
V A I D O T A S D R U N G I L A S

D O C T O R A L D I S S E R T A T I O N

K a u n a s
2 0 2 4

C O L L A B O R A T I V E
D I S T R I B U T E D

M A C H I N E L E A R N I N G
O N B L O C K C H A I N

KAUNAS UNIVERSITY OF TECHNOLOGY

VAIDOTAS DRUNGILAS

COLLABORATIVE DISTRIBUTED MACHINE
LEARNING ON BLOCKCHAIN

Doctoral dissertation
Technological Sciences, Informatics Engineering (T 007)

2024, Kaunas

This doctoral dissertation was prepared at Kaunas University of Technology, Faculty
of Informatics, Department of Information Systems during the period of 2018–2023.
The doctoral right has been granted to Kaunas University of Technology together with
Vilnius Gediminas Technical University.

Scientific Supervisor:
Prof. Dr. Evaldas VAIČIUKYNAS (Kaunas University of Technology,
Technological Sciences, Informatics Engineering, T 007).

Edited by: English language editor Dr. Armandas Rumšas (Publishing House
Technologija), Lithuanian language editor Aurelija Gražina Rukšaitė (Publishing
House Technologija).

Dissertation Defense Board of Informatics Engineering Science Field:
Prof. Dr. Robertas DAMAŠEVIČIUS (Kaunas University of Technology,
Technological Sciences, Informatics Engineering, T 007) – chairperson;
Assoc. Prof. Dr. Razvan BOCU (Transilvania University of Brasov, Romania,
Technological Sciences, Informatics Engineering, T 007);
Prof. Dr. Nikolaj GORANIN (Vilnius Gediminas Technical University,
Technological Sciences, Informatics Engineering, T 007);
Prof. Dr. Tomas KRILAVIČIUS (Vytautas Magnus University, Natural Sciences,
Informatics, N 009);
Prof. Dr. Agnė PAULAUSKAITĖ-TARASEVIČIENĖ (Kaunas University of
Technology, Natural Sciences, Informatics, N 009).

The official defense of the dissertation will be held at 9 a.m. on 20 June, 2024 at the
public meeting of Dissertation Defense Board of Informatics Engineering Science
Field in Rectorate Hall at Kaunas University of Technology.

Address: K. Donelaičio 73-402, LT-44249 Kaunas, Lithuania.
Tel. no. (+370) 608 28 527; e-mail doktorantura@ktu.lt.

Doctoral dissertation was sent out on 20 May, 2024.
The doctoral dissertation is available on the internet http://ktu.edu and at the libraries
of Kaunas University of Technology (Gedimino 50, LT-44239 Kaunas, Lithuania)
and Vilnius Gediminas Technical University (Saulėtekio 14, Vilnius, LT-10223,
Lithuania).

© V. Drungilas, 2024

KAUNO TECHNOLOGIJOS UNIVERSITETAS

VAIDOTAS DRUNGILAS

BENDRADARBIAVIMU GRĮSTAS
PASKIRSTYTAS MAŠININIS MOKYMASIS

BLOKŲ GRANDINĖJE

Daktaro disertacija
Technologijos mokslai, informatikos inžinerija (T 007)

Kaunas, 2024

Disertacija rengta 2018–2023 metais Kauno technologijos universiteto Informatikos
fakultete, Informacijos sistemų katedroje.

Doktorantūros teisė Kauno technologijos universitetui suteikta kartu su Vilniaus
Gedimino technikos universitetu.

Mokslinis vadovas :
prof. dr. Evaldas VAIČIUKYNAS (Kauno technologijos universitetas, technologijos
mokslai, informatikos inžinerija, T 007).

Redagavo: anglų kalbos redaktorius dr. Armandas Rumšas (leidykla „Technologija“),
lietuvių kalbos redaktorė Aurelija Gražina Rukšaitė (leidykla „Technologija“).

Informatikos inžinerijos mokslo krypties disertacijos gynimo taryba:
prof. dr. Robertas DAMAŠEVIČIUS (Kauno technologijos universitetas,
technologijos mokslai, informatikos inžinerija, T 007) – pirmininkas;
assoc. prof. dr. Razvan BOCU (Transilvania University of Brasov, Rumunija,
technologijos mokslai, informatikos inžinerija, T 007);
prof. dr. Nikolaj GORANIN (Vilniaus Gedimino technikos universitetas,
technologijos mokslai, informatikos inžinerija, T 007);
prof. dr. Tomas KRILAVIČIUS (Vytauto Didžiojo universitetas, gamtos mokslai,
informatika, N 009);
prof. dr. Agnė PAULAUSKAITĖ-TARASEVIČIENĖ (Kauno technologijos
universitetas, gamtos mokslai, informatika, N 009).

Disertacija bus ginama viešame informatikos inžinerijos mokslo krypties disertacijos
gynimo tarybos posėdyje 2024 m. birželio 20 d. 9 val. Kauno technologijos
universiteto Rektorato salėje.

Adresas: K. Donelaičio g. 73-402, 44249 Kaunas, Lietuva.
Tel. (+370) 608 28 527; el. paštas doktorantura@ktu.lt.

Disertacija išsiųsta 2024 m. gegužės 20 d.
Su disertacija galima susipažinti interneto svetainėje http://ktu.edu ir Kauno
technologijos universiteto (Gedimino g. 50, 44239 Kaunas) ir Vilniaus Gedimino
technikos universiteto (Saulėtekio al. 14, Vilnius, LT-10223, Lietuva) bibliotekose.

© V. Drungilas, 2024

5

TABLE OF CONTENTS

TABLE OF CONTENTS ... 5
LIST OF TABLES ... 8
LIST OF FIGURES .. 9
LIST OF ABBREVIATIONS AND TERMS .. 12
INTRODUCTION .. 14
Motivation .. 14
Research objects and scope .. 15
Problem statement and research questions ... 15
Aim and objectives ... 15
Research methodology ... 16
Defended statements ... 16
Scientific novelty .. 17
Practical significance .. 17
Scientific approbation ... 17
Structure of the dissertation .. 18
1. ANALYSIS OF EXISTING METHODS AND SOLUTIONS...................... 19
1.1 Machine Learning .. 19
1.1.1 Ensemble learning .. 22
1.1.2 Distributed machine learning ... 24
1.1.3 Federated learning .. 25
1.1.4 Summary of machine learning approaches .. 27
1.2 Privacy Preservation Methods in Machine Learning 28
1.2.1 Privacy preserving machine learning ... 29
1.2.2 Knowledge distillation approaches .. 30
1.2.3 Knowledge distillation approaches and the blockchain technology 31
1.2.4 Blockchain enabled privacy preserving machine learning 32
1.3 Blockchain Technologies for Machine Learning ... 37
1.3.1 Blockchain platforms ... 38
1.3.2 Blockchain oracles ... 43
1.3.3 Other blockchain technology-based machine learning solutions 46
1.3.4 Participant contribution calculation mechanisms ... 48
1.4 Summary of Analysis ... 50
2. METHOD FOR COLLABORATIVE DISTRIBUTED MACHINE
LEARNING ON BLOCKCHAIN .. 52
2.1 Blockchain platform preparation .. 64
2.1.1 Dataset preparation ... 65
2.1.2 Model training .. 66
2.1.3 Deploying CDMLB platform and connecting to blockchain 67
2.2 Model and Data Deployment ... 71
2.2.1 Contribution to blockchain network ... 72
2.2.2 Contribution calculation ... 74
2.3 Network Knowledge Usage ... 77

6

2.3.1 Predicting using network ensemble .. 78
2.3.2 Network knowledge distillation approach .. 79
2.4 Summary .. 80
2.5 Limitations of the CDMLB Method ... 81
3. IMPLEMENTATION OF THE CDMLB METHOD 83
3.1 Dataset Preparation .. 83
3.2 Implemented Classifiers ... 83
3.3 Implemented CDMLB Blockchain Platform ... 85
3.3.1 Implemented smart contracts.. 86
3.3.2 Implemented oracle services .. 87
3.4 CDMLB Blockchain Platform Usage ... 88
3.4.1 Contributing to the blockchain network ... 88
3.4.2 Contribution evaluation .. 88
3.4.3 Implemented weighted ensemble usage approach ... 89
3.4.4 Implemented distilled knowledge usage approach using the three layer
perceptron architecture ... 89
3.4.5 Implemented distilled knowledge usage approach using the deep learning
architecture ... 90
4. EXPERIMENTAL EVALUATION OF CDMLB METHOD 91
4.1 Performance Evaluation of Model Inference via Local Off-chain Blockchain
Oracles .. 91
4.1.1 Experiment settings .. 93
4.1.2 Benchmarking results for the synthetic dataset .. 95
4.1.3 Benchmarking results for EEG eye state dataset .. 98
4.1.4 Summary of experimental results ... 101
4.2 Shapley-based Ensemble Weighting Strategies Performance Evaluation 102
4.2.1 Settings for the experiments ... 103
4.2.2 Experiment results for homogeneous ensembles ... 106
4.2.3 Summary of results for homogeneous ensembles .. 111
4.2.4 Experiment results for heterogeneous ensembles... 113
4.2.5 Summary of results for heterogeneous ensembles 117
4.2.6 Evaluation of Shapley calculation algorithm complexity 119
4.2.7 Summary of experiment results .. 120
4.3 Performance Evaluation of Knowledge Distillation Approach Using Three
Layer Perceptron .. 120
4.3.1 Experiment settings .. 121
4.3.2 Experiment results .. 122
4.3.3 Summary of experimental results ... 127
4.4 Performance Evaluation of Knowledge Distillation with the Deep Learning
Model .. 127
4.4.1 Experiment results .. 129
4.4.2 Summary of experimental results ... 134
4.5 Answers to Research Questions ... 134
4.6 Threats to Validity .. 135
5. CONCLUSIONS .. 137

7

6. SANTRAUKA ... 139
6.1 ĮVADAS ... 139
Tyrimo sritis ir objektas .. 140
Spendžiama problema ir tyrimo klausimai ... 140
Tyrimo tikslas ir uždaviniai .. 140
Tyrimo metodika .. 141
Ginamieji teiginiai .. 142
Mokslinis naujumas .. 142
Praktinė reikšmė ... 142
Rezultatų aprobavimas ... 143
Disertacijos struktūra .. 143
6.2 EGZISTUOJANČIŲ METODŲ IR SPRENDIMŲ ANALIZĖ 143
6.2.1 Mašininis mokymasis ... 143
6.2.2 Paskirstytas mašininis mokymasis ... 144
6.2.3 Privatumo užtikrinimo metodai .. 145
6.2.4 Blokų grandinės technologijos ... 146
6.3 BENDRADARBIAVIMU GRĮSTAS PASKIRSTYTO MAŠININIO
MOKYMOSI METODAS BLOKŲ GRANDINĖJE ... 147
6.4 BENDRADARBIAVIMU GRĮSTO PASKIRSTYTO MAŠININIO
MOKYMOSI METODO BLOKŲ GRANDINĖJE RELIZACIJA 152
6.5 EKSPERIMENTINIAI TYRIMAI .. 152
6.5.1 Modelio spėjimų skaičiavimo naudojant lokalias orakulo paslaugas vertinimas
 .. 153
6.5.2 Shapley reikšmėmis grindžiamos kolektyvo svorių apskaičiavimo strategijos
efektyvumo vertinimas ... 153
6.5.3 Žinių distiliavimo strategijos efektyvumo vertinimas 154
6.5.4 Žinių distiliavimo efektyvumo vertinimas panaudojant giliojo mokymosi
modelių architektūras ... 155
6.6 IŠVADOS .. 157
REFERENCES ... 159
SCIENTIFIC JOURNAL AND CONFERENCE PUBLICATIONS 174
CURRICULUM VITAE .. 175
ACKNOWLEDGMENTS .. 177
APPENDIXES .. 178
Appendix A. Extended result analysis for Performance Evaluation of Model Inference
via Local Off-chain Blockchain Oracles experiment ... 178
Appendix B. Shapley-based ensemble weighting strategies performance evaluation
experiment results for every tested configuration setting. Presented in median BCE
values .. 181
Appendix C. Source code for the developed blockchain solutions and experiment
procedures... 185

8

LIST OF TABLES

Table 1. Comparison of the machine learning architectures and approaches 28
Table 2. Comparison of existing blockchain enabled privacy preserving ML
approaches .. 33
Table 3. Comparison of the supported smart contract languages and support for oracle
services on blockchain platforms ... 43
Table 4. Comparison of blockchain applications for machine learning 47
Table 5. Model and Data performance valuation via Shapley-based methods 49
Table 6. Countermeasures to machine learning privacy and security threats provided
by the CDMLB method .. 63
Table 7. Tested dataset configurations and data size ... 95
Table 8. Equality of central tendencies using independent sample tests: case of
synthetic dataset .. 97
Table 9. Performance overhead for the local oracle service approach when compared
to the smart contract approach (in %) results for the synthetic dataset 98
Table 10. Equality of central tendencies using independent sample tests: case of EEG
eye state dataset .. 100
Table 11. Performance overhead for the local oracle service approach compared to
the smart contract approach (in %) results for the EEG eye state dataset 101
Table 12. Model training hyperparameter metrics for the used ML model types .. 103
Table 13. Dataset parameters. Categorical features were obtained by using the one-
hot encoding approach, thus resulting in multiple new features............................. 104
Table 14. Ranking position results from all the tested data and implementation
configurations. Bold numbers denote the classifier with the highest rank 112
Table 15. Ranking of the results of the Friedman test for the heterogeneous
experiment. Bold numbers denote the classifier with the highest rank 118
Table 16. Student model training parameters for the knowledge distillation approach
 .. 122
Table 17. Comparison of the median BCE results for knowledge distillation
experiments. The values in bold indicate the BCE value of the best-performing
classifier .. 127
Table 18. Deep learning model training parameters for tested datasets 129

9

LIST OF FIGURES

Figure 1. General machine learning model development process [14] 20
Figure 2. Overview of the PATE approach, proposed by [92] 30
Figure 3. Blockchain block structure [2] ... 38
Figure 4. Smart contract deployment on public blockchain [140]........................... 41
Figure 5. Taxonomy of blockchain oracles, proposed by [152] 44
Figure 6. Environments of CDMLB private blockchain platform 52
Figure 7. Concepts of CDMLB method .. 55
Figure 8. The required initialization procedures for the CDMLB method 57
Figure 9. Development process of the proposed CDMLB method services and smart
contracts .. 58
Figure 10. Process of the CDMLB method ... 60
Figure 11. CDMLB blockchain platform preparation part of the proposed method 65
Figure 12. User roles in CDMLB network .. 67
Figure 13. Minimal required functions for distributed application.......................... 68
Figure 14. General component scheme of CDMLB network components 69
Figure 15. Concepts and operations of the oracle factory network component 70
Figure 16. Components of the contributor node environment required for the CDMLB
method .. 71
Figure 17. Model and data deployment part of the CDMLB method 72
Figure 18. Overview of the proposed ensemble evaluation strategy 76
Figure 19. Proposed procedures for blockchain network knowledge usage 77
Figure 20. Ensemble creation process ... 79
Figure 21. Knowledge distillation architecture.. 80
Figure 22. Proposed splitting strategy for the contributors’ data............................. 83
Figure 23. Visualisation of a decision tree classifier for Bank Marketing dataset,
where the darker is the colour of the node, the more target class cases of the training
data exist there .. 84
Figure 24. Smart contract implementation for Shapley weight calculation............. 87
Figure 25. System configuration for the blockchain network components 93
Figure 26. Model inference calculation time comparison. Synthetic dataset 95
Figure 27. Model inference calculation runtime. Synthetic dataset: smart contract
(left) and the local off-chain oracle service (right) ... 96
Figure 28. Distribution of the calculation time results with a network composed of 13
members and 32768 instances of synthetic data in the model validation experiment
with a median calculation time of 1 minute 19 seconds for the smart contract (left) and
1 minute 19 seconds for the oracle service (right) ... 97
Figure 29. Model inference calculation time when using EEG eye state data 99
Figure 30. Model inference calculation runtime. EEG eye state dataset: smart contract
(left) and the local off-chain oracle service (right) ... 99
Figure 31. Distribution of the runtime results when using a network of 13 peers with
the dataset of 32768 records in the model testing experiment. The median runtime for
model validation was 1 minute 24 seconds for the smart contract (left) and 1 minute
26 seconds for the oracle service (right) .. 100

10

Figure 32. Data splitting strategy for ensemble and monolith development 105
Figure 33. Performance comparison of homogeneous logistic regression ensembles
developed by using BNG dataset .. 107
Figure 34. Ranking of homogeneous logistic regression ensembles developed by
using BNG dataset for Python (top) and R (bottom) implementations 107
Figure 35. Performance comparison of homogeneous decision tree ensembles
developed by using the BNG dataset .. 108
Figure 36. Ranking of homogeneous decision tree ensembles developed by using
BNG dataset for Python (top) and R (bottom) implementations 108
Figure 37. Performance comparison of homogeneous logistic regression ensembles
developed by using Bank Marketing dataset .. 109
Figure 38. Ranking of homogeneous logistic regression ensembles developed by
using the Bank Marketing dataset for Python (top) and R (bottom) implementations
 .. 110
Figure 39. Performance comparison of homogeneous decision tree ensembles
developed by using Bank Marketing dataset .. 111
Figure 40. Ranking of homogeneous decision tree ensembles developed by using
Bank Marketing dataset for Python (top) and R (bottom) implementations 111
Figure 41. Heterogeneous ensemble performance comparison for a range of ensemble
sizes developed by using Python implementation and Bank Marketing dataset 114
Figure 42. Rank-based comparison of heterogeneous ensemble weighting strategies
for models developed in Python environment and by using Bank Marketing dataset
 .. 114
Figure 43. Heterogeneous ensemble performance comparison for a range of ensemble
sizes developed by using Python implementation and BNG dataset 115
Figure 44. Rank-based comparison of heterogeneous ensemble weighting strategies
for models developed in Python environment and by using BNG-credit_a dataset 115
Figure 45. Comparison of heterogeneous ensemble performance for the range of
ensemble sizes developed by using R implementation and BNG dataset 116
Figure 46. Rank-based comparison of heterogeneous ensemble weighting strategies
for models developed in R environment and by using Bank Marketing dataset 116
Figure 47. Heterogeneous ensemble performance comparison for a range of ensemble
sizes developed by using R implementation and BNG dataset 117
Figure 48. Rank-based comparison of heterogeneous ensemble weighting strategies
for models developed in R environment and by using BNG dataset 117
Figure 49. Shapley value calculation runtime comparison between the approximation
method used by Roz [180] (EMC) and posShap (Exact) strategies 119
Figure 50. Compact neural network architectures tested for the student model.
Presented by using the keras plot_model function with the boxes representing neural
network layers, with information about the used activation function and the number
of neural network nodes in a layer .. 122
Figure 51. Prediction performance distribution of distilled decision tree classifier
ensemble ... 123
Figure 52. Performance ranking of distillation approaches and baseline models
developed by using a decision tree classifier. Bank Marketing dataset 123

11

Figure 53. Prediction performance distribution of distilled logistic regression
classifier ensemble comparison with the posShap and Mono approaches. Bank
Marketing dataset ... 124
Figure 54. Performance ranking of distillation approaches and baseline models
developed by using a logistic regression classifier. Bank Marketing dataset 124
Figure 55. Prediction performance distribution of the distilled ensemble of decision
tree classifiers comparison with the posShap and Mono approaches. BNG_credit-a
dataset case ... 125
Figure 56. Performance ranking of distillation approaches and baseline models
developed by using a decision tree classifier. BNG_credit-a dataset 125
Figure 57. Prediction performance distribution of the distilled logistic regression
classifier ensemble comparison with the posShap and Mono approaches. BNG_credit-
a dataset case .. 126
Figure 58. Performance ranking of distillation approaches and baseline models
developed by using a logistic regression classifier. BNG_credit-a dataset 126
Figure 59. TabNet encoder architecture [211] ... 128
Figure 60. Performance distribution for distilled decision tree classifiers developed
by using the Bank Marketing dataset. The main results clusters contained: dist1 –
92%, dist075 – 87%, dist05 – 87% out of the total results 130
Figure 61. Ranking of the classifier performance based on the used distillation
solutions Bank Marketing and decision tree base model case 130
Figure 62. Performance distribution for distilled logistic regression classifiers
developed by using the Bank marketing dataset. The main results clusters contained:
dist1 – 84%, dist075 – 89%, dist05 – 88% out of the total results 131
Figure 63. Ranking of the classifier performance based on the used distillation
amount. Bank Marketing and logistic regression base model case 131
Figure 64. Performance distribution for distilled decision tree classifiers developed
by using the BNG_credit-a dataset. The result cluster containing the highest
performance contained: dist1 – 41%, dist075 – 57%, dist05 – 60% out of the total
results .. 132
Figure 65. Ranking of the classifier performance based on the used distillation
amount BNG_credit-a and the decision tree base model case 132
Figure 66. Performance distribution for distilled logistic regression classifiers
developed by using the BNG_credit-a dataset. The result cluster containing the
highest performance contained: dist1 – 66%, dist075 – 61% dist05 – 70% out of the
total results.. 133
Figure 67. Ranking of the classifier performance based on the used distillation
amount BNG_credit-a and the logistic regression base model case 133
68 pav. Bendradarbiavimu grįsto paskirstyto mašininio mokymosi metodo procesas
 .. 149

12

LIST OF ABBREVIATIONS AND TERMS

Abbreviations:
API – Application Programming Interface
AUC – Area Under the Curve
BCE – Binary Cross-Entropy
BFT – Byzantine Fault Tolerant
CART – Classification And Regression Tree
CDMLB – Collaborative Distributed Machine Learning on Blockchain
DApp – Distributed Application
IoT – Internet of Things
IPFS – Interplanetary File System
JSON – JavaScript Object Notation
ML – Machine Learning
PATE – Private Aggregation of Teacher Ensembles
PBFT – Practical Byzantine Fault Tolerant
PoS – Proof-of-Stake consensus algorithm
PoW – Proof-of-Work consensus algorithm
ROC – Receiver Operating Characteristic curve

Terms:

Blockchain – a decentralised ledger for recording transactions across a peer-to-
peer network [1].

Blockchain network – a decentralised system of computers/participants which
records and shares transactions by using a consensus algorithm [2].

Blockchain network participant – an individual involved in a decentralised
system that may contribute to transaction validation through a consensus
algorithm.

Smart contract – an executable digital contract written as a program code which
automatically enforces predetermined rules when deployed on a blockchain [3].

Blockchain oracle – a network service that connects blockchain network to
external systems or data.

Local web application – a software programme accessed and executed on a
device operating without continuous connection to the Internet.

13

In the context of this work, the following terms are used with a specific

meaning:

Trust – firm belief of a participant in the reliability of software solutions [4] and
trust between collaborating organisations and individuals [5]

Partial trust – the trust required to participate in the collaboration and the
decision to commit model and validation data files to the network, but not high
enough to share training data outright.

Machine learning security (ML security) – the ability to protect data and model
assets, model usage and development procedures against attacks [6].

Transparency – the ability to openly access and audit information [7].

Privacy preservation – ensuring non-disclosure of private information used in
the machine learning model development process [8].

Collaborative machine learning – a machine learning process which has two or
more participants that perform model development, model sharing or data
sharing activities [9]. In the context of this dissertation, the overviewed methods
and the presented solution are confined to the binary classification task.

14

INTRODUCTION

Motivation

The amount of data created worldwide is increasing as more and more people
use network and communication technologies. To extract knowledge from such
amounts of data effectively, automated data processing approaches must be
developed. One such use case of data processing for various applications is machine
learning. Machine learning solutions [10], [11], [12] are used successfully in computer
vision, healthcare, predictive analytics and intelligent decision making, speech and
pattern recognition, and other domains. With the increasing machine learning
popularity, a growing number of parties try to solve similar machine learning
problems, but, due to a limited quantity of high-quality data, they might not be able
the achieve sufficient performance of machine learning models. Collaboration could
be beneficial in all the machine learning development steps. Better performing models
can be obtained by building more diverse datasets composed of multiple data sources;
Model training would require less computational resources to achieve the model of a
higher quality; Shared models could be reused, thus reducing the need to train new
local models. Unfortunately, currently, machine learning model development is often
contained in a single centralised environment with a limited amount of data.

Decentralisation could resolve such problems, but the demand for data sharing
and collaboration in machine learning could lead to privacy and data or model security
issues. Multi-party collaboration environments should not reveal any personal or any
other sensitive information about the real-world entities. The data transfer channels
should be secured, and technologies and services used should be trustworthy for the
participants. A wide range of solutions have been proposed to facilitate the distributed
machine learning process. The distributed learning solution could allow cooperation
and improved performance. Participation in the distributed machine learning process
can still suffer from lack of trust between the participants and the services, and the
potential participants might lack the motivation to participate.

Distributed ledger technologies could be applied to solve trust and transparency
issues. Distributed ledger technologies introduce interaction logging and might not
require trusting network participants and services. Among the distributed ledger
technologies, blockchain is the most prominent one. Blockchain technologies
introduce data replication, which results in a system architecture that is more resistant
to attacks. The trust issue is addressed by transaction logging, open access to stored
data, and the immutability of blockchain networks. Every action performed on the
blockchain is validated and logged, thus reducing the risk of malicious actors. An
additional execution logic hosted on the blockchain can be introduced in the form of
smart contracts. A smart contract enables the development of more diverse and
complex distributed solutions. Smart contracts could also be extended by specialised
services, which would allow distributing, reusing, and integrating the already existing
solutions.

Currently, no well-established methods exist that would enable collaboration in
distributed machine learning on blockchain technologies and ensure privacy

15

preservation, while allowing to reuse the already existing machine learning
implementations.

Research objects and scope

The dissertation research object is collaboration in distributed machine learning.
The scope of this research is focused on two main research areas: 1) collaborative
distributed machine learning methods, their architectures, and the application of
blockchain; and 2) blockchain technology-based systems methods, tools, and
approaches.

Problem statement and research questions

 Collaborative distributed machine learning approaches are limited by
insufficient trust, limitations imposed by sensitive data, and a complex adaptation
process for the currently existing machine learning solutions. To propose resolution
methods for the aforementioned problems, this dissertation aims to answer to the
following research questions:

RQ1. Can distributed machine learning transparency and collaboration be
improved and, if so, how?

RQ2. How can blockchain technologies facilitate the collaborative distributed
machine learning process?

RQ3. What modifications to blockchain technologies are required to enable
collaboration in distributed machine learning?

RQ4. How can blockchain network participant data and model contributions be
measured in collaborative distributed machine learning?

RQ5. Can training data privacy preservation be improved in blockchain
technology-based distributed machine learning?

Aim and objectives

The aim of this thesis is to improve collaboration in distributed machine learning
by using blockchain technologies. A number of objectives to reach the defined aim
have been outlined:

1. Analyse distributed machine learning methods and collaboration approaches.
2. Analyse blockchain technologies, and their applications for distributed

machine learning processes.
3. Propose a method for collaboration in distributed machine learning.
4. Implement the solution for collaborative distributed machine learning

according to the proposed method.
5. Assess how the application of the blockchain technology affects distributed

machine learning.
6. Evaluate the method capabilities to perform collaborative distributed machine

learning.

16

Research methodology

The research was conducted by employing the constructive research method
[13]. Based on the proposed method, the research was carried out in multiple stages:

 During the first stage, the research object and scope were defined, which
encompass privacy-preserving distributed machine learning methods, their
architectures and the application of blockchain, blockchain technology-
based systems methods, tools and approaches. A research problem on
collaboration in the distributed privacy-preserving machine learning process
was identified.

 The second stage was dedicated to defining the research potential – how the
blockchain technology could assist in resolving collaboration and privacy-
preservation problems in distributed machine learning.

 The analysis of the defined problem domain was performed in the third
stage. Comparative analysis of the currently available research and solutions
combining privacy-preservation methods, the blockchain technology and
distributed learning was conducted.

 The solution definition process was performed as step four, where the
method for privacy preserving distributed machine learning was proposed,
which provides means of collaboration when using private blockchain
solutions and introduces methods to evaluate shared contributions.

 The fifth stage was dedicated to the implementation, experimental
evaluation, and feasibility evaluation of the proposed method for potential
application areas – the blockchain solution for CDMLB was implemented
by using the proposed method and experimentally evaluated, by measuring
the runtime and machine learning solution performance. The performance
evaluation tested the applicability of the proposed method for two banking-
related binary classification tasks. The performance of the developed
classifiers for these datasets was experimentally tested.

Defended statements

1. The existing private blockchain architectures can be enhanced to support
more diverse machine learning execution environments on a collaborative
DML blockchain network.

2. Contributions of models to the collaborative DML blockchain network for
individual participants can be evaluated by using the Shapley-based
weighting strategy.

3. Knowledge distillation can be used to aggregate the model ensemble into a
single model, without significantly reducing the performance of the classifier,
in collaborative DML on a private blockchain network.

17

Scientific novelty

1. The proposed collaborative distributed machine learning method expands the
existing capabilities of distributed machine learning on blockchain by
extending the system architecture with the machine learning inference oracle
service.

2. The proposed method introduces a Shapley value and performance-based
ensemble weighting strategy as a solution to measure the network participant
model contribution.

3. The proposed method uses the student-teacher distillation approach to
increase the model privacy by enabling the aggregation of knowledge
accumulated on the blockchain network.

Practical significance

1. The proposed method allows integrating the already established machine

learning technologies into the blockchain architecture via local off-chain
oracle services.

2. The proposed ensemble weighting strategy can be defined as a generalisation
of performance weighting, which could be applied in any weighted ensemble
development approach.

3. The proposed ensemble weighting strategy increases the performance of the
tested binary classification tasks which used tabular data, when compared to
the centralized approach or other weighting strategies.

4. The provided model usage scenarios enable privacy-preserving network
knowledge extraction for individual usage or future development.

5. The provided model combination method allows combining heterogeneous
model types, thereby increasing the ensemble diversity and allowing for
increased collaboration opportunities.

Scientific approbation

The dissertation results have been presented in 5 academic publications: two
publications in a periodical scientific journal (MDPI Applied Sciences, Q2) and three
in proceedings of international conferences. The complete publication list with the
referral information can be found in the SCIENTIFIC JOURNAL AND
CONFERENCE PUBLICATIONS section.

18

Structure of the dissertation

The first chapter presents the results of exploratory analysis on distributed
machine learning approaches, as well as the privacy preservation methods for the
machine learning blockchain technology. Moreover, cooperative analysis of the
currently existing blockchain-enabled collaborative distributed machine learning
approaches is presented in this chapter. The second chapter defines the proposed
collaborative distributed machine learning method and specifies requirements and
procedures for the blockchain platform preparation, model and data deployment, and
network knowledge usage parts of the method. Each individual method step is
provided with a formal definition and a demonstration of its implementation. The third
chapter presents empirical assessment of the proposed method. The dissertation
conclusions are presented in the fourth chapter. The dissertation also provides a
summary in Lithuanian, a list of references and scientific publications, and a
conference list.

19

1. ANALYSIS OF EXISTING METHODS AND SOLUTIONS

The analysis of the currently existing research and relevant solutions is
presented in this chapter. As the research consists of a combination of a few research
areas, all of them are overviewed individually as well as by adopting multidisciplinary
approaches. The analysis starts by describing machine learning concepts and
prominent research works in the distributed machine learning field. Whereas, in the
second part, an overview discusses methods for collaboration in distributed learning
and privacy-preservation methods applied to distributed learning. Lastly, analysis of
the blockchain technology, its architecture, and solutions associated with distributed
machine learning is presented.
 Currently, organisations and people that could participate in the collaborative
machine learning and would benefit from the high-quality models in their workflows
might not be sufficiently motivated because of multiple reasons. Due to sensitive or
private data used in the processes, the parties could be limited to the amount of data
they can share with other participants. Data sharing in the competitive environment
could also introduce risks of providing advantage to one’s competitors. This reduces
the trust in the collaboration, and, if trust is not enforced by the developed system, the
solution becomes not viable. Collaboration might also be hindered by security
concerns, especially in the domains that contain sensitive data, such as healthcare and
finances. Additional drawbacks exist for parties that are already using machine
learning solutions in their domain(s), as the transfer from the local model usage to
collaborative solutions might require additional development, which requires changes
in the existing data management and model training pipelines. Such changes can
disrupt the already developed solutions and procedures. Thus, the introduction of the
collaborative process should bring significant improvements to negate the costs.
Addressing these challenges and drawbacks requires a complex approach which is
bound to focus on building trust among the participants, developing tools and methods
to facilitate the adaptation and integration of the existing machine learning solutions
into collaborative distributed machine learning environments. By addressing these
challenges, collaborative distributed machine learning approaches can unlock the full
potential of distributed data and resources, which would lead to more effective
machine learning solutions.

1.1 Machine Learning

In the recent years, machine learning approaches have become more widely
adopted [10], [11], [12] in various industries and research areas due to the ability of
technologies to process large amounts of data and learn from patterns. Machine
learning has been applied to image and speech recognition, with applications that are
able to detect objects as well as text, and identify faces. Natural language processing
is also another area of machine learning applications; research and application in this
area introduced the usage of the language translation service, and chatbots of text
analysis tools. Machine learning not only can make detection and classification tasks
easier, but it has also been applied in such research areas as the healthcare, where it
enables discovery and development of medical drugs and is even used to aid disease

20

diagnosis. Although some of the machine learning application areas are still
developing, its usefulness and success have already been proven in such domains as
finance and banking. All machine learning solutions apply some kind of a machine
learning model. This model must be developed by providing data and computation
resources. The machine learning model development procedure commonly consists
of multiple stages (Figure 1). The machine learning model development procedure
[14] consists of four main parts: data preparation, model tuning, performance
evaluation, and model usage.

Figure 1. General machine learning model development process [14]

The data collection process is the first stage of the machine learning process.
The data used in machine learning processes can be obtained by using multiple
approaches [15], [16], ranging from crowd sourcing to data discovery or data
synthesis. On the basis of the machine learning approach used, the collected data
might require labelling. The labelling process maps the real-world objects to one or
multiple labels. Labelling processes are required once the data have been collected,
and the next step is to preprocess the dataset.

Multiple approaches to data preparation can be employed, and the required
procedures vary depending on the dataset structure and the data themselves. In
general, data preparation removes empty or erroneous data instances, cleans the data
by removing duplicates, and standardises the data instances. The features of the
dataset are then explored and selected. The feature exploration reveals patterns
occurring in the data and relationships between the variables if such exist. If a selected
dataset contains categorical data, it requires encoding to modify data formats from
text to numeric features [17], while text-represented data are encoded into numerical
data creating the required number of numeric classes. The data preparation process
concludes with a modified dataset that is ready to be used in the model training
process.

Typically, for tuning and performance evaluation, the dataset is divided into
three parts: training, validation, and testing [18]. The training part is used to develop
the model, validation is used in model training to tune the model hyperparameters,
and the test dataset is used on the developed model to evaluate its performance.

21

Machine learning approaches can be divided into three categories based on the
input data type and the application type. Supervised learning approaches use input
data and the corresponding output data labels [19], [20]. Supervised learning
approaches tune a function which maps the input data to a desired output [20], [21].
On the other hand, unsupervised learning approaches are only provided with
unlabelled input data [22]. Unsupervised learning approaches develop a function that
is used to describe the data structure of the input data and group them [23].
Unsupervised learning is commonly used to cluster data based on similarities and data
patterns. Reinforced learning is a machine learning method that allows a program or
a machine to perform actions in order to gain the maximum reward [24].

Multiple types of machine learning models [25], [26] could be used in both
supervised and unsupervised settings, such as logistic regression [27], Classification
And Regression Tree (CART) classifiers, or neural networks [28]. Based on the type
of the machine learning model selected, the training procedure is performed in batches
or on a larger part of the original dataset. Training approaches that use an unbatched
dataset, such as the logistic regression decision tree, usually try to fit a function to
detect a data instance class on newly provided data.

One of such approaches requiring data batching is the Stochastic Gradient
Descent (SGD). The SDG algorithm minimises a loss function based on the model
outputs by modifying the model parameters to follow the general trend of the negative
gradient. The gradient is defined as stochastic due to the subset of data randomly
selected for training. The common training procedure for SDG algorithms starts with
the sampling of a batch of data to form a training dataset. Then, during training, the
model predictions are calculated, and the model output is compared with the true
output via the loss function. The gradient of the validation data batch is calculated,
and the model parameters are adjusted repeatedly. Multiple loss functions are used to
evaluate the model performance. For example, the most common metric in the binary
classification is the Area Under the Curve (AUC) [29], [30] which is derived from the
plot of the Receiver Operating Characteristic curve (ROC) [22] – [24]. Since the
model output as a soft decision is a floating number between 0 and 1, the threshold is
needed to arrive at the hard decision (predict the class – either ‘0’ or ‘1’). The default
threshold of 0.5 may not be optimal; therefore, the testing of all possible thresholds
provides a more comprehensive evaluation. A specific threshold results in a trade-off
between the accuracy of the target class (true positive or hit rate) and the error of the
nontarget class (false positive or miss rate). The ROC curve summarises all possible
thresholds with their corresponding trade-offs. Often it is convenient to have a single
number instead of a performance curve, and, in the case of ROC, this number is AUC.
The statistical interpretation of AUC is as follows: the probability that the output of
the classifier will have a higher value for a randomly chosen target class instance than
for a randomly chosen nontarget class instance [31]. ROC curves are not always the
most viable approach when the dataset class rate is highly disbalanced, and, in that
case, other loss functions may produce better results. Another comprehensive
performance metric for binary classification is the Binary Cross-Entropy (BCE), also
known as the log-loss [32], [33].

22

Finally, the validation subset of the data is used to measure the performance of
the classification or regression task on data that were not used in the training process
in the performance evaluation step. After training the classifier and evaluating its
performance, the parameter adjustment [34], [35] can be repeated. Model parameters
can be tuned manually, but such a process is time consuming and complex as machine
learning models contain a large number of parameters, and the relationships between
multiple parameters may be unclear to the developer. Automated approaches [36] to
tune parameters are more commonly used.

When the parameter tuning has been completed, the model performance is
evaluated on testing the data split. With sufficient performance, the model can be
stored into a file, deployed into interactive environment, and used for the classification
of regression tasks [37], [38].

In every stage of the machine learning model development process, security
must be ensured by the developer. As the machine learning process deals with training
data that may contain sensitive information such as pictures, names, or even social
security numbers of individuals, confidential information about the business, the
security and privacy of such data must be ensured [39]. During the data management
stage, the model developed must ensure the integrity of the data, apply the required
data anonymisation actions, and ensure that the usage of the data would not reveal
sensitive information [6]. Multiple data protection methods have been proposed to
secure private information such as differential privacy [40], data encryption [41], and
multiple others [39], [42], [43]. The model training procedure should also ensure that
any data that are used remain undisclosed to external adversaries and do not reveal
information about any individual or any other entity. Part of the model training
security measures are designed to protect the loaded training data in the hardware
performing the training procedures [44]. Other security methods which do not rely on
hardware protection have also been proposed for secure model training to ensure the
integrity of the system and protect the valuable assets [6], [39], [42]. The developed
model can also be used in revealing sensitive data without the proper security
measures via the membership inference [41] or model inversion attacks [42].

In the context of this dissertation, the overviewed methods and the presented
solutions are confined to the machine learning classification task. Some approaches
show better performance when more than one classifier type is being used. Multiple
classifiers can be combined into a single classifier defined as a model ensemble [45].

1.1.1 Ensemble learning

Ensemble learning is a technique where multiple machine learning models are
combined in order to obtain a better performance model [46]. Many machine learning
model types can be used to develop ensembles [45], [47]. One of the most popular
approaches is ensembles developed by using CART [48] classifiers. The benefit of
developed ensembles stems from the diversity of combined classifiers and how
different classifiers can represent the same real-world entity in a different manner for
the same training dataset. This is especially useful because decision tree classifiers are
diverse in their development processes based on decisions and data partitioning.

23

The most popular CART classifier aggregation to ensemble methods is bagging
and boosting [49]. The bagging method utilises the sampling of random subsets from
the training dataset and uses these to train a single model for ensemble creation.
Whereas, the boosting approach utilises iterative processes to continuously adjust
weights of falsely classified samples. Another approach that uses a subset of the data
to train parts of the ensemble classifier is called the random forest approach [45]. The
random forest approach develops multiple CART classifiers by sampling not only
subsets of data, but also a subset of features.

The ensemble creation techniques display better performance than a model
developed without ensembling. They are commonly used as local not distributed
algorithms, which requires centralised data for ensemble building. However, some
online ensemble development techniques exist and are capable of training by using
data streams. Two examples of such a technology would be the online AdaBoost [50]
or online Arcing [51] approaches. The latter approach [51] is closely related to online
learning; it emphasises training on more recent data batches. The approach utilises a
fixed-size ensemble of classifiers and builds a new one on new data batches. This
newly created classifier then replaces the worst performing one from the fixed-size
ensemble. Such a replacement is performed after the validation of new data. It can be
achieved in two possible methods – either directly, by using the streaming ensemble
algorithm [38] by using the majority weighting, or indirectly, by using the best
performance-weighted classifiers, as in the performance-weighted ensemble [52].

There are many ensemble merging techniques in existence. One such approach
is the weighted averaging of ensemble predictions [53]. Multiple strategies to tune the
ensemble weights are available [47], [54]. The majority voting case allows using every
classifier’s input [54], while the performance-based method evaluates the model
performance and uses it to define weights [47], [55]. The performance-based
weighting process consists of two steps: the model evaluation and the ensemble
weights adjustment based on the model evaluation. Model stacking is another
approach that can also be used to derive final ensemble predictions, as in the meta-
learning approach [56]. In a recent development, a novel approach for achieving an
optimal ensemble was introduced in [26]. The approach involves combining the
tuning of hyperparameters and weights specifically tailored for regression tasks.
Additionally, the utilisation of effective weights can aid in arranging classifiers for
ranking-based ensemble selection, thus effectively filtering out nonuseful classifiers
as part of the ensemble reduction. It should be noted that search-based approaches
generally outperform ranking-based methods in terms of accuracy, as highlighted in
[25]. However, due to the optimisation process required for weight tuning, search-
based approaches are more computationally intensive compared to their ranking-
based counterparts.

Ensemble development can be divided into two categories. Homogeneous
ensembles use a single type of the machine learning model as in the random forest
approach, whereas heterogeneous ensembles [45], combine multiple model types to
develop an ensemble. The development of heterogeneous models is usually made up
of two phases: the development of a diverse set of machine learning model types by

24

using the same training dataset, and the model selection for combining them into an
ensemble.

Although ensemble learning is a popular approach towards improving the
classifier performance, it is usually still developed by using a single dataset and using
a model development environment. To better solve machine learning problems that
have multiple data producers or require collaboration between multiple data
producers, distributed machine learning approaches have been proposed, which
commonly build upon ensemble learning approaches.

1.1.2 Distributed machine learning

Distributed machine learning differs from centralised machine learning in the
sense that it has multiple parties which produce data or train multiple or single models
that are later combined into a single model. Similarly to ensemble learning, there are
three types of information that can be combined in the distributed machine learning
setting – classifiers, classifier representations, and classifier predictions.

Based on the number of participants, the distributed machine learning solutions
are divided into two categories: individual and collaborative. Solutions that are
developed by a single entity by using a distributed setting that usually uses a
centralised server to aggregate model or data artefacts from multiple devices or
software-based solutions are defined as individual distributed machine learning. Such
distributed machine learning approaches do not require defining complex
collaboration processes and rules. Meanwhile, collaborative distributed machine
learning combines input from multiple entities, and comprises multiple collaborating
parties at any given time which would benefit from sharing data and machine learning
models to receive a classifier of a higher quality. The key difference between the two
approaches is that collaborative learning requires trusting the participating parties and
used services as, for the individual approach, all services are naturally trusted.
Collaborative distributed machine learning also requires additional security and
privacy measures because other parties might be malicious, or communication
between such parties could be compromised, by revealing models or data that are sent
in the course of the communication.

When combining machine learning model representations, a few limitations
may arise. Machine learning models may be represented in a wide range of formats
that are imposed by different learning libraries and development environments. To
address these discrepancies between the model file representations, model
representation unification strategies are employed. In the process of applying the
unification strategy, some internal model context is lost [57]. The unified model can
lose so much context that the data would become unusable after unification [57].

Contrarily, when combining classifier predictions, internal model representation
is not as important because the predictions need to be presented in a unified format.
Predictions can be represented either in the numeric or in the categorical format. The
transformation between numeric and categorical data can be achieved by setting the
numeric label for categorical data.
 Similar strategies that were presented in the ensemble learning section can be
achieved in a distributed setting, as distributed learning relies heavily on model

25

combination techniques, such as boosting [58], stacking [59], or meta-learning [60].
Based on the solution implementation architecture, distributed machine learning [61]
can be divided into two categories:

Centralised: it contains multiple data producers uploading raw or aggregated
knowledge to aggregate information at a single location [62].

Distributed network: here, a peer-to-peer network with multiple participating
members exchanges knowledge and participates in the network management [63].
Distributed networks can also operate by the collaboration of multiple participants
who share data, machine learning models, or model representations. In the context of
this thesis, distributed learning is defined as machine learning with multiple
participants who share data and model artefacts in a peer-to-peer manner.

From the standpoint of the machine learning model aggregation and the machine
learning model development, the methods can also be divided into centralised and
distributed. When the computations are completed by a single machine and contain a
local dataset, such an approach is defined as centralised [61]. But, due to large
amounts of data, or because of data distributed over multiple storage locations, a
centralised approach is not always viable. The technologies that aggregate data from
multiple sources or divide computations into multi-agent environments are defined as
distributed solutions. Such solutions were popularised by the map-reduce framework
[64]. Such a distributed computation model inspired the development of many
distributed learning frameworks and libraries, such as PyTorch [65], Apache Spark
[66], and others [67], [68]. The distribution of computations allows developing more
complex models by using a higher amount of data when compared to centralised
approaches. The application of such a technology is also explored in the proposed
method implementation by using Apache Spark as one of the tested model
development frameworks. The Apache Spark framework is only tested as a
technology that enables distributed model development by the method participants by
using their local environments. It is not used to distributed computations when models
are used in the proposed blockchain platform.

Some of the distributed learning solutions do not require the sharing of raw data
[69], while others [70] rely on the sharing of small datasets for the testing or validation
purposes [71]. One of the most common approaches in distributed learning is the
federated learning solutions.

1.1.3 Federated learning

Federated learning represents a distributed machine learning technique which
enables the training of models on a network of decentralised contributors. In contrast
to the conventional machine learning methods relying on the centralisation of data for
model development, federated learning works by training models on numerous
decentralised devices [26]. Rather than uploading all data samples to a single server,
devices retain their local data samples without sharing them with other devices [27] –
[29]. Machine learning models are trained locally on edge devices, or by collaborating
member environments and the produced model, which is sent to the model
aggregation server. The model aggregation server receives multiple models from
multiple providers and updates the global model. The model is then returned to the

26

network participants to use with an increased performance. Such an approach when
the network contains multiple data or model information providers is defined as
horizontal federated learning [72]. Horizontal federated learning is the most common
application of federated learning, with a high amount of research interest in combining
federated learning and the internet-of-things domains. Another federated learning
approach is vertical federated learning, where, instead of providing multiple instances
of the same data, the network participants provide different data features dedicated to
the same machine learning problem. Due to its popularity and the dependency of the
machine learning process on high quality and quantity data for machine learning, the
analysis will focus on horizontal federated learning. Federated learning offers utility
in these main aspects:

 Load-balancing: here, load balancing is used to distribute computations for
machine learning. As the machine learning computations are performed in a
participant environment, the computational load is naturally distributed to be
merged at the central server.

 Privacy preservation: it allows for participation in the machine learning
process without revealing the training data. The training data privacy in a
federated learning process is provided by the retention of the training data in the
participant devices. Similarly, model encryption and secure model aggregation
can be applied to increase the privacy of the training data.

Several innovative solutions have emerged to distribute the training process
[71], [73], [74]. One such example is Google’s implementation, where they utilise the
cloud infrastructure to distribute the Gboard (Google keyboard) [75] model across
multiple devices. The model is initially deployed and later improved with the user
data. The improving process is completed via model updates from the user-provided
model gradients. These model updates are then combined in the cloud-based web
service and incorporated to enhance the shared model even further. The underlying
principles of this approach demonstrate that decentralisation can effectively support
the training of a single common machine learning model.

Nvidia presented another innovative solution for federated learning, aiming to
create robust machine learning algorithms which enable different nodes to collaborate
on the training model while maintaining data privacy [76]. In this approach, Nvidia
employs a server-client framework where a centralised server acts as a
manager/facilitator for various clients. By using the proposed architectures, the users
can collaborate in the model training process while still retaining control over the local
model training. The process of collaboration involves training local models on
individual devices, followed by sharing local model weights, which are then used to
update the global model based on the weights and historical contributions. Although
the infrastructure supports the use of different models, it still relies on a centralised
node to aggregate weights and update the shared model, which leads to a bottleneck
in terms of resources and computational power.

As federated learning systems are composed of many data producers, the
domains that contain elements distributed in the physical space and domains that

27

require an increased privacy are the key application areas. For example, regarding the
Internet of Things (IoT) [71], [73], healthcare [77] is one of the most popular areas of
its application due to the distribution and the higher demand for privacy. In the context
of IoT applications, federated learning is applied to improve on data sharing, security,
and crowdsensing issues. Although federated learning is applied in multiple domains,
the following challenges are still present in machine learning solutions [78]:

 Federated learning solutions rely on centralised processing. Centralisation of
the process may lead to the system being more susceptible to denial-of-service
attacks, where negated access to the centralised server disrupts the ability to use
the entire system [79], [80]. With centralisation come the performance scaling
issues, as, with a greater number of data providers, the possibility of
performance overload increases [79], [80].

 Federated learning approaches lack an incentive mechanism. Without sufficient
motivation, the number of network participants can decrease. With sufficient
incentives, the drawback could be alleviated, and new members could be
motivated to join [43], [81].

 Many of the proposed solutions lack robustness and could be vulnerable to
poisoning or Byzantine attacks. The results of such attacks could seriously
reduce the accuracy of the system and even lead to the denial of service [82],
[83].

The analysis of federated learning approaches revealed that federated learning
can be applied to multiple domains, and that its approaches are popular in the Internet
of things, healthcare, and other domains. Even though federated learning uses a
separated network of data providers, most of the implemented solutions still rely on a
centralised network architecture. This creates a weak point susceptible to attacks and
might reduce performance with high user counts when comparing it to a distributed
system. Furthermore, many of the proposed solutions use a single type of machine
learning model or are dedicated to a single machine learning task, thus reducing the
flexibility of the system, and hindering collaboration.

1.1.4 Summary of machine learning approaches

Each machine learning model training architecture could have advantages over
another option based on the machine learning problem, the number of participants,
and the specific requirements for the task. The local model development might be the
most applicable in those cases of use where the model development can be completed
with the local computational resources, and when the datasets used contain enough
instances to develop the model. Multiple participants can collaborate in the local
machine learning model development by merging datasets before training and sharing
the developed model afterwards. Federated learning approaches are mainly applied
when there are multiple data providers, and a single entity performs the model training
and tuning. Federated learning mostly trains complex neural network architectures
which can support a high amount of knowledge. The complex development and long

28

model tuning of federated learning limits the adaptability of other model types or the
reusability of a single architecture for multiple machine learning problems.
Distributed machine learning is capable to support both centralised and decentralised
architectures and a wide range of collaboration approaches, from data sharing to
model sharing. When collaborating via the data sharing, the data is merged before
training as the model sharing approach requires more complex model merging
strategies. The comparison of machine learning model training architectures is
provided in Table 1.

Table 1. Comparison of the machine learning architectures and approaches
Criteria Local model

training
Distributed
machine
learning

Federated learning

Data
accessibility

Offline Online Online

Data sharing - Not required /
required

Not required

Complexity of
support for
new model
types

High High Highest

Multiple
participants

No Yes Yes

Possible
system
architectures

Centralised Centralised or
distributed

Centralised or distributed

Means of
cooperation

Model and data
sharing

Model and data
sharing

Model gradient sharing

Limitations Collaboration
requires
complete data
sharing and
trust between
the participants

Requires model
combination and
may require
significant
development
time to support
new model or
data types

Inclusion of a new model or a new
data type to federated learning
networks is complicated due to
required high model training and
development time

All machine learning architectures and methods, including distributed and
federated learning, require security and privacy. Viable privacy preserving measures
are overviewed in the next section.

1.2 Privacy Preservation Methods in Machine Learning

Privacy preservation is an important aspect in every stage of the machine
learning pipeline. The importance of data privacy and security has been demonstrated
by data standards [84] and legislation measures [85]. Different stages of the machine
learning process deal with different privacy issues and demand distinct privacy
ensuring measures. Data management and processing stages of the machine learning
pipeline require secure and privacy-preserving data management to ensure that the

29

data are not revealed to the public or malicious adversaries. Model training procedures
must ensure that neither the training process nor the developed model would reveal
any sensitive training data. Model deployment should not reveal information about
the training data in use and ensure that sensitive information is not accessible via
derivative artefacts or model predictions.

1.2.1 Privacy preserving machine learning

The machine learning model development process utilises data representing
real-world entities. The data for machine learning could represent publicly available
data or private personal data. The disclosure of private data could have serious
implications for people, companies, or governments. Therefore, when dealing with
sensitive private data, privacy preservation measures and methods should be
employed. Based on the used machine learning approach, all parts of the machine
learning pipeline could require privacy preservation, ranging from private data
acquisition and management to secure model deployment and usage.

Data privacy methods are important in the machine learning model development
process because attacks may reveal sensitive data. Three main groups of approaches
to ensure privacy in machine learning processes are: anonymisation of the data [86],
[87], [88], cryptographic approaches to secure transferred information [89], [90], and
architectural approaches [91], [92], [93].

The first category of data privacy preservation approaches is to anonymise the
training data [86], [87]. Traditional data anonymisation techniques, such as k-
anonymity [86], l-diversity [87], and t-closeness [88], define methods to select data
that do not reveal identity information.

Similar approaches which are designed to select a subset of data which would
not reveal the identity of any individual data points are defined as differential privacy
[40]. The security and integrity of the data preparation step performed should not
disclose any sensitive information or modify the provided dataset to introduce new
features or unique conditions which would reveal the identity of any real-world entity.

The privacy preservation approach also depends on the selected model training
implementation approach. When training the model in a local environment, data
privacy is naturally ensured [94]. Model training privacy preservation requires the
introduction of noise in a trained machine learning model so that not to reveal the
identities of the training data by using model inversion attacks. Model training
architectures and approaches requiring communication with external sources or an
external training environment should ensure the security and privacy of the
communication channels and the information that is transferred through these
channels [89], [90]. Similarly, if the model training stage requires sending derivative
information of the trained model, such as predictions or trained neural network
gradients, the privacy of such artefacts must be preserved [68], [95]. In cases when
the model developer and the user of such a model are separate entities, privacy-
preserving machine learning model deployment is required. In such a model
deployment approach, model compression [91], model transformation [39], or
knowledge transfer approaches are usually applied [92], [93].

30

In the context of this dissertation, the data anonymisation and machine learning
model development steps are computed individually by each participant and
performed in diverse self-managed environments. The privacy of such environments
depends on the owners, and, as training data and model training processes should not
require any communication, their privacy should be naturally preserved [94]. The next
section will overview the applicable privacy preservation approaches for the model
deployment stage of the machine learning process.

1.2.2 Knowledge distillation approaches

After securing the training data and the machine learning model development
processes, the solution developer should ensure privacy-preserving of the model
deployment processes [40], [96]. Multiple solutions for private model deployment
have been proposed [97], [98], [99]. Most of the proposed solutions apply a
modification of knowledge transfer from single or multiple models to a new neural
network model to secure sensitive model parameters. The propositions for such a
system defined as the Private Aggregation of Teacher Ensembles (PATE) were
suggested by [92], [93]. The PATE approach (Figure 2) utilises multiple subsets of
sensitive data to train a number of teacher models. The proposed method divides the
initial sensitive dataset into an N number of datasets and uses these subsets to develop
multiple teacher classifiers. The developed teacher models are combined into a model
ensemble. The ensemble predicts by voting with noise added to the voting histogram.
The aggregated teacher delivers the predictions on the public dataset provided. These
predictions are used to train the student model in conjunction with public unlabelled
data. The PATE model security relies on access restrictions. The data preparation and
aggregate teacher development stage must not be accessible to malicious actors, as
these artefacts contain sensitive information. After the creation of the student model,
such restrictions are not required as the model cannot reveal any sensitive information
about individual models or sensitive data on which it was trained, thus increasing
privacy.

Figure 2. Overview of the PATE approach, proposed by [92]

Although the PATE approach proposes using a single dataset that is divided into
subsets, a similar approach could be applied when multiple data producers are
collaborating on a defined machine learning solution, while using similar data
structures [100], [101], [102], [103].

Solutions that expand the original proposition of PATE or utilise its concepts in
different approaches have been proposed. In the field of federated learning, the authors
of [103] proposed a modification of the PATE approach. The updated knowledge
transfer approach uses multiple data providers with individual datasets. The need of

31

unlabelled data for student model training is removed, and model distillation via a
generative learning approach is defined. Distillation approaches can be divided into
offline [104] and online [105] approaches.
 Other modifications of the PATE approach have been proposed [106]. Some of
the proposals (see, e.g., [106], [107]) also investigate the ability to model teacher
knowledge as graphs which transfer information from teacher models to the student
model. Other research concentrates its attention on the usage of a diverse group of
teacher models for knowledge distillation [108], [109], [110]. Many other
improvements and modifications exist which improve the initial proposition by
shifting the research focus to data features [111], [112] or to attention [113].

Multiple research papers have proposed a combination of knowledge distillation
and blockchain technology. An overview of such research is presented in the
following section.

1.2.3 Knowledge distillation approaches and the blockchain technology

Research combining knowledge distillation, federated learning, and the
blockchain technology has been explored in [95], [114], [115]. Combining the
blockchain technology can improve the security and robustness of the proposed
system [95]. The introduction of knowledge distillation allows more diverse model
types to be supported in a federated learning environment [95].

The authors of [95] proposed a knowledge transfer approach which enables the
support of multiple types of machine learning models in federated learning. The
authors utilized blockchain to mitigate the single-point-of-failure risk and provide
logging of the network participant actions to an immutable ledger. The authors
developed and experimentally tested two types of smart contracts. The first one is
dedicated to managing federated learning processes, whereas the second type focuses
on storage management.

A novel decentralised federated learning method was proposed by [114]. This
method is designed to reduce the amount of communication between the network
participants and improve the network stability. The proposed method introduces a
ring-based topology and uses Ethereum with the Interplanetary File System to store
information about transactions and machine learning models, respectively.
Knowledge distillation is also utilised to aggregate multiple models.
 The continuous knowledge transfer approach for edge computing was also
presented by [115]. The proposed method was implemented by using the Hyperledger
Fabric blockchain and smart contracts. The blockchain was used to store data about
the deep learning training process artefacts and network transactions. The network
was experimentally evaluated the use of computer vision tasks and ensured that such
solutions could be implemented in practice.
 Most of the approaches that combine the blockchain technology apply it to
mitigate the drawbacks of centralised federated learning approaches [114], [115]. A
combination of federated learning, blockchain, and model aggregation has been
proposed [70], [71], [82], [116]. But knowledge distillation is not the only privacy
preservation approach that can be applied to federated learning on blockchain. In the
next section an overview of approaches using other privacy preservation methods

32

when combining distributed learning, blockchain and privacy preservation measures
is presented.

1.2.4 Blockchain enabled privacy preserving machine learning

Approaches combining blockchain with privacy preserving machine learning are
overviewed in this section. The results of the compared research are presented in Table
2. The approaches are compared on the grounds of the blockchain technology usage,
privacy-preserving methods, machine learning model types, the blockchain
technology, and the consensus algorithm. In addition, if the proposed approach or
method were to include the network participants’ roles in the machine learning
process, such roles are listed. Some of the overviewed approaches introduced an
incentive mechanism into their process, either by providing blockchain tokens or
monetary value to the network participants. Such incentive mechanisms are also
considered as criteria because they could motivate participation. The application area
criteria were defined if the proposed method was designed for a specialised application
where single or multiple areas are listed; otherwise, the analysed approach is classified
as universal. For those research propositions which do not specify the machine
learning method, the definition was omitted.

33

T
ab

le
 2

. C
om

pa
ris

on
 o

f e
xi

st
in

g
bl

oc
kc

ha
in

 e
na

bl
ed

 p
riv

ac
y

pr
es

er
vi

ng
 M

L
ap

pr
oa

ch
es

C
ri

te
ri

a

M
L

m

od
el

ty

pe

N
et

w
or

k
us

er

an
d

ro
le

s
M

L

ar
ch

ite
ct

u
re

Pr
iv

ac
y

pr
es

er
va

tio
n

A
pp

lic
at

io
n

ar
ea

B

lo
ck

ch
ai

n
C

on
se

ns
us

L

im
ita

tio
ns

[1
17

]
A

ny

-
M

ix
ed

D

iff
er

en
tia

l
pr

iv
ac

y
H

ea
lth

ca
re

Et

he
re

um

Pr
oo

f-
of

-
A

ut
ho

rit
y

D
ep

en
de

nc
y

on

ex
te

rn
al

da

ta

st
or

in
g

so
lu

tio
n,

si

ng
le

 m
et

ho
d

ap
pl

ic
at

io
n

ar
ea

[7

4]

G
R

U

-
-

N
ot

 a
pp

lic
ab

le

Tr
af

fic

flo
w

pr

ed
ic

tio
n

N
on

-d
ef

in
ed

,
C

on
so

rti
um

D

B
FT

Su

pp
or

t
fo

r
a

si
ng

le

M
L

m
od

el

ty
pe

,
lim

ite
d

ap
pl

ic
at

io
n

ar
ea

s
[1

18
]

C
N

N

M
in

er
s;

C

oo
pe

ra
tiv

e
pa

rty

-
N

ot
 a

pp
lic

ab
le

U

ni
ve

rs
al

C

or
da

B

lo
ck

w
is

e-
B

A
,

al
go

ra
nd

B
lo

ck
ch

ai
n

is

us
ed

 o
nl

y
fo

r
in

ce
nt

iv
e

an
d

da
ta

 lo
gg

in
g

[1
19

]
Lo

gi
st

ic

re
gr

es
si

on
;

M
ul

tin
om

ia
l

cl
as

si
fic

at
io

n

-
-

D
iff

er
en

tia
l

pr
iv

at
e

lo
gi

st
ic

re

gr
es

si
on

;
D

iff
er

en
tia

l
pr

iv
at

e
m

ul
tin

om
ia

l
cl

as
si

fic
at

io
n

U
ni

ve
rs

al

H
yp

er
le

dg
er

Fa

br
ic

B

FT

Li
m

ite
d

by
 th

e
sm

ar
t

co
nt

ra
ct

de

ve
lo

pm
en

t
la

ng
ua

ge

su
pp

or
t

[7
0]

N

eu
ra

l
ne

tw
or

k
D

at
a

ho
ld

er
;

C
om

pu
tin

g
no

de

D
is

tri
bu

te
d

D
iff

er
en

tia
l

pr
iv

ac
y;

l-

U
ni

ve
rs

al

Et
he

re
um

Pr

oo
f

of

tra
in

in
g

qu
al

ity

R
eq

ui
re

s
m

od
ifi

ca
tio

n
an

d

34

 C
ri

te
ri

a

M
L

m

od
el

ty

pe

N
et

w
or

k
us

er

an
d

ro
le

s
M

L

ar
ch

ite
ct

u
re

Pr
iv

ac
y

pr
es

er
va

tio
n

A
pp

lic
at

io
n

ar
ea

B

lo
ck

ch
ai

n
C

on
se

ns
us

L

im
ita

tio
ns

N
ea

re
st

ag

gr
eg

at
io

n
de

ve
lo

pm
en

t
of

a

ne
w

bl

oc
kc

ha
in

st

ru
ct

ur
e

[7
1]

G

ra
di

en
t

bo
os

tin
g

de
ci

si
on

 tr
ee

-
-

D
iff

er
en

tia
l

pr
iv

at
e

fe
de

ra
te

d
le

ar
ni

ng

In
du

st
ria

l
IO

T
-

Tr
ai

ni
ng

qu

al
ity

ba

se
d

R
eq

ui
re

s
de

ve
lo

pm
en

t
of

a

ne
w

bl

oc
kc

ha
in

st

ru
ct

ur
e

an
d

co
ns

en
su

s
al

go
rit

hm

[1
16

]
C

N
N

-

 -
N

ot
 a

pp
lic

ab
le

U

ni
ve

rs
al

C

us
to

m

C
om

m
itt

ee

co
ns

en
su

s
m

ec
ha

ni
sm

B
lo

ck
ch

ai
n

is

on
ly

 u
se

d
fo

r
da

ta

lo
gg

in
g,

re

qu
ire

s
a

no
ve

l
bl

oc
kc

ha
in

st

ru
ct

ur
e

[8
2]

Lo

gi
st

ic

re
gr

es
si

on
,

ne
ur

al

ne
tw

or
k

N
oi

se
r;

V
er

ifi
er

;
A

gg
re

ga
to

r

D
is

tri
bu

te
d

D
iff

er
en

tia
l

pr
iv

ac
y;

Pr

e-
C

om
m

itt
ed

N

oi
se

 to
 T

hw
ar

t
Po

is
on

in
g

U
ni

ve
rs

al

C
us

to
m

Pr

oo
f

of

Fe
de

ra
tio

n
Se

cu
rit

y
or

ie
nt

ed
,

re
qu

ire
s

no
ve

l
bl

oc
kc

ha
in

de

ve
lo

pm
en

t
[1

20
]

N
eu

ra
l

ne
tw

or
k

B
uy

er
;

R
ep

or
te

r;
D

at
a

pr
oc

es
so

r

D
is

tri
bu

te
d

En
cr

yp
tio

n
of

m

od
el

 g
ra

di
en

ts
;

A
ud

ita
bi

lit
y

of

co
lla

bo
ra

tiv
e

tra
in

in
g

U
ni

ve
rs

al

C
us

to
m

R

el
ia

bi
lit

y-
ba

se
d

co
ns

en
su

s

O
nl

y
su

pp
or

ts
a

si
ng

le

cl
as

si
fie

r
ty

pe
,

re
qu

ire
s

cu
st

om

bl
oc

kc
ha

in

35

C
ri

te
ri

a

M
L

m

od
el

ty

pe

N
et

w
or

k
us

er

an
d

ro
le

s
M

L

ar
ch

ite
ct

u
re

Pr
iv

ac
y

pr
es

er
va

tio
n

A
pp

lic
at

io
n

ar
ea

B

lo
ck

ch
ai

n
C

on
se

ns
us

L

im
ita

tio
ns

[6
3]

N

eu
ra

l
ne

tw
or

k
M

in
er

an

d
tra

in
er

D

is
tri

bu
te

d
D

iff
er

en
tia

l
pr

iv
ac

y;

R
an

do
m

no

is
e

ad
di

tio
n

U
ni

ve
rs

al

C
us

to
m

Pr

oo
f-

of

W
or

k
Ex

pe
ns

iv
e

an
d

sl
ow

co

ns
en

su
s

al
go

rit
hm

,
lim

ite
d

m
od

el

ty
pe

 su
pp

or
t

[1
21

]
C

N
N

Pa

ra
m

et
er

pr

ov
id

er
s

D
is

tri
bu

te
d

Ze
ro

-k
no

w
le

dg
e

pr
oo

fs
 o

f
m

od
el

gr

ad
ie

nt
s,

en
cr

yp
tio

n

U
ni

ve
rs

al

Et
he

re
um

Pr

oo
f-

of

W
or

k
Sl

ow

co
ns

en
su

s
al

go
rit

hm
,

re
qu

ire
m

en
t t

o
en

cr
yp

t
da

ta
,

si
ng

le

m
od

el

ty
pe

 su
pp

or
t

C
D

M
LB

m

et
ho

d
U

ni
ve

rs
al

D

at
a

an
d

m
od

el

co
nt

rib
ut

or
s

D
is

tri
bu

te
d

In
tri

ns
ic

pr

iv
ac

y,

kn
ow

le
dg

e
di

st
ill

at
io

n

U
ni

ve
rs

al

H
yp

er
le

dg
er

Fa

br
ic

R

af
t (

B
FT

)
Li

m
ite

d
te

st
ed

da

ta
se

ts
,

lim
ite

d
ev

al
ua

tio
n

of

m
et

ho
d

pe
rf

or
m

an
ce

an

d
sc

al
ab

ili
ty

36

Most of the overviewed approaches supplement the blockchain with novel
consensus algorithms [70], [71], [82], [116] that are implemented in order to evaluate
the performance of the distributed machine learning models. These approaches are
usually implemented by using the public blockchain [117], [70] as the base technology
and are mostly presented as only proof-of-concept approaches which require
implementing new blockchain networks, that are complex and might be a non-feasible
solution for practical implementation. With novel blockchain networks, some
approaches also introduce new roles for the blockchain network participants, most
commonly including roles for data contributor and data validator peers.

The most common privacy preservation measure in the compared approaches is
differential privacy and the encryption of communication channels. Differential
privacy measures are applied in order not to reveal sensitive information about any
single data instance used in the data pool. A similar purpose in context of privacy
preservation serves various noise addition techniques that are used to remove patterns
in data that could reveal sensitive information. In some overviewed solutions, privacy
is ensured by data encryption (Encryption of model gradients, Zero-knowledge
proofs). Such approaches are commonly used in public blockchain environments to
make parts of information available only to the required participants while preventing
data leaks. Zero knowledge proofs are used to verify the existence of information
without decryption, thus simplifying the auditing and verification purposes. The third
category for privacy preservation is provided by model aggregation, such as the l-
nearest aggregation and PATE-based approaches. Commonly, collaborative
distributed machine learning approaches combine multiple privacy preservation
methods in a single system based on the requirements. Even though part of the
overviewed methods do not explicitly state the usage of encryption approach on the
data, the communication channels and collaboration algorithms powering data sharing
are usually encrypted due to the best practices of common security. For the method
proposed in this thesis, it was defined that the most important privacy preservation
drawback is the membership inference attack via the deployed model, which would
enable access to training data information. Thus, the model distillation approach was
selected.

The application areas for most of the proposed approaches fall into two
categories: domains requiring sensitive data preservation, as in the healthcare domain
[117]; multiple data creation and usage parties that are distributed in a physical space
with the need to collaborate on common tasks, as in the internet of things domain [71],
[74]. Universal approaches that could be applied to multiple domains have also been
proposed, but most of them are considered only for deep learning [120], [121] without
support for other types of machine learning models. Most of the compared approaches
are only implemented on a single machine learning environment without considering
heterogeneous approaches, thus reducing the usability of the developed approaches.
The proposed method is also commonly confined to a limited set of supported
programming languages, while only supporting a smart contract-provided set. This
limits the ease of access and increases the development costs for participants with the
already existing machine learning solution support. Most of the overviewed solutions
either use a relatively slow consensus algorithm, such as PoW or its modifications, or

37

propose the usage of a custom blockchain network and solutions whose
implementation would require a significant development effort. Most of the
overviewed research only experimentally dealt with a small part of the proposed
method while commonly not including analysis of the blockchain network
performance. The common evaluation topics of the proposed methods are the security
and privacy analysis and the incentive provision methods.

1.3 Blockchain Technologies for Machine Learning

Distributed Ledger Technologies (DLT) have been proposed [122] and
implemented in the business and scientific communities. But only the blockchain has
received the mainstream appeal, starting with the cryptocurrency called Bitcoin
introduced by Satoshi Nakamoto [123]. The blockchain is a network composed of
multiple participant peers storing the transaction information in a state database called
the ledger. The ledger records all interactions on the blockchain and is replicated to
all the participants on the network for validation and safekeeping. Transactions are
cryptographically hashed and then bundled into blocks and linked to each other. The
blockchain ledger is powered by the blockchain data structure and cryptography
approaches, such as hashing. The hashing algorithm can transform any amount of
information and produces a unique fixed length value as a result [124]. To ensure that
all transactions are composed correctly, the blockchain technology also employs a
Merkle tree algorithm [125] which enables simpler verification of validity for multiple
hash values. Such an approach allows us to use a single value to verify that nothing in
the information composition has been changed. Blockchain uses hashing algorithms
to uniquely identify block information and verify its integrity. The block structure
stores information about the performed transactions in a given time frame. A block is
composed of two types of information: the block header and the block body (Figure
3). The block header stores meta information, such as the previous block hash, the
version, the timestamp, the nonce, and the difficulty target. A previous block hash is
a unique identifier which is used to associate the present blockchain block with the
previous block, thus ensuring that the information is linked together. The timestamp
is used to record the time when the block was created, and the Merkle tree root is used
to verify that all the created transactions are correct. Nonce is a calculated value that
is used in the block creation. The body of the block stores all information about the
transactions.

38

Figure 3. Blockchain block structure [2]

The Blockchain technology is designed to provide transparency, data
consistency, verifiability, and data integrity [123], [126], [127]. The Blockchain
technology utilises a distributed architecture, thus eliminating the need to rely on a
centralised party. Distribution also increases the robustness of the solutions, which
means that it is harder to deny service. Multiple copies of the ledger are distributed
among the network participants for safekeeping. Such data replication ensures that the
data are secure even though multiple parties can stop participating in the network.

1.3.1 Blockchain platforms

The Bitcoin cryptocurrency introduced a novel approach in the distributed
ledger technologies combining transaction logging, peer-to-peer technology, and
consensus algorithms into a single system [123]. Multiple other blockchain platforms
were inspired and developed by the modification of the initial Bitcoin platform. The
term blockchain [128] defines a data structure which uses cryptographic hashing
algorithms to link multiple blocks of information in an immutable chain.

The process of validating a single block of transactions and agreement on the
validity of the block to add to the blockchain is defined as a consensus algorithm [2].
Communities managing data deployments which store copies of immutable blocks are
called blockchain networks [2]. Blockchain networks can be classified according to
their member acceptance model and the required level of trust [129] into public,
private, and consortium networks.

The public blockchain is openly accessible to any new members who wish to
join the network. Every registered network member is able to participate in a
consensus algorithm and is allowed to store a copy of the ledger. The public
blockchain provides incentive mechanisms for network members who participate in
the consensus algorithm by distributing tokens for contributions. The most popular
examples of public blockchains are Bitcoin [123] and Ethereum [126]. As access to
these networks is unrestricted, to ensure security and trust, networks require complex
consensus algorithms. The two most prominent consensus algorithms used in public
blockchain networks are Proof of Work (PoW) and Proof of Stake (PoS). The PoW

39

consensus algorithm introduces a mathematical puzzle with variable complexity that
the users can solve. The puzzle solution is achieved by computing cryptographic
hashes that satisfy the algorithm-dependent criteria. To calculate the result of the PoW
consensus algorithm, a large amount of computation power is allocated. Such
computations waste resources that could be used for other tasks and energy [109]. The
Proof of Stake consensus algorithm omits the computation part of the consensus
algorithm and introduces an algorithm where network participants lock a part of their
owned crypto currency to verify their trust. The algorithm is defined to verify
participants based on the amounts of locked currency, while trusting participants with
higher amount of currency more. Other introduced consensus algorithms generally try
to alleviate the drawbacks of the PoW and PoS algorithms [130].

Similarly, the private blockchain networks uses a distributed ledger and peer-to
peer architecture, but restricts access to the network’s participants, as generally one
or more parties decide on the access rights for other members [82]. The strict access
rules increase the trust of the network members participating in the blockchain, thus
reducing the need for complex consensus algorithms. This increases the transaction
validation speed, resulting in a network with higher performance. The most prominent
private blockchain networks are Hyperledger Fabric [127], Corda, and Ripple. The
consensus algorithms in the private blockchain perform more efficiently with less
computational power wasted [131]. Although private blockchains are more efficient,
the motivation to develop such a blockchain network could be hindered by the
requirement to trust the collaborating parties.

The consortium blockchain [132] stands as a middle ground for public and
private blockchain networks with the ability to control access to the blockchain
network which operates as a public blockchain once the access has been granted. Both
private and consortium blockchains are highly specialised, usually dedicated to a
single application area with a limited number of participants. Private blockchains
require a community of dedicated parties to set up and operate.

The private blockchain technology is most appropriate for applications requiring
efficient transaction verification and having partial trust between the collaborating
parties. In the context of this work, the partial trust between the collaborating parties
can be defined as the trust required to participate in the collaboration and the decision
to commit model and validation data files to the network, but not high enough to share
training data outright. Such trust is defined as ‘partial’ only as the collaborating parties
should not trust each other to share the model training data directly, but be willing to
collaborate to gain better quality machine learning models. Public blockchains are
appropriated in applications when the parties do not trust each other, and all
participants are required to have equal rights.

1.3.1.1 Consensus algorithms

With the introduction of the Bitcoin crypto currency, it required a means to
evaluate the participants’ willingness to commit to the network, as well as to stop the
double spending problem when logging transactions. To solve such problems, the
Bitcoin introduced the Proof-of-Work (PoW) consensus algorithm. The purpose of
consensus algorithms is to prevent alternative sources of truth in the blockchain. The

40

PoW consensus algorithms also provide proof that you are committed to the
blockchain network and that you, as a network participant, can be trusted to validate
the transactions if you complete the task. In the blockchain network, the transactions
are added to each new block, and each such new addition must be validated via the
consensus algorithm. To complete the task of transaction validation, network
members must calculate a number which, added to the block, produces the correct
one-way hash, where the hash is calculating a one-way hashing function [124], [125].
The validation of such a transaction in the Bitcoin blockchain network is called
mining. The mining computation does not add any other value to the network except
for ensuring that the network participants are willing to expend the required
computational resources to prove their commitment to the network. The PoW
consensus algorithm approach has been criticised [131], [133] for being slow,
inefficient, and wasting computational power that could be allocated elsewhere. Even
though this consensus algorithm is criticised, it still powers many popular blockchain
networks, such as Bitcoin and other variants of cryptocurrency.

Due to a higher level of trust, private blockchains do not need to have
computationally demanding consensus algorithms. The most popular consensus
algorithm among the private blockchains is the Byzantine Fault Tolerant consensus
algorithm (BFT) or similar approaches [134]. The BFT algorithm enables the network
to reach consensus regardless of whether some of the nodes participating in the
process fail or act maliciously. Multiple research approaches [70], [118] have been
proposed to integrate the machine learning model validation process as a consensus
algorithm approach, but most of them provide only the formal definition of such an
approach, or the performance of such an approach is only tested without implementing
it into a full network.

1.3.1.2 Smart contracts

As the popularity of the blockchain technology increased, its application
expanded to a number of domains. With applications to more diverse domains, it
became clear that only performing transactions to transfer funds from one network
party to another is not sufficient. To support more complex solutions, smart contracts
were introduced to the blockchain. Smart contracts enable the development of more
complex programs which could power a wider variety of the cases of use. The smart
contracts were introduced in the Ethereum [126] blockchain that included executable
command operations into blockchain blocks which could be used for a wider range of
applications. Smart contracts are deployed in the blockchain and are invoked by
performing a transaction in a blockchain block (Figure 4). The smart contract code is
executed in a blockchain virtual machine. As any data stored in a blockchain are
immutable, the deployed smart contract cannot be removed or modified, either. Smart
contracts in the Ethereum blockchain network were first introduced with proprietary
programming languages, specifically, Solidity [135], and Vyper [136]. The
deployment of a smart contract and the execution of its logic on most public
blockchains have an associated price commonly measured in the cryptocurrency. This
price is commonly based on the complexity of the smart contract and the
computational resources used for the execution [137]. This not only encourages smart

41

contract developers to optimise their code [138] for efficient execution, but also
discourages extremely complex applications. Smart contracts also have built-in
limitations, as the contract is executed by multiple network peers which have to verify
the execution results, the results produced by the smart contract should be
deterministic [139] for successful execution. For example, any function that uses
random number generation could produce nondeterministic results [139]. A smart
contract in private blockchain environments does not have a cost attached to either
execution, or to deployment procedures. Thus, the development of more complex
solutions via smart contracts is enabled.

Figure 4. Smart contract deployment on public blockchain [140]

The solutions utilising smart contracts to power their business processes require
to store and access business-related data. Such data could range from simple key-value
pair data to large datasets with multiple features. This means that the smart contract
developer evaluates how the data could be accessed by the smart contract and possible
data storage solutions.

1.3.1.3 Data storage in blockchain and smart contract extensibility

The supported data storage solutions can vary depending on the type of the
blockchain network selected. Public blockchains, due to the trust requirement, support
less diverse data structures and data storage approaches [141], when private and
hybrid blockchain types provide support for more complex data structures, and may
even support existing data storage solutions [141]. Public blockchain smart contract
development requires code optimisation in order to reduce the execution costs [137].
In public blockchain systems, data storage is commonly reliant on third party storage
solutions, such as the InterPlanetary File System (IPFS) [142], [143]. Solutions, such
as Hyperledger Fabric [127], can rely on system-provided storage that can store data
in key-value pairs, or by using CouchDB. When adapting the blockchain storage to
facilitate machine learning procedures, CouchDB provides major advantages as
CouchDB enables storing data by using JSON files. This expands the possibility of
storing more complex data structures in blockchain networks. Hybrid approaches,
such as Corda [144], can utilise the currently existing database technologies to store
information.

42

1.3.1.4 Permissioned blockchain solutions

Ripple [145] consortium blockchain was introduced as a solution for financial
institutions to manage payment information. The Ripple blockchain introduced a
faster consensus algorithm called the Ripple Protocol Consensus Algorithm (RPCA)
which enables fast verifications of transactions. The Ripple blockchain was developed
to include native crypto currency called XRP. The Ripple consortium blockchain
supports custom logic via the smart contracts that can be developed by using the
Python and JS programming languages. The Ripple blockchain supports blockchain
oracles whose focus is dedicated to the access to centralised API that provide data to
the blockchain network. The main limitation of the Ripple blockchain is its limited
solution development when using smart contracts.

Corda [144] is a consortium-distributed ledger platform which uses a global state
to share data between the network participants. The Corda DLT uses existing data
storage technologies, such as PostgresSQL, Azure SQL, Oracles and others. The
Corda blockchain is powered by the Java virtual machine enabling the development
of dedicated Corda applications. Corda is a permissioned blockchain which enables
organisations to set user roles and permissions. The user identity is provided by
providing X.509 certificates. The main drawback of the Corda DLT is that such
systems lack replication between the participants, while only ensuring the complete
data in the single node. Such a replication model is more common to the centralised
systems in comparison to peer-to-peer blockchain networks. The Corda DLT supports
local nodes and provides support for component deployment via containerised
services. Smart contracts in Corda DLT can be developed by any language that can
run in the Java virtual machine. The main drawbacks of Corda DLT are the limited
security of the participant identity and the support for only limited transaction
distribution among the participants, which removes the main benefits of a distributed
system.

Hyperledger Fabric [127] is a private blockchain framework developed by the
Linux Foundation. The modular architecture of Hyperledger Fabric allows
organisations to modify the technology and customise it based on the applied
requirements. The Hyperledger Fabric private blockchain supports smart contract
development by using the Go, Java, and JavaScript programming languages. Two
storage types are also supported by Hyperledger Fabric: simple storage which allows
storing data in key-value pairs, and CouchDB file storage which allows using the
JSON format to store more complex data. As with other modular parts of Hyperledger
Fabric, it also supports alternative consensus algorithms: BFT implemented by
Apache Kafka [146] and PBFT [147] implemented by Raft. Smart contracts developed
for Hyperledger Fabric support calls to external oracle services. The support for such
calls is important when introducing novel components, developing complex solutions,
and widening support for already existing programming environments on the
blockchain network architecture.

43

Table 3. Comparison of the supported smart contract languages and support for
oracle services on blockchain platforms

 Hyperledger
Fabric [127]

Ethereum [126] Corda [144] Ripple
[145]

Smart
contract
languages

Go, JavaScript,
Java

Solidity, Vyper,
Yul

Java, Kotlin

C++

Network
type

Private

Public Consortium Consortium

Consensus
algorithms

BFT, RAFT
(PBFT)

PoW, PoS RAFT Unique
Node List

Supported
storage
technology

Key-value,
CouchDB

Key-value H2, Postgres,
SQL Server,
Oracle

Key-value

Native
currency

No Ether No XRP

Design
architecture

Containerised,
Modular

Node-based Service-based Node-based

Support for
oracles

Supported Supported Supported Supported

Limitations Requires
definitions of
roles

Comparatively
slow consensus
algorithm, limited
smart contract
development
languages

Node information
is not shared with
the whole
blockchain
network.

Low number
of nodes in
the
blockchain
network,
limited
smart
contract
functionality

A comparison of blockchain technologies having the smart contract support, and

a wide range of the supported storage solutions is presented in Table 3. Hyperledger
Fabric supports calls to external services from the smart contract environment [148].
Hyperledger Fabric provides a comparatively fast consensus algorithm that does not
waste high amounts of computational power [2]. Hyperledger Fabric is extensible by
new components that enable integration of existing machine learning environments
into blockchain network [148]. Hyperledger Fabric smart contract development
environment is flexible and allows to develop complex solutions unlike limited Ripple
smart contracts. The Hyperledger Fabric private blockchain also have full transaction
sharing between the nodes, unlike the Corda blockchain.

1.3.2 Blockchain oracles

Blockchain networks were initially designed as self-contained solutions. Smart
contracts usually only access the transaction information, or the information stored in
blockchain storage. Smart contracts are incapable of storing a large amount of data;
therefore, they have to rely on services such as blockchain oracles for data bridging.

44

Solutions for trusted data feeds and side chains [149] can also become viable with the
blockchain oracle usage. To introduce the ability to obtain external data from the
blockchain network design, a design pattern called oracle was developed [148], [150].
The blockchain oracle can be defined as a trusted third party service which provides
information to smart contract functions and external sources [150]. Similarly to smart
contracts, the data or computation results obtained from blockchain oracle have to be
deterministic, as they are commonly used in the smart contract logic. Blockchain
oracles can be divided by four main criteria [151], [152]: data source, data direction,
design pattern, and interaction. The largest and broadest overview of blockchain
oracles is provided by source [152], and the taxonomy presented in the solutions is
provided in Figure 5.

Figure 5. Taxonomy of blockchain oracles, proposed by [152]

Data sources for blockchain oracles can be software-based, where the
information is provided by a third-party API service or a local network component. In
a human-based solution, the information is provided manually by inputting
information via software services. The data source can be produced or supplied by
hardware solutions [153], [154], such as sensors or IoT devices. Such data providers
would be classified as hardware oracles.

Different architecture approaches can be employed to develop blockchain
oracles. The blockchain oracle can be developed as a centralised [155], [156], [157],
[158] component, where a single service provides information to many users of the
blockchain network. This presents multiple downsides, with the introduction of a
single point of failure to a distributed system as the most crucial one. This means that
the negation of access to a single centralised service could disrupt the usability of the
whole blockchain network. Another drawback of centralised blockchain oracle stems
from trust. Public blockchains are used for systems where users do not trust each other,
even though trust is required in order to develop a trusted third-party service. Thus,
introducing such a service in a public blockchain would reduce the robustness of the
system and could discourage some potential network users from participating in the
network. On the other side of the spectrum of centralisation, a decentralised

45

blockchain oracle architecture [159], [160] is proposed. Blockchain oracles can be
decentralised by introducing multiple instances of third-party blockchain oracles. The
use of decentralised oracles increases the reliability of the solution. Yet, trust issues
persist even if the off-chain oracle is deployed on a peer-to-peer network. To increase
the control of blockchain oracles, such services can be deployed as off-chain oracles
on individual local network nodes. This also reduces the communication overhead as
each node only communicates with a single or multiple dedicated service.

 Blockchain oracles are classified according to the design patterns used. Three
design patterns are the most prominent among the blockchain oracles [135]: there are
the request-response, immediate read, and publish-subscribe types of oracles. The
request-response design pattern defines a blockchain oracle which provides
information only when requested. The publish-subscribe design pattern allows the
smart contract to continuously receive information from the oracle service. This is
usually reserved for information which undergoes many updates and is continuously
provided. The design pattern called immediate read provides information that is small
enough to keep in oracle storage and can be provided to smart contract functions on
demand. Such information is usually required in a smart contract without intensive
computations.

The final way to classify oracles is based on the direction of the data flow. For
the data received from external data sources into the blockchain, such oracles are
defined as inbound oracles. Meanwhile, those oracles which receive information from
the blockchain network and share it with other services or store it in a different
environment are defined as outbound. A similar proposition to classify oracle services
was proposed by source [148], where oracles are divided by their means of usage. The
blockchain oracles that are used only to read or provide data could be defined as data
oracles. Oracles that are designed to receive data and calculate the result based on the
provided data could be defined as calculation oracles.

The method combining the oracle technology with machine learning which
proposes the usage of blockchain oracles is provided by source [161]. The proposed
method introduces a novel architecture combining the blockchain and oracle services
to perform decentralised learning on the data provided by industrial Internet-of-things
devices. The proposed architecture uses multiple blockchain networks: one for data
governance, and the other for data storing. The prototype network was implemented
by using XuperChain [162].

Another method combining machine learning and blockchain oracles was
proposed by source [163] which powers a novel secure voting system. The proposition
utilises the Ethereum blockchain network and introduces machine learning blockchain
oracles as network components which authenticate the network participants.
Authentication is performed by using face recognition techniques. The research
describes the architecture and does not provide any implementation details. This
research also does not add oracle services into the network peer local environment
and requires data to be provided from non-blockchain sources to oracle services.

Blockchain oracles have been used to perform machine learning in the
blockchain technologies, but several alternative research proposals have been made
on improvements to the security and trust of the approaches. Those approaches which

46

do not apply oracle services and combine machine learning with the blockchain
technology are further discussed.

Although smart contracts enable more complex solutions on blockchain
networks, they are limited by supported programming languages and can only obtain
information from the blockchain network. To provide data from non-blockchain-
based systems and to increase the number of the supported execution environments,
smart contracts can be extended by dedicated services called blockchain oracles that
provide data to the blockchain or provide an environment for computations.

1.3.3 Other blockchain technology-based machine learning solutions

Combinations of machine learning and blockchain domains have been actively
researched in many research domains, especially in the Internet-of-things (IoT) [164],
[165], healthcare, and security domains [166], especially with the combination of
distributed machine learning [72], [133], and privacy-preserving machine learning,
where the blockchain technology can be used to increase trust and provide means to
motivate the network participants.
 The blockchain technology has been proposed as a viable solution to improve
the transparency, auditability [118] and security [167] of the machine learning
processes. The intrusion recognition method for federated learning has been proposed
by source [167]. The utilised method permissioned the blockchain to enable
transparency and increased auditability of federated learning. The authors used the
MultiChain blockchain network and trained an autoencoder with three hidden layers
which, in total, contain 3000 weights. The authors of the source note that even though
the performance of the model training process was reduced in the range from 5 to 15
percent, the introduction of blockchain provided beneficial transparency. For the
implementation, the authors used the MultiChain blockchain, but Hyperledger Fabric
and the smart contract were considered as a viable alternative.

Another approach in which the authors combined deep learning models, the
blockchain technology, and federated learning was proposed by source [118]. The
blockchain in this approach was used to power the incentive mechanism and
compensate the network participants for the training activities of the neural network
model. Additionally, a new consensus algorithm based on Algorand called the
blockwise-BA protocol was proposed. The defined solution was experimentally tested
by evaluating the accuracy and throughput of the trained model of the developed
system. To increase the security of the network, data encryption was also employed,
and, as the authors note, the introduction of the blockchain to the federated learning
process introduced transparency and auditability.

Similarly, an approach to apply the blockchain technology to secure the neural
network training process was proposed by source [168]. This method introduced a
new blockchain block structure that would not only store blockchain operational
information, but would also store cryptographic information and neural network
weights. The authors describe this new structure as DeepRing. A novel validation and
consensus approach was also defined by the authors, which relies on hashing the
weights and linking them together just as blockchain blocks are linked together.

47

The blockchain application to increase the security of deep learning model
training was proposed by source [166]. The approach employs the Stellar blockchain
and is used to provide incentives, anonymise the identities of network participants,
and log the participant activities. The introduction of multiple roles for the participants
in the network such as the model contributor and the data contributor was done by
utilising smart contracts.

The machine learning approach combined with Hyperledger Fabric was
proposed by source [169]. A proposal to improve the Hyperledger Fabric endorsement
policy by employing a machine learning approach was outlined. The implemented
machine learning approach was used to detect anomalies in the validation actions of
the participating nodes. The k-NN classifier was applied to detect malicious nodes,
and the experiments were executed by using the OpenMalaria dataset. Although the
authors experimented with anomalous worker detection, the research suggests that
machine learning when combined with blockchain technologies is relevant and
achievable.

Internet-of-things researchers applied machine learning methods to classify IoT
device usage in the form of blockchain transactions [164]. Such classification could
be viewed as a type of attack to identify possible IoT devices. To reduce the possibility
of such an attack, the authors proposed three timestamp obfuscation approaches that
utilised blockchain.

Table 4. Comparison of blockchain applications for machine learning
Reference [168] [169] [164] [166] [167]
ML
approach

Deep
learning

k-NN
classifier

Any
classifier

Deep
learning

Deep
learning

Blockchain Corda Hyperledger
Fabric

Undefined Stella MultiChain

Blockchain
Type

Consortium Private Undefined Private Private or
Public

Application
area

Computer
vision

Blockchain
processes

IoT Autonomous
self-driving

Federated
learning

Smart
Contract

- + - + -

Storage - IBM’s
Cloudant

Undefined IPFS [142] IPFS [142]

Limitations Limited
application
area,
complex
blockchain
structure

Limited set
of tested
machine
learning
solutions

Limited
application
area, limited
set of tested
machine
learning
solutions

Single
complex
machine
learning
model type
usage,
dependency
to external
data storage
solution

Security
oriented
application,
dependency
on external
data storage
solution

48

The majority of solutions are tailored to a specific model type, with a primary
focus on enhancing the security of the system or offering incentive mechanisms
through blockchain tokens.

1.3.4 Participant contribution calculation mechanisms

Systems relying on participant contribution try to encourage participation by
providing monetary or other motivation to the participants called the incentive. This
incentive should be based on the members’ contributions and distribute the value
gained or donated to the network fairly. Incentive can also be provided for the work
completed by the network members. Incentive can be classified into two categories:
positive and negative. The positive incentive motivates the network participants that
provide quality contributions, whereas the negative incentive punishes misbehaving
participants. Collaboration evaluation techniques were firstly studied as a part of the
game theory studies such as [170], [171], [172], where the goal is to evaluate the
collaborator’s contribution. Such collaboration evaluation techniques are widely
applied and researched in the field of economics [173], machine learning [174] and
others [175]. The modified Shapley value calculation approach is used as a weight
selection strategy in the proposed CDMLB method.

1.3.4.1 Shapley value

The Shapley value [170] was first introduced as a game theory metric to evaluate
the members’ contribution in a collaborative economic game according to the game
theory. The Shapley value was defined as a formula, where the contribution of a
coalition participant n is calculated (1):

 (1)

where v is the coalition members’ contribution. N is the total set of contributions
and S is a subset out of the total contributions defined as a coalition.

 represents a marginal contribution of a single coalition member.
The main benefit of the Shapley method is that it evaluates all possible

permutations of a member contribution set and provides an average contribution of
each member. The downside of this approach is that the computation complexity
grows exponentially with each new participant. To reduce the computational
complexity of this solution, many Shapley value approximation methods have been
proposed [176]. The permutation sampling-based Shapley approximation method is
an example of such approximation and enables the calculation of the Shapley values
in linear time [176].

In the field of machine learning, Shapley values have been applied to multiple
problems. The most common application is used in the dataset feature exploration
[174], [177], [178]. Data importance evaluation methods where dataset sharing is
considered as the coalition member contribution and the reward is defined by model
performance can also employ Shapley values [179], [180]. In this case, it allows
measuring the impact of the data on the performance of the model.

49

Similarly, the model valuation [180] in a machine learning model ensemble has
been proposed, where the performance of an individual model is the contribution, and
the impact to the ensemble performance is evaluated by the Shapley value.

There are many propositions to use the Shapley value for model performance
evaluation or model contribution evaluation when forming a model ensemble [180]–
[181]. A comparison of such propositions is presented in Table 5.

Table 5. Model and Data performance valuation via Shapley-based methods
Research Measure of

contribution
Approximation Application area

Rozemberczki et
al. [180]

Prediction voting + Model importance
quantification for model
ensembling

Ykhlef et al.
[182]

Classifier accuracy - Method to select
ensemble

Wang et al. [183] Classifier accuracy + Data importance
evaluation method

Chen et al. [181] Generalized Shapley - Credit risk management
with heterogeneous
machine learning
ensemble

 The Shapley value as an incentive measure that could be used with the
blockchain technology has already been proposed by [184], [185], [186]. The most
complete research defining the incentive which uses Shapley as a basis for the
calculations is presented in [184]. The researchers of this source presented evaluation
of data shared to cloud services and defined methods how to transform this evaluation
into an incentive. The participants’ contribution in their denoted method was the
increment of the value as the participant takes part in the coalition. The blockchain in
this approach is used to control the access rights for the participants. The authors
evaluated the proposed incentive measure by benchmarking its performance with
varying contributor sizes and measuring the performance of the k-NN and SVM
classifiers. Their experiments confirmed that the proposed incentive measure is able
to provide a higher compensation to its participants, thereby proving the effectiveness
of the selected approach. Even though Shapley is utilised as the classical method to
evaluate contribution, many other incentive measures were proposed that were
adapted for blockchain technologies.

1.3.4.2 Incentive mechanisms in the blockchain technology

The incentive in the blockchain technology was introduced with the Bitcoin
cryptocurrency. This incentive encouraged the network participants to verify
transactions and participate in the PoW consensus algorithm. In this incentive system,
the participants are rewarded based on the number of committed blocks, which
correlates to their committed computational resource input when validating a new

50

blockchain block. Other consensus algorithms provide similar incentives for the
participation and the execution of smart contracts [130].

An example of such an incentive method is proposed by source [187] for the
edge-computing-based approach. This approach allows blockchain miners to utilise
edge service providers to obtain additional computational power. The authors base
incentive calculations on the Stackelberg [171] game between the participants in the
blockchain network and the providers of edge computing resources. The authors
proved that such an incentive mechanism can be effective, and experimentally tested
their proposed solution.

A similar approach for incentives for IoT and edge computing was proposed by
source [188]. The authors analysed the connection between the blockchain network
and the network participants and proposed an algorithm to find the Stackelberg
equilibrium point. The authors experimentally tested the performance of their
proposed algorithm and defined a reward pricing strategy. The research proved that
Stackelberg equilibrium can be achieved by using their proposed strategy and
provided the performance results of the experimentally tested methods.

Another example of an incentive developed for blockchain technology
processes was presented by source [189]. This research proposed an incentive
mechanism allowing to secure the verified content from the miners who are validating
the blockchain blocks. The authors defined the execution cost evaluation strategy in
order to address possible collusion attacks.

Another research demonstrating that incentive methods using the blockchain are
viable and can be applied to data sharing was described in source [190]. The authors
employed smart contracts to develop their incentive mechanism. The proposed
incentive mechanism is based on evolutionary game incentives, where the participants
are presented with the choice to participate in data sharing or not. The blockchain
technology in this research is used to store data-sharing transaction logs and provide
participation cost requirements on demand. Blockchain is also used to store the
developed system logic using smart contracts. Even though many blockchain
approaches employ an incentive as part of their method, in the context of this work,
we are only focusing on calculating the measures of contribution. By using these
contribution measures, the incentive can be defined by using personalised
requirements of the participating organisations.

1.4 Summary of Analysis

The analysis of machine learning approaches revealed that the majority of the
analysed approaches are developed by a single entity not employing collaboration.
This reduces the diversity of the used data to develop machine learning solutions. The
focus on individual development in distributed machine learning stems from security
and privacy issues. Moreover, most of the distributed learning approaches found in
the analysis are highly specialised, dedicated to addressing a single machine learning
problem, and they typically employ only one specific type of a machine learning
model. The limited machine learning model type usage restricts the possibilities for
collaboration and engagement in a broader range of applications.

51

When analysing privacy preserving solutions that are applied to enable
collaboration, the results indicated that most of the solutions concentrate their efforts
on safeguarding the communication channels and the sensitive training data. As a
result, most of these approaches separate the model training and deployment
environments to ensure the privacy of the sensitive data. Another approach how
transparency and trust could be enhanced is the introduction of the blockchain
technology to the distributed machine learning pipeline. The blockchain consensus
algorithm could enforce the validation of the performed computations by ensuring the
correctness of the performed calculations and the provided results.

The analysis of blockchain technology applications for collaborative distributed
machine learning revealed that most of the existing propositions and applications
utilise the blockchain as an incentive mechanism. In such an approach, the
cryptocurrency issued by the blockchain is used as an incentive measure and is
provided to the participants for executing tasks or collaborating in the process. Or else,
the blockchain is used as an immutable transaction log preventing the loss of
information about artefacts stored in the blockchain and logging the ownership
changes. These incentive solutions are frequently highly specialised, defined for a
single community, or involving solutions with only limited or even no integration with
smart contracts. The development of distributed machine learning applications on
blockchain technology-based solutions is also hindered by the limited support of the
currently existing machine learning environments and approaches.

To address this limitation, oracle services in blockchain-based distributed
machine learning can be applied. Oracle services can bridge the gap between on-chain
and off-chain data, thus allowing smart contracts on the blockchain to access external
data sources. By using blockchain oracles, the applicable set of technology and
environment for machine learning on the blockchain could be extended, thus
improving the ability to develop solutions. The combination of distributed machine
learning, privacy preservation methods, and blockchain technologies with blockchain
oracles would provide means for solutions that improve trust and transparency and
strengthen collaboration, as proven by sources [165], [166], and [191].

Based on these analysis results, it was decided to modify the thesis objectives to
reflect the usage of the private blockchain technology to power the collaborative
distributed machine learning. The updated research objectives are:

1. Analyse machine learning and collaboration in distributed machine learning.
2. Analyse blockchain technologies and their capabilities to be applied for
distributed machine learning processes.
3. Analyse training data privacy preservation methods and implementations in
machine learning.
4. Propose a method for collaboration in distributed machine learning utilising the
private blockchain technology.
5. Implement the solution for collaborative distributed machine learning using
blockchain technology according to the proposed method.
6. Evaluate the capabilities of the methods to perform collaborative blockchain-
based distributed machine learning.

52

2. METHOD FOR COLLABORATIVE DISTRIBUTED MACHINE
LEARNING ON BLOCKCHAIN

The Method for Collaborative Distributed Machine Learning on Blockchain
(CDMLB) enables multiple organisations to participate in distributed machine
learning and is proposed in this chapter (the method was also presented in research
articles [192], [193], and [194]). The CDMLB method uses a private blockchain
network and is designed for organisations which would like to collaborate in machine
learning tasks but lack trust to develop a trusted third-party centralised solution. The
CDMLB method utilises the already existing machine learning technologies, models,
and datasets to enable collaboration on a private blockchain network. The introduction
of a private blockchain network increases the transparency of the model deployment
process, by allowing to access all the data and audit the activity logs of the action
performed in a blockchain. Additionally, the private blockchain also enables trust in
the collaboration process because the model prediction set calculation results are
verified by multiple parties. The utilisation of the blockchain technology also
increases the system resilience to external threats by removing a single point of failure
that could arise when using a centralised third-party architecture.

The CDMLB method also provides means to ensure data privacy by defining
multiple specialised environments and introducing a specialised model deployment
and usage process. The proposed method encapsulates multiple environments (see
Figure 6): a) private model development environment; b) blockchain-based model
deployment environment (on-chain environment); and c) network contributor node
environment (off-chain environment).

Figure 6. Environments of CDMLB private blockchain platform

The private model development environment, in the scope of the method, is
solely dependent on the model developer’s needs, and such an environment has no
prerequisite requirements. This environment ensures that the data management and
model training parts remain private and allows the user to adapt the training
environment based on the individual requirements. The decision to perform model

53

training in a private non-blockchain environment is defined by the need to protect
sensitive training data.

Model training can also require a significant amount of computational power as,
based on the consensus algorithm of a selected blockchain network, it can require
repeating this process for at least 51% of the network participants, thus further
increasing the demand for computational resources. This would significantly increase
the time to train the models. The developed smart contract must return deterministic
results, and, in the model training case, such determinism is not possible without using
exactly the same training data. For this reason, the proposed method model training
process is not completed on the blockchain so that not to increase the number of the
required computations. The CDMLB method uses blockchain in the model
deployment and model usage parts of the model development process. Such a
distribution of the model deployment process allows combining models from different
sources, which can lead to more diverse models. Such diversity can lead to a classifier
of a higher quality. The distribution of the deployment process also ensures the
validity of the provided model and data as the model inference calculations are
verified by multiple network participants.

The blockchain model deployment environment (henceforth referred to as
on-chain) aims to provide a transparent, activity logging environment for model
sharing. Every call to a function on the blockchain network is recorded in the
distributed ledger, thus providing the ability to audit the user’s actions at any given
time. The data and the models uploaded to the blockchain network are distributed to
all network parties and are always accessible to the network contributors. The
combination of action logging and openly accessible distributed machine learning
artefacts promotes the transparency for all the participating contributors. The
blockchain also increases the robustness of the system by providing data replication
among the network participants. The process execution of the machine learning model
deployment logic is provided by the blockchain environment, which is implemented
by using smart contracts.

The network contributor local node environment (henceforth referred to as
off-chain) is introduced to support a more diverse set of machine learning
programming environments. Together with the blockchain model deployment
environment, it leverages a wider support of machine learning model types, as well as
enables customisable model development environments. The customisation of the
model development parameters allows contributors to develop more diverse models.
The off-chain environment also enables the decentralisation and distribution of
complex model computations using deployed oracle services that are integrated by
using smart contracts.

To enable a diverse ecosystem of the currently existing machine learning
programming environments using the blockchain technologies, the CDMLB method
introduces a network contributor local node environment. This off-chain environment
allows transferring the complex model inference computations to oracle services that
are accessed by smart contract functions. Multiple instances of off-chain
environments can be present in the CDMLB blockchain network architecture. This
allows the network participants to select different implementation environments for

54

machine learning solutions, thereby giving an opportunity to tailor the environment
for each task individually.

The conceptual scheme of the proposed CDMLB method is presented in Figure
7. In the CDMLB method, the contributor uses a dataset to develop the machine
learning model. The contributor divides the collected data into training, testing, and
validation datasets. The training dataset is used to develop machine learning models
which use labelled data and features in the numeric format, and these models are later
used for computing predictions on the testing data. In total, the CDMLB method
requires the contribution of two artefacts: 1) machine learning model, and 2)
validation dataset. The contributed model is used to calculate the predictions on the
validation dataset. These predictions are used to evaluate the input of a contributor in
the CDMLB blockchain, defined as contribution. Contributions are evaluated by
measuring the performance of the model. Similarly, data contributions are evaluated
by measuring the impact on the ensemble performance which contains a single best-
performing model from each contributor. By using data and model contribution
scores, incentives can be derived. The incentives can be used to divide monetary, or
any other, value recorded by the blockchain network. The requirements for the
incentive highly depend on the collaborating organisations and the described incentive
calculation rules. Such rules and requirements are not part of the CDMLB method.

55

Fi

gu
re

 7
. C

on
ce

pt
s o

f C
D

M
LB

 m
et

ho
d

56

To utilise the CDMLB method, the collaborating organisations need to agree on
the requirements for the solution implementing the method before the start of the
blockchain network development.

 Select a private blockchain technology which supports API calls from the
smart contract execution environment to external oracle services.

 Define the requirements for data and model structures and storage formats,
which are agreed upon by all the governing organisations.

 Define the communication channels, collaboration rules, and roles for the
collaborating organisations.

 Define the procedures required to implement and approve the local oracle
services and smart contracts developed by the collaborating organisations.

 Define the requirement for a blockchain oracle factory service which
provides smart contracts and local oracle services.

 Define the procedures for managing the developed services and the security
provision of said services which should be ensured by the collaborating
organisations.

Component initialisation and the required preparation processes which are
necessary to be completed before the CDMLB activities could be performed are
detailed in Figure 8. The collaborating parties should select the private blockchain
technology with the consideration of the smart contract development environments
and the consensus algorithm usability. After setting the requirements for the
blockchain technology to be used, the organisations should define models and datasets
that the collaboration would be based upon. This is required to start working on the
smart contracts and the services which depend on the model and the data format as
well as the dataset structure. Additional support to the model types and datasets can
be defined after the deployment of the network as well. The private blockchain
requires access management and the definition of the network roles; such role
definitions should be completed before the network development starts. The two final
steps of the requirements for preparation involve requiring information about the
smart contract and oracle development rules. The functions provided by the
blockchain oracle service in the CDMLB method are called from the smart contract,
hence, the integration between two such components should be specified.

57

Figure 8. The required initialization procedures for the CDMLB method

 The defined requirements of the smart contract and blockchain oracles are then
used in their development. Both smart contracts and blockchain oracles are developed,
tested, and deployed to the oracle factory component. The blockchain oracle factory
component then distributes the required smart contracts and the blockchain oracle on
demand to new or already existing network participants. The oracle factory
component should be developed to track versions of the deployed smart contracts and
oracle services, as any version mismatch could prevent the network members from

58

reaching the consensus. The oracle factory service should be distributed, and each
participating organisation should contain such a service.

Figure 9. Development process of the proposed CDMLB method services and smart
contracts

Figure 10 lists the network knowledge usage stages which are performed after
all the prerequisite operations have been completed. The proposed CDMLB method
consists of the CDMLB platform preparation, model and data deployment, and the
network knowledge usage stages.

The method defines the procedures and requirements for the ways how the
machine learning model is to be developed, deployed on the blockchain network, and
then used. The method is presented from the perspective of a single network
contributor. Multiple contributors must exist to successfully collaborate while using
the CDMLB private blockchain platform. The proposed method can be followed to

59

develop multiple CDMLB solutions that are hosted on the same blockchain network.
This allows contributors to submit multiple datasets or machine learning model files,
as well as use the knowledge stored on the blockchain. The method keeps track of the
currently best-performing models and re-evaluates all the submitted models when
presented with new validation data. For every network model and data change, the
contribution measures are calculated and stored in the blockchain storage. This allows
monitoring the evolution of the contributor input. Only the most recent contribution
measure is used when evaluating the contributors’ shared model performance. The
outdated contribution measures are stored in the blockchain and can be used to trace
the participants’ contribution history.

The CDMLB method enables usage of multiple machine learning model types
simultaneously. Each new machine learning model type requires the development of
a dedicated smart contract and the development of a dedicated oracle service which
are distributed to all network participants. The CDMLB method enables the usage of
such model types in a homogeneous ensemble or by combining different model types
into heterogeneous ensembles. A single private blockchain network can contain
multiple organisations collaborating by using multiple smart contracts.

60

Figure 10. Process of the CDMLB method

61

The CDMLB blockchain platform preparation stage encapsulates processes for
the development of machine learning artefacts which will be later deployed into the
blockchain network. This stage also includes the processes required to deploy and
connect to the CDMLB blockchain platform. The network artefact preparation starts
with data preparation and is performed in a private model development environment
(see Figure 6). The network contributor based on the agreed-upon data requirements
of the collaborating organisations prepares a dataset. During the data preparation step,
a training dataset is prepared, as well as validation subset that will be uploaded to the
blockchain network and used for model validation. If the network contributor cannot
obtain the dataset, the data preparation process can be omitted from the method.
Similarly, if the contributor is not able to share the validation dataset due to any
privacy or security limitations, the dataset split into separate subsets can be omitted.
The prepared training dataset is used to train a classifier model. Since the method does
not restrict the model training process, different model development environments can
be used with various hardware and software configurations and different model
development parameters. Although the model training process does not depend on the
method, the resulting model representation must adhere to the model and format the
requirements defined by the collaborating organisations. Once the machine learning
artefact development is complete, the network contributor connects to the blockchain
network; this may require the deployment of the CDMLB platform. To complete the
model deployment step, the contributor must also provide a specification of the dataset
required for the validation data and obtain the required permissions from the
collaborating organisations. The platform preparation part of the method is concluded
with the connection to the private blockchain network.
 The model and data deployment stage encapsulates the processes required to
share machine learning artefacts, namely, the model and the data, with the blockchain
network and the procedures performed to evaluate the quality of these shared artefacts.
All the actions performed in this step are implemented by using smart contracts and
are called the collaborating application. The application users are authorised by using
private blockchain identities. Once authenticated, model and data artefacts may be
contributed to the network by uploading a dataset or a model to the network via the
distributed application. The dataset format is transformed to save space on the
blockchain storage, and, if any machine learning model exists on the blockchain
storage, the uploaded dataset is used to calculate the model predictions. The model
predictions are then stored in the blockchain storage. Similarly, the model upload
procedure starts by uploading the machine learning model stored into a model file on
the blockchain network via the distributed application. The model file information is
then transformed into text-based information and stored in the blockchain storage. If
the upload procedure for the model or the dataset is successful, the uploaded artefacts
are replicated among the network nodes. To keep track of the input of the contributors
into the overall network, the performance of each uploaded contribution is evaluated.
Such contribution scores are used to derive the incentive. These incentive measures
are used to define the amount of the value the contributor should be provided for their
input.

62

The final stage of the CDMLB method is dedicated to using the model
knowledge stored on the blockchain. Two different approaches are outlined on how
the models can be utilised. The first approach aggregates models into a single model
ensemble, and, by applying weighted averaging, produces prediction on the testing
data provided by the contributor. The ensemble is produced by a specialised
blockchain oracle service, and the testing data used for calculating predictions never
leaves the blockchain contributor’s local environment. Additionally, the produced
model prediction file is stored in the contributor’s local environment. Such an
approach allows ensuring the privacy of the validation dataset and predictions, while
still recording the transactions of the machine learning model utilisation. The second
approach utilises the knowledge distillation approach to train an aggregating model
on the model ensemble knowledge. The approach uses combined validation data and
the model ensemble to train a new neural network model. The produced model
prediction set is used as an input to the student neural network model, and its
performance is validated by using combined validation data. The distilled model file
is stored in the contributor’s local environment, and it can be further developed
individually by using the validation data, or merely used ‘as is’ in order to make
predictions without further training. The knowledge distillation approach provides
privacy preservation for machine learning models stored on the blockchain.

The introduction of the blockchain technology to the collaborative distributed
learning process allows an organisation to analyse blockchain transactions and
blockchain artefacts at any given time, thus enhancing transparency. The CDMLB
method differs from the other currently existing solutions by enabling support to
different supervised learning model types and machine learning tasks instead of
developing a blockchain network for each specialised task or model type. The
CDMLB method requires only a small part of the data for validation, thus removing
the need to share any sensitive training data to the blockchain network. The CDMLB
method also supports two network knowledge usage solutions, thus enabling privacy-
preserving usage of the model. Ultimately, the CDMLB method enables the
contributing organisations to evaluate contributions to the selected machine learning
task.

The proposed network distillation method is designed as a countermeasure to a
membership inference attack against the network. Even though most of the
overviewed research applied differential privacy to defend from membership
inference attacks, it is not viable in the CDMLB approach as such an approach does
not send the training data to the blockchain network. The only data that are provided
to the network are the anonymised validation dataset. The organisations managing the
blockchain network should enable access to it only to the partially trusted parties
because adversaries with an access to the blockchain ledger could perform model and
feature extraction and model identification attacks. Table 6 lists threats which could
be attack vectors in the course of the CDMLB process. Possible countermeasures to
these attacks are described with the counter-measure provider, whether it be aspects
of the blockchain or specific network knowledge usage scenarios. Most of the
provided security measures are provided by the private blockchain access
management as well as by the ensemble weight selection strategy.

63

T
ab

le
 6

. C
ou

nt
er

m
ea

su
re

s t
o

m
ac

hi
ne

 le
ar

ni
ng

 p
riv

ac
y

an
d

se
cu

rit
y

th
re

at
s p

ro
vi

de
d

by
 th

e
C

D
M

LB
 m

et
ho

d
 N

o.

T
hr

ea
t

Po
ss

ib
le

 c
ou

nt
er

 m
ea

su
re

C

ou
nt

er
m

ea
su

re
 p

ro
vi

de
r

1.

M
od

el
 e

xt
ra

ct
io

n
Th

e
pr

iv
at

e
bl

oc
kc

ha
in

 p
ro

vi
de

s
ac

ce
ss

 to
 th

e
m

od
el

 f
ile

s
on

ly
 to

 t
he

au

th
or

is
ed

 p
ar

tic
ip

an
ts

Pr

iv
at

e
bl

oc
kc

ha
in

2.

Fe
at

ur
e

ex
tra

ct
io

n
O

nl
y

au
th

or
is

ed
 p

ar
tic

ip
an

ts
 c

an
 a

cc
es

s t
he

 d
at

a
fe

at
ur

es
 in

 th
e

pr
ov

id
ed

da

ta
 sa

m
pl

e
or

 th
e

up
lo

ad
ed

 v
al

id
at

io
n

da
ta

se
t.

Ev
en

 th
ou

gh
 th

e
fe

at
ur

es

ar
e

di
sc

lo
se

d
to

 t
he

 b
lo

ck
ch

ai
n

ne
tw

or
k

pa
rti

ci
pa

nt
s,

an
 a

tta
ck

 f
ro

m

ex
te

rn
al

 so
ur

ce
s i

s s
til

l a
 th

re
at

Pr
iv

at
e

bl
oc

kc
ha

in

3.

M
em

be
rs

hi
p

in
fe

re
nc

e
A

no
ny

m
is

at
io

n
of

 th
e

pr
ov

id
ed

 v
al

id
at

io
n

da
ta

se
t i

s r
ec

om
m

en
de

d
R

ec
om

m
en

da
tio

n
of

th

e
C

D
B

M
L

m
et

ho
d

To
 p

re
ve

nt
 e

xt
ra

ct
io

n
of

 th
e

or
ig

in
al

 tr
ai

ni
ng

 d
at

a,
 th

e
C

D
B

M
L

m
et

ho
d

su
pp

or
ts

 k
no

w
le

dg
e

di
st

ill
at

io
n

K

no
w

le
dg

e
di

st
ill

at
io

n

4.

Tr
ai

ni
ng

 se
t p

oi
so

ni
ng

Tr

ai
ni

ng
 se

t p
oi

so
ni

ng
 is

 a
 v

ia
bl

e
th

re
at

 to
 th

e
co

lla
bo

ra
tio

n
pr

oc
es

s,
bu

t
th

e
ne

tw
or

k
co

nt
rib

ut
or

s
ca

n
be

 b
lo

ck
ed

 f
or

 r
ep

ea
te

d
vi

ol
at

io
ns

 o
f

th
e

de
fin

ed
 c

ol
la

bo
ra

tio
n

ru
le

s.
Th

e
de

si
gn

ed
 p

os
Sh

ap
 w

ei
gh

t
se

le
ct

io
n

m
et

ho
d

w
ou

ld
 a

ls
o

re
m

ov
e

an
y

no
n-

pe
rf

or
m

in
g

m
ac

hi
ne

 l
ea

rn
in

g
m

od
el

s

En
se

m
bl

e
w

ei
gh

t
se

le
ct

io
n

st
ra

te
gy

,
pr

iv
at

e
bl

oc
kc

ha
in

5.

V
al

id
at

io
n

se
t

po
is

on
in

g
Th

e
co

nt
rib

ut
io

ns
 o

f
m

ul
tip

le
 c

ol
la

bo
ra

to
rs

 m
ig

ht
 r

ev
ea

l
th

at
 o

ne
 o

r
m

or
e

pa
rti

ci
pa

nt
s

su
bm

it
va

lid
at

io
n

da
ta

 w
hi

ch
 p

er
fo

rm
 b

et
te

r
on

 th
ei

r
ow

n
m

od
el

s.
Th

e c
ol

la
bo

ra
tin

g
or

ga
ni

sa
tio

ns
 sh

ou
ld

 m
od

er
at

e a
nd

 b
lo

ck

su
ch

 a
dv

er
sa

rie
s f

ro
m

 p
ar

tic
ip

at
in

g
in

 th
e

ne
tw

or
k

Pr
iv

at
e

bl
oc

kc
ha

in

6.

M
od

el

fit
tin

g
to

av

ai
la

bl
e

da
ta

Si

m
ila

rly
 to

 th
e

va
lid

at
io

n
se

t p
oi

so
ni

ng
, m

od
el

 fi
tti

ng
 to

 th
e

va
lid

at
io

n
da

ta
 c

an
 b

e
ha

rd
 to

 d
et

ec
t a

nd
 sh

ou
ld

 b
e

m
on

ito
re

d
by

 th
e

co
lla

bo
ra

tin
g

or
ga

ni
sa

tio
ns

. N
ev

er
th

el
es

s,
an

y
de

te
ct

ed
 m

al
ic

io
us

 p
ar

tic
ip

an
ts

 c
ou

ld

be
 b

lo
ck

ed
 fr

om
 a

cc
es

si
ng

 th
e

ne
tw

or
k

Pr
iv

at
e

bl
oc

kc
ha

in

64

In the next sections, the CDMLB method is presented in more detail. Each

method stage is defined with an activity diagram denoting the required actions, their
inputs, and the resulting outputs.

2.1 Blockchain platform preparation

The model and network preparation stage consists of four steps (see Figure 11):
data preparation, model preparation, deployment of the CDMLB blockchain platform,
and connection to the blockchain network. The data preparation and model training
steps are conducted in a private model development environment, while the
deployment and connection to the blockchain steps provide the network contributor
with the blockchain network identity and the required services for the subsequent
method stages. The data preparation or the model training steps can be omitted if the
network contributor already has access to the model, or does not have any datasets
that could be shared with other contributors. The blockchain platform deployment step
ensures that all the required blockchain components and services are deployed and are
ready to be used for collaboration purposes. Moreover, during the connection to the
blockchain network, an instance of the blockchain ledger in the network contributor’s
local environment is created, which also deploys the required smart contracts for
collaboration purposes. The smart contracts implement all the required model and
upload procedures as well as calls to the required oracle services. Due to the fact that
the smart contract contains model and data validation and contains calls to oracle
services, new contracts should be developed when new model types or new oracle
services have been added to the CDMLB platform.

65

Figure 11. CDMLB blockchain platform preparation part of the proposed method

The CDMLB Blockchain platform preparation steps are further elaborated upon
in the upcoming sections.

2.1.1 Dataset preparation

As in any machine learning process, the data preparation stage consists of data
standardisation, data cleaning, feature selection, and data partitioning into the training,
validation, and testing data subsets. The validation data subset should represent the
original dataset in both class and value distribution. If the validation dataset is
sensitive, the appropriate anonymisation and privacy preservation steps should be
taken before the data file is deployed to the blockchain network. Currently, the
CDMLB method supports tabular data only; thus, any categorical values should be
transformed into numeric values by using the available encoding techniques.
Additionally, it is essential that the dataset conforms to the format and structure

66

requirements outlined by the collaborating organisations. This includes the definitions
of all data features, as well as the class label column.

The proposed CDMLB method can support multiple data structures dedicated
for different machine learning problems at the same time. Smart contracts that
implement data structure validation, upload and reading functions must be developed
for every existing structure. Every model inference smart contract and local oracle
service must be developed or updated to support new data structures. The proposed
CDMLB method requires to store data in a text format, namely, in the JSON structure;
thus, any data that are provided in the non-textual format should be encoded or
transformed into the text format to enable the possibility to use the data in the
blockchain network.

2.1.2 Model training

After the dataset has been prepared, the model training takes place, which is
performed in a private model development environment. The method utilises the
supervised learning approach, during which, a dataset with labelled data is used.
During model training, we derive function from the training data which labels
values of the data with the corresponding prediction. The relationship between and

 could be defined as
 (2)

where is the class label and , is the d-dimensional vector . The
classification function is found such that its application minimises the loss metric
which is specific to the chosen classifier:

 (3)

where is a set of learnable parameters, is a single instance of the training data, and
 is its respective class label. The trained parameter set (the trained model) is

obtained by minimising the loss function for a set of data instances N by using
Formula (4):

 (4)

The training dataset is used to train the classification function , and the test data are
used to benchmark the performance of the developed function. When provided with
the novel descriptors, the function is used to predict a target value.

Machine learning methods supported by the proposed CDMLB method must be
suited for the supervised learning machine learning tasks. The machine learning
method needs to be able to serialise the model into a file. The serialised file formats
must be compatible with the developed oracle services. The predictions of the used
model should be represented as a Bayesian probability of the class membership.

67

2.1.3 Deploying CDMLB platform and connecting to blockchain

 The connection to the blockchain network starts with obtaining the permission
to join an existing private blockchain network, provided an appropriate private
blockchain exists. In case no such private blockchain exists, a new private blockchain
network should also be developed and deployed. The developed private blockchain
network supports the execution of multiple smart contracts and the ability to deploy
additional smart contracts after the network setup stage is complete. This provides the
ability to develop the blockchain network for a wide range of machine learning
problems without the need to create multiple instances of the blockchain network. For
each smart contract used by the network, an integrated local off-chain oracle service
should exist on the same network.

The CDMLB network, presented in Figure 12, is composed of collaborating
organisations which issue permissions and identities to the contributors and offer
access to the blockchain oracle factory component which deploys smart contracts with
the required local oracle service components. The factory component providing
oracles and smart contracts is required to unify the used version of the components
between the contributors. Any discrepancies of the smart contract or oracle versions
might prevent a contributor from participating in the network. The provided smart
contracts are used to calculate the model predictions and store the model and data
files. These functions power the collaboration process. Oracle services are required
for the smart contract to power the model prediction calculation on different
programming environments from the one provided by the smart contracts. The
contributor provides multiple submissions to the collaborating application and, in
turn, to the blockchain network (Figure 13). The contributor can submit datasets to
the network or submit machine learning models. A single contributor can be assigned
additional roles, but the minimum requirements are the submission of data and model
artefacts, and the ability to use the produced ensembles or distilled models. Each
individual collaborating organisation also operates an internal identity providing
service.

Figure 12. User roles in CDMLB network

68

Figure 13. Minimal required functions for distributed application

To set up the CDMLB network, at least two collaborating organisations (Figure
12) need be present in the network, but the number of collaborating organisations can
be extended to any size. The initial step of setting up a private blockchain consists of
establishing organisation-based roles, communication channels like ones present in
Hyperledger Fabric, developing the initial private blockchain structure, and deploying
the network. Additionally, the blockchain network is initialised, and the collaborating
organisations must agree on the machine learning tasks that will be supported and
define the supported data and model structures. Based on data structure definitions,
the collaborating organisation or multiple organisations develop smart contracts and
the local oracle services.

Creating local oracles that are trusted by the blockchain network and possess a
distributed architecture capable of receiving data from the blockchain network
requires a custom approach. The blockchain network itself produces the data for the
oracle, and the oracle functions only transform the provided data in a different
programming environment which is not supported by the blockchain network.

The oracle service only applies computations and presents the results back to
the smart contract. The oracle follows the request-response principle; the data and
their calculations are provided after a request has been made from the smart contract.
The oracle service is deployed to an individual network peer node.

Each smart contract and the respective local oracle is deployed by organisation’s
oracle factory service (Figure 15). Network contributors use this service to obtain the
required smart contracts and the local oracle services. Oracle services in the proposed
solution are separated from the blockchain network environment and divided into two
types: data providers and computation oracles. Oracle services are replicated in each
node and are deployed in the local node environment. This is the key difference from
the computation oracles proposed in source [148]. In the CDMLB method, blockchain
oracles are not divided into data and computation oracles; they only provide
computations, whereas the validation data are obtained from the blockchain network.

69

Oracle services are distributed by deploying them to the local network participant
node environments.

Figure 14. General component scheme of CDMLB network components

Source [150] introduces a smart contract factory pattern. Such a pattern is
designed to deploy instances of smart contracts. The CDMLB method proposes a
modification of the smart contract factory design pattern [150] with its component
diagram presented in Figure 14. Instead of using the design pattern to deploy multiple
instances of the same smart contract, this pattern is used to deploy local off-chain
oracles and the required smart contracts. To keep track of the versions of the deployed
smart contracts, a contract registry [150] design pattern with a smart contract factory
is employed. This design pattern allows organisations to track the issued smart
contracts and oracle services and allows organisations to manage the local oracle
service development and maintenance. The oracle and smart contract deployment
instances are tracked in the RegistryEntry entity, with the software version and data
information. The registry entry also tracks which contributor submitted the code, by
logging their identity. The oracle factory API provides functions dedicated to listing
smart contracts and oracle services as well as the initialisation and update
management.

70

Figure 15. Concepts and operations of the oracle factory network component

After the blockchain initialisation, the user performs the smart contract
deployment. The contributor node requests smart contracts and local oracle services
from the oracle factory component (Figure 15) which downloads and compiles the
requested smart contract from the network as well as the local oracle services. In the
proposed method, each organisation should contain an oracle factory component and
provide the oracle services to the organisation members. For every collaborating
organisation, the versions of components that are being distributed must match and be
synchronised. Every organisation can collaborate with multiple other organisations or
participate in two blockchain networks. The organisations can collaborate with
multiple other organisations simultaneously.

 The provided oracle services allow the collaborating organisations and
contributors to use the existing machine learning technologies such as Python, R, or
other popular machine learning environments to develop their models. This reduces
the development time for machine learning solutions and allows the existing models
to be reused. After the initialisation, smart contracts are deployed in a local network
peer environment. At the final step, the contributor tests the availability of the locally
deployed oracle service operations. The setup and testing phase of the blockchain
oracle deployment step is mandatory for all users joining or reconnecting to the
blockchain, as any discrepancies in terms of the blockchain oracle implementation
may result in a failed consensus algorithm.

The network connection stage is complete when the contributor has successfully
obtained a network identity and established the required services and smart contracts
(Figure 16). To successfully run the CDMLB method, a minimum of 4 services are
required. The model inference service is dedicated for the evaluation of models and
datasets after they have been contributed to the blockchain network. This model
inference service also calculates the Shapley values and stores them in the blockchain

71

network storage. Shapley values are only calculated when new data or model artefacts
are provided to the blockchain network and used from the blockchain storage if
required. The blockchain knowledge usage requires two services. The ensemble usage
service uses network knowledge in the form of an ensemble to calculate the model
predictions on novel data and stores the results in the contributors’ local environment.
The alternative to the ensemble usage service is the knowledge distillation service
which uses the same inputs, but provides the network contributor with a new neural
network model for usage and further development.

By using the proposed method, the contributor may be part of multiple
collaborative applications on the blockchain network and would only need to obtain
the identity once. If the data structures used by the network differ in a number of
features, or if they have multiple features represented in different formats, the network
would need to join additional collaboration solutions, or an entirely new blockchain
network may be developed. The provided identities must be submitted to the local
distributed web application to successfully connect to the blockchain network and
execute smart contracts.

Figure 16. Components of the contributor node environment required for the CDMLB

method

2.2 Model and Data Deployment

The model and data deployment to the blockchain network is performed by
using the developed collaborating organisation application. The application identifies
the contributor and enables the contributor to perform data or model file upload
operations.

The user roles and a list of the supported functions for such an application are
presented in Figure 13. The CDMLB method enables the data and model sharing
process which is detailed in Figure 17. Data owners are able to share data in order to
participate in evaluating the overall quality of the shared models, while the model
owners are provided with means to use a larger dataset for determining the quality of

72

the model and with access to a distilled model developed by using the best-performing
set of models. Contributors are also provided with means to use the network
knowledge by predicting via the weighted ensemble.

Figure 17. Model and data deployment part of the CDMLB method

2.2.1 Contribution to blockchain network

Two different contributions to the network are possible – uploading a dataset, or
uploading a model. The data upload step starts with the contributor uploading a dataset
file to the local web application. The local web application checks if the file is of a
supported format, and checks if the uploaded dataset structure adheres to the defined
structure. The blockchain oracle service then performs the testing operations with any
valid model provided by the contributors. If multiple models are presented from a
single contributor, the model with the highest performance will be used in testing.

73

Similarly, the uploaded machine learning model file is tested by the local web
application, and then validated on a dataset sample to check the compatibility between
the uploaded model and a data sample. Such a test ensures that the model file is
compatible with the used oracle service and that it is presented in the correct file
format. Both uploaded artefacts are stored on the blockchain and replicated among all
the participants. The artefacts are transformed to reduce the amount of the required
storage space; specifically, the dataset file is transformed by splitting the data feature
and label columns and storing them into a data matrix as well as discarding any meta
data contained in the data files. The ML model file is encoded into the text format,
which can later be decoded by the local off-chain oracles.

To ensure the data correctness and usability, every uploaded file is validated via
the dedicated function in the local oracle solution. The validation procedure also
discards any mismatched classifier types or file formats. The model contribution
evaluation function calculates the model’s performance, and any poorly developed
models are not included into the model ensemble. The data validation procedure must
be designed to discard any data that include empty values and could be developed to
check other data quality metrics. Similar to the model evaluation, the proposed method
also evaluates the data impact on the model’s performance, and any dataset not
meeting the imposed requirements could be rejected by the validation. The
collaborating organisations should also agree and develop functions which would
define logical limitations to data features which exist in datasets. Such an approach
would reduce the amount of erroneous and highly biased data form being used in the
proposed method. Based on the common trust and access right management, any
collaborating parties that would repeatedly provide erroneous or biased data could
also be removed from the collaboration process.

Data and model contributions are stored in the respective model and data
structures and are stored in the blockchain storage. For every combination of the
validation data and an ML model, a dedicated off-chain blockchain oracle service
calculates the model prediction set and returns the response to the smart contract
which, in turn, stores these predictions in the blockchain storage. The calculated
predictions are then used to obtain the model performance metrics, such as cross-
entropy [195], or binary cross-entropy [39].

The proposed CDMLB method combines models by averaging their predictions.
The model predictions are defined as:

 (5)

where is a predicted value (output), x defines a feature vector (input), is an
individual classifier. To calculate an average prediction for the classifier , the average
prediction is calculated by:

 (6)

where n is the number of classifiers in the ensemble and is their predicted value.
The averaging of predictions is applied for each data row in the used dataset, and it is
used to calculate the classifier training loss measure.

74

Cross-entropy was first introduced as a measure to calculate differences
between two probability distributions. It was first applied in the field of information
theory and developed by using the concept of entropy [196]. In the context of machine
learning, cross-entropy is usually used as a loss function [197]:

 (7)

where M is a total number of the predicted classes, is the predicted probability of
the class, and is the ground-truth class value, which is a one-hot encoding indicator
of the true class. Such a loss function can be used for multiclass classification tasks.
In the context of this work, only binary classification tasks were considered; thus, the
Binary Cross-Entropy (BCE) measure was selected as the main loss function. To
apply the proposed method for multiclass classification tasks, the BCE measure
should be replaced by the CE loss function.

Binary cross-entropy was selected on the basis of its popularity in classification
tasks. Binary cross-entropy quantifies the difference between the predicted class
probability and the ground truth class, by representing the target class as ‘1’ and the
non-target class as ‘0’. Binary cross-entropy can be calculated by using the following
formula:

 (8)

where characterizes the ground-truth class label and represents the model’s
class probability prediction. The calculated BCE metric is appended to every instance
of the model prediction set recorded to the blockchain storage.

By using the proposed CDMLB method, the evaluation of each network
participant for both data and model contributions can be made. As both the data and
the model are required to produce predictions, the network participant which deploys
the smart contract should provide at least one instance of both artefacts.

2.2.2 Contribution calculation

The existing propositions [10], [11] suggest that data importance to the overall
ensemble performance can be quantified. The CDMLB method measures an
individual contributor’s dataset impact for the network contributor n by evaluating
the model ensemble performance subtracted from the performance of the model
ensemble N containing all other datasets except for the dataset n:

 (9)

The produced contribution score values are also scaled by dividing all the data
contributions from the combined total sum of all scores, and thus producing the scaled
contribution value :

 (10)

75

Those network members that produce a value higher than the limit set by the
collaborating organisations could be compensated for their datasets based on the
contribution. The need by the contributors to gain the most accurate machine learning
solution provides motivation to keep sharing the testing data, while ensuring that the
uploaded models do not lose their performance due to task shift or noisy validation
data.

The CDMLB method combines best-performing models into an ensemble and
employs Shapley value calculations to evaluate each model’s impact to the overall
ensemble performance. Reciprocal BCE is used as a performance metric to measure
an ensemble member’s contribution impact, and it corresponds to:

 (11)

The Shapley contribution score of a model is calculated as follows:

 (12)

where is the set of classification models, and sub-ensemble is a subset of ,
and it represents a coalition. The reciprocal BCE corresponds to the coalition
contribution . Marginal contribution of a single coalition member is represented
by . The empty coalition measure was derived from comparing
random guessing predictions of 0.5 and compared to validation data class labels (see
Formula 7) For datasets containing classes in nearly equal proportions, the empty
coalition measure should be exactly 0.693. A lower performance score than 0.693
would denote that the classifier performance is lower than the random guessing
approach. For datasets containing classes of unequal proportions, the empty coalition
value can be calculated by setting all prediction to 0.5 and calculating the BCE value.
The model ensemble for evaluation is developed for an individual machine learning
task. If the network participant has contributed multiple models, in order to reduce the
amount required to compute the Shapley values, only a single model with the best
contributor score is included. All models which do not increase the performance of
the ensemble are omitted by setting their weight to zero according to Formula 12.
Such an approach is defined as positive Shapley (posShap):

 (13)

where is obtained by using Formula (12), and the posShap transformation of is
identical to the rectified linear unit activation function ReLU [198].

 The alternative approach which changes the resulting prediction class based on
the defined rules for the model prediction set has been proposed, and it is calculated
by:

76

The alternative strategy to resolve negative Shapley values was based on the
assumption that the model developer switched class labels while training. Such a
switch would result in a negative Shapley value and would decrease the performance
of the overall ensemble. Based on the assumptions about the developed classifier, a
model prediction inversion strategy was proposed, where p is the classifier output.
Such a strategy will be referred to as the Shapley value with maximum inclusion
(maxShap).

An overview of the evaluation process is presented in Figure 18, which consists
of 4 stages. At the first stage, contributors train their models on sensitive private data
in the local private model development environment. During the second stage, the
trained classifiers are validated by using the validation data deployed to the blockchain
network. In the third stage, the predictions are made and used to evaluate the
performance of the models by using the Shapley-based method. Shapley weights are
then stored in the blockchain network. The produced Shapley-based ensemble weights
and the contributed machine learning models are combined into a model ensemble
during the ensemble usage stage or when applying the model distillation approach.
The final weighted model ensemble using local off-chain oracle services can be used
to calculate predictions when provided with validation data.

After both the data and the model contribution score have been calculated for
the contributors, the incentives can be derived and distributed. The incentives may
include monetary or token-based funds, thus providing motivation for the contributors
to keep contributing datasets and models to the network.

Figure 18. Overview of the proposed ensemble evaluation strategy

Contribution calculations have been implemented by using the proposed
CDMLB solution, and two proposed model contribution evaluation strategies have
been experimentally tested. The implementation details are presented in Section 3.

 (14)

77

2.3 Network Knowledge Usage

The CDMLB method provides two approaches to how network knowledge can
be used to model prediction calculations, with a detailed usage process being
described in Figure 19. Both approaches calculate model predictions by using testing
data. Both of the described approaches require information about the models, and their
produced results are stored in the contributor’s local environment.

The first approach involves aggregating multiple models into a unified
ensemble. This ensemble is created by a specialised blockchain oracle service.
Through weighted averaging, predictions are generated on testing the data contributed
by the users without the need for the data to leave their local environments, thereby
ensuring data security and privacy while recording model usage information on the
blockchain. Such usage of the weighted ensemble will be defined as the predicting
using weighted ensemble approach.

 In the second approach, knowledge distillation is employed to train an
aggregating model using the previously calculated model predictions. By combining
the validation data and the models merged into an ensemble, a new neural network
model is developed, and the distilled model file is stored locally on the contributor’s
node. The distillation process preserves the privacy of the training data that were used
to develop contributed machine learning models on the blockchain. Such training data
privacy preservation is especially important in model usage cases outside the
blockchain network.

Figure 19. Proposed procedures for blockchain network knowledge usage

78

The prediction using weighted ensemble enables the usage of network models
by providing the testing data to the specialised component. Such usage is
recommended when a user is not planning to apply the results in the separate
environment as the ensemble can potentially disclose information about the training
data in use. For knowledge transferring to external non-blockchain environments,
network usage via the distilled model is recommended.

 The network usage via the distilled model allows extracting knowledge into a
more simplistic representation and enables additional model tuning for further
improvement. Such a distilled model can be deployed for usage in non-blockchain
environments, thereby allowing for an increased amount of the possible application
areas.

2.3.1 Predicting using network ensemble

The prediction using the network ensemble approach uses model files and
Shapley-based weights stored in the blockchain ledger to predict the use of the testing
dataset without sharing the data to the blockchain network. The approach uses a local
off-chain oracle. Local oracle procedures are invoked from the model selection smart
contract and are provided with the models. The model section algorithm evaluates the
model performance and selects a single model for each network contributor. These
models are then aggregated into an ensemble. The ensemble then predicts by
combining all the model predictions with Shapley weights by using the weighted
arithmetic mean:

 (15)

where is a single model prediction, and is the Shapley value for that model in
an ensemble.

79

Figure 20. Ensemble creation process

After the model selection step, the contributor provides the testing dataset to the
local web application and calculates predictions in the contributor’s local environment
by using the usage oracle This interaction with the blockchain oracle ensures that the
transaction is recorded, but only the information about the access to the model file is
saved. All the prediction results are stored in the user’s local environment, thus
preserving the user’s privacy. The process should always return positive results for
other network participants and allow them to only verify the model file and the
validation data access fact.

The network knowledge usage approach with a weighted ensemble has been
evaluated in two experiments, by comparing it with other ensemble weighting
strategies, and comparing it with the other approach where network knowledge is
transferred into a new neural network model. The implementation details are provided
in Section 3, while the experiment results are described in Section 4.

2.3.2 Network knowledge distillation approach

To use the knowledge stored on the blockchain, the proposed method applies
the knowledge distillation [199] approach on the model predictions sets stored on the
blockchain ledger. The blockchain network knowledge distillation approach (Figure
21) allows the contributors to make predictions by using the model trained on the
network. Knowledge distillation is employed to reduce the risk of revealing sensitive
training data contained in the contributed machine learning models. To obtain the
model prediction sets from the blockchain network, the organisation provides access
and smart contracts which calculate model prediction sets. By using the smart
contract, the model predictions are transferred to the local off-chain component called
the knowledge distillation service (Figure 16). The service uses model predictions of
every model with the positive Shapley value shared to the network and trains the
neural network. The neural network uses a loss function which combines the
distillation loss (the teacher loss) with the loss of the neural network predictor that is
in development (the student loss).

The Kullback-Leibler (KL) divergence [199] is a statistical measure which
evaluates the distance between two probability distributions with one being the
teacher model class probabilities , and the other being the student model class
probabilities

 (16)

Class probabilities softmax() and softmax() in the experiments were
calculated as softmax outputs [98]:

 (17)

where represents the predictions of the teacher that is being distilled and are the
predictions of the student classifier. T represents the distillation temperature that

80

allows ensuring harder or softer probability distribution over the classes. reaches
0 only when the predicted class probabilities are identical ().

The final loss for model tuning is calculated by introducing the measure which
allows modifying the ratio between the simple neural network model loss when

 and only using the blockchain network ensemble predictions to train the model
when

 (18)

where represents the student loss and represents the distillation loss.
A model trained by using this strategy allows the network contributors to utilise

the network knowledge without the need to use the model ensemble constructed on a
blockchain network. This also prevents the disclosure of the knowledge to sources
outside the blockchain network, as the distilled model does not provide any
information about the other ML artefacts recorded in the blockchain ledger.
Additionally, it allows network participants to use the network knowledge in a more
versatile approach, when transferring a machine learning solution to other application
environments.

Figure 21. Knowledge distillation architecture

Due to the limitations of the blockchain technology, the blockchain network is
not able to verify the result of the distillation process and will be incapable of
evaluating the classifier performance or verify the correctness of such a process. The
model created by the distillation process can be further developed by using private
contributor data in a non-blockchain environment, outside the CDMLB method. The
improved model should then be used to make predictions by using the validation data
with a higher performance.

2.4 Summary

The method for collaborative distributed machine learning on the blockchain
has been proposed. It enables collaboration via the model deployment and inference
processes. The proposed method defines three stages in which the collaborating
parties prepare the private blockchain network, participate in the collaboration, and
utilise the network knowledge via the weighted ensemble usage or the distilled neural
network model. The CDMLB method uses blockchain smart contracts to facilitate
model and data deployment to the blockchain network and introduces the local

81

blockchain oracle architecture which enables local execution environments in
programming languages that are not supported by the blockchain platform. The
proposed CDMLB method introduces automated performance evaluation of the
shared model and data artefacts. Such a model contribution is obtained by evaluating
the model’s performance while using binary cross entropy as a contribution measure
in the Shapley value weight selection strategy. The data contribution is defined by
measuring the impact on the model ensemble performance. Finally, the proposed
method allows its users to utilise knowledge from the blockchain network directly, by
weighted ensemble, or indirectly, by the student-teacher distillation approach.

2.5 Limitations of the CDMLB Method

The proposed CDMLB method introduces additional flexibility when compared
to the smart contract-only based solutions. The method allows integrating the already
existing popular machine learning environments and libraries via the application of
the local off-chain oracles, although this introduces additional development efforts
and complexity required to create and maintain such a solution for the collaborating
organisations. This could increase the upkeep costs of the presented method and
discourage possible applicants from using this method.

The introduction of new off-chain components may present additional security
and software development challenges. The distribution of the blockchain oracle
services by the governing organisation should be considered a priority, as the attacker
of the distribution could affect multiple participants at once. The developers of the
off-chain contracts should also consider possible tampering of the local services as
the services will be deployed in a local participant’s environment.

The motivation to use private blockchain requires partial trust between the
involved parties to develop collaborative solutions. The utilisation of a private
blockchain and the introduction of an organisation entity requires upfront trust
between the parties. Yet, the collaborating parties should remain competitive enough
to not commit into sharing the training data outright so that to make the usage of the
proposed method viable. The proposed method could simply be replaced by a trusted
third-party application if the collaborating parties would trust each other enough to
share the training data outright.

The testing data stored on the blockchain are accessible to all the participating
organisation contributors and could be used to develop adversary models trained on
these data or used to generate synthetic validation data which are similar in structure.
If some incentive measures exist, both of these attack vectors could be used by
malicious network participants to try and exploit incentive measures for unfair gains.

The proposed CDMLB method requires defined validation data and model
structures that are supported by smart contracts and local oracle components. The need
to develop solutions based on defined structures may lead to delays in applying the
updated data structure or new model types and may require improving or introducing
additional components, such as local oracles or smart contracts.

Currently, the computational complexity of the proposed CDMLB methods is
O(N!) based on the most complex exact Shapley value calculation component. The
method specifies that, for every network participant, only a single best performing

82

model is evaluated, even though, with this precaution in mind, each new network
member would significantly reduce the performance of the blockchain network. Such
computation complexity could be reduced by the usage of the Shapley value
approximation algorithms, but their application and effect on the proposed method
have not been evaluated yet.

The scalability of the proposed CDMLB method might be limited by the
modular architecture in use. In the proposed architecture, every new component is
developed by using a separate runtime environment; thus, the sharing of the common
runtime costs between the components is not possible. Because of this, the increased
number of the local oracle components could reduce the performance and non-
efficiently utilise the existing computational resources. Another drawback of
scalability in the proposed method stems from the used oracle factory component that
is decentralised, but only used by the members of a single organisation. It means that
if the size of the participating organisation happened to grow, the computational
demand for the oracle factory component would increase with the addition of each
new member.

83

3. IMPLEMENTATION OF THE CDMLB METHOD

3.1 Dataset Preparation

For the implementation of the method, a data partitioning strategy was used,
which is presented in Figure 22. The selected dataset was prepared by performing
categorical data reduction on selected features which combined multiple categories
into an aggregated category, and one-hot encoding of the categorical text-based data.
The dataset was randomly shuffled, and the data were split into training, validation,
and testing data. By using the strategy, 80% percent of the original dataset was
dedicated for model training and 20% was assigned for testing. The testing dataset
was shared to the blockchain network for model performance evaluation. Based on
the individual requirements and parameters of the contributor’s dataset, the proposed
data partitioning strategy can use other ratios. The training data were further divided
into the training and validation subsets to measure the performance of the
classification models during its training stage.

Figure 22. Proposed splitting strategy for the contributors’ data

The demonstrated data splitting strategy was applied to two banking-related
datasets. In the next step, the prepared training dataset is used during supervised model
training.

3.2 Implemented Classifiers

The proposed method was implemented by utilising two base learners:
 Classification And Regression Tree (CART) [48];
 binary logistic regression [27].

The learners were selected based on their popularity in the classification tasks
and their popularity in the ensemble-based machine learning approaches and the fast
model inference calculation time, which allows evaluating a larger blockchain
network without wasting computational resources. Binary logistic regression was also
selected based on its common usage in the financial domain. The small file
representation size of the selected classifiers also exerted influence on the selection of
CART and the binary logistic classifier. The selected classifier training can also be
completed with a relatively low amount of computational resources, thus enabling a
higher possibility of collaboration. The CART classifier was also selected by its
explainability. The CART classifier utilises data partitioning to develop a tree-like
structure. In this classifier, the leaf nodes contain predicted values for the input vector.

84

The intermediate nodes contain data splitting decisions. Every decision rejects some
potential sequential points and additionally discards some classification choices. The
traditional decision tree classifier is developed by using a greedy split algorithm and
a Gini impurity measure applied to the learning data. The following formula is used
to calculate the Gini impurity:

 (19)

where is a list of all classes, k is a specific category after the split, and is a
probability of the category having the class .
 Decision tree classifiers differ from other machine learning models by a clear
definition of data splitting decisions that can be displayed in a graph format. Such
graphs can be easily analysed, thus denoting the criteria that led to the classifier
decision. An example of such a graph is presented in Figure 23. The CART classifier
is commonly used when combining multiple classifiers into ensembles [200], [201],
[202].

Figure 23. Visualisation of a decision tree classifier for Bank Marketing dataset, where the
darker is the colour of the node, the more target class cases of the training data exist there

The second classifier empirically tested in the CDMLB method was the binary
logistic regression. The binary logistic regression is one of the traditional approaches
[203] to the binary classification problem. It models the linear expectation of vector

 belonging to class as , where:

 (20)

85

 (21)

The logistic regression model fits the weighting coefficients

in a manner which minimises the logistic loss (log-loss) function:

 (22)

The CDMLB method can also support other classifiers, but only the decision
tree and the logistic regression classifier were implemented. The model training step
is concluded by storing the machine learning model into a file.

3.3 Implemented CDMLB Blockchain Platform

The prototype blockchain network was developed by using the Hyperledger
Fabric private blockchain framework. Hyperledger Fabric uses a service-based
architecture and deploys services using containerisation. Such a deployment method
allows us to introduce new services in the developed blockchain environment that can
be replicated and developed as a separate service. The Docker container management
environment was used to deploy and manage the blockchain network services and
blockchain oracle components. The prototype network implementation used two
organisations containing multiple network contributors. Each organisation contained
an identity service to authenticate the contributor nodes. A single communication
channel was deployed between the two organisations.

A model inference smart contract was developed as proof-of-concept
implementation and deployed to all the network contributor nodes. By using the
Docker container management service, a proof-of-concept oracle factory service was
developed by deploying the required local oracle services for all the existing network
contributors. Similarly, a local web application incorporating a smart contract allowed
uploading the machine learning model and the data. Additional off-chain oracle
services were deployed into each individual network contributor node environment.

 The local replicated application was implemented as a website using the Go
[204] programming language by using a web page templating library [205]. The
developed website used the contractapi [206] library to access the smart contract
functions. The developed prototype local web application was deployed into the
contributor’s node local environment while using a dedicated container service. Every
network participant obtains such a local web application from their organisation. The
local web applications are replicated identically for all network users and offer exactly
the same functions.

The network initialisation stage contained the following steps:
 The contributor would initialise the blockchain network with the provided

identity.
 The contributor would create an instance of the blockchain ledger.
 The contributor would connect to the created Hyperledger Fabric

communication channel.

86

 The contributor would obtain the organisation-provided smart contracts, the
local web application and the required oracle services from the oracle factory.

 The contributor would initialise smart contracts and oracle services.

After the initialisation, the network participants are ready to contribute data and
model files via the local web application.

3.3.1 Implemented smart contracts

To implement the proposed CDMLB platform, the smart contract for
collaboration was developed by using the Go programming language. The smart
contract specification is provided in Figure 24. The specified functions are used by
the local web application; they are used by employing Hyperledger Go API. The
developed smart contract contains data structures for models, data and model
inference. Each model, data and results are connected to the owner structure which
defines its provider. All of these structures can also be bundled into key value pair
structures that are used to combine them into addressable slices. The ensemble
weights are stored in the weights data structure. The smart contract provides functions
to initialise the model, the data files as well as the results calculation. The model and
data validation functions are designed to test the format and the structure of the
provided data and the model files. All the defined data structures can be obtained via
the smart contact via the developed functions. The model inference results are
calculated via the calculate predictions file. The Shapley weights are updated every
time the calculateShapleyWeight function is called, with such calls being included in
the data and model initialisation. The initDatafile, initModel file and initResults
functions depend on the blockchain oracle-provided functions.

87

Figure 24. Smart contract implementation for Shapley weight calculation

3.3.2 Implemented oracle services

 Two oracle services have been implemented to test the proof-of-concept
implementation of the proposed CDMLB. The developed oracle services contained
the following functions: 1) the data validation function; 2) the model file and model
encoding validation function; 3) the model inference calculation function; and 4) the
component setup validation function. The data validation function was designed to
test if the provided data file format is correct as well as to compare the provided data
batch with the example data structure. The model validation function applies similar
actions by testing the model file format as well as the validation if the model can create
inference with the defined sample data structure. Both of these functions are called
before the smart contract calls the model inference function, thus ensuring that all the
network participants are able to perform the inference calculation action. If such a test
successfully completes the model inference calculation, the procedure uses the tested
data and model files and returns the model inference set to the smart contract. The
smart contract, after a successful call, stores the inference results in a CouchDB

88

database. These model inference results are then used in a Shapley weight calculation
smart contract function on the model usage request.

 The first blockchain oracle was implemented by using the Python
programming language and with the API service implementation using the Flask
library and machine learning procedures implemented by using the PySpark library.
The second blockchain oracle was implemented by using the R language, by
implementing the API service via the Plumber library and the powering machine
learning functions by the MLR3 library.

3.4 CDMLB Blockchain Platform Usage

3.4.1 Contributing to the blockchain network

By using the local web application developed by the contributing organisation,
the machine learning artefacts were contributed to the blockchain network. The
application allows network contributors to upload data in the CSV file format [207].
The dataset file is divided into the feature and label parts. The metadata of the
presented dataset are discarded, such as the row numbers and the feature names, to
save the storage space. Then, the data are stored in the JSON format [208] in the
blockchain storage. The switch between the CSV format to JSON is also motivated
by the JSON file format support in CouchDB on the chain storage.

The machine learning classifiers were developed by using the MLR3 and
PySpark machine learning libraries and compressed into ZIP files which were
deployed to the network. The aforementioned files were encoded into the text-based
format by using the BASE64 algorithm and stored in the blockchain ledger. For both
data and model representations, the identification of the network contributor was also
stored in a JSON-encoded structure. When this model file is being used to produce
predictions, the file is decoded from the text-based structure and used to predict on
new data instances.

3.4.2 Contribution evaluation

Due to the currently existing research which proposes means to evaluate the
contribution of machine learning datasets [179], [180], the CDMLB method focused
on developing and testing the model contribution approach.

Additionally, the method proposes an approach for the model contribution
evaluation. The model contribution evaluation approach was implemented by using a
machine learning ensemble of logistic regression and decision tree classifiers. The
classifiers were developed by using the Python and R programming languages and the
PySpark and MLR3 machine learning libraries, respectively. More than one
implementation language was chosen to denote the flexible nature of the
implementation environments available by using the proposed blockchain oracle
architecture. The evaluation of the model performance using model ensembles was
developed by using a Shapley-based ensemble weighting strategy. By applying
Shapley values, they can be used to assign the contribution scores for an individual
machine learning model in an ensemble. The model contributions were evaluated by

89

developing a decision tree and binary logistic regression classifier ensembles, as well
as heterogeneous ensembles which combine the two tested classifiers into a single
ensemble.

 Contribution calculations with decision tree models and their combination
into ensembles were implemented in a proof-of-concept blockchain network with the
local web application [209]. This web application enabled network participants to
upload data files, model files, and overview changes in the model performance
presented in the Area Under Curve (AUC) measure.

3.4.3 Implemented weighted ensemble usage approach

The implemented weighted ensemble usage approach was designed to allow the
network participants to use the network knowledge by providing testing data to the
local web application. The ensemble usage approach was implemented by using two
machine learning classifiers. The first implementation used the Python programming
language and the PySpark machine learning library. The second implementation used
the R programming language and the MLR3 machine learning library. Both
implementations were developed for two banking-related tasks.

The ensembles are developed by using a decision tree and logistic regression
classifiers. Both homogeneous ensembles were tested as along with heterogeneous
ensembles mixing the two selected classifier types. The developed weighted ensemble
was compared with the single model approach and other popular weight selection
strategies. Moreover, the CDMLB approach was compared with the most similar
Shapley-voting based strategy.

3.4.4 Implemented distilled knowledge usage approach using the three layer
perceptron architecture

The knowledge distillation approach was implemented by adapting the solution
proposed in source [98]. The implementation of the distilled model used the Python
programming language and the Keras machine learning library as well as the
framework provided in source [210]. The trained neural network contained two
hidden layers: first with 16 hidden nodes, and second with 8 hidden nodes and a binary
output layer.

The neural network was trained by using validation data as well as the used
ensemble predictions as the training datasets. The distillation approach used models
developed for the ensemble weight calculation experiment. A validation dataset that
could be donated to the blockchain network was used to test the produced neural
network’s performance. The resulting neural network performance was compared to
the weighted ensemble which represented the network knowledge usage approach and
the single model approach. The knowledge distillation approaches were evaluated at
three different levels of distillation. The first configuration included no
blockchain network knowledge and only trained the neural network classifier on the
combined validation dataset. This configuration would allow us to evaluate how the
inclusion of network knowledge affects the classifier’s performance. The second
configuration included only a small amount of the blockchain network

90

knowledge. The third configuration used neural network predictions on the
validation dataset and the blockchain network knowledge with the equal ratio.

3.4.5 Implemented distilled knowledge usage approach using the deep learning
architecture

To test the classifier performance difference from the shallow neural network
architecturedeep learning neural network architecture was implemented.. The
implementation used an already existing TabNet [211] neural network architecture
tailored to tabular data tasks. Such an architecture was selected based on its
compatibility with the existing Python model development environment as well as its
high performance on the experimentally tested Bank Marketing dataset. The
implemented neural network modified the code provided in source [212], by
implementing the ensemble prediction loading and knowledge distillation loss
calculation functions. The developed architecture used the TensorFlow 1.2 machine
learning library to train its model. The implemented deep neural network architecture
contained 4 layers, where each layer was composed of the full connection layer,
proceeded with the normalisation layer, and finished with the Generalised Linear Unit
nonlinear activation layer.

The neural network training procedure was similar to the three-layer perceptron
training procedure and used the same datasets and models. The comparison with
different alfa values set during the training and baseline classifiers matched the
procedure performed with the three-layer perceptron classifier.

91

4. EXPERIMENTAL EVALUATION OF CDMLB METHOD

The experimental evaluation of the proposed method was conducted in three
stages. Each stage was dedicated to testing a part of the proposed CDMLB method
and evaluating the implementation of the method processes.

The first stage was dedicated to evaluating the possibility to implement the
method’s CDMLB blockchain platform preparation step and the system architecture
based on the local oracles. An experiment defined in source [194] was conducted to
test whether the local oracle approach could be a viable solution in the existing
blockchain technology and how the introduction of new components into the
blockchain network could affect the performance of the system (the experiment results
were also published in paper [194]).

The second stage was allocated to testing the contribution calculation part of the
method. The experiments concentrated efforts to develop the model evaluation part
due to the already existing propositions which evaluate the data contributions [179],
[180]. The experiments [192] compared two proposed ensemble weighting strategies
with the existing commonly used strategies and the most similar Shapley-voting based
weighting approach (the experiment results were also published in paper [192]).

The third stage evaluated the part of the network knowledge usage by measuring
the performance of both method usage solutions. The experiment used models
developed in the second stage and developed a distilled neural network model. The
distilled model was developed by using three distinct configurations, and they were
compared to the performance of the ensembles created in the second stage of the
experiment.Performance Evaluation of Model Inference via Local Off-chain
Blockchain Oracles

The model inference calculation algorithm development is a key procedure in
the model deployment stage. The goal of the experiment was to evaluate the
performance impact of the introduced local off-chain oracle components and to
evaluate the model inference calculation algorithm implementation when using the
private blockchain technology. The model inference algorithm was implemented by
using smart contract and oracle services. To compare the proposed architecture with
the already existing solutions, model inference was implemented by using two
architectural approaches. The first approach was implemented by using only smart
contracts, which covered all the logic for the model inference calculation. The second
approach was implemented by using the smart contract and extended with local off-
chain oracle components, which relocated the inference calculations and only
provided results to the smart contract.

The Hyperledger Fabric blockchain network was used as a framework and the
experiment execution environment. The Hyperledger Fabric private blockchain was
chosen due to its modular architecture, the consensus algorithm which does not incur
any cost attached to the smart contract execution, and the ability to call external
network components from smart contract services. The Go programming language
was chosen as the smart contract development language, since the Hyperledger Fabric

92

blockchain provides native support for this language. Two solutions implementing the
model inference calculations were developed: a solution using exclusively the smart
contract; and a solution using the smart contract extended with the computation
transfer to the local off-chain oracle service component which was implemented as
the RESTful microservice.

The logistic regression model type was utilised in the experiments as the
classifier of choice. Such a model type was selected due to the small model
representation when stored into a file, and due to the quick model inference calculation
performance. The low model inference calculation time requirement was introduced
to evaluate the introduced network communication overhead in more detail, rather
than focusing on the model inference calculation execution time efficiency. The
machine learning models used in this experiment were trained in a separate
environment. This environment simulated the local model development environment,
and the results of the model development stage were stored into the file format. The
model training process represented the proposed model development steps presented
in the CDMLB method, where no training data are exported from the local
environment. The completed experiments compared the performance of only the
model inference calculation part of two different implemented approaches. The model
predictions in the context of the proposed CDMLB method are recalculated when a
new model or new data are shared to the blockchain network.

The experiment was executed by uploading the validation dataset file to
Hyperledger Fabric CouchDB by using smart contract functions called from the
command line interface. The model files developed in a separate local model
development environment were then uploaded to the blockchain by using the same
procedure. During the model upload, the model inference calculation function was
executed. The execution time of the function was measured. The model upload
procedure was repeated 100 times, and the performance overhead was measured by
using the Formula:

 (23)

where T represents a set of runtimes which were calculated over 100 iterations
by using logistic regression models. The overhead was calculated by measuring the
percentage of performance increase over the chaincode configuration. The model was
developed by utilising the GoML library [38] randomly sampled data batch. The
model inference execution time would start from the initial call of the model inference
calculation function and would finish when the function provided results evaluating
the total time spent in the model inference calculation function.

To fairly evaluate the performance of the local oracle components, the defined
experiment steps were performed on a new Hyperledger Fabric network instance
which did not contain any information about the previously performed experiment
part. The benchmarking experiment for local off-chain oracle computations also
measured the model inference execution time on a smart contract which transferred
the model inference calculation logic to the separate local oracle component, and the
introduced API calls to that service from the smart contract environment.

93

4.1.1 Experiment settings

The experiments were conducted on a server with the following configuration:
8 Intel Xeon Silver 4114 CPU, 16 GB of RAM, SSD data storage. The experiments
used the Ubuntu 18.04 operating system, Docker 19.03.6 containerisation
environment that was running Hyperledger Fabric 1.4.9 with CouchDB 2.3.1 as the
network database. To reach the consensus, the transactions had to be validated by all
the existing network participants. All the peers were connected to a single organisation
structure.
 The model inference smart contract was developed by using the Go
programming language. The local oracle was implemented by using the Go
programming language as a RESTful service API component by utilising the Go
net/http library. The local oracle implementation was identical to the smart contract
developed for local computations, by only replacing the model inference calculation
with external calls to the off-chain oracle service.

Figure 25. System configuration for the blockchain network components

The experiment prototype deployment configuration is presented in Figure 25.
All the components were hosted on the Ubuntu Linux server, with all of the blockchain
network components running in a Docker environment. Hyperledger Fabric CLI
(command-line interface) was running in a single network peer node which was used
to call the smart contract functions. The orderer and certificate authority nodes were
managed by executing commands from the CLI component. The certificate authority
manages the network participant access rights, and the orderer component distributes
the transaction validation commands for the consensus algorithm. Every network peer

94

node contained a smart contract for the model inference and a copy of the distributed
ledger. The local off-chain oracle service was also deployed to every network member
node.

 Two datasets were used to benchmark the performance of the developed model
inference solutions.
1. The synthetic dataset was composed of the generated data with values

representing the coordinates in a two-dimensional space resulting in two features.
The values were distributed in the non-linear fashion in crescent -like shapes and
were generated with the make_moons function from the scikit-learn Python
library [213].

2. The EEG eye state dataset [214] was composed of 14 features. The dataset was
developed by recording the signal outputs of 14 channels of the EMOTIV EEG
Neuroheadset, and the test subject eyes were either open or closed during the
recording.

The data sets were selected according to the suitability for the binary classification
task. The synthetic dataset was selected due to its flexibility in generating any number
of data instances, which allowed testing the performance drawbacks of datasets of
larger sizes. The EEG eye state was selected to represent an example dataset for
sensitive data that could be used in collaboration from the healthcare field. The dataset
contained a sufficient amount of data instances and a balanced target against the non-
target class balance.

Both datasets were divided into smaller subsets, by following the list: {1024;
2048; 4096; 8192; 16384; 32768}. The EEG dataset only contained 14980 instances;
so, in order to obtain the required amount of data, the set of rows had to be expanded.
This expansion was completed by bootstrapping new data based on the original
dataset, by appending duplicate rows while preserving the original ratio of the positive
and negative classes. The data were stored in the blockchain storage with data
indexing, which enabled to speed up the reading process. The dataset record sizes
when stored in the blockchain storage are presented in Table 7. The number of the
network nodes participating in the blockchain network was set according to the
following list: {3; 5; 7; 9; 11; 13}. Such amounts of network nodes were selected to
represent the gradual growth of the network size, and the maximum value was set
based on the available computation resources. For each data and network member
count combination, the blockchain network was reset to remove any remaining
artefacts from the previous configurations of the experiment.

95

Table 7. Tested dataset configurations and data size.
Data Records Synthetic Dataset (kB) EEG Eye State Dataset (kB)

1024 114 510

2048 227 1023

4096 453 2049

8192 905 4097

16 384 1809 14 446

32 768 3650 16 384

To accurately measure the performance, each operation in the experiment was
repeated for 100 iterations; on each tested data and node configuration setting, the
median value of all the tested iterations is presented as the experiment result.

4.1.2 Benchmarking results for the synthetic dataset

The median model inference calculation time for all the tested network member
and dataset configurations are presented in Figure 26 and Figure 27. The model
inference calculation time depends on both the network node count and the dataset
size as this is indicative in Figure 27. A sharp increase in the model inference
execution time can be seen after the dataset size has reached more than 8192 rows.
The performance of the calculation only increased in a linear fashion when datasets
contained 16384 or 32768 rows.

Figure 26. Model inference calculation time comparison. Synthetic dataset

Even though the two calculations of time surfaces are similar in shape (Figure
27) and size when separated based on the network size (Figure 26), a clear difference

96

can be seen, which confirms that a small amount of the overhead is introduced when
the calculating was relocated to the local off-chain oracle service.

Figure 27. Model inference calculation runtime. Synthetic dataset: smart contract (left) and

the local off-chain oracle service (right)

The largest tested data amount presents a linear relationship between the
network node count and the model inference execution time (Figure 26), except for
the outliers which were always produced from the initial run of the tested
configuration. The outliers for the smart contract implementation produced a
constantly quick calculation time as, for the local off-chain oracle service
implementation, the outlier values were more distributed, particularly on the network
configurations with the member count higher than eight.

The longest execution time was achieved with the highest amount of network
nodes and the largest dataset settings. The experiment results for all iterations are
presented in Figure 28. The statistical analysis presented in Table 8 reveals that the
execution runtime central tendencies (the mean and the median) have no statistically
significant difference. The extended statistical analysis of the performance results is
also presented in Appendix A. The difference in the computation time might have
been introduced due to the communication with the local off-chain oracle service.
During this communication, data from the blockchain storage to the oracle service
were being transferred as well as the result back to the smart contract. Such
communication might have affected the consensus algorithm speed, thus introducing
an overhead. Most of the execution time was clustered around 79 s for both
implemented solutions for a network of 13 nodes with 32768 instances of synthetic
data. The lowest execution times presented in this graph were both achieved as the
first iteration in the experiment, as the network nodes were still free of tasks.

97

Figure 28. Distribution of the calculation time results with a network composed of 13
members and 32768 instances of synthetic data in the model validation experiment
with a median calculation time of 1 minute 19 seconds for the smart contract (left)

and 1 minute 19 seconds for the oracle service (right)

Table 8. Equality of central tendencies using independent sample tests: case of
synthetic dataset

 Statistic df p

Runtime Student’s t -0.211 198 0.833

 Mann-Whitney U 4953 0.910

Note. Hₐ μ Chaincode ≠ μ Oracle service

The model inference calculation performance overhead presented in percentages is
provided in

Table 9. these results denote that, on the synthetic dataset, the calculation overheads
were both negative and positive. The total median overhead was 1.99%. The results
presented that, on all the network member count configurations with low dataset sizes
(1024–8192 records), the computation overhead ranged from −4.31% to 6.59%. The
validation times for these settings were relatively low, whereas the variability in
performance overhead was quite high. When the dataset size reaches at least 16384
records, the variability in the overhead is reduced in all the tested network
configurations, and it is in the range from 0.73% to 4.28%. With the largest dataset
size tested (32768 records), the variability in the model inference calculation times
drops significantly, only resulting in the highest overhead of 2.79% on the network
configuration that only contained three network nodes. The remaining network

98

configurations for this dataset size resulted in less than 1% (0.03–0.73%) overhead.
The results display that the overhead diminishes once the member count and the
dataset size increases. The higher variability of the model inference calculation
overhead for smaller datasets was observed for all the tested network member count
configurations.

Table 9. Performance overhead for the local oracle service approach when compared
to the smart contract approach (in %) results for the synthetic dataset

Data records Number of peers in the blockchain network
3 5 7 9 11 13

1024 2.66 2.56 6.28 -4.31 -1.51 6.59
2048 2.18 4.48 -0.63 3.72 4.99 5.31
4096 1.17 5.61 3.93 5.37 4.27 4.89
8192 3.16 5.01 2.85 3.79 2.96 3.59
16348 4.28 1.20 0.32 1.36 1.02 0.77
32768 2.79 0.73 0.63 0.40 0.05 0.03

The benchmarking experiment results in the tested simulated blockchain

network displayed a reduction of the performance overhead in the local oracle
components on larger datasets. The results for medium-sized networks (5–9 peers)
displayed the performance overhead in range from 6.28% to a performance increase
of 4.31%. A large network of 11 to 13 members presented a performance decrease in
the range of 0.03% to 6.59%.

4.1.3 Benchmarking results for EEG eye state dataset

The median model inference calculation time for all the network member and
dataset configurations tested is presented in Figure 29 and Figure 30. The results
present a similar pattern to the results produced on the synthetic dataset. As with the
synthetic dataset, the medians presented the biggest increase in the calculation time
when the dataset size reached 8192 or more. The higher number of data features and
the bigger dataset size in the blockchain storage increased with the time required to
calculate the model inference, thus displaying higher median values for the EEG eye
state dataset. Just like in the synthetic dataset results, the linear dependency to the
dataset size and the network member count to the performance was only noticeable
for the two largest dataset configurations (16384 and 32768).

99

Figure 29. Model inference calculation time when using EEG eye state data

For a dataset with 32768 rows, the linear dependency of the calculation time to
the network member count is apparent (Figure 29). Except for the outliers which were
produced by the initial run of the defined network configuration, the outlier
distribution is similar to the synthetic dataset where the outliers in the smart contract-
only approach are fixed at a constant low calculation time, while the outliers of the
local off-chain oracle service fluctuate.

Figure 30. Model inference calculation runtime. EEG eye state dataset: smart contract (left)
and the local off-chain oracle service (right)

The calculation execution time for the largest amount of data is presented in
Figure 31. The statistical analysis presented in Table 10 reveals that the mean runtime
has no statistically significant difference, while the median runtime shows a
statistically significant difference. The extended statistical analysis of the
performance results is also presented in Appendix A. The initial iteration of the

100

experiment presented the lowest calculation times in both approaches, thus
demonstrating that the calculation overhead is introduced by the oracle service. The
experiment results are clustered around 1 min 24 s mark for the smart contract
validation and around 1 min 25 s for the local oracle service approach.

Figure 31. Distribution of the runtime results when using a network of 13 peers with

the dataset of 32768 records in the model testing experiment. The median runtime
for model validation was 1 minute 24 seconds for the smart contract (left) and 1

minute 26 seconds for the oracle service (right)

Table 10. Equality of central tendencies using independent sample tests: case of
EEG eye state dataset

 Statistic df p

Runtime Student’s t -1.37 198 0.173

 Mann-Whitney U 2677 < .001

Note. Hₐ μ Chaincode ≠ μ Oracle service

The results of the oracle service for larger datasets and network sizes are

presented in Table 11, where the performance overhead is presented in percentages.
The oracle service increased the calculation time over all the tested data and network
configurations with the total median performance overhead of 4.06%. The results
demonstrate that the calculation overhead for networks with lower member counts (3–
7 members) and dataset sizes (1024–32768 records) was in the range of 2.16 to 9.67%.
The highest overhead was present on the configuration with the lowest dataset size
(1024 records), whereas the lowest amount of overhead was observed on the highest
amount of data records (32768 records). For the network sizes with 9 to 13 members,

101

an overhead in the range of 0.80–6.91%, the peak overhead was observed when the
dataset size was of the medium size (2048–8192 records) with 6.91% for nine peers,
6.53% for 11 peers, and 6.76% for 13 peers. The lowest performance downgrade of
0.80% was detected in the network which contained 11 members, and the size of the
data set was 32768. In total, the highest amount of the performance overhead ranged
from 0.80% to 9.67%.

Table 11. Performance overhead for the local oracle service approach compared to
the smart contract approach (in %) results for the EEG eye state dataset

Data records Number of peers in the blockchain network
3 5 7 9 11 13

1024 9.32 7.69 9.67 3.52 1.93 4.61
2048 4.83 4.36 2.80 6.91 5.89 4.95
4096 2.13 6.88 5.67 6.19 6.53 5.41
8192 5.73 5.05 7.01 6.65 6.09 6.76
16384 4.06 2.97 2.35 2.34 1.54 2.69
32768 2.17 3.63 2.16 1.76 0.80 1.82

4.1.4 Summary of experimental results

 The model inference calculation execution time comparison results for the
synthetic dataset show a minor increase of the runtime overhead of ~2% and the mean
results for individual configurations of less than 6.60%. Datasets with a lower size
presented higher performance overheads due to the higher data transfer time when
compared to the model inference calculation time. With higher sizes of the network
member nodes and larger datasets, the performance overhead diminished because the
ratio of the inference calculation execution became significantly larger than the
required data transfer duration.
 The model inference calculation time comparison of the smart contract and the
oracle-based results for the EEG eye state dataset resulted in the total median increase
of the execution overhead by ~4%. When considering the means for both tested
datasets and the network member count configurations, the results were distributed
from 0.8% to 9.7%. Despite the feature dimensionality of the EEG eye state dataset
being 7 times larger than the synthetic datasets, and the instance count was 4 times
larger over all the tested configurations, the total mean only increased by 2%, which
confirms that the local oracle calculation time depends on both the calculation time
allocated for the model inference rather than the dataset and the result transfer.
Overall, the model inference calculation performance is not as affected by changes of
the dataset size as it is affected by the increase of the network member count. The
experiments revealed that each additional network member adds an additional 6 s of
the calculation time when tested with the dataset of the highest size.
 The results of the conducted experiment reveal that the model inference
calculation time increases due to additional communication between the smart
contract and the oracle services are not as significant when compared to the flexibility
which the oracle services introduces. Whereas, it enables users to run model inference
calculations by using the established machine learning environments and solutions.

102

Regardless, the model inference calculation trade-offs should be evaluated by the
organisations looking to adopt the blockchain technology and oracle services to decide
whether the faster execution time of an exclusively smart contract solution is
sufficiently lower than the local off-chain oracle service solution which allows to
adopt the already established ML solutions and components.

4.2 Shapley-based Ensemble Weighting Strategies Performance Evaluation

The experiments for the Shapley-based ensemble weighting strategy were
designed to test whether the model contributions to the blockchain network could be
evaluated and measured. The experiments focused on the model performance
evaluation rather than on the contributed data evaluation. Ensemble-based model
aggregation methods were selected for a combination of multiple model types, and
they would not require the unification of the model types. The experiment tested the
performance of two Shapley-based performance ensemble weight selection strategies
and compared this performance to the most commonly used weighting strategies, as
well as other Shapley-voting based strategies. The blockchain local off-chain oracle
components using the R and Python programming languages were chosen as the
experiment implementation environments. Classifiers were developed by the MLR3
machine learning library in the R language environment and the PySpark machine
learning library in Python. Two banking-related datasets were used to train classifiers
and evaluate their performance.

The presented CDMLB method enables the usage of multiple model types
developed by using a wide range of technologies in the collaboration process. To test
how a combination of model types would affect the ensemble performance, the
weighting strategy experiment tested an ensemble composed of a single model type
(homogeneous ensembles) and ensembles composed of multiple model types
(heterogeneous ensembles). The experiment began by shuffling the dataset and
dividing two selected datasets into the training, testing, and validation subsets. The
training subset was further divided into a number of parts matching the number of the
trained models. The divided dataset files were stored into files and were used to train
models on their allocated training data on both implementations. The implementations
using multiple machine learning environments allowed us to demonstrate the
flexibility of the proposed method and to test how multi-environment blockchain
oracles can be implemented and what changes are required to the smart contract
development procedures to implement such a system.

The model predictions calculated on the testing dataset were stored into files.
The ensemble validation dataset and the developed model predictions were then used
to combine the models into an ensemble and measure its performance. The binary
cross-entropy performance measures were used as an input for the Shapley value
calculations. Based on the Shapley value results, the ensemble weights were
developed. The tested ensemble weighting strategies and the monolith single model
approach were then benchmarked by using the validation dataset.

103

4.2.1 Settings for the experiments

Experiments containing a homogeneous ensemble type were conducted with two
classifiers: the decision tree (CART) [48] and the logistic regression [27].
Heterogeneous ensembles combined both model types into a single ensemble. The
hyperparameters for the tested model types are presented in Table 12. The logistic
regression model had two common parameters, a defined epsilon constant, and the
number of iterations was set to 25. For the MLR3 library, the singular.ok parameter
defined that the strategy to resolve singular design matrices are enabled, and the trace
parameter disabled the additional information logging. For the PySpark library, the
parameters set were the regularization parameter (regParam), the aggregation depth
(aggregationDepth) with its default value, the prediction threshold parameter
(threshold) was set to 0.5, the ElasticNet (elasticNetParam) mixing parameter was set
to 0, and the bias inclusion into the model (fitIntercept) was enabled. For the decision
tree classifier, the common parameters were the maximum depth of the decision tree
set to 30, and the model training gain was set to 0.01. For MLR3 implementation, the
minimal weights required in a node to be evaluated before splitting was set to 20, the
number of competing splits (maxcompete) maintained in the output was set to 4, the
number of surrogate splits (maxsurrogate) maintained in the output was set to 5, the
surrogate selection method was set to 0 (surrogatestyle), and the surrogate usage style
was set to 2 (usesurrogate), whereas the number of cross-validations (xval) was set to
10. The decision tree classifier type had the parameters (minInstancesPerNode),
standardisation was disabled, the minimal weight (minWeightFractionPerNode) for
each node could be obtained after the split was set to 0.0. The minimal number of
instances after splitting which each node (minInstancesPerNode) was required to
obtain was set to 1. The number of different bins (maxBins) to split features into was
set to 32, and the implementation used the Gini (Formula 18) impurity measure which
was used in deciding when to split the tree.

Table 12. Model training hyperparameter metrics for the used ML model types

Model
type

Common
parameters

Implementation-specific parameters

Logistic
regression

E = e *108
iterations = 25

MLR3
singular.ok = True; trace = False
PySpark
regParam = 0.0; aggregationDepth = 2;
threshold = 0.5; elasticNetParam = 0.0; fitIntercept
= True

Decision
tree

maxDepth = 30
minInfoGain = 0.01

MLR3
minSplit = 20; maxcompete = 4; maxsurrogate = 5;
surrogatestyle = 0; usesurrogate = 2; xval = 10
PySpark
minInstancesPerNode = 20; Standardisation = False;
minWeightFractionPerNode = 0.0;
minInstancesPerNode = 1; maxBins = 32; impurity
= 'gini'

104

Two datasets were used to train the five ensemble weighting strategies: Bank
Marketing and BNG-Credit_a. The dataset parameters and sources are presented in
Table 13. These datasets were selected based on the dataset compatibility with the
binary classification task and a representation of the finance field which could be
improved by the collaboration. Bank marketing was selected to represent datasets with
a skewed target to non-target class ratio, while the BNG-Credit_a dataset was selected
to test the ability of the proposed methods to perform with large datasets. In contrast
to the datasets used in the performance evaluation experiment, the selected datasets
contained categorical data which expanded the feature list.

The Bank Marketing dataset had to be pre-processed, as the dataset consisted of
text-based categorical data. The categorical data were transformed into new dataset
features by using one-hot encoding approach. The class labels for this dataset were
also transformed from the text-based classes into the number-based classes.

The BNG-Credit_a (BNG) dataset also had to be pre-processed as some features
contained a wide range of unique instances. To reduce the number of new features
after the application of the one-hot encoding approach, the dataset features with
25,000 entries for feature A6 and 89,044 entries for feature A7 were combined into a
new ‘other’ category. Feature A6 contained information about the customer’s
occupation, whereas A7 contained information about the last contact information
about the customer. After successfully reducing the number of unique instances in
text-based data features, the one-hot encoding approach was used to transform data
instances into a new feature set

Table 13. Dataset parameters. Categorical features were obtained by using the one-
hot encoding approach, thus resulting in multiple new features

Data Characteristic Bank Marketing [215] BNG-Credit_a [216]
Initial features 16 15
Categorical features 10 10
Total features 51 33
Total instances 45 211 1 000 000
Classes 2 2
Target class proportion 0.120 0.544

To compare the ensemble-based machine learning models with a monolith
model, a two-step data-splitting strategy was implemented. The first step divided the
data into training and testing subsets with a ratio of 80% to 20%, respectively. The
training dataset was used to train a monolith model; it was also used to develop models
which will later be combined into model ensembles. The testing data were reserved to
fairly evaluate and compare two approaches: the monolith and the weighted ensemble.
The second step divided the testing data subset into two new subsets, specifically, the
ensemble training and the ensemble validation. The larger part of the ensemble
training data was reserved for ensemble model training and using divisive split into
smaller batches based on Zipf’s law distribution with its exponent value set to s = 0.2,
where the Zipf values were calculated by Function (24):

105

 = (24)

where is the amount of data rows allocated to a specific participant, the
participant’s rank is , s is an exponent (a parameter controlling the shape of
distribution); N is the total number of participants; and is the normalisation
constant (the generalised harmonic number).

Models for the ensemble were trained on an individual batch and tested on the
ensemble validation dataset to measure its performance in BCE.

For each new experiment iteration, the data instances in the training data batches
were randomly distributed. The baseline model for comparing homogeneous results
with heterogeneous results was selected based on the best homogeneous classifier
performance. The monolith model creation approach was selected based on the
highest overall performance.

Figure 32. Data splitting strategy for ensemble and monolith development

The Python and R languages were chosen on the basis of the popularity and the
amount of the machine learning solutions available in their ecosystem. MLR3 version
0.13.3 was used to develop machine learning models in the R environment. PySpark
version 3.1.2 was used to develop a machine learning model in the Python
environment. The unified and implementation specific model training parameters
used in this experiment are described in Table 12.

The experiments compared the classifier performance of the weighting strategies
defined in Section 2.2.2 as the positive Shapley (posShap) and the maximum Shapley
(maxShap). These strategies were compared with the monolith approach (Mono) and
the four established ensemble weighting strategies: the random weighting (Rand), the
equal weighting strategy (Equal), the performance-based weighting (Perf), and
Voting-based, as presented by Benedek Rozembecky and Rik Sarkar (Roz) [180].

106

 Each experiment results are presented by using two diagrams. The first diagram
presents the ensemble performance evolution based on the ensemble model size. The
second diagram presents the classifier ranks based on their average performance.
 The monolith (Mono) is a single model developed on the monolithic dataset
approach and provides baseline capabilities of the classifier without applying
ensembling or weighting strategies.

The models with a negative impact on the ensemble performance were required
for the maxShap strategy, but they did not occur in the BNG_credit-a dataset; thus,
the maxShap strategy is only represented in the Bank Marketing dataset results.

The critical difference diagram compared the classifier performances. It was
developed by using the library, as presented in source [217]. The comparison
employed the Friedman’s test [218] to determine if any statistical significance exists
between the model results. In case the results presented statistical significance, the
proposed solution applied pairwise analysis, as described in source [219] by replacing
the average rank comparison with the Wilcoxon signed-rank test [220] adjusted with
Holm’s alpha correction [221]. Instead of comparing the distribution difference, the
Wilcoxon signed-rank test additionally adds the assumption of a symmetric
distribution. Meanwhile, Holm’s alpha correction adjusted the p-value from the
individual test to maintain control over the family-wise error rate.
 The detailed experiment results are presented in Appendix B. The following
sections will compare the median experiment results and the rankings of the classifier
performance.

4.2.2 Experiment results for homogeneous ensembles

Ensembles composed of logistic regression classifiers that were developed by
using the BNG-Credit_a dataset are presented in Figure 33. The lowest log-loss (BCE)
value was produced by the monolith model with a result of 0.326. All the tested weight
selection strategies resulted in a similar loss for all the tested ensemble size
configurations. The aggregated ensemble performance ranks are presented in a critical
difference diagram (Figure 34). The model ranks specify that most of the weight
selection strategy results were statistically similar to the Roz strategy. This indicates
that the performance increase provided by weighting was low for the logistic
regression classifier. The monolith approach was ranked as the best performing
classifier, with the posShap approach coming second best.

107

Figure 33. Performance comparison of homogeneous logistic regression ensembles

developed by using BNG dataset

Figure 34. Ranking of homogeneous logistic regression ensembles developed by using BNG

dataset for Python (top) and R (bottom) implementations

The single model monolith approach was surpassed in terms of performance by
all the ensemble weighting strategies when homogenous decision tree classifiers were
developed by using the BNG_credit-a dataset (Figure 34). Performance differences
between the monolithic approach and the ensemble approaches increased with larger
ensemble member counts. Compared to the posShap strategy with the highest
performance, the difference ranged from 0% to 4.8%. When comparing the
performance of only the ensemble weight selection strategies, the results on
ensembles with 2 and 3 members revealed that there is no noticeable difference
between the tested strategies. For ensembles with 5 members or more, the posShap
strategy produced the best performance, resulting in 0.317 log-loss (BCE). The

108

performance difference is also evident in the rank-based comparison presented in
(Figure 35) with the posShap strategy presenting the highest ranking. The Roz and
Equal strategy results were statistically indifferent, as well as the Perf and Roz strategy
results implemented in Python. The performance produced by the R language
implementation was the highest of all the tested homogeneous configurations and
implementations. When comparing the monolith approach and the largest ensemble
size of 13 models, the Perf and posShap weighting strategies improved the
performance by 4.1% and 4.8%, respectively.

Figure 35. Performance comparison of homogeneous decision tree ensembles

developed by using the BNG dataset

Figure 36. Ranking of homogeneous decision tree ensembles developed by

using BNG dataset for Python (top) and R (bottom) implementations

109

The experiment results of logistic regression ensembles trained by using the
Bank Marketing dataset (Figure 37) produced nearly identical results for ensemble
sizes 2, 3 and 5 for both implementation languages. As the Bank Marketing dataset
contained negative Shapley values, the maxShap strategy was applied. The
performance of the maxShap value sharply decreased when the ensemble size reached
8 or more members. The distinction between the Mono and other ensemble creation
strategies became apparent only when the ensemble member count reached 8 or more
members. The performance difference remained small at only less than 0.1%. The
highest performance of all the tested ensemble sizes and implementations by using
logistic regression and the Bank Marketing dataset were a BCE value of 0.236. The
ranking of the ensemble results is presented in Figure 38. The PosShap weighting
strategy was ranked as the strategy with the best performance, while Perf produced
the second-best results. Both the posShap and Perf strategies had higher ranks than
the monolith approach, which indicated that the performance-based weighting
produced better results for the model and dataset configuration. The resulting
performance increase of 0.4% might be considered negligible, which is further
highlighted by the lack of statistical significance between most of the strategies tested.

Figure 37. Performance comparison of homogeneous logistic regression ensembles

developed by using Bank Marketing dataset

110

Figure 38. Ranking of homogeneous logistic regression ensembles developed by

using the Bank Marketing dataset for Python (top) and R (bottom) implementations

An ensemble composed of decision tree classifiers trained on the Bank
Marketing dataset results is presented in Figure 39. With the ensemble composed of
3 or more models, the log-loss (BCE) produced by the maxShap weighting strategy
decreased and kept decreasing for higher ensemble model counts. The monolith
approach was outperformed by all the ensemble weighting strategies in the Python
implementation for ensemble sizes 2 to 8. For ensembles with 13 aggregated models,
the posShap strategy presented the best performance, resulting in BCE of 0.264 for
Python and 0.274 for R implementations. When using R implementation posShap,
Equal and Perf weighting strategies produced lower BCE values than the monolith
approach for every tested ensemble size. The best performance was reached by an
ensemble composed of 8 models and resulted in BCE of 0.251. The rankings of the
tested ensemble weighting strategies are presented in Figure 40. The highest-ranking
approach was posShap when the ensemble was implemented in R and second-best for
the Python implementation. The results presented by Roz and Random strategies show
no statistical significance. A similar lack of statistical difference was also present
between the posShap and Equal strategies when implemented in Python.

111

Figure 39. Performance comparison of homogeneous decision tree ensembles developed by

using Bank Marketing dataset

Figure 40. Ranking of homogeneous decision tree ensembles developed by using Bank

Marketing dataset for Python (top) and R (bottom) implementations

4.2.3 Summary of results for homogeneous ensembles

The summary of the ranks for all implementations and datasets is provided in
Table 14, and the results show that the decision tree classifier ensembles benefited
more from the weighting strategies than the logistic regression classifier ensembles.
The performance increase for decision tree-based ensembles when compared to the
base monolith model was 1.9% for the Bank Marketing and 4.8% for the BNG_credit-

112

a datasets, the performance of the logistic regression results in minimal gains of 0.2%
and 0.002%, respectively. Even though the weighting strategy was not as successful
in increasing the performance for logistic regression classifier ensembles, the posShap
strategy still performed similarly to the Perf strategy, which produced the best
performance of all the tested strategies. The best performance for the Bank Marketing
dataset resulted in BCE of 0.236, which was produced by the Perf strategy with the
ensemble containing 13 members; with the same configuration, the posShap
weighting strategy presented the result of BCE of 0.238. The results for the
BNG_credit-a dataset was similar, where the posShap and Perf loss values were BCE
of 0.317 and 0.318, respectively. The posShap weighting strategy was more effective
in increasing the performance of the ensembles composed of a higher number of
models. Contrary to the results of the posShap strategy, maxShap produced the worst
results of all the tested approaches for ensemble sizes of 8 and 13. In all the tested
data and implementation configurations, the posShap strategy surpassed or at least
matched the performance of the Roz [180] strategy.

Table 14. Ranking position results from all the tested data and implementation
configurations. Bold numbers denote the classifier with the highest rank

Model type Logistic
regression

Decision tree Logistic
regression

Decision tree

Dataset BNG_credit-a dataset Bank Marketing dataset
 Implementation

Weighting strategy

Python R Python R Python R Python R

Mono 1 1 6 6 3 3 6 7
Rand 5 5 4 3 7 7 5 5/6
Equal 6 6 5 5 6 6 2 4
Perf 4 3 2 2 2 2 1 2
Roz 3 4 3 4 4 4 4 3
MaxShap - - - - 5 5 7 5/6
PosShap 2 2 1 1 1 1 3 1
Model type Logistic

regression
Decision tree Logistic

regression
Decision tree

Dataset BNG_credit-a dataset Bank Marketing dataset

 Implementation

 Weighting strategy

Python R Python R Python R Python R

Mono 1 1 6 6 3 3 6 7
Rand 5 5 4 3 7 7 5 5/6
Equal 6 6 5 5 6 6 2 4
Perf 4 3 2 2 2 2 1 2
Roz 3 4 3 4 4 4 4 3
MaxShap - - - - 5 5 7 5/6
PosShap 2 2 1 1 1 1 3 1

113

To test how the proposed method would work with ensembles composed of

multiple classifier types, an experiment with heterogeneous ensembles was
completed, and its results are presented in the next chapter.

4.2.4 Experiment results for heterogeneous ensembles

Results for heterogeneous ensembles which were developed by using the Python
programming language and trained on the Bank Marketing dataset are presented in
Figure 41. The ensemble with the highest performance utilised the equal weighting
strategy and produced a BCE value of 0.233 for the highest ensemble size of 16
models. The lowest performance of all the tested weighted strategies was produced
by the maxShap strategy. The maxShap strategy produced a negative impact on the
performance of the model ensemble with a decrease in performance with higher
ensemble sizes. The opposite result was presented by the posShap ensemble weight
selection strategy, even though posShap performed similarly for ensembles with 4 and
6 models. In ensembles with 10 or more models, the performance of the posShap
strategy was greater than that of the monolithic approaches. For the highest ensemble
model count of 16 models, the posShap strategy also produced better performance
than the Perf approach. Such an increase of performance indicates the ability of the
Shapley values to measure the model contribution more precisely than merely the
performance-based approach. This precision increase is enabled by evaluating the
total existing permutations, evaluating the model combinations which would
otherwise not be compared by the simple performance evaluation. The ensemble ranks
are presented in Figure 42, and the results exhibit that the equal strategy outperformed
the other tested approaches. The second-best performing strategy was Rand, with Perf
and posShap taking ranks number three and four, respectively. The rank-based
comparison also reveals that the differences between the posShap, Perf, and Roz
strategies were statistically insignificant.

114

Figure 41. Heterogeneous ensemble performance comparison for a range of ensemble sizes

developed by using Python implementation and Bank Marketing dataset

Figure 42. Rank-based comparison of heterogeneous ensemble weighting strategies for

models developed in Python environment and by using Bank Marketing dataset

The heterogeneous weighted ensemble results developed by using the BNG-
credit_a dataset and the Python implementation are presented in Figure 43. The
presented results are similar to the results of the homogeneous ensembles (Figure 35)
as both were produced by using the identical dataset. Log-loss (BCE) was further
reduced with the introduction of logistic regression models and the application of
weighting strategies. The best-performing weighting strategy was posShap with a
median BCE of 0.312. Both the Perf and Equal strategies presented similar results.
This is confirmed by the lack of statistical significance of the results presented in the
critical difference diagram (Figure 44). Both the Perf and Equal results were also

115

statistically insignificant from the Roz results. The effect of weighting is clear, as all
of the tested ensemble weight selection strategies outperformed the monolith model
approach. For an ensemble composed of 16 models, the gain over the monolith
approach was 1.3% for Equal, Perf, Rand strategies, and 1.4% for the posShap
strategy.

Figure 43. Heterogeneous ensemble performance comparison for a range of ensemble sizes

developed by using Python implementation and BNG dataset

Figure 44. Rank-based comparison of heterogeneous ensemble weighting strategies for

models developed in Python environment and by using BNG-credit_a dataset

The results for the R language implementation of heterogeneous ensembles for
the Bank Marketing dataset are presented in Figure 45. The results indicate that the
posShap strategy for ensembles with model counts of 10 and 16 presents better
performance than the Mono single model approach. The weighting strategy with the
best performance for all the tested configurations of ensembles was Equal with a BCE

116

value of 0.233. For ensembles with 10 or 16 models, the posShap weighting strategy
presents better performance than the performance-based approach Perf, and it results
in the same median loss as the random strategy with a BCE value of 0.235. Even
though the ensemble weighting only results in the overall performance gains of 0.6%
for all the tested weight selection strategies, except for maxShap, it still presents worse
results than the monolithic approach. The ranking of the ensemble performance is
presented in Figure 46, and it displays that, when the results are aggregated across all
the sizes of ensembles, the Equal strategy exhibits the best performance. The posShap
strategy was ranked similarly to the Mono approach with maxShap resulting in the
lowest rank.

Figure 45. Comparison of heterogeneous ensemble performance for the range of ensemble

sizes developed by using R implementation and BNG dataset

Figure 46. Rank-based comparison of heterogeneous ensemble weighting strategies for

models developed in R environment and by using Bank Marketing dataset

The results of the R language implementation of heterogeneous ensembles
developed by using the BNG-credit_a dataset are presented in Figure 47. The results

117

indicate that all the ensemble weighting techniques present a lower performance than
the monolith approach. All the tested ensemble weighting approaches result in similar
performance, with no statistical significance between the results. The best results for
all the weighting strategies tested on any model size was reached by the Rand strategy
with a BCE value of 0.339. The performance of the posShap strategy was reduced
when the ensembles model count reached 16, but, for ensembles with 6 and 10
members, it presents the best performance. The ensemble ranking (Figure 48) shows
that, between all the weighting approaches, no statistical significance was found. The
monolith approach is the approach with the highest performance, with the Roz
approach being ranked as the worst-performing one.

Figure 47. Heterogeneous ensemble performance comparison for a range of ensemble sizes

developed by using R implementation and BNG dataset

Figure 48. Rank-based comparison of heterogeneous ensemble weighting strategies for

models developed in R environment and by using BNG dataset

4.2.5 Summary of results for heterogeneous ensembles

 The summary of all ensemble ranks is presented in Table 15. The summary
reveals that, for heterogeneous approaches, the selection of the correct model type is

118

as important as selecting the correct weighting strategy. As shown in Figure 47, the
Mono approach outperformed all the tested weighting strategies. The performance
difference between the Mono approach and the weighting strategies ranged from 1.3%
to 2.2%.

Table 15. Ranking of the results of the Friedman test for the heterogeneous
experiment. Bold numbers denote the classifier with the highest rank.

Dataset BNG_credit-a Bank Marketing
 Implementation
Weighting strategy Python R Python R

Mono 6 1 6 4
Rand 5 4 2 2
Equal 4 5 1 1
Perf 3 3 4 3
Roz 2 6 3 6

MaxShap - - 7 7
PosShap 1 2 5 5
Dataset BNG_credit-a Bank Marketing
 Implementation
Weighting strategy Python R Python R

Mono 6 1 6 4
Rand 5 4 2 2
Equal 4 5 1 1
Perf 3 3 4 3
Roz 2 6 3 6

MaxShap - - 7 7
PosShap 1 2 5 5

The introduced discrepancy of the performance results when comparing the

Mono approach and other weighting strategies observed in two implementations for
the BNG_credit-a dataset was influenced by implementation-specific hyperparameter
values, as the weighting strategy performance was greater when the Python
implementation was used (Figure 43), whereas the opposite was observed in the R
language approach (Figure 47). The implementations were nearly identical when
comparing Figure 41 and Figure 45. The results of these implementations were in the
range of BCE from 0.233 to 0.269, and, in both implementations, the equal weight
selection approach produced the best results. The combination of the model ensemble
types increased the performance of three out of the four tested datasets and model type
configurations. When compared to the highest performing ensemble in homogeneous
experiments which presented a BCE value of 0.236, the heterogeneous ensembles
increased the performance to BCE of 0.233. The Mono approach was surpassed in
terms of performance by the ensemble weighting strategies in three out of the four
tested dataset and model type configurations, thus denoting the performance benefits
of the weighted ensembling approaches. The proposed posShap strategy outperformed

119

the Roz strategy in 3 tested heterogeneous experiment configurations, except for the
Python implementation for the models developed by using the Bank Marketing dataset
where both of the strategies presented identical results. The worst performance was
achieved by the maxShap weighting strategy, which shows that assumptions about the
prediction correction only worsen the ensemble performance. As more values were
modified by the maxShap strategy in larger ensembles, the performance drawbacks
became more evident.

4.2.6 Evaluation of Shapley calculation algorithm complexity

A server running Intel Xeon Silver 4114 CPU consisting of 10 CPU cores and
2.20 GHz processor speed with 32 GB of RAM was used as the experiment
environment. Ubuntu 18.04 was used as the operating system with two model
development environments: R 4.1.3 and Python 3.6.9.

Figure 49. Shapley value calculation runtime comparison between the approximation method

used by Roz [180] (EMC) and posShap (Exact) strategies

The algorithm complexity when calculating the Shapley values without any
approximation measures is O(N!). The complexity of the expected marginal
contributions (EMC) approximation algorithm [19] is O(N).

The Shapley value calculation time is presented in Figure 49. Even though the
exact calculation time was nearly identical to the approximation approach for
ensembles containing only 2–5 members, the computation time increased
exponentially with larger sizes of the ensemble model. For ensembles sized 13, the
average time for the exact Shapley calculation was 13.612 s, whereas, for the EMC
approximation approach, the time was 0.002 s. The exponential increase in the
Shapley calculation time could be resolved by using the currently existing

120

approximation algorithms [176], [222] which are similar to the one used in the Roz
[180] approach, or by using model count reduction approaches before combining them
into ensembles without considerably lowering the ensemble performance [199].

Nevertheless, if any approximation approach were applied, the posShap weight
selection method would result in a simpler computation procedure as the method
calculations would be performed with data combined into batches rather than on a
single data point level as in source [180].

4.2.7 Summary of experiment results

The most prominent performance increase when compared to the monolith
approach using homogeneous ensembles was achieved by the posShap weighting
strategy on the ensemble which was composed of 13 models: 4.8% and 1.9% for
BNG_credit-a and Bank Marketing datasets, respectively. Compared to the commonly
used performance-based weight selection approach (Perf), the proposed posShap
strategy increased the ensemble performance by 0.7%. The ensemble ranking revealed
that the posShap strategy was ranked as the best strategy, except for a single
configuration of the Python programming language, the decision tree classifier, and
the Bank Marketing dataset. Similar, results for the posShap weight selection strategy
were obtained in the heterogeneous ensembles, reaching a performance increase of
1.4% when compared to the Mono approach for the BNG_credit-a dataset setting. For
the Bank Marketing dataset, the posShap produced gains of 0.4%, but the best
performing weighting strategy was of equal weighting with an increase of
performance of 0.6% when compared to the monolith approach.

Of the two proposed ensemble weighting strategies, only posShap produced
positive results, as the performance of the maxShap strategy was surpassed by all the
tested strategies. This reveals that the applied prediction correction methods did not
improve the performance, and the exclusion of non-performing ensemble members
was a more beneficial strategy. The performance of posShap varied based on the
dataset and model type configurations, but the experiment results indicate that the
posShap strategy surpassed or was at least similar when compared to other tested
weighting strategies, including the Shapley vote-based strategy (Roz).

4.3 Performance Evaluation of Knowledge Distillation Approach Using Three
Layer Perceptron

The experiment tested how the knowledge distillation approach impacts the
performance of the classifier and whether it can it produce results comparable to the
ensemble prediction. The distilled models were developed as a neural network model
type by using blockchain ensemble predictions as the input. The goal of the knowledge
distillation performance evaluation experiment was to measure the impact of model
compression on the classification performance.

The experiment was conducted in two stages: the model preparation stage, and
the knowledge distillation performance evaluation stage. The first stage used machine
learning model predictions developed in the Shapley-based weight selection
experiment as the training data for the distilled model. Only models developed by
using the Python programming language were used in this experiment. The

121

experiment used a model ensemble containing 13 classifiers and utilised the posShap
strategy to select their weights. The ensemble predictions and developed posShap
weights were stored as files and used in the knowledge distillation algorithm.

The second stage consisted of neural network model development and its
performance evaluation. The neural network model was developed by using weighted
ensemble predictions produced on two already tested datasets: Bank Marketing and
BNG_credit-a. The predictions produced from the ensemble model were used as the
input to the student model. The neural network was trained iteratively with the amount
of the iterations set being based on the parameters of the dataset in use.

The performance of the trained neural network models was evaluated by using
the validation subset for each used dataset. To compare the performance of the
distilled model, its performance was compared to the monolith single model approach
and the posShap approach. The PosShap approach performance results indicate the
performance of using the distilled model CDMLB methods approach step. The neural
network model was developed with three different alfa parameter settings: 0.5, 0.75,
and 1. The alfa parameter represents the loss ration that is calculated by using the
teacher loss and the student loss, and it is used as a scaled distillation loss measure
[98]. The alfa value of ‘1’ means that the scaled loss only used the training loss of the
trained neural network. Other alfa parameters denote different ratios of the neural
network loss inclusion in the training process with 0.75 and 0.5 denoting 75% and
50%, respectively, of the used neural network (student) loss. The results were
compared by using the Friedman ranking technique, and the classifier performance
results were presented by using graphs to overview the differences in the performance
distribution and median values.

4.3.1 Experiment settings

The models were developed by using the PySpark machine learning library
version 3.1.2. The model parameters were identical to those used in the Shapley
weighting strategy performance evaluation experiment (cf. Table 12).

The neural network architectures are presented in Figure 50, with the main
difference being in the configuration of the solution in terms of the number of input
parameters for each network. The selected architectures were developed according to
the best practices presented in source [223], with the layer count selection based on
the described best practices. In the selected architectures, the first layer matched the
feature set count in the respective dataset, and the following hidden layers diminished
in terms of the neural network node count. The distillation model development
parameters are presented in Table 16, where, due to the large dataset size
BNG_credit-a, a lower number of training iterations and a higher training and
validation batch size were used. The batch size of the validation split data was lower
for the Bank Marketing dataset so that to preserve a larger amount of the training data
due to the smaller amount of data instances. The experiment using the Bank Marketing
dataset was computed by using 100 iterations, whereas BNG_credit-a used 50
iterations with the data split being based on a strategy defined in the Shapley-based
ensemble weighting experiment presented in Section 4.2. The distillation was

122

implemented by using the Keras 2.10.0 machine learning library [224], by modifying
the example provided in source [210].

Table 16. Student model training parameters for the knowledge distillation approach

Dataset
Parameter

Bank
Marketing

BNG_credit-a

Dataset size 45211 × 51 1000000 × 33
Percentage of target class 0.12 0.54
Validation split 0.1 0.2
Batch size 512 4096
Number of epochs 100 200
Number of runs for BCE 100 50

(a) Bank Marketing dataset (b) BNG_credit-a dataset

Figure 50. Compact neural network architectures tested for the student model. Presented by
using the keras plot_model function with the boxes representing neural network layers, with
information about the used activation function and the number of neural network nodes in a

layer

4.3.2 Experiment results

The experiment results for the distilled decision tree models, developed by using the
Bank Marketing dataset are presented in
Figure 51. The results compare the performance between the monolith (Mono), the
ensemble usage (posShap) approach proposed in Section 3.4.2 and the distilled model

123

with different alfa parameters (dist0.5, dist0.75, dist1). The alfa parameter indicates
the amount of knowledge introduced into the loss function, with dist05 including an
equal amount of the student (neural network)-to-teacher (ensemble knowledge).
Meanwhile, dist1 indicates the baseline performance of the tested neural network
classifier, without knowledge distillation. The results are presented by plotting the
performance of the classifiers measured in BCE and the difference of the median
values of the said classifiers. The baseline classifier for the differences was the Mono
approach. The results indicate that the distilled model configurations performed worse
than the Shap and Mono strategies when comparing the median performance values.
Out of all the tested distilled model configurations, the dist0.75 model provided the
best median value in BCE of 0.296. The Shap method was the best-performing
approach with a BCE value of 0.253, while, in comparison, the distillation approach
dist0.75 reduced the performance in BCE of 0.043.

Figure 51. Prediction performance distribution of distilled decision tree classifier ensemble

comparison with the posShap and Mono approaches. Bank Marketing dataset

The ensemble performance rankings (Figure 52) reveal that the performance of
the dist05 approach yielded the lowest BCE of 0.329. The results between dist075 and
dist1 were statistically insignificant. The posShap ensemble weighting strategy was
the best-performing approach. The performance difference between the posShap and
the Mono approaches was 16.99%.

Figure 52. Performance ranking of distillation approaches and baseline models developed by

using a decision tree classifier. Bank Marketing dataset

124

The performance results for logistic regression using the same Bank Marketing
dataset (Figure 53) reveal that the performance loss for the distillation approaches
was higher, with the median in BCE ranging from 0.294 to 0.32. The distillation
approaches with the alfa values of 0.75 and 1 performed similarly with the median in
BCE of 0.294 and 0.295, respectively. The results of dist0.75 are more clustered
around the median when compared to dist1, which might indicate that the inclusion
of predictions allows developing a more focused model.

Figure 53. Prediction performance distribution of distilled logistic regression classifier
ensemble comparison with the posShap and Mono approaches. Bank Marketing dataset

The classifier ranks for the approaches built by using logistic regression resulted
(Figure 54) in a larger difference between the best-performing distilled model and the
best-performing approach of BCE equal to 0.054. As the performance benefits
introduced with the Shapley-based weighting were less evident in ensembles
containing logistic regression, the Mono and posShap strategy results are statistically
indifferent. The difference between the results of dist075 and dist1 was also
statistically insignificant, which means that the introduction of the student model
trained by using the predictions of the network does not significantly reduce the
performance. The best-performing distillation strategy with an alfa value of 1
produced results in BCE of 0.294.

Figure 54. Performance ranking of distillation approaches and baseline models developed by

using a logistic regression classifier. Bank Marketing dataset

125

The knowledge distillation for the BNG_credit-a dataset results (Figure 55)
displayed a smaller performance reduction when compared to the Bank Marketing
dataset with the median value of the dist1 and dist0.75 results of 0.350 and 0.344
presented in BCE, respectively. The lowest BCE was produced by using the dist0.5
approach, which resulted in a median value of 0.390. The posShap value representing
the ensemble usage without knowledge distillation presented a median value in BCE
of 0.317.

Figure 55. Prediction performance distribution of the distilled ensemble of decision tree

classifiers comparison with the posShap and Mono approaches. BNG_credit-a dataset case

The rank comparison of the tested knowledge distillation and ensemble creation
approaches when using the BNG_credit-a dataset and the decision tree classifier is
presented in Figure 56. The posShap and Monolith approaches were ranked as the
best and the second-best performing approaches. Similarly to other model type and
dataset configurations, the differences between the results produced by dist075 and
dist1 were statistically insignificant. The approach with the worst performance was
the dist05 approach with a median BCE of 0.390.

Figure 56. Performance ranking of distillation approaches and baseline models developed by

using a decision tree classifier. BNG_credit-a dataset

For the same BNG_credit-a dataset, the distillation results of the logistic
regression models (Figure 57) resulted in performance loss for all the tested
distillation configurations compared to the decision tree classifier type. The median
values for the best-performing distillation strategy dist1 and the second-best strategy
dist075 presented in BCE were 0.366 and 0.378, respectively. In this configuration,

126

the Shap approach and the Mono approach presented similar results in BCE of
0.32647 and 0.32650.

Figure 57. Prediction performance distribution of the distilled logistic regression classifier
ensemble comparison with the posShap and Mono approaches. BNG_credit-a dataset case

The ranking comparison of the distillation approaches and the weighting
strategies is presented in Figure 58. The rankings reveal that the results of the dist05
and dist1 distillation strategies did not show statistical significance, which means that
the increase in the amount of the model prediction did not reduce the performance as
much as in the other datasets and the model type configurations tested. Similarly, no
statistical significance was discovered between the Mono and the Shapley approaches.
Nevertheless, the distillation process reduces the performance levels, as the best-
performing distillation strategy reduced the performance by BCE of 0.04.

Figure 58. Performance ranking of distillation approaches and baseline models developed by

using a logistic regression classifier. BNG_credit-a dataset

A summary of the results obtained in all the tested experiment configurations is
presented in

Table 17 as the median values presented in BCE. The result comparison
indicates that the best overall performance was achieved by the logistic regression
model developed by using the bank marketing dataset and utilising the mono approach
– with a BCE of 0.24. The best performing knowledge distillation strategy for the
Bank Marketing dataset was achieved by the logistic regression model type and the
dist1 approach – with a BCE of 0.294. In the BNG_credit-a dataset, the decision tree
classifier type produced the best performance of BCE 0.344 by using dist1.

127

Table 17. Comparison of the median BCE results for knowledge distillation
experiments. The values in bold indicate the BCE value of the best-performing
classifier.

Dataset Bank Marketing BNG-credit-a
Model Logistic

regression
Decision tree Logistic

regression
Decision tree

Mono 0.240 0.282 0.326 0.339
Shap 0.238 0.253 0.326 0.317
Dist0.5 0.320 0.329 0.387 0.390
Dist0.75 0.295 0.296 0.378 0.350
Dist1 0.294 0.299 0.366 0.344

4.3.3 Summary of experimental results

The experiment results demonstrated that the knowledge distillation approach
reduces the performance of the ensemble classifier by at least 16.99% for the Bank
Marketing dataset, and at least 10.41% for the BNG_credit-a dataset when comparing
the posShap strategy to the dist0.75 approach. The dist0.75 approach was selected for
a comparison because it retained a similar accuracy to the ensemble model while
including the training approach which was chosen to comparison. The comparison of
the alfa parameters revealed that the inclusion of ensemble predictions in the loss
function in a higher ratio (dist05) to have a balanced variant of distillation resulted in
the worst performance among all the strategies tested. The differences between the
BCE medians of the distillation strategies dist075 and dist1 were statistically
insignificant in 3 out of 4 experimental configurations. The similarities between the
results display that a minor increase of the network ensemble prediction does not
dramatically change the classifier performance. Even though the knowledge
distillation reduces the performance with respect to the ensemble, it should still
improve privacy according to source [106] and provide a pre-trained neural network
model for further fine-tuning with individual participant data, if need be. If no further
tuning is required, the usage of the Shapley-weighted ensemble for inference provides
a higher accuracy for the model usage in the proposed CDMLB method.

4.4 Performance Evaluation of Knowledge Distillation with the Deep Learning
Model

To complete the evaluation of knowledge distillation, an approach of the
experiments with deep learning model architectures was conducted. Instead of
developing a novel neural network architecture, we selected an already existing deep
neural network architecture TabNet [211]. The TabNet architecture was selected
based on the displayed performance on the Bank Marketing dataset [211], as well as
the capability to perform binary classification tasks with high performance levels.
Alternatively, any deep learning architecture that is designed to work with tabular data
and can be used in the distillation process, for example, as shown in sources [225],
[226]. The selected neural network architecture was developed for machine learning
tasks employing tabular data. The TabNet architecture consisted of an encoder with a
feature transformer, an attentive transformer, and feature masking. The implemented

128

deep neural network architecture contained 4 layers, where two of the layers were
shared across the decision steps, whereas two of the layers were decision-dependent.
Each out of the 4 layers contained a full connection layer, while proceeding with a
normalisation layer, and finished with a Generalised linear unit nonlinear activation
layer. A split block divides the processed representation for the attentive transformer
of the subsequent step and the overall output. The feature selection mask offers
interpretability, and aggregated masks provide the global feature importance. The
decoder includes a feature transformer block at each step. An attentive transformer
block example uses the prior scale information, whereas sparsemax serves for
coefficient normalisation, which results in the sparse selection of the salient features.
The implemented architecture is described in more detail in Article [211].

Figure 59. TabNet encoder architecture [211]

The experiment execution procedure followed the exact structure of the
experiment defined in Section 4.3 Performance Evaluation of Knowledge Distillation
Approach. The experiment with the deep learning model used the same base model
predictions and ensemble posShap weights as the input for knowledge distillation.
The model ensembles used in distillation contained 13 classifiers. The provided
predictions and ensemble weights were provided to the neural network training
procedure in batches.

The deep neural network training algorithm was developed by using the
example provided in source [212] while adding the scaled distillation loss function
introduced by source [98]. The network training parameters are introduced in Table
18. The dataset parameters remained the same as in the shallow neural network
experiment, and the number of runs for the BNG_credit-a dataset increased from 50
to 100 iterations. Due to a lower instance count in the Bank Marketing dataset, the
batch size and the feature transformation dimensionality were lower. The developed

129

neural network training process used the Adam [227] algorithm in its training
optimisation.

Table 18. Deep learning model training parameters for tested datasets

Dataset
Parameter

Bank
Marketing

BNG_credit-a

Dataset size 45211 × 51 1000 000 × 33
Percentage of target class 0.12 0.54
Validation split 0.2 0.2
Batch size 256 1024
Feature transformation
dimensionality
(feature_dim)

64 128

Epochs 100 200
Learning rate 0,02 0,02
Decay rate 0.95 0.95
Decay every 50 50
Number of runs 100 100

4.4.1 Experiment results

The performance results of the distilled decision tree classifier into a deep
learning model, developed by using the Bank Marketing dataset (Figure 60), provided
insights that distillation improved the performance over the posShap method in both
dist075 and dist1 cases. The increased performance of the dist1 case where neural
network models were trained without including pre-trained model distillation
demonstrated that the deep learning model was more successful than the ensembling
or the monolithic approach. This indicates that the deep learning model is the most
capable machine learning model type for this dataset, from all the tested model and
ensemble configurations producing a median BCE result of 0.245. By including
knowledge from the posShap decision tree ensemble, the performance increased even
further to a median BCE result of 0.234. The distillation process when compared to
Shap increased the performance of the classifier by 3.95% for dist075 configuration
and decreased the performance by only 2.77% for the dist05 configuration. Such
results indicate that, based on the selected distillation method, the losses could be
minimal, or the performance would not decrease at all for the selected dataset.

130

Figure 60. Performance distribution for distilled decision tree classifiers developed by using
the Bank Marketing dataset. The main results clusters contained: dist1 – 92%, dist075 – 87%,

dist05 – 87% out of the total results

The performance ranking of the deep learning classifiers for the Bank Marketing
and decision tree classifier configuration (Figure 60) revealed that the dist075
approach offered the highest overall performance. The dist1 configuration was the
second best, with results not statistically different from the dist075 configuration. The
median decrease in BCE when compared to Shap for dist075 and dist1 configurations
was 0.008 and 0.01, respectively. The dist05 configuration reduced the BCE value of
the classifier by 0.007. All the tested distillation and ensemble development strategies
surpassed the performance of a single model (the Mono approach).

Figure 61. Ranking of the classifier performance based on the used distillation solutions

Bank Marketing and decision tree base model case

The deep learning model developed by using logistic regression as its base
distillation model for the same Bank Marketing dataset presented different results
(Figure 62). All the tested distillation strategies, including the dist1 strategy, did not
surpass the Shap and Mono classifiers in terms of performance. Similarly to the
decision tree classifier case when comparing distillation configurations, dist075
presented the best performance, while dist1 was the second-best performing classifier.
The highest decrease of performance over Shap was observed in the dist05 classifier
of 9.2%, while the decrease was only 4.2% and 2.52% for dist1 and dist075,
respectively. Such results indicate that the deep learning model was more fit to

131

knowledge distillation because it reduced the performance loss form at least 16% to a
maximum of 9.2% for the Bank Marketing dataset.

Figure 62. Performance distribution for distilled logistic regression classifiers developed by

using the Bank marketing dataset. The main results clusters contained: dist1 – 84%, dist075 –
89%, dist05 – 88% out of the total results

The performance ranking results (Figure 63) are similar to the rankings of the
tested shallow neural network architecture (Figure 53). The Mono and Shap
classifiers produced statistically indifferent results with a median BCE value of 0.24
and 0.238, respectively. The median BCE reduction for dist075 and dist1 was 0.006
and 0.010. The performance distribution and ranking reveals that the logistic
regression classifier performance results decreased after distillation.

Figure 63. Ranking of the classifier performance based on the used distillation amount. Bank

Marketing and logistic regression base model case

 The results of the distilled decision tree models in a deep neural network case
of the BNG_credi-a dataset are presented in Figure 64. The performance results
clustered around three main points. Such clustering makes the interpretation of the
results more challenging, but the performance trends which are present in the Bank
Marketing dataset, such as dist075 presenting the best results with dist1 resulting in
the second best and dist05 with the worst results are clear as well. The median increase
of BCE for dist075 over the Shap classifier was 4.42%, while the median dist1 value

132

reduced the performance by 45%, even though around one third of the results for the
dist1 classifier were similar to the dist075 classifier results.

Figure 64. Performance distribution for distilled decision tree classifiers developed by using
the BNG_credit-a dataset. The result cluster containing the highest performance contained:

dist1 – 41%, dist075 – 57%, dist05 – 60% out of the total results

Even though the performance distribution displays a performance increase in

dist075 over the Shap classifier, the performance ranking (Figure 65) indicates the
Shap classifier as the best-performing with a median BCE of 0.317, even though the
median results indicate that dist075 had the highest performance with a BCE value of
0.303. The dist075 method’s overall rank is reduced by the outlier cases. The ranking
test also indicates that the differences between the results of dist05, dist1, and dist075
cases were statistically insignificant, which means that the performance differences
were minimal. When comparing the performance differences in terms of BCE, the
median value of dist075 outperformed the Shap classifier by only -0.025, while the
dist05 performance was only lower by a BCE value of 0.01. Such results indicate
similarities between the median values, thus denoting that the performance loss or
performance gain was minor.

Figure 65. Ranking of the classifier performance based on the used distillation amount

BNG_credit-a and the decision tree base model case

The results of the distilled logistic regression model for the BNG_credit-a
dataset case are presented in Figure 66. Distilled logistic regression models also
produced results clustered into three distinct clusters. Even though the part of the

133

dist05 and dist075 classifier results surpassed the Mono and Shap classifier
performance, the median performance of the distilled classifiers was lower by 1.53%
and 42%, respectively. Surprisingly, the median value had a higher performance over
the Shap classifier by 7.975%. Similarly to the Bank Marketing dataset when
comparing the logistic regression model type results to the decision tree classifier
results, distillation is not as effective in preserving the classifier performance.

Figure 66. Performance distribution for distilled logistic regression classifiers developed by

using the BNG_credit-a dataset. The result cluster containing the highest performance
contained: dist1 – 66%, dist075 – 61% dist05 – 70% out of the total results

 The logistic regression classifier ranking (Figure 67) reveals that the
performance levels of all classifiers were similar. The dist1 classifier rank was similar
to the Mono approach, and no statistical significance was found between all the tested
distillation classifier results. This indicates that even tough Mono was the best
classifier, distillation successfully produced results similar to the Shap ensemble. The
median results for the Shap ensemble were 0.326, while dist05 and dist1 produced
BCE values of 0.331 and 0.300, respectively.

Figure 67. Ranking of the classifier performance based on the used distillation amount

BNG_credit-a and the logistic regression base model case

134

4.4.2 Summary of experimental results

The experiment results of ensemble knowledge distillation into a classifier
powered by a deep learning architecture demonstrated that the usage of such an
architecture decreases the performance loss. When comparing results of a shallow
neural network to deep learning for the dist075 classifier while using the Bank
Marketing dataset, one can observe a performance increase from 16.99% to a
performance loss of only 3.95% with part of the results, which indicates no
performance loss. When comparing the distillation classifier performance the in
BNG_credit-a dataset case, the differences between the results were statistically
similar. The distillation performance for dist075 on the BNG_credit-a dataset ranged
from a decrease of 45% to an increase of 4.41%. Such a huge margin between the
results was introduced by the performance outliers, even though at least 40% to 70%
of the test runs even surpassed or presented similar values to those of the Shap
classifier performance. By using the deep learning neural network architecture, even
the usage of the median distillation (dist05) classifier becomes viable with its
performance loss ranging from 9.24% to 1.53%.

The results indicate that a model with a more complex inner model
representation, such as the decision tree model type, is more suitable for distillation,
as, in such a configuration, only a single classifier performed worse than the Mono
classifier. It is clear that the deep learning architecture performed better than the
shallow neural network architecture. This indicates that the knowledge distillation
method should be used in combination with deep learning architectures to preserve
ensemble performance while transferring the model from the blockchain network to
other application areas.

4.5 Answers to Research Questions

The experimental results provided the following answers to the defined research
questions (as presented in Section Problem statement and research questions):
RQ1: The distributed machine learning transparency has been improved by
implementing the process using the private blockchain network and enabling network
participants to read a shared ledger, which enables their ability to audit transactions,
submitted models, data, and inference results. The collaboration for distributed
learning has been improved by allowing the network participants to reuse the already
existing machine learning solutions with a minor modification on the blockchain
network, thus increasing the possibility for collaboration. Contribution evaluation has
also improved the collaboration by providing means to quantify the quality of the
shared models and data.
RQ2: Blockchain technologies could facilitate the collaborative distributed machine
learning process by allowing the participants to deploy machine learning models and
validation data via the smart contract automation and automated performance
evaluation. The proposed contribution evaluation could potentially increase the
motivation of the participants.
RQ3: The blockchain network should contain dedicated smart contracts which
implement the collaboration process. The blockchain network technologies should
also be modified to include support for the currently existing machine learning

135

solutions for their easier integration into the collaborative distributed machine
learning environment. This can be achieved by using local blockchain oracle services
which enable support for the common programming environments in blockchain
networks.
RQ4: The model contributions could be evaluated by combining shared models into
an ensemble and evaluating the performance of all possible variants of an ensemble
by using the Shapley weight calculation strategy. Data contributions could be
evaluated by measuring the drop in the ensemble performance due to new data
inclusion into the shared data pool.
RQ5: The training data privacy can be improved by separating model training and
model deployment environments and only sharing the already trained models to the
blockchain network, which facilitates the distributed machine learning process. To
further increase the privacy of the training data, an individual model is obfuscated
through ensembling and further distilling with the student-teacher approach.

4.6 Threats to Validity

Threats to the performance evaluation of the model inference calculation via the
local off-chain blockchain oracles experiment can be outlined as the usage of a virtual
environment and the limited size of the tested network. The architecture of the local
off-chain oracles was tested only in a virtual environment. This negated any latency
which would be introduced into the physical system and could have affected the
results of the experiment. The performance limitations were also imposed by resource
sharing while performing the consensus algorithm and data distribution over network
peer nodes. The highest number of blockchain network nodes tested due to the limited
computational resources was 16, even though multiple network configurations were
tested to evaluate the performance effect of additional network nodes. An increased
number of network nodes could affect the performance of the consensus algorithm
protocol as well as the speed of data replication. In order to reduce the chances of
failed experiments due to the limited performance, most of the experiments were
conducted in a blockchain network containing 13 peers. Such a network configuration
was chosen based on the available CPU and RAM resources required to run
containerised blockchain services in a virtualised environment. In addition, the
experiment evaluation did not include stress testing and limitation analysis of the
existing data storage approach in the selected blockchain network solution and was
only using up to 20000 data instances at any given time. The performance evaluation
and the scalability of the proposed system should be evaluated in the further research.

The performance of the components could have been negatively impacted as the
virtual components shared the computational resources, whereas, in a physical system,
the resources would be individual. The increased network size could also increase the
amount of communication required to reach consensus and introduce additional
latency. Although, the results of the experiment presented a gradual increase in the
network participant count and tested many different configurations with the maximum
configuration adhering to the known limitations.

The Shapley-based ensemble weighting performance evaluation experiment
involved the following threats: a small number of the tested datasets, lack of model

136

tuning, single data distributed for ensemble model training, and a limited Shapley
value calculation speed.

A limited number of datasets have been utilised to evaluate the performance of
the ensembles developed. The experiment results could depend on the size of the
dataset and the extent of the class imbalance, even though the two datasets employed
were different with respect to these aspects. Bank marketing provided insight into how
the proposed method would perform on medium-sized datasets with strong class
imbalance. Meanwhile, the BNG_credit-a dataset displayed how the method would
perform on large datasets with balanced classes.

The model training procedure did not include the model parameter tuning step
of the machine learning pipeline. The model tuning step could further improve the
performance of the machine learning model, but, as the model with the same
parameters was being used in the experiments, the results should not be affected. The
Shapley-based ensemble weighting performance evaluation experiment utilised a data
splitting strategy based on the Zipf law distribution. The data distribution might affect
the performance of the ensemble classifier and the effectiveness of the weighting
strategies.

 The selected Shapley exact calculation approach due to its computational
complexity would limit the number of the model that could be combined into an
ensemble. To reduce the exponential growth of Shapley value calculations,
approximation measures should be introduced, which might introduce deviations to
the results, thereby decreasing their performance.

Threats to performance evaluation of the knowledge distillation experiment can
be outlined as lack of the neural network model parameter tuning. The experiments
only tested a single neural network architecture without evaluating a different range
of development parameters. The neural networks with different architectures and
different model development parameters might affect the performance of the
distillation approach. The neural network was only tested by using binary
classification tasks.

137

5. CONCLUSIONS

1. The analysis of distributed machine learning approaches and methods has
demonstrated that, currently, most of the proposed architectures rely on
centralised components, which reduces the robustness of the architecture and
requires trust among the collaborating parties. Furthermore, most of the
proposed distributed learning approaches are highly specialised, dedicated to
a single machine learning problem, and they usually employ a single machine
learning model type, which reduces possibilities and their engagement in
collaboration.

2. Analysis of the applicability of blockchain technologies for distributed
machine learning purposes has indicated that most of the known approaches
use blockchain to engage the network participants, as well as to store
ownership and transfer information via a shared ledger. The main limitations
involved are that the solutions are highly specialised. This limitation can be
alleviated by the introduction of oracle services in distributed machine learning
based on the blockchain technology.

3. A method for collaborative privacy-preserving distributed machine learning
has been proposed, thus enabling the blockchain network participants to
collaborate via the model deployment process. The proposed method
quantifies the contributions of the participants and enables the usage of
knowledge accumulated on the blockchain network via the weighted ensemble
or the knowledge distillation approaches. Proof-of-concept implementation
has been developed by using the Hyperledger Fabric private blockchain
network architecture, thus demonstrating the feasibility of collaborative
distributed machine learning. The architecture features local oracle-based
components which enable the usage of the currently existing machine learning
environments, thus eliminating the need to rely on the limited set of machine
learning development environments supported by blockchain technologies.

4. The method has been experimentally evaluated by benchmarking the
performance of the binary classification models in the model inference task in
two approaches – an approach developed only by using smart contracts, and
by combining smart contracts with blockchain oracles. The results of the
experiment have demonstrated that, on average, the network slowed by 2.07%
when using two datasets with the logistic regression classifier. The
introduction of the oracle components increased the flexibility to use common
machine learning algorithm implementations in the blockchain network.

5. The performance evaluation of the ensemble weighting strategy suggests that
the contribution of each participant could be quantified and used as a basis for
constructing an incentive mechanism for the motivation of the participant. The

138

experiment results have revealed that a Shapley-weighted ensemble increased
the performance by 4.8% and 1.9% for the two tested datasets compared to
using a single large model, and by 0.7% compared to a simple performance-
based weighting in the form of the reciprocal of binary cross-entropy. This
strategy can be used for contribution evaluation and also for obtaining weights
for a simple decision-level fusion in ensemble learning with similar success or
even better than other weighting strategies compared. The introduced Shapley-
based strategy can also be seen as a generalisation of the performance-based
weighting.

6. The results of the knowledge distillation experiment with a three-layer
perceptron have proven that the application of such an approach did not present
any significant improvement over directly combining the network models into
an ensemble. The performance decreased from 10.41% to 23.9% with respect
to the tested classifier and the used dataset. In contrast, the results of
knowledge distillation into the deep learning neural network demonstrated
that, for the student model, a more complex architecture outperforms a simple
one and better preserves the teacher model (ensemble) knowledge. Notably,
the distilled TabNet classifier (student) even surpassed the performance of a
weighted ensemble (teacher) to some degree. Weak distillation (alpha=0.75)
of the logistic regression ensemble deteriorated the student by 3.95% for the
Bank Marketing and by 42% for the BNG-credit_a datasets, whereas the
distillation of the decision tree ensemble deteriorated the student by 2.52% for
the Bank Marketing and improved the student by 7.98% for the BNG-credit_a
datasets. The performance results of separate runs for the Bank Marketing
were distributed normally, while the results for the BNG-credit_a dataset tend
to cluster at three different levels, noticeably, superior performance over the
teacher was achieved for 57% and 61% of runs for the logistic regression and
decision tree ensembles, respectively. Knowledge distillation was found to be
beneficial, and more complex model architectures are recommended for the
student model.

139

6. SANTRAUKA

6.1 ĮVADAS

Pasaulyje sukuriama vis daugiau informacijos, o norint prasmingai panaudoti
tokį informacijos kiekį, būtina naudoti automatizuotus duomenų apdorojimo
sprendimus. Vienas iš būdų apdoroti didelius duomenų kiekius yra mašininio
mokymosi metodai. Mašininio mokymosi metodai [10], [11], [12] sėkmingai taikomi
daugelyje sričių, tokių kaip vaizdų atpažinimas, medicina, sprendimų analizė,
rekomendacinės sistemos, kalbos technologijos, bei kitur, kur taikoma atpažinimo
teorija. Dėl populiarėjančio mašininio mokymosi naudotojai gali kurti tokius pat
mašininio mokymosi sprendimus, tačiau nepasiekia tokios kokybės mašininio
mokymosi modelio, kokios galėtų pasiekti turėdami daugiau ir įvairesnių duomenų.
Šiai problemai spręsti galėtų pasitarnauti bendradarbiavimas visuose mašininio
mokymosi sprendimų kūrimo etapuose: didesni ir įvairesni duomenų rinkiniai galėtų
būti sukurti panaudojant skirtingus šaltinius; mašininio mokymosi modeliai galėtų
būti išmokomi panaudojant mažiau skaičiavimo išteklių ir būti geresnės kokybės;
pasidalinti modeliai galėtų būti pakartotinai naudojami sumažinant poreikį kurti
naujus lokalius specializuotus modelius. Deja, šiuo metu mašininio mokymosi
modelių kūrimas dažnai vykdomas vienoje centralizuotoje modelio kūrimo aplinkoje,
panaudojant tik ribotą duomenų kiekį.

Mašininio mokymosi paskirstymas galėtų padėti spręsti šias problemas, tačiau
dėl poreikio dalintis duomenims ir bendradarbiauti kuriant mašininio mokymosi
sprendimus gali kilti saugumo ir privatumo užtikrinimo problemų. Naudojama
bendradarbiavimo aplinka privalo neatskleisti privačios ir jautrios informacijos apie
esybes ir asmenis. Duomenų perdavimo kanalai turi būti apsaugoti ir užtikrinamas
pasitikėjimas naudojamomis sistemomis ir technologijomis. Šiuo metu egzistuoja
daug paskirstyto mašininio mokymosi sprendimų, leidžiančių vykdyti privatumą
užtikrinantį bendradarbiavimą. Paskirstyto mokymosi sprendimai turėtų įgalinti
bendradarbiavimą ir pagerinti mašininio mokymosi sprendimų kokybę, tačiau šie
sprendimai vis tiek yra neatsparūs atakoms ir turi pasitikėjimo problemų. Taip pat
paskirstyto mokymosi proceso dalyviai gali būti nepakankamai motyvuoti dalyvauti
ir dėl to pasitraukti iš proceso.

Siekiant spręsti pasitikėjimo, skaidrumo ir patikimumo problemas, gali būti
taikomos paskirstytųjų duomenų technologijos (angl. Distributed Ledger
Technology). Paskirstytųjų duomenų technologijos leidžia sistemos naudojimosi metu
registruoti transakcijas į duomenų žurnalą (angl. ledger) ir taip padidinti pasitikėjimą
tarp tinklo dalyvių ir paslaugų. Tarp paskirstytųjų duomenų technologijų blokų
grandinės technologijos (angl. Blockchain technologies) yra populiariausios ir
plačiausiai taikomos. Blokų grandinės technologijose naudojamas duomenų
replikavimas leidžia kurti sistemas, atsparesnes tinklo veiklą siekiančioms sutrikdyti
atakoms. Tarpusavio pasitikėjimo problemą blokų grandinės technologijos sprendžia
suteikdamos galimybę naudotojams laisvai peržiūrėti transakcijų informaciją ir kitus
saugomus duomenis. Kiekviena transakcija, atliekama blokų grandinėje, yra
patvirtinama kelių tinklo naudotojų ir užregistruojama, taip sumažinant galimybę

140

kenkėjiškai veiklai tarp tinklo narių. Sudėtingesnė veiklos logika blokų grandinėse
gali būti realizuota naudojant išmaniuosius kontraktus (angl. smart contracts).
Išmanieji kontraktai taip pat gali būti papildomi specializuotomis paslaugomis, kurios
leistų paskirstyti, pakartotinai naudoti ir integruoti jau sukurtus mašininio mokymosi
sprendimus. Šiuo metu nėra nusistovėjusių metodų, kurie leistų vykdyti
bendradarbiavimą paskirstytose mašininio mokymosi sprendimuose, sukurtuose
naudojant blokų grandinės technologijas, kurios užtikrintų duomenų privatumą ir
leistų pakartotinai naudoti jau sukurtas mašininio mokymosi technologijas.

Tyrimo sritis ir objektas

Šios disertacijos tyrimo objektas yra bendradarbiavimas vykdant paskirstytą
mašininį mokymą. Tyrimo sritis susideda iš dviejų pagrindinių sričių:

1) bendradarbiavimu grįstu paskirstyto mašininio mokymosi metodų ir
architektūrų;

2) blokų grandinės naudojimo būdų ir įrankių, skirtų mašininiam mokymuisi
vykdyti.

Spendžiama problema ir tyrimo klausimai

Bendradarbiavimui skirti paskirstyto mašininio mokymosi sprendimai yra
ribojami mažo dalyvių pasitikėjimo, apribojimų dėl jautrių duomenų naudojimo ir
sudėtingų egzistuojančių mašininio mokymosi technologijų adaptavimo galimybių.
Norint pasiūlyti metodą šioms problemoms spręsti, šios disertacijos metu buvo iškelti
šie tyrimo klausimai:

1. Ar paskirstyto mašininio mokymosi proceso skaidrumas ir
bendradarbiavimas gali būti patobulintas? Jei taip, kokiu būdu?

2. Kaip blokų grandinės technologija gali būti pritaikyta palaikyti
bendradarbiavimui skirtus sprendimus paskirstytam mašininiam mokymuisi
vykdyti?

3. Ar privatumo užtikrinimas gali būti patobulintas vykdant blokų grandinės
technologijomis grindžiamą paskirstytą mašininį mokymąsi?

4. Kaip galima pamatuoti blokų grandinės tinklo nario duomenų ir modelio
indėlį vykdant bendradarbiavimu grindžiamą paskirstytą mašininį
mokymąsi?

5. Kaip galima patobulinti mokymo duomenų privatumo užtikrinimą vykdant
paskirstytą mašininį mokymąsi blokų grandinėje?

Tyrimo tikslas ir uždaviniai

Šios disertacijos tikslas – pagerinti bendradarbiavimą vykdant paskirstytą
mašininį mokymąsi panaudojant blokų grandinės technologijas

Šiam tikslui pasiekti buvo išsikelti šie uždaviniai:
1. Išanalizuoti mašininį mokymąsi, paskirstytą mašininį mokymąsi ir

bendradarbiavimo būdus vykdant paskirstytą mašininį mokymąsi.
2. Išanalizuoti blokų grandinės technologijas ir galimybes jas pritaikyti

paskirstytam mašininiam mokymuisi vykdyti.

141

3. Pasiūlyti bendradarbiavimu grindžiamą paskirstyto mašininio mokymosi
metodą, naudojantį blokų grandinės technologijas.

4. Realizuoti sprendimą, įgalinantį bendradarbiavimu grindžiamą paskirstytą
mašininį mokymąsi panaudojant blokų grandinės technologijas pagal
pasiūlytą metodą.

5. Ištirti, kaip blokų grandinės technologijų taikymas paveikia paskirstytą
mašininį mokymąsi.

6. Įvertinti pasiūlyto metodo tinkamumą vykdyti bendradarbiavimu grindžiamą
paskirstytą mašininį mokymąsi blokų grandine.

Tyrimo metodika

Tyrimas buvo vykdomas konstruktyvaus tyrimo metodu [13]. Remiantis šiuo
metodu, tyrimas buvo vykdomas atliekant tokius žingsnius:

 Pirmajame žingsnyje buvo apibrėžtas tyrimo tikslas ir objektas, kuris apėmė
bendradarbiavimą užtikrinančio paskirstyto mašininio mokymosi metodus,
jų architektūras ir taikymą blokų grandinėse bei blokų grandinės
technologijomis grindžiamų įrankių ir sprendimų vertinimą. Galiausiai buvo
apibrėžta tyrimo problema, vyraujanti privatumą užtikrinančiame
bendradarbiavimu grįstame paskirstyto mašininio mokymosi procese.

 Antrasis žingsnis buvo skirtas apibrėžti tyrimo potencialui, įvertinant, kaip
blokų grandinės technologijos gali būti taikomos spendžiant
bendradarbiavimo ir bendradarbiavimo užtikrinimo problemas vykdant
paskirstytą mašininį mokymąsi.

 Trečiajame žingsnyje buvo išanalizuota apibrėžta tyrimo problema. Tam
atlikti buvo pasitelktas lyginamosios analizės metodas, peržvelgiant esamus
sprendimus, jungiančius privatumo užtikrinimo metodus ir blokų grandinės
technologijas, paskirstyto mašininio mokymo kontekste.

 Ketvirtajame žingsnyje buvo pasiūlytas metodas, skirtas bendradarbiavimu
grindžiamam paskirstytam mašininiam mokymuisi, kuris taiko privačios
blokų grandinės technologijas ir leidžia įvertinti dalyvių indėlių vertę.

 Penktasis žingsnis buvo skirtas realizacijai ir eksperimentiniam vertinimui
bei metodo taikymo sričių paieškos galimybių tyrimui. Buvo realizuotas
blokų grandinės technologijomis grindžiamas sprendimas bendradarbiavimu
grindžiamam paskirstytam mašininiam mokymuisi vykdyti, remiantis
pasiūlytu metodu. Sprendimo veikimas buvo įvertintas eksperimentiškai,
pamatuojant sprendimo greitaveiką ir modelių kokybę (angl. model
performance). Kokybės vertinimas buvo atliktas sprendžiant dvi su bankais
susijusias klasifikavimo problemas.

142

Ginamieji teiginiai

1. Egzistuojančios privačios blokų grandinės gali būti patobulintos
specializuotomis lokaliomis orakulų paslaugomis, leidžiančiomis
palaikyti įvairesnes mašininio mokymosi aplinkas.

2. Tinklo dalyvių modelių indėliai, pateikiami blokų grandinės tinkle,
skirtame bendradarbiavimu grįstam paskirstytam mašininiam mokymuisi
vykdyti, gali būti įvertinti kiekvienam tinklo nariui, panaudojant Shapley
kolektyvo svorių apskaičiavimo strategiją.

3. Žinių distiliavimas gali būti panaudotas tinke sukauptoms žinioms
agreguoti iš modelių kolektyvo į vieną neuroninio tinklo modelį,
smarkiau nesumažinant jo tikslumo.

Mokslinis naujumas

1. Pasiūlytas bendradarbiavimu grįstas paskirstytas mašininis mokymosi
blokų grandinėje metodas (CDMLB) išplečia esamas paskirstyto
mašininio mokymosi, grindžiamo blokų grandinės technologijomis,
galimybes, papildant sistemos architektūrą mašininio mokymosi modelių
rezultatų skaičiavimo paslauga.

2. Pasiūlytas CDMLB metodas naudoja Shapley reikšmėmis ir modelio
tikslumu grįstą kolektyvo svorių apskaičiavimo strategiją kaip būdą
pamatuoti tinklo nario pateikiamų modelių indėlį į bendrą tinkle sukauptą
modelių kolektyvą.

3. Pasiūlytas CDMLB metodas naudoja mokinio ir mokytojo modelių
distiliavimo sprendimą, kuris leidžia padidinti modelių privatumą,
suspaudžiant modelius, kaupiamus blokų grandinės technologija
grindžiamuose sprendimuose.

Praktinė reikšmė

1. Pasiūlytas CDMLB metodas leidžia sujungti dažnai naudojamas
mašininio mokymosi technologijas su blokų grandinių technologijomis,
panaudojant lokalias, už blokų grandinės tinklo ribų esančias orakulo
paslaugas.

2. Pasiūlyta kolektyvo svorių apskaičiavimo strategija gali būti traktuojama
kaip tikslumu grįsto svorių apskaičiavimo generalizacija ir gali būti
taikoma visiems kolektyvams, naudojantiems svorius.

3. Pasiūlyta kolektyvo svorių apskaičiavimo strategija padidina išbandytos
binarinės klasifikavimo užduoties rezultatų tikslumą, kai naudojami
lentelės tipo duomenys, palyginti su centralizuotu sprendimu ar kitomis
svorių apskaičiavimo strategijomis.

143

4. Pateikiami modelio panaudojimo scenarijai leidžia užtikrinti modelių
informacijos privatumą, išgaunant suspaustą modelį iš blokų grandinės
technologija grindžiamo sprendimo tolesniam naudojimui ar tobulinimui.

5. Pristatytas modelių sujungimo metodas leidžia sujungti heterogeninius
modelių tipus, taip padidinant naudojamų modelių įvairovę ir įgalinant
didesnę aibę bendradarbiavimo galimybių.

Rezultatų aprobavimas

Tyrimo rezultatai buvo paskelbti 5 moksliniuose leidiniuose: dvi publikacijos
periodiniame moksliniame žurnale MDPI Applied Sciences ir trys publikacijos
konferencijų leidiniuose.

Disertacijos struktūra

Disertacijos dokumento pirmajame skyriuje pateikiami tiriamosios analizės
rezultatai, apibūdinantys mokslines ir taikomąsias žinias apie paskirstyto mašininio
mokymosi ir privatumo užtikrinimo metodus, mašininio mokymosi, realizuoto
panaudojant blokų grandinės technologijas, sprendimus. Taip pat skyriuje pateikiama
lyginamoji esamų sprendimų, jungiančių blokų grandinės technologijas su privatumą
užtikrinančiais metodais ir paskirstyto mašininio mokymosi metodais, analizė.
Antrasis skyrius apibrėžia bendradarbiavimu grįsto paskirstyto mašininio mokymosi
blokų grandinėje metodą ir aprašo reikalavimus ir procedūras blokų grandinės
sistemos paruošimui, modelių ir duomenų pateikimui ir tinkle sukauptų žinių
panaudojimui. Kiekvienas metodo žingsnis pateikiamas detaliu aprašu ir realizacijos
pristatymu. Trečiasis skyrius pristato atliktų eksperimentinių tyrimų konfigūracijas ir
rezultatus. Ketvirtajame skyriuje pateikiamos disertacijos išvados. Disertacijoje taip
pat pateikiama disertacijos santrauka lietuvių kalba, šaltinių sąrašas ir mokslinių
publikacijų ir konferencijų sąrašas.

6.2 EGZISTUOJANČIŲ METODŲ IR SPRENDIMŲ ANALIZĖ

6.2.1 Mašininis mokymasis

Mašininio mokymosi modelio kūrimo procesą [14] sudaro keturi pagrindiniai
etapai: duomenų apdorojimas, modelio derinimas, modelio kokybės vertinimas bei
modelio diegimas ir naudojimas.

Duomenų apdorojimo etapas susideda iš kelių žingsnių, kurie yra: duomenų
išgavimas, duomenų paruošimas ir požymių tyrimas. Duomenų išgavimo procesas yra
pirmasis mašininio mokymosi proceso etapas. Duomenys, naudojami mašininio
mokymosi procese, gali būti išgaunami įvairiais būdais [15], [16] – nuo sutelktinio
duomenų rinkimo iki sintetinių duomenų generavimo. Atsižvelgiant į naudojamą
mašininio mokymosi metodą, surinktus duomenis gali reikėti sužymėti. Žymėjimo
metu realaus pasaulio objektai priskiriami vienai ar kelioms klasėms. Žymėjimo
procesas užbaigia duomenų išgavimo procesą, ir toliau vykdomas duomenų rinkinio
paruošimas. Duomenims paruošti gali būti taikomi įvairūs metodai ir procedūros,

144

kurių taikymas gali skirtis, priklausomai nuo duomenų rinkinio. Dažniausiai duomenų
paruošimo metu pašalinami tušti ar klaidingi duomenys, pašalinami dublikatai ir
standartizuojami duomenų tipai. Paruošus duomenis, atliekamas duomenų rinkinio
požymių tyrimas. Tiriant požymius, atskleidžiami pasitaikantys duomenų
dėsningumai ir ryšiai tarp kintamųjų, jei tokie egzistuoja. Jei atrinktame duomenų
rinkinyje yra kategorinių duomenų, priklausomai nuo naudojamo mašininio
mokymosi sprendimo, juos gali reikti transformuoti į naujus požymius. Šios
transformacijos metu duomenyse esančios kategorijos pakeičiamos iš tekstinės
informacijos į naujus duomenų rinkinio stulpelius su skaitinėmis reikšmėmis [17].
Duomenų paruošimo procesas baigiamas, kai išgaunamas tinkamas duomenų
rinkinys, kuris yra paruoštas naudoti mašininio mokymosi modelio mokymo procese.

Paprastai modelio derinimo ir kokybės (angl. model performance) vertinimo
tikslais duomenų rinkinys padalijamas į tris dalis: mokymo, validavimo ir testavimo
[18]. Mokymo dalis naudojama modeliui sukurti, validavimo dalis naudojama
modelio mokymo metu, siekiant suderinti modelio hiperparametrus. Galiausiai,
atliekant modelio kokybės vertinimo etapą, testavimo duomenų poaibis naudojamas
atliekamos klasifikavimo arba regresijos užduoties rezultatų tikslumui įvertinti, kai
modeliui pateikiamas testavimo duomenų rinkinys, kuris nebuvo naudojamas
mokymo procese. Nepasiekus norimo modelio kokybės, modelio parametrų derinimą
galima pratęsti ar jį kartoti, iki bus pasiekta tinkama kokybė. Esant pakankamai
modelio kokybei, modelį galima išsaugoti faile ir naudoti regresijos ar klasifikavimo
užduotims atlikti [37], [38]. Sukurti modeliai gali būti naudojami pavieniui arba
modelių kolektyvuose, kur daugiau nei vienas modelis yra sujungiami, siekiant gauti
tikslesnius spėjimus. Taip pat informacija apie modelius gali būti siunčiama ir
naudojama kituose sprendimuose. Vienas iš būdų keletą modelių vienam mašininio
mokymosi uždaviniui yra paskirstytas mašininis mokymasis.

6.2.2 Paskirstytas mašininis mokymasis

Paskirstytas mašininis mokymasis skiriasi nuo centralizuoto mašininio
mokymosi tuo, kad jame dalyvauja keletas subjektų, kurie dalinasi duomenimis arba
individualiais modeliais, kurie vėliau sujungiami į vieną modelį. Panašiai, kaip ir
kolektyvo mokymosi atveju, paskirstyto mašininio mokymosi aplinkoje galima
sujungti trijų tipų informaciją – klasifikatorius, klasifikatorių reprezentacijas ir
klasifikatorių prognozes.

Federacinis paskirstytas mokymasis yra populiariausias paskirstyto mašininio
mokymosi tipas, kuris naudojamas privatumui užtikrinti ir tolygiau paskirstyti
skaičiavimo resursų panaudojimą. Federacinis mokymasis dažnai naudojamas kartu
su kitais privatumo užtikrinimo metodais ir blokų grandinės technologijomis.

Pagal egzistuojančių dalyvių skaičių paskirstytojo mašininio mokymosi
sprendimuose juos galima suskirstyti į dvi kategorijas: individualų ir
bendradarbiavimu grindžiamą. Individualų paskirstytąjį mašininį mokymąsi kuria
vienas subjektas, kuris paprastai naudoja centralizuotą aplinką. Šioje aplinkoje
agreguojami modelio ar duomenų artefaktai iš daugelio įrenginių ar programinės
įrangos sprendimų. Toks paskirstytasis mašininio mokymosi metodas nereikalauja
sudėtingų bendradarbiavimo procesų ar pasitikėjimo tarp tinklo dalyvių, nes yra

145

valdomas vieno subjekto. Bendradarbiavimu grindžiamas paskirstytasis mašininis
mokymasis jungia atskirų subjektų modelių ar duomenų įvestis. Bendradarbiavimas
ir dalinimasis duomenimis ir modeliais leidžia išmokyti / gauti aukštesnės kokybės
modelį. Pagrindinis skirtumas tarp šių paskirstyto mašininio mokymo kategorijų yra
tas, kad bendradarbiavimu grindžiamas mokymasis reikalauja pasitikėjimo tarp tinklo
dalyvių ir naudojamų paslaugų, o taikant individualų požiūrį pasitikėjimas nėra
aktualus.

6.2.3 Privatumo užtikrinimo metodai

Duomenų privatumo užtikrinimas yra svarbus aspektas mašininio mokymosi
modelių kūrimo procese, nes atakos, nukreiptos prieš šį procesą, gali atskleisti jautrius
duomenis. Trys pagrindinės privatumo užtikrinimo mašininio mokymosi procesuose
metodų grupės yra šios: duomenų nuasmeninimas [86], [87], [88], kriptografiniai
metodai perduodamai informacijai apsaugoti [89], [90] ir privatumui užtikrinti skirti
specializuoti sprendimai [91], [92], [93]

Vienas iš tokių privatumo užtikrinimo specializuoti sprendimų yra žinių
perdavimo architektūra [92]. Ji taikoma mašininio mokymosi procese, siekiant
apsaugoti modelio diegimo etapo metu naudojamą jautrią informaciją. Privatumui
užtikrinti yra pasiūlyta keletas sprendimų [98]-[100]. Dauguma siūlomų sprendimų
taiko žinių perkėlimo iš vieno ar kelių modelių į naują neuroninio tinklo modelį būdus,
siekiant apsaugoti jautrius modelio parametrus. Sprendimai taip pat siūlo privataus
mokytojų ansamblių agregavimą (angl. Private Aggregation of Teacher Ensembles,
PATE) [104], [105]. PATE metodas naudoja jautrių duomenų rinkinius išmokyti
keliems mokytojų modeliams, kurie vėliau naudojami agreguojančiam mokinio
modeliui mokyti. Taip sukurtas agreguojantis klasifikavimo modelis neatskleidžia
duomenų apie jam sukurti naudotus modelius, taip užtikrinant privatumą.

Privatumui užtikrinti taip pat galima taikyti ir duomenų nuasmeninimą, jų
užšifravimą ar net blokų grandinės technologijas. Šioje disertacijoje koncentruotasi į
paskirstytą bendradarbiavimu grindžiamą mokymą, buvo apžvelgti siūlymai ir
sprendimai, jungiantys privatumo užtikrinimą, blokų grandinės technologijų
naudojimą ir federacinio mokymosi metodus. Šios analizės metu buvo nustatyta, kad
dauguma siūlymų papildo blokų grandinės technologijas specializuotais konsensuso
algoritmais [70], [71], [82], [116], kurie siekia validuoti paskirstytų mašininio
mokymosi modelių ir jų kūrimo kokybę. Šie metodai paprastai realizuojami naudojant
viešąsias blokų grandines [117], [70] ir dažniausiai pateikiami tik kaip koncepcijos
įrodymai, kuriems reikia realizuoti naujus blokų grandinės tinklus. Naujų tinklų
kūrimas yra sudėtingas procesas, dėl šios priežasties tokių sprendimų panaudojimas
praktikoje gali būti sunkiai pasiekiamas. Kuriant blokų grandinės tinklus, siūlymuose
taip pat dažnai įvedami nauji duomenų teikėjo, duomenų tvirtintojo ar validavimo
dalyvių vaidmenys blokų grandinės tinkle. Šie vaidmenys leidžia paskirstyti tinklo
dalyvių atsakomybes ir apibrėžti vykdyto darbo atlygio apskaičiavimo būdus.
Dažniausia privatumo išsaugojimo priemonė apžvelgtuose metoduose yra
diferencinis privatumas ar informacijos, perduodamos ryšio kanalais, šifravimas.
Diferencinio privatumo priemonės taikomos siekiant išsaugoti perduodamų jautrių
duomenų privatumą. Daugumos siūlymų taikymo sritys skirstomos į dvi kategorijas:

146

sritys, kuriose reikia apsaugoti jautrius duomenis, kaip, pavyzdžiui, sveikatos
priežiūros srityje [99]; sritys, kur yra daug fizinėje erdvėje pasiskirsčiusių duomenų
ar modelių naudotojų, kurie bendradarbiauja, siekiant sukurti bendrą mašininio
mokymosi sprendimą, kaip, pavyzdžiui, daiktų internetas [71], [74]. Taip pat yra
siūlomi ir universalūs metodai, kuriuos būtų galima pritaikyti keletui sričių, tačiau
dauguma jų skirti tik giliajam mokymuisi vykdyti [120], [121] ir nepalaiko kitų
mašininio mokymosi modelių tipų. Dauguma lygintų metodų realizuojami tik vienoje
mašininio mokymosi aplinkoje, neatsižvelgiant į kelių modelių tipų sujungimo
metodus, todėl šių metodų pritaikomumas bendradarbiavimu grįstam paskirstytam
mašininiam mokymui vykdyti yra ribotas.

6.2.4 Blokų grandinės technologijos

Blokų grandinės technologijos buvo išpopuliarintos Bitcoin kriptovaliutos, o
augant technologijos brandai, buvo pradėtos taikyti ir kitose srityse. Terminas „blokų
grandinė“ [128] apibrėžia duomenų struktūrą, kurioje, naudojant kriptografinius
maišos algoritmus, įrašoma transakcijų informacija, jas sugrupuojant į blokus, o šiuos
vėliau dar ir į blokų grandinę. Transakcijų validavimo ir naujo bloko įtraukimo į blokų
grandinę procesas apibrėžiamas kaip konsensuso algoritmas [2]. Bendruomenės,
valdančios blokų įtraukimą ir saugančios paskirstyto žurnalo kopijas, vadinamos
blokų grandinės tinklais [2]. Blokų grandinės tinklus pagal jų narių prisijungimo
būdus ir reikalaujamą pasitikėjimo lygį [129] galima skirstyti į viešuosius, privačius
ir konsorciumo.

Išmanieji kontraktai buvo sukurti įgalinti, kurti ir vykdyti sudėtingesnėms
programoms pasinaudojant blokų grandinės tinklu. Išmanieji kontraktai visų pirma
buvo pristatyti Ethereum blokų grandinėje. Šie kontraktai, kaip ir transakcijos, įrašomi
į blokų grandinėje esančius blokus ir vėliau gali būti vykdomi iškviečiant kontrakto
funkcijas, o šie kvietimai užregistruojami kaip transakcijos. Kadangi į blokų grandinę
įrašyti duomenys yra nekintami, į blokų grandinę įdiegti išmanieji kontraktai taip pat
negali būti pašalinti ar pakeisti. Ethereum blokų grandinės išmanieji kontraktai yra
kuriami naudojant specializuotas programavimo kalbas: Solidity [135], Vyper [136].
Taip pat išmaniųjų kontraktų diegimas ir vykdymas daugumoje viešųjų blokų
grandinių yra apmokestintas. Apmokestinimo dydis priklauso nuo išmaniojo
kontrakto sudėtingumo ir vykdymui reikalingų skaičiavimo išteklių kiekio [137]. Tai
ne tik skatina išmaniųjų sutarčių kūrėjus optimizuoti savo kodą [138], kad jis būtų
vykdomas kuo efektyviau, bet ir riboja sudėtingesnių programų kūrimą. Išmanieji
kontraktai taip pat turi kūrimo apribojimų, nes programinį kodą vykdo tinklo dalyviai,
kurie turi patvirtinti išmaniojo kontrakto vykdymo rezultatus, todėl, norint sėkmingai
įvykdyti išmanųjį kontraktą ar jo funkcijas, gaunami rezultatai turi būti
deterministiniai [139]. Tarkim, funkcija, kuri naudoja atsitiktinių skaičių generavimą,
grąžina nedeterministinius rezultatus [139] ir dėl to negali būti realizuojama naudojant
išmaniuosius kontraktus. Privačiose blokų grandinėse naudojamų išmaniųjų kontraktų
vykdymo kaina nustatoma tinklą valdančios organizacijos, kuri gali pasirinkti juos
vykdyti be jokio atlygio juos diegiant ir vykdant. Taigi, naudojant išmaniuosius
kontraktus, galima kurti sudėtingesnius sprendimus be papildomų išlaidų, skirtų kodui
vykdyti.

147

Išmanieji kontraktai nėra pritaikyti dideliems duomenų kiekiams saugoti ir
apdoroti, o norint išspręsti šią problemą yra naudojamos blokų grandinės orakulo
paslaugos. Orakulo paslaugos sudaro galimybę gauti arba teikti duomenis, reikalingus
išmaniųjų kontraktų vykdymui, todėl jos apibrėžiamos kaip išmaniųjų kontraktų
išplėtimo projektavimo šablonas [148], [150]. Blokų grandinės orakulus galima
skirstyti pagal keturis pagrindinius kriterijus [151], [152]: duomenų šaltinio tipą,
duomenų teikimo kryptį, orakulo projektavimo šabloną ir sąveiką su blokų grandine.

Mašininio mokymosi ir blokų grandinės sričių deriniai aktyviai tiriami
daugelyje mokslinių tyrimų sričių, ypač daiktų interneto (IoT) [164], [165], sveikatos
priežiūros ir saugumo srityse [166]. Dažnai blokų grandinės technologijos derinamos
su federacinio mokymosi sprendimais [72], [133], kai blokų grandinės technologija
naudojama siekiant padidinti pasitikėjimą ir suteikti priemonių tinklo dalyviams
motyvuoti. Blokų grandinės technologija yra perspektyvus sprendimas, siekiant
padidinti mašininio mokymosi procesų skaidrumą, palengvinti audito vykdymą ir
padidinti saugumą.

6.3 BENDRADARBIAVIMU GRĮSTAS PASKIRSTYTO MAŠININIO
MOKYMOSI METODAS BLOKŲ GRANDINĖJE

Bendradarbiavimu grįstas paskirstyto mašininio mokymosi metodas blokų
grandinėje (68 pav.), naudojantis blokų grandinės technologiją (angl. collaborative
distributed machine learning on blockchain, CDMLB), skirtas organizacijoms, kurios
nori bendradarbiauti, spręsdamos mašininio mokymosi problemas, tačiau
nepakankamai pasitiki kitais proceso dalyviais, kad tiesiogiai dalintųsi duomenimis ar
mašininio mokymosi modeliais. CDMLB metodo tikslas yra suteikti galimybę
vykdyti privatumą užtikrinantį bendradarbiavimą vykdant paskirstytą mašininį
mokymąsi, panaudojant blokų grandinės technologijas. CDMLB metodas palaiko
esamas mašininio mokymosi technologijas, modelius ir duomenų rinkinius,
įgalindamas bendradarbiavimą privačiame blokų grandinės tinkle. Naudojant privatų
blokų grandinės tinklą, padidėja modelių diegimo proceso skaidrumas. Be to,
privačios blokų grandinės naudojimas padidina pasitikėjimą procesu, nes modelio
spėjimų (angl. model inference) apskaičiavimo rezultatus tikrina keletas tinklo
dalyvių. Blokų grandinės technologijos naudojimas taip pat padidina sistemos
patikimumą, nes, sutrikdžius vieno tinklo komponento veikimą, nėra sutrikdomas viso
tinklo darbas, kas galėtų įvykti naudojant trečiosios šalies architektūrą.

CDMLB metodas taip pat suteikia priemonių duomenų privatumui užtikrinti,
nes apibrėžia kelias specializuotas aplinkas ir specializuotą modelių diegimo ir
naudojimo procesą. Siūlomas metodas vykdomas keliose aplinkose: privataus
modelio kūrimo aplinkoje; blokų grandinės (angl. on-chain) aplinkoje, naudojamoje
modeliams diegti; lokalioje tinklo mazgo (angl. off-chain) aplinkoje.

Privataus modelio kūrimo aplinka nėra tiesiogiai integruojama į metodą ir yra
valdoma modelių kūrėjų. Šios aplinkos parametrai ir konfigūracijos priklauso tik nuo
modelio kūrėjo poreikių. Ši aplinka užtikrina, kad mokymo duomenų valdymas ir
modelio mokymas išliktų privatus, ir leidžia naudotojui organizuoti mokymą pagal
individualius poreikius. Sprendimą atlikti modelio mokymą privačioje ne blokų
grandinės aplinkoje lemia poreikis apsaugoti jautrius mokymo duomenis. Vieninteliai

148

apribojimai, taikomi šiai aplinkai, – tai gaunamų duomenų ir modelių failų formatai
ir jų struktūra, kuri turi būti suderinta su bloko grandinės tinkle nurodytais pavyzdžiais
ir reikalavimais.

Modeliams diegti naudojama on-chain aplinka, siekiant sukurti skaidrų, veiklą
registruojantį procesą, skirtą dalintis mašininio mokymosi modeliais ir duomenimis.
Joje atliekami veiksmai registruojami paskirstytame žurnale, leidžiant stebėti
vykdymą, taip padidinant proceso skaidrumą. Šioje aplinkoje modelio diegimo
procesai realizuojami išmaniaisiais kontraktais.

Lokali off-chain aplinka naudojama siekiant palaikyti platesnę aibę mašininio
mokymosi programavimo technologijų ir sprendimų. Naudojant kartu su blokų
grandinės modelių diegimo aplinka, ji leidžia palaikyti daugiau mašininio mokymosi
modelių tipų, taip pat suteikia modelių kolektyvo panaudojimo galimybę bei suteikia
galimybę decentralizuoti ir paskirstyti sudėtingus modelių skaičiavimus, naudojant
off-chain orakulo paslaugas.

Pasiūlyto CDMLB metodo procese egzistuoja dalyviai, kurie valdo duomenis ir
moko mašininio mokymosi modelius. Prieš prasidedant bendradarbiavimo procesui
dalyviai paskirsto modelius į mokymosi, testavimo ir validavimo dalis.
Pasinaudodami mokymosi duomenų imtimi tinklo dalyviai moko pasirinktus
klasifikatorius, kuriuos įkelia į blokų grandinės tinklą pasitelkdami išmaniaisiais
kontraktais ir juos naudojančiomis paslaugomis. Norėdami vykdyti
bendradarbiavimą, dalyviai su blokų grandinės tinklu turi pasidalinti ne tik modelių
failais, bet ir validavimo duomenimis. Pasinaudodami šiais dviem artefaktais,
išmanieji kontraktai apskaičiuoja kiekvieno dalyvio modelių ir duomenų indėlį.

149

68 pav. Bendradarbiavimu grįsto paskirstyto mašininio mokymosi metodo procesas

150

CDMLB blokų grandinės platformos paruošimo etapas apima mašininio
mokymosi artefaktų, kurie vėliau bus įdiegti į blokų grandinės tinklą, kūrimo
procesus. Šis etapas taip pat apima procesus, reikalingus CDMLB blokų grandinės
platformai įdiegti ir prie jos prisijungti. Tinklo artefaktų paruošimas prasideda nuo
duomenų parengimo ir yra atliekamas privačioje modelio kūrimo aplinkoje. Tinklo
kūrėjas, atsižvelgdamas į duomenų reikalavimus, parengtus bendradarbiaujančių
organizacijų, paruošia duomenų rinkinį. Šio etapo rezultatas yra parengti mokymo ir
validavimo duomenų rinkiniai. Mokymo duomenų rinkinys bus naudojamas modeliui
sukurti, o validavimo – bus įkeltas į blokų grandinės tinklą ir naudojamas modelio
tikslumui tikrinti. Jei tinklo dalyvis negali pateikti duomenų rinkinio, duomenų
rengimo procesas gali būti praleistas. Atitinkamai, jei dalyvis negali dalintis
validavimo duomenų rinkiniu dėl privatumo ar saugumo apribojimų, duomenų
rinkinio skaidymo į atskirus duomenų rinkinius taip pat galima nevykdyti. Parengtas
mokymo duomenų rinkinys naudojamas klasifikatoriaus modeliui mokyti. Kadangi
CDMLB metodas neriboja modelio mokymo proceso, galima naudoti skirtingas
modelio kūrimo aplinkas su įvairiomis aparatinės ir programinės įrangos
konfigūracijomis ir skirtingais modelio kūrimo parametrais. Nors modelio mokymo
procesas nepriklauso nuo metodo, gauto modelio failo formatas ir struktūra turi atitikti
bendradarbiaujančių organizacijų nustatytus modelio failo formato reikalavimus. Kai
mašininio mokymosi modelio ir duomenų kūrimas baigtas, tinklo dalyvis prisijungia
prie blokų grandinės tinklo. Tam gali prireikti įdiegti CDMLB platformą, jei tinklo
dalyvis jungiasi prie platformos pirmą kartą. Metode esanti platformos parengimo
dalis baigiasi prisijungimu prie privataus blokų grandinės tinklo.

Modelio ir duomenų diegimo etapas apima procesus, reikalingus dalintis
mašininio mokymosi artefaktais, t. y. modeliu ir duomenimis, blokų grandinės tinkle,
ir procedūras, atliekamas siekiant įvertinti šių artefaktų kokybę. Visi šiame etape
atliekami veiksmai realizuoti naudojant išmaniuosius kontraktus. Norint pradėti
naudotis modelių diegimo aplinka privačioje blokų grandinėje, visų pirma reikia
prisijungti, pateikiant organizacijų suteiktus prieigos duomenis. Prisijungus, modelio
ir duomenų artefaktus galima įtraukti į tinklą, įkeliant duomenų rinkinį arba modelį
naudojant paskirstytąją programą (angl. Distributed application, DApp). Siekiant
sutaupyti blokų grandinės saugykloje vietos, įkelto duomenų rinkinio formatas
transformuojamas ir, jei blokų grandinės saugykloje egzistuoja bent vienas mašininio
mokymosi modelis, įkeltas duomenų rinkinys naudojamas modelio spėjimams
apskaičiuoti. Modelio spėjimai išsaugomi blokų grandinės saugykloje. Modelio
įkėlimo procedūra pradedama įkeliant išsaugotą mašininio mokymosi modelio failą į
blokų grandinės tinklą, taip pat naudojantis paskirstytąja aplikacija. Modelio failo
informacija transformuojama į tekstinę informaciją ir išsaugoma blokų grandinės
saugykloje. Jei modelio ar duomenų rinkinio įkėlimo procedūra sėkminga, įkeltus
artefaktus blokų grandinės tinklas replikuoja tarp tinklo dalyvių.

Kad būtų galima sekti tinklo dalyvių indėlį į bendrą modelių kolektyvą,
vertinama kiekvieno įkelto modelio kokybė. Pasiūlytame metode modelių kokybė
vertinama pasinaudojant binarinės kryžminės entropijos tikslumo įvertinimo metrika.
Modelių kokybė toliau vertinama pasinaudojant Shapley indėlio įvertinimo funkciją,
kurioje dalyvio indelio reikšmė pakeičiama atvirkštinės binarinės kryžminės

151

entropijos reikšme. Shapley formulė taip pat įvertina, ar kiekvienas modelio tikslumas
buvo didesnis nei atsitiktinių spėjimų atsižvelgiant į turimą duomenų aibę, ir modeliai,
pasirodantys prasčiau nei atsitiktinio spėjimo reikšmė, nėra įtraukiami į vertinimą.
Pasiūlytas metodas taip pat vertina tik tokius modelius, kurie savo tikslumu pagerina
kolektyvą, o ne jį pablogina, nurodant taisyklę neįtraukti dalyvių su neigiamais
kolektyvo svoriais. Vertinant duomenų rinkinio indėlį, visi įkelti modeliai sujungiami
į modelių kolektyvą, o patvirtinimo duomenų rinkiniai sujungiami į vieną duomenų
rinkinį, neįtraukiant duomenų rinkinio, kurio našumas vertinamas. Vertinant modelio
indėlį, taip pat naudojami modelių kolektyvai ir duomenų rinkiniai. Tačiau vietoj to,
kad būtų vertinamas vienas duomenų rinkinys, vertinamas vienas modelis, o siekiant
supaprastinti vertinimo procesą, įvertinamas tik geriausios kiekvieno tinklo dalyvio
kokybės modelis. Modelio ir duomenų kokybės reikšmės gali būti naudojamos
skatinimo mechanizmui sukurti. Skatinimo rodikliai gaunami paverčiant modelio ar
duomenų kokybės reikšmes į santykinį dalyvio indėlį. Šis santykinis indėlis
naudojamas siekiant nustatyti, kokį paskatinimą reikėtų suteikti prisidėjusiam tinklo
nariui už jo dalyvavimą procese.

Paskutinis CDMLB metodo etapas skirtas blokų grandinėje saugomoms
modelio žinioms naudoti. Pateikiami du skirtingi būdai, kaip galima panaudoti
modelius. Pirmasis būdas modelius sujungia į kolektyvą naudojant svertinį vidurkį.
Tada, naudojant naujus duomenis, kurie pateikiami tinklo dalyvių, gaunama
kolektyvo prognozė. Modelių kolektyvą sukuria specializuota blokų grandinės
orakulo paslauga, o nematyti duomenys, naudojami prognozei apskaičiuoti, niekada
neviešinami už lokalios tinklo mazgo aplinkos ribų. Toks būdas leidžia užtikrinti
nematytų duomenų rinkinio ir prognozių privatumą, kartu registruojant mašininio
mokymosi modelio panaudojimą. Antrasis būdas naudoja žinių distiliavimo strategiją,
skirtą agreguojančiam modeliui mokyti naudojant tinkle blokų grandinėje sukauptą
modelių kolektyvą. Taikant šį būdą, naujam neuroninio tinklo modeliui mokyti
naudojami sujungti visi tinkle sukaupti validavimo duomenys ir modelių kolektyvas.
Sujungti modelių spėjimai naudojami kaip įvestis mokant neuroninio tinklo modelį, o
jo kokybė patikrinama naudojant visus tinkle sukauptus validavimo duomenis.
Distiliuoto modelio failas išsaugomas autoriaus lokalaus mazgo aplinkoje ir gali būti
toliau tobulinamas naudojant individualius duomenis arba tiesiog naudojamas
prognozėms atlikti be papildomo mokymo. Žinių distiliavimo strategija užtikrina
blokų grandinėje saugomo mašininio mokymosi modelių privatumą.

Blokų grandinės technologijos panaudojimas privatumą išsaugančiame
paskirstyto mokymosi procese suteikia galimybę bendradarbiauti organizacijoms,
leidžia bet kuriuo metu analizuoti blokų grandinės transakcijas ir blokų grandinės
artefaktus, taip didinant skaidrumą. CDMLB metodas skiriasi nuo esamų sprendimų
tuo, kad palaiko skirtingus prižiūrimo mokymosi (angl. supervized learning) modelių
tipus ir užduotis vietoje siūlymo kurti blokų grandinės tinklą kiekvienai specializuotai
užduočiai ar modelio tipui. CDMLB metodas reikalauja nedidelio kiekio nuasmenintų
duomenų modelio kokybei patvirtinti, o jautriais mokymosi duomenimis nėra
dalinamasi, taip sumažinant galimus privatumo pažeidimus. CDMLB metodas taip
pat palaiko du tinklo žinių panaudojimo būdus, kurie užtikrina naudojamų modelių

152

privatumą. Galiausiai, CDMLB metodas leidžia prisidedančioms organizacijoms
įvertinti dalyvių indėlį ir panaudoti jį skatinimui apskaičiuoti.

6.4 BENDRADARBIAVIMU GRĮSTO PASKIRSTYTO MAŠININIO
MOKYMOSI METODO BLOKŲ GRANDINĖJE RELIZACIJA

Pristatytas CDMLB metodas buvo realizuotas pasinaudojant Hyperledger
Fabric privačia blokų grandinės technologija. Sistemos realizavimo ir tyrimų metu
buvo naudojami sprendimų medžių ir logistinės regresijos klasifikatoriai, kurie
eksperimentiškai tyrė duomenų rinkinius iš medicinos ir finansų dalykinių sričių.
Realizuota CDMLB bendradarbiavimo platformoje buvo sukurti išmanieji kontraktai,
leidžiantys vykdyti bendradarbiavimą pasinaudojant modelių dalinimo procesu. Šie
kontraktai buvo sukurti pasinaudojant Go programavimo kalba ir apėmė duomenų ir
modelių failų nuskaitymo, jų validavimo, modelių tikslumų vertinimo ir modelių
kolektyvo panaudojimo funkciją. Taip pat esama blokų grandinės architektūra buvo
išplėsta siekiant palaikyti dvi lokalių orakulų aplinkas panaudojant Python ir R
programavimo kalbas. Siekiant ištirti realizuoto metodo veikimą, bus sukurti
mašininio mokymosi sprendimų medžių ir logistinės regresijos klasifikatoriai, kurių
sukūrimui buvo panaudotos PySpark ir MLR3 mašininio mokymosi bibliotekos.
Daugiau nei viena modelių realizavimo technologija buvo pasirinkta siekiant parodyti
modelio lankstumą ir galimybę palaikyti. Tinklo žinių distiliavimo sprendimas buvo
realizuotas pasinaudojant dviem architektūromis: negiliojo mokymosi architektūra
buvo realizuota pasinaudojant Keras mašininio mokymosi biblioteką ir buvo sudaryta
3 lygių neuroninio tinklo. Taip pat buvo panaudota TabNet giliojo mokymosi
architektūra.

6.5 EKSPERIMENTINIAI TYRIMAI

Eksperimentinis metodo vertinimas buvo įgyvendintas atliekant tris
eksperimentus. Kiekviename eksperimente buvo vertinama siūlomo CDMLB metodo
dalis ir procesus realizuojantys sprendimai [182], [183].

Pirmasis eksperimentas buvo skirtas metodo CDMLB blokų grandinės
platformos parengimo etapui ir orakulo projektavimo šablono taikymui vertinti.
Eksperimentas buvo atliktas siekiant patikrinti, ar lokalių orakulų projektavimo
šablonas gali būti naudojamas egzistuojančiose blokų grandinės technologijose ir kaip
naujų off-chain paslaugų pridėjimas į blokų grandinės tinklą gali paveikti veikimo
greitaveiką.

Antrasis eksperimentas buvo skirtas modelio indėlio apskaičiavimo proceso
daliai įvertinti. Eksperimento metu buvo orientuotasi į modelio indėlio dalies
apskaičiavimą, nes siūlymų vertinti duomenų indėlį jau yra ([158], [159]), o modelio
dalies apskaičiavimas nebuvo išsamiau tyrinėtas. Eksperimente buvo lyginamos
pasiūlytos modelių kolektyvų svorių apskaičiavimo strategijos su dažniausiai
naudojamomis strategijomis ir artimiausia pasiūlytoms strategijoms Shapley
balsavimu grindžiama svorių apskaičiavimo strategija. Eksperimente pasiūlytos
svorių apskaičiavimo strategijos buvo lyginamos su kita artima Shapley balsavimu
grįsta strategija ir keliomis kitomis žinomesnėmis strategijomis.

153

Trečiajame eksperimente buvo tiriamas blokų grandinės tinkle sukauptų žinių
panaudojimo procesas, vertinant prognozavimo tikslumą naudojant tiek tinklo
modelių kolektyvą, tiek distiliuotą modelį. Eksperimento metu buvo naudojami
antrajame eksperimente sukurti modeliai ir sukurtas distiliuotas neuroninio tinklo
modelis. Distiliuotas modelis buvo realizuotas naudojant tris skirtingas
konfigūracijas, jos buvo lyginamos su antrajame eksperimente sukurtų modelių
kolektyvų veikimu.

6.5.1 Modelio spėjimų skaičiavimo naudojant lokalias orakulo paslaugas
vertinimas

Šio eksperimento tikslas – įvertinti lokalių orakulo paslaugų poveikį
greitaveikai ir įvertinti modelio spėjimų skaičiavimo algoritmą, naudojant privačios
blokų grandinės technologiją. Siekiant palyginti pasiūlytą architektūrą su jau
egzistuojančiais sprendimais, modelio spėjimų skaičiavimas buvo realizuotas dviem
būdais. Pirmasis būdas – naudojant tik išmanųjį kontraktą, kuris padengė modelio
spėjimų skaičiavimo logiką. Antrasis būdas naudojo išmanųjį kontraktą, išplėstą
lokalia off-chain orakulo paslauga, kuri atliko modelio spėjimų skaičiavimą ir
rezultatus grąžindavo išmaniajam kontraktui.

Sintetinių duomenų rinkinio modelio spėjimų apskaičiavimo algoritmo
vykdymo laiko palyginimo rezultatai parodė vidutinį nedidelį ~2% greitaveikos
sulėtėjimą, o atskirų tinklo ir duomenų konfigūracijų atveju – mažiau nei 6,60 %.
Skaičiavimai sulėtėjo daugiau naudojant mažesnio dydžio duomenų rinkinius, o taip
įvyko labiau dėl laiko, reikalingo duomenims perduoti tarp išmaniojo kontrakto ir off-
chain orakulo paslaugos, nei dėl laiko, skirto modelio spėjimams skaičiuoti.
Naudojant didesnį kiekį tinklo narių ir didesnės apimties duomenų rinkinius,
skaičiavimo laikas sulėtėjo mažiau, nes laikas, skirtas modelių spėjimams skaičiuoti,
tapo ilgesnis už laiką, skirtą duomenims perduoti.

Atlikto eksperimento rezultatai parodė, kad, naudojant orakulo paslaugas,
algoritmo greitaveika sulėtėjo dėl papildomos komunikacijos tarp išmaniojo
kontrakto ir orakulo paslaugos. Orakulo paslaugų naudojimas leidžia pakartotinai
panaudoti egzistuojančias mašininio mokymosi aplinkas ir sprendimus, taigi šis
sulėtėjimas nėra toks didelis, kad atsvertų lankstumą, kurį suteikia orakulų paslaugos.
Nepaisant to, dėl greitaveikos ir lankstumo kompromiso turėtų spręsti organizacijos,
norinčios naudoti blokų grandinės technologijas paskirstytam mašininiam mokymuisi
vykdyti.

6.5.2 Shapley reikšmėmis grindžiamos kolektyvo svorių apskaičiavimo
strategijos efektyvumo vertinimas

Eksperimentai, skirti įvertinti Shapley kolektyvo svorių apskaičiavimo
strategiją, vertino jos tikslumą ir tyrė, ar galima išmatuoti modelių indėlį, juos
sujungiant į blokų grandinės tinkle kaupiamą modelių kolektyvą. Modelių sujungimo
į kolektyvus metodai buvo parinkti dėl galimybės sujungti kelis modelių tipus,
siekiant išvengti modelių struktūros suvienodinimo. Eksperimento metu buvo
tikrinama dviejų Shapley reikšmėmis ir tikslumu grindžiamų kolektyvo svorių

154

apskaičiavimo strategijų kokybė (posShap, maxShap), kurios palygintos su
dažniausiai naudojamomis svorių apskaičiavimo strategijomis ir kita Shapley
reikšmėmis ir balsavimu grindžiama strategija. posShap strategija nuo maxShap
strategijos skyrėsi tuo, kad pašalindavo kolektyvo narius, kurie pablogina kolektyvo
tikslumą, o maxShap pakeisdavo modelio spėjimus į atvirkštinius. Eksperimente buvo
vertinamos lokalios off-chain orakulo paslaugos, sukurtos naudojant R ir Python
programavimo kalbas. R kalbos aplinkoje modeliams kurti buvo panaudota MLR3
mašininio mokymosi biblioteka, o Python aplinkoje - PySpark mašininio mokymosi
biblioteka. Modeliams kurti ir vertinti buvo naudojami du su bankininkyste susiję
duomenų rinkiniai. Modelio tikslumas eksperimento metu buvo matuojamas
pasinaudojant binarine kryžmine entropija.

Didžiausias tikslumo pagerėjimas nustatytas lyginant posShap su vieno
modelio (Mono) metodu ir naudojant homogeninius kolektyvus, kuriuos sudarė 13
modelių: BNG_credit-a ir Bank Marketing duomenų rinkiniams, atitinkamai 4,8 % ir
1,9 %. Lyginant posShap su dažniausiai naudojamu tikslumu pagrįstu svorių
apskaičiavimo metodu (Perf), pasiūlyta strategija padidino ansamblio našumą 0,7 %.
Atlikus kolektyvų rezultatų reitingavimą paaiškėjo, kad posShap strategija pasiekė
didžiausią tikslumą, išskyrus vieną Python sprendimų medžio klasifikatoriaus
realizacijos ir Bank Marketing duomenų rinkinio konfigūraciją. Panašūs posShap
svorio apskaičiavimo strategijos rezultatai buvo pastebėti ir heterogeniniuose
ansambliuose, kurie pasiekė 1,4 % didesnį tikslumą, palyginti su Mono metodu
BNG_credit-a duomenų rinkinio konfigūracijoje. Bank Marketing duomenų rinkinio
atveju posShap pasiekė 0,4 % našumo padidėjimą, tačiau kaip tiksliausia svorių
apskaičiavimo strategija buvo nustatyta lygių svorių apskaičiavimo strategija (Equal),
nes našumas, palyginti su Mono metodu, padidėjo 0,6 %.

Iš dviejų pasiūlytų kolektyvų svorių apskaičiavimų strategijų tik posShap
pasižymėjo teigiamais rezultatais, o maxShap strategijos rezultatai buvo prastesni už
visų išbandytų strategijų rezultatus. Galima pastebėti, kad taikyti spėjimų koregavimo
metodai nepagerina rezultatų, o nenaudingų modelių pašalinimas, naudotas posShap
strategijoje, pasiteisino. PosShap strategijos rezultatai varijuoja priklausomai nuo
naudoto duomenų rinkinio ir modelio tipo, tačiau eksperimento rezultatai rodo, kad
posShap strategija pranoko arba nebuvo prastesnė nei kitos išbandytos svorių
apskaičiavimo strategijos, įskaitant Shapley balsavimu pagrįstą strategiją (Roz).

6.5.3 Žinių distiliavimo strategijos efektyvumo vertinimas

Žinių distiliavimo strategijos eksperimento tikslas buvo įvertinti poveikį
klasifikavimo tikslumui, pritaikius žinių distiliavimo strategiją privatumui padidinti.
Eksperimento metu buvo kuriami neuroninio tinklo modeliai, pasinaudojant
kolektyvo spėjimais, sujungtais naudojant svorinį vidurkį, kaip mokymo duomenimis.
Mokymas taip pat naudojo du validavimo duomenų rinkinius, gautus iš antrajame
eksperimente tirtų Bank Marketing ir BNG-credit_a duomenų rinkinių. Kuriant
distiliuotą modelį buvo išbandyta keletas distiliavimo lygmenų – nuo distiliavimo
neįtraukimo (alpha=1) iki smarkaus distiliavimo (alpha=0.5). Eksperimento
rezultatai parodė, kad žinių distiliavimo strategija sumažina modelių kolektyvo
klasifikatoriaus tikslumą bent 16,99 % naudojant Bank Marketing duomenų rinkinį,

155

ir bent 10,41% naudojant BNG_credit-a duomenų rinkinį, lyginant Shapey strategiją
su alpha=0.75 strategija. Lyginant skirtingus distiliavimo lygmenis paaiškėjo, kad
kolektyvo spėjimų įtraukimas į klaidos funkciją didesniu santykiu (alpha=0.5),
siekiant subalansuoto distiliavimo varianto, lėmė prasčiausią našumą iš visų išbandytų
strategijų. Skirtumai tarp distiliavimo strategijų alpha=0.75 ir alpha=1 BCE medianų
buvo statistiškai nereikšmingi trijose iš keturių tirtų duomenų rinkinio ir modelių tipų
konfigūracijų. Rezultatų panašumai rodo, kad nežymus tinklo ansamblio prognozės
padidėjimas drastiškai nekeičia klasifikatoriaus tikslumo. Nors žinių distiliavimas
sumažina prognozavimo tikslumą kolektyvo atžvilgiu, pristatyta strategija pagerina
privatumą, nes sukuria iš anksto išmokytą neuroninio tinklo modelį, kurį prireikus
galima toliau tobulinti. Jei tolesnis modelio derinimas nėra reikalingas, Shapley
svertinio ansamblio naudojimas užtikrina didesnį prognozavimo tikslumą
pasiūlytame CDMLB metode.

6.5.4 Žinių distiliavimo efektyvumo vertinimas panaudojant giliojo mokymosi
modelių architektūras

 Žinių distiliavimo efektyvumo vertinimo eksperimento tikslas buvo įvertinti, ar
giliojo mokymosi modelių architektūros gali pagerinti distiliavimo proceso metu
sukuriamo modelio kokybę. Šio eksperimento metu buvo kuriamas modelis
panaudojant TabNet [211] giliojo mokymosi modelio architektūrą. Ši architektūra
pasirinkta dėl jos taikymo galimybių lentelės tipo duomenų rinkiniams. Šis
eksperimentas naudojo identiškus duomenų rinkinius ir jų paruošimo sąlygas,
apibūdintas žinių distiliavimo strategijos efektyvumo vertinimo eksperimente.
 Šio eksperimento rezultatai parodė, kad, palyginti su žinių distiliavimo
efektyvumo vertinimo eksperimente naudota architektūra, giliojo mokymosi
architektūra sumažino distiliavimo metu prarandamą modelio tikslumą. Lyginant
rezultatus tarp negiliosios ir giliosios neuroninio tinklo architektūrų naudojant silpną
distiliavimą (dist075) modelio tikslumo praradimas sumažėjo nuo 16,99% iki 3,95%
kuriant modelį naudojant Bank Marketing duomenų rinkiniui. Daliai klasifikatorių
naudojant šią eksperimento konfigūraciją pavyko distiliuoti kolektyvą be tikslumo
praradimo. Lyginant kolektyvo naudojimo rezultatus su klasifikatoriaus rezultatais
nustatyta, kad BNG_credit-a duomenų rinkinio atveju rezultatai buvo statistiškai
panašūs. Klasifikatorius, sukurtas silpno distiliavimo (dist075) metu, parodė tikslumo
praradimus nuo 45% iki tikslumo pagerėjimo 4,41%. Toks didelis skirtumas tarp
rezultatų buvo nustatytas dėl didelio rezultatų pasiskirstymo, tačiau, priklausomai nuo
duomenų rinkinio ir modelio tipo, nuo 40% iki 70% pasirodė identiškai ar netgi
aplenkė Shapley svorinio kolektyvo tikslumą. Atsižvelgiant į pagerintą tikslumą, net
ir vidutinis distiliavimo atvejis tampa pakankamai tikslus naudoti su distiliavimo metu
prarandamu tikslumu rėžyje tarp 9,24 % iki 1,53 %.
 Tokie eksperimento rezultatai atskleidžia, kad, distiliuojant modelius, kurie turi
sudėtingesnę vidinę reprezentaciją, tokius kaip sprendimų medžiai, distiliavimas
tikslesnis. Iš rezultatų taip pat galime nustatyti, kad giliojo mokymosi architektūra
buvo geresnė nei negili neuroninio tinklo mokymosi architektūra. Atsižvelgiant į tai
žinių distiliavimo procesą rekomenduojama atlikti naudojant giliojo mokymosi

156

architektūra paremtus modelius, siekiant perkelti klasifikatorių žinias, sukauptas
blokų grandinės tinkle, į kitas naudojimo aplinkas.

157

6.6 IŠVADOS

1. Paskirstyto mašininio mokymosi sprendimų ir metodų analizės metu buvo
nustatyta, kad didžioji dalis naudojamų sprendimų architektūrų vis dar remiasi
centralizuotais komponentais, kurie sumažina architektūros patikimumą ir
reikalauja naudotojų pasitikėjimo. Taip pat didžioji dalis paskirstyto mašininio
mokymosi sprendimų yra skirti specifinei problemai ar užduočiai spręsti ir
dažnai palaiko vieną mašininio mokymosi modelio tipą, kas sumažina taikymo
galimybes ir bendradarbiavimą.

2. Blokų grandinės technologijų taikymo paskirstytame mašininiame mokymesi
analizė atskleidė, kad didžioji dalis sprendimų naudoja blokų grandines
padidinti tinklo narių įsitraukimui bei registruoti nuosavybės ar perdavimo
informaciją panaudojant paskirstytą žurnalą. Pagrindiniai siūlomų metodų ir
sprendimų trūkumai kyla dėl specializuotų taikymų arba naudojimo tik
proceso vykdymo eigai registruoti į blokų grandinę. Šių trūkumų galima būtų
išvengti pridedant papildomas orakulų paslaugas.

3. Buvo pasiūlytas bendradarbiavimo metodas vykdant paskirstytą mašininį
mokymąsi, panaudojant blokų grandinės technologijas. Metodas suteikia
galimybę blokų grandinės tinklo nariams bendradarbiauti mašininio
mokymosi modelių diegimo procese ir įvertinti pasidalinamų modelių ir
duomenų naudą, apskaičiuojant jų indėlį kiekvienam dalyviui. Pagal pasiūlytą
metodą sukurto sprendimo realizacija buvo atlikta pasinaudojant Hyperledger
Fabric privačia blokų grandine, taip pademonstruojant galimybę vykdyti
bendradarbiavimu grindžiamą paskirstytą mašininį mokymąsi. Realizuotas
prototipas panaudojo lokalias off-chain orakulo paslaugas, kurios leido
pakartotinai panaudoti įvairias mašininio mokymosi aplinkas ir technologijas,
taip išplečiant ribotas blokų grandinės išmaniųjų kontraktų vykdymo aplinkas.

4. Metodas buvo eksperimentiškai įvertintas palyginant dviejų skirtingų
architektūrų greitaveiką, kurių viena sukurta naudojant tik išmaniuosius
kontraktus, o kita sukurta išmaniuosius kontraktus išplečiant lokalaus off-
chain orakulo paslauga. Eksperimento rezultatai parodė, kad sprendimo
greitaveika, pridėjus naująją orakulo paslaugą, sulėtėjo 2,07 %. Tačiau šių
orakulo paslaugų įtraukimas leidžia pakartotinai panaudoti mašininio
mokymosi aplinkas blokų grandinės tinkle, kas kompensuoja greitaveikos
trūkumus.

5. Mašininio mokymosi ansamblių svorių apskaičiavimo strategijos tikslumo
vertinimo eksperimento rezultatai parodė, kad galima kiekybiškai įvertinti
kiekvieno nario pateiktų modelių indėlį į bendrą kolektyvą ir panaudoti šias
metrikas skatinimo mechanizmui sukurti. Shapley reikšmėmis grįstas
kolektyvo svorių apskaičiavimo metodas leido padidinti kolektyvo tikslumą
4,8 % ir 1,9 % dviem tirtiems duomenų rinkiniams, palyginti su vieno modelio

158

sprendimu (Mono), ir 0,7%, palyginti su tikslumu, grįstu svorių
apskaičiavimu, kai modelių tikslumas buvo vertintas naudojant binarinę
kryžminę entropiją. Kolektyvo svorių apskaičiavimo strategija leidžia įvertinti
tinklo nario indėlį ir apskaičiuoti kolektyvo modelių svorius sprendimų
sujungimui su panašiu ar net geresniu tikslumu, nei buvo pasiekta su kitomis
eksperimente tirtomis strategijomis. Pasiūlyta Shapley reikšmėmis grįsta
svorių apskaičiavimo strategija gali būti laikoma tikslumu grįstos strategijos
generalizacija ir gali būti naudojama kartu su kitais modelio kokybės įverčiais.

6. Bloko grandinės tinklo žinių distiliavimo eksperimentas naudojant trijų lygių
perceptroną parodė, kad distiliavimo taikymas nepagerino gauto modelio
tikslumo, palyginti su modelių kolektyvu. Distiliavimo įtraukimas sumažino
modelio tikslumą nuo 10,41 % iki 23,9 %, priklausomai nuo naudotojo
klasifikatoriaus tipo ir duomenų rinkinio. Tačiau žinių distiliavimo naudojant
giliojo mokymo architektūrą eksperimentas parodė, kad, palyginti su paprasta
neuroninio tinklo architektūra, sudėtingesnė klasifikatoriaus architektūra gali
tiksliau distiliuoti sukauptas kolektyvo žinias. Išmokytas TabNet
klasifikatorius tikslumu net aplenkė svorinį kolektyvą esant tam tikroms
sąlygoms. Lyginant kolektyvo rezultatus su distiliuotu modeliu, kai buvo
distiliuotas logistinės regresijos modelis (alpha=0.75), jo tikslumas sumažėjo
3,95 % Bank Marketing duomenų rinkinio atveju ir 42 % BNG-credit_a
duomenų rinkinio atveju. Distiliuojant sprendimų medžio klasifikatorių
tikslumas sumažėjo 2,52 % Bank Marketing duomenų rinkinio atveju ir
pagerėjo 7,98 % naudojant BNG-credit_a duomenų rinkinį. Rezultatų
skirstinys Bank Marketing atveju buvo niekuo neišsiskiriantis, tačiau
BNG_credit-a atveju susitelkė trijose grupėse. Šio duomenų rinkinio atveju
viena iš grupių, kurią sudarė atitinkamai 57% ir 61% bandymo pakartojimų
logistinės regresijos ir sprendimų medžių atvejų, net aplenkė kolektyvo
tikslumą. Apibendrinus nustatyta, kad sudėtingesnės neuroninio tinklo
architektūros naudojimas pagerino žinių distiliavimo efektyvumą ir yra
rekomenduojamas naudoti naudojant šį metodą.

159

REFERENCES

[1] M. Nofer, P. Gomber, O. Hinz, and D. Schiereck, “Blockchain,” Bus Inf Syst Eng, vol.
59, no. 3, pp. 183–187, Jun. 2017, doi: 10.1007/s12599-017-0467-3.

[2] W. Wang et al., “A Survey on Consensus Mechanisms and Mining Strategy
Management in Blockchain Networks,” IEEE Access, vol. 7, pp. 22328–22370, 2019,
doi: 10.1109/ACCESS.2019.2896108.

[3] K. Christidis and M. Devetsikiotis, “Blockchains and Smart Contracts for the Internet
of Things,” IEEE Access, vol. 4, pp. 2292–2303, 2016, doi:
10.1109/ACCESS.2016.2566339.

[4] K. Siau and W. Wang, “Building Trust in Artificial Intelligence, Machine Learning, and
Robotics,” Cutter Business Technology Journal, vol. 31, pp. 47–53, Mar. 2018.

[5] O. Schilke, M. Reimann, and K. S. Cook, “Trust in Social Relations,” Annual Review of
Sociology, vol. 47, no. 1, pp. 239–259, 2021, doi: 10.1146/annurev-soc-082120-082850.

[6] M. Xue, C. Yuan, H. Wu, Y. Zhang, and W. Liu, “Machine Learning Security: Threats,
Countermeasures, and Evaluations,” IEEE Access, vol. 8, pp. 74720–74742, 2020, doi:
10.1109/ACCESS.2020.2987435.

[7] J. C. S. do P. Leite and C. Cappelli, “Software Transparency,” Bus Inf Syst Eng, vol. 2,
no. 3, pp. 127–139, Jun. 2010, doi: 10.1007/s12599-010-0102-z.

[8] F. Bélanger and R. E. Crossler, “Privacy in the Digital Age: A Review of Information
Privacy Research in Information Systems,” MIS Quarterly, vol. 35, no. 4, pp. 1017–
1041, 2011, doi: 10.2307/41409971.

[9] T. Hofmann and J. Basilico, “Collaborative Machine Learning,” in From Integrated
Publication and Information Systems to Information and Knowledge Environments:
Essays Dedicated to Erich J. Neuhold on the Occasion of His 65th Birthday, M.
Hemmje, C. Niederée, and T. Risse, Eds., in Lecture Notes in Computer Science. ,
Berlin, Heidelberg: Springer, 2005, pp. 173–182. doi: 10.1007/978-3-540-31842-2_18.

[10] I. H. Sarker, “Machine Learning: Algorithms, Real-World Applications and Research
Directions,” SN COMPUT. SCI., vol. 2, no. 3, p. 160, Mar. 2021, doi: 10.1007/s42979-
021-00592-x.

[11] K. M. J. Rahman et al., “Challenges, Applications and Design Aspects of Federated
Learning: A Survey,” IEEE Access, vol. 9, pp. 124682–124700, 2021, doi:
10.1109/ACCESS.2021.3111118.

[12] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, perspectives, and
prospects,” Science, vol. 349, no. 6245, pp. 255–260, Jul. 2015, doi:
10.1126/science.aaa8415.

[13] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design science in information systems
research,” Management Information Systems Quarterly, vol. 28, no. 1, p. 6, 2008.

[14] F. Y. Osisanwo, J. E. T. Akinsola, O. Awodele, J. O. Hinmikaiye, O. Olakanmi, and J.
Akinjobi, “Supervised machine learning algorithms: classification and comparison,”
International Journal of Computer Trends and Technology (IJCTT), vol. 48, no. 3, pp.
128–138, 2017.

[15] Y. Roh, G. Heo, and S. E. Whang, “A Survey on Data Collection for Machine Learning:
A Big Data - AI Integration Perspective,” IEEE Transactions on Knowledge and Data
Engineering, vol. 33, no. 4, pp. 1328–1347, Apr. 2021, doi:
10.1109/TKDE.2019.2946162.

[16] S. E. Whang, Y. Roh, H. Song, and J.-G. Lee, “Data collection and quality challenges
in deep learning: a data-centric AI perspective,” The VLDB Journal, vol. 32, no. 4, pp.
791–813, Jul. 2023, doi: 10.1007/s00778-022-00775-9.

160

[17] M. K. Dahouda and I. Joe, “A Deep-Learned Embedding Technique for Categorical
Features Encoding,” IEEE Access, vol. 9, pp. 114381–114391, 2021, doi:
10.1109/ACCESS.2021.3104357.

[18] S. Raschka, “Model Evaluation, Model Selection, and Algorithm Selection in Machine
Learning.” arXiv, Nov. 10, 2020. Accessed: Jul. 28, 2023. [Online]. Available:
http://arxiv.org/abs/1811.12808

[19] D. Morgan and R. Jacobs, “Opportunities and Challenges for Machine Learning in
Materials Science,” Annual Review of Materials Research, vol. 50, no. 1, pp. 71–103,
2020, doi: 10.1146/annurev-matsci-070218-010015.

[20] T. Hastie, R. Tibshirani, and J. Friedman, “Overview of Supervised Learning,” in The
Elements of Statistical Learning: Data Mining, Inference, and Prediction, T. Hastie, R.
Tibshirani, and J. Friedman, Eds., in Springer Series in Statistics. , New York, NY:
Springer, 2009, pp. 9–41. doi: 10.1007/978-0-387-84858-7_2.

[21] P. Cunningham, M. Cord, and S. J. Delany, “Supervised Learning,” in Machine
Learning Techniques for Multimedia: Case Studies on Organization and Retrieval, M.
Cord and P. Cunningham, Eds., in Cognitive Technologies. , Berlin, Heidelberg:
Springer, 2008, pp. 21–49. doi: 10.1007/978-3-540-75171-7_2.

[22] M. Alloghani, D. Al-Jumeily, J. Mustafina, A. Hussain, and A. J. Aljaaf, “A systematic
review on supervised and unsupervised machine learning algorithms for data science,”
Supervised and unsupervised learning for data science, pp. 3–21, 2020.

[23] B. Mahesh, “Machine learning algorithms-a review,” International Journal of Science
and Research (IJSR).[Internet], vol. 9, no. 1, pp. 381–386, 2020.

[24] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning: A survey,”
Journal of artificial intelligence research, vol. 4, pp. 237–285, 1996.

[25] S. R. Safavian and D. Landgrebe, “A survey of decision tree classifier methodology,”
IEEE Transactions on Systems, Man, and Cybernetics, vol. 21, no. 3, pp. 660–674, May
1991, doi: 10.1109/21.97458.

[26] W. Du and Z. Zhan, “Building Decision Tree Classifier on Private Data”.
[27] J. E. King, “Binary logistic regression,” Best practices in quantitative methods, pp. 358–

384, 2008.
[28] M. W. Gardner and S. R. Dorling, “Artificial neural networks (the multilayer

perceptron)—a review of applications in the atmospheric sciences,” Atmospheric
Environment, vol. 32, no. 14–15, pp. 2627–2636, Aug. 1998, doi: 10.1016/S1352-
2310(97)00447-0.

[29] A. P. Bradley, “The use of the area under the ROC curve in the evaluation of machine
learning algorithms,” Pattern Recognition, vol. 30, no. 7, pp. 1145–1159, Jul. 1997, doi:
10.1016/S0031-3203(96)00142-2.

[30] J. A. Hanley and B. J. McNeil, “The meaning and use of the area under a receiver
operating characteristic (ROC) curve.,” Radiology, vol. 143, no. 1, pp. 29–36, 1982.

[31] T. Fawcett, “An introduction to ROC analysis,” Pattern Recognition Letters, vol. 27,
no. 8, pp. 861–874, 2006, doi: https://doi.org/10.1016/j.patrec.2005.10.010.

[32] Y. Ho and S. Wookey, “The Real-World-Weight Cross-Entropy Loss Function:
Modeling the Costs of Mislabeling,” IEEE Access, vol. 8, pp. 4806–4813, 2020, doi:
10.1109/ACCESS.2019.2962617.

[33] Q. Wang, Y. Ma, K. Zhao, and Y. Tian, “A Comprehensive Survey of Loss Functions
in Machine Learning,” Ann. Data. Sci., vol. 9, no. 2, pp. 187–212, Apr. 2022, doi:
10.1007/s40745-020-00253-5.

[34] L. Yang and A. Shami, “On hyperparameter optimization of machine learning
algorithms: Theory and practice,” Neurocomputing, vol. 415, pp. 295–316, Nov. 2020,
doi: 10.1016/j.neucom.2020.07.061.

161

[35] G. Wang, J. Xu, and B. He, “A Novel Method for Tuning Configuration Parameters of
Spark Based on Machine Learning,” in 2016 IEEE 18th International Conference on
High Performance Computing and Communications; IEEE 14th International
Conference on Smart City; IEEE 2nd International Conference on Data Science and
Systems (HPCC/SmartCity/DSS), Dec. 2016, pp. 586–593. doi: 10.1109/HPCC-
SmartCity-DSS.2016.0088.

[36] C. Huang, Y. Li, and X. Yao, “A Survey of Automatic Parameter Tuning Methods for
Metaheuristics,” IEEE Transactions on Evolutionary Computation, vol. 24, no. 2, pp.
201–216, Apr. 2020, doi: 10.1109/TEVC.2019.2921598.

[37] M. E. Tipping, “Bayesian Inference: An Introduction to Principles and Practice in
Machine Learning,” in Advanced Lectures on Machine Learning: ML Summer Schools
2003, Canberra, Australia, February 2 - 14, 2003, Tübingen, Germany, August 4 - 16,
2003, Revised Lectures, O. Bousquet, U. von Luxburg, and G. Rätsch, Eds., in Lecture
Notes in Computer Science. , Berlin, Heidelberg: Springer, 2004, pp. 41–62. doi:
10.1007/978-3-540-28650-9_3.

[38] G. E. P. Box and G. C. Tiao, Bayesian Inference in Statistical Analysis. John Wiley &
Sons, 2011.

[39] Q. Liu, P. Li, W. Zhao, W. Cai, S. Yu, and V. C. M. Leung, “A Survey on Security
Threats and Defensive Techniques of Machine Learning: A Data Driven View,” IEEE
Access, vol. 6, pp. 12103–12117, 2018, doi: 10.1109/ACCESS.2018.2805680.

[40] J. Zhao, Y. Chen, and W. Zhang, “Differential Privacy Preservation in Deep Learning:
Challenges, Opportunities and Solutions,” IEEE Access, vol. 7, pp. 48901–48911, 2019,
doi: 10.1109/ACCESS.2019.2909559.

[41] R. Bost, R. A. Popa, S. Tu, and S. Goldwasser, “Machine learning classification over
encrypted data,” Cryptology ePrint Archive, 2014.

[42] V. Mothukuri, R. M. Parizi, S. Pouriyeh, Y. Huang, A. Dehghantanha, and G.
Srivastava, “A survey on security and privacy of federated learning,” Future Generation
Computer Systems, vol. 115, pp. 619–640, Feb. 2021, doi: 10.1016/j.future.2020.10.007.

[43] S. Awan, F. Li, B. Luo, and M. Liu, “Poster: A Reliable and Accountable Privacy-
Preserving Federated Learning Framework using the Blockchain,” in Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications Security, London
United Kingdom: ACM, Nov. 2019, pp. 2561–2563. doi: 10.1145/3319535.3363256.

[44] V. Sze, Y.-H. Chen, J. Emer, A. Suleiman, and Z. Zhang, “Hardware for machine
learning: Challenges and opportunities,” in 2017 IEEE Custom Integrated Circuits
Conference (CICC), IEEE, 2017, pp. 1–8.

[45] L. Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, Oct. 2001,
doi: 10.1023/A:1010933404324.

[46] R. E. Schapire, “The strength of weak learnability,” Mach Learn, vol. 5, no. 2, pp. 197–
227, Jun. 1990, doi: 10.1007/BF00116037.

[47] O. Sagi and L. Rokach, “Ensemble learning: A survey,” WIREs Data Mining and
Knowledge Discovery, vol. 8, no. 4, p. e1249, 2018, doi: 10.1002/widm.1249.

[48] W.-Y. Loh, “Classification and regression trees,” WIREs Data Mining and Knowledge
Discovery, vol. 1, no. 1, pp. 14–23, 2011, doi: 10.1002/widm.8.

[49] S. González, S. García, J. Del Ser, L. Rokach, and F. Herrera, “A practical tutorial on
bagging and boosting based ensembles for machine learning: Algorithms, software
tools, performance study, practical perspectives and opportunities,” Information Fusion,
vol. 64, pp. 205–237, Dec. 2020, doi: 10.1016/j.inffus.2020.07.007.

[50] W. Fan, S. J. Stolfo, and J. Zhang, “The application of AdaBoost for distributed, scalable
and on-line learning,” in Proceedings of the fifth ACM SIGKDD international

162

conference on Knowledge discovery and data mining, San Diego California USA: ACM,
Aug. 1999, pp. 362–366. doi: 10.1145/312129.312283.

[51] A. Fern, “Online Ensemble Learning: An Empirical Study”.
[52] W. N. Street and Y. Kim, “A streaming ensemble algorithm (SEA) for large-scale

classification,” in Proceedings of the seventh ACM SIGKDD international conference
on Knowledge discovery and data mining, San Francisco California: ACM, Aug. 2001,
pp. 377–382. doi: 10.1145/502512.502568.

[53] F. Huang, G. Xie, and R. Xiao, “Research on Ensemble Learning,” in 2009 International
Conference on Artificial Intelligence and Computational Intelligence, Nov. 2009, pp.
249–252. doi: 10.1109/AICI.2009.235.

[54] L. Rokach, Ensemble learning: pattern classification using ensemble methods. World
Scientific, 2019.

[55] A. L. Prodromidis and S. J. Stolfo, “Effective and Efficient Pruning of Meta-Classifiers
in a Distributed Data Mining System”.

[56] B. Pavlyshenko, “Using Stacking Approaches for Machine Learning Models,” in 2018
IEEE Second International Conference on Data Stream Mining & Processing (DSMP),
Aug. 2018, pp. 255–258. doi: 10.1109/DSMP.2018.8478522.

[57] D. Peteiro-Barral and B. Guijarro-Berdiñas, “A survey of methods for distributed
machine learning,” Prog Artif Intell, vol. 2, no. 1, pp. 1–11, Mar. 2013, doi:
10.1007/s13748-012-0035-5.

[58] A. Lazarevic and Z. Obradovic, “Boosting Algorithms for Parallel and Distributed
Learning,” Distributed and Parallel Databases, vol. 11, no. 2, pp. 203–229, Mar. 2002,
doi: 10.1023/A:1013992203485.

[59] G. Tsoumakas and I. Vlahavas, “Effective stacking of distributed classifiers,” in Ecai,
2002, pp. 340–344.

[60] A. L. Prodromidis, P. K. Chan, and S. J. Stolfo, “Meta-learning in distributed data
mining systems: Issues and approaches”.

[61] J. Verbraeken, M. Wolting, J. Katzy, J. Kloppenburg, T. Verbelen, and J. S.
Rellermeyer, “A Survey on Distributed Machine Learning,” ACM Comput. Surv., vol.
53, no. 2, pp. 1–33, Mar. 2021, doi: 10.1145/3377454.

[62] J. B. Predd, S. R. Kulkarni, and H. V. Poor, “Consistency in models for distributed
learning under communication constraints,” IEEE Transactions on Information Theory,
vol. 52, no. 1, pp. 52–63, Jan. 2006, doi: 10.1109/TIT.2005.860420.

[63] C. Ma et al., “When Federated Learning Meets Blockchain: A New Distributed Learning
Paradigm,” IEEE Computational Intelligence Magazine, vol. 17, no. 3, pp. 26–33, Aug.
2022, doi: 10.1109/MCI.2022.3180932.

[64] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters,”
Communications of the ACM, vol. 51, no. 1, pp. 107–113, 2008.

[65] “PyTorch,” PyTorch. Accessed: Dec. 17, 2023. [Online]. Available: https://pytorch.org/
[66] “Apache SparkTM - Unified Engine for large-scale data analytics.” Accessed: Dec. 17,

2023. [Online]. Available: https://spark.apache.org/
[67] “TensorFlow.” Accessed: Dec. 17, 2023. [Online]. Available:

https://www.tensorflow.org/
[68] “Home,” Horovod. Accessed: Dec. 17, 2023. [Online]. Available: https://horovod.ai/
[69] A. Tuladhar, S. Gill, Z. Ismail, and N. D. Forkert, “Building machine learning models

without sharing patient data: A simulation-based analysis of distributed learning by
ensembling,” Journal of Biomedical Informatics, vol. 106, p. 103424, Jun. 2020, doi:
10.1016/j.jbi.2020.103424.

[70] X. Chen, J. Ji, C. Luo, W. Liao, and P. Li, “When Machine Learning Meets Blockchain:
A Decentralized, Privacy-preserving and Secure Design,” in 2018 IEEE International

163

Conference on Big Data (Big Data), Dec. 2018, pp. 1178–1187. doi:
10.1109/BigData.2018.8622598.

[71] Y. Lu, X. Huang, Y. Dai, S. Maharjan, and Y. Zhang, “Blockchain and Federated
Learning for Privacy-Preserved Data Sharing in Industrial IoT,” IEEE Transactions on
Industrial Informatics, vol. 16, no. 6, pp. 4177–4186, Jun. 2020, doi:
10.1109/TII.2019.2942190.

[72] R. O. Ogundokun, S. Misra, R. Maskeliunas, and R. Damasevicius, “A Review on
Federated Learning and Machine Learning Approaches: Categorization, Application
Areas, and Blockchain Technology,” Information, vol. 13, no. 5, Art. no. 5, May 2022,
doi: 10.3390/info13050263.

[73] D. C. Nguyen, M. Ding, P. N. Pathirana, A. Seneviratne, J. Li, and H. Vincent Poor,
“Federated Learning for Internet of Things: A Comprehensive Survey,” IEEE
Communications Surveys & Tutorials, vol. 23, no. 3, pp. 1622–1658, 2021, doi:
10.1109/COMST.2021.3075439.

[74] Y. Qi, M. S. Hossain, J. Nie, and X. Li, “Privacy-preserving blockchain-based federated
learning for traffic flow prediction,” Future Generation Computer Systems, vol. 117,
pp. 328–337, Apr. 2021, doi: 10.1016/j.future.2020.12.003.

[75] A. Hard et al., “Federated learning for mobile keyboard prediction,” arXiv preprint
arXiv:1811.03604, 2018.

[76] “Federated Learning powered by NVIDIA Clara,” NVIDIA Technical Blog. Accessed:
Jul. 26, 2023. [Online]. Available: https://developer.nvidia.com/blog/federated-
learning-clara/

[77] T.-T. Kuo and L. Ohno-Machado, “ModelChain: Decentralized Privacy-Preserving
Healthcare Predictive Modeling Framework on Private Blockchain Networks.” arXiv,
Feb. 05, 2018. doi: 10.48550/arXiv.1802.01746.

[78] Y. Qu, M. P. Uddin, C. Gan, Y. Xiang, L. Gao, and J. Yearwood, “Blockchain-enabled
Federated Learning: A Survey,” ACM Comput. Surv., vol. 55, no. 4, pp. 1–35, Apr. 2023,
doi: 10.1145/3524104.

[79] Y. J. Kim and C. S. Hong, “Blockchain-based Node-aware Dynamic Weighting
Methods for Improving Federated Learning Performance,” in 2019 20th Asia-Pacific
Network Operations and Management Symposium (APNOMS), Sep. 2019, pp. 1–4. doi:
10.23919/APNOMS.2019.8893114.

[80] Y. Lu, X. Huang, K. Zhang, S. Maharjan, and Y. Zhang, “Blockchain Empowered
Asynchronous Federated Learning for Secure Data Sharing in Internet of Vehicles,”
IEEE Transactions on Vehicular Technology, vol. 69, no. 4, pp. 4298–4311, Apr. 2020,
doi: 10.1109/TVT.2020.2973651.

[81] U. Majeed and C. Seon, EFLChain: Ensemble Learning via Federated Learning over
Blockchain network: a framework. 2019.

[82] M. Shayan, C. Fung, C. J. M. Yoon, and I. Beschastnikh, “Biscotti: A Blockchain
System for Private and Secure Federated Learning,” IEEE Transactions on Parallel and
Distributed Systems, vol. 32, no. 7, pp. 1513–1525, Jul. 2021, doi:
10.1109/TPDS.2020.3044223.

[83] S. Zhou, H. Huang, W. Chen, P. Zhou, Z. Zheng, and S. Guo, “PIRATE: A Blockchain-
Based Secure Framework of Distributed Machine Learning in 5G Networks,” IEEE
Network, vol. 34, no. 6, pp. 84–91, Nov. 2020, doi: 10.1109/MNET.001.1900658.

[84] M. Strobel and R. Shokri, “Data Privacy and Trustworthy Machine Learning,” IEEE
Security & Privacy, vol. 20, no. 5, pp. 44–49, Sep. 2022, doi:
10.1109/MSEC.2022.3178187.

164

[85] P. Voigt and A. Von dem Bussche, “The eu general data protection regulation (gdpr),”
A Practical Guide, 1st Ed., Cham: Springer International Publishing, vol. 10, no.
3152676, pp. 10–5555, 2017.

[86] L. SWEENEY, “k-ANONYMITY: A MODEL FOR PROTECTING PRIVACY,”
International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, May
2012, doi: 10.1142/S0218488502001648.

[87] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam, “L-diversity:
Privacy beyond k-anonymity,” ACM Trans. Knowl. Discov. Data, vol. 1, no. 1, pp. 3-
es, Mar. 2007, doi: 10.1145/1217299.1217302.

[88] N. Li, T. Li, and S. Venkatasubramanian, “t-Closeness: Privacy Beyond k-Anonymity
and l-Diversity,” in 2007 IEEE 23rd International Conference on Data Engineering,
Apr. 2007, pp. 106–115. doi: 10.1109/ICDE.2007.367856.

[89] D. Boneh, A. Sahai, and B. Waters, “Functional Encryption: Definitions and
Challenges,” in Theory of Cryptography, Y. Ishai, Ed., in Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer, 2011, pp. 253–273. doi: 10.1007/978-3-642-
19571-6_16.

[90] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proceedings of the
forty-first annual ACM symposium on Theory of computing, Bethesda MD USA: ACM,
May 2009, pp. 169–178. doi: 10.1145/1536414.1536440.

[91] R. Shokri and V. Shmatikov, “Privacy-Preserving Deep Learning,” in Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications Security, Denver
Colorado USA: ACM, Oct. 2015, pp. 1310–1321. doi: 10.1145/2810103.2813687.

[92] N. Papernot, S. Song, I. Mironov, A. Raghunathan, K. Talwar, and Ú. Erlingsson,
“Scalable Private Learning with PATE.” arXiv, Feb. 24, 2018. Accessed: Jul. 24, 2023.
[Online]. Available: http://arxiv.org/abs/1802.08908

[93] C. Liu, Y. Zhu, K. Chaudhuri, and Y.-X. Wang, “Revisiting model-agnostic private
learning: faster rates and active learning,” J. Mach. Learn. Res., vol. 22, no. 1, p.
262:11936-262:11979, Jan. 2021.

[94] M. Al-Rubaie and J. M. Chang, “Privacy-Preserving Machine Learning: Threats and
Solutions,” IEEE Security & Privacy, vol. 17, no. 2, pp. 49–58, Mar. 2019, doi:
10.1109/MSEC.2018.2888775.

[95] Y. Li, J. Zhang, J. Zhu, and W. Li, “HBMD-FL: Heterogeneous Federated Learning
Algorithm Based on Blockchain and Model Distillation,” in Emerging Information
Security and Applications, J. Chen, D. He, and R. Lu, Eds., in Communications in
Computer and Information Science. Cham: Springer Nature Switzerland, 2022, pp. 145–
159. doi: 10.1007/978-3-031-23098-1_9.

[96] R. Xu, N. Baracaldo, and J. Joshi, “Privacy-Preserving Machine Learning: Methods,
Challenges and Directions.” arXiv, Sep. 22, 2021. doi: 10.48550/arXiv.2108.04417.

[97] J. Liu, M. Juuti, Y. Lu, and N. Asokan, “Oblivious Neural Network Predictions via
MiniONN Transformations,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, in CCS ’17. New York, NY, USA:
Association for Computing Machinery, Oct. 2017, pp. 619–631. doi:
10.1145/3133956.3134056.

[98] G. Hinton, O. Vinyals, and J. Dean, “Distilling the Knowledge in a Neural Network.”
arXiv, Mar. 09, 2015. Accessed: Jul. 26, 2023. [Online]. Available:
http://arxiv.org/abs/1503.02531

[99] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation as a Defense to
Adversarial Perturbations Against Deep Neural Networks,” in 2016 IEEE Symposium
on Security and Privacy (SP), May 2016, pp. 582–597. doi: 10.1109/SP.2016.41.

165

[100] D. Li and J. Wang, “FedMD: Heterogenous Federated Learning via Model Distillation.”
arXiv, Oct. 08, 2019. Accessed: Jul. 24, 2023. [Online]. Available:
http://arxiv.org/abs/1910.03581

[101] C. Wu, F. Wu, L. Lyu, Y. Huang, and X. Xie, “Communication-efficient federated
learning via knowledge distillation,” Nat Commun, vol. 13, no. 1, Art. no. 1, Apr. 2022,
doi: 10.1038/s41467-022-29763-x.

[102] D. Jiang, C. Shan, and Z. Zhang, “Federated Learning Algorithm Based on Knowledge
Distillation,” in 2020 International Conference on Artificial Intelligence and Computer
Engineering (ICAICE), Oct. 2020, pp. 163–167. doi:
10.1109/ICAICE51518.2020.00038.

[103] Z. Zhu, J. Hong, and J. Zhou, “Data-Free Knowledge Distillation for Heterogeneous
Federated Learning,” in Proceedings of the 38th International Conference on Machine
Learning, PMLR, Jul. 2021, pp. 12878–12889. Accessed: Jul. 24, 2023. [Online].
Available: https://proceedings.mlr.press/v139/zhu21b.html

[104] Y. Tian, D. Krishnan, and P. Isola, “Contrastive Representation Distillation,” presented
at the International Conference on Learning Representations, Sep. 2019. Accessed: Jul.
26, 2023. [Online]. Available: https://openreview.net/forum?id=SkgpBJrtvS

[105] H. Chen, Y. Wang, C. Xu, C. Xu, and D. Tao, “Learning Student Networks via Feature
Embedding.” arXiv, Dec. 16, 2018. doi: 10.48550/arXiv.1812.06597.

[106] J. Gou, B. Yu, S. J. Maybank, and D. Tao, “Knowledge Distillation: A Survey,” Int J
Comput Vis, vol. 129, no. 6, pp. 1789–1819, Jun. 2021, doi: 10.1007/s11263-021-01453-
z.

[107] Y. Hou, Z. Ma, C. Liu, T.-W. Hui, and C. C. Loy, “Inter-Region Affinity Distillation
for Road Marking Segmentation,” in 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), Seattle, WA, USA: IEEE, Jun. 2020, pp. 12483–
12492. doi: 10.1109/CVPR42600.2020.01250.

[108] J. Vongkulbhisal, P. Vinayavekhin, and M. Visentini-Scarzanella, “Unifying
Heterogeneous Classifiers With Distillation,” in 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA: IEEE, Jun.
2019, pp. 3170–3179. doi: 10.1109/CVPR.2019.00329.

[109] N. Papernot, M. Abadi, Ú. Erlingsson, I. Goodfellow, and K. Talwar, “Semi-supervised
Knowledge Transfer for Deep Learning from Private Training Data.” arXiv, Mar. 03,
2017. Accessed: Jul. 06, 2023. [Online]. Available: http://arxiv.org/abs/1610.05755

[110] F. Yuan et al., “Reinforced Multi-Teacher Selection for Knowledge Distillation,”
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 16, Art. no.
16, May 2021, doi: 10.1609/aaai.v35i16.17680.

[111] Y. Guan et al., “Differentiable Feature Aggregation Search for Knowledge Distillation,”
in Computer Vision – ECCV 2020, A. Vedaldi, H. Bischof, T. Brox, and J.-M. Frahm,
Eds., in Lecture Notes in Computer Science. Cham: Springer International Publishing,
2020, pp. 469–484. doi: 10.1007/978-3-030-58520-4_28.

[112] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and Y. Bengio, “FitNets:
Hints for Thin Deep Nets.” arXiv, Mar. 27, 2015. Accessed: Jul. 26, 2023. [Online].
Available: http://arxiv.org/abs/1412.6550

[113] N. Komodakis and S. Zagoruyko, “Paying more attention to attention: improving the
performance of convolutional neural networks via attention transfer,” in ICLR, 2017.

[114] Y. Hu, Y. Zhou, J. Xiao, and C. Wu, “GFL: A Decentralized Federated Learning
Framework Based On Blockchain.” arXiv, Apr. 13, 2021. Accessed: Jul. 24, 2023.
[Online]. Available: http://arxiv.org/abs/2010.10996

166

[115] W. Jin, Y. Xu, Y. Dai, and Y. Xu, “Blockchain-Based Continuous Knowledge Transfer
in Decentralized Edge Computing Architecture,” Electronics, vol. 12, no. 5, Art. no. 5,
Jan. 2023, doi: 10.3390/electronics12051154.

[116] Y. Li, C. Chen, N. Liu, H. Huang, Z. Zheng, and Q. Yan, “A Blockchain-Based
Decentralized Federated Learning Framework with Committee Consensus,” IEEE
Network, vol. 35, no. 1, pp. 234–241, Jan. 2021, doi: 10.1109/MNET.011.2000263.

[117] K. Miyachi and T. K. Mackey, “hOCBS: A privacy-preserving blockchain framework
for healthcare data leveraging an on-chain and off-chain system design,” Information
Processing & Management, vol. 58, no. 3, p. 102535, May 2021, doi:
10.1016/j.ipm.2021.102535.

[118] J. Weng, J. Weng, J. Zhang, M. Li, Y. Zhang, and W. Luo, “DeepChain: Auditable and
Privacy-Preserving Deep Learning with Blockchain-Based Incentive,” IEEE
Transactions on Dependable and Secure Computing, vol. 18, no. 5, pp. 2438–2455, Sep.
2021, doi: 10.1109/TDSC.2019.2952332.

[119] H. Kim, S.-H. Kim, J. Y. Hwang, and C. Seo, “Efficient Privacy-Preserving Machine
Learning for Blockchain Network,” IEEE Access, vol. 7, pp. 136481–136495, 2019, doi:
10.1109/ACCESS.2019.2940052.

[120] X. Bao, C. Su, Y. Xiong, W. Huang, and Y. Hu, “FLChain: A Blockchain for Auditable
Federated Learning with Trust and Incentive,” in 2019 5th International Conference on
Big Data Computing and Communications (BIGCOM), Aug. 2019, pp. 151–159. doi:
10.1109/BIGCOM.2019.00030.

[121] Z. Mahmood and V. Jusas, “Implementation Framework for a Blockchain-Based
Federated Learning Model for Classification Problems,” Symmetry, vol. 13, no. 7, Art.
no. 7, Jul. 2021, doi: 10.3390/sym13071116.

[122] N. El Ioini and C. Pahl, “A review of distributed ledger technologies,” in On the Move
to Meaningful Internet Systems. OTM 2018 Conferences: Confederated International
Conferences: CoopIS, C&TC, and ODBASE 2018, Valletta, Malta, October 22-26,
2018, Proceedings, Part II, Springer, 2018, pp. 277–288.

[123] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System”.
[124] R. Sobti and G. Geetha, “Cryptographic Hash Functions: A Review,” vol. 9, no. 2, 2012.
[125] R. C. Merkle, “A Digital Signature Based on a Conventional Encryption Function,” in

Advances in Cryptology — CRYPTO ’87, C. Pomerance, Ed., in Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer, 1988, pp. 369–378. doi: 10.1007/3-
540-48184-2_32.

[126] D. G. Wood, “ETHEREUM: A SECURE DECENTRALISED GENERALISED
TRANSACTION LEDGER”.

[127] “A Blockchain Platform for the Enterprise — hyperledger-fabricdocs main
documentation.” Accessed: Jul. 19, 2023. [Online]. Available: https://hyperledger-
fabric.readthedocs.io/en/release-2.5/

[128] C. Komalavalli, D. Saxena, and C. Laroiya, “Chapter 14 - Overview of Blockchain
Technology Concepts,” in Handbook of Research on Blockchain Technology, S.
Krishnan, V. E. Balas, E. G. Julie, Y. H. Robinson, S. Balaji, and R. Kumar, Eds.,
Academic Press, 2020, pp. 349–371. doi: 10.1016/B978-0-12-819816-2.00014-9.

[129] F. Casino, T. K. Dasaklis, and C. Patsakis, “A systematic literature review of
blockchain-based applications: Current status, classification and open issues,”
Telematics and Informatics, vol. 36, pp. 55–81, Mar. 2019, doi:
10.1016/j.tele.2018.11.006.

[130] L. M. Bach, B. Mihaljevic, and M. Zagar, “Comparative analysis of blockchain
consensus algorithms,” in 2018 41st International Convention on Information and

167

Communication Technology, Electronics and Microelectronics (MIPRO), May 2018,
pp. 1545–1550. doi: 10.23919/MIPRO.2018.8400278.

[131] S. M. H. Bamakan, A. Motavali, and A. Babaei Bondarti, “A survey of blockchain
consensus algorithms performance evaluation criteria,” Expert Systems with
Applications, vol. 154, p. 113385, Sep. 2020, doi: 10.1016/j.eswa.2020.113385.

[132] O. Dib, K.-L. Brousmiche, A. Durand, E. Thea, and E. B. Hamida, “Consortium
blockchains: Overview, applications and challenges,” Int. J. Adv. Telecommun, vol. 11,
no. 1, pp. 51–64, 2018.

[133] K. Salah, M. H. U. Rehman, N. Nizamuddin, and A. Al-Fuqaha, “Blockchain for AI:
Review and Open Research Challenges,” IEEE Access, vol. 7, pp. 10127–10149, 2019,
doi: 10.1109/ACCESS.2018.2890507.

[134] S. Gupta, J. Hellings, S. Rahnama, and M. Sadoghi, “An In-Depth Look of BFT
Consensus in Blockchain: Challenges and Opportunities,” in Proceedings of the 20th
International Middleware Conference Tutorials, Davis CA USA: ACM, Dec. 2019, pp.
6–10. doi: 10.1145/3366625.3369437.

[135] “Home,” Solidity Programming Language. Accessed: Jul. 19, 2023. [Online].
Available: https://soliditylang.org/

[136] “Vyper — Vyper documentation.” Accessed: Jul. 19, 2023. [Online]. Available:
https://docs.vyperlang.org/en/stable/

[137] L. Marchesi, M. Marchesi, G. Destefanis, G. Barabino, and D. Tigano, “Design Patterns
for Gas Optimization in Ethereum,” in 2020 IEEE International Workshop on
Blockchain Oriented Software Engineering (IWBOSE), Feb. 2020, pp. 9–15. doi:
10.1109/IWBOSE50093.2020.9050163.

[138] N. Masla, V. Vyas, J. Gautam, R. N. Shaw, and A. Ghosh, “Reduction in Gas Cost for
Blockchain Enabled Smart Contract,” in 2021 IEEE 4th International Conference on
Computing, Power and Communication Technologies (GUCON), Sep. 2021, pp. 1–6.
doi: 10.1109/GUCON50781.2021.9573701.

[139] F. Spoto, “Enforcing Determinism of Java Smart Contracts,” in Financial Cryptography
and Data Security, M. Bernhard, A. Bracciali, L. J. Camp, S. Matsuo, A. Maurushat, P.
B. Rønne, and M. Sala, Eds., in Lecture Notes in Computer Science. Cham: Springer
International Publishing, 2020, pp. 568–583. doi: 10.1007/978-3-030-54455-3_40.

[140] S.-Y. Lin, L. Zhang, J. Li, L. Ji, and Y. Sun, “A survey of application research based on
blockchain smart contract,” Wireless Netw, vol. 28, no. 2, pp. 635–690, Feb. 2022, doi:
10.1007/s11276-021-02874-x.

[141] J. Kalajdjieski, M. Raikwar, N. Arsov, G. Velinov, and D. Gligoroski, “Databases fit for
blockchain technology: A complete overview,” Blockchain: Research and Applications,
vol. 4, no. 1, p. 100116, Mar. 2023, doi: 10.1016/j.bcra.2022.100116.

[142] Y. Psaras and D. Dias, “The InterPlanetary File System and the Filecoin Network,” in
2020 50th Annual IEEE-IFIP International Conference on Dependable Systems and
Networks-Supplemental Volume (DSN-S), Jun. 2020, pp. 80–80. doi: 10.1109/DSN-
S50200.2020.00043.

[143] N. Sangeeta and S. Y. Nam, “Blockchain and Interplanetary File System (IPFS)-Based
Data Storage System for Vehicular Networks with Keyword Search Capability,”
Electronics, vol. 12, no. 7, Art. no. 7, Jan. 2023, doi: 10.3390/electronics12071545.

[144] R. G. Brown, “The corda platform: An introduction,” Retrieved, vol. 27, p. 2018, 2018.
[145] F. Armknecht, G. O. Karame, A. Mandal, F. Youssef, and E. Zenner, “Ripple: Overview

and Outlook,” in Trust and Trustworthy Computing, M. Conti, M. Schunter, and I.
Askoxylakis, Eds., in Lecture Notes in Computer Science. Cham: Springer International
Publishing, 2015, pp. 163–180. doi: 10.1007/978-3-319-22846-4_10.

168

[146] J. Sousa, A. Bessani, and M. Vukolic, “A Byzantine Fault-Tolerant Ordering Service
for the Hyperledger Fabric Blockchain Platform,” in 2018 48th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN), Luxembourg
City: IEEE, Jun. 2018, pp. 51–58. doi: 10.1109/DSN.2018.00018.

[147] H. Sukhwani, J. Martinez, X. Chang, K. Trivedi, and A. Rindos, Performance Modeling
of PBFT Consensus Process for Permissioned Blockchain Network (Hyperledger
Fabric). 2017, p. 255. doi: 10.1109/SRDS.2017.36.

[148] A. Beniiche, “A Study of Blockchain Oracles.” arXiv, Jul. 14, 2020. Accessed: May 22,
2023. [Online]. Available: http://arxiv.org/abs/2004.07140

[149] A. Singh, K. Click, R. M. Parizi, Q. Zhang, A. Dehghantanha, and K.-K. R. Choo,
“Sidechain technologies in blockchain networks: An examination and state-of-the-art
review,” Journal of Network and Computer Applications, vol. 149, p. 102471, Jan. 2020,
doi: 10.1016/j.jnca.2019.102471.

[150] X. Xu, I. Weber, and M. Staples, “Blockchain Patterns,” in Architecture for Blockchain
Applications, X. Xu, I. Weber, and M. Staples, Eds., Cham: Springer International
Publishing, 2019, pp. 113–148. doi: 10.1007/978-3-030-03035-3_7.

[151] R. Mühlberger et al., “Foundational Oracle Patterns: Connecting Blockchain to the Off-
Chain World,” in Business Process Management: Blockchain and Robotic Process
Automation Forum, A. Asatiani, J. M. García, N. Helander, A. Jiménez-Ramírez, A.
Koschmider, J. Mendling, G. Meroni, and H. A. Reijers, Eds., in Lecture Notes in
Business Information Processing. Cham: Springer International Publishing, 2020, pp.
35–51. doi: 10.1007/978-3-030-58779-6_3.

[152] H. Al-Breiki, M. H. U. Rehman, K. Salah, and D. Svetinovic, “Trustworthy Blockchain
Oracles: Review, Comparison, and Open Research Challenges,” IEEE Access, vol. 8,
pp. 85675–85685, 2020, doi: 10.1109/ACCESS.2020.2992698.

[153] R. A. Memon, J. P. Li, M. I. Nazeer, A. N. Khan, and J. Ahmed, “DualFog-IoT:
Additional Fog Layer for Solving Blockchain Integration Problem in Internet of
Things,” IEEE Access, vol. 7, pp. 169073–169093, 2019, doi:
10.1109/ACCESS.2019.2952472.

[154] A. A. Sadawi, M. S. Hassan, and M. Ndiaye, “On the Integration of Blockchain With
IoT and the Role of Oracle in the Combined System: The Full Picture,” IEEE Access,
vol. 10, pp. 92532–92558, 2022, doi: 10.1109/ACCESS.2022.3199007.

[155] L. Chen, R. Yuan, and Y. Xia, “Tora: A Trusted Blockchain Oracle Based on a
Decentralized TEE Network,” in 2021 IEEE International Conference on Joint Cloud
Computing (JCC), Aug. 2021, pp. 28–33. doi: 10.1109/JCC53141.2021.00016.

[156] J. Park, H. Kim, G. Kim, and J. Ryou, “Smart Contract Data Feed Framework for
Privacy-Preserving Oracle System on Blockchain,” Computers, vol. 10, no. 1, Art. no.
1, Jan. 2021, doi: 10.3390/computers10010007.

[157] Richard, M. M. Surya, and A. C. Wibowo, “Converging Artificial Intelligence and
Blockchain Technology using Oracle Contract in Ethereum Blockchain Platform,” in
2020 Fifth International Conference on Informatics and Computing (ICIC), Nov. 2020,
pp. 1–5. doi: 10.1109/ICIC50835.2020.9288611.

[158] C. Zhang, L. Zhu, C. Xu, and K. Sharif, “PRVB: Achieving Privacy-Preserving and
Reliable Vehicular Crowdsensing via Blockchain Oracle,” IEEE Transactions on
Vehicular Technology, vol. 70, no. 1, pp. 831–843, Jan. 2021, doi:
10.1109/TVT.2020.3046027.

[159] L. Breidenbach et al., “Chainlink 2.0: Next Steps in the Evolution of Decentralized
Oracle Networks”.

[160] J. Adler, R. Berryhill, A. Veneris, Z. Poulos, N. Veira, and A. Kastania, “Astraea: A
Decentralized Blockchain Oracle,” in 2018 IEEE International Conference on Internet

169

of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and
IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData), Jul. 2018, pp. 1145–1152. doi: 10.1109/Cybermatics_2018.2018.00207.

[161] Y. Lin et al., “A Novel Architecture Combining Oracle With Decentralized Learning
for IIoT,” IEEE Internet of Things Journal, vol. 10, no. 5, pp. 3774–3785, Mar. 2023,
doi: 10.1109/JIOT.2022.3150789.

[162] “XuperChain.” xuperchain, Jul. 18, 2023. Accessed: Jul. 19, 2023. [Online]. Available:
https://github.com/xuperchain/xuperchain

[163] A. E. Fezzazi, A. Adadi, and M. Berrada, “Towards a Blockchain based Intelligent and
Secure Voting,” in 2021 Fifth International Conference On Intelligent Computing in
Data Sciences (ICDS), Oct. 2021, pp. 1–8. doi: 10.1109/ICDS53782.2021.9626751.

[164] A. Dorri, C. Roulin, R. Jurdak, and S. S. Kanhere, “On the Activity Privacy of
Blockchain for IoT,” in 2019 IEEE 44th Conference on Local Computer Networks
(LCN), Oct. 2019, pp. 258–261. doi: 10.1109/LCN44214.2019.8990819.

[165] B. K. Mohanta, D. Jena, U. Satapathy, and S. Patnaik, “Survey on IoT security:
Challenges and solution using machine learning, artificial intelligence and blockchain
technology,” Internet of Things, vol. 11, p. 100227, Sep. 2020, doi:
10.1016/j.iot.2020.100227.

[166] A. Fadaeddini, B. Majidi, and M. Eshghi, “Secure decentralized peer-to-peer training of
deep neural networks based on distributed ledger technology,” J Supercomput, vol. 76,
no. 12, pp. 10354–10368, Dec. 2020, doi: 10.1007/s11227-020-03251-9.

[167] D. Preuveneers, V. Rimmer, I. Tsingenopoulos, J. Spooren, W. Joosen, and E. Ilie-
Zudor, “Chained Anomaly Detection Models for Federated Learning: An Intrusion
Detection Case Study,” Applied Sciences, vol. 8, no. 12, Art. no. 12, Dec. 2018, doi:
10.3390/app8122663.

[168] A. Goel, A. Agarwal, M. Vatsa, R. Singh, and N. Ratha, “DeepRing: Protecting Deep
Neural Network With Blockchain,” in 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW), Jun. 2019, pp. 2821–2828. doi:
10.1109/CVPRW.2019.00341.

[169] N. K. Bore et al., “Promoting Distributed Trust in Machine Learning and Computational
Simulation,” in 2019 IEEE International Conference on Blockchain and
Cryptocurrency (ICBC), May 2019, pp. 311–319. doi: 10.1109/BLOC.2019.8751423.

[170] L. S. Shapley, “17. A Value for n-Person Games,” in Contributions to the Theory of
Games (AM-28), Volume II, H. W. Kuhn and A. W. Tucker, Eds., Princeton University
Press, 1953, pp. 307–318. doi: 10.1515/9781400881970-018.

[171] H. STACKELBERG, “Theory of the Market Economy (1934), trans,” AT Peacock,
London, William Hodge, 1952.

[172] P. P. Shenoy, “On coalition formation: a game-theoretical approach,” Int J Game
Theory, vol. 8, no. 3, pp. 133–164, Sep. 1979, doi: 10.1007/BF01770064.

[173] S. Béal, S. Ferrières, E. Rémila, and P. Solal, “The proportional Shapley value and
applications,” Games and Economic Behavior, vol. 108, pp. 93–112, Mar. 2018, doi:
10.1016/j.geb.2017.08.010.

[174] E. Štrumbelj and I. Kononenko, “Explaining prediction models and individual
predictions with feature contributions,” Knowl Inf Syst, vol. 41, no. 3, pp. 647–665, Dec.
2014, doi: 10.1007/s10115-013-0679-x.

[175] J. Lemaire, “Cooperative Game Theory and its Insurance Applications,” ASTIN
Bulletin: The Journal of the IAA, vol. 21, no. 1, pp. 17–40, Apr. 1991, doi:
10.2143/AST.21.1.2005399.

170

[176] J. Castro, D. Gómez, and J. Tejada, “Polynomial calculation of the Shapley value based
on sampling,” Computers & Operations Research, vol. 36, no. 5, pp. 1726–1730, May
2009, doi: 10.1016/j.cor.2008.04.004.

[177] R. Guha, A. H. Khan, P. K. Singh, R. Sarkar, and D. Bhattacharjee, “CGA: a new feature
selection model for visual human action recognition,” Neural Comput & Applic, vol. 33,
no. 10, pp. 5267–5286, May 2021, doi: 10.1007/s00521-020-05297-5.

[178] R. Patel, M. Garnelo, I. Gemp, C. Dyer, and Y. Bachrach, “Game-theoretic Vocabulary
Selection via the Shapley Value and Banzhaf Index,” in Proceedings of the 2021
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Online: Association for Computational
Linguistics, Jun. 2021, pp. 2789–2798. doi: 10.18653/v1/2021.naacl-main.223.

[179] A. Ghorbani and J. Zou, “Data Shapley: Equitable Valuation of Data for Machine
Learning,” in Proceedings of the 36th International Conference on Machine Learning,
PMLR, May 2019, pp. 2242–2251. Accessed: May 16, 2023. [Online]. Available:
https://proceedings.mlr.press/v97/ghorbani19c.html

[180] B. Rozemberczki and R. Sarkar, “The Shapley Value of Classifiers in Ensemble
Games,” in Proceedings of the 30th ACM International Conference on Information &
Knowledge Management, in CIKM ’21. New York, NY, USA: Association for
Computing Machinery, Oct. 2021, pp. 1558–1567. doi: 10.1145/3459637.3482302.

[181] X. Chen, S. Li, X. Xu, F. Meng, and W. Cao, “A Novel GSCI-Based Ensemble
Approach for Credit Scoring,” IEEE Access, vol. 8, pp. 222449–222465, 2020, doi:
10.1109/ACCESS.2020.3043937.

[182] T. Wang, J. Rausch, C. Zhang, R. Jia, and D. Song, “A principled approach to data
valuation for federated learning,” Federated Learning: Privacy and Incentive, pp. 153–
167, 2020.

[183] H. Ykhlef and D. Bouchaffra, “Induced Subgraph Game for Ensemble Selection,” Int.
J. Artif. Intell. Tools, vol. 26, no. 01, p. 1760003, Feb. 2017, doi:
10.1142/S021821301760003X.

[184] M. Shen, J. Duan, L. Zhu, J. Zhang, X. Du, and M. Guizani, “Blockchain-Based
Incentives for Secure and Collaborative Data Sharing in Multiple Clouds,” IEEE
Journal on Selected Areas in Communications, vol. 38, no. 6, pp. 1229–1241, Jun. 2020,
doi: 10.1109/JSAC.2020.2986619.

[185] L. Zhu, H. Dong, M. Shen, and K. Gai, “An Incentive Mechanism Using Shapley Value
for Blockchain-Based Medical Data Sharing,” in 2019 IEEE 5th Intl Conference on Big
Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance
and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and
Security (IDS), May 2019, pp. 113–118. doi: 10.1109/BigDataSecurity-HPSC-
IDS.2019.00030.

[186] Z. Chen, X. Sun, X. Shan, and J. Zhang, “Decentralized Mining Pool Games in
Blockchain,” in 2020 IEEE International Conference on Knowledge Graph (ICKG),
Aug. 2020, pp. 426–432. doi: 10.1109/ICBK50248.2020.00067.

[187] Z. Chang, W. Guo, X. Guo, Z. Zhou, and T. Ristaniemi, “Incentive Mechanism for
Edge-Computing-Based Blockchain,” IEEE Transactions on Industrial Informatics,
vol. 16, no. 11, pp. 7105–7114, Nov. 2020, doi: 10.1109/TII.2020.2973248.

[188] X. Ding, J. Guo, D. Li, and W. Wu, “An Incentive Mechanism for Building a Secure
Blockchain-Based Internet of Things,” IEEE Transactions on Network Science and
Engineering, vol. 8, no. 1, pp. 477–487, Jan. 2021, doi: 10.1109/TNSE.2020.3040446.

[189] Y. He, H. Li, X. Cheng, Y. Liu, C. Yang, and L. Sun, “A Blockchain Based Truthful
Incentive Mechanism for Distributed P2P Applications,” IEEE Access, vol. 6, pp.
27324–27335, 2018, doi: 10.1109/ACCESS.2018.2821705.

171

[190] S. Xuan et al., “An incentive mechanism for data sharing based on blockchain with
smart contracts,” Computers & Electrical Engineering, vol. 83, p. 106587, May 2020,
doi: 10.1016/j.compeleceng.2020.106587.

[191] J. Qiu, X. Liang, S. Shetty, and D. Bowden, “Towards Secure and Smart Healthcare in
Smart Cities Using Blockchain,” in 2018 IEEE International Smart Cities Conference
(ISC2), Sep. 2018, pp. 1–4. doi: 10.1109/ISC2.2018.8656914.

[192] V. Drungilas, E. Vaičiukynas, L. Ablonskis, and L. Čeponienė, “Shapley Values as a
Strategy for Ensemble Weights Estimation,” Applied Sciences, vol. 13, no. 12, Art. no.
12, Jan. 2023, doi: 10.3390/app13127010.

[193] V. Drungilas, E. Vaičiukynas, and L. Čeponienė, “Towards Collaborative Privacy-
preserving Machine Learning on Private Blockchain,” in 2023 18th Iberian Conference
on Information Systems and Technologies (CISTI), Jun. 2023, pp. 1–4. doi:
10.23919/CISTI58278.2023.10211561.

[194] V. Drungilas, E. Vaičiukynas, M. Jurgelaitis, R. Butkienė, and L. Čeponienė, “Towards
Blockchain-Based Federated Machine Learning: Smart Contract for Model Inference,”
Applied Sciences, vol. 11, no. 3, Art. no. 3, Jan. 2021, doi: 10.3390/app11031010.

[195] E. Gordon-Rodriguez, G. Loaiza-Ganem, G. Pleiss, and J. P. Cunningham, “Uses and
abuses of the cross-entropy loss: Case studies in modern deep learning,” 2020.

[196] A. Rényi, “On measures of entropy and information,” in Proceedings of the Fourth
Berkeley Symposium on Mathematical Statistics and Probability, Volume 1:
Contributions to the Theory of Statistics, University of California Press, 1961, pp. 547–
562.

[197] Z. Zhang and M. Sabuncu, “Generalized Cross Entropy Loss for Training Deep Neural
Networks with Noisy Labels,” in Advances in Neural Information Processing Systems,
Curran Associates, Inc., 2018. Accessed: Dec. 16, 2023. [Online]. Available:
https://proceedings.neurips.cc/paper_files/paper/2018/hash/f2925f97bc13ad2852a7a55
1802feea0-Abstract.html

[198] A. F. Agarap, “Deep Learning using Rectified Linear Units (ReLU).” arXiv, Feb. 07,
2019. doi: 10.48550/arXiv.1803.08375.

[199] T. M. Cover, Elements of information theory. John Wiley & Sons, 1999.
[200] R. E. Banfield, L. O. Hall, K. W. Bowyer, and W. P. Kegelmeyer, “A Comparison of

Decision Tree Ensemble Creation Techniques,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 29, no. 1, pp. 173–180, Jan. 2007, doi:
10.1109/TPAMI.2007.250609.

[201] A. Kim, K. Oh, J.-Y. Jung, and B. Kim, “Imbalanced classification of manufacturing
quality conditions using cost-sensitive decision tree ensembles,” International Journal
of Computer Integrated Manufacturing, vol. 31, no. 8, pp. 701–717, Aug. 2018, doi:
10.1080/0951192X.2017.1407447.

[202] H. Parvin, M. MirnabiBaboli, and H. Alinejad-Rokny, “Proposing a classifier ensemble
framework based on classifier selection and decision tree,” Engineering Applications of
Artificial Intelligence, vol. 37, pp. 34–42, Jan. 2015, doi:
10.1016/j.engappai.2014.08.005.

[203] J. W. Osborne, Best Practices in Quantitative Methods. SAGE, 2008.
[204] “The Go Programming Language Specification - The Go Programming Language.”

Accessed: Jul. 17, 2023. [Online]. Available: https://go.dev/ref/spec
[205] “template package - html/template - Go Packages.” Accessed: Jul. 17, 2023. [Online].

Available: https://pkg.go.dev/html/template
[206] “fabric-contract-api-go/tutorials/getting-started.md at main · hyperledger/fabric-

contract-api-go · GitHub.” Accessed: Jul. 17, 2023. [Online]. Available:

172

https://github.com/hyperledger/fabric-contract-api-go/blob/main/tutorials/getting-
started.md

[207] Y. Shafranovich, “Common Format and MIME Type for Comma-Separated Values
(CSV) Files,” Internet Engineering Task Force, Request for Comments RFC 4180, Oct.
2005. doi: 10.17487/RFC4180.

[208] T. Bray, “The javascript object notation (json) data interchange format,” 2014.
[209] V. Drungilas, E. Vaičiukynas, L. Ablonskis, and L. Čeponienė, “Heterogeneous Models

Inference Using Hyperledger Fabric Oracles,” Edited by Sergey Y. Yurish, p. 83, 2022.
[210] “keras-io/examples/vision/knowledge_distillation.py at master · keras-team/keras-io,”

GitHub. Accessed: Aug. 02, 2023. [Online]. Available: https://github.com/keras-
team/keras-io/blob/master/examples/vision/knowledge_distillation.py

[211] S. O. Arik and T. Pfister, “TabNet: Attentive Interpretable Tabular Learning.” arXiv,
Dec. 09, 2020. Accessed: Dec. 03, 2023. [Online]. Available:
http://arxiv.org/abs/1908.07442

[212] “google-research/tabnet at master · google-research/google-research,” GitHub.
Accessed: Dec. 03, 2023. [Online]. Available: https://github.com/google-
research/google-research/tree/master/tabnet

[213] “sklearn.datasets.make_moons,” scikit-learn. Accessed: Aug. 06, 2023. [Online].
Available: https://scikit-
learn/stable/modules/generated/sklearn.datasets.make_moons.html

[214] D. Dua and C. Graff, UCI machine learning repository. 2017. University of California,
Irvine, School of Information and Computer Sciences. 2017.

[215] P. Cortez, M. S. R. Laureano, and S. Moro, “Using data mining for banking direct
marketing: An application of the crisp-dm methodology,” Portugal: Institute University
of Lisbon, 2010.

[216] J. N. van Rijn, G. Holmes, B. Pfahringer, and J. Vanschoren, “Algorithm selection on
data streams,” in Discovery Science: 17th International Conference, DS 2014, Bled,
Slovenia, October 8-10, 2014. Proceedings 17, Springer, 2014, pp. 325–336.

[217] H. I. FAWAZ, “Critical Difference Diagrams.” Aug. 05, 2023. Accessed: Aug. 06,
2023. [Online]. Available: https://github.com/hfawaz/cd-diagram

[218] M. Friedman, “A comparison of alternative tests of significance for the problem of m
rankings,” The annals of mathematical statistics, vol. 11, no. 1, pp. 86–92, 1940.

[219] A. Benavoli, G. Corani, and F. Mangili, “Should we really use post-hoc tests based on
mean-ranks?,” The Journal of Machine Learning Research, vol. 17, no. 1, pp. 152–161,
2016.

[220] F. Wilcoxon, “Individual comparisons of grouped data by ranking methods,” Journal of
economic entomology, vol. 39, no. 2, pp. 269–270, 1946.

[221] S. Holm, “A simple sequentially rejective multiple test procedure,” Scandinavian
journal of statistics, pp. 65–70, 1979.

[222] S. Maleki, L. Tran-Thanh, G. Hines, T. Rahwan, and A. Rogers, “Bounding the
estimation error of sampling-based Shapley value approximation,” arXiv preprint
arXiv:1306.4265, 2013.

[223] G. Friedland, A. Metere, and M. Krell, “A Practical Approach to Sizing Neural
Networks.” arXiv, Oct. 04, 2018. Accessed: Mar. 28, 2024. [Online]. Available:
http://arxiv.org/abs/1810.02328

[224] M. Abadi et al., “TensorFlow, Large-scale machine learning on heterogeneous
systems.” Nov. 2015. doi: 10.5281/zenodo.4724125.

[225] B. Schäfl, L. Gruber, A. Bitto-Nemling, and S. Hochreiter, “Hopular: Modern Hopfield
Networks for Tabular Data.” arXiv, Jun. 01, 2022. doi: 10.48550/arXiv.2206.00664.

173

[226] A. Dubey, F. Radenovic, and D. Mahajan, “Scalable Interpretability via Polynomials.”
arXiv, Oct. 18, 2022. Accessed: Mar. 29, 2024. [Online]. Available:
http://arxiv.org/abs/2205.14108

[227] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

174

SCIENTIFIC JOURNAL AND CONFERENCE PUBLICATIONS

Scientific Publications in Periodicals

DRUNGILAS, Vaidotas; VAIČIUKYNAS, Evaldas; ABLONSKIS, Linas;

ČEPONIENĖ, Lina. Shapley values as a strategy for ensemble weights estimation.
Applied Science. Basel: MDPI, 2023, vol. 13, iss. 12, art. No. 7010, pp. 1–23. ISSN
2076-3417. doi: 10.3390/app13127010

DRUNGILAS, Vaidotas; VAIČIUKYNAS, Evaldas; JURGELAITIS, Mantas;

BUTKIENĖ, Rita; ČEPONIENĖ, Lina. Towards blockchain-based federated machine
learning: smart contract for model inference. Applied Sciences. Basel: MDPI, 2021,
vol. 11, iss. 3, art. No. 1010, pp. 1–21. ISSN 2076-3417. doi: 10.3390/app11031010

Scientific Publications in Conference Proceedings

DRUNGILAS, V.; VAIČIUKYNAS, E; ČEPONIENĖ, L.; Towards Collaborative
Privacy-preserving Machine Learning on Private Blockchain In: Proceedings of
CISTI’2023 – 18th Iberian Conference on Information Systems and Technologies 20–
23 June 2023, Aveiro, Portugal.

DRUNGILAS, V.; VAIČIUKYNAS, E.; ABLONSKIS, L.; ČEPONIENĖ, L.
Heterogeneous models inference using hyperledger fabric oracles. In: Proceedings of
the 1st blockchain and cryptocurrency conference (B2C’ 2022), 9–11 November 2022,
Barcelona, Spain. Edited by Sergey Y. Yurish. Barcelona: IFSA publishing, 2022,
(027), pp. 83–85. eISBN 9788409457632.

JURGELAITIS, Mantas; BUTKIENĖ, Rita; VAIČIUKYNAS, Evaldas;
DRUNGILAS, Vaidotas; ČEPONIENĖ, Lina. Modelling principles for blockchain-
based implementation of business or scientific processes. In: CEUR workshop
proceedings: IVUS 2019 international conference on information technologies:
proceedings of the international conference on information technologies, Kaunas,
Lithuania, April 25, 2019. Edited by: Robertas Damaševičius, Tomas Krilavičius,
Audrius Lopata, Dawid Połap, Marcin Woźniak. Aachen: CEUR-WS, 2019, vol.
2470, pp. 43–47. ISSN 1613-0073.

175

CURRICULUM VITAE

Vaidotas Drungilas
vaidotas.drungilas@ktu.lt

Education:

2012 – 2016 Information Systems

Bachelor’s studies – Kaunas University of Technology

2016 – 2018 Information System Engineering

Master’s studies – Kaunas University of Technology

2018 – Currently Informatics Engineering

PhD studies – Kaunas University of Technology

Professional experience:

01 Aug 2014 – 19 Sept 2017 Junior Laboratory Assistant
01 Feb 2016 – 30 Aug 2019 IT Engineer
12 Sept 2016 – 02 Sept 2018 Academic Assistant
20 Sept 2017 – 02 Feb 2020 Senior Laboratory Assistant
03 Sept 2018 – 31 Dec 2023 Lecturer
03 Feb 2020 – 31 Dec 2020 Senior Engineer
01 Jan 2021 – Currently IT Infrastructure Engineer
01 Jan 2024 – Currently Junior Assistant

Scientific interests:

Machine learning, distributed ledger technologies, UML modelling and reverse
engineering, software development.

Scientific Publications:

1. DRUNGILAS, Vaidotas; VAIČIUKYNAS, Evaldas; ABLONSKIS, Linas;
ČEPONIENĖ, Lina. Shapley values as a strategy for ensemble weights estimation.
Applied Science. Basel: MDPI, 2023, vol. 13, iss. 12, art. No. 7010, pp. 1–23. ISSN
2076-3417. doi: 10.3390/app13127010

2. DRUNGILAS, Vaidotas; VAIČIUKYNAS, Evaldas; JURGELAITIS, Mantas;
BUTKIENĖ, Rita; ČEPONIENĖ, Lina. Towards blockchain-based federated machine
learning: smart contract for model inference. Applied Sciences. Basel: MDPI, 2021,
vol. 11, iss. 3, art. No. 1010, pp. 1–21. ISSN 2076-3417. doi: 10.3390/app11031010

176

Scientific Conferences:

1. DRUNGILAS, V.; VAIČIUKYNAS, E.; ČEPONIENĖ, L.; Towards

Collaborative Privacy-preserving Machine Learning on Private Blockchain. In:
Proceedings of CISTI’2023 – 18th Iberian Conference on Information Systems
and Technologies; 20–23 June 2023, Aveiro, Portugal.

2. DRUNGILAS, V.; VAIČIUKYNAS, E.; ABLONSKIS, L.; ČEPONIENĖ, L.

Heterogeneous models inference using hyperledger fabric oracles. In:
Proceedings of the 1st blockchain and cryptocurrency conference (B2C’ 2022),
9–11 November 2022, Barcelona, Spain. Edited by Sergey Y. Yurish. Barcelona:
IFSA publishing, 2022, (027), pp. 83–85. eISBN 9788409457632.

3. JURGELAITIS, Mantas; BUTKIENĖ, Rita; VAIČIUKYNAS, Evaldas;

DRUNGILAS, Vaidotas; ČEPONIENĖ, Lina. Modelling principles for
blockchain-based implementation of business or scientific processes. In: CEUR
workshop proceedings: IVUS 2019 international conference on information
technologies: proceedings of the international conference on information
technologies, Kaunas, Lithuania, 25 April 2019. Edited by: Robertas
Damaševičius, Tomas Krilavičius, Audrius Lopata, Dawid Połap, Marcin
Woźniak. Aachen: CEUR-WS, 2019, vol. 2470, pp. 43–47. ISSN 1613-0073.

177

ACKNOWLEDGMENTS

This work would not have been possible without the care and encouragement from
my colleagues of the Department of Information Systems and continuous support
from my family.

Thank you for being there when I needed it most.

Vaidotas Drungilas

178

APPENDIXES

Appendix A. Extended result analysis for Performance Evaluation of Model
Inference via Local Off-chain Blockchain Oracles experiment

(a) smart contract

(b) local off-chain oracle service

Figure A1. Model inference calculation time for the synthetic dataset with 32768 instances:
smart contract (a) and oracle service (b) results. The increase in runtime is linear with an
increase in calculation time of 6.30 s for the smart contract and 6.28s for the oracle service in
a simulated blockchain network environment.

Table A1. Statistical analysis for smart contract implementations performance results
synthetic dataset case. Dependent variable: T

 Coefficient Std. Error t-ratio p-value
const −4.90818 0.503859 −9.741 <0.0001 ***
Peers 6.29927 0.0579238 108.8 <0.0001 ***

Mean dependent var 45.48601 S.D. dependent var 22.07177
Sum squared resid 14044.71 S.E. of regression 4.846251
R-squared 0.951870 Adjusted R-squared 0.951790
F(1, 598) 11826.80 P-value(F) 0.000000
Log-likelihood −1797.285 Akaike criterion 3598.569
Schwarz criterion 3607.363 Hannan-Quinn 3601.993

Table A2. Correlation matrix for smart contract implementations performance
synthetic dataset case. 5% critical value (two-tailed) = 0.0801 for n = 600. Dependent
variable: T

T Peers

1.0000 0.9756 T
 1.0000 Peers

179

Table A3. Statistical analysis for local off-chain oracle service implementations performance
results synthetic dataset case. Dependent variable: T

 Coefficient Std. Error t-ratio p-value
const −4.39957 0.357455 −12.31 <0.0001 ***
Peers 6.28314 0.0410931 152.9 <0.0001 ***

Mean dependent var 45.86557 S.D. dependent var 21.75189
Sum squared resid 7068.662 S.E. of regression 3.438096
R-squared 0.975059 Adjusted R-squared 0.975017
F(1, 598) 23378.45 P-value(F) 0.000000
Log-likelihood −1591.312 Akaike criterion 3186.624
Schwarz criterion 3195.418 Hannan-Quinn 3190.048

Table A4. Correlation matrix for local off-chain oracle service implementations performance
synthetic dataset case. 5% critical value (two-tailed) = 0.0801 for n = 600. Dependent
variable: T

T Peers

1.0000 0.9875 T
 1.0000 Peers

(a) smart contract (b) local off-chain oracle service
Figure A2. Model inference calculation time in relation to peer count for EEG eye state

dataset with 32768 instances: smart contract (a) and oracle service (b) results. The increase in
the runtime is linear with an increase in the calculation time of 6.55 s for the smart contract

and 6.63s for the oracle service in a simulated blockchain network environment.

180

Table A5. Statistical analysis for smart contract implementations performance results EEG
eye state dataset case. Dependent variable: T

 Coefficient Std. Error t-ratio p-value

const −3.57527 0.528231 −6.768 <0.0001 ***
Peers 6.54810 0.0607256 107.8 <0.0001 ***

Mean dependent var 48.80953 S.D. dependent var 22.95308
Sum squared resid 15436.27 S.E. of regression 5.080666
R-squared 0.951086 Adjusted R-squared 0.951004
F(1, 598) 11627.52 P-value(F) 0.000000
Log-likelihood −1825.627 Akaike criterion 3655.254
Schwarz criterion 3664.048 Hannan-Quinn 3658.677

Table A6. Correlation matrix for smart contract implementations performance
synthetic dataset case. 5% critical value (two-tailed) = 0.0801 for n = 600. Dependent
variable: T

T Peers
1.0000 0.9752 T

 1.0000 Peers

Table A7. Statistical analysis for local off-chain oracle service implementations performance
results EEG eye state dataset case. Dependent variable: T

 Coefficient Std. Error t-ratio p-value

const −3.15881 0.361331 −8.742 <0.0001 ***
Peers 6.62539 0.0415386 159.5 <0.0001 ***

Mean dependent var 49.84428 S.D. dependent var 22.91354
Sum squared resid 7222.773 S.E. of regression 3.475373
R-squared 0.977034 Adjusted R-squared 0.976995
F(1, 598) 25440.04 P-value(F) 0.000000
Log-likelihood −1597.782 Akaike criterion 3199.565
Schwarz criterion 3208.359 Hannan-Quinn 3202.988

Table A8. Correlation matrix for local off-chain oracle service implementations performance
synthetic dataset case. 5% critical value (two-tailed) = 0.0801 for n = 600. Dependent
variable: T

T Peers
1.0000 0.9885 T

 1.0000 Peers

181

Appendix B. Shapley-based ensemble weighting strategies performance evaluation
experiment results for every tested configuration setting. Presented in median BCE
values

Table B1. Results presented in BCE for homogeneous decision tree ensembles developed by
using the BNG_credit-a dataset

Programmin
g language

Ensemble size

Weighting

2 3 5 8 13

Python Equal 0.323 0.329 0.322 0.319 0.319
Mono 0.338 0.339 0.339 0.339 0.339
Perf 0.323 0.328 0.322 0.319 0.318
posShap 0.322 0.328 0.320 0.318 0.317
Rand 0.329 0.334 0.322 0.320 0.319
Roz 0.328 0.328 0.323 0.320 0.318

R Equal 0.408 0.407 0.385 0.378 0.368
Mono 0.408 0.408 0.408 0.408 0.408
Perf 0.408 0.407 0.384 0.376 0.367
posShap 0.408 0.407 0.379 0.370 0.360
Rand 0.408 0.407 0.389 0.380 0.371

 Roz 0.407 0.402 0.393 0.379 0.369

182

Table B2. Results presented in BCE for homogeneous logistic regression ensembles
developed by using the Bank Marketing dataset

Programming
language

 Ensemble size

Weighting
2 3 5 8 13

Python Equal 0.239 0.241 0.240 0.239 0.243
maxShap 0.239 0.240 0.239 0.270 0.416
Mono 0.239 0.240 0.239 0.239 0.240
Perf 0.239 0.241 0.239 0.238 0.237
posShap 0.239 0.240 0.239 0.238 0.238

Rand 0.240 0.241 0.240 0.240 0.245
Roz 0.240 0.240 0.240 0.239 0.240

R Equal 0.241 0.240 0.240 0.240 0.246
maxShap 0.241 0.239 0.240 0.288 0.441
Mono 0.241 0.239 0.240 0.24 0.24
Perf 0.241 0.240 0.240 0.239 0.236
posShap 0.241 0.239 0.240 0.239 0.238
Rand 0.241 0.240 0.241 0.241 0.247
Roz 0.240 0.240 0.239 0.239 0.243

183

Table B3. Results presented in BCE for homogeneous logistic regression ensembles
developed by using the BNG_credit-a dataset

Programming
language

Ensemble size

Weighting
2 3 5 8 13

Python Equal 0.327 0.326 0.326 0.326 0.326
Mono 0.326 0.326 0.326 0.326 0.326
Perf 0.327 0.326 0.326 0.326 0.326
posShap 0.327 0.326 0.326 0.326 0.326
Rand 0.327 0.326 0.327 0.326 0.327
Roz 0.327 0.327 0.327 0.327 0.327

R Equal 0.327 0.327 0.327 0.327 0.327
Mono 0.327 0.327 0.326 0.327 0.327
Perf 0.327 0.327 0.327 0.327 0.327
posShap 0.327 0.327 0.327 0.327 0.327
Rand 0.327 0.327 0.327 0.327 0.327

 Roz 0.327 0.327 0.327 0.327 0.327

Table B4. Results presented in BCE for homogeneous decision tree ensembles developed by
using the Bank Marketing dataset

Programming
language

 Ensemble size

Weighting
2 3 5 8 13

Python Equal 0.260 0.260 0.256 0.252 0.289
maxShap 0.261 0.275 0.325 0.344 0.366
Mono 0.272 0.273 0.272 0.270 0.282
Perf 0.260 0.259 0.254 0.251 0.287
posShap 0.260 0.261 0.257 0.254 0.274

Rand 0.263 0.262 0.258 0.256 0.289
Roz 0.261 0.261 0.259 0.253 0.293

R Equal 0.280 0.278 0.269 0.265 0.266
maxShap 0.280 0.278 0.272 0.281 0.291
Mono 0.282 0.283 0.282 0.282 0.283
Perf 0.280 0.278 0.269 0.266 0.267
posShap 0.280 0.278 0.270 0.266 0.264
Rand 0.280 0.279 0.271 0.267 0.268

 Roz 0.279 0.276 0.275 0.265 0.268

184

Table B5. Results presented in BCE for heterogeneous ensembles trained developed by
using the BNG_credit-a dataset

Programming
language

 Ensemble size

Weighting

4 6 10 16

Python Equal 0.313 0.318 0.314 0.313
maxShap 0.313 0.318 0.313 0.312
Mono 0.326 0.326 0.326 0.326
Perf 0.313 0.318 0.314 0.313
posShap 0.313 0.318 0.313 0.312
Rand 0.316 0.318 0.314 0.313
Roz 0.315 0.316 0.314 0.313

R Equal 0.348 0.348 0.342 0.339
maxShap 0.348 0.343 0.341 0.341
Mono 0.327 0.326 0.326 0.326
Perf 0.348 0.347 0.342 0.340
posShap 0.348 0.343 0.341 0.341
Rand 0.348 0.346 0.342 0.339

 Roz 0.355 0.352 0.348 0.344

185

Table B6. Results presented in BCE of heterogeneous ensembles developed by using the
Bank Marketing dataset

Programmin
g language

 Ensemble
size

Weighting

4 6 10 16

Python Equal 0.236 0.237 0.235 0.233
maxShap 0.239 0.244 0.260 0.269
Mono 0.239 0.240 0.239 0.239
Perf 0.237 0.239 0.238 0.237
posShap 0.239 0.240 0.238 0.235
Rand 0.237 0.238 0.236 0.235
Roz 0.238 0.241 0.238 0.236

R Equal 0.236 0.237 0.235 0.233
maxShap 0.239 0.244 0.260 0.269
Mono 0.241 0.239 0.239 0.24
Perf 0.237 0.239 0.238 0.237
posShap 0.239 0.240 0.238 0.235
Rand 0.237 0.238 0.236 0.235

 Roz 0.250 0.249 0.245 0.241

Appendix C. Source code for the developed blockchain solutions and experiment
procedures

https://github.com/HurrisLT

UDK 004.85+004.65+004.78](043.3)
SL344. 2024-05-09, 23,25 leidyb. apsk. l. Tiražas 14 egz. Užsakymas 84.
Išleido Kauno technologijos universitetas, K. Donelaičio g. 73, 44249 Kaunas
Spausdino leidyklos „Technologija“ spaustuvė, Studentų g. 54, 51424 Kaunas

