirstytąją programą (angl. Distributed application, DApp). Siekiant 
sutaupyti blokų grandinės saugykloje vietos, įkelto duomenų rinkinio formatas 
transformuojamas ir, jei blokų grandinės saugykloje egzistuoja bent vienas mašininio 
mokymosi modelis, įkeltas duomenų rinkinys naudojamas modelio spėjimams 
apskaičiuoti. Modelio spėjimai išsaugomi blokų grandinės saugykloje. Modelio 
įkėlimo procedūra pradedama įkeliant išsaugotą mašininio mokymosi modelio failą į 
blokų grandinės tinklą, taip pat naudojantis paskirstytąja aplikacija. Modelio failo 
informacija transformuojama į tekstinę informaciją ir išsaugoma blokų grandinės 
saugykloje. Jei modelio ar duomenų rinkinio įkėlimo procedūra sėkminga, įkeltus 
artefaktus blokų grandinės tinklas replikuoja tarp tinklo dalyvių.  

Kad būtų galima sekti tinklo dalyvių indėlį į bendrą modelių kolektyvą, 
vertinama kiekvieno įkelto modelio kokybė. Pasiūlytame metode modelių kokybė 
vertinama pasinaudojant binarinės kryžminės entropijos tikslumo įvertinimo metrika. 
Modelių kokybė toliau vertinama pasinaudojant Shapley indėlio įvertinimo funkciją, 
kurioje dalyvio indelio reikšmė pakeičiama atvirkštinės binarinės kryžminės 
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entropijos reikšme. Shapley formulė taip pat įvertina, ar kiekvienas modelio tikslumas 
buvo didesnis nei atsitiktinių spėjimų atsižvelgiant į turimą duomenų aibę, ir modeliai, 
pasirodantys prasčiau nei atsitiktinio spėjimo reikšmė, nėra įtraukiami į vertinimą. 
Pasiūlytas metodas taip pat vertina tik tokius modelius, kurie savo tikslumu pagerina 
kolektyvą, o ne jį pablogina, nurodant taisyklę neįtraukti dalyvių su neigiamais 
kolektyvo svoriais. Vertinant duomenų rinkinio indėlį, visi įkelti modeliai sujungiami 
į modelių kolektyvą, o patvirtinimo duomenų rinkiniai sujungiami į vieną duomenų 
rinkinį, neįtraukiant duomenų rinkinio, kurio našumas vertinamas. Vertinant modelio 
indėlį, taip pat naudojami modelių kolektyvai ir duomenų rinkiniai. Tačiau vietoj to, 
kad būtų vertinamas vienas duomenų rinkinys, vertinamas vienas modelis, o siekiant 
supaprastinti vertinimo procesą, įvertinamas tik geriausios kiekvieno tinklo dalyvio 
kokybės modelis. Modelio ir duomenų kokybės reikšmės gali būti naudojamos 
skatinimo mechanizmui sukurti. Skatinimo rodikliai gaunami paverčiant modelio ar 
duomenų kokybės reikšmes į santykinį dalyvio indėlį. Šis santykinis indėlis 
naudojamas siekiant nustatyti, kokį paskatinimą reikėtų suteikti prisidėjusiam tinklo 
nariui už jo dalyvavimą procese. 

Paskutinis CDMLB metodo etapas skirtas blokų grandinėje saugomoms 
modelio žinioms naudoti. Pateikiami du skirtingi būdai, kaip galima panaudoti 
modelius. Pirmasis būdas modelius sujungia į kolektyvą naudojant svertinį vidurkį. 
Tada, naudojant naujus duomenis, kurie pateikiami tinklo dalyvių, gaunama 
kolektyvo prognozė. Modelių kolektyvą sukuria specializuota blokų grandinės 
orakulo paslauga, o nematyti duomenys, naudojami prognozei apskaičiuoti, niekada 
neviešinami už lokalios tinklo mazgo aplinkos ribų. Toks būdas leidžia užtikrinti 
nematytų duomenų rinkinio ir prognozių privatumą, kartu registruojant mašininio 
mokymosi modelio panaudojimą. Antrasis būdas naudoja žinių distiliavimo strategiją, 
skirtą agreguojančiam modeliui mokyti naudojant tinkle blokų grandinėje sukauptą 
modelių kolektyvą. Taikant šį būdą, naujam neuroninio tinklo modeliui mokyti 
naudojami sujungti visi tinkle sukaupti validavimo duomenys ir modelių kolektyvas. 
Sujungti modelių spėjimai naudojami kaip įvestis mokant neuroninio tinklo modelį, o 
jo kokybė patikrinama naudojant visus tinkle sukauptus validavimo duomenis. 
Distiliuoto modelio failas išsaugomas autoriaus lokalaus mazgo aplinkoje ir gali būti 
toliau tobulinamas naudojant individualius duomenis arba tiesiog naudojamas 
prognozėms atlikti be papildomo mokymo. Žinių distiliavimo strategija užtikrina 
blokų grandinėje saugomo mašininio mokymosi modelių privatumą. 

Blokų grandinės technologijos panaudojimas privatumą išsaugančiame 
paskirstyto mokymosi procese suteikia galimybę bendradarbiauti organizacijoms, 
leidžia bet kuriuo metu analizuoti blokų grandinės transakcijas ir blokų grandinės 
artefaktus, taip didinant skaidrumą. CDMLB metodas skiriasi nuo esamų sprendimų 
tuo, kad palaiko skirtingus prižiūrimo mokymosi (angl. supervized learning) modelių 
tipus ir užduotis vietoje siūlymo kurti blokų grandinės tinklą kiekvienai specializuotai 
užduočiai ar modelio tipui. CDMLB metodas reikalauja nedidelio kiekio nuasmenintų 
duomenų modelio kokybei patvirtinti, o jautriais mokymosi duomenimis nėra 
dalinamasi, taip sumažinant galimus privatumo pažeidimus. CDMLB metodas taip 
pat palaiko du tinklo žinių panaudojimo būdus, kurie užtikrina naudojamų modelių 
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privatumą. Galiausiai, CDMLB metodas leidžia prisidedančioms organizacijoms 
įvertinti dalyvių indėlį ir panaudoti jį skatinimui apskaičiuoti. 

6.4 BENDRADARBIAVIMU GRĮSTO PASKIRSTYTO MAŠININIO 
MOKYMOSI METODO BLOKŲ GRANDINĖJE RELIZACIJA 

Pristatytas CDMLB metodas buvo realizuotas pasinaudojant Hyperledger 
Fabric privačia blokų grandinės technologija. Sistemos realizavimo ir tyrimų metu 
buvo naudojami sprendimų medžių ir logistinės regresijos klasifikatoriai, kurie 
eksperimentiškai tyrė duomenų rinkinius iš medicinos ir finansų dalykinių sričių. 
Realizuota CDMLB bendradarbiavimo platformoje buvo sukurti išmanieji kontraktai, 
leidžiantys vykdyti bendradarbiavimą pasinaudojant modelių dalinimo procesu. Šie 
kontraktai buvo sukurti pasinaudojant Go programavimo kalba ir apėmė duomenų ir 
modelių failų nuskaitymo, jų validavimo, modelių tikslumų vertinimo ir modelių 
kolektyvo panaudojimo funkciją. Taip pat esama blokų grandinės architektūra buvo 
išplėsta siekiant palaikyti dvi lokalių orakulų aplinkas panaudojant Python ir R 
programavimo kalbas. Siekiant ištirti realizuoto metodo veikimą, bus sukurti 
mašininio mokymosi sprendimų medžių ir logistinės regresijos klasifikatoriai, kurių 
sukūrimui buvo panaudotos PySpark ir MLR3 mašininio mokymosi bibliotekos. 
Daugiau nei viena modelių realizavimo technologija buvo pasirinkta siekiant parodyti 
modelio lankstumą ir galimybę palaikyti. Tinklo žinių distiliavimo sprendimas buvo 
realizuotas pasinaudojant dviem architektūromis: negiliojo mokymosi architektūra 
buvo realizuota pasinaudojant Keras mašininio mokymosi biblioteką ir buvo sudaryta 
3 lygių neuroninio tinklo. Taip pat buvo panaudota TabNet giliojo mokymosi 
architektūra. 

6.5 EKSPERIMENTINIAI TYRIMAI 

Eksperimentinis metodo vertinimas buvo įgyvendintas atliekant tris 
eksperimentus. Kiekviename eksperimente buvo vertinama siūlomo CDMLB metodo 
dalis ir procesus realizuojantys sprendimai [182], [183].  

Pirmasis eksperimentas buvo skirtas metodo CDMLB blokų grandinės 
platformos parengimo etapui ir orakulo projektavimo šablono taikymui vertinti.  
Eksperimentas buvo atliktas siekiant patikrinti, ar lokalių orakulų projektavimo 
šablonas gali būti naudojamas egzistuojančiose blokų grandinės technologijose ir kaip 
naujų off-chain paslaugų pridėjimas į blokų grandinės tinklą gali paveikti veikimo 
greitaveiką. 

Antrasis eksperimentas buvo skirtas modelio indėlio apskaičiavimo proceso 
daliai įvertinti. Eksperimento metu buvo orientuotasi į modelio indėlio dalies 
apskaičiavimą, nes siūlymų vertinti duomenų indėlį jau yra ([158], [159]), o modelio 
dalies apskaičiavimas nebuvo išsamiau tyrinėtas. Eksperimente buvo lyginamos 
pasiūlytos modelių kolektyvų svorių apskaičiavimo strategijos su dažniausiai 
naudojamomis strategijomis ir artimiausia pasiūlytoms strategijoms Shapley 
balsavimu grindžiama svorių apskaičiavimo strategija. Eksperimente pasiūlytos 
svorių apskaičiavimo strategijos buvo lyginamos su kita artima Shapley balsavimu 
grįsta strategija ir keliomis kitomis žinomesnėmis strategijomis. 
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Trečiajame eksperimente buvo tiriamas blokų grandinės tinkle sukauptų žinių 
panaudojimo procesas, vertinant prognozavimo tikslumą naudojant tiek tinklo 
modelių kolektyvą, tiek distiliuotą modelį. Eksperimento metu buvo naudojami 
antrajame eksperimente sukurti modeliai ir sukurtas distiliuotas neuroninio tinklo 
modelis. Distiliuotas modelis buvo realizuotas naudojant tris skirtingas 
konfigūracijas, jos buvo lyginamos su antrajame eksperimente sukurtų modelių 
kolektyvų veikimu. 

6.5.1 Modelio spėjimų skaičiavimo naudojant lokalias orakulo paslaugas 
vertinimas 

Šio eksperimento tikslas – įvertinti lokalių orakulo paslaugų poveikį 
greitaveikai ir įvertinti modelio spėjimų skaičiavimo algoritmą, naudojant privačios 
blokų grandinės technologiją. Siekiant palyginti pasiūlytą architektūrą su jau 
egzistuojančiais sprendimais, modelio spėjimų skaičiavimas buvo realizuotas dviem 
būdais. Pirmasis būdas – naudojant tik išmanųjį kontraktą, kuris padengė modelio 
spėjimų skaičiavimo logiką. Antrasis būdas naudojo išmanųjį kontraktą, išplėstą 
lokalia off-chain orakulo paslauga, kuri atliko modelio spėjimų skaičiavimą ir 
rezultatus grąžindavo išmaniajam kontraktui. 

Sintetinių duomenų rinkinio modelio spėjimų apskaičiavimo algoritmo 
vykdymo laiko palyginimo rezultatai parodė vidutinį nedidelį ~2% greitaveikos 
sulėtėjimą, o atskirų tinklo ir duomenų konfigūracijų atveju – mažiau nei 6,60 %. 
Skaičiavimai sulėtėjo daugiau naudojant mažesnio dydžio duomenų rinkinius, o taip 
įvyko labiau dėl laiko, reikalingo duomenims perduoti tarp išmaniojo kontrakto ir off-
chain orakulo paslaugos, nei dėl laiko, skirto modelio spėjimams skaičiuoti. 
Naudojant didesnį kiekį tinklo narių ir didesnės apimties duomenų rinkinius, 
skaičiavimo laikas sulėtėjo mažiau, nes laikas, skirtas modelių spėjimams skaičiuoti, 
tapo ilgesnis už laiką, skirtą duomenims perduoti. 

Atlikto eksperimento rezultatai parodė, kad, naudojant orakulo paslaugas, 
algoritmo greitaveika sulėtėjo dėl papildomos komunikacijos tarp išmaniojo 
kontrakto ir orakulo paslaugos. Orakulo paslaugų naudojimas leidžia pakartotinai 
panaudoti egzistuojančias mašininio mokymosi aplinkas ir sprendimus, taigi šis 
sulėtėjimas nėra toks didelis, kad atsvertų lankstumą, kurį suteikia orakulų paslaugos. 
Nepaisant to, dėl greitaveikos ir lankstumo kompromiso turėtų spręsti organizacijos, 
norinčios naudoti blokų grandinės technologijas paskirstytam mašininiam mokymuisi 
vykdyti. 

6.5.2 Shapley reikšmėmis grindžiamos kolektyvo svorių apskaičiavimo 
strategijos efektyvumo vertinimas 

Eksperimentai, skirti įvertinti Shapley kolektyvo svorių apskaičiavimo 
strategiją, vertino jos tikslumą ir tyrė, ar galima išmatuoti modelių indėlį, juos 
sujungiant į blokų grandinės tinkle kaupiamą modelių kolektyvą. Modelių sujungimo 
į kolektyvus metodai buvo parinkti dėl galimybės sujungti kelis modelių tipus, 
siekiant išvengti modelių struktūros suvienodinimo. Eksperimento metu buvo 
tikrinama dviejų Shapley reikšmėmis ir tikslumu grindžiamų kolektyvo svorių 
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apskaičiavimo strategijų kokybė (posShap, maxShap), kurios palygintos su 
dažniausiai naudojamomis svorių apskaičiavimo strategijomis ir kita Shapley 
reikšmėmis ir balsavimu grindžiama strategija. posShap strategija nuo maxShap 
strategijos skyrėsi tuo, kad pašalindavo kolektyvo narius, kurie pablogina kolektyvo 
tikslumą, o maxShap pakeisdavo modelio spėjimus į atvirkštinius. Eksperimente buvo 
vertinamos lokalios off-chain orakulo paslaugos, sukurtos naudojant R ir Python 
programavimo kalbas. R kalbos aplinkoje modeliams kurti buvo panaudota MLR3 
mašininio mokymosi biblioteka, o Python aplinkoje - PySpark mašininio mokymosi 
biblioteka. Modeliams kurti ir vertinti buvo naudojami du su bankininkyste susiję 
duomenų rinkiniai. Modelio tikslumas eksperimento metu buvo matuojamas 
pasinaudojant binarine kryžmine entropija. 

Didžiausias tikslumo pagerėjimas nustatytas lyginant posShap su vieno 
modelio (Mono) metodu ir naudojant homogeninius kolektyvus, kuriuos sudarė 13 
modelių: BNG_credit-a ir Bank Marketing duomenų rinkiniams, atitinkamai 4,8 % ir 
1,9 %. Lyginant posShap su dažniausiai naudojamu tikslumu pagrįstu svorių 
apskaičiavimo metodu (Perf), pasiūlyta strategija padidino ansamblio našumą 0,7 %. 
Atlikus kolektyvų rezultatų reitingavimą paaiškėjo, kad posShap strategija pasiekė 
didžiausią tikslumą, išskyrus vieną Python sprendimų medžio klasifikatoriaus 
realizacijos ir Bank Marketing duomenų rinkinio konfigūraciją. Panašūs posShap 
svorio apskaičiavimo strategijos rezultatai buvo pastebėti ir heterogeniniuose 
ansambliuose, kurie pasiekė 1,4 % didesnį tikslumą, palyginti su Mono metodu 
BNG_credit-a duomenų rinkinio konfigūracijoje. Bank Marketing duomenų rinkinio 
atveju posShap pasiekė 0,4 % našumo padidėjimą, tačiau kaip tiksliausia svorių 
apskaičiavimo strategija buvo nustatyta lygių svorių apskaičiavimo strategija (Equal), 
nes  našumas, palyginti su Mono metodu, padidėjo 0,6 %. 

Iš dviejų pasiūlytų kolektyvų svorių apskaičiavimų strategijų tik posShap 
pasižymėjo teigiamais rezultatais, o maxShap strategijos rezultatai buvo prastesni už 
visų išbandytų strategijų rezultatus. Galima pastebėti, kad taikyti spėjimų koregavimo 
metodai nepagerina rezultatų, o nenaudingų modelių pašalinimas, naudotas posShap 
strategijoje, pasiteisino. PosShap strategijos rezultatai varijuoja priklausomai nuo 
naudoto duomenų rinkinio ir modelio tipo, tačiau eksperimento rezultatai rodo, kad 
posShap strategija pranoko arba nebuvo prastesnė nei kitos išbandytos svorių 
apskaičiavimo strategijos, įskaitant Shapley balsavimu pagrįstą strategiją (Roz). 

6.5.3 Žinių distiliavimo strategijos efektyvumo vertinimas 

Žinių distiliavimo strategijos eksperimento tikslas buvo įvertinti poveikį 
klasifikavimo tikslumui, pritaikius žinių distiliavimo strategiją privatumui padidinti. 
Eksperimento metu buvo kuriami neuroninio tinklo modeliai, pasinaudojant 
kolektyvo spėjimais, sujungtais naudojant svorinį vidurkį, kaip mokymo duomenimis. 
Mokymas taip pat naudojo du validavimo duomenų rinkinius, gautus iš  antrajame 
eksperimente tirtų Bank Marketing ir BNG-credit_a duomenų rinkinių. Kuriant 
distiliuotą modelį buvo išbandyta keletas distiliavimo lygmenų – nuo distiliavimo 
neįtraukimo (alpha=1) iki smarkaus distiliavimo (alpha=0.5). Eksperimento 
rezultatai parodė, kad žinių distiliavimo strategija sumažina modelių kolektyvo 
klasifikatoriaus tikslumą bent 16,99 % naudojant Bank Marketing duomenų rinkinį, 
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ir bent 10,41% naudojant BNG_credit-a duomenų rinkinį, lyginant Shapey strategiją 
su alpha=0.75 strategija. Lyginant skirtingus distiliavimo lygmenis paaiškėjo, kad 
kolektyvo spėjimų įtraukimas į klaidos funkciją didesniu santykiu (alpha=0.5), 
siekiant subalansuoto distiliavimo varianto, lėmė prasčiausią našumą iš visų išbandytų 
strategijų. Skirtumai tarp distiliavimo strategijų alpha=0.75 ir alpha=1 BCE medianų 
buvo statistiškai nereikšmingi trijose iš keturių tirtų duomenų rinkinio ir modelių tipų 
konfigūracijų. Rezultatų panašumai rodo, kad nežymus tinklo ansamblio prognozės 
padidėjimas drastiškai nekeičia klasifikatoriaus tikslumo. Nors žinių distiliavimas 
sumažina prognozavimo tikslumą kolektyvo atžvilgiu, pristatyta strategija pagerina 
privatumą, nes sukuria iš anksto išmokytą neuroninio tinklo modelį, kurį prireikus 
galima toliau tobulinti. Jei tolesnis modelio derinimas nėra reikalingas, Shapley 
svertinio ansamblio naudojimas užtikrina didesnį prognozavimo tikslumą 
pasiūlytame CDMLB metode. 

6.5.4 Žinių distiliavimo efektyvumo vertinimas panaudojant giliojo mokymosi 
modelių architektūras  

  Žinių distiliavimo efektyvumo vertinimo eksperimento tikslas buvo įvertinti, ar 
giliojo mokymosi modelių architektūros gali pagerinti distiliavimo proceso metu 
sukuriamo modelio kokybę. Šio eksperimento metu buvo kuriamas modelis 
panaudojant TabNet [211] giliojo mokymosi modelio architektūrą. Ši architektūra 
pasirinkta dėl jos taikymo galimybių lentelės tipo duomenų rinkiniams. Šis 
eksperimentas naudojo identiškus duomenų rinkinius ir jų paruošimo sąlygas, 
apibūdintas žinių distiliavimo strategijos efektyvumo vertinimo eksperimente.  
 Šio eksperimento rezultatai parodė, kad, palyginti su žinių distiliavimo 
efektyvumo vertinimo eksperimente naudota architektūra, giliojo mokymosi 
architektūra sumažino distiliavimo metu prarandamą modelio tikslumą. Lyginant 
rezultatus tarp negiliosios ir giliosios neuroninio tinklo architektūrų naudojant silpną 
distiliavimą (dist075) modelio tikslumo praradimas sumažėjo nuo 16,99% iki 3,95% 
kuriant modelį naudojant Bank Marketing duomenų rinkiniui. Daliai klasifikatorių 
naudojant šią eksperimento konfigūraciją pavyko distiliuoti kolektyvą be tikslumo 
praradimo. Lyginant kolektyvo naudojimo rezultatus su klasifikatoriaus rezultatais 
nustatyta, kad BNG_credit-a duomenų rinkinio atveju rezultatai buvo statistiškai 
panašūs. Klasifikatorius, sukurtas silpno distiliavimo (dist075) metu, parodė tikslumo 
praradimus nuo 45% iki tikslumo pagerėjimo 4,41%. Toks didelis skirtumas tarp 
rezultatų buvo nustatytas dėl didelio rezultatų pasiskirstymo, tačiau, priklausomai nuo 
duomenų rinkinio ir modelio tipo, nuo 40% iki 70% pasirodė identiškai ar netgi 
aplenkė Shapley svorinio kolektyvo tikslumą. Atsižvelgiant į pagerintą tikslumą, net 
ir vidutinis distiliavimo atvejis tampa pakankamai tikslus naudoti su distiliavimo metu 
prarandamu tikslumu rėžyje tarp 9,24 % iki 1,53 %. 
 Tokie eksperimento rezultatai atskleidžia, kad, distiliuojant modelius, kurie turi 
sudėtingesnę vidinę reprezentaciją, tokius kaip sprendimų medžiai, distiliavimas 
tikslesnis. Iš rezultatų taip pat galime nustatyti, kad giliojo mokymosi architektūra 
buvo geresnė nei negili neuroninio tinklo mokymosi architektūra. Atsižvelgiant į tai 
žinių distiliavimo procesą rekomenduojama atlikti naudojant giliojo mokymosi 
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architektūra paremtus modelius, siekiant perkelti klasifikatorių žinias, sukauptas 
blokų grandinės tinkle, į kitas naudojimo aplinkas.  
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6.6 IŠVADOS 

1. Paskirstyto mašininio mokymosi sprendimų ir metodų analizės metu buvo 
nustatyta, kad didžioji dalis naudojamų sprendimų architektūrų vis dar remiasi 
centralizuotais komponentais, kurie sumažina architektūros patikimumą ir 
reikalauja naudotojų pasitikėjimo. Taip pat didžioji dalis paskirstyto mašininio 
mokymosi sprendimų yra skirti specifinei problemai ar užduočiai spręsti ir 
dažnai palaiko vieną mašininio mokymosi modelio tipą, kas sumažina taikymo 
galimybes ir bendradarbiavimą. 

2. Blokų grandinės technologijų taikymo paskirstytame mašininiame mokymesi 
analizė atskleidė, kad didžioji dalis sprendimų naudoja blokų grandines 
padidinti tinklo narių įsitraukimui bei registruoti nuosavybės ar perdavimo 
informaciją panaudojant paskirstytą žurnalą. Pagrindiniai siūlomų metodų ir 
sprendimų trūkumai kyla dėl specializuotų taikymų arba naudojimo tik 
proceso vykdymo eigai registruoti į blokų grandinę. Šių trūkumų galima būtų 
išvengti pridedant papildomas orakulų paslaugas. 

3. Buvo pasiūlytas bendradarbiavimo metodas vykdant paskirstytą mašininį 
mokymąsi, panaudojant blokų grandinės technologijas. Metodas suteikia 
galimybę blokų grandinės tinklo nariams bendradarbiauti mašininio 
mokymosi modelių diegimo procese ir įvertinti pasidalinamų modelių ir 
duomenų naudą, apskaičiuojant jų indėlį kiekvienam dalyviui. Pagal  pasiūlytą 
metodą sukurto sprendimo realizacija buvo atlikta pasinaudojant Hyperledger 
Fabric privačia blokų grandine, taip pademonstruojant galimybę vykdyti 
bendradarbiavimu grindžiamą paskirstytą mašininį mokymąsi. Realizuotas 
prototipas panaudojo lokalias off-chain orakulo paslaugas, kurios leido 
pakartotinai panaudoti įvairias mašininio mokymosi aplinkas ir technologijas, 
taip išplečiant ribotas blokų grandinės išmaniųjų kontraktų vykdymo aplinkas. 

4. Metodas buvo eksperimentiškai įvertintas palyginant dviejų skirtingų 
architektūrų greitaveiką, kurių viena sukurta naudojant tik išmaniuosius 
kontraktus, o kita sukurta išmaniuosius kontraktus  išplečiant lokalaus off-
chain orakulo paslauga. Eksperimento rezultatai parodė, kad sprendimo 
greitaveika, pridėjus naująją orakulo paslaugą, sulėtėjo 2,07 %. Tačiau šių 
orakulo paslaugų įtraukimas leidžia pakartotinai panaudoti mašininio 
mokymosi aplinkas blokų grandinės tinkle, kas kompensuoja greitaveikos 
trūkumus. 

5. Mašininio mokymosi ansamblių svorių apskaičiavimo strategijos tikslumo 
vertinimo eksperimento rezultatai parodė, kad galima kiekybiškai įvertinti 
kiekvieno nario pateiktų modelių indėlį į bendrą kolektyvą ir panaudoti šias 
metrikas skatinimo mechanizmui sukurti. Shapley reikšmėmis grįstas 
kolektyvo svorių apskaičiavimo metodas leido padidinti kolektyvo tikslumą 
4,8 % ir 1,9 % dviem tirtiems duomenų rinkiniams, palyginti su vieno modelio 
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sprendimu (Mono), ir 0,7%, palyginti su tikslumu, grįstu svorių 
apskaičiavimu, kai modelių tikslumas buvo vertintas naudojant binarinę 
kryžminę entropiją. Kolektyvo svorių apskaičiavimo strategija leidžia įvertinti 
tinklo nario indėlį ir apskaičiuoti kolektyvo modelių svorius sprendimų 
sujungimui su panašiu ar net geresniu tikslumu, nei buvo pasiekta su kitomis 
eksperimente tirtomis strategijomis. Pasiūlyta Shapley reikšmėmis grįsta 
svorių apskaičiavimo strategija gali būti laikoma tikslumu grįstos strategijos 
generalizacija ir gali būti naudojama kartu su kitais modelio kokybės įverčiais. 

6. Bloko grandinės tinklo žinių distiliavimo eksperimentas naudojant trijų lygių 
perceptroną parodė, kad distiliavimo taikymas nepagerino gauto modelio 
tikslumo, palyginti su modelių kolektyvu. Distiliavimo įtraukimas sumažino 
modelio tikslumą nuo 10,41 % iki 23,9 %, priklausomai nuo naudotojo 
klasifikatoriaus tipo ir duomenų rinkinio. Tačiau žinių distiliavimo naudojant 
giliojo mokymo architektūrą eksperimentas parodė, kad, palyginti su paprasta 
neuroninio tinklo architektūra, sudėtingesnė klasifikatoriaus architektūra gali 
tiksliau distiliuoti sukauptas kolektyvo žinias. Išmokytas TabNet 
klasifikatorius tikslumu net aplenkė svorinį kolektyvą esant tam tikroms 
sąlygoms. Lyginant kolektyvo rezultatus su distiliuotu modeliu, kai buvo 
distiliuotas logistinės regresijos modelis  (alpha=0.75), jo tikslumas sumažėjo 
3,95 % Bank Marketing duomenų rinkinio atveju ir 42 % BNG-credit_a 
duomenų rinkinio atveju. Distiliuojant sprendimų medžio klasifikatorių 
tikslumas sumažėjo 2,52 % Bank Marketing duomenų rinkinio atveju ir  
pagerėjo 7,98 % naudojant BNG-credit_a duomenų rinkinį. Rezultatų 
skirstinys Bank Marketing atveju buvo niekuo neišsiskiriantis, tačiau 
BNG_credit-a atveju susitelkė trijose grupėse. Šio duomenų rinkinio atveju 
viena iš grupių, kurią sudarė atitinkamai 57% ir 61% bandymo pakartojimų 
logistinės regresijos ir sprendimų medžių atvejų, net aplenkė kolektyvo 
tikslumą. Apibendrinus nustatyta, kad sudėtingesnės neuroninio tinklo 
architektūros naudojimas pagerino žinių distiliavimo efektyvumą ir yra 
rekomenduojamas naudoti naudojant šį metodą. 
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APPENDIXES 

Appendix A. Extended result analysis for Performance Evaluation of Model 
Inference via Local Off-chain Blockchain Oracles experiment 

 

 
(a) smart contract 

 
(b) local off-chain oracle service 

 

 
Figure A1. Model inference calculation time for the synthetic dataset with 32768 instances: 
smart contract (a) and oracle service (b) results. The increase in runtime is linear with an 
increase in calculation time of 6.30 s for the smart contract and 6.28s for the oracle service in 
a simulated blockchain network environment. 

Table A1. Statistical analysis for smart contract implementations performance results 
synthetic dataset case. Dependent variable: T 
 

  Coefficient Std. Error t-ratio p-value  
const −4.90818 0.503859 −9.741 <0.0001 *** 
Peers 6.29927 0.0579238 108.8 <0.0001 *** 

 
Mean dependent var  45.48601  S.D. dependent var  22.07177 
Sum squared resid  14044.71  S.E. of regression  4.846251 
R-squared  0.951870  Adjusted R-squared  0.951790 
F(1, 598)  11826.80  P-value(F)  0.000000 
Log-likelihood −1797.285  Akaike criterion  3598.569 
Schwarz criterion  3607.363  Hannan-Quinn  3601.993 

 
Table A2. Correlation matrix for smart contract implementations performance 
synthetic dataset case. 5% critical value (two-tailed) = 0.0801 for n = 600. Dependent 
variable: T 

 
T Peers  

1.0000 0.9756 T 
 1.0000 Peers 
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Table A3. Statistical analysis for local off-chain oracle service implementations performance 
results synthetic dataset case. Dependent variable: T 
 

  Coefficient Std. Error t-ratio p-value  
const −4.39957 0.357455 −12.31 <0.0001 *** 
Peers 6.28314 0.0410931 152.9 <0.0001 *** 

 
Mean dependent var  45.86557  S.D. dependent var  21.75189 
Sum squared resid  7068.662  S.E. of regression  3.438096 
R-squared  0.975059  Adjusted R-squared  0.975017 
F(1, 598)  23378.45  P-value(F)  0.000000 
Log-likelihood −1591.312  Akaike criterion  3186.624 
Schwarz criterion  3195.418  Hannan-Quinn  3190.048 

 
Table A4. Correlation matrix for local off-chain oracle service implementations performance 
synthetic dataset case. 5% critical value (two-tailed) = 0.0801 for n = 600. Dependent 
variable: T 

 
T Peers  

1.0000 0.9875 T 
 1.0000 Peers 

 
 

  
  

(a) smart contract (b) local off-chain oracle service 
Figure A2. Model inference calculation time in relation to peer count for EEG eye state 

dataset with 32768 instances: smart contract (a) and oracle service (b) results. The increase in 
the runtime is linear with an increase in the calculation time of 6.55 s for the smart contract 

and 6.63s for the oracle service in a simulated blockchain network environment. 
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Table A5. Statistical analysis for smart contract implementations performance results EEG 
eye state dataset case. Dependent variable: T 

 
  Coefficient Std. Error t-ratio p-value  

const −3.57527 0.528231 −6.768 <0.0001 *** 
Peers 6.54810 0.0607256 107.8 <0.0001 *** 

 
Mean dependent var  48.80953  S.D. dependent var  22.95308 
Sum squared resid  15436.27  S.E. of regression  5.080666 
R-squared  0.951086  Adjusted R-squared  0.951004 
F(1, 598)  11627.52  P-value(F)  0.000000 
Log-likelihood −1825.627  Akaike criterion  3655.254 
Schwarz criterion  3664.048  Hannan-Quinn  3658.677 

 
Table A6. Correlation matrix for smart contract implementations performance 
synthetic dataset case. 5% critical value (two-tailed) = 0.0801 for n = 600. Dependent 
variable: T 
 

T Peers  
1.0000 0.9752 T 

 1.0000 Peers 
 
Table A7. Statistical analysis for local off-chain oracle service implementations performance 
results EEG eye state dataset case. Dependent variable: T 

 
  Coefficient Std. Error t-ratio p-value  

const −3.15881 0.361331 −8.742 <0.0001 *** 
Peers 6.62539 0.0415386 159.5 <0.0001 *** 

 
Mean dependent var  49.84428  S.D. dependent var  22.91354 
Sum squared resid  7222.773  S.E. of regression  3.475373 
R-squared  0.977034  Adjusted R-squared  0.976995 
F(1, 598)  25440.04  P-value(F)  0.000000 
Log-likelihood −1597.782  Akaike criterion  3199.565 
Schwarz criterion  3208.359  Hannan-Quinn  3202.988 

 
Table A8. Correlation matrix for local off-chain oracle service implementations performance 
synthetic dataset case. 5% critical value (two-tailed) = 0.0801 for n = 600. Dependent 
variable: T 

T Peers  
1.0000 0.9885 T 

 1.0000 Peers 
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Appendix B. Shapley-based ensemble weighting strategies performance evaluation 
experiment results for every tested configuration setting. Presented in median BCE 
values 
 
Table B1. Results presented in BCE for homogeneous decision tree ensembles developed by 
using the BNG_credit-a dataset 
 

Programmin
g language 

Ensemble size 
 

Weighting 

2 3 5 8 13 

Python Equal 0.323 0.329 0.322 0.319 0.319 
Mono 0.338 0.339 0.339 0.339 0.339 
Perf 0.323 0.328 0.322 0.319 0.318 
posShap 0.322 0.328 0.320 0.318 0.317 
Rand 0.329 0.334 0.322 0.320 0.319 
Roz 0.328 0.328 0.323 0.320 0.318 

R Equal 0.408 0.407 0.385 0.378 0.368 
Mono 0.408 0.408 0.408 0.408 0.408 
Perf 0.408 0.407 0.384 0.376 0.367 
posShap 0.408 0.407 0.379 0.370 0.360 
Rand 0.408 0.407 0.389 0.380 0.371 

 Roz 0.407 0.402 0.393 0.379 0.369 
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Table B2. Results presented in BCE for homogeneous logistic regression ensembles 
developed by using the Bank Marketing dataset 
 

Programming 
language 

 Ensemble size 
 

Weighting 
2 3 5 8 13 

Python Equal 0.239 0.241 0.240 0.239 0.243 
maxShap 0.239 0.240 0.239 0.270 0.416 
Mono 0.239 0.240 0.239 0.239 0.240 
Perf 0.239 0.241 0.239 0.238 0.237 
posShap 0.239 0.240 0.239 0.238 0.238 

Rand 0.240 0.241 0.240 0.240 0.245 
Roz 0.240 0.240 0.240 0.239 0.240 

R Equal 0.241 0.240 0.240 0.240 0.246 
maxShap 0.241 0.239 0.240 0.288 0.441 
Mono 0.241 0.239 0.240 0.24 0.24 
Perf 0.241 0.240 0.240 0.239 0.236 
posShap 0.241 0.239 0.240 0.239 0.238 
Rand 0.241 0.240 0.241 0.241 0.247 
Roz 0.240 0.240 0.239 0.239 0.243 
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Table B3. Results presented in BCE for homogeneous logistic regression ensembles 
developed by using the BNG_credit-a dataset 
 

Programming 
language 

Ensemble size 
 

Weighting 
2 3 5 8 13 

Python Equal 0.327 0.326 0.326 0.326 0.326 
Mono 0.326 0.326 0.326 0.326 0.326 
Perf 0.327 0.326 0.326 0.326 0.326 
posShap 0.327 0.326 0.326 0.326 0.326 
Rand 0.327 0.326 0.327 0.326 0.327 
Roz 0.327 0.327 0.327 0.327 0.327 

R Equal 0.327 0.327 0.327 0.327 0.327 
Mono 0.327 0.327 0.326 0.327 0.327 
Perf 0.327 0.327 0.327 0.327 0.327 
posShap 0.327 0.327 0.327 0.327 0.327 
Rand 0.327 0.327 0.327 0.327 0.327 

 Roz 0.327 0.327 0.327 0.327 0.327 
 
Table B4. Results presented in BCE for homogeneous decision tree ensembles developed by 
using the Bank Marketing dataset 
 

Programming 
language 

    Ensemble size   
 

Weighting 
2 3 5 8 13 

Python Equal 0.260 0.260 0.256 0.252 0.289 
maxShap 0.261 0.275 0.325 0.344 0.366 
Mono 0.272 0.273 0.272 0.270 0.282 
Perf 0.260 0.259 0.254 0.251 0.287 
posShap 0.260 0.261 0.257 0.254 0.274 

Rand 0.263 0.262 0.258 0.256 0.289 
Roz 0.261 0.261 0.259 0.253 0.293 

R Equal 0.280 0.278 0.269 0.265 0.266 
maxShap 0.280 0.278 0.272 0.281 0.291 
Mono 0.282 0.283 0.282 0.282 0.283 
Perf 0.280 0.278 0.269 0.266 0.267 
posShap 0.280 0.278 0.270 0.266 0.264 
Rand 0.280 0.279 0.271 0.267 0.268 

 Roz 0.279 0.276 0.275 0.265 0.268 
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Table B5. Results presented in BCE for heterogeneous ensembles trained developed by 
using the BNG_credit-a dataset 
 

Programming 
language 

                  Ensemble size 
 
Weighting 

4 6 10 16 

Python Equal 0.313 0.318 0.314 0.313 
maxShap 0.313 0.318 0.313 0.312 
Mono 0.326 0.326 0.326 0.326 
Perf 0.313 0.318 0.314 0.313 
posShap 0.313 0.318 0.313 0.312 
Rand 0.316 0.318 0.314 0.313 
Roz 0.315 0.316 0.314 0.313 

R Equal 0.348 0.348 0.342 0.339 
maxShap 0.348 0.343 0.341 0.341 
Mono 0.327 0.326 0.326 0.326 
Perf 0.348 0.347 0.342 0.340 
posShap 0.348 0.343 0.341 0.341 
Rand 0.348 0.346 0.342 0.339 

 Roz 0.355 0.352 0.348 0.344 
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Table B6. Results presented in BCE of heterogeneous ensembles developed by using the 
Bank Marketing dataset 
 

Programmin
g language 

                    Ensemble 
size 

 
Weighting 

4 6 10 16 

Python Equal 0.236 0.237 0.235 0.233 
maxShap 0.239 0.244 0.260 0.269 
Mono 0.239 0.240 0.239 0.239 
Perf 0.237 0.239 0.238 0.237 
posShap 0.239 0.240 0.238 0.235 
Rand 0.237 0.238 0.236 0.235 
Roz 0.238 0.241 0.238 0.236 

R Equal 0.236 0.237 0.235 0.233 
maxShap 0.239 0.244 0.260 0.269 
Mono 0.241 0.239 0.239 0.24 
Perf 0.237 0.239 0.238 0.237 
posShap 0.239 0.240 0.238 0.235 
Rand 0.237 0.238 0.236 0.235 

 Roz 0.250 0.249 0.245 0.241 
 

Appendix C. Source code for the developed blockchain solutions and experiment 
procedures 

 
https://github.com/HurrisLT   
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