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1. INTRODUCTION

1.1. Relevance of the work

The application of Artificial Intelligence has been a successful, fast-growing,
and incredibly popular domain in almost every field of research. This is due to the
increasing and significant role in computer vision tasks with an effective, less
computation-demanding, economical, rigorous, and accurate outcome [1, 3].
However, one of the main issues predominant in the application of Al methods for
any decision-making task is the problem of data availability often referred to as small
dataset or limited dataset problems [4, 5]. Small data can be referred to in engineering
applications as data with fewer than 50 samples, whereas, for academic research, the
amount of data is fewer than 30 instances [6]. Small data can be said to be sufficient
if the quality of data is rich in terms of capturing, and if the requirements for diversity,
fairness, and transparency are met. On the contrary, most of the available small
datasets are not significant enough to build a study or create a hypothesis due to the
lack of some imperative information and varieties in data analytics applications,
majorly in real-life decision tasks [8]. However, integrating other insights and
observations would ultimately develop a solution or models for future brands or
businesses [7].

Data analytics could be described as the application of computer systems in
analyzing large datasets for decision support. This field of science has played a crucial
role in several other scientific areas like pattern recognition, operation research,
computational intelligence, machine learning, etc. Recent studies have shown that
small data analytics is as important as big data analytics, especially in real-time or
informed decision-making tasks. Previous research studies in image processing tasks
emphasized that the use of better-quality small, sampled datasets can produce
excellent outcomes to a low-quality big data sample [9]. However, in the real-world
application of data analytics ranging from disease detection to classification tasks,
there is a pressing need for sufficient and balanced datasets as an essential key for
effective and efficient performance in the application of Al methods. However, the
application of small datasets and artificial intelligence methods, especially in domains
such as healthcare, plant disease, sound detection, manufacturing, etc. still suffers
from biases, computation complexity, imbalanced datasets, poor generalizability, etc.

Furthermore, small datasets issues in the medical health domain remain a
prevailing challenge due to several reasonable factors affecting data collection, such
as data privacy based on sensitive/vital patient information (personal, confidential
data), cost implication, manpower and expertise requirements for annotation, and
anonymized patient’s information, before using or sharing this data [10]. Other
problems of small datasets in Al applications include a high variance, resulting in
skewed outcomes or over-generalization of the data-driven models [4]. These
limitations of small data are serious concerns affecting all domains of scientific
research, healthcare, industries, etc. Hence, it requires urgent research focus on
providing effective models to solve small data problems. Based on the recent success
on artificial methods presented in the literature is the application of data augmentation
methods which has improved small data problems through the generation of
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virtual/synthetic samples using the previous knowledge acquired from a specified
limited training data [11]. Data augmentation (DA) application for generating new
datasets has shown promising results and significantly improved performance
learning classifiers in areas like image recognition, signal and voice recognition,
industrial sectors [6], object detection, etc. In other words, one of the most significant
methods to efficiently enhance classifier performance on a small data sample is the
adoption of a data augmentation approach [12].

Data Augmentation Method (DAM) is a well-known and acceptable pre-
processing technique used to expand the variety and quantity of available training data
with no direct gathering of additional data samples [13]. The significance of DAM is
not limited to merely boosting the variability of the data but also decreasing class
imbalance, dataset biases, and preventing overfitting of models. Therefore, it has been
effectively applied in image processing and computer vision tasks to synthesize and
balance training datasets by creating additional samples of the minority class instances
[14, 15]. The impact of data augmentation techniques cuts across other fields where
insufficient data has been a major problem such as geothermal field, hardness
prediction in High Entropy Alloy (HEA), customer credit, etc. This approach is
essential for increasing training data, and hence attaining a satisfactory outcome and
tackling the issue of insufficient data [16]. Recently, the application of DAM has
resulted in the generation of artificial data which has enhanced a crucial part of
computer vision research, as the majority of the models that achieved significant
outcomes in the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) [17]
were implemented with data augmentation techniques. Examples of the DAMs used
in previous literature to improve vision tasks include the following: cropping, flipping
images (horizontal and vertical), scaling, color jittering, Gaussian Blur, rotation,
noise, etc. [15, 16, 18]. In addition, DAM has proven to be useful in gaining
knowledge from skewed datasets. However, in the case of extremely imbalanced
classes within a small dataset, applying augmentation methods may not present the
expected differences for unique instances in dataset rebalancing [14], but it still
contributes to improved performance of classifiers.

Recent studies have shown various data augmentation methods being applied in
tackling the challenges of insufficient training data, and, of these, the most popularly
used approaches are the conventional or geometric methods such as random rotation,
flipping, transformation, etc. Some categories of advanced augmentation technigques
proposed in existing literature include Generative Adversarial Networks (GANSs) and
Variational Autoencoder (VAE) [19]. The majority of prior studies have indicated
progressing results in the application of some data augmentation methods; however,
some currently existing approaches still suffer from poor generalization capabilities
due to noisy backgrounds, problems with wrong annotations, or label mismatch [20].
In addition, the improvement in the performance of the Al methods is dependent on
the size, quality, and variety of the available data [4].

1.2. Object of the Work

The object of this research is to address the challenges of small data analytics
by developing and improving data augmentation methods for deep learning model
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classification. Different augmentation approaches are presented and applied to various
cases of disease detection for both images and sound datasets.

1.3. Aim of the Work

This dissertation aims to improve data augmentation methods for better
generalization and modelling of small datasets in image and sound recognition
systems.

1.4. Task of the Work

The following tasks have been established to fulfil the intended purpose of the
thesis:

1. Review and analyze literature on the existing data augmentation methods to
identify efficient methods for the evaluation of small datasets in disease
classification.

2. To introduce and apply the developed augmentation methods on benchmark
image and sound datasets, by aiming to address small data problems and
enhance generalization capabilities and the overall performance.

3. To propose and evaluate the modified augmentation methods for enhancing
disease detection, and to apply these methods to images and sound datasets.

4. To investigate and compare the augmentation methods in specific application
areas to measure the performance and adaptation to real-life scenarios.

1.5. Practical Value

The practical value of the four tasks and the developed methods outlined in the
dissertation is significant in various real-life applications across multiple domains:

1. The novel data augmentation methods used for cassava disease detection have
practical applications in agriculture. By employing image augmentation
techniques, such as blurring and overexposure, the model can identify plant
diseases under varied field conditions more accurately. This approach can
lead to more effective plant disease management, thus potentially increasing
the crop yields and benefiting farmers and economies reliant on agricultural
production. Moreover, in the future, this method could be adapted for other
applications, such as industrial quality control. In manufacturing, such as in
the automotive or electronics industries, this method could be used to detect
defects in products under varied lighting and environmental conditions,
thereby enhancing the accuracy of automated inspection systems.

2. The VDRRE image augmentation method for facial palsy detection has
important implications in healthcare. The ability to accurately detect and
classify facial palsy from images can streamline diagnosis, thus allowing for
faster and more effective treatment. This method could be particularly
valuable in remote or under-resourced areas where access to specialists is
limited. Moreover, in the future, the method could be applied in the
development of advanced face image-based emotion recognition systems to
better understand human emotions and reactions in real time.
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3. The covSMOTE augmentation technique for skin melanoma detection
addresses a critical need in dermatology and oncology. Data enhancement for
the SqueezeNet model improves the detection and classification of skin
melanoma, which is crucial for early diagnosis and treatment. This method
could be integrated into telemedicine platforms, aiding in the screening
process and potentially reducing the burden on healthcare systems. Moreover,
in the future, the covSMOTE technique, which focuses on handling class
imbalances, could also be adopted for other applications, such as agricultural
pest detection. By training models to recognize minor yet critical variations
in pest appearances, this method can help in the early detection and
management of crop infestations, thereby potentially preventing large-scale
agricultural losses.

4. The augmentation method involving noise injection and color transformation
for COVID-19 detection has significant implications for the management of
the pandemic and public health. The ability to detect COVID-19 from breath
sounds by using Al could lead to the development of non-invasive, rapid
testing methods. This can facilitate widespread screening, especially in areas
where the traditional testing methods are logistically challenging. Moreover,
in the future, this method could also be repurposed for other domains of
application, such as environmental monitoring, specifically, in detecting and
analyzing sound pollution in natural environments or animal sound datasets,
thus contributing to biodiversity research and environment conservation
efforts.

These methods demonstrate how advanced data augmentation techniques can
significantly enhance Al model performance in diverse fields, ranging from
agriculture to public health. By improving the accuracy and efficiency in detection
and diagnosis, these methods have the potential to positively impact various sectors
and contribute to better societal outcomes. By repurposing and adapting these
advanced techniques, they could solve a wide array of complex problems in various
unrelated domains, thus showcasing the transformative potential of Al and data
augmentation in a multitude of sectors.

1.6. Thesis Statements

The application of data augmentation methods has been demonstrated to be a crucial
tactic in augmenting the capabilities of artificial intelligence models in several fields.
By altering and increasing the training dataset, this method improves its size,
diversity, and resilience, which, in turn, boosts the effectiveness of machine learning
models in handling challenging tasks.

1. Voronoi Decomposition Random Region Erasing (VDRRE) applies random
irregular occlusion, by capturing a diverse array of facial expressions and
unique variations found in individuals with face palsy. Additionally, the
combination of Image Color Histogram Equalization and Image Quality
Reduction techniques forms a hybrid augmentation method which introduces
diversities in the visual representation of cassava leaf disease images. This
simulation includes distinct lighting conditions, image qualities, and levels of
noise for the cassava disease recognition task. Furthermore, the application of
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the CovSMOTE method facilitates the generation of synthetic samples for the
minority class (skin melanoma) while considering the covariance structure of
the data. These augmentation techniques, by generating larger and more
varied sample collections, effectively improve the deep learning model’s
generalization and precise classification of unseen images.

In the field of sound signal processing, the conversion of sound signals to
spectrogram images allows for the application of image augmentation
techniques to increase the diversity of training data samples. A more thorough
and varied dataset is produced by using techniques including pitch shifting,
time stretching, adding noise, and changing spectrogram properties. This
enhanced dataset improves the model’s training efficacy, thus enabling it to
identify and categorize audio signals more accurately in various settings and
conditions.

1.7. Scientific Approval

All of the findings in the thesis are unique and are represented by nine

publications in total. In the fields of informatics, machine learning, and electronics,
there are six international scientific journal articles referred to as ISI Web of Science
with a citation index and three conference proceedings publications. The remainder is
made up of experimental arrangements, brief unpublished observations, or well-
known facts.

1.

2.
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List of published papers on the dissertation subject:

Data Augmentation and Deep Learning Methods in Sound Classification: A
Systematic Review. Electronics, 11(22), 3795.

Detection of COVID-19 from Deep Breathing Sounds Using Sound Spectrum
with Image Augmentation and Deep Learning Techniques. Electronics,
11(16), 2520.

An Ensemble Learning Model for COVID-19 Detection from Blood Test
Samples. Sensors, 22(6), 2224.

Cassava Disease Recognition from Low-Quality Images Using Enhanced
Data Augmentation Models and Deep Learning. Expert Systems, 38(7),
el2746.

Few-Shot Learning with a novel Voronoi Tessellation-Based Image
Augmentation Method for Facial Palsy Detection. Electronics, 10(8), 978.
Malignant Skin Melanoma Detection Using Image Augmentation by
Oversampling in Nonlinear Lower-Dimensional Embedding Manifolds.
Turkish Journal of Electrical Engineering and Computer Sciences, 29(8),
2600-2614.

BiLSTM with data augmentation using interpolation methods to improve
early detection of Parkinson’s disease. In 2020 15" Conference on Computer
Science and Information Systems (FedCSIS). pp. 371-380. IEEE.

Data augmentation using principal component resampling for image
recognition by deep learning. In Artificial Intelligence and Soft Computing:
19" International Conference, ICAISC 2020, Zakopane, Poland, October 12—



14, 2020, Proceedings, Part Il 19 (pp. 39-48). Springer International
Publishing.

9. Abayomi-Alli, O. O., Sidekerskiené, T., DamaSeviéius, R., Sitka, J., & Potap,
D. (2020). Empirical Mode Decomposition Based Data Augmentation for
Time Series Prediction Using NARX Network. In Artificial Intelligence and
Soft Computing: 19" International Conference, ICAISC 2020, Zakopane,
Poland, October 12-14, 2020, Proceedings, Part 1 19 (pp. 702—711). Springer
International Publishing.

The full list of publications can be found in the chapter titled LIST OF
PUBLICATIONS OF OLUSOLA OLUWAKEMI ABAYOMI-ALLI ON
DISSERTATION TOPICS

1.8. Scientific Novelty

The scientific novelty of the dissertation lies in its potential to advance the
domain of artificial intelligence by addressing the challenges of small data analysis
and improving the outcome of deep learning models through innovative data
augmentation approaches. This research presents several novelties of augmentation
methods for various unique image data with decision analysis emphasis on the image
features for the identified problems.

First, a novel augmentation method based on random erasing has been proposed
as the Voronoi Decomposition-based Random Region Erasing approach was adopted
for generating variations of synthetic datasets. The detection accuracy showed a better
performance of 99.34% accuracy than the currently existing augmentation methods
with GAN with an increasing accuracy rate of +4.53%.

Secondly, the convolution of the Chebyshev orthogonal functions with the
Probability Distribution Functions (PDFs) and the image quality reduction
augmentation method has been applied to enhance cassava disease detection. The
investigation showed that low-quality images achieved 97.7% accuracy while a
+2.0% accuracy increment was obtained with the original (high-quality) and
augmented dataset (low-quality) images with an overall accuracy of 99.7%. The
proposed augmentation methods showed improved performance in comparison to
some of the existing methods using the analyzed datasets.

Third, the investigation of the proposed CovSMOTE augmentation method for
skin melanoma detection achieved the optimal detection accuracy of 92.18%
improvement in comparison with some of the currently existing methods.

Fourth, this research investigated the influence of data augmentation methods
which are color/photometric and noise injection methods in sound datasets. These
augmentations have been applied to two feature extraction approaches, specifically,
Mel spectrogram and GFCC, and the detection accuracy showed an improvement in
the detection rate in comparison to the state-of-the-art methods with an accuracy of
90.1%.

1.9. Thesis Organization

There are six chapters in the thesis, as depicted in Fig. 1.1: The first chapter
serves as an introduction and gives a brief overview of the originality, goals, and
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objectives of the study. Chapter 2 provides a comprehensive overview of artificial
intelligence methods. Small data analytics and data augmentation methods have been
analyzed in detail. This chapter further describes in detail the literature review and the
different applications domain of data augmentation in small data analysis to get the
readers familiarized with terminologies and application areas that will be
implemented in the subsequent chapters. Chapter 3 describes the summary of the
different publicly accessible small datasets used in this dissertation. In Chapter 4, the
materials and the proposed methodology are described. Further architectures and
theoretical backgrounds of the proposed augmentation techniques are presented.
Chapter 5 describes the obtained experimental results and explains in detail the
comparison results of the proposed methods with state-of-the-art methods. Finally,
Chapter 6 summarizes the conclusions and provides future recommendations.
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2. LITERATURE REVIEW OF ARTIFICIAL INTELLIGENCE METHODS
FOR SMALL DATA ANALYSIS
In this chapter, analysis of the existing literature is carried out, and a detailed
overview of the basic principles of small data analytics is provided. The application
of data augmentation methods and machine learning methods for images, and sound
data is analyzed, and the performance methods are elaborated upon.

The subsections in this chapter include (2.1) an overview of the artificial
intelligence methods, (2.2) an overview of small data, and (2.3) an overview of data
augmentation methods. (2.4) serves as a related study in the computer vision task,
whereas (2.5) describes the related study in sound classification. (2.6) provides the
shortcomings and research gaps in the currently existing studies, and, finally, (2.7)
provides the review summary.

2.1. Overview of Artificial Intelligence

Machine Learning (ML) can be referred to as the field of study which enables
computers with learning potentials with no specific program. Over the previous
decades, a lot of progress has been made in advancing machine learning algorithms
by increasing computational power and the volume of data [21]. Future prediction on
the relevance of ML algorithm states that a combination of imaging data sets with an
increasing growth in computer vision will rapidly increase the overall performance,
thus exceeding human accuracy [22]. The future power of clinical applications or
medical informatics lies in the effective and efficient application of Al methods in
recognizing various diseases [23, 24].

The application of conventional ML approaches in disease detection, such as
Support Vector Machines [25], Neural Networks, Naive Bayes, Random Forests,
Decision Trees, etc., has been used in categorizing or classifying visuals. Recently,
the paradigm shifts in algorithms based on the required data and processing capacity
for learning and relearning millions of parameters have attracted focus on research
majorly in the deployment of deep learning models for medical image diagnosis [26].
The function and impact of advancement in deep learning and machine learning
algorithms for automating medical diagnoses has thereby enhanced the clinical
decision-making process [21, 27]. Nevertheless, because of recognizing the paucity
of clinical data and the effect of this deficiency on the performance of these learning
algorithms, the research focus has been tailored towards maximizing the available
small data and increasing the overall model performance [5, 28].

Deep Learning (DL) is a typical Al method which is based on sets of machine
learning approaches biologically motivated by the brain structure [29]. The usage of
Al methods varies, and the different Al methods include Convolutional Neural
Networks (CNN), Recurrent Neural Networks (RNN), and Reinforcement learning.
The adoption of CNN models has shown significant positive results and great
consistency, especially in image classification tasks [30]. However, as promising as
the outcome of deep learning models mainly in medical imaging systems, it still
suffers from inadequate access to larger and well-annotated datasets [21]. Some of the
reasons for data scarcity in the medical domain include patient privacy, ethical and
legal issues, etc. In the past years, the application of deep learning has been effectively
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used in diverse research fields, ranging from computer vision tasks, gaming,
speech/audio recognition, natural language processing, etc. [31]. DL methods are the
most often used techniques for feature recognition and estimation, especially in image
classification tasks [32]. Recently, the advancement in image and object recognition
systems has increased the need for improvement in terms of the use of deep learning,
such as CNN architectures, in many recognition problems [26, 29]. Subsequently,
there have been a series of accomplishments in the adoption of deep learning models
in the areas of image detection, object detection, video understanding, etc. [33]. This
advancement in the deployment of deep learning models has improved the detection
and prediction accuracy, simplified resource workflow, while also providing prowess
to underserved populations, and produced biological discoveries and insights [21].
Other deep learning methods presented in the literature include the following: the
unsupervised Convolutional Deep Belief Network [34], and the back-propagation
neural network [35]. Applying deep learning methods on small datasets is rather
challenging [36]. Hence, this study is aimed at presenting an extensive overview of
small data analytics, the possibilities, and difficulties to be encountered, and the
impacts of Al methodologies in enhancing the prediction and decision-making policy.

One of the significant challenges involved in using learning classifiers for
classification and prediction tasks is the issue of small data samples and highly
imbalanced classes, which results in poor generalization of training models and the
overfitting of such models, etc. [37]. The impact of insufficient data samples in
learning classifiers cannot be over-emphasized. Related studies have shown that a
larger training dataset enhances classifier generalization characteristics of data, thus
reducing the problems of overfitting the training data. The influence of recent studies
in the use of learning algorithms, first and foremost regarding the applications of
neural networks in identifying patterns in small datasets, is of top interest and
relevance. It is also fascinating to know that the application areas of some of these
advanced Al approaches still suffer from a lack of adequate or large amounts of real-
life data for training these models effectively [38].

2.2. Overview of Small Data Analytics

Small data are defined by their typically low volume, discontinuous gathering,
and restricted variety, and are typically created to address specific concerns [39]. The
majority of big data is unstructured and ambiguous, thus rendering it undesirable for
use in the construction of an efficient deep-learning model. However, bridging the
gap between data size balancing and meticulous data processing is vital to developing
high-performance deep-learning algorithms [21]. The size of sample data can be said
to be small if the number of training samples is relatively slow according to the
Vapnik-Chervonenkis (VC) dimension [40]. The studies of limited data will continue
to thrive irrespective of the rapid expansion of big data because of their track records
in providing answers to specific concerns. To maximize the value of small data
through combination and sharing, there will be a growing effort to harmonize small
data about data standard formats, metadata, and documentation. To do this, the
adoption of new data structures will be increasingly used to aggregate, link, and
extend the data from these investigations. While, by exposing individuals to the new
data science epistemologies, scaling tiny data runs the risk of drawing them into
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undesirable activities, such as dataveillance, social sorting, control creep, anticipatory
governance, etc. [39]. A comparison table showing the differences between
small and big data is illustrated in Thl. 2.1.

Table 2. 1. Comparison of data types: small data versus big data

Criterion Small Data Big Data
Manageable in size, ranging from Characterized by massive volumes, often
Volume bytes to gigabytes. Easier to store terabytes to petabytes, requiring advanced
and process with traditional tools. data processing tools and storage solutions.
Generally high quality due to the Potential quality issues due to the vast size.
Quality manageability of the dataset. Ensuring consistency and accuracy becomes
Easier to clean, validate, and more challenging, which leads to possible
ensure accuracy. data noise and errors.
Typically, well-structured and Includes a mix of structured, semi-
s formatted, making it structured, and unstructured data,
tructure - - L .
straightforward to process with necessitating more complex processing
standard data analysis tools. methods and technologies.
Accumulates at a slower pace, Characterized by high velocity, with data
Velocity allowing for easier capture and pften streaming in regl time. Re;quires robust
storage without the need for real- infrastructure for rapid processing and
time processing. analysis.
Focuses on specific attributes or Aims to be exhaustive, capturing all
L characteristics, representing a possible data points related to a particular
Exhaustivity - - - :
subset of information. domain, which leads to a more
comprehensive dataset.
Limited in variety, often confined Encompasses a wide range of data types,
Variety to specific formats and data types. including text, images, videos, sensor data,
etc., from a variety of sources.
Scalability is often not a primary Requires scalable architectures and cloud-
- concern, as the traditional data based solutions to accommodate the rapid
Scalability . - .
storage and processing systems are | growth in data volume and complexity.
typically sufficient.
Suited for targeted, specific Ideal for broader applications where the
applications where high quality goal is to derive patterns, trends, and
Purpose and precision are crucial, like in insights from large datasets, such as
medical research or small-scale consumer behavior analysis or large-scale
market analysis. environmental monitoring.

Based on the comparison criterion in Table 2.1, the scope of this work define
small data as relatively insufficient in size (volume), characterized by a limited
sample (variety) and restricted diversity (exhaustivity). Small dataset-related concerns
are regarded as the main key problems in early prediction as these issues are found in
some medical records, especially in uncommon genetic diseases such as
spinocerebellar ataxia, with extremely few records globally [41]. In this dissertation,
the experiment and analysis were done on three data type representations which are
images, audio, and numerical data.

Data analytics is the application of powerful algorithms and process
computations used to scale up the existing statistical methods, thereby building
predictive, simulation and optimization models [42, 43]. Studies in the most recent
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decades have shown that the prediction of patterns in small datasets requires future
research interest, especially in biological data analysis [44]. The challenges of a small
sample size have been stated to be a major factor affecting the inaccuracies of
prediction models [45]. The use of huge amounts of data is needed for artificial
intelligence training [46]; however, the lack of a huge training dataset is a serious
challenge which limits the use of profound DL technigues and results in model over-
fitting drastically on small training datasets [29]. Analyzing small data samples is very
challenging in image or face recognition systems. This is because subjects with few
samples under trained models might show unsatisfying performance mostly when
applying single-sample algorithms [47]. In addition, analyzing data, especially in
image processing (such as for disease detection), requires continuous and updatable
disease labels and models [46]. Thus, learning from small samples will continue to
remain a problem in machine learning [38]. The ability to remove vital characteristics
from small data is the major focus of small dataset learning. However, learning from
small data suffers from a variety of biases, such as high costs of a collection or
annotation of suitable data [48], and unclear or prohibited license of data usage [49].
The necessity to create credible models and to secure good inference from a small
dataset for an increasing accuracy is still a significant issue [50]. Some of the methods
explored by researchers in enhancing the performance of models for the training of
small datasets include implementing improved models developed from other huge
public datasets, such as ImageNet and using artificial training data samples [29, 51].

2.3. Overview of Data Augmentation Methods (DAM)

Data Augmentation is a pre-processing step in machine learning and deep
learning where the original dataset is transformed and expanded to create new training
samples [52]. This application is popularly used on small datasets to enhance the
guantity of the training data and thus overcome the problem of overfitting. Hernandez-
Garcia et al. [53] summarized the aim of data augmentation as the ability to achieve
generalization without reducing the representational strength of the models and
changing other hyperparameters. Thus, data augmentation methods can be applied
differently, such as linear or non-linear transformation, the addition of auxiliary
variables, and data creation using generative models [54]. Gémez-Rios et al. [55] also
described data augmentation as systematically applying deformations to raw input
data to significantly increase the quantity of training datasets. The spatial patterns of
the target classes should not be altered by the applied deformations. The application
of data augmentation cuts across different areas, such as NLP [56, 57], speech
recognition [58], facial recognition [59], motion detection [21], disease detection [60],
etc. The data augmentation is focused on enhancing the training dataset’s volume and
diversification, reducing overfitting and improving the robustness and generalization
of the model. The augmented data is used to train the ML models, providing additional
training examples, and helping to enhance the accuracy of the model. Furthermore, it
also boosts the overall efficiency of deep learning models, as well as the general
stability, and the standard of training outcomes [61], which serves for solving ‘small
data problems’ [28]. To maximize the reliability of deep learning models on small
data, further practical solutions, such as dropout regularization, transfer learning,
pretraining, and batch normalization, have been created [56, 62, 63]. Image
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augmentation can be achieved through various conventional or random
transformations methods, namely, scaling, rotation, flipping [64], width shift, height
shift, random cropping [65], shear, zoom, random erasing [66], and dropout
regularization [18, 67], addition of noise (salt and pepper, Gaussian noise, Poisson
noise), and sample synthesis (using generative models), elastic deformation [68],
parameter expansion [69]. Wong et al. [68] applied a normalized random
displacement field u(x,y) for every single pixel location (x,y) where a unit
displacement vector in an image is specified as R,, = R, + au, where R,, and R,
specify where every pixel is located in the original and warped images. Other
interesting approaches are the block-out method [70], cut-out [71], the Unsharp
Masking Method (USM) [67], and SMOTE [72].

In the recent times, the use of DAM for speech recognition has been an active
research area which focuses on using varying procedures to change sound. Examples
of methods proposed in previous studies are Vocal Tract Length Normalisation
(VTLN), Speed perturbation, SpecAugment [58], and Data Warping [68]. Another
interesting area where DAM has been deployed is also in reinforcement learning. Jang
et al. [73] introduced a K-mixup using the Koopman invariant subspace to increase
the training sample size. The duration-modification approach was proposed by [74]
in augmenting the training data for the detection of dysarthria speakers. Other
methods, such as the addition of background noise, room impulse response, pitch and
time shift, etc., have also improved the diversity and variations of training data in
sound/audio classification tasks. There are some advanced augmentation methods,
such as deep Conv GAN [75], and Wasserstein GAN [76] as well. The outstanding
capabilities of DAM methods in sound or audio classification tasks have aided
classification performance and the overall competence in many other areas of
application. However, the use of DAM techniques in small datasets suffers from low
variance within severity classification, thus affecting the performance of the learning
model. A categorization of some of the existing DAM techniques in computer vision
applications and audio/sound applications is presented in Fig. 2.1, while Thl. 2.2
shows a summary of categories of augmentation methods and the prevailing
limitations. In the following subsections, previous work in the application of Al
methods in small data analytics shall be addressed.

Table 2. 2. Comparison of Data Augmentation Methods

Categories of . -

References Augmentation Methods Shortcomings of Existing Methods
Transformation methods o Inability to increase generalization
(translation, rotation, capabilities

[771 [781 [50] flipping, scaling, cropping, | o Generation of highly correlated
and shearing) samples
Elastic transformation o Creating highly unrealistic
[71]

methods samples
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o Possibility of harming the
performance of the model when
improperly applied

Pixel-level transformations

[65] [79] [80] (Photometric methods)

Random occlusion methods
[81] [66] [82] (cutout, cut mix, hide and
seek, multicut, etc.)

o The model may result in
information loss

o The model is prone to mode
collapse due to lack of diversity
o GANs are extremely difficult to
[83] [84] [85] [86] train
[87]Click or tap | Generative (Adversarial) o The generated samples do not
reflect the visual characteristics
here to enter | Networks O
or distribution of true samples
text. (GANs, VAE) o The model requires high
computational cost and
complexity (Memory and Time)
to generate high-resolution and
realistic images

Oversampling

SMOTE Flip

Rotation
. . Shear
Geometric Transformation Rescale/Resize
: Cropping
Gaussian Zoom (in/out)

Computer Vision < Salt and pepper

Brightness adjustment
Intensity disturbance
Photometric Transformation Contrast normalization

Hue
Saturation

Generative Adversarial Network (GAN)]

Categories of DAM

Generative Adversarial Network (GAN)]

Masking

Frequency domain (SpecAugment)}{Werping

Mixup

MUSAN
| ~{ Additive Noise Babgle
Sound/ Audio otatic
Factory/White/Volvo

Stretching
Shifting
Time and Pitch domain Speed)pitch adjustment
VLT
Dynamic Range Compression

Interference
e : Label smoothing
Other momflcatlon}éowrlapping o

Channel distortion

Fig. 2. 1. Categorization of data augmentation methods in the literature. The category is
divided into two parts for images and sound classification methods
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2.4. Related Study in a Computer Vision Task

In this subsection, a literature review of methods and techniques used in the
computer vision domain, especially in application areas like facial palsy, plant
disease, and skin melanoma classification, shall be presented [60, 88, 89].

2.4.1. Related work in facial palsy detection

Facial palsy, often known as Bell’s palsy, is a severe form of paralysis of the
human facial nerves which impairs the ability of the affected facial muscles to contract
[90], as demonstrated in Fig. 2.2. On the damaged side of the face, some of the
symptoms include a deformed face and dysfunctional facial expressions. Patients with
face palsy who are impacted by the disease may have severe disruptions in their daily
lives. As the disease advances, there are frequently physical, psychological, and social
difficulties that are related to it that can affect a person’s quality of life, cause sadness,
or cause them to be socially stigmatized [91]. Currently, only experienced doctors can
identify facial palsy through an observation of facial symmetry and analysis of
dysfunctional facial expressions. The lack of adequate methods for the accurate
assessment of the function of the nerves in the facial region, which could be significant
in understanding the progression of the disease, is the main obstacle in the detection
of facial palsy [92].

Fig. 2. 2. Sample of a palsy face image [89]

While many previous methods used handcrafted features and classifiers, an
advanced computer-vison approach for diagnosing and automatically identifying
palsy in the face has been developed recently [93]. The electronic facial paralysis
assessment method was established in a study by [94], which uses facial motion
analysis to examine patients with synkinesis as well as Bell’s palsy (involuntary
contraction of muscles). To distinguish between tendencies in both local and global
regions of facial palsy, authors in [95] suggested multiresolution local binary patterns
(LBPs) by measuring and evaluating the resistor-average distance between the facial
features and the symmetry of facial movements. The facial palsy symptoms were
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measured and evaluated by using SVM. They used a dataset of 197 videos, and their
suggested model had an impressive accuracy rate of 94%. An Active Shape Model
(ASM) was presented by [96] for the recognition of unique features in patients’ faces.
Limited-Orientation Modified Circular Gabor Filters (LO-MCGFs) were suggested
by the authors of [97] for use on facial images of 75 palsy faces and 10 healthy faces.
Jiang et al. [98] uses laser speckle contrast imaging, while [99] presented a deep
hierarchical network (DHN) using cutting-edge YOLO-v3 [100] architecture. Guo et
al. [101] developed a CNN model of prediction and feature extraction by using the
evaluation of unilateral peripheral facial paralysis. In Storey et al. [102], the CNN
framework was applied, while Meta-learning methods were proposed by [103] to train
neural networks to identify new classes, thus addressing the few-shot learning
challenge. In addition, the effect of DAN has facilitated the ability of classifiers to
learn how to categorize objects on a scale smaller than the norm. Thus, the model can
detect different image kinds in various regions of the frame.

The application of data augmentation methods has enhanced the neural network
capacity for generalization while preventing overfitting. Some of the data
augmentation methods applied in face palsy detection include the conventional
methods, such as flipping, cropping, masking, rotations, GAN, etc. Meanwhile, Ten-
Harkel et al. [104] concluded that the introduction of geometric transformation
methods only gave a relatively small improvement when using augmentation methods
in facial palsy detection. The impact of data augmentation methods achieved a mean
accuracy of 98 +1 % and 90 + 7 % without augmentation [105], while AUC
performance with DAM methods scored 76 + 0.04 % [106], yet the best accuracy
achieved by using the traditional DAM gave 67.24% in comparison to the previous
methods [107]. Some of the shortcomings of the existing DAM methods in facial
palsy detection include the following: poor quality of augmented images, lack of
diversity in the intensity levels of palsy, a very noisy dataset with the least correlation
or relationships between the original and the synthetic dataset, a low specificity rate,
etc.

2.4.2. Related work in cassava disease classification

In the sub-Saharan region of Africa, cassava is, in fact, the main significant crop
which serves as a source of carbohydrates for human sustenance and is cultivated by
almost 80% of small farmer households [108, 109]. This crop has demonstrated its
value in enhancing the African economy by boosting exports, creating jobs, and
reducing poverty [110]. Considering the need to ensure zero hunger (sustainable
development goals) to meet the growing global population, cassava yields are still
inadequate for sustenance. Some of the factors with a detrimental impact on crop yield
and productivity include out-of-control diseases constantly affecting plant leaves (see
Fig. 2.3), soil fertility issues, and erratic climate change patterns [111, 112].
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Fig. 2. 3. Sample of cassava diseased leaf (left); healthy leaf (right)

To promote and enhance early diagnosis and detection of cassava infections and
consequently increase crop Yyields in general, machine learning techniques must be
applied. However, there is still a major problem with getting sufficient data for
machine learning algorithms to recognize plant diseases. Secondly, time complexity
and the high cost of hiring specialists to annotate these diseases need to be overcome
[113]. The importance of image quality has been given minimal attention in many
computer vision models. Although most Al models for image recognition tasks have
been trained on datasets of better-resolution images, the input images for real-world
applications cannot be assumed to be of high quality [114, 115]. In addition, while
prior work on the use of NN produced some good outcomes in large part due to the
use of better-quality datasets, actual applications suffer from low-quality images that
are impacted by a variety of issues, such as a limited dynamic range, noise, and poor
resolution, etc. [116]. Hence, the classification of poor-quality images, or, in the worst
case, synthetic samples is a challenging and intriguing study [117, 118].

The introduction of the data augmentation approach has helped significantly to
promote effective classification as many of the existing augmentation methods
proposed by prior studies have been elaborated mainly on an increase of the training
samples. Interesting cases of augmentation — such as geometric transformation (zoom,
shifting, shear, translation, reflection, random rotations, flipping, etc.) have been
safely employed. These simple augmentation methods have proven effective as the
original feature representation of the data is not lost during transformation. Other
advanced DAM methods, such as variants of GAN, autoencoder variation method,
etc., have been used to improve the model generalization. Incorporation of several
geometric methods has also improved the training of learning models by boosting the
model’s ability to learn different variations of data samples and thus assisting in
mitigating the overfitting.

In addition, in order to promote and enhance early diagnosis and detection of
cassava illnesses and increase crop yields, effective machine learning methods must
be applied. The difficulty of gathering adequate data for machine learning programs
to recognize plant diseases is still a significant issue. DAM methods, such as AR-
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GAN, obtained an increased classification outcome of +5.2%, LeafGAN improved
the detection classification by +7.4% [119], CycleGAN achieved an F1-score of
81.6% [120], DCGAN and WGAN methods achieved a performance increment of
+17% F1-score rate [121], modified CycleGAN achieved the best accuracy of 67.1 +
0.010 % in comparison with the baseline 62.6 + 0.015 % [122].

According to recent studies, deep learning-based approaches have consistently
shown outstanding outcomes in diverse study fields [123-125]. The CNN adoption is
more effective in solving image classification tasks due to its superior capacity to
extract useful attributes from data [126] in comparison to the traditional ML
algorithms [127]. Some interesting studies in plant disease classification methods
include the weak DenseNet-16 architecture [128], a classification using two deep
learning architectures GoogleNet and AlexNet [124], Deep Residual Neural Network
[129-131], ResNet and SegNet models [132], VGG-16 and 19 [133], a depthwise
separable CNN based on MobileNet and VGG [134], VGG16, ResNet, Inception V4,
and DenseNets [135], adaptive AANN [136], and the radial basis function neural
network [137, 138].

2.4.3. Related work in skin cancer detection

Nearly 100,000 new occurrences of malignant melanoma are recorded every
year, making it one of the deadliest forms of skin cancer in Europe [139]. Estimates
reported by the World Health Organization (WHO) stated that 12 million extra people
will be at risk of passing away by the end of 2030, accounting for nearly 13% of the
worldwide mortality rate [140]. According to recent research, the most important
predictive factor for survival in this disease is early identification [141]. Now, hospital
pathologists rely on ocular examinations for a large portion of the patients they
review. Most of the time, in typical clinical settings, dermoscopic melanoma detection
sensitivity is less than 80% [142]. It might be quite difficult for a pathologist who
lacks the expertise to differentiate melanoma from nonmelanoma tumors. The manual
approach to finding skin lesions requires a significant human effort and is error-prone
given the level of knowledge and the amount of time needed for visual inspection
[143]. The use of computer-aided processes needs to be improved to accurately detect
or minimize the risk of delayed detection of this cancer, thus enhancing the survival
rates [144]. Due to apparent similarities, intraclass differences, and artefacts,
extracting the relevant features from dermoscopic images by exploiting manually
created texture and color features may be exceedingly difficult [145]. As a result, real-
time dermoscopic image analysis is still a popular research area for artificial
intelligence researchers. The development of Al techniques which would benefit
patients and physicians by intelligently identifying and predicting skin cancer
disorders is the focus of the current research efforts. Considering the issue with the
patient privacy leading to limited skin melanoma publicly available datasets, data
augmentation has helped to pave the way to addressing the issue of data scarcity by
applying augmentation methods, such as GANSs, variational autoencoder methods, etc.
Other simplified methods, such as applying light intensity, noise, oversampling, cut-
out, random erasing, etc., have improved skin cancer training by using artificial
intelligence methods.
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The identification and categorization of skin diseases has benefited greatly
from Deep Learning (DL) techniques [146]. In identifying skin melanoma, several
deep learning architectures have been proposed, including the ResNet residual
network [142], attention-residual-learning [38], AlexNet [147], VGG [148], etc. The
major difficulty in creating clinical-level Al systems is the requirement for a big
dataset when applying advanced Al approaches [45, 149]. Secondly, the available
datasets suffer from imbalance class, high-dimension features, noisy data, irregular
sizes, and poor quality. The development of big datasets has been the focus of
research; however, there are obstacles to overcome, including the lack of imaging
standards and dermatology metadata, patients’ confidentiality concerns, image
license, detection accuracy, etc. In the event of limited data, data augmentation can
aid in enhancing the accuracy of learning algorithms [150]. The most popular DAMs
in skin melanoma are random picture manipulation, such as horizontal and vertical
flips, random brightness, contrast, cropping, zooming, rotation, and histogram
scaling, among others [151, 152]. The applications of detailed data analysis
techniques must be made with a specific aim to extract the relevant features from these
limited and unbalanced data.

The issue of unbalanced and tiny datasets has been addressed by using
techniques such as feature space sampling, which also includes SMOTE [153],
random under-sampling, clustering under-sampling, random over-sampling, etc.
Fixed and random rotation angle techniques were used by [147], whereas color space
transformation from RGB to HSV was researched in [123]. Thus, the use of DAM has
positively impacted the performance of classifiers, improved the generalization and
secure fundamental distribution of the training data. Thus, DAM can be defined as the
process of enhancing the training data and the variance of particular data [88, 154].
The authors of [155] presented an improved DAM based on the covariant SMOTE
technique to produce augmented data for training, enhanced the effectiveness of the
classifiers, and mitigated model overfitting. Rotation and translation DAM achieved
the best classification results of 99.29% [156], the conventional DAM based on
zoom, shift, flipping, random transformation and rotation improved the rate to 81%
in comparison with the 78% baseline result [157]; low-cost augment (LCA) strategy
reached the best accuracy of 85.3% [158], the random rotation approach obtained the
highest accuracy of 95.09 % [159], etc. Thl. 2.3 presents a summarized highlight of
the augmentation, and classification methods, while highlighting the contributions,
and shortcomings of some selected related studies as well as the application domains
in computer vision tasks.
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Table 2. 3. Comparison of selected related works in computer vision task

detection

LelAP

and reduction of
the model size,

Ref. Domain DAM Method Strength(s) Limitations
Facial Random Inter-rater
[104] Grading horizontal flip, CNN Overcome reliability  of
System zoom, and overfitting
- the CNN
rotation
Facial palsy | Geometric SVM, KNN, | SVM was able to | The authors did
diagnosis transformation MLP, achieve better | not  evaluate
[160] multinomial performance results  with
logistic results in cases of | SOA methods
regression partial occlusion
(MNLR) of the face
Facial palsy | Oversampling Machine Improved No further
grading learning performance evaluation with
[59] system algorithms results that could | the existing
aid in  joint | methods on the
therapeutic dataset
efforts
Facial SMOTE Ensemble Combat issues of | Limited dataset
[105] paralysis learning class imbalance and lack of
classification algorithms severity
categories
Facial Noise addition, | MTCNN Overcome Limited dataset
Paralysis color overfitting and poor
[161] | recognition temperature, problems and | labeling of the
and rotation poor internet dataset
generalization
Person re- | Background CNN Geometric Computationall
identification | substitution, transformations y intensive
[162] geometric and significantly
color increase the
transformation performance
Automatic Translating and | Combination | Better detection | Lack of
facial nerve | rotating of  Parallel- | with less | various facial
[163] | paralysis hierarchy processing time expressions
CNN and
LSTM
Facial palsy | Random 3DplasyNet A small | Computational
[102] grading flipping, model improvement in | overhead of the
rotation,  and the performances | framework
color jitter
Automatic Generative Cascaded The study was | Limited public
facial adversarial CNN able to | data for facial
[164] paralysis Network successfully palsy studies;
detection (GAN) address the issue | computationall
with limited | y intensive
training data
Flipping, VIiT  model | Effective pruning | The issue with
Leaf disease zooming, based on self- | of unimportant | data
[165] cropping attention and | attention heads | complexity is a

result of image
quality
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with SVM

Ref. Domain DAM Method Strength(s) Limitations
speed, and
training time
Axial self- | Inception The proposed | Feature
attention convolutional | model can acquire | misrepresentati
vision high-level on leads to
transformer knowledge  for | misclassificatio
. (IcvT) identifying plant | ns, especially
[166] Plant' 'dlsgase diseases when
identification o
classifying
diseases with
similar
epigenetic
features
Random  flip, | DLMC-Net Reduction of | Due to small
cropping, trainable and class
random parameters imbalance, the
Multi-class contrast, re_su.lting in performar]ce is
[167] | disease randorr_1 minimal _ compromlsed
detection saturation, and computation for the citrus
brightness complexity of the | and cucumbers
model classes. Over-
fitting of the
network
Rotation, Deep CNN | Reduced Time-
flipping  and | based on | parameters led to | consuming of
Grapevine im_age EfficientNet an improved | the proposed
[168] | disease brightness dete(_:tlon ) rate. | model
detection The issue Wlt_h the
time-consuming
process was
overcome
Intensity Deep and | Enhanced Misclassificati
disturbance, faster CNNSs | accuracy and | on of
noise addition, | (VGG- accelerated Alternaria leaf
transformation, | INCEP detection speed spot images
Apple disease rotation, and | Network due to
[169] detection flips Model) similarity in
geometric
characteristics
between the
two disease
classes
Zooming ResNet, VGG | The proposed | Poor
Apple disease Rotation, (16 and 19), | VGG-16 model is | generalization
[78] detection Flipping and | and marginally better | in fine-grained
Shearing Inception-v3 than the previous | classification.
results
Deep CNN Significantly Accuracy is
[170] | Tea disease convolutional (VGG16 improved results | still low and
GAN networks) in  comparison | requires further

robustness for

34




Ref. Domain DAM Method Strength(s) Limitations
tea leaf disease
identification

Residual-based- | CNN Improved Longer
[171] Tomato learning performance training time of
disease outcome 10 hours to
train the model
Translations, CNN model | Better Proposed
horizontal (ResNet and | classification method still
reflections, ShuffleNet- performance; suffers from
[130] | Plant species ranQo_m V2) models lower ) overfitting as a
addition of computational result of class
noise, cost imbalance
brightness, or
saturation
Geometrical AlexNet The  proposed | Proposed
random Architecture method gave | model training
Olive plant | transformation improved consumes a lot
[172] di ;
isease accuracy and | of time
achieved  class-
balancing
Shear Rotation, | Weak With fewer | Wastage of
Zoom, Height | DenseNet-16 | parameters, computational
and Width shift Weakly resources and
[128] Citru§ pests Der]seNet-16 !ittle
and disease achieved the | improvement
maximum in accuracy in
accuracy comparison to
SOA methods.
Melanoma Enhanced CNN and | Enhanced High
detection Super- modified automated  skin | computation
[173] Resolution ResNet50 cancer diagnosis | time for
GAN technique training each
(ESRGAN) network
Skin cancer | Rotating and | CNN: RegNetY-320 Poor
classification | flipping InceptionV3, | was significantly | generalization

[174] AlexNet, and | increased of the model

RegNetY-320

models
Skin Random Deep Less overhead The problem of
melanoma rotation Convolutiona uncorrelated

[175]

cancer | Encoder- features map
detection Decoder Net

Skin  lesion | Rotation angle | Deep CNN | Ability to isolate | Extremely low
classification | and novel | (AlexNet and | directional sensitivity rate

[176] Gabor wavelet- | ResNet) information and | when

improve classifying
classification melanoma
Melanoma Balancing CNN The proposed | Relatively high
detection method and | (ResNet50) method  lowers | misclassificatio
DCGANs computational n rate
[177] :
complexity and
allows resource
sharing
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Ref. Domain DAM Method Strength(s) Limitations
Melanoma Rotation  and | Combined Improvement in | High memory
recognition pixel translation | aggregated the classification | consumption

[178] Deep performance of | and

Convolutiona | the proposed | computational
I and SVM | method complexity
classifier
Skin  lesion | Cropping, CNN The accuracy of | The method is
classification | horizontal (GoogleNet, the system was | computationall
[179] flipping and | AlexNEt, improved. y intensive
rotation angle ResNet, Overfitting  was
VGGNet) resolved
Skin  lesion | Cropping and | CNN Visual Highly
analysis horizontal probability- consistency and | computationall
flipping based accurate y intensive
[180] _stepwisg segmentation
integration results were
(PSI) achieved
approach
(ResNet)
Melanoma Rotation angle | Combined Flexibility to the | High
and Naevus | and shifting Gray Level | variation inimage | computation
detection Co- quality for | complexity
occurrence different images,

[146] Matrix thus reducing the

(GLCM), misclassification
SVM and | rate

RBF

(DenseNet)
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2.5. Related Studies — Sound/Audio Application

Originally, the analysis of deep breathing sound dataset combining deep learning
with image enhancement and sound spectrum technique was presented in [181].

2.5.1. Related Work in Sound Classification Methods

It is fascinating to note that the popularity of Al techniques has expanded to
areas like music recommendation, speech detection, etc. [182]. Given their
significance to our daily lives, and the growing demand for efficient and automated
sound classification systems, the currently existing technologies for automatic sound
classification are frequently used in monitoring systems [183], voice assistants [184],
chatbots [185], smart safety devices [186], and in many real-world settings like
engineering [187], industrial [188], domestic [189], urban [190], road [191], and
natural [192] applications.

Systems for sound recognition have been developed by using ML techniques
including Random Forests (RF), decision trees, logistic regression, multilayer
perceptron, and others [193]. The performance of classification models has improved
in the last decade thanks to advanced classifiers, such as DL techniques, which have
shown excellent abilities to learn complicated level characteristics from original data
through the removal of high-level features [194]. Recent paradigm shifts in the
advancement of deep neural network performance apply dropout, regularization, fine-
tuning hyperparameters, momentum gradient descent approaches, etc. [195-198].

CNNs, which are a widely used deep network model, were able to produce
considerable and more accurate training outcomes, and sound classification
approaches have demonstrated an easy shift from basic ML classifiers to sophisticated
deep learning classifiers [199]. However, this method struggles with poor
performance since there is not enough data available to address audio/sound-related
problems, loud-audio-signals, and industrial sounds [200, 201]. Numerous researchers
have been captivated by the idea of using various ML algorithms in sound
categorization because of the extensive applications of deep learning techniques and
diverse architectures [202—-206]. Other proposed DL architectures include MobileNet,
NasNetmobile, ResNet18, ResNet50, and ResNet101 [207]. CNN, LSTM, and
Resnet50 [208], ResNet50 and MobileNet network [209]. CovScanNet [210], the
lightweight deep learning model [211], the Shallow ML algorithm, and CNN [212,
213].

Although deep learning networks have produced some amazing results in the
categorization of sounds and audio, there are still some issues with the presently
existing methods, such as poor results scenarios caused by additional factors such as
reverberations, noise types, channels, etc. [214], inaccurate annotation [215], or
deficiencies in audio feature representation [216]. The introduction of DAM methods
has significantly helped in combating some of these limitations with notable
outcomes. Examples of DAM approaches applied to sound data include a combination
of stretching, shifting, dynamic range compression and background noise increasing
accuracy to +5% [217], the integrated image and audio traditional augmentation
approach was able to obtain the best accuracy of 99.04% when using ResNet152
[206]. Filter-Augment enhanced detection with an increment of +6.5% [218];
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WaveGAN improved the detection rate with increased the accuracy of +2.31% [219],
shuffling and mix-up augmentation obtained an overall F1-score of 89.95% in
comparison with the baseline result of 85.50% [220]. The summary of the categories
of the literature based on the dataset, feature extraction approaches, classification
methods and data augmentation methods used in sound classification tasks is
presented in Fig. 2.4. In addition, the summary of selected studies on sound
classification and their comparison based on methods, contributions and limitations
are illustrated in Thl. 2.4.
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Table 2. 4. Comparison of selected related works in the Sound/Speech classification
task

Refer Feature Augmentat | Classifica
ences Extraction ion tion Strength(s) Limitation(s)
techniques Method
Multi-
domain Computational The R
: . L - misclassification
integration efficiency in real- rate is hiah for
MFCC and (MDI), time SER and also some emgotions
Zer0 Noisy data | MA- improvement  of due to the class
[2] crossing rate augmentatio CapsNet the learning roximit of
(ZCR) 9 n(NDA),and | model capabilities to gmotionsy in
Multiple nonlinear
- arousal and
SNR separability of valence
consolidation speech data dimensions
(MSC)
Real-world
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2.6. Gaps in Literature and Research Opportunities

The contributions of artificial intelligence methods in small data analytics have
continued to show promising results, as shown by the literature. These success rates
can be attributed to the adoption of several mechanisms, such as the application of
regularization methods like label smoothing, dropblock, etc. However, some of the
existing approaches deployed for improving the performance of learning classifiers
still suffer from significant challenges such as:

1. The huge dependency on big datasets in Al applications affects the
performance of machine learning-based models. Therefore, there is a need
to reduce the overall dependence on big data for training robust models.

2. The complexity of sufficiently identifying relevant features due to
variations in the properties of disease patterns, especially in image
classification tasks for disease recognition has been manifested. This is a
major problem associated with some of the existing augmentation
techniques thereby affecting generalization and causing poor recognition
results of the classifier.

3. Theapplication of an unconstrained conventional method, especially the use
of elastic transformation, produces over-augmented or unrealistic images;
however, the significance of the impact of these is still debated in the
literature. In addition, the adoption of erasing approaches suffers from a lack
of smoothness, multiple structural breaks, and inconsistent features within
augmented images. Thus, generating synthetic image samples that differ
completely from the training data or the target data has no significant
influence on the performance of learning models.

4. Some of the advanced augmentation methods, such as GANSs, generate
unrealistic and inapplicable synthetic images and do not necessarily
improve the generalization of the learning model. Thus, it is important to
use augmentation strategy methods which would enhance the feature
learning capability of the model.

5. The high computational complexity of the majority of the existing deep
learning models is based on the use of the same feature weights applied
across different levels. However, to develop a more robust classification
model, it is important to adopt an advanced augmentation model to transfer
learning for better knowledge to deeper layers of the network for optimal
classification.

To address the research gaps highlighted above, this dissertation shall employ various
data augmentation methods in the next chapter with the major consideration in the
peculiarity of the feature representation and the classification problem to be
addressed.

2.7. Review Summary

The classification task irrespective of the research domain suffers immensely
from the problem of access to reliable data. Common knowledge from the literature
has shown that, in order to obtain high generalization capabilities, CNN-based models
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require more extensive training data. If the deep learning models can extract valuable
data from the original dataset, these models can perform better even while using poor-
quality data. However, producing massive datasets is expensive, time-consuming, or
almost impossible to collate. Data augmentation plays a crucial role in producing
promising ways to improve the accuracy of classification models in small data
analytics (images, sound, time series, etc.) and helps to overcome the overfitting of
learning models. By injecting more training data samples into the training datasets,
this technique has been used to solve certain challenges, particularly in the field of
computer vision. Additionally, data augmentation is essential to amass sufficient data
so that to achieve adequate performance and handle the problems associated with data
scarcity. Examples of data augmentation approaches which have been used in
increasing and balancing datasets are random cropping, principal component
resampling, scaling, adding noise, Gaussian blurring, rotation, flipping images, color
jittering, etc. It has been shown that this approach is particularly successful in learning
from small and unbalanced class datasets. Applying augmentation techniques to a
small number of samples inside a very high-class imbalance, however, might not
produce the desired variances for generating different samples for rebalancing the
dataset.

Access to reliable datasets, overfitting of learning models, poor generalization

of models, and the need to build efficient classifier and detection algorithms by using
small data are only a few of the issues which make data analytics complicated.
Background noise on sound datasets is a problem for data augmentation in most of
the image and sound classification tasks. Effective feature extraction is impacted, and
the classifier performance would be affected if noisy samples were turned into
synthetic datasets. Therefore, the obvious solution is to propose a successful data
augmentation model that can produce high-quality simulated data with little loss,
while also enhancing the effectiveness of learning models in the process.
In Chapter 3, the dataset applied to image classification and sound classification tasks
shall be discussed in detail. The theoretical data augmentation techniques and the
algorithms shall be addressed in Chapter 4, while Chapter 5 presents the evaluation
results achieved in the application of data augmentation techniques in training and
validation of small datasets in images, and sound classification scenarios.
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3. DATASETS USED FOR THE RESEARCH

In this chapter, the datasets used in the studies were introduced. Data types were
distributed into different subsections, namely, image database and sound databases,
as shown in the subsections.

3.1. Image Classification Databases

3.1.1. Description of YouTube Facial Palsy (YFP) Dataset

The facial palsy dataset using the publicly accessible YouTube Facial Palsy
(YFP) video was collected by [99]. This YFP dataset contains only Bell palsy videos,
and it was collated for the identification of facial palsy symptoms. It consists of 32
videos from 21 patients. The labelling/annotation was done by three medical
specialists. The patient’s facial expression shows the palsy deformation with a variant
in severity image patterns captured by the camera across variations of time. All the
videos were converted into an image sequence, and a total of 1105 palsy facial images
were extracted with a sampling rate of 6 fps. The facial images are front portrait views
with a resolution of 227 x 227 pixels, and each image is a distinct shot using various
facial expressions, illumination intensity, and background.

The non-palsy (or healthy) images were obtained from the Caltech Face
Database [223] which consists of 450 facial images obtained from 27 distinct
individuals under various lighting conditions, with varying facial expressions and
surroundings. The raw image size has a resolution of 896 x 592 pixels, which was
pre-processed by resizing to an acceptable deep model resolution of 227 x 227 pixels.
Therefore, the total images collected comprise 1555 facial images which are
categorized into 1105 palsy-positive images and 450 non-palsy images. Fig. 3.1
depicts instances of face palsy and normal image classes, whereas Table 3.1 shows
the prior methods of studies based on YFP images.

Table 3. 1. YFP dataset classification methods in related work

References Methods Objective/Area
[99] Deep Hierarchical Network (DHN) Intensity variation
[163] Hierarchical network with LSTM Sever_lty gr_ade

classification
Machine classifiers such as KNN, Face palsy detection
[160] SVM, MLP, and multinomial and Intensity
logistic regression (MNLR) variation

Bell palsy and Eye-

[224] CNN and nine ML algorithms blinking detection

[225] Semi-supervised extreme learning Facial nerve paralysis
machine (RC-SSELM) (FNP)
Principal component analysis with Facial paralysis

[226] - 1d
support vector machine recognition
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Fig. 3. 1. Instances of palsy and normal face images. (Row A) palsy face images (Row B)
normal face images [89]

3.1.2. Cassava Disease Dataset

The Cassava dataset consists of cassava leaf images. It was gathered by the Al
laboratory of the Makerere University and the National Crops Resources Research
Institute, Kampala, Uganda [108]. This dataset was majorly crowdsourced from
farmers, and it comprises four fine-grained cassava leaf disease categories which are
Cassava-Mosaic-Disease (CMD), Cassava-Bacterial-Blight (CBB), Cassava-Green-
Mottle (CGM), Cassava-Brown-Streak-Disease (CBSD), and healthy cassava leaf
images. A total of 9436 data samples is available in the database, and it comprises
annotated data of 5656 samples and 3774 unlabeled images where the former contains
2658-CMD, 1443-CBSD, 773-CGM, 466-CBB, and 316-healthy images,
respectively. This dataset is made up of five classes, namely, healthy, CBB, CMD,
CBSD, and CGM, respectively. A sample of each of the five kinds of cassava leaves
is shown in Fig. 3.2.

Fig. 3. 2. Image instances of cassava dataset classes: (a) CMD (b) CBSD (c) CGM (d) CBB
and (e) healthy
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A chlorotic ring surrounds the angular brown patches that are indicative of CBB on
the leaves, whereas CMD is distinguished by a mosaic of chlorotic leaves and leaf
deformation. Infected leaves with CBSD exhibit significant chlorosis and necrosis,
which turns them yellow. From a few scattered spots to a full loss of chlorophyill,
CGM causes yellow discoloration on leaves. The description of the cross-validation
ratio and the number of sample instances is depicted in Tbl. 3.2, and Thl. 3.2
represents summarized methods and references of the relevant literature.

Table 3. 2. Cassava disease dataset sample distribution in 5 classes

Classes Training samples (#) | Testing samples (#)
CMD 2126 532
CBSD 1154 287
CGM 618 155
CBB 373 93
Healthy 253 63

Table 3. 3. Cassava disease dataset classification methods in related work

References Methods Objective/Area
[227] Enhanced CNN models (ECNN) Cassava Leaf Disease
[228] Bi-LSTM classifier Identification
[229] Transformer-embedded ResNet (T- .

RNet) model Cassava Leaf Disease
[230] KNN algorithms classification
[231] ArsenicNetPlus Cassava disease
detection
[232] Deep residual convolution neural CMD disease
network detection

3.1.3. Description of PH2 Dataset

The PH2 dataset was gathered by the Dermatology Service of Hospital Pedro
Hispano, Portugal, and it comprises 200 images in total, with samples representing
80, 80, and 40 instances of each of the three clinical diagnosis classes, namely,
common nevus, atypical nevus, and melanoma, respectively [141]. This dataset
consists of JPEG and PNG formats for skin lesion images. The dataset is partitioned
into training and test image sets, each of which includes images and ground truth
labels. In this study, the 60:40 cross-validation ratio was applied with 60% for the
training data and the remaining 40% for testing the trained network. After employing
the proposed augmentation techniques, two different databases were developed. The
covariant SMOTE technique which was used to create synthetic data is referred to as
AugDB-1 in the next chapter. The covSMOTE approach was utilized to balance the
melanoma (minority-class). For the second augmentation approach, a standard
geometric augmentation approach was used, such as flipping, rotation, translation,
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etc., and the new database shall be referred to as AugDB-2. Tbl. 3.4 and Tbl. 3.5
provide a data sample highlight. The outcome of our proposed model on the different
data types is categorized as binary and multiclass classifications. The analytical results
shall be presented in the next chapter.

Table 3. 4. PH2 dataset sample distribution in 3 classes

Classes Egﬁlpll\ég' Training samples (#) Testing samples (#)
Melanoma 40 24 16
Atypical Nevu 80 48 32
Common Nevu 80 48 32
Total 200 120 80

Table 3. 5. PH2 dataset classification methods in related work

References Methods Objective/Area
[233] CNN models Melanoma detection
[234] Eight pre-trained CNN models Skin cancer diagnosis
[235] WT-DRNNet Skin lesion
[236] 17 pre-trained CNN models classification
[237] DL architectures based on Res-Unet Skin lesion

ull resolution r segmentation an
238 Full lution CNN (FrCN i d
[239] U-Net and a Fully CNN (FCN8s) classification
Classification of skin
[222] Deep CNN model cancer

3.2. Sound Classification Databases

3.2.1. Overview of the COSWARA Dataset

The COSWARA Dataset was created by [240] to provide a cost-effective tool
for the COVID-19 diagnosis by using cough, speech, and breath sounds. This dataset
was targeted towards the detection and measurement of biomarkers of this disease in
the acoustic content of these sounds. The COSWARA database contains 2130
recordings for nine different categories which are: breathing (deep and shallow),
cough (heavy and shallow), digit counts (fast-paced and normal), and vowel phonation
(fey/, lil, lul). In addition, other metadata are also included in the database, such as the
gender, age, location, health status, and the presence of co-morbidity. There are seven
audio files in the COSWARA dataset, and it is summarized in Thl. 3.6 for each
category. In this study, the focus was majorly on the deep breathing audio samples
(coined as COCOA-DB) and four major classes are experimental for COVID-19
classification. The highlights of the methods using the COSWARA dataset are
presented in Thl. 3.7.
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Table 3. 6. COSWARA dataset sample distribution in 7 classes

Data Classes Size No of Audio
samples (#)

Positive_Asymptotic 48KkHz 42
Positive_Mild 48kHz 231
Positive_Moderate 48kHz 72
Recovered_full 48kHz 99
RINI (Respiratory
illness not identified) 48kHz 150
NRIE (No respiratory
illness exposed) 48kHz 164
Healthy 48KHz 1372

Table 3. 7. COSWARA dataset classification methods in related work

References Methods Objective/Area

[241] Ensemble deep learning algorithms COVID-19 classification

[242] Machine learning algorithms COVID-19 cough classification

[243] Ensemble-based multi-criteria decision
making (MCDM)

[212] Shallows machine learning, CNN COVID-19 detection
models

[244] LR, Gradient Boosting trees and SVM

[245] SVM, LDA, kl\_IN, and partial least COVID-19 classification
squares regression (PLSR)

3.3. Summary of Dataset used

Data is the most relevant part which influences the performance of computer
vision applications, sound applications area, etc. This chapter explores the different
publicly available datasets used in this dissertation for different classification tasks.
The datasets have been carefully examined and described concerning the application
areas. The dataset used for the computer vision tasks contains images of real-world
scenes, such as the YFP dataset (facial palsy data), Cassava disease data, and PH2
dataset (skin melanoma images). For the sound classification task, the COSWARA
dataset was analyzed. The datasets are a continuation of the research done by previous

researchers in published academic articles.
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4. METHODOLOGY

4.1. Overview of Research Methodology

In this chapter, detailed discussions of the overview of the proposed data
augmentation methods and frameworks used for evaluating different classification
tasks shall be addressed. To further analyze the theoretical backgrounds of the
proposed augmentation techniques, three categories of augmentation applications
shall be presented which are: image augmentation, sound augmentation, and
numerical-based augmentation. Fig. 4.1 depicts the scheme or flow of the proposed
study methodology.

I PROPOSED METHODS AND APPLICATIONS l

[

|
COMPUTER VISION I SOUND CLASSIFICATION I

| | Voronoi Decomposition-based —‘ Feature Extraction Methods |
Random Region Erasing (VDRRE)

Mel Spectrogram
Application: Face Palsy Detection ‘

Gammatone Frequency\
Image Colour Histogram Cepstral Coefficient (GFCC)
Transformation and IQRM

-—{ Transformation Methods

L Application:
Cassava Leaf Disease Detection

Photometric Technique

Covariant Synthetic Minority
Oversampling Technique(SMOTE) Noise Injection Method (NIM) |

Application: -{ Application: COVID-19 Detection
Skin Melanoma Classification

Fig. 4. 1. Scheme of the proposed methodology

4.2. Motivation

There are various methods proposed in previous studies for reducing over-
generalization and overfitting of learning models, such as the use of regularization
approaches, lowering the learning rates, modifying the loss functions (applying label
smoothing and weight decay), dropout, etc. However, the application of data
augmentation, or transformation methods, has improved model generalization in small
data analytics to a great extent. The main goal of DAM approaches is to improve the
performance of training models by mitigating overfitting. The application of
augmentation or transformation methods is suitable in data analytics as the general
problems affecting most publicly available datasets are as follows: (1) insufficient
data, and (2) imbalanced classes of data.

The quality of the input-data representations alone determines how well ML
algorithms perform. The idea of small dataset learning is to develop enhanced
augmentation techniques with the ability to extract the relevant features/information
from this small sample; therefore, the idea is to reduce the complexity and pilot run
times. According to the statistical learning theory, generalization can be improved by
determining a model’s effective complexity, such as precisely setting the
regularization; nonetheless, generalization should always get better with more training
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samples [53]. Furthermore, medical datasets suffer majorly from limited data samples
due to some constraints such as privacy of patient data, costs of data gathering, the
vigor of expert intervention in annotating the datasets, etc. Therefore, the application
of effective augmentation methods is extremely important in minimizing the
generalization error and significantly improving the performance of the learning
models.

4.3. Justification of the Proposed Methods

Face Palsy Detection: The Voronoi-Decomposition-based-Random-Region-
Erasing (VDRRE) technique has been selected to augment the data in face palsy
recognition to overcome the lack of variation in facial expressions within the dataset.
To recognize face palsy, it is necessary to capture a diverse array of facial expressions
and unique variations that are characteristic of individuals suffering from face palsy.
The utilization of the VDRRE technique will allow for the creation of artificial facial
features by randomly occluding some parts of facial expressions. This will generally
enhance the precision and applicability of the recognition models.

Skin Melanoma Detection: The Covariant SMOTE (CovSMOTE) technique is
used based on its inherent ability to tackle the issue of imbalanced datasets.
Imbalanced datasets are frequently encountered in medical fields, where the
prevalence of certain conditions is comparatively low. Thus, the CovSMOTE method
is used considering its capability to develop synthetic samples of the minority class
while considering the covariance structure of the data. The application of this method
will improve the class balance and thereby enhance the overall performance and
generalization of deep learning models in skin melanoma detection.

Cassava leaf disease detection: The novel augmentation method based on the
combination of the Image Color Histogram Equalization and Image Quality
Reduction techniques will be implemented for cassava disease detection. The choice
of this method is based on the consideration of colors, illumination, and texture as an
effective attribute in determining the plant leaf quality and its health status. This
method will incorporate the diversities of visual representations of cassava leaf
disease images, thus simulating distinct lighting conditions, image qualities, and
levels of noise to generate synthetic image samples. The implementation of these
variations into the dataset is expected to aid the deep learning models to get trained
better on the augmented data with the possibility of acquiring better recognition of
different cassava leaf disease types in various environmental circumstances.

Although each proposed augmentation approach is performed differently in
different broad experiments, it is still possible that a single technique could be suitable
in specific situations. However, it would not fully capture the distinct characteristics
and nuances found in each specific area. Thus, employing these various techniques
enables the customization of the data augmentation procedure to suit the specific
requirements of each research field, which would ultimately result in more accurate
and resilient deep learning models in each specific domain. In the next section, the
detailed illustration of each proposed augmentation method is fully discussed.
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4.4. Proposed Image Augmentation Methods

The proposed image augmentation methods used in these studies are divided
into five distinct categories, as discussed in detail in the subsection below.

4.4.1. Proposed VVoronoi-Decomposition-based-Random-Region-Erasing
(VDRRE)! - Face palsy detection

The overall methodology structure proposed for the face palsy detection is
depicted in Fig. 4.2. It is categorized into five parts. The section discusses the method
phases beginning with a few-shot learning approach by using one-shot and two-shot
learning approaches. A detailed explanation of all the steps and procedures involved
is discussed in this subsection and presented in Fig. 4.3.

(E) VORRE Method

o Type: Image Augmentation
o Technique: Voronoi Tessellation |

provides input to
@ Feature Extraction ‘ '

———————————— extractsfeaturesf ificati

+ Networke SqueezeNet% (E) classification Method ‘
- 1 o Type: ECOC-SVM

o Classes: Severity Levels

enhances

® mage Data Pre-processing

: feedsinto ./ 0 Method: CLAHE
77®MW—% o Face Detection: Enhanced Viola-Jones
o Type: One-shot / Two-shot

Fig. 4. 2. Entity diagram of the proposed VDRRE method

There are five stages involved in this study which are listed below, and the flow
diagram of the face palsy detection showing the proposed VDRRE, Geometric and
Random-erasing augmentation is depicted in Fig. 4.3.

! The Material/Content presented in this section has been published in [89]
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| not yet optimal |
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l

v

| Classification Output |

é

Fig. 4. 3. Activity UML-diagram of the face palsy detection showing the proposed VDRRE,
Geometric and Random-erasing augmentation

1. Few-Shot Learning (FSL): The training sample is based on the few-shot
learning method. This is a learning method which tries to emulate human
intelligence based on small data sizes or single training items. The FSL
method is inspired by the special intelligence of humans to accurately
generalize after observing one instance of a given object. Contrary to the
normal practice of using big data for training, FSL only attempts to use very
small data in a learning model. Given a small number of input-output sample
pairs, FSL trains a classifier h, where output y; represents the class (label) of
the independent variable x;. In this study, two instances of FSL were used,
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and it is based on the same principle which served for One-Shot-Learning
(OSL) and Two-Shot-Learning (TSL). OSL is a severe example of few-shot
learning [98], wherein the classifier can be trained by using merely one
instance with a class label. The objective of few-shot classification is to
minimize the detection error on unlabeled data. Suppose dataset d €
D comprises pairs of features and labels {(x; y;)}, whereby each label is part
of a recognized set of labels L. The training S and testing B samples
constitute dataset d, which is partitioned into two parts d = (S,B). The
training set has K -labeled instances for each of the N classes, and accepts a
K -shot problem with N classes by using the steps outlined below:

a. Select a subset of the labels., T c L.

b. Selectatrainingset ST c D and atesting set BT < D (consist of data
with labels from the subset from item) 1: L, y €L, V (x, y) €
sT, BT,

c. Thesetof ST is presented as input of the model.

To compute the model parameters and the loss function,

backpropagation in the final optimization was used in addition to humerous
testing sets BT, much like in supervised learning.
Image Data Pre-processing: Contrast Limited Adaptive Histogram
Equalization (CLAHE) was applied to transform all colored facial images to
grayscale to remove the undesired color contrast. By using CLAHE, the
histogram was clipped at a predetermined value, and contrast amplification
was reduced, hence improving noise removal, shadows, and light instability.
In this study, an enhanced CLAHE approach was applied to substitute the
neighborhood conditional histogram for the clip-redistributed histogram
[246]. By using this approach, the local contrast was optimized and, therefore,
the facial images were improved based on the edge information. To diminish
the block artefacts and improve the local contrast, both global and local
mapping functions were combined with the neighborhood conditional
histogram, and a typical sample of the contrast enhancement result is
presented in Fig. 4.4.

Fig. 4. 4. Sample of contrast enhancement: (A) original image; (B) contrast-
enhanced image
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An enhanced Viola-Jones face detection approach was implemented by using
the Haar-like rectangular feature expansion [247]. Image resampling and 2D
convolution separation methods were combined in this detection system.
Shape and edge, template matching, and face feature models are combined by
the traditional Viola-Jones approach using classifier boosting. Prior to doing
further feature assessment on the integral image, the Haar-like feature matrix
is used to scale face features. The AdaBoost algorithm [248] was utilized to
create cascade classifiers and stronger classifiers to eliminate non-face images
and boost the accuracy. A rotatable 45° rectangle feature was applied to
compute the values of the integral images rather than using the conventional
Haar-like orthogonal features. Image traversal was used to achieve the total
pixel of the image regions and to eliminate unwanted features; hence, a
cascade of weak classifiers was employed to successfully identify a face from
the images. These cascaded weak classifiers were able to create one classifier
while the window was sliding across the whole image. An instance of face
detection is depicted in Fig. 4.5.

Ri-adjacent
matriy

Trl-adjacent
il

Fig. 4. 5. Face detection features: Rotatable 45-degree (left); Input image (middle);
and Face detection outcome (right)

Proposed VDRRE Method: For all classes, a single-shot learning sample
was enhanced with random partition erasing image augmentation. The
VDRRE approach was introduced, and it is a novel approach for image
enhancement. 2D plane images were divided into areas near each of a
specified set of points and the coordinates of these points were produced by
using arbitrary numbers that are taken from uniform distribution. Basically,
we establish a partition in the image by selecting N randomly distributed
points that are VVoronoi tessellation and thus split an image into the area of
Voronoi around each specific set of objects [249]. Take, for instance, a set of
generators P = {p;, p,, ...y} € R?, where the distance from any area of X in
the plane to the generator point B, is represented by dist(X, p,,). Choose the
closest generator p,, eP with a specific distance metric dist for all potential
locations of X in S. Subsequently, if it is within proximity of two generators
in P, the interval turns into an edge; alternatively, if it is near more than two
generators, the position changes into a vertex. Let distance (p, X;) represent
the Euclidean distance between any given position p in the space and the



primitive area X;. Equation (4.1) can be used to determine the bisector
between X; and X;, and Equation (4.2) can be used to indicate the region
where X; dominates X;:

b(X;,X;) = {dist(p,X;) = dist(p,X;) }, (4.1)

Dom(Xi, X]-) = {dist(p, Xi) < dist(p, Xj) }, 4.2)
b(Xi, X]-) isthe perpendicular bisector of the line connecting X X;,
Dom(X;, X;) is the dominance region of X; over X;. Here i # j and dist(p, X;)
is the weighted distance between p and X;. The Voronoi region for a simple
X; can be defined as follows in Equation (4.3):

V(X;) =Nx;ex\x;} Dom(X;, X)), (4.3)
V(X;), is called the weighted VVoronoi region. As a result of this assignment,
an image is decomposed into several VVoronoi cells with image boundaries.
This process is known as Voronoi tessellation, and the flow diagram of the
activities is depicted in Fig. 4.5. Tbl. 4.1 shows the algorithm for VDRRE.
Lastly, to complete the occlusion and create a new image, an irregularly

selected VVoronoi cell is full of randomly selected pixel color values obtained
from an equivalent distribution, as demonstrated in Fig. 4.7.

Table 4. 1. Algorithm for VDRRE

Algorithm 1: Voronoi decomposition random region erasing

Inputs: smage: mput image M,
Image size: Xand ¥

Output: Voronoi image M

Processes Augment (image, P, v)
Area of polygon that surrounds all points n the image: §
Number of points: N
Generators: set of seeds for Voronot decomposition G
Voronot random region: V;
Voronoi-erasing aspect ratio range ¢; and ¢

Ximg. Vimg — gt [mageSize (M) - Image width and height
Xin, Yin < getAuglnpuiSize - model input width and height
local generator set, G (p, q,1) - local generator sets: potnts mside Vorono cell

FOr iy, Yimg + 22t ImageSize (M) do;
M= [xw'n.yin] dO;
Voronot cell: {13},
Compute random centroids: centroids + Rand ((cy, ¢3), [N 2], seed) * x;,, );
Compute Voronot diagram: ymask + v{centrotds(:,1), centrosds(:.2).[ x5, ¥in]):
Generate a random Vorono cell within the 1mage size X and Y.
P, +Rand (P P;) % P;

Add noise to mask M gauss,Filter(vmask); - noise 15 added to the erased area

end
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? Y

' Input images M = (XY]
set of paints: N =00, Y1), (X2.¥2)....067,¥n)
Total number of Voronoi cells: &

Y

Area of Palygon (4)

Generators: set of seeds for voronoi (G)
Woronoi random region Vi

Vorenel erasing aspect ratio €

Y

Voronoi computations

For each image = Mi (], Y1) <- getimageSize(M})
Xin, ¥in <- getAugTnputSize(M*)

local generator sat Gip,q,r)

Calculate the distance to generators (p,q.r)
Set points to the nearest G

Y

C{M}G < K_Threshold €

v

! Compute random centrolds:centroids <- Rand ((C1,C2),(M,2),G)*Xin)

oronol images M* l

' Compute Voronoi diagram: vmask <-vicentroids(:, 1), centroids(, 2)(Xin,¥in)) IL

Y

i Generate & random Viaronoii cell within the image size X and ¥
' 1

Y

| Far each Voronai cell
Generate a random erasing mask
Fe ~ Rand{Pa,Pb)*r

Y

 Add noise te mask M¥ <- gauss.Filter[vMask) '

v

B M+ == (Xin,Yin)

6

Fig. 4. 6. Flow diagram of VDRRE

"

From Fig. 4.7, it can be deduced that VVoronoi tessellation produces polygons
with more intricate shapes than the commonly utilized plain rectangular ones.
Our novel image augmentation method was able to generate more synthetic
images thus developing a more reliable classification model by using images



to increase the training dataset depending on various degrees of occlusion
while eliminating the risk of overfitting.

Original (left) and Contrast Enhanced (right) Image

e

Fig. 4. 7. Original image (left); Augmented image generated from the proposed
random region erasing method (right)

VDRRE

Classification Methods and Feature Extraction: SqueezeNet pre-trained
network [250] was applied to extract pertinent features by using the ImageNet
dataset. The choice of SqueezeNet against other architectures (such as
Inception, AlexNet, VGG, ResNet, etc.) is based on the fact that SqueezeNet
is capable of working with limited files lower than 0.5 MB and with
insufficient input image sizes with no need for resizing. Although, the
standard image size of 224 x 224 is still the best case. The major operating
framework of the SqueezeNet network includes the fire unit consisting of
Squeeze-Layer (SL), Expand-Layer (EL), and some Pooling-Layers (PL). The
squeeze layer minimizes the feature map sizes; the expand layer is applied to
expand the layers; it is depicted in Fig. 4.8.

Output

Fig. 4. 8. SqueezeNet architecture. (A) Complete view; and (B) Fire unit with squeeze
and expand layers
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To achieve an increased abstraction level, there is a need to increase the total
filters by using a stride of 2-convolutional layers and depth and thus reducing
the feature sizes. The proposed model can prevent the challenges of
overfitting via transfer learning based on CNN pre-trained networks in
comparison to training with random initial weights.

For better classification results, SVM and error-correcting output codes
(ECOC) known as ECOC-SVM were applied, which is based on the

multiclass. The ECOC method uses class prior probabilities to minimize

misclassification costs. This approach produces @ by using one-vs-one

coding, binary SVM model’s architecture, where K is the number of a distinct
class (for the face palsy detection task, there are five severity classes (levels)
from | (mild) to V (complete paralysis) that can be used to evaluate the palsy
severity. Comparing the ECOC model to other multiclass models can help it
perform better overall; however, if necessary, it can be quickly simplified to
a binary classifier. In instances where there is a clear margin for the division
of classes, the SVM classifier performs well. Furthermore, it has been
demonstrated to work effectively with extreme dimensional data, especially
when the number is more than the dimensions of the sample.

The ECOC-SVM classifier was trained by using the activations from the
FC layer containing 1000 weights. The choice of the multiclass ECOC-SVM
classifier anticipated that, in the majority of cases, palsy images with a palsy
severity score could be applied. In this instance, it is similar to a linear kernel
SVM classifier because it utilizes such binary-labeled YFP dataset images as
‘normal’ and ‘palsy’.

4.4.2. Image Color Histogram Equalization model?

The data augmentation approach implemented was based on Image Quality
Reduction (IQR) using four variants of photometric transformation methods. This
model was applied in the analysis of identifying cassava leaf diseases, and the
different phases of the proposed structure are schematically illustrated in Fig. 4.9 as
follows. The different types of photometric methods applied are majorly based on
histogram transform, and our choice of these photometric data augmentation methods
was based on two modules which are orthogonal Chebyshev polynomial functions
and IQRM.

1.

Image dataset augmentation: A unique parameterized image histogram
transformation technique has been applied, and augmented images for data
transformation tasks have been generated. The trainable color space and the
training of the network were increased to identify significant color value
distribution-based features, which are more resilient to image blurring, by
including images with an enhanced color value distribution. Additionally,
biological neural networks have been shown to implement a transform
similar to histogram equalization, which provides a strong basis for applying

2 The Material/Content presented in this section has been published in [60]
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this ANN technique for image identification. Fig. 4.9 describes a conceptual
entity diagram of the proposed method for cassava disease detection. Fig.
4.10 represents the flow diagram of the steps involved in the cassava disease
detection model.

The proposed method is centered around the convolution of orthogonal
functions with PDFs based on the color space values. A collection of
fundamental functions known as orthogonal functions is available for
describing any function in the function space.

Based on the findings, there are no prior applications of these algorithms for
histogram equalization or data augmentation to solve classification and
image processing issues. Chebyshev polynomials are unique variations of
orthogonal ultraspherical polynomials. Type | Chebyshev polynomials
T, (x) were created with an integer n > 0, and it is expressed as T;,(cos6) =
cos (n0). Therefore, Equations 4.4-46 show a few Chebyshev polynomials
by using the Type 1 rule:

To(x) = 1, (44)
T:(x) = x, (4.5)
Tnt1(x) = 2xTy (x) — Tp—q (X) (4.6)

Where Tn (x) is the polynomial of degree n, and the formulas above show
an enthralling pattern in Tn(x) and the sample representation is presented in
Fig. 4.11 (right). By scaling the resultant function so that its total equals 1,
the transformation is accomplished by using the product of the Chebyshev
polynomial by the applicable PDF value. Fig. 4.11 (right) was created based
on a mixture of Chebyshev orthogonal functions from orders 2 and 5 applied
to each of the three-color channels (Red, Green, and Blue). Figure 4.11
(left)illustrate the image transformation using varied Chebyshev orthogonal
functions and thus produces synthetic PDF transformation images on Fig.
4.11 (right) showing 24 distinct fake images, where the final cell is left
empty. An instance of the transformation sample of the Probability Density
Function (PDF) of the color value is represented in Fig. 4.12 with the
original image, the PDF channel, and the transformation function for a
synthetic image. The highlighted DAM methods were based on subsets of
image corruptions or deformation types [251].

@\mage Dataset

ig degrdded by
is processed using

. Image Quality
@PhotometrlcTransformatwon Method> is uged by Reduction Model

utilizes| mcludes includes|
utilizes|

‘@Chebyshev Polynom\a\ ‘@ Probability Density Functlon‘ ‘@C\asswﬁcat\on Model‘ ‘@\mage Degradation Type
1 I

Fig. 4. 9. Entity diagram of the proposed method for cassava disease identification
59



60

!

Cassava Disease Dataset
Spit data
train Cross vaiidati test
Y !
| Training Samples | | Test samples
Y
Data Augmentation Module
(Synthetic data generation)
Y
Y |
Y
Image Colour Histogram

Equalization Image Quality Reduction
model (IQRM)

Y
l | 7 | !
Chebyshev polynomial |

Resolution downsampling | Gaussian Blur | Motion Blur |~ Overexposure

| Probability Density Funtion .
¥
f
¢

Y
Feature Extraction Model

Y

Deep learning Classification
Model (MobileNet-V2)

Y
_/Is the training model
| ' at best results?

na

Y Y
not yet optimal

Y
| Trained Model()

Y

Classification Output

‘

Fig. 4. 10. Activity UML-diagram of the cassava disease detection
showing the Image Color Histogram Equalization and IQRM model
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Fig. 4. 12. (left) Sample representation of orthogonal Chebyshev polynomial
functions; (right) Different transformation of an image sample using different
combinations of the probability density function (PDF)

0012
PDF (groen channel)
[ Transformad POF
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Fig. 4. 11. Transformation sample of probability density function (PDF) of the
color value: original image (left); PDF of green channel (middle);
transformation function and transformed pdf, and synthetic image (right)

Image quality reduction model (IQRM): It has been observed that the
modern CNN is susceptible to novel styles of known classes and unknown
instances of recognized objects. Given this, even when utilizing cutting-
edge CNN architectures like VGG-19 or ResNet50, the results of object
detection with poor-quality images may be significantly inferior. The
application of image quality reduction assumes that the general problem
associated with real-life data is image degradation, which can result from
the use of inferior devices by novice users in remote rural areas. The low
quality of the mobile gadgets, motion blur, and excessive exposure caused
by the camera in real-world scenarios are therefore predicted to have an
impact on the images. As a result, the data augmentation approaches used
were designed to degrade the quality of the test images, and, as a result, were
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able to extract the lower quality of images as summarized in the below
presented four transformation methods:

a. Resolution-down-sampling: The raw image was down-sampled to the
following pixels 32 X 32;64 X 64;96 X 96;128 x 128; 160 X
160; and 192 x 192 pixel and up-scaled to 224 x 224 pixel, as the
final required input size of the neural network.

b. Gaussian-blur: A Gaussian filter with a standard deviation of 1, 1.5,
2, 2.5, and 3 was used to convolve the raw input images.

c. Motion-blur: This happens when a camera moves while taking an
image. An evenly distributed random number was employed to
determine the motion angle from a range of (0,360) angles, and the
values of 10, 15, 20, 25, and 30 pixels were used as motion
parameters to estimate the camera’s linear motion.

d. Overexposure: The amplitudes of the image channels were increased
by a factor of 1.25 (1.5, 1.75, 2, and 2.5), thus replicating the
overexposed photo conditions.

The methodologies adopted for this research were designed by using
source [251], which implemented 15 types of image degradation and
implemented five levels with each of those. A portion of these kinds of
deformation was employed as certain original visual distortions, like frosted
glass, are inherent in real-life situations. Thl. 4.2 shows specific instances of
samples of IQRM image modifications. The degrees of quality degradation
are indicated as low, medium, and high-quality reductions.

Table 4. 2. IQRM maodel results for the four transformation methods used
show the three levels of degradation applied LO-H2

Resolution Gaussian
downsampling Blur Motion-Blur Overexposure

Methods/ Level




3. Classification Model: For the automatic feature extraction and classification,
a pre-trained MobileNet-v2 model was adopted [65, 252]. MobileNet-v2 has
been pre-trained with the ImageNet dataset and is based on an inverted
residual framework where intermediate expansion layers perform depth-wise
convolutions to filter features as a source of non-linearity, as depicted in Fig.
4.13. In addition, there are linear bottleneck layers which aid in preventing
the loss of information resulting from nonlinearities. The network model
performs better in the overall model complexity and accuracy than other real-
time detectors [252]. The NN framework is relatively new, and it has already
been successfully applied to plant disease recognition [253]. In other words,
from low-level pixels to high-level forms, the neural network attempts to
learn visual properties. Extraction of the intermediate-level visual feature was
anticipated, which is crucial for classifying plant diseases by almost
completely splitting the neural network in half. An FC layer, a softmax layer,
and a classification layer with a cross-entropy loss function were added after
the removal of the first 18 layers from the dataset, as illustrated in Fig. 4.13.
The preliminary investigation did not show an improvement in the

Fig. 4. 13. Baseline convolutional neural network framework

classification accuracy with extracted larger network models (with at least 18
layers). The following provides a more thorough explanation of the neural
network’s first 18 layers: A preprocessing layer is required after the input
layer, which requires 224 x 224 x 3 pixel images. Batch-normalization and
clipped Rectified Linear Unit (ReLU) layers are placed after a Conv1-layer
with 32 3 x 3 x 3 convolutions with [2 2] stride. Batch-normalization and
clipped ReLU layers are again applied after the grouped-conv-layer, which
consists of 32 groups of 3 x 3 x 1 convolutions with [1 1] stride. The BN
layer is then followed by a conv-layer with 16 1 X 1 x 32 convolutions, and
then a conv-layer with 96 1 x 1 x 16 convolutions is followed by the BN
layer once more and the clipped ReLu layer. BN and clipped ReLU layers are
again placed after the grouped-conv-layer, which consists of 96 groups of
3 x 3 x 1 convolutions with [2 2] stride. Following the BN layer is the final
conv-layer with 24 1 x 1 X 96 convolutions, as depicted in Thl. 4.3.
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Table 4. 3. Baseline CNN parameters: First-18 layers are part of MobileNetV2,
while the final three layers are added to classify cassava disease into five groups

# Type Activations Learnable
Input_1
L 24 %224 % 3 images 224x224%3 -
Preprocessing i
2 Preprocessing for MobileNet-v2 224224 %3
3 Convl 32 3 x 3 ‘>< 3 co’nvolutlons stride [2 112 % 112 % 32 Welgl}ts 3x3x3x32
2] and padding ‘same Bias 1 x1x 32
Batch Normalization (bn_Conv1) Batch Offset 1 x1x 32
4 INorm 2112332 Scale 1 x1x 32
Convl_relu
> IClipped ReL U with ceiling 6 1211232 -
Expanded_conv_depthwise Weights 3 x 3 x 3x 32;
6 32 groups of 13 x3 x 1 conv 12112 % 32 Bias
Expanded_conv_depthwise_BN. Batch Offset 1 x1x 32
! Normalization with 32 channels 12112 % 32 Scale 1 x1x 32
Expanded_conv_depthwise_relu. i
8 Clipped ReLU 112 x 112 %32
Expanded _conv_project .
9 161 x1 x 32 conv stride[1 1] 112 x112x 16 Weights 3 X3 x3x 16
Expanded_conv_depthwise_BN. Batch Offset 1 x1x 16
10 Normalization with 16 channels H2x 11216 Scale 1 x1x 16
11 Block_1 expand 96 1 x1 x 16 .
— = - . Weights 1 x 1 x 1x 16
E:onvo!utlons stride [1 1] and padding 112x 112 x96 Bias 1 x1x 16
same
Block_1_expand_BN Offset 1 x1x 96
2 Batch Normalization with 96 channels 112 112%96 Scale 1 x1x 96
Block_1_expand_relu )
13 [Clipped ReLU with ceiling 6 365696
14 BmcK;Jmme§e969mumof1 56 % 56 X 96 Wkgms3{3XIXIX96
3 x 3 x 1 convolution (bias)
15 Block_1_depthwise_BN 56 % 56 % 96 Offset 1 x1x 96
Batch Normalization with 96 channels Scale 1 x1x 96
16 Block_1 depthwise_relu )
Clipped ReLU with ceiling 6 36 %36 x96
17 Block_1_project .
24 1 x1 % 96 convolutions 56 x 56 x 24 We‘g}i 11 Xxll :gjx 24
stride [1 1] and padding ‘same’
18 Block_1_project_BN Offset 1 x1x24
Batch Normalization with 24 channels 36 %56 x24 Scale 1 x1x24
19 Fully Connected layer (FCI-5) Ix1x5 Weights 5 x 75264
Bias 5 x1
20 Softmax (SC) 1x1x35 -
21 Classification output - -

CL (5 classes)
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4.4.3. Proposed CovSMOTE augmentation technique for Skin melanoma

detection3

The skin image classification framework presented uses a variation of SMOTE
for oversampling and image augmentation. Furthermore, to reduced dimensionality of
image embedding manifolds, and image classification, a deep learning architecture
based on SqueezeNet model was implemented [26]. The three phases, as depicted in
detail in Fig. 4.14 and Fig. 4.15 show the structure described in the subsections below:

1. Pre-processing phase

2. Data Augmentation phase;

3. Classification Model

‘ @ Pre-processing Phase

o Hybrid Colour Space

o High-pass Filter

o LAHE Technique

o Hair Detection: Frangi Filters

prepares data for |uses applies
@Data Augmentation Phase @Hybrid Colour Space ® CLAHE Technique
o Manifold Image Mapping o CIE 1976 o Local Histogram Equalization
o CovSMOTE Technique o LAB Colour Space o Global Histogram Equalization
involves employs

@ Manifold Image Mapping

o High-dimensional Manifold Space
o Gaussian Distribution
o KNN Mapping

feeds into

' (B) CovSMOTE Technique

o Synthetic Sample Generatbi'onr‘
o Covariance Matrix Analysis

provides data to

@ Classification Model

S SqueezeNet

_Deep Learning Framework

utilizes

@Deep Learning Framework (SqueezeNet)

o Fire Units
o Convolution Filters
oPooling Layers

Fig. 4. 14. Entity diagram of skin melanoma detection

3 The Material/Content presented in this section has been published in [271]
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Fig. 4. 15. Activity UML-diagram of the skin melanoma detection framework

1. Pre-processing: Data pre-processing is essential for assuring data
preparation and cleaning. The importance of mitigating errors during the
training of classifiers is necessary so that a convolutional network can
differentiate between the healthy skin class from low contrast, skin artefacts
(namely lack of frames, and hairs), irregular borders in skin lesions, etc. In
this phase, four pre-processing steps were adopted, as discussed below. The
first phase, i.e., the hybrid color space, was proposed by integrating several
color elements to increase their efficiency and decrease the correlation
dependency between them. Standard illuminant D65, which has a color
temperature of 6504 K and simulates noonday sunlight with values of 0.9504,
1.0000, and 1.0888, was used. In addition, RGB images were converted to



CIE 1976. Hering’s theory was implemented to generate the L = a * b (Lab)
color space so that to enable the evaluation of a ‘small’ color. The theory was
applied to demonstrate the hue component of the skin images Red, Green,

Blue, and Yellow (R, G, B, Y).

The LAB color space has a three-dimensional color system where
lightness (L*), and color (a* and b*). L* is the luminance shown in
Equation 3.12, and values 0 and 100 are used to denote pure black and
pure white, respectively. Equations 4.7 to 4.9 are used to indicate a pixel’s
lightness, whereas the a* and b* axes denote redness/greenness and
yellowness/blueness as seen in Equations 4.10, respectively:

1

116 (1)3 —16  for — > 0.008856
L kxk = YW YW

903.3 (Yi) for Yi < 0.008856

o =swlr () r (D)oo ol () r(Z)]

1
(¢)3 for ¢ = 0.008856
f(C) = 16 (4-9)
7.787 () +— for ¢ < 0.008856
X 0.412 0.357 0.1807[R
Y|[=10.212 0.715 0.072 ||G (4.10)
Z 0.019 0.119 0.950/1B

Here X, Y, Z are CIE 1931 tristimulus values of the image calculated. In
addition, a high-pass filter was used to reduce the brightness heterogeneity
and sharpen the borders of the skin lesions. As shown in Equation 4.11, the
high-pass filter is generated by subtracting the weighted values of the
Gaussian blur from the raw image.

Ir=1-,G,(I) (4.11)
where I is original image, if is a high-pass filtered image, G, is a 2-
dimensional Gaussian kernel, w c weighting [0,1] is an aspect that
regulates the extent of image improvement, and o is the Gaussian window
width.
Enhancing the image contrast, presents the Contrast-Limited Adaptive
Histogram Equalization (CLAHE) technique. The CLAHE algorithm
efficiently minimizes the global noise by maximizing the contrast
enhancement on local image data. In addition, every distinct contextual
region is subjected to standard histogram equalization; thus, clipping and
median filtering are applied. By assessing local and global histogram
equalization, the CLAHE algorithm is capable of avoiding gray-level peaks.
Fig.4.16 illustrates the outcomes of image enhancement to define two
CLAHE parameters.
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Original (left) and Contrast Enhanced (rig!

Fig. 4. 16. Sample of an enhanced image from PH2 dataset: (a) raw image; (b)
transformed image

Hair is detected with Frangi filters [254]. The second-order Gaussian
derivative of image | at position (x,y) and scale ¢ yields the Hessian
matrix H of the image as in Equation 4.12, while the Frangi function is
mathematically represented in Equation 4.13:

_d%ly d2G(o,x,y)
H="Z=1y)— o (4.12)
(1 o)
F(o,x,y) = e\ 25° (1 —e\ 2¢? ) (4.13)

Where £ and c are real positive and user-defined parameters; R = :11—:
and A, and A, are the sorted eigenvalues of the Hessian matrix of a 2-D
image, |A;| < |2,| with B and ¢ regulated to 0.5 and 15, respectively. A
Frangi filter function was applied to remove hair from the background
with the scale span set at 0.01 and 7.01, with each scale’s step increasing
by 0.5. The sample of the hair removal outcome is depicted in Fig. 4.17.

Y
" 2 ‘
/I : : .

Fig. 4. 17. Example of the results of hair removal: (a) raw image; (b) the same
image with hairs removed; (c) final image after hair removal



2. Lower-dimensional manifold image mapping: The skin images were
mapped to minimize the dimensional manifold space by using the following
steps: A high-dimensional manifold space was developed by using a
differential manifold where the local space follows the Euclidean-style space
for all skin image pixels, as represented in Algorithm 2 depicted in Tbl. 4.4.

Table 4. 4. Algorithm for Image manifold space mapping

Algorithm 2. Image manifold space mapping
Input: Image data X (locally Euclidean space)

d (dimensional topological manifold)
Start:

For M point in X = (x4, x5, ..., Xg)

R%=(x € X)

V & C* differential structure
V = {(Ug, D)} e is the d-dimensional C* atlas (0 < k <
0, a)
The manifold M created by (U,: a € 1),
Mapping of (@,: U, to ®,(U,); and R%)
If (U, N Ug # 0,&& double mapping

05 = 0p°05": 8o (U N Ug) = G5 (U N Up))

then (Uy, @) is compatible with (Ug, @g).
end.

The mapping in Algorithm 2 shows the class of differentiability C* with
@ illustrating the differential mapping where the chart from (U, ¢q) to
chart (Ug, @p) is shown as a transformation of coordinates x with d-
dimensional manifold. However, to effectively minimize the manifold space
dimension, the Gaussian distribution approach was employed to create a
low-dimensional space. The n-dimensional manifold space X of the skin
image data can be defined by Equations 4.14 to 4.16. In addition, to complete
the operation of skin classification, a distribution characteristic of data (T)
is specified within the high-dimensional manifold space, and the distribution
differences are decreased. By using a discrete distribution, random

projection is applied to a plane of image data points.
Xi, x}', xi,xj € X, 1< l,] <T (414)

xX; = (xi(l),xi(z),xi(s))T
(4.15)
xj = (x.(l),xj(z),x].(s))T (4.16)

Here, the image data-position x; indicates the centre of the Gaussian
distribution of the points. The Euclidean distance identifies the distance
between the projection position in a 2D skin image and the surrounding
neighboring position with space L, of x; and x;. The aforementioned
processes can be used to develop KNN the skin pixels, and the local features
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of the multiple data points are represented by a resulting KNN map. From
Eqg. 4.17, the probability P;; is inversely proportional to the x; distance:
exp (~||lx;—x;||%/202
It = zkﬂex(p |(|—||xii|:|ck/||2/22rf> @17
where probability P;; is used by point x; to choose point x; as its closest
neighbor. x; is the center point T-distribution, while parameter o2 is the
variance of the distribution which is used to demonstrate the local
connectivity of the image position in the low-dimensional manifold to avoid
the crowding issue. To successfully maintain the symmetry of the two-
likelihood distributions in the two-dimensional space, a consistent
symmetrical distance function is presented in Equations 4.18 and 4.19:
A+llyi=y 1D~

L= 4.1
irj Zizie(L+ye—yilI®)™) (4.18)
Pjlitdilj

Here, n is the data points, g;; is the likelihood distribution of the position of
an image in the two-dimensional space, while y; and y; are two positions in
a low-dimensional space. To tackle the overfitting problem caused by small
data samples, a certain amount of confusion is also used, and the entropy
value changes by modifying the level of confusion as the modification to the
confusion level is proportional to the entropy. By aggregating the data
position of the skin image in a two-dimensional space of positive and negative
samples, we further develop the objective function, as represented in Equation
4.20 which aims to determine the weight between points.
P(e;j=1) = fllyi — 1% (4.20)

Here, P(e;; = 1) depicts the likelihood between the binary edges of two
points. However, P(e;; = 1) increases as the distances between y; and y;
decreases. For the optimization procedure, it is necessary in the weighted edge
of KNN graphs to expand the likelihood of the positive samples and minimize
the probability of the negative samples with the initial transformation of
Equation 4.21:

0= Z(i,j)EE WijP(eij = 1) + D=1 ij ~D, )y log (1 - p(eij = 1)) (4.21)

Here, y is the negative sample weight, and thus, the resource cost is high
by the negative sample E, and this makes it harder to train the model by using
the gradient descent swiftly. As a result, when selected carefully, a negative
sampling procedure and the utilization of the noise distribution produced a
negative sample P, (j) using a set of skin image points that were randomly
selected.



3. Proposed CovSMOTE Augmentation: For data augmentation, a modified
Synthetic Minority Over-sampling Technique (SMOTE) method was adopted
[153]. The application of SMOTE generates data in feature space and
produces synthetic samples by over-sampling the minority class. SMOTE
focuses on recognizing k-minority class neighbors which are close to the
minority class by arbitrarily choosing a point between the raw sample and the
neighboring sample. The Cov-SMOTE [155] approach was applied, which is
a modified SMOTE which adopts the Covariance Matrix to identify the
dependency relationship between the attributes. From the estimate of the
covariance matrix, new or surrogate instances were generated to obtain
balancing between both classes (minority and majority). This process is
terminated immediately as soon as there is a balance between the two classes.

The algorithm for the CovSMOTE method is represented in Thl. 4.5.

Table 4. 5. Algorithm for the CovSMOTE approach

Algorithm 3: Covariant SMOTE

Input: Dataset X, Number of majority class samples |[M+]|
Number of minority class samples |M-|
Output: Balanced dataset for minority class sample

Process:

Step 1: Load dataset X;
Step 2: Compute the imbalance ratio IR =——>1.5;

Step 3: If IR > 1.5 then

Step 4: Estimate Covariance matrix
Cov(X) = ——%i(X; — X)(X; — X);
Step 5: Calculate the mean (average) values for each attribute in the dataset.
Step 6: ¥ pair of attributes (i, j) in the dataset: a range is determined
by min — max value; While X is not in equilibrium do:
Step 7: Generate new instance y based on the covariance matrix;
Step 8: if range # true then:
Step 9: Add yto X
Step 10: else
Step 11: Fori <« 0toY;do
Step 12: IfY; < minY}, then
Step 13: Y, =minY,,
Step 14: else If ¥; < maxYj, then
Step 15: Y; = max}V;,
Step 16: else
Step 17: Continue;
End
End
End
End
Else
Step 18:  Return X;
Step19:  End

[M+]|
M~|
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The flow diagram in Fig. 4.18 presents the steps involved in generating the
synthetic samples from the covariance within the interval of each attribute.
Fig. 4.19 and Fig. 4.20 show the manifold space outcome of the PH2 dataset.
A similar technique was used to produce new samples of the minority class
in the lower-dimensional manifold space. The transformation from the
manifold space to the image space was important once new samples were
produced. The polynomial regression approach was applied due to the non-
linearity of manifold space, thus aiding to obtain the best transform within the
synthetic neighbor. To obtain a mapping from the manifold space to the color
space, a cubic polynomial regression was performed, and the results obtained
(synthetic samples images) are presented in Fig. 4.21.
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Fig. 4. 18. Flow diagram of the CovSMOTE method



® L . =
10 ° * ° dog ® o
® % ® ® @
L4 ° ® e %e,, °
8r e %% ° % o0 o o
= o. o P ° ..~ @
¢ e TN, ° : o o - ® o
6 ® L o ® ® o P 4
e o e
o e o ® oo °
2 4| ®. e, ¢ ° o © ]
© Y e ® e
= o o
5 o Y o ° ! o Py ®
S 2t ® < 1
2 ® o .02 % ®
= e TS ™ = 4 o °
ol ™3 ° o ® o J
. ° o o oo
® .’ ® o ® L)
| e e® 0% & o ° |
-2 ® .. o® ©® °
... ... °
e
-4r P ® Non-Melanoma
® Melanoma
26 U . . . . . N n n
14 42 10 -8 -6 -4 & 0 2 4

Coordinate 1

Fig. 4. 19. Visualization of PH2 dataset classes
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1. Classification Model: Deep learning techniques are crucial for successfully
enhancing the classification accuracy and automating the removal of the
necessary feature set. The identification of dermoscopic feature patterns in
the skin lesion region, like blotches, streaks, blue-white veils, globules, and
pigment networks, requires an efficient deep-learning algorithm. The
SqueezeNet deep architecture was used to extract the relevant characteristics,
whereas the choice of SqueezeNet is based on its ability to enable the
operation of AlexNet-level outcomes with 50 times fewer parameters [250].
In the SqueezeNet framework, a few pooling levels and several fire units are
stacked. To maintain the same size as the feature map, the fire unit must have
both a squeeze layer and an expanded layer. The Squeeze layer parameters
are decreased by using a 1x1 convolution kernel. Convolution filters with a
mix of 1x1 and 3x3 is used in the expanded layer. The comprehensive results
of the analysis shall be discussed in detail in the next chapter, and the outcome
shows a DNN with outstanding performance while using few parameters.

4.5. Proposed Sound Augmentation Methods

4.5.1. Proposed Methodology#

The DeepShufNet framework is partitioned into data pre-processing, feature
extraction, data augmentation, and classification modules, described in the
subsections below. The conceptual diagram of the COVID-19 detection is presented
in Fig. 4.22 and the framework for the proposed methodology DeepShufNet is
illustrated in Fig. 4.23.

4 The Material/Content presented in this section has been published in [181]
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4.5.2 Pre-processing
The COSWARA datasets consist of the irregular time span of signal for each audio

recording file. To calculate the varying duration for each file, the mathematical
equation L = (%) was applied with the sample length N(Y) and the sampling
frequency f(s); every audio sample is 48KHz. The shortest and longest audio file
lengths, according to the mathematical expression to compute (secs), are 4 seconds
and 29 seconds, respectively. A simple yet straightforward pre-processing method
was applied in terms of normalizing speech by using its maximum value and an
amplitude maximum value of 1 so that to ensure that all pertinent features are recorded
during the study. Furthermore, the silent region deletion approach was used to only
use the voiced component of the signal speech and to remove the silent portion. The
application of silent region elimination was already advanced in earlier investigations,
thus inherently demonstrating its relevance in enhancing the system performance and
cutting the processing time.

4.5.3. Feature extraction

For feature representation of the audio samples, two types of audio signal
characteristics were used, which include Mel-spectrograms, and the Gammatone
Frequency Cepstral Coefficient (GFCC) image, as highlighted below.

1. Mel Spectrogram: This is the time-frequency input representation that is most
frequently utilized in sound classification tasks. In comparison to alternative
representation structures, such as Short-Time Fourier Transform (STFT), this
input representation has consistently demonstrated its usefulness and
significance. The Mel spectrogram function via MATLAB toolboxes was
used to convert COSWARA audio recordings into spectrograms. FFT
window using a frequency range close to 2.0e™ Hz, shows the creation of Mel
spectrograms using audio recordings with an average length of 10 to 25
seconds. In addition, it may be inferred from the number of points surrounding
the spaced times t and frequencies f that the power spectral energy density
P(f,t) for every audio file steadily increases for healthy samples in contrast
to the samples of other class(es). A typical example of Mel Spectrogram
images for each class is presented in Fig. 4.24.

2. Gammatone Frequency Cepstral Coefficients (GFCC): The use of
Gammatone filter banks was first created in [255]; it was based on the human
auditory system as an overlapping band-pass filter. The voice signal is
enlarged to the gammatone filter banks in the frequency domain during the
GFCC feature extraction procedure. A representation of a frequency-time
signal called a cochleagram is created by using the output of gamma-filter
banks. Hence, Equation 3.22 can be used to empirically represent the impulse
response for each gammatone filter.

g(t) = mtY e 2™cos 2nf .t + @) (3.22)
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Here, g(t) is the gammatone filter in the time domain, y which is commonly
set to a value less than 4, determines the constant m, which normally equals
1 for the gain and the sequence of the filters. f, is the frequency of the carrier,
n denotes the bandwidth, and @ is the carrier phase, but it is typically set to
zero. Equation 3.23 is used to compute the value of the function’s equivalent
rectangular bandwidth (ERB) for the auditory filter. Fig. 4.25 depicts the
instances of GFCC time-frequency images for every class in the COSWARA
dataset.

ERB = 24.7(:2¢ + 1) (3.23)
)

(e

Fig. 4. 24. Instances of Mel Spectrogram images for five classes: (a)
Positive_ Asymptotic; (b) Positive_Mild; (c) Positive_Moderate; (d)
Recovered_full; (e) Healthy

(a) (b) (c) (d)

Fig. 4. 25. Instances of GFCC images for five classes: (a) Positive_Asymptotic; (b)
Positive_Mild; (c) Positive_Moderate; (d) Recovered_full; (e) Healthy

4.5.4. Augmentation methods based on photometric and noise injection

Two kinds of data augmentation approaches have been proposed to enhance the
minority class of the training images and thus create a new synthetic dataset.
Photometric (or color transformation) and noise injection methods have both been
employed to generate synthetic data and thus improve the training dataset. The
description of the synthetic or augmented data called COswara-COvid-Augmented
datasets coined as COCOA is described as:

7
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1.

The Photometric or Color Transformation Method (COCOA-1). There are
three widely used color DAM models applied in the previous literature for
improving data transformation. However, this study analyzed and
investigated the rgh2lab and grayscale augmentation approaches. There are
256 shades of grey and a brightness range of 0 (black) to 1 (white); these
transformer approaches are also known as monochrome. Among the other
color transformation techniques used in augmenting the training data, these
include contrast, rgh2lab, brightness, and rgb2gray.
The Noise Injection Method (COCOA-2). The most widely used intensity
transform approach is the noise injection method (NIM). Any deterioration
in the signal of an image which is often caused by an external disturbance
is referred to as noise in images. Thus, the injection of noise in the image
input data during training has been said to exert significant influence on the
performance of learning models through improved learning and efficiency
of the model [256]. To create synthetic datasets, different ranges of noise
were adopted, like the salt-pepper noise and gaussian noise to each image
in the dataset.
Gaussian Noise: This is an analytical noise often referred to as Gaussian
distribution with equal PDF in the normal distribution. The property of
the Gaussian distribution is that it is characterized by the mean and the
variance, 2. Considering an image f(X) with coordinates (X,Y) with
an additive noise of n(x), hence, the Gaussian distribution pdf is
computed as the mean of distribution (u) by taking the average of the

experimental values m = % . x;, and m is the highest possibility

estimate of u using the mathematical expression in Equation 3.24.
1/x—p\?
f) = —e () (3.24)
o is the standard deviation, and the effect of Gaussian noise is directly
proportional to the value of a. The probabilities for pepper and salt cases
are assumed to be equal, and the total probability of the degradation of a
pixel is referred to as the magnitude of the noise.
Salt and Pepper Noise: This is an impulse noise which is based on a
vast range of processes such as sudden disturbance which could result
in image degradation where just a few pixels are very noisy with an
effect like sprinkling white and black dots often referred to as salt and
pepper on the original image [257]. As an instance, an image (X) with
number of pixels as (n) bits can be expressed as X = % " N;2¢, for
i=1,2,..,N.
Furthermore, also geometric methods have been applied, such as shear,
zoom, and horizontal flip, to every image in the dataset to create an

additional dataset. The COCOA-3 dataset is a combination of the COCOA-
1 and COCOA-2 datasets.




4.5.5. Classification module (DeepShufNet)

The DeepShufNet model has been presented, trained and tested for the baseline
and augmented dataset. Fig. 4.26 illustrates a lightweight deep CNN model called
DeepShufNet which is based on pretrained ShuffleNet architecture. Previous studies
showed that the pointwise Group Convolution theory which is represented in the
ShuffleNet architecture has a light-weighted network which employs channel shuffle,
recurrent modules, and allocates models over two processors. Additionally, the
implementation of channel shuffling and pointwise group convolution has reduced the
computing costs while maintaining the overall performance. 1D-CNN for binary
classification was applied to train the audio recording which is a 1D- time series. The
DeepShufNet is made up of an input layer with an image resolution of 224 x 224 x 3,
several hidden layers, namely, convolutional, batch normalization, pooling layer,
flatten layer, FC layer, and an output layer. However, each image was downscaled
from its original size of 875 by 656 pixels to 224 by 224 pixels, which is sufficient for
recognizing all target ranges. Additionally, the use of smaller inputs improves the
computational speed, minimizes the parameter numbers, and ultimately reduces the
likelihood of overfitting. The experiment employed the proposed DeepShuffleNet
which has 172 layers overall and 1.4 million learnable parameters. The optimizer used
in this experiment is the dropout layers of 0.5 to the hidden neurons so that to eliminate
overfitting and to ensure the optimal model. The DeepShuffleNet architecture
employs unique operations, such as grouped convolution, channel shuffle, and depth
concatenation which drastically decrease the computing time and enhance the
performance outcomes despite the higher number of layers. The training options
applied are the Adam (adaptive momentum algorithm), 250 minibatch size for
exploring and final training. The optimizer’s learning rate is dependent on the warm
start parameter, which ranges from 1e~*to 1e~3, the total number of epochs, and the
L2-Regularization parameter, which is x= 2 x e™.

Grouped Gonvalution

Classification
Qutput

Fig. 4. 26. DeepShuffleNet Structure and Components
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4.6. Performance Metrics

The results of the proposed DAM after training on the learning model have been

evaluated. To calculate the efficacy of the proposed models, benchmarked metrics
were adopted, such as TP — True positive, FP — False positive, TN — True Negative,
FN — False negative, and the further optimization metrics used are: ACC —Accuracy,
SEN - Sensitivity or Recall, SPEC — Specificity, PRE — Precision, F —score, Receiver
Operating Characteristics Curve/Area Under Curve (ROC-AUC). A thorough
breakdown of the performance metrics employed in this thesis is presented with
mathematical expressions in Equations 3.25 — 3.29.
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Accuracy (ACC): This is the likelihood that the classes in the entire sample
of cases were correctly predicted.

TP+TN
ACC = —————
TP+TN+FP+FN

(3.25)

b. Sensitivity/Recall: This is the likelihood of all true positive classes that are

correctly predicted as positive.

Rec = —= (3.26)
TP+FN

Specificity: This is the likelihood of all true negative classes that are correctly
predicted as negative.
TN
Spec = TNTFP (3.27)
Precision: This is the likelihood of classified positive classes that are correctly
positive.

Pre = —F (3.28)
TP+FP

F1-Score: This is the weighted harmonic mean of precision and recall
(sensitivity).
F1-score =2 *

PRE*REC
PRE+REC

(3.29)

ROC: It is a standard technique for evaluating how effectively the
classification and pattern-matching systems function. The trade-off between
TPR and FPR can be shown by ROC. AUC determines the measure of
classifier effectiveness in a single number; thus, AUC measures the reliability
of the classification evaluation criteria. In addition, AUC is the likelihood that
a positive instance will receive a higher score than a negative instance based
on how the classifier rates positive cases to the negative instances, with the
mathematical expression in Equations 3.30 to 3.32 where T is the varying
parameter.

True-Positive-Rate (TPR) = ——— (3.30)
False-Positive-Rate (FPR) = 1 — Specificity (3.31)
AUC = [”TPR.d (FPR) (3.32)



4.7 Summary of the Proposed Materials and Methods

In this chapter, a low computationally intensive method was proposed for the
facial palsy dataset. This method is based on efficient data augmentation methods
Voronoi Decomposition Random Region Erasing (VDRRE) approach. In addition, a
lightweight and minimal complexity CNN model SqueezeNet was adopted to select
high-level features and train the model. For cassava disease detection, data
augmentation was implemented by using a color histogram model, and four image
quality reduction methods were applied to overcome the issue of overfitting and poor
generalization. Practical characteristics were taken from the CNN, and deep learning
model hyperparameters were fine-tuned to improve cassava disease classification. An
optimized and efficient CNN (MobileNetV2) model was introduced to detect cassava
disease by using cassava leaf images. For the skin melanoma classification, a new data
augmentation technique using the oversampling of a nonlinear lower-dimensional
embedding manifold to generate augmented samples. A covariant Synthetic Minority
Oversampling Technique (SMOTE) was presented to tackle the issue of limited data
and class disparity. The proposed covSMOTE augmentation model was able to
effectively create synthetic melanoma images and improve the performance of the
training model. In COVID-19 detection by using sound data, color transformation and
noise injection methods were applied to generate artificial data from sound data. The
efficiency of training the proposed model by using the augmented dataset was
analyzed by using two feature extraction methods which are the Mel spectrogram and
GFCC on the proposed DeepShufNet model.

Another study used ensemble-based machine learning classifiers in the
detection of COVID-19 by using blood test medical data. A custom classifier was
introduced by using Convolutional Neural Network (CNN) models and 15 supervised
machine learning algorithms. Finally, we adopted spline interpolation and Piecewise
Cubic Hermite Interpolating Polynomial (Pchip) interpolation methods to create
augmented data from known observations. However, the classification task was based
on BiLSTM and conventional machine learning classifiers, such as Ensemble bagged
tree, SVM, LR, DT and KNN. The significance of each method in various
classification tasks shall be presented in Section 5.
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5. EXPERIMENT AND RESULTS

In this chapter, various implementations and experimental outcomes of the
proposed data augmentation (DAM) methods on the different databases outlined in
the previous chapter shall be discussed in detail. The subsections in this chapter will
address in detail the integrated DAM methods in different classification tasks.

5.1. Analysis of Face Palsy Detection

In this experiment, the VDRRE augmentation method discussed in Section 4.3
for face palsy detection was trained by using the deep learning (SqueezeNet) network.
The CNN architecture used in this experiment was implemented in MATLAB R2019a
running on Windows 10 64-bit Intel Core i5 CPU and 8 GB RAM. The epochs were
set to a maximum of 50, the learning rate was set to 0.00001, a fixed mini-batch of
size 16 was used, and the Stochastic Gradient Descent Momentum (SGDM) optimizer
was employed in the training process. To effectively train the model, the following
additional parameters used for this experiment are summarized in Thl. 5.1. Early
stopping of training [58] was introduced to stop the training as soon as the validation
loss has begun to rise, thereby enhancing the generalization ability of the model and
avoidance of overfitting.
Table 5. 1. Configuration Model parameters for face palsy detection

Model Parameters
Batch size 16
Optimizer SGDM
‘MaxEpochs’ 50
Exponential decay rates 0.9
‘WeightLearnRateFactor’ 20
Epsilon parameters 0.999
Moment estimates 10 x 1078
‘InitialLearnRate’ 0.00001

5.1.1. Performance analysis results

The dataset was partitioned at random into five-fold cross-validation, and the
training set comprises the four-fold making up 80% of the dataset, while the last fold
i.e.,, 20% was used to test. Thl. 5.2 summarizes the confusion matrices for the
experimental results. Each experiment was carried out repeatedly, and the outcome of
the model used the following metrics: recall, accuracy, F1-score, and precision. The
confusion matrices display the results of numerous cross-validation folds combined.
It should be noted that the rate of misclassification is minimal for the 1-shot and 2-
shot-learning tests with image augmentation, which indicates high-performance levels
which are reprinted in full in Thl. 5.2. The p — value metrics results for each data is
summarized in Tbl. 5.3. The mean score with 95% confidence intervals is presented
in Thl. 5.4 which depicts the classification results for face palsy detection when
compared to using the proposed image enhancement technique.
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Table 5. 2. Confusion matrix with the influence of VDRRE on the test dataset

Original Image (No_Aug)

. : Palsy True Positive .
Predicted/ Actual | Normal (Predicted) (Predicted) %) False Positive (%)
Normal (Actual) 67 10 87.0 13.0
Palsy (Actual) 23 211 90.2 9.8

1-Shot Learning + VDRRE

Predicted/ . Palsy True Positive P
Actual Normal (Predicted) (Prediicted) %) False Positive (%)
Normal (Actual) 82 2 97.6 2.4
Palsy (Actual) 8 219 96.5 35
2-Shot Learning + VDRRE
Predicted/ ; Palsy True Positive Lo
Actual Normal (Predicted) (Predicted) %) False Positive (%)
Normal (Actual) 83 1 98.8 1.2
Palsy (Actual) 7 220 96.9 3.1

The hybrid SqueezeNet/ECOC-SVM classifier was implemented in both 1-shot
and 2-shot-learning using the proposed VDRRE approach. The integration of the
trained 2-shot learning on VDRRE gave the best performance, by attaining precision,
recall, F1-score, and accuracy, with scores of 99.35%, 99.74%, 99.54%, and 99.34%,
respectively. The experimental outcome of the comparable 1-shot learning case was
marginally poorer in terms of performance, with precision, Fl-score, recall, and
accuracy scoring values of 98.85%, 99.28%, 99.72%, and 99.07%, respectively.
Nevertheless, the baseline result with no augmentation obtained F1-score, precision,
recall, and accuracy vyielded rates of 85.59%, 81.06%, 91.85%, and 78.62%,
respectively. Both 1-shot and 2-shot learning with VDRRE augmentation, on the other
hand, produced significantly improved results.

The t-distributed Stochastic Neighbor Embedding (t-SNE), which leverages
PCA for reducing the dimensionality of features, was applied to efficiently visualize
the potential of the SqueezeNet network to extrapolate the useful features. From Fig.
5.1, the nonlinear dimensionality-reducing technique, known as t-SNE, enables the
visual representation of high-dimensional data as a two-dimensional map. The
visualization shows that the two-dimensional embeddings of palsy face images form
a cluster which is clearly distinguished from the two-dimensional embedding of
normal face images. From Tbl. 5.4, it can be deduced that, in every way, the results
were significantly improved when using either the random erasing augmentation or
VDRRE (one-shot and two-shot learning). Thus, the most desirable results are shown
in bold, and this shows the impact of the VDRRE model in enhancing the
effectiveness of the classifiers with almost a 20% increment in the accuracy of the
model with augmentation.
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Table 5. 3. Comparison of statistical significance of the proposed best results for
each learning scenario

. - With Aug
Metrics Statistics No Aug 1-Shot 2-Shot
Average 78.62 99.07 99.34
Minimum 63.59 97.10 98.87
Accuracy Maximum 91.16 99.7 99.80
0,
%) j;f‘/?gﬁgﬂ 7.89 0.72 0.34
p-value 1.9189 x 1077 1.4669 x 10~° 0.30332
Average 81.06 98.85 99.35
Minimum 72.61 95.45 98.66
Precision Maximum 90.31 99.77 99.66
(%) Standard 6.29 1.40 0.33
deviation
p-value 0.010096 0.0040585 0.87758
Average 91.85 99.71 99.74
Minimum 78.28 99.09 99.43
Recall Maximum 99.32 100 100
(%) Standard
deviation 7.57 0.36 0.25
p-value 7.7469 x 1077 3.3278 x 1078 0.29494
Average 85.91 99.28 99.54
Minimum 75.34 97.67 99.21
F1-Score Maximum 94.03 99.77 99.83
(%) Standard 5.28 0.66 0.23
deviation
p-value 2.7052 x 107° 1.9166 x 1077 0.252

Table 5. 4. Average-performing results of hybrid SqueezeNet/ECOC-SVM classifier
for palsy detection

Average Classification results (95% CI)
Methods
Acc (%) R(e(z)za;ll Prec (%) F1-Score (%)
No 78.62 (SD: 91.85 (SD: 81.06 (SD: 85.59 (SD:
augmentation 5.65) 5.41) 4.50) 3.78)
Random-Erase 92.91 (SD: 96.14 (SD: 93.96 (SD: 95.04 (SD:
augmentation 1.12) 0.83) 1.87) 1.42)
2-shot learning 99.35 (SD: 99.74 (SD: 99.35 (SD: 99.54 (SD:
+VDRRE 0.24) 0.17) 0.24) 0.16)
1-shot learning + 99.07 (SD: , 98.85 (SD: ,
VDRRE 0.60) 99.72 (SD:0.28) 1.15) 99.28 (SD:0.55)
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Fig. 5. 1. Data visualization by using t-SNE

Fig. 5.2 shows the ROC curve which was employed to further evaluate models
in three scenarios (baseline results, 1-shot-learning with VDRRE, and 2-shot-learning
with VDRRE). The AUC metric, which is represented using the ROC curves with has
the following values: 0.7967 (95% CI = [0.7944, 0.7989]) for baseline, 0.9958 (95%
Cl =[0.9957, 0.9959]) for 1-shot learning, and 0.9956 (95% CI = [0.9955, 0.9957])
for 2-shot learning cases, respectively. In this instance, the classifier performance
matrix values were bootstrapped to calculate the Confidence Intervals (CI) on the
premise that they had a normal distribution. These findings demonstrate that the
proposed VDRRE approach greatly outperforms ‘baseline results’ cases in both 1-
shot and 2-shot cases.
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Fig. 5. 3. Overall outcome of 2-sampled t-test comparison for baseline, 1-shot and 2-shot-
scenarios: (a) accuracy; (b) recall; (c) precision; (d) F1-score

Where: *.p < 0.05, **.p <0.01, ***p < 0.001, ****.p < 0.0001, ns. — not
significant p > 0.05.

To statistically analyze the findings, for equal means, a two-sample t-test was
used. The outcome of the test provides a conclusion on the null hypothesis, which is
that the data in the two compared samples are distributed normally, with equal means
but unknown variances. The tests were run at the 5% threshold of significance. The
findings shown in Fig. 5.3 demonstrate a substantial (p < 0.001) difference between
the baseline and the 1-shot-learning case with VDRRE, in addition to the 2-shot-
learning scenario with VDRRE. Nonetheless, there was little variation in performance
between the 1-shot and 2-shot learning scenarios (i.e., the equal means hypothesis was
not rejected).

5.1.2. Benchmark analysis with existing methods

To further validate our proposed method, a comparison of the experimental
findings with the existing approaches sourced from [99, 246] on the same YFP dataset
was conducted and reported in Thl. 5.5. With a definite advance in recall, precision,
and accuracy, the comparison demonstrates that the proposed model outperforms the
previous studies. The application of the proposed VDRRE image augmentation
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technique increased the image number accessible for NN training and ultimately
contributed to the performance gain.

Regardless of the positive outcomes produced by the proposed VDRRE
augmentation technique, the drawbacks of utilizing a limited dataset continue: (1) the
diversity in expressing the degree of the facial palsy condition is lower in small
datasets; (2) the risk of overfitting (leading to poor generalization of the DNN models)
is still present. The binary nature of the experiment (i.e., normal vs. palsy), which does
not distinguish between different degrees of facial palsy severity, may have an impact
on the validity of our findings. This indicates that there may be more variation within
the ‘palsy’ class than there is between the ‘palsy’ and ‘normal’ groups. The multiclass
classifier ECOC-SVM which was employed in the last step of the workflow, however,
makes the proposed methodology general and enables the use of various facial palsy
datasets with severity-level class labels.

Table 5. 5. Comparison of performance results with the existing methods for face
palsy detection by using the YFP dataset. Bold fonts convey the best values

Methodology Performance results
Classifier Augmentation Ac?(%;\cy Pr%():/l:)lon R(%Za;” References
Deep
Hierarchical NA 91.20 - - [99]
Network
Parallel GAN, translation,
Hierarchy CNN+ and rotation 94.81 95.60 94.80 [258]
LSTM transformation
No augmentation 89.25 95.43 89.13
Our proposed Geometric & Color
rﬁodF;l transformation 99.07 98.85 99.72 Our paper
VDRRE (proposed) 99.34 99.43 99.35

5.1.3. Conclusion of the section

This study has proposed a DL-based classification methodology for the
identification and classification of facial palsy. The proposed methodology presented
an innovative image enhancement technique which expanded random erasing
enhancement with erratic regions created by using Voronoi tessellation. SqueezeNet
deep neural network for automatic deep feature extraction was presented, and, finally,
the workflow, based ona multi-class classifier, was developed. Therefore, the
proposed approach can be used to evaluate facial palsy by utilizing a variety of
datasets related to facial palsy, including multi-class datasets that contain face images
labeled with the palsy severity level.

A few-shot learning methodology inspired by human intelligence was used to
train our system to successfully distinguish palsy facial images within a small sample
size. To create synthetic training sets for the scenarios of 1-shot and 2-shot learnings,
the VDRRE image augmentation approach was put into practice. The proposed hybrid
classifier uses images from the raw YFP and Caltech datasets trained by using
synthetic image datasets. The investigation displayed the efficacy of the proposed
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method for the detection of facial palsy with a significant increase (p < 0.001)
compared to the baseline results. In addition, a better performance outcome was
achieved by the proposed model in comparison to the existing models using the same
YFP dataset. Further research would be beneficial to investigate other cutting-edge
data augmentation techniques to create augmented datasets and create a reliable
classifier with little computing complexity by merging models of transfer learning for
rapid recognition of the moderate severity level of face palsy. In addition, by
employing several face palsy datasets and cross-dataset validation of the proposed
method, the robustness of the proposed approach shall be further investigated.

5.2. Analysis of Cassava Disease Detection

This study was implemented on a workstation running 64-bit Windows 10 with
an Intel Core i5-8265U CPU running at 1.60 GHz and 8GB of RAM. The suggested
model was implemented by using the MATLAB (MathWorks Inc., USA) Deep
Learning Toolbox TM. The network was trained for 10 epochs by using the initial
learning rate of 0.001, a piecewise learning rate schedule, a learning rate drop factor
of 0.2, and a learning rate drop period of 2 on the cassava leaf disease dataset using
the Adam optimizer as summarized in Thl. 5.6.

Table 5. 6. Model parameters for cassava disease detection

Model Parameters
Batch size 100
Optimizer Adam
MaxEpochs 10
WeightLearnRateFactor 10
LearnRateFactor 0.2
InitialLearnRate 0.001

5.2.1. Baseline implementation using transfer learning

The dataset was divided into 80% for training and 20% for validation. The
trained model was tested on the validation set and received results of 0.977 accuracy,
0.9676 F1-Score, 0.9772 precision, and 0.9634 recall. The CMD class achieved the
highest classification accuracy (98.5%), whereas the healthy class only received an
accuracy of as little as 95.2%.

T-distributed Stochastic Neighbor Embedding (t-SNE) and network activations
were used to analyze the output of a neural network. Fig. 5.4 (a) displays the FC
layer’s learnt features. The visualization of the network layers can enhance the
interpretation of the classification process, and the outcome presents the learned
features by the network using different gradients, as well as colors like yellow, green,
red and orange spots. Fig. 5.4 (b) shows the network activations of the FC layer with
the use of t-SNE to reduce dimensionality. There is a clear difference in each cluster
representing the classes of the investigated plant disease. Thus, for this study, the
trained network has been chosen as a baseline network model.
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Fig. 5. 4. (a) The baseline neural network features images (15 channels and empty 16-
channel); (b) use of t-SNE to activate the FC layer

5.2.2. Experimental results based on lower-quality images

The experimental test outcome using lower-quality dataset images is depicted
in Fig. 5.5 (a)—(d). It can be deduced that, as the quality of the image deteriorates, the
accuracy progressively declines. Fig. 5.5(a) shows that the classification accuracy
rises as the image resolution increases, with values of 8%, 43%, 74.4%, 83.6%, 86.1%,
and 87.3% for 32 x 32, 64 x 64, 96 x 96, 128 x 128, 160 x 160, and 192 x 192,

respectively.
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Fig. 5. 5. Performance outcome when using lower quality images: (a) Resolution-down-
sampling; (b) Gaussian blurring; (c) Motion blur; (d) Overexposure

Furthermore, Fig. 5.5(b) presents images with Gaussian blur, and the
classification accuracy declines slowly from 90.2%, 82.9%, 77.1%, 70.5%, and
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61.1%, respectively, as the standard deviation parameter of Gaussian blurring o is
increased to the values of (1, 1.5, 2, 2.5, 3). In addition, Fig. 5.5(c) demonstrates that
as the motion-blurring parameter was increased to 5, 10, 15, 20, and 25 pixels, the
overall classification accuracy for motion-blurred images decreased, and the accuracy
declined from 88%, 77%, 63%, 52%, to 43%, respectively. Fig. 5.5(d), where the
accuracy rate is 77.3%, 67.1%, 55.9%, 45.8%, and 31.7%, respectively, shows how
the improvement in overexposure varies with a persistent drop in the performance
accuracy. In conclusion, our findings demonstrate that a decline in the quality of test
images has an undesirable effect on the neural network’s overall performance, thus
indicating that the neural network struggles to generalize over images with resolution-
down-sampling, Gaussian-blurring, motion-blur, and overexposure. This inspired the
addition of the low-quality artificially created plant images to the raw dataset to train
the network to identify leaf diseases in low-quality images as well.

5.2.3 Experimental results using augmented training dataset

In this instance, using the combination of both the raw training dataset and
synthetic histogram-transformed images, the neural network model was efficiently
trained. The combination of both the enhanced image dataset and the raw images
contains 94,350 images and it was utilized to retrain the baseline network, with 80%
of the images applied for training and 20% used for validation.
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Fig. 5. 6. Performance outcome for augmented training dataset @ k= 10: (a)
Resolution-down-sampling; (b) Gaussian blurring; (c) Motion blur; (d) Overexposure
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The retrained network model was tested on the raw data, high-quality,
and lower-quality cassava images. On the higher-quality images, the overall
performance was able to attain an accuracy of 0.997, which is an improvement of 2%,
however, the improvement was more pronounced regarding the lower-quality images.
When down-sampling the resolution, the accuracy increased from 2.8% (192 x 192
px down-sampling) to 20.6% (64 x 64 px down-sampling). The accuracy of Gaussian
blurring increased from 2.8% (blurred at 16) to 14.6% (blurred at 3c). From 4%
(motion blur at 5 px) to 14.3% (motion blur at 25 px), the accuracy of motion blurring
increased. The accuracy for overexposure increased from 4% (2.5 times overexposed)
to 9.8% (25 times overexposed). Fig. 5.6 (a) to (d), respectively, demonstrates the
results of classification for a network evaluated on images with applied Gaussian
blurring, motion blurring, and overexposure.

The network trained on an expanded image dataset generalized better on
degraded synthetic images as compared to the outcomes of the baseline classifier
trained on the original dataset images thus, the proposed model demonstrated better
generalization abilities.

5.2.4. Statistical evaluation and outcomes overview

A nonparametric statistical Friedman’s test and K-fold cross-validation were
both used to assess the statistical significance with k = 10. When the ranking is
random, the Chi-square distribution usually best describes the distribution of the data
columns’ mean ranks, which are what is determined for the test. To determine if the
mean of the difference is equal to zero, the one-sample T-test was performed to the
compute the difference in the classification accuracy. Tbl. 5.8 presents the results
obtained.

The method’s drawbacks are also indicated in Thl. 5.8. The procedure did not
provide any benefit when the image quality deterioration was considerable, as in the
case of resolution down-sampling to 32 x 32 pxg. The gain in the classification
accuracy was more subtle for small image quality reductions (such as resolution-
down-sampling to 192 x 192 px, which is only marginally lowerthan the
acceptable input size for the neural network). The outcome of the statistical analysis
of the performance of the classifier shows that, in the majority of cases, the proposed
data augmentation considerably increases the neural network’s ability to identify
cassava leaf disease.
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Table 5. 7. Test accuracy on cassava disease dataset with statistical significance for
each quality reduction parameter. Bold fonts convey the best values

Quality Quality Accurac | Accuracy Improve Res_ults of | Results
h . y (Augment Friedma | of one-
reduction reduction l d ment of . |
method parameters (Baselin ¢ accuracy ns sample
e) dataset) test t-test
0.0827+£0. | 0.0906+0.0 | 0.0079+0.
32x32 0146 164 0158 NS NS
64 x 64 0.43147+ | 0.6378+0.0 | 0.20640. e o
0.0237 283 0191
. 0.7438+0. | 0.8347£0.0 | 0.0909+0.
Resolution 9696 0291 203 0249 - -
. 0.0836+0. | 0.8821+0.0 | 0.0262+0.
sampling 128 x 128 0147 164 0244 * **
0.0861+0. | 0.8821+0.1 | 0.0209+0.
160160 0201 44 0244 NS j
0.0875+0. | 0.9006+0.0 | 0.0281+0.
192192 1 o198 085 0232 - -
1 0.9017+0. | 0.9298+0.0 | 0.02810. o N
0119 85 0137
15 0.8394+0. | 0.8914+0.0 | 0.0520+0. o o
) 0175 147 0263
Gaussian ) 0.7705+0. | 0.8628+0.0 | 0.0922+0. e e
blurring 0240 197 0206
25 0.7054+0. | 0.8206+0.0 | 0.11530. et i
) 0218 169 0232
3 0.61130. | 0.7573+0.0 | 0.1460+0. xx e
0153 228 0245
: 0.8834+0. | 0.9234+0.0 | 0.040+0.0 o e
0168 109 17
10 0.7671+0. | 0.8453+0.0 | 0.078+0.0 et i
0099 172 18
. 0.6346+0. | 0.7536+0.0 | 0.1190+0.
Motion blur 15 0356 199 0374 Fxk Fkx
20 0.5244+0. | 0.6566+0.0 | 0.1322+0. xx e
0258 199 0217
25 0.43460. | 0.5776+0.0 | 0.14310. o o
0230 273 0261
105 0.7727+0. | 0.87100.0 | 0.0983+0. o oxx
) 0191 256 0266
15 0.6709+0. | 0.9006+0.0 | 0.1206+0. o ok
) 0255 287 0243
0.5588+0. | 0.6577+0.0 | 0.0262+0.
Overexposure 1.75 0256 164 0244 falele Fkx
) 0.4576+0. | 0.5390+0.0 | 0.0814+0. o o
0228 302 0220
15 0.3175+0. | 0.3580+0.0 | 0.040+0.0 x x
) 0189 278 27
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5.2.5. Evaluation and discussion

To verify the viability of the proposed strategy, an assessment of our proposed
methods in comparison to that of [108] was conducted. The overall findings of this
study were compared with the three best results from previous literature. Tbl. 5.7
illustrates existing methods, augmentation techniques, and experimental outcomes
presented in the selected literature.

Table 5. 8. Comparison of performance results with existing methods for cassava
disease detection

. DNN
Ref. Methods Data augmentation Architecture Accuracy
Proposed by Appian | Random crop, random Se_ResNet 0.935
erasing, horizontal and
vertical flip, random
108 affine
[108] Proposed by M. | Standard method Se_ResNet 0.936
Vafan
Proposed by | Random crop, Horizontal | Se_ResNet 0.939
DeepBlueAl flip, Vertical flip, rotate
Transformer (ViT) | Flipping, zooming, | ViT -
[165] model based on self- | cropping
attention and Lel AP
No augmentation MobileNetV2 | 0.977
Our Proposed Method | Image color histogram | MobileNetV2 | 0.997
equalization and IQRM

For evaluation, a comparison of our proposed work with related studies was further
validated. Our approach was tested by using both high-quality images and
synthetic low-quality images. The results are shown in Tbl. 23, and they demonstrate
that our model provided the best performance, by improving the accuracy up to 0.977
when using it without any data augmentation and to 0.997 when using it in conjunction
with the proposed approach for data augmentation. The impact of underfitting or
overfitting may have had an influence on the results, particularly in the case of limited
data for training; see [260]. To avoid overfitting, the MobileNetVV2 neural network
features built-in dropout layers. The effectiveness of such dropout layers has been
demonstrated in [261]. In addition, the proposed image augmentation technique
enables a significant increase in the number of images that are accessible for training,
thus reducing the risk of underfitting. The proposed color-based transformation
approach incorporated in creating extra training images can be viewed as a type of a
regularization strategy which introduces variation to the original data to boost the
training effectiveness [36]. Additionally, the MobileNetV2 network used in this study
features built-in batch normalization layers that are successful in preventing
overfitting [260]. Although the model’s complexity can lead to overfitting, it should
be noted that using the first 18 layers of the model and adding three new layers greatly
decreases the number of parameters in the MobileNetV2 complexity.
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5.2.6. Conclusion of the section

The influence of data augmentation methods on deep neural networks and the
experimental analysis of the created images with the image color space was presented.
Convolution of the probability density functions of color histograms with Chebyshev
orthogonal functions was presented as a further modification. To artificially reduce
the image quality, four techniques were employed: resolution down-sampling,
Gaussian blurring, motion blur, and overexposure. The MobileNetV2 deep neural
network was used for the classification. On high-quality images from the cassava plant
disease dataset, the baseline network attained an accuracy of 97.7%; however, on low-
quality images, the performance was noticeably lower, occasionally nearing that of a
random classifier. The network was subsequently retrained by using both authentic
(high-quality) and artificial images. When compared to a baseline neural network, this
led to an increase in the classification accuracy for lower-quality photos from 3% to
15% while maintaining an accuracy of 99.7% for the original high-quality images.

The huge improvement in the classification rate can be attributed to the ability
of the proposed augmentation techniques to generate realistic images with
transformation emphasis on the color of the leaves. These augmented images were
able to improve the ability of the generalization of learning of the model process and
reduce overfitting. In spite of that, it is generally accepted that using high-quality
images for classification would result in better prediction results. This study
demonstrates the critical need to consider low-quality images to focus on the
requirements of the intended users of Al-based applications, such as, for instance,
rural farmers utilizing smart agriculture applications. This study’s more general
conclusion is the requirement for new benchmarks for evaluating and contrasting the
effectiveness of NN models on corrupted test data.

Further research should concentrate on multi-class detection for locating various
plant diseases. In addition, there is a need to enhance the time complexity of our
proposed model’s simplicity of implementation into mobile applications for real-time
accessibility.

5.3. Analysis of Skin Melanoma Classification

An Intel Corei5-5300U CPU running at 2.30 GHz with 8GB RAM and a 64-bit
version of Windows 10 was used for this study. MATLAB (MathWorks Inc., USA)
Deep Learning Toolbox was implemented, and a Stochastic Gradient Descent (SGD)
optimizer was used to train the network with over 10 epochs. The learning rate drop
factor was set to 0.2, the learning rate drop period was set to 2, and the optimal
learning rate was selected from a range of 10—4, 10-5, and 10—6.

5.3.1. Classification results for binary-class

In the original dataset (PH2), the first test was run by using a 60:40 training-to-
testing ratio. The original dataset is categorized into two sections which are the binary
classification (melanoma and non-melanoma) and multi-class (melanoma, atypical,
and common nevu classes). A total of 120 sample images were trained comprising 24
melanoma and 96 non-melanoma images (48 Common nevu and 48 Atypical nevu
class). The test samples consisted of 80 test images, including 16 melanoma and 64
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non-melanoma images (comprising 32 common nevu and 32 atypical nevu). The
proposed CovSMOTE augmentation was used to produce AugDB-1 while AugDB-2
was created by using conventional transformation techniques, such as horizontal
flipping, scaling, rotation, translation, etc. The results of the experiment revealed a
significant result with an accuracy rate of 95.31% for AugDB-1, while there is almost
a tie between the overall accuracy yield for the AugDB-2 and the original dataset with
89.26% and 89.64%, respectively. The application of our proposed model was able to
reduce overfitting and improve the classification model’s ability to generalize better.
The experiment was carried out ten times, and the average performance metrics were
0.8964 for accuracy, 0.726 for sensitivity, 0.9406 for specificity, and 0.7365 for F1-
score as demonstrated in Thl. 5.9.

Table 5. 9. Best-performing results of the proposed method for Skin melanoma
detection (Binary classification). Bold fonts convey the best values.

Binary Class Classification Results

Acc Pre Sen | Spec F1-
Dataset Description Score
P ©6) | 0) | (%) | %) | "oy
Original PH? 89.64 | 76.12 | 72.58 | 94.06 73.65
AugDB-1 | COVSMOTE | o537 | 8113 | 80.77 | 95.1 | 80.84
ugmentation
Conventional
AugDB-2 Augmentation 89.26 | 82.87 | 58.75 | 96.88 67.83

The pre-trained network was used to train and to build our proposed model, the
proposed approach performed with the highest accuracy of the binary classification
of 0.9531, a sensitivity of 0.8113, a specificity of 0.951, and an F1-score of 0.8084,
as depicted explicitly in Fig. 5.7, while Tbl. 5.10 shows the confusion matrix summary
of the test results for each training model built on the datasets which are the original
image with no augmentation, covsmote, and conventional augmentation.
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Table 5. 10. Confusion matrix with the influence of augmentation on the test dataset
(Binary classification).

Original Image (No_Augmentation)
Predicted/ Melanoma Non-Melanoma P(;I;ril:iev e ngilfisle
Actual (Predicted) (Predicted) (%) (%)
Melanoma
(Actual) 10 3 62.5 375
Non-Melanoma
(Actual) 6 61 95.3.0 9.0
AugDB-1 (COVSMOTE)
Predicted/ Melanoma Non-Melanoma Tr_u_e Fa_ls_e
Actual (Predicted) |  (Predicted) Positive | Positive
(%) (%)
Melanoma
(Actual) 15 3 93.75 6.25
Non-Melanoma
(Actual) 1 61 95.31 4.69
AugDB-2
Predicted/ Melanoma Non-Melanoma Pc-al;,ril':s/ e ngiltsi?/e
Actual (Predicted) (Predicted) (%) (%)
Melanoma
(Actual) 14 4 87.5 125
Non-Melanoma
(Actual) 2 60 93.8 6.2

96



Percentage

105

100

Percentage

Comparison of overall test results
T

105

100

95

75

70

65

Accuracy

Precision

[ No Augmentation
[ AugDB _
[ AugDB,

Sensitivity

I No Augmentation
I AugDE
[ AueDe,

Specificity

Metrics

F1-Score
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5.3.2. Classification results for multi-class skin melanoma detection

A further experiment was performed for multi-class detection for the initial
three classes of the PH2 dataset to obtain optimal results. By using the split ratio of
60 (training): 40 (test), new synthetic images were produced to balance the three
classes: melanoma, common nevu, and atypical nevus, respectively. The outcome of
multiple trials demonstrated that the mean accuracy rate, the sensitivity rate, the
specificity rate, and the F1-score were computed. The test results, as presented in Tbl.
5.11, showed that, for the AugDB-1 dataset, the performance significantly enhanced
the classification ability for melanoma, with the best accuracy of 0.694, a sensitivity
of 0.892, a specificity of 0.962, a precision of 0.841, and an F1-score of 0,749,
respectively. Fig. 5.8 presents a summary of the experimental findings for the three
classes of melanoma, atypical nevu, and common nevu, with the performance
comparison findings for the three databases. Tbl. 5.12 shows the confusion matrix for
the outcomes of our proposed classifier.
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Fig. 5. 8. Comparison results for the three datasets in multiclass classification showing the
accuracy (%), precision (%), recall (%), and F1-score (%)
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Table 5. 11. Best-performing result for skin melanoma detection (multi-class)

Melanoma Atypical Nevu Common Nevu
Dataset 2 2 2 c ) 2 2 c ) 2 2 c )
S| 2] & e 5| 2] 8| 8 5| 2| &8 ¢ 5
= = = 2] o = = 2 o = = 2] o
gle|g| 8|2 |g|s|8| 5|&g|/g| 8|47
< n 7 o L 0 n o L 0 ) o L
Origina | 60. | 64. | 93 73 67. | 54. | 68 68. | 53. | 63. | 73 62 62.
1 DB 4 2 6 8 4 8 9 9 8 9 4 0 5
AugDB | 69. | 89. | 9. |84. |74. |65 |72 |61l |62 |66. |77. |66. | 65.
-1 4 2 2 1 9 4 2 3 5 0 2 6 4
AugDB | 66. | 61. | 73. | 76. | 57. | 57. |61 |54, |58. |56. |75 |64 | 58.
-2 0 5 0 1 6 4 9 0 4 1 2 0 3

Table 5. 12. Confusion matrix with the influence of augmentation on test dataset

(multi-class)
Original Image (No_Aug)
Predicted/ Atypical Nevu | Common Nevu | Melanoma True False
Actual (Predicted) (Predicted) (Predicted) | Rate (%) | rate (%)
Atypical Nevu
(Actual) 21 3 2 84.4 15.6
Common Nevu
(Actual) 19 12 1 355 62.5
Melanoma
(Actual) 4 0 12 75.0 25.0
AugDB-1 (COVSMOTE)
Predicted/ Atypical Nevu | Common Nevu | Melanoma True FP (%)
Actual (Predicted) (Predicted) | (Predicted) | Rate (%) 0
Atypical Nevu
(Actual) 19 11 2 50.38 | 40.63
Common Nevu
(Actual) 10 21 1 65.63 | 34.38
Melanoma
(Actual) 3 0 13 81.25 18.75
AugDB-2
Predicted/ Atypical Nevu | Common Nevu | Melanoma True EP (%)
Actual (Predicted) (Predicted) (Predicted) | Rate (%) 0
Atypical Nevu
(Actual) 20 9 3 62.5 375
Common Nevu
(Actual) 11 21 0 65.6 34.4
Melanoma
(Actual) 4 1 11 68.75 31.25
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5.3.3. Benchmarking with previous work

A comparison of the performance of the proposed approach by using the PH2
dataset and the state-of-the-art methods from an earlier-published work is shown in
Thl. 5.13. In a few instances, our proposed approach significantly outperforms certain
prior research. The proposed approach had relatively small computational
requirements given the temporal complexity of both binary and multiclass problems.
In comparison to some of the findings from the earlier investigations, our proposed
approach performed better. The proposed method’s shortcoming is that the sensitivity
and specificity explanation rate is relatively low and requires further improvement via
investigating different deep learning architectures in the future.

Table 5. 13. Comparison of performance results with existing methods by using
PH2 dataset. Bold fonts convey the best values

Method Acc (%) Sen (%) Spec (%) Reference
Combined Gaussian method and color
space transformation. Inception-V3 97.74 97.39 98.10 [222]
classifier

Feature Similarity Measurement (FSM)

algorithm on SVM-classifier 91.90 92.50 91.30 [262]
SVM-classifier with the linear kernel 86.07 78.93 93.25 [263]
Markov Random Field and Fuzzy C- 94.0 93.20 98.0 [264]

Means methods
Joint Reverse Classification and Multi- 92.0 87.50 93.13 [180]

scale Lesion biased Rep
Deep CNN 98.50 93.0 100 [265]

SqueezeNet and CovSMOTE Proposed
Augmentation 9218 80.77 95.10 Method

5.3.4. Conclusion of the section

The majority of the cases of skin cancer mortality is often a result of melanoma,
and the present research focuses on an early diagnosis of this condition. The expansion
of the research efforts in this field has been hampered by several obstacles, including
a small amount of data for skin cancer detection, an imbalance in the classes of skin
tumors, a lack of labeled data, poor clinical image standardization, etc., which has led
to the poor performance of the classifier. By carefully implementing the proposed
approach, this study enhanced the classification performance of melanoma skin
disease based on these difficulties. The proposed approach is a successful data
augmentation technique based on covariant SMOTE to address the issue of class
imbalance. Through comparison with other currently existing methods and the
conventional DAM techniques, the usefulness of the proposed data augmentation
method has been demonstrated.

The outcomes of multiclass classification scenarios show that the designed NN
architecture could assist medical professionals screen patients for melanoma
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effectively. Through comparisons with other methods, the proposed method’s efficacy
and dependability have been demonstrated. The proposed strategy has shown
promising results, it can be successfully included in a device with limited resources,
and it effectively addresses the issue of real-time skin melanoma detection.

The future study direction is to investigate potential paths by combining various
DL architectures, such as AlexNet, ResNet101, and DenseNet201, to enhance our
proposed data augmentation technique for the effective identification of melanoma
disease. To alleviate the current research bottleneck in small data analytics, the
proposed image enhancement technigque can also be used in other imaging domains,
such as plant disease diagnosis, defect detection, etc. Finally, the intention of
presenting our model in a smartphone app seems viable so that to create an Al-based
decision support system which would assist users in performing self-clinical
examinations, which will help with the early diagnosis of skin cancer disorders.

5.4. Analysis of COVID-19 Detection (Sound Dataset)

5.4.1. Performance results and discussion

A detailed analysis of each dataset on the proposed DeepShufNet was
considered along with the condition of the hardware requirements. Multiple
experiments were conducted on all the different datasets on the proposed
DeepShufNet. All experiments were conducted in MATLAB R2020b on a desktop PC
built with an Intel(R) core i5 (3.2 GHz) processor, 8 GB of RAM, and an NVIDIA
GeForce GTX 1070 GPU server with 120 G memory. An adaptive momentum
algorithm ADAM method was used to adaptively alter the learning rate to a value of
0.0001. For the optimal results, a batch size of 200 was used, a dropout of 50% was
adopted, and the maximum epoch to be used was 50. The summarized parameters are
listed in Thl. 5.14.

Table 5. 14. Configuration Requirements and Parameters for Sound Classification

Model Parameters
Batch size 200
Optimizer Adam
‘MaxEpochs’ 50
‘WeightLearnRateFactor’ 10
‘BiasLearnRateFactor’ 10
‘InitialLearnRate’ 0.0001

5.4.2. Classification of the proposed model: DeepShufNet performance

The combined feature-extracting images from all of the COSWARA datasets
were used to train and test the proposed DeepShufNet model. The model was trained
and validated by using 80% of the data, and the remaining 20% was used for testing
the model. The training optimization was based on an adaptive momentum algorithm,
with the hyperparameter values of the batch size of 200, a 50% dropout, and the epoch
level 50. While the batch size aids in determining the sample, the rows processed, and
the duration before changing the network’s internal parameters, the learning rate
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regulates the rate of weight updates, hence minimizing the prediction error. By using
images from the raw feature extraction from the baseline experiment, the training
process was assessed both with/without fine-tuning. The DeepShuffleNet model with
the lowest loss in the validation set during training was chosen as the final
DeepShuffleNet model.

For every experiment, analysis and observations were implemented for the
overall outcome of the DeepShufNet model using the validation accuracy and losses.
The original dataset’s results struggle with a rising minority class misclassification
rate, particularly when positive asymptotic and positive COVID-19 classes are
classified with recall and precision rates of nearly NA to less than 10%. The
DeepShufNet model performed better at detecting COVID-19 after being trained with
our categories of the synthetic dataset. All of the results were derived based on trials
with the test dataset and are provided in four comparison categories. In five recorded
trials, the model’s overall effectiveness for every category of datasets is compared by
using an ideal model. Since the outcomes of both classes are examined in each
comparative experiment, and the minority class classification outcomes are improved,
the accuracy, recall, and the specificity combination serve as the primary metric to
assess the model’s performance in each dataset.

5.4.3. Experimental result 1: (all positive COVID vs. healthy)

The positive-mild and the positive-moderate classes were combined due to the
similarities or common feature attributes between both classes and were thus used to
establish a new class named the °All-positive-covid class’, considering their
commonalities. The experimental outcome of the DeepShufNet model on 224 x 224
pixels for binary classification was presented, and Thl. 5.15 displays the outcomes of
our proposed DeepShufNet potential to identify Mel spectrogram feature images and
GFCC features. The classification outcomes demonstrate a balance and efficiency of
DeepShuffleNet in the data augmentation datasets.

Table 5. 15. Average-performing results for COVID-19 detection using the
COSWARA dataset (all positive COVID-19 vs. healthy)

Exp 1: Positive COVID vs. healthy

F1-

Featur_es Dataset Acc (%) | Rec (%) | Prec (%) | Spec (%) Score
Extraction

(%)

No-Aug 71.247.3 60.2+12.6 | 51.8+15.1 85.22+11.3 | 53.47+46.1

Mel COCOA_1 78.7+6.1 57.9+£13.5 | 45.41+9.6 83.19+9.4 49.2+5.8

Spectrogram | cOCOA 2 85.1+4.2 | 70.85+7.7 | 59.64+13.1 | 88.25+6.14 | 63.61+6.7
COCOA 3 87.8+1.3 | 69.49+4.9 | 64.82+4.7 | 91.75+1.9 | 66.9+2.8
No-Aug 74.9+3.8 | 48.7+14.1 | 40.1+10.16 | 86.99+1.55 | 42.446.3
COCOA 1 76.4425 | 71.33+2.2 | 41.23+3.4 | 77.51+3.3 | 52.17+2.6

GFCC
COCOA_2 83.1+0.9 46.7+11.5 | 53.3+2.32 91.06+£2.01 | 49.2746.5

COCOA_3 83.1+1.4 38.33+9.3 | 50.21+1.6 92.21+1.7 | 43.1+6.5
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The Mel spectrogram images COCOA-2 datasets yielded the best results for
DeepShufNet on the test set, with an exciting positive-COVID classification instance
computed as the average accuracy with Standard Deviation (SD) as 85.1 (SD = 4.23),
70.85 (SD = 7.7) for recall/sensitivity, 59.64 (SD = 13.12) for precision, 88.25 (SD =
6.14) for specificity, and 63.61 (SD = 6.7) for F1-score. The results from the test set
for our proposed model on COCOA-3 showed a considerable increase in accuracy,
with an average of 87.82 (SD = 1.3), 69.49 (SD = 4.9) for recall/sensitivity, 64.82 (SD
= 4.7) for precision, 91.75 (SD = 1.9) for specificity, and an F1 score of 66.9 (SD =
2.8). As a result, when compared to the results of the other datasets, it can be said that
the test set results against the baseline results perform the least effectively, as
presented in Fig. 5.9.

For the GFCC images, the augmented dataset achieved better results than the
baseline results in terms of the accuracy with the scores of 83.1% (SD = 1.4) for
COCOA-3, 83.05% (SD = 0.9) for COCOA-2, 76.4% (SD = 2.5) for COCOA-1, and
74.9% (SD = 3.8) for the original data (see Tbl. 5.15). The growing mean recall for
DeepShufNet is more intriguing with a rate of 71.3% (SD = 2.2) for COCOA-1, 48.7%
(SD = 14.1) for the original data, 46.7% (SD = 11.5) for COCOA-2, and 38.8% (SD
=9.3) for COCOA-3. Fig. 5.10 shows the comparison test results of the four databases
and the improvement in the detection rate across all the metrics by training with
augmented data.

The analysis of DeepShufNet on Mel spectrogram images reveals that COCOA-
2 had the most promising experimental results, with scores of 90.1%, 62.71%,
95.99%, 77.1%, and 69.2% for the accuracy, recall, specificity, and precision,
respectively. The next-to-best results were obtained by COCOA-3 with an 89.5%
accuracy rate, a recall rate of 71.2%, a specificity rate of 93.4%, a precision rate of
70%, and an F1-Score rate of 70.6%. The original dataset without augmentation
produced the least accurate results (79% accuracy, 54.23% recall, 84.3% specificity,
42.67% precision, and 47.76% F1-score). Similar results were obtained for GFCC
images using COCOA-2 and COCOA-3, which, respectively, achieved an impressive
accuracy of 84.1% and 84.7%. The implementation of a data augmentation strategy
helped to enhance the performance outcomes, as seen by the two COCOA-1 and
COCOA-2 results which had the highest recall rate.

5.4.4. Experimental results 2: (positive asymptotic vs. healthy)

To further validate the performance, a second experiment was carried out to
employ the proposed DeepShufNet models for distinguishing between healthy and
positive asymptotic alone. The performance metrics for both Melspectrogram and
GFCC images are not continuous for the original dataset, even if the application of
the DAM strategy on training data offered minimized overfitting with the training
accuracy substantially reduced in comparison with the test results in the most recent
epoch. Nevertheless, the training results with the model using COCOA-1
demonstrated better classification performance for the test sets in terms of accuracy.

As a result, according to the experimental results, not all training with enhanced
datasets significantly improves the classification accuracy. In contrast to this, the
DeepShufNet model with COCOA-2 improves the test results by increasing the
accuracy, specificity, and F1-score rates. As shown in Tbl. 5.16, when the dataset is
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very small, the classification performance utilizing noise augmentation is more
acceptable when applied by practically taking the application efficiency of the DAMs
into account. The experimental results demonstrate a significant improvement over
the baseline experiment (no-Aug) when data augmentation is used, with COCOA-1
achieving the highest accuracy (97.15% SD, 0.5), followed by COCOA-2 at 95.8%
SD, 1.1, COCOA-3 at 92.7% SD, 0.17, and No-Aug data at 92.2% SD, 0.9.

Table 5. 16. Average-performing results for COVID-19 detection using the

COSWARA dataset (positive asymptotic vs. healthy)

Exp 2: positive asymptotic vs. healthy
Featurgs Dataset Accurac Recall Precision Specificit F1-Score
Extraction y y

No-Aug 92.2+0.9 18.75+8.8 | 9.03+4.9 94.3+0.8 10.73+4.1
Mel COcOAy | 9715805 | 256177 | 71424204 | 9927210 | M2
Spectrogram [ -~ n > | 958+1.1 | 375¢153 | 304383 | 97.37+1.1 | 324589
COCOA-3 | 92.7£0.17 | 41.67+7.2 | 17.1942.43 | 94.16+0.0 | 24.34%3.7
12.18+6.3

No-Aug 88.54+0.9 | 12.5#3.3 12.5+1.2 93.79+0.77 5

GFCC COCOA-1 | 91.1545.4 | NA NA 93.79+¢5.4 | NA
17.84+13.6

COCOA-2 92.86+2.1 | 19.1746.3 3 96.59+2.35 | 17.06+7.7
COCOA-3 | 89.04593 | 25.0+12.5 | 9.96+5.8 90.88+6.5 | 12.01+2.3
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The best metrics analysis of the different datasets and the results depict a clear
recall rate, precision, and F1-score increase when Mel-spectrogram images are
enhanced with more successful algorithms, as represented in Fig. 5.11 and Fig. 5.12.
Therefore, it could be agreed that the proposed DeepShufNet model’s classification
results have improved significantly because of the data augmentation techniques used
in both feature extraction images.

5.4.5. Experimental results 3: (healthy vs. recovered full)

Further investigation was conducted to examine the efficacy of the proposed
DeepShufNet model in identifying the healthy-versus-recovered data. Fig. 5.13 and
5.14 show the comparison results between all the datasets and illustrate the best
performance of the Mel-spectrogram. In addition, Tbl. 5.17 serves as an indication of
the progress in the analysis of the models based on four datasets for the MFCC and
GFCC feature images. The performance analysis was done for the original data (no
augmentation), COCOA-1, COCOA-2, and COCOA-3, and the produced results
showed an accuracy of 93.45 (SD, 0.41) for COCOA-2, 93.33 (SD, 0.51) for COCOA-
1, 91.68 (SD, 4.0) for COCOA-3, and 91.03 (SD, 0.8). It also demonstrated that the
best outcomes were obtained when using the combined DAM strategy which is
referred to as COCOA-3.

Table 5. 17. Average-performing results for COVID-19 detection when using the
COSWARA dataset (healthy vs. recovered full)

Exp 3: healthy vs. recovered full
Features Specificit F1-
Extraction Dataset Accuracy Recall Precision y Score
96.96+2.7
No-Aug | 9103080 : 94.56£0.60 | 26.32+0.00 | 95.72+0.9
98.78+1.1
Mel COCOA. | 9333051 : 94.31+0.40 18.33+7.60 | 96.49+0.3
Spectrogram 96.42+1.2
Cocoan | 9345:041 0 96.5+1.00 52.5+14.40 | 96.450.2
92.89+5.6
COCOA.3 | 91.68+4.00 0 97.14+1.40 | 61.25+20.60 | 95.39+2.4
95.86+2.8
No-Aug | 905190 0 93.16+0.60 18.33+11.54 | 94.98+1.1
81.47+14,
crec COCOA. | 77:96£1290 | 93.90£0.50 | 27.0£16.05 | 86.66%8.5
01.15:280 | 29431 | 93281022 | 5.0:0.00 95.34+1.6
COCOA-2 0
97.08+4.3
COCOA.3 | 91.04£4.00 0 93.53+0.32 8.0+4.50 95.2342.2
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5.4.6. Comparison to alternative classification models

Analyses were evaluated to compare our proposed deep learning results to other
related approaches which have been used in previous studies using the COSWARA
data to classify COVID-19. The proposed DeepShufNet model exhibits improved and
promising outcomes for COVID-19 detection compared to the earlier studies while
applying varied experimental circumstances to each classification task. Thl. 5.18
clearly shows the summarized results in contrast to the currently existing techniques.

Table 5. 18. Comparison of performance results with the existing methods using
COSWARA dataset

References Classifier Acc Spec Sens AUC
[267] Deep model shallow 9 08 93 97.6
classifier '
[268] Ensemble DLmodel 771 NA NA NA
[269] VGGish shallow 72 NA NA NA
[242] P 91 92 90 92.3
Our work DeepShufNet 90.1 95.98 62.3 NA

5.4.7. Drawbacks of the proposed model

The issue of misclassification mistakes linked to the poor generalization of some
noisy images is among the study’s most pressing problems. As anticipated, a
significant imbalance of classes and few data samples can account for most of the
misclassification errors. The capacity of the model to effectively generalize the data
could be impacted by the similarities between the disparities between each class of
sound and power representation when displayed as images, such as Mel-spectrogram
or GFCC images. According to to Esmaeilpour et al. [266], the resulting spectrogram
for each audio file is a 2D array of intensity values that is significantly noisy due to
background sounds associated with audio signals. Therefore, it is crucial to improve
the intensity values distributions to improve feature learning. The proposed
framework is created by using prior data augmentation methods (such as color
transformation and noise) and characteristics in the frequency domain, thus making it
easy to understand and ensuring low space costs. Although previous studies have used
the frequency-domain feature in sound classification tasks, given that some images
cannot accurately represent the distinctive features of sound signals, image
representations for sound signals could be a complicated system. Despite these
drawbacks, the proposed DeepShufNet has demonstrated success in detecting
COVID-19 despite the high imbalance classes and an insufficient dataset, and it is
denoted by a lower computational complexity. To overcome some of the flaws caused
by inaccurate classification of images and to create a more efficient dataset for proper
generalization, more advanced data augmentation techniques will need to be
investigated in the future.
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5.4.8. Conclusion of the section

It is rather impressive how frequently various DNN models are used for sound
classification tasks. Despite considerable research on COVID-19 identification
involving the use of different CNN architectures, some publicly accessible datasets
still suffer from data sparsity and class imbalance, which leads to poor classification
from some ML models. This research intends to apply various kinds of data
augmentation techniques to a deep learning model named DeepShufNet. Among this
work’s primary contributions are the following. By applying certain straightforward
and efficient data augmentation strategies, this study was able to bridge the gap
between the lack of sufficient datasets and the class imbalance. Three additional
datasets, coined COCOA-1, COCOA-2, and COCOA-3 were created to train our
proposed learning model. In addition, the proposed DeepShufNet model, which uses
a pre-trained Shufflenet architecture, was trained and assessed by using the
comparison datasets. A comparison of experimental analysis of the enriched datasets
to the baseline findings revealed considerable improvements in the performance
measures, better generalization, and improved optimal test results.

On the DeepShufNet model, the effects of the two alternative feature extraction
techniques (GFCC image and Mel-spectrogram) were examined. In this study, the
impact of enhanced photos on the detection of COVID-19, positive asymptotic cases,
and fully recovered cases were examined. The outcomes demonstrated that, for nearly
all the comparative situations, the DeepShufNet model had the best accuracy on
COCOA-2 Mel-spectrogram images. For all the three types of enhanced images, the
proposed DeepShufNet models displayed a significantly increased performance,
particularly in the recall rate, precision, and the F1-Score rate. The proposed approach
for detecting positive-COVID using the Mel COCOA-2 training datasets had the
greatest test results for accuracy, precision, recall, specificity, and F1-score,
respectively, of 90.1%, 77.1%, 62.7%, 95.98%, and 69.1%. Similar to that, the
experimental findings for the detection of positive asymptotes had the best recall rate
of 62.5%, a specificity rate of 97.1%, and an F1-score of 48%.

The application of the improved deep learning architectures could be used in
future research to strengthen and improve the outcomes of the COVID-19
classification by using sound data. Also, the combination of all the various sound
datasets available in the COSWARA database might be used to apply and analyze the
proposed DeepShufNet model.

5.5. Analysis of all Proposed Augmentation Methods

The evaluation of the four proposed data augmentation methods in this
dissertation, namely, VDRRE, CovSMOTE, Photometric (IQRM), and Noise
Injection methods (NIM) has been analyzed and investigated on the pre-trained
network. To provide a thorough assessment, a comparative evaluation was conducted
contrasting the performance of the three effective pre-trained networks which include
SqueezeNet, EfficientNet, and ResNet18, for identifying the unique features and then
used to accurately classify facial palsy and skin melanoma diseases on the proposed
augmentation methods. This comparison was conducted across two datasets so that to
fully understand the uniqueness of each augmentation approach concerning their
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strengths and shortcomings. Through this comprehensive investigation, more light has
been shed on the peculiarity of the proposed DAM methods and their impact on the
overall performance in developing better generalizations of deep learning models.

The hyperparameter settings used to implement and optimize the pre-trained
SqueezeNet, EfficientNet and ResNet18 architectures were designed to suit the
features of both datasets (PH2 and YFP). The entire setup for this experiment has been
carefully fine-tuned to ensure that the model is trained to identify and categorize
effectively the skin melanoma and facial palsy data diseases. The specification and its
values are displayed in Thl. 5.19.

Table 5. 19. Hyperparameter settings and their values

Values
Parameters —
SqueezeNet EfficientNet ResNet18
Initial learning rate 0.00001 0.0001 0.003
Activation Function ReLU ReLU ReLU
Epochs 50 3 10
Batch Size 16 100 100
Optimizer SGDM ADAM ADAM
L2Regularization 0.01 0.1 0.01
Momentum 0.9 0.9 0.9
WeightLearnRateFactor 20 10 10
Trauna(1rb;1lieI I;i)grr]as;neters 19 53 116
No. of layers 63 290 71

For skin melanoma disease detection, the test result for covSMOTE
augmentation achieved the best accuracy results for the three classification models.
Regarding Thbl. 5.20, the covSMOTE augmentation, based on ResNet18, achieved the
best classification results in comparison with other augmentation test results in this
category with an accuracy of 0.938, while VDRRE, PM, and NIM obtained an
accuracy of 0.925, 0.90, and 0.912, respectively, on the test dataset. The pre-trained
network SqueezeNet also showed significant results with the best performance
obtained with the covSMOTE with an accuracy of 0.9218; NIM achieved an accuracy
of 0.8522, PM achieved an accuracy of 0.8436, and the VDRRE accuracy of 0.775
was reached for the test dataset. The proposed covSMOTE augmentation method
demonstrated impressive performance in accurately classifying skin melanoma
disease by indicating that there is no bias against any sample with the overall recall,
precision, specificity, and F1-score of 0.813, 0.867, 0.968, and 0.839, respectively.
Overall, the proposed covSMOTE augmentation model was able to correctly classify
more instances of the palsy positive class, as evidenced by the balance in accuracy,
recall and precision. Therefore, it can be agreed that the training of the three models,
especially (ResNet18 and SqeezeNet) with covSMOTE showed a good resilience and
generalization ability in our model to identify and classify melanoma accurately.
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Furthermore, in face palsy detection, the augmentation based on VDRRE in
comparison with other proposed augmentation methods shows a significant variability
across the three pre-trained networks. The experimental results summarized in Thbl. 37
clearly demonstrate the testing performance of the proposed DAM methods in the
detection of face palsy. It can be deduced from Thl. 5.21 that the test accuracy in the
case of VDRRE techniques remains consistent with a smooth increase across the three
pre-trained CNN architectures with the maximum accuracy reaching 0.9935 for
squeezenet, while the test accuracy for the EfficientNet and ResNet architecture for
the same VDRRE obtained the values of 0.965 and 0.929, respectively. However, the
performance of the test data with covSMOTE augmentation repeatedly shows the
lowest results in comparison with the other proposed DAM methods. However, five
experimental runs, and fine-tuning by reducing the learning rate to 0.0003, aided the
overall classification of the deep learning model, thus increasing the accuracy of the
test result by +8.3%. In addition, the application of the photometric and NIM approach
showed a somewhat conservative outcome, which was able to mitigate overfitting
with the help of parameter regularization during the training of the model. In
conclusion, the experimental results demonstrated very good capabilities to deal with
small data problems through leveraging on the relevance of the domain-specific
knowledge to successfully influence the model learning process and thus overcoming
the shortcomings of small data in real-life applications. However, it can be argued that
no single augmentation technique can be considered as the ‘best’ or ‘perfect’ method
for all small data cases due to the uniqueness of the data features and the target
domain.
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Table 5. 20. Comparison of the proposed augmentation methods for skin melanoma
classification

Skin Melanoma Classification

Data
Augmentation
Methods (DAM)
Voronoi
Decomposition
random region 0.775 0.6875 | 0.4479 0.7969 0.5249
erasing
(VDRRE)
Covariant
SMOTE SqueezeNet 0.921 0.8077 | 0.8257 0.951 0.8084
(covSMOTE)
Photometric
(Color 0.8436 | 0.8021 | 0.6134 0.8542 0.6625
Transformation)
Noise Injection
Method (NIM)
Voronoi
Decomposition
random region 0.862 0.50 0.7273 0.9531 0.5926
erasing
(VDRRE)
Covariant
SMOTE EfficientNet 0.875 0.375 0.75 0.9688 0.500
(covSMOTE)
Photometric
(Color 0.838 1.000 | 0.5517 0.7969 0.7111
Transformation)
Noise Injection
Method (NIM)
\oronoi
Decomposition
random region 0.925 0.875 0.968 0.667 0.919
erasing
(VDRRE)
Covariant
SMOTE ResNet18 0.938 0.813 0.867 0.968 0.839
(covSMOTE)
Photometric
(Color 0.90 0.625 | 0.8333 0.9686 0.7142
Transformation)
Noise Injection
Method (NIM)

Classification . A F1-
Model Accuracy | Recall | Precision | Specificity Score

0.8522 | 0.6667 | 0.6588 0.8984 | 0.6352

0.85 0.625 0.625 0.9063 0.625

0.912 0.737 0.875 0.9672 0.80
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Table 5. 21. Comparison of the proposed augmentation methods for Face Palsy
Disease Classification

Face Palsy Detection

Data
Augmentation
Methods
(DAM)

Classification
Model

Accuracy

Recall

Precision

Specificity

F1-
Score

Voronoi
Decomposition
random region
erasing
(VDRRE)

Covariant
SMOTE
(covSMOTE)

Photometric
(Color
Transformation)

Noise Injection
Method (NIM)

SqueezeNet

0.9935

0.9974

0.9935

NA

0.9954

0.662

0.525

1.00

1.00

0.688

0.801

0.991

0.785

0.333

0.876

0.791

0.8959

0.825

0.5333

0.8590

Voronoi
Decomposition
random region
erasing
(VDRRE)

Covariant
SMOTE
(covSMOTE)

Photometric
(Color
Transformation)

Noise Injection
Method (NIM)

EfficientNet

0.965

0.9638

0.9861

0.9667

0.9748

0.675

0.7692

0.7727

0.4444

0.7710

0.720

0.9321

0.7410

0.20

0.8826

0.875

0.8778

0.9417

0.8605

0.9087

\oronoi
Decomposition
random region
erasing
(VDRRE)

Covariant
SMOTE
(covSMOTE)

Photometric
(Color
Transformation)

Noise Injection
Method (NIM)

ResNet18

0.929

0.914

0.9854

0.9667

0.9483

0.579

0.407

1.000

1.000

0.5788

0.624

0.4932

0.9561

0.9444

0.6507

0.768

0.7919

0.8706

0.7111

0.8294
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5.6. Limitation of Methods

There are certain limitations that arise from this study due to the influence of the
extremely small and imbalanced dataset, as well as dependency of deep learning
models on big data for effective and better classification interactions. The covSMOTE
approach showed some good results in the case of skin melanoma on different pre-
trained models, however, it displayed relatively low results in the case of face palsy.
As a matter of fact, this can be attributed to the overlapping of classes as the
augmented images include noise, and thus the image may look unrealistic as a result.
In addition, there was the issue of model overfitting in the skin melanoma detection
scenario, as the test results showed some biases toward the minority class, especially
for the binary classification task. Furthermore, in the multi-class scenario, although
the model shows optimal results for accurately classifying melanoma from the other
class, however, it shows misclassification error in the case of differentiating atypical
nevu and common nevu classes, which results in a lower recall rate and a lower
specificity rate. For the sound classification task, the main challenge to be faced was
found to relate with detection errors which can be attributed to the poor generalization
of some noisy images created. In addition, for each class of sound, it was realized that,
after the feature extraction techniques have been applied, the featured images are
closely similar in power representation, thus affecting the capability of the learning
classifiers to effectively generalize data.

5.7. Experiments Summary

In this chapter, the findings and experimental results of applying different data
augmentation models and learning classifiers in different classification tasks have
been presented. By using the color histogram augmentation method, the learning
model (MobileNetV2) was able to obtain an improved accuracy of 99.7% on high-
quality images. Training with the Gaussian noise augmentation showed an overall best
classification result. Further comparison of the performance with the currently
existing methods shows that the proposed model is efficient for the detection of
cassava disease. The outcome shows a statistically substantial improvement in the
capability of cassava leaf disease detection shown by the enhanced MobileNetV2
neural network. A key aspect of practical data collecting is the model’s ease of
deployment for identifying and diagnosing cassava leaf diseases in images of lesser
quality.

For facial palsy detection, implementation using the proposed covSMOTE
model generated new synthetic datasets, and the overall performance on the test
dataset has improved. The implemented shuffleNet and SVM detection algorithm has
demonstrated better performance, with an improved accuracy, sensitivity/recall rate,
specificity, and a lower time complexity. Finally, our proposed model provided better
insights into both the reduced error rate and generalization capability of the detection
of face palsy with an accuracy of 99.35%, a recall rate of 99.74%, a precision rate of
99.35%, and an F1-score of 99.54%.

For the skin melanoma detection, in terms of accuracy (92.18%), sensitivity
(80.77%), specificity (95.1%), and F1-score (80.84%), the experimental outcomes for
the binary classification scenario show a considerable improvement in melanoma
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diagnosis. The experimental outcome for multiclass classification showed a
significant performance of 89.2% (sensitivity), 96.2% (specificity) for atypical nevus
detection, 65.4% (sensitivity), 72.2% (specificity), and for common nevus detection
66% (sensitivity), 77.2% (specificity). In terms of detecting skin melanoma, the
proposed classification system outperforms some of the previous methods.

For COVID-19 detection using sound datasets, geometric and photometric
augmentation methods on the DeepShufNet model were adopted. Using the Mel
COCOA-2 enhanced training datasets, the proposed model detected positive COVID-
19 with an accuracy, precision, recall, specificity, and F1-score of 90.1%, 77.1%,
62.7%, 95.98%, and 69.1%, respectively. Comparing the proposed approach to some
state-of-the-art techniques, it demonstrated an increased performance.

Finally, it is necessary to establish that the need for more data in classification
tasks cannot be overemphasized; however, the presented results of our proposed
augmentation methods on deep learning models have shown promising results.
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6. GENERAL CONCLUSIONS AND FUTURE RECOMMENDATION

6.1. General Conclusions

In this dissertation, a comprehensive study of the applications of data
augmentation techniques has been employed. The application of DAM has aided in
improving the learning models by enhancing strong generalization in image
classification tasks for small data analysis.

1. The contributions of artificial intelligence methods, especially in medical
diseases detection, continues to attract more research attention. However, there
are still underlying factors affecting the overall research in this area of small data
analytics, especially in computer vison tasks. Some of the leading challenges
include the high dependencies on big datasets, feature representation issues as a
result of variations in different image properties, the problem of data sparsity,
sampling bias, imbalance classes, the likelihood of overfitting of models, thus
leading to lower chances of real-life adaptation of the presently existing
solutions. The application of data augmentation methods has significantly helped
to achieve desired variance of training data, which has resulted in developing an
effective learning model and thereby improving the performance results of the
classifiers. Some existing challenges of data augmentation methods include the
problem with unrealistic augmented images, which has no significant influence
in the performance of classification models.

2. This research has created an effective data augmentation method based on the
uniqueness of the data used and further analyzed the efficiency of deep learning
models in five classification tasks, as summarized below:

i.  The proposed novel DAM method is based on the convolution of the
Chebyshev orthogonal functions with the probability distribution
functions (PDFs) for cassava disease detection. Four augmentation
approaches were employed, namely, motion blur, Gaussian blurring,
down-sampling the resolution, and overexposure as strategies to generate
synthetic training datasets by reducing the quality of the images. For
efficient classification, this study applied a cost-sensitivity and less
computation deep neural network model (MobileNetV2).

ii.  This research has introduced a VDRRE image augmentation method
based on irregular regions created through Voronoi tessellation and
random erasing augmentation for generating synthetic images for facial
palsy detection. In addition, few-shot learning based on one-shot and
two-shot has been proposed for the intelligent classification of face palsy
disease.

iii. The Covariant Synthetic Minority Oversampling Technique
(covSMOTE) augmentation approach has been applied to address the
data scarcity and class imbalance problem in skin melanoma detection.
The proposed method was based on data oversampling in a nonlinear
lower-dimensional embedding manifold for creating augmented images.
The DAM is used to produce new augmented images which were used
to train the SqueezeNet deep learning model.
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iv.  For COVID-19 detection using deep breath sounds, an augmentation
method based on noise injection and color transformation approach has
been proposed. These augmentation strategies were used for generating
synthetic training datasets and applied to two feature extraction methods,
namely, Mel-spectrogram and GFCC.

3. This research has improved the efficiency, accuracy, recall, precision, and
specificity of learning models in small data analysis.

i.  In the face palsy detection, the highest accuracy was achieved by using
two-shot learning with the proposed VDRRE method and a hybrid
SqueezeNet/ECOC-SVM classifier. Our proposed model achieved
99.34% accuracy with a slight drop in accuracy from 99.34% to 99.07%
for one-shot learning. In comparison with state-of-the-art methods, our
proposed model outperforms the competition with a great improvement
in accuracy, precision, and recall.

ii.  Regarding the cassava disease detection, the accuracy of the baseline
network, which was trained on low quality images, achieved 97.7%
accuracy. However, the outcome of our proposed model increased by
+2.0% after training with the original (high-quality) and augmented
dataset (low-quality) images with an accuracy of 99.7%, thus
outperforming the currently existing state-of-the-art methods.

iii.  The experimental results in the skin melanoma detection task showed an
impressive result in the binary classification case. A significant
improvement in the detection of melanoma to an accuracy rate of 92.18%
was obtained in the binary detection task, while the best accuracy of
89.2% was obtained in the multiclass classification scenario.

iv.  Regarding the COVID-19 detection task, the application of augmentation
by using the noise injection method on Mel-spectrogram and GFCC
improved the classification accuracy. The performance evaluation based
on accuracy indicates that our proposed augmentation on DeepShufNet
gave the best experimental outcome in comparison to the state-of-the-art
methods with an accuracy of 90.1%.

4. Further investigation of the augmentation methods efficacy demonstrated
significant experimental results through leveraging on the relevance of the
domain-specific knowledge to enhance generalization of the model learning
process in real-life applications.

6.2. Future Recommendations

Based on the findings of this dissertation on data augmentation techniques and their
applications in various classification tasks, the following recommendations for future
research are proposed:

1. To explore additional data augmentation techniques, such as advanced
geometric transformations, and generative adversarial networks (GANSs) for
synthetic data generation, and to explore the integration of Al with other
emerging technologies, such as augmented reality for data augmentation.
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2.

3.

To extend the proposed methods to other domains where data scarcity is an
issue, such as environmental monitoring, financial modeling, emotion
recognition, or social sciences.

To perform robust validation of the proposed data augmentation technigques
across diverse datasets as well as in real-world scenarios, considering
different data characteristics and environmental variables.

Given the impact of noisy data on the classifier performance, to develop more
advanced methods for noise reduction and handling in data augmentation,
particularly in sound and image classification tasks.
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7. SANTRAUKA

7.1 IVADAS

Dirbtinis internetas tapo sékminga, greitai augancia ir nejtikétinai populiaria
beveik kiekvienos tyrimy srities dalimi. Taip atsitiko, nes kompiuteriné rega vaidina
vis didesnj ir reikSmingesnj vaidmenj ir gali pasitlyti veiksmingus, maziau
skai¢iavimo reikalaujancius, ekonomiskus, tikslius ir kruopscius rezultatus [1, 3]. Vis
délto viena pagrindiniy problemy, su kuriomis susiduriama taikant DI metodus
priimant sprendimus, yra duomeny prieinamumas. Paprastai susiduriama su mazy
duomeny rinkiniais arba riboty duomeny rinkiniais [4, 5]. InZinerinéje srityje mazais
duomenimis gali biiti vadinami duomenys, turintys maziau nei 50 pavyzdziy, o
akademiniy tyrimy atveju — maziau nei 30 pavyzdziy [6]. Mazy duomeny gali pakakti,
jeigu jie tenkina kaupimo, jvairovés, saziningumo ir skaidrumo reikalavimus.
Priesingai, dauguma mazy duomeny rinkiniy néra pakankamai reik§mingi, kad galima
buty pradéti tyrimg arba sukurti hipoteze. Taciau, jtraukus kitas jzvalgas ir
pastebéjimus, galima sukurti sprendinj arba modelius biisimiems prekiy Zenklams ar
verslams [7]. Siems duomeny rinkiniams triiksta imperatyvios informacijos ir
duomeny analitikos panaudojimo jvairovés, ypac priimant realaus gyvenimo
sprendimus / atliekant informuotas uzduotis [8].

Duomeny analitika galima apibtdinti kaip kompiuteriniy sistemy naudojima
analizuojant dideliy duomeny rinkinius, norint pagrjsti sprendima. Si mokslo sritis
suvaidino esminj vaidmen] keliose kitose mokslinése srityse, pavyzdziui, atpazjstant
modelius, tiriant operacijas, skai¢iuojamojo intelekto, masininio mokymosi atvejais ir
pan. [270]. Nesenais tyrimais nustatyta, kad mazy duomeny analitika yra tokia pat
svarbi, kaip ir dideliy duomeny analitika, ypac¢ priimant realaus laiko arba informuotus
sprendimus. Ankstesniy vaizdy apdorojimo tyrimy metu buvo pabrézta, kad,
naudojant geresnés kokybés mazy, atrinkty duomeny rinkinius, galima gauti geresnius
rezultatus nei dirbant su prastos kokybés dideliy duomeny pavyzdziais [9]. Vis délto,
kai duomeny analitika taikoma realiame pasaulyje tokiais skirtingais tikslais, kaip
ligos diagnozavimas ir uzduociy klasifikavimas, reikia pakankamy ir subalansuoty
duomeny rinkiniy, kad jie biity veiksmingai panaudojami dirbant su DI. Deja, kai
mazy duomeny rinkiniai ir dirbtinio intelekto metodai taikomi tokiose srityse, kaip
sveikatos priezilira, augaly ligos, garso aptikimas, gamyba ir pan., vis dar susiduriama
su paklaidomis, skai¢iavimo sudétingumu, nesubalansuotais duomeny rinkiniais,
prastu apibendrinimu ir pan.

Be to, dél keliy pagristy veiksniy, turinciy jtakos duomeny surinkimui, mazy
duomeny privatumas grindziamas jautriais / gyvybiniais pacienty duomenimis
(asmeniniai, konfidencialis duomenys), atsiranda iSlaidy, taikomi darbuotojy ir
kompetencijos reikalavimai aiskinimui, pacienty duomeny anonimizuojami pries juos
naudojant ar jais dalinantis [ 10]. Kitos mazy duomeny rinkiniy taikymo DI problemos
— tai didelis variantiSkumas, dél ko rezultatai iSsikraipo, arba duomenimis grjsti
modeliai yra pernelyg apibendrinami [4]. Taigi, reikia skubiai atlikti tyrimus, kaip
sukurti veiksmingus modelius, galin¢ius iSspresti mazy duomeny problemas.
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Atsizvelgiant | neseng dirbtiniy modeliy sékme, pristatomg literatiiroje, taikomi
duomeny papildymo metodai padéjo spresti mazy duomeny problemas, sukuriant
virtualius / dirbtinius pavyzdzius, grindziamus ankstesnémis Ziniomis, gautomis i$
konkrec€iy riboty mokymo duomeny [11]. Duomeny papildymas (DP), naudojamas
kaip priemoné naujiems duomeny rinkiniams sudaryti, pademonstravo daug
zadancCius rezultatus ir labai pagerino mokymosi klasifikatoriy veikima tokiose
srityse, kaip vaizdy atpazinimas, signalo ir balso atpazinimas, pramoniniai sektoriai
[6], objekto aptikimas ir pan. Kitaip sakant, vienas reikSmingiausiy metody, kaip
veiksmingai pagerinti klasifikatoriy darbg su mazy duomeny pavyzdziu, yra pritaikyti
duomeny papildymo principa [12].

Duomeny papildymo metodas (DPM) — tai gerai zinomas ir priimtinas metodas,
taikomas norint padidinti esamy mokymo duomeny jvairove ir kiekj, tiesiogiai
nerenkant papildomy duomeny pavyzdziy [13]. DPM reikSmingas ne vien dél to, kad
padidina duomeny variantiSkuma, bet ir todé¢l, kad sumazina disbalansa, duomeny
rinkiniy paklaidas ir padeda iSvengti perpildymo per modelius. Todél jis veiksmingai
taikomas apdorojant vaizdus ir atlickant kompiuterinés regos uzduotis, siekiant
susintetinti ir subalansuoti mokymo duomeny rinkinius, sukuriant papildomus
mazumos klasiy pavyzdzius [14, 15]. Duomeny papildymo metodas daro jtakg ir
kitoms sritims, kuriose nepakankami duomenys irgi kélé dideliy problemy,
pavyzdziui, geoterminéje srityje, nuspéjant didelés entropijos lydiniy (DEL) kietuma,
vertinant klienty kreditinguma ir pan. Sis metodas biitinas, norint padidinti mokymo
duomenis ir taip pasiekti patenkinamy rezultaty bei i§spresti nepakankamy duomeny
klausimg [16]. Neseniai naudojant DPM buvo sukurti dirbtiniai duomenys, kas
smarkiai patobulino kompiuterinés regos tyrimus — tai aiSkiai parodyta didelés
apimties vizualinio vaizdy atpazinimo konkurse (ILSVRC) [17]. Ankstesnéje
literatiiroje naudoti DPM pavyzdziai, kaip tobulinamos regos uzduotys: vaizdy
apkarpymas, apvertimas (horizontalus ir vertikalus), didinimas ir mazinimas, spalvy
derinimas, Gauso suliejimas, sukimas, triuk§mas ir pan. [15, 16, 18]. Be to, jrodyta,
kad DP metodai padeda gauti ziniy i$ iSkreipty duomeny rinkiniy. Vis délto, esant
dideliam disbalansui mazy duomeny rinkinyje, duomeny papildymo metodai gali
nepadéti pasiekti laukiamy skirtumy i$skirtiniais duomeny rinkiniy perbalansavimo
atvejais [ 14], taciau jie vis tik padés pagerinti klasifikatoriy veiklg. Atliekant nesenus
tyrimus, stebéti skirtingi duomeny papildymo metodai, taikomi nepakankamy
mokymo duomeny problemai spresti, ir nustatyta, kad populiariausi metodai yra
tradiciniai arba geometriniai metodai, pavyzdziui, atsitiktinis sukimas, apvertimas,
transformavimas ir pan. Kiti pazangls papildymo metodai, aptinkami duomeny
transformavimo literatiiroje, yra generatyviniai prieSiski tinklai (GPT), variacinis
autoenkoderis (VAE) ir pan., kuriy tikslas — pakeisti rezultatus, kuriant netikrus
vaizdus [19]. Daugumoje ankstesniy tyrimy rodomi progresuojantys kai kuriy
duomeny papildymo metody taikymo rezultatai, taciau kai kuriems esamiems
metodams vis dar triiksta gebéjimo apibendrinti. Taip yra dél triukSmingo fono,
problemy dél netinkamo aiskinimo ar nesuderinamo zZyméjimo [20]. Be to, DI metody
veikimo tobulé¢jimas visiskai priklauso nuo esamy duomeny dydzio, kokybés ir
jvairoves [4].
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7.1.2. Darbo objektas

Sio tyrimo objektas yra duomeny papildymo metody tyrimas ir tobulinimas,

naudojant veiksmingus gilaus mokymosi modelius mazy duomeny analizei. Skirtingi
padidinimo metodai pateikiami ir taikomi jvairiems ligos aptikimo atvejams
naudojant tiek vaizdy, tiek garso duomeny rinkinius. Siame darbe savoka ,mazi
duomenys® apibréziama kaip santykinai nepakankamas duomeny dydis, kuriam
budinga ribota imtis ir jvairové.

7.1.3. Darbo tikslas

Tyrimo tikslas — sukurti patobulintus duomeny papildymo metodus, leidZian¢ius

geriau apibendrinti ir modeliuoti mazus duomeny rinkiniais, skirtus vaizdo
apdorojimui ir garso atpazinimo sistemoms.

7.1.4. Darbo uzdaviniai

1.

Siekiant darbo tikslo, nustatyti Sie uzdaviniai:

Perzvelgti ir analizuoti literatiirg apie esamy duomeny papildymo metodus,
siekiant nustatyti veiksmingus mazy duomeny rinkiniy vertinimo metodus
klasifikuojant ligas.

Supazindinti ir pritaikyti sukurtus i§plétimo metodus vaizdo ir garso duomeny
rinkiniy etalonams, kuriais siekiama i$spresti mazas duomeny problemas ir
tobulinti.

Pasitlyti ir jvertinti modifikuotus i$plétimo metodus, kurie pagerina ligos
aptikimg ir taikyti Siuos metodus vaizdo ir garso duomeny rinkiniams.

Istirti ir palyginti papildomus metodus konkreciose programose srityse ir
jvertinti naSuma bei prisitaikyma prie realaus scenarijaus.

7.1.5. Praktiné verté

Praktiné keturiy uzdaviniy ir sukurty metody, apraSyty Sioje disertacijoje, verté

yra reik§minga jvairiose realaus gyvenimo srityse:
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1.

Nauji duomeny papildymo metodai, naudojami manioko (‘cassava’) ligai
nustatyti, gali buti praktiskai pritaikyti Zemés tkyje. Naudojant vaizdy
praplétimo metodus, tokius kaip suliejimas ir per didelis eksponavimas,
modelis gali tiksliau nustatyti augaly ligas jvairiomis lauko salygomis. Sis
taikymas gali leisti veiksmingiau valdyti augaly ligas, padidinti derliy ir kurti
naudg ukininkams bei nuo zemés 1ikio gamybos priklausomoms
ekonomikoms. Be to, ateityje Sis metodas gali buti pritaikytas tokiose srityse,
kaip pramoninés kokybés kontrolé. Gamyboje, pavyzdZiui, automobiliy ar
elektronikos pramonéje, Sis metodas galéty biti naudojamas gaminiy
defektams aptikti esant jvairioms apSvietimo ir aplinkos salygoms, padidinant
automatiniy kokybés jvertinimo sistemy tiksluma.

VDRRE vaizdy praplétimo metodas veido paralyZziui aptikti gali turéti svarbiy
rezultaty sveikatos prieziiirai. Geb¢jimas tiksliai aptikti ir klasifikuoti veido
paralyziy i§ vaizdy gali supaprastinti diagnostika, kad biity galima greiciau ir



veiksmingiau gydyti. Sis metodas gali biiti ypa¢ vertingas atokiose arba
nepakankamy iStekliy srityse, kur specialisty prieinamumas yra ribotas. Be
to, ateityje Sis metodas galéty biiti taikomas kuriant pazangias veido vaizdais
pagristas emocijy atpaZinimo sistemas, kad galétume geriau suprasti zmogaus
emocijas ir reakcijas realiuoju laiku.

3. CovSMOTE praplétimo technika odos melanomai aptikti tenkina esminj
dermatologijos ir onkologijos poreikj. Duomeny praplétimas SqueezeNet
modeliu pagerina odos melanomy aptikimg ir klasifikavima, o tai yra labai
svarbu ankstyvai diagnostikai ir gydymui. Sis metodas galéty biti integruotas
] nuotolinés medicinos platformas, padedancias atlikti odos patikrinimg. Tai
gali sumazinti sveikatos prieziliros sistemy nasta. Be to, ateityje covSMOTE
metodas, kuris yra orientuotas ] klasiy disbalanso problema, taip pat galéty
bti pritaikytas kitoms reikméms, pavyzdziui, zemés tikyje kenkéjams aptikti.
ISmokius modelius atpazinti nedidelius, bet kritinius pokycius esant
kenkéjams, Sis metodas gali padéti anksti aptikti ir valdyti paséliy uzkrétimo
atvejus. Tai gali padéti iSvengti didelio masto zemés tikio veiklos nuostoliy.

4. I$plétimo metodas, apimantis triuk§mo jterpimo ir vaizdo transformavimo
metodus, skirtus COVID-19 prognozuoti, gali turéti teigiama poveikij
pandemijos aptikimui bei valdymui ir visuomenés sveikatos pasekméms. Dél
galimybés aptikti COVID-19 i§ kvépavimo garsy naudojant Al gali buti
sukurti neinvaziniai greitojo testavimo metodai. Tai gali palengvinti didelio
masto patikrinima, ypac tose vietose, kur tradiciniai testavimo metodai yra
logistiskai sunkis. Be to, ateityje $is metodas gali biiti naudojamas ir kitoms
reikméms, pavyzdziui, kaip aplinkos stebé¢jimas, ypac¢ nustatant ir
analizuojant garsy tar$g nattralioje aplinkoje arba gyviny garso duomeny
rinkiniuose, taip prisidedant prie biologinés jvairovés tyrimy ir aplinkos
apsaugos pastangy.

Sie metodai parodo, kaip pazangiis duomeny papildymo badai gali smarkiai
pagerinti DI modelio veikimg jvairiose srityse — nuo Zemés ukio iki sveikatos
apsaugos. Pagerinus aptikimo ir diagnostikos tikslumg bei efektyvuma, Sie metodai
gali turéti teigiamg poveikj jvairiems sektoriams ir prisidéti prie teigiamy socialiniy
rezultaty. Panaudodami ir pritaikydami Sias pazangias technologijas, galime iSspresti
daugybe sudétingy problemy jvairiose tarpusavyje nesusijusiose srityse. Tai
demonstruoja didelj DI ir duomeny papildymo sektoriy transformacinj potencialg.

7.1.6. Darbo teiginiai

Irodyta, kad duomeny papildymo metodai yra labai svarbi taktika didinant
dirbtinio intelekto modeliy galimybes keliose srityse. Pakeitus ir padidinus mokymo
duomeny rinkinj, is metodas pagerina jo dydj, jvairov¢ ir atsparuma, o tai savo ruoztu
padidina masininio mokymosi modeliy efektyvumg atliekant sudétingas uzduotis.
Vaizdy klasifikavimo srityje duomeny papildymo metoda galima naudoti norint
pagerinti mokymo duomeny dydj ir mokymo variantiskuma.

1. Voronojaus dekompozicijos atsitiktinio regiono trynimas (VDRRE) taiko
atsitiktine tvarka netaisyklingg uzdengima, pagaunant jvairias veido iSraiSkas
ir unikalias variacijas veido paralyziumi serganciy asmeny vaizduose. Be to,
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vaizdo spalvy histogramos islyginimo ir vaizdo kokybés sumazinimo metody
derinys sudaro hibridinj praplétimo metoda, kuris jveda jvairove manioko
(cassava) lapy ligos vaizduose. Si simuliacija apima skirtingas ap§vietimo
salygas, vaizdo kokybe ir triuk§mo lygj manioko (cassava) ligos atpazinimo
uzduotyje. Be to, CovSMOTE metodo taikymas palengvina sintetiniy
duomeny generavimag mazumos klasei (odos melanoma), atsizvelgiant |
duomeny kovariacijos struktiira. Sie praplétimo biidai sukuria didesnius ir
daugiau jvairovés pavyzdziy, turinius rinkinius, efektyviai pagerina
giluminio mokymosi modelius apibendrinant nematytus vaizdus ir tiksliai
klasifikuojant.

2. QGarso signaly apdorojimo srityje garso signaly konvertavimas j spektrogramy
vaizdus leidzia pritaikyti vaizdy praplétimo metodus, skirtus mokymo
duomeny jvairovei padidinti. Nuodugnesnis ir jvairesnis duomeny rinkinys
sukuriamas naudojant tokias technologijas, kaip garso auks$¢io poslinkis,
iStempimas laike, triuk§mo pridéjimas ir spektrogramos savybiy keitimas. Tai
sustiprina duomeny rinkinj, pagerina modelio mokymo efektyvuma, jam
leidZiant nustatyti ir tiksliau suskirstyti garso signalus j klases esant jvairioms
aplinkoms ir sglygoms.

7.1.7. Mokslinis patvirtinimas

Visi Sio darbo rezultatai unikaltis ir pateikiami i§ viso devyniuose leidiniuose.
Informatikos, masininio mokymosi ir elektronikos srityse yra SeSi tarptautiniy
moksliniy zurnaly straipsniai pavadinimu ,,ISI Mokslo tinklas® su nuorody rodykle ir
trys zZemiau iSvardinti konferencijy medziagos leidiniai. Visa leidiniy sarasa galite
rasti  skyriuje ,,OLUSOLA OLUWAKEMI ABAYOMI-ALLI LEIDINIU
DISERTACIIOS TEMA SARASAS*.
1. Data Augmentation and Deep Learning Methods in Sound Classification: A
Systematic Review. Electronics, 11(22), 3795.
2. Detection of COVID-19 from Deep Breathing Sounds Using Sound Spectrum
with Image Augmentation and Deep Learning Techniques. Electronics,
11(16), 2520.
3. An ensemble learning model for COVID-19 detection from blood test
samples. Sensors, 22(6), 2224.
4. Cassava disease recognition from low-quality images using enhanced data
augmentation models and deep learning. Expert Systems, 38(7), e12746.
5. Few-shot learning with a novel Voronoi tessellation-based image
augmentation method for facial palsy detection. Electronics, 10(8), 978.
6. Malignant skin melanoma detection using image augmentation by
oversampling in nonlinear lower-dimensional embedding manifolds. Turkish
Journal of Electrical Engineering and Computer Sciences, 29(8), 2600-2614.
7. BILSTM with data augmentation using interpolation methods to improve
early detection of Parkinson's disease. In 2020 15th Conference on Computer
Science and Information Systems (FedCSIS). pp. 371-380. IEEE.
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8. Data augmentation using principal component resampling for image
recognition by deep learning. In Artificial Intelligence and Soft Computing:
19th International Conference, ICAISC 2020, Zakopane, Poland, October 12-
14, 2020, Proceedings, Part 11 19 (pp. 39-48). Springer International
Publishing.

9. Abayomi-Alli, O. O., Sidekerskieng, T., DamaSevicius, R., Sitka, J., & Polap,
D. (2020). Empirical Mode Decomposition Based Data Augmentation for
Time Series Prediction Using NARX Network. In Artificial Intelligence and
Soft Computing: 19th International Conference, ICAISC 2020, Zakopane,
Poland, October 12-14, 2020, Proceedings, Part | 19 (pp. 702-711). Springer
International Publishing.

7.1.8. Disertacijos mokslinis inovatyvumas

Disertacijos mokslinis inovatyvumas yra galimybé pagerinti dirbtinj intelekta
sprendziant bei analizuojant mazus duomeny kiekius turin¢ius uzdavinius ir gerinti
giluminio mokymosi modeliy gaunamus rezultatus taikant naujoviskus duomeny
papildymo metodus. Si moksliné disertacija nagrinéja kelias duomeny papildymo
metody naujoves, skirtas skirtingiems vaizdams su unikaliais duomenimis apdoroti,
analizés metu akcentuojant vaizdo ypatybes, susijusias su nustatytomis problemomis.

Pirmiausia buvo pristatytas naujas duomeny padidinimo metodas, pagrjstas
Voronojaus dekompozicijos atsitiktinio regiono trynimu. VVoronojaus metodas buvo
pritaikytas sintetiniy duomeny rinkiniy variacijoms generuoti. Nustatytas geresnis
aptikimo tikslumas (99,34%) nei taikant §iuo metu esamus padidinimo metodus su
GAN. Tikslumo rodiklis padidéjo +4,53 %.

Antra, siekiant pagerinti manioko (cassava) ligos aptikima, buvo naudojama
Cebysevo statiakampiy funkcijy konvoliucija su tikimybiy pasiskirstymo funkcijomis
(PDF) ir vaizdo kokybés mazinimo didinimo metodu. Eksperimentai parodé¢, kad
zemos kokybés vaizdy tikslumas buvo 97,7 %, o +2,0 % tikslumo prieaugis buvo
gautas naudojant originalius (aukstos kokybés) su papildytais duomeny rinkiniais
(zemos kokybés) vaizdus, kuriy bendras tikslumas buvo 99,7 %. Siiilomy papildymo
metody rezultatai pasirodé geresni, palyginti su kai kuriais jau esamais metodais,
naudojant analizuojamus duomeny rinkinius.

Trecia, iStyrus siilomg CovSMOTE padidinimo metodg odos melanomai
aptikti, buvo pasiektas 92,18 % aptikimo tikslumas.

Ketvirta, disertacijos rengimo metu buvo istirtas dar vienas duomeny papildymo
metodas, kuris nagrinéjo spalvy / fotometriniy ir triuk§mo jpurskimo jtakg garso
duomeny rinkiniams. Sie papildymai buvo pritaikyti dviem funkcijy iSgavimo
metodams: Mel spektrogramai ir GFCC. Aptikimo tikslumas pasirodé greitesnis,
palyginti su esamais moderniausias metodais, kuriy tikslumas yra 90,1 %.

7.1.9. Disertacijos struktiira

Disertacija sudaro Sesi skyriai urie yra taip: pirmasis skyrius yra jvadas, kur
trumpai apzvelgiamas tyrimo originalumas, iSdéstomi tikslai ir uzdaviniai. Antrame
skyriuje pateikiama iSsami dirbtinio intelekto metody apzvalga, detaliai iSanalizuoti
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smulkiy duomeny analizés ir duomeny papildymo metodai. Siame skyriuje taip pat
aprasSoma literatiiros apzvalga ir jvairios duomeny papildymo taikymo sritys mazy
duomeny analizéje, siekiant supazindinti skaitytojus su terminais, kurie bus
naudojami tolesniuose skyriuose, ir taikymo sritimis. Tre€ias skyrius yra jvairiy vieSai
prieinamy mazy duomeny rinkiniy, naudojamy Sioje disertacijoje, santrauka.
Ketvirtame skyriuje aprasyta siiloma metodika, pristatyta siilomy didinimo metody
architektiira ir teorinis pagrindas.

Penktas skyrius pristato gautus eksperimenty rezultatus ir detaliai palygina
sillomy metody rezultatus su jau egzistuojanciais moderniausias metodais. Galiausiai
SeStame skyriuje apibendrinamos iSvados ir pateikiamos rekomendacijos ateities
darbams.

7.2 LITERATUROS APZVALGA

Duomeny papildymas — tai zingsnis prie§ masininj mokymasi ir gily mokymasi,
kai, siekiant sukurti naujus mokymo pavyzdzius, pakei¢iamas ir iSpleCiamas pradinis
duomeny rinkinys [52]. Sis metodas daznai naudojamas su mazy duomeny rinkiniais,
siekiant pagerinti mokymo duomeny kokybe ir i§vengti perpildymo problemos. [53]
apibendrinamas duomeny papildymo tikslas kaip galimybé apibendrinti,
nesumazinant modeliy reprezentacinés galios ir nepakeiCiant kity hiperparametry.
Taigi, duomeny papildymo metodus galima taikyti skirtingai, pavyzdziui, linijinei ar
nelinijinei transformacijai, papildomy kintamyjy pridéjimui ir duomeny sukiirimui,
naudojant generatyvinius modelius [54]. [55] aprasoma, kad duomeny papildymas
sistemingai deformuoja neapdorotus jvesties duomenis, kad galima biity smarkiai
padidinti mokymo duomeny rinkinio kiekj. Duomeny papildymas taikomas
skirtingose srityse, pavyzdziui, NLP [56, 57], kalbos atpazinimo [58], veido
atpazinimo [59], judesio aptikimo [21], ligos diagnozavimo [60] ir pan. Pagrindinis
duomeny papildymo tikslas — padidinti mokymo duomeny rinkinio kiekj ir
diversifikacija, sumazinti perpildyma ir padidinti modelio tvirtuma ir generalizacijg.
Papildyti duomenys naudojami ML modeliams mokyti, pateikia papildomus mokymo
pavyzdzius ir padeda padidinti modelio tiksluma. Be to, taip pagerinamas bendras
gilaus mokymosi modeliy veiksmingumas, bendras stabilumas, mokymo rezultaty
standartas [61] ir ,,mazy duomeny problemos‘ sprendimas [28]. Norint maksimizuoti
gilaus mokymosi modeliy pagrindimg mazais duomenimis, buvo sukurta daugiau
praktiniy sprendimy, pavyzdziui, paSalinimo sureguliavimas, perkeliamas
mokymasis, iSankstinis mokymas ir grupés normalizavimas [56, 62, 63]. Vaizdai gali
buti papildomi jvairiais tradiciniais arba atsitiktinés transformacijos metodais,
tiksliau, naudojant didinima ir mazinima, sukima, apvertima [64], ploCio pakeitima,
aukscio pakeitima, atsitiktinj apkarpyma [65], nukirtimg, mastelio keitima, atsitiktinj
i§trynimg [66] ar paSalinimo sureguliavimg [18, 67], pridedant triukSmo (druska ir
pipirai, Gauso triukSmas, Poissono triukSmas), ir pavyzdziy sintez¢ (naudojant
generatyvinius modelius), elasting deformacija [68] ir parametry iSplétima [69]. Kiti
jdomiis metodai [68]: normalizuotas atsitiktinio poslinkio laukas, uzblokavimo
metodas [70], iSkarpa [71], nugludinimo kaukés filtras (USM) [67], SMOTE [72].

126



Neseniai pradéta intensyviai tirti, kaip DPM gali buti naudojamas kalbai
atpazinti. Cia pagrindinis démesys skiriamas skirtingiems garso pakeitimo biidams.
Ankstesnése studijose sililyty metody pavyzdziai buvo vokalinio trakto ilgio
normalizavimas (VTLN), greicio trikdymas, specialus papildymas [58], duomeny
iSkreipimas [68]. Dar viena jdomi sritis, kurioje naudojamas DPM, yra sustiprintas
mokymasis. [73] pristatomas K-misinys, naudojant Koopmano nekintamg poerdve
mokymo pavyzdzio dydziui padidinti. Trukmés modifikavimo principa mokymo
duomenims papildyti, siekiant aptikti dizartrijos sutrikima, pasitlé [74].
Klasifikuojant garsus, prie mokymo duomeny jvairovés ir variacijy prisidéjo ir kiti
metodai, pavyzdziui, foninio garso pridéjimas, patalpos impulso atsakas, garso
aukscio ir laiko pasikeitimas ir pan. Taikomi ir tokie pazangiis papildymo metodai,
kaip Conv GAN [75], Wasserstein GAN [76]. Puikios DPM metody galimybés garso
ir audioklasifikavimo srityje padéjo klasifikuoti ir pagerino bendras kompetencijas
daugelyje kity sri¢iy. Vis délto, kai DPM metodai naudojami su mazy duomeny
rinkiniais, susiduriama su nedideliu nukrypimu klasifikuojant rimtuma, kas paveikia
mokymosi modelio veikima.

7.3. DUOMENU RINKIMAS

Buvo iSanalizuoti ir Sioje disertacijoje panaudoti trys duomeny tipai. Tai
yra mazi, ir susiduriama su nesubalansuoty klasiy problema. Pirmieji Siame tyrime
panaudoti vaizdy duomenys — tai YFP duomeny rinkinys, skirtas veido paralyziui
diagnozuoti. Jame téra tik Belo paralyziaus vaizdo jrasai [99], kurie konvertuoti j 1105
veido paralyziaus vaizdy sekg. Sveiky ir su veido paralyZiumi nesusijusiy duomeny
rinkiniai gauti i§ Kalifornijos technologijos instituto duomeny bazés [223], kuria
sudaro 27 skirtingy asmeny 450 veido vaizdai. Antrasis duomeny rinkinys buvo
susijgs su manioky ligy diagnozavimu. Panaudotas ,,iCassava“ duomeny rinkinys
[108], kuriame yra 9436 duomeny vienetai. Diagnozuojant odos melanoma, naudoti
PH2 duomeny rinkiniai su 200 vaizdy, suskirstyty | tokias kategorijas: 80 jprasty
apgamy, 80 netipisky apgamy ir 40 melanomy [141]. Galiausiai, tyrimui naudotas ir
antrinis duomeny tipas. ,,Coswara®“ duomeny rinkinys [240] naudotas garsui
klasifikuoti. Jj sudaro 2130 jrasy i§ devyniy skirtingy kategorijy ir septyniy klasiy.
Visi Sie duomeny rinkiniai — tai kity tyréjy anksCiau atlikty tyrimy, paskelbty
straipsniuose, tesimas.

7.4. TYRIMO DIZAINAS IR METODAI

7.4.1. Sitilomas Voronojaus skaidymu grindZiamas atsitiktinés srities
iStrynimas (VDRRE) — veido paralyZiaus diagnozavimo metodas

Visais atvejais vieno kadro mokymosi pavyzdys buvo sustiprintas atsitiktinio
atskyrimo trynimo vaizdy papildymu. Buvo pasiiilytas VDRRE metodas ir itirtas jo
naujumas stiprinant vaizdus. 2D plokStumos vaizdai buvo padalinti j vieng $alia kitos
esancias konkreciy tasky zonas, o S$iy tasky koordinatés gaunamos naudojant
sutartinius skaiCius, paimtus i§ vienodo paskirstymo. I§ esmés vaizdas atskiriamas
parenkant N atsitiktinai pasiskirsciusiy tasky, kas sudaro Voronojaus mozaika. Taigi,
vaizdai dalijami Voronojaus zonoje aplink kiekviena konkrety objekty rinkinj [249].

127



Pavyzdziui, generatoriy rinkinys P = {p;, D, ... Pn} € R%. Atstumas i§ bet kurios X
zonos plokstumoje iki generatoriaus tasko P, zymimas dist(X,p,). Pasirinkime
artimiausig generatoriy p, €P su konkreciu metriniu dist visy galimy X viety S
atzvilgiu. Jeigu pasirodys arti dviejy generatoriy P, intervalas tampa krastu; kita
vertus, jeigu yra arti daugiau nei dviejy generatoriy, padétis pasikeicia j vir§ung. Tegul
dist (p, X;) reiskia euklidinj atstumg tarp bet kurios padéties p erdvéje ir pradinés
zonos X;. (7.1) lygtimi galima apskaiciuoti pusiaukamping tarp X; ir X;, 0 (7.2) lygtimi
gali biiti nustatoma sritis, kur X; dominuoja X;:

b(X;, X;) = {dist(p, X;) = dist(p,X;) }, (7.1)

Dom(Xi,Xj) = {dist(p,Xi) < dist(p,Xj) }, (7.2)
¢ia b(X X j) yra statmena linijos, jungiancios X;, X;, pusiaukampiné
Dom(X;, X;) yra X; vyravimo X; atzvilgiu, sritis
kur i # j, o dist(p, X;) yra svertinis atstumas tarp p ir X;. Paprasto X; Voronajaus
sritj galima apibréZti taip:

V(X)) =Nxex\ix;y Dom(X;, X)), (7.3)

V(X;) vadinama svertine VVoronojaus sritimi.
Atliekant Sig uzduotj, vaizdas iSskaidytas i keleta Voronojaus elementy su vaizdo
ribomis. Sis procesas vadinamas Voronojaus mozaika. Galiausiai, siekiant uzdarumo
ir norint sukurti naujg vaizda, netaisyklingas pasirinktas Voronojaus elementas
prisipildo atsitiktinai parinkty pikseliy spalvy ver¢iy, gauty iS tolygaus pasiskirstymo,
vaizduojamo 7.1 pav.

7.1 pav. Originalus vaizdas (kairéje), papildytas vaizdas, gautas taikant siilomg atsitiktinés
srities i$trynimo metoda (desinéje).

128



7.4.2. Vaizdo spalvy histogramy sulyginimo metodas — manioky ligy
atpaZinimas
Norint aprasyti bet kokia funkcijg funkcijos erdvéje, galima naudoti pagrindiniy
funkcijy, vadinamy stac¢iakampémis funkcijomis, rinkinj. Vertinant pagal rezultatus,
anksciau $ie algoritmai nebuvo naudojami histogramoms sulyginti arba duomenims
papildyti sprendziant klasifikavimo ir vaizdy apdorojimo problemas. Cebysevo
daugianariai — tai unikalios stafiakampiy ultrasferiniy daugianariy variacijos.
Vertinant, kad gauta funkcija i§ viso verta 1, transformacija jvykdoma naudojant
Cebysevo daugianarj su atitinkama PDF verte. Atskiros neapdoroto vaizdo RGB
kanaly histogramos dél §ios transformacijos pakeiciamos. Reikia nepamirsti, kad
skirtingos staciakampés funkcijos gali biiti naudojamos jvairiems kanalams. Be to,
vaizdas transformuojamas kiekviename pikselyje, taip sukuriant dirbtinj vaizda. Fig.
4.12 (zr. pagrindinéje disertacijos dalyje) pateikiama PDF transformacijos iliustracija,
kai galutinis elementas paliekamas tuscias.
Todél, norint sumazinti testuojamy vaizdy kokybe, buvo sukurti duomeny papildymo
metodai. Taip pavyko gauti prastesnés kokybés vaizdus, kurie suskirstyti pagal keturis
transformacijos metodus. Kokybés sumazinimo laipsnis vertintas kaip mazas,
vidutinis ir didelis kokybés sumazinimas. Rezultatai pateikiami 7.1 lenteléje.
a. Skiriamosios gebos mazinimo pavyzdziai: neapdorotas vaizdas, sumazintas
iki 32 X 32; 64 X 64;96 X 96;128 x 128;160 x 160; 192 x 192
pikseliy ir padidintas iki 224 X 224 pikseliy kaip galutinio reikalingo
dydzio nerviniam tinklui.
b. Gauso suliejimas: norint supinti neapdorotus jvedamus vaizdus, buvo
naudotas Gauso filtras su standartiniu 1, 1.5, 2, 2.5 ir 3 nukrypimu.
€. Judesio suliejimas: siekiant nustatyti judesio kampa i$ (0,360) kampy spektro,
buvo naudotas vienodo pasiskirstymo atsitiktinis skaicius, o norint jvertinti
kameros linijinj judéjimg, naudotos 10, 15, 20, 25 ir 30 pikseliy reikSmés.
d. Perlaikymas: vaizdy kanaly amplitudés padidintos 1.25 (1.5, 1.75, 2 ir 2.5)
faktoriumi, taip atkartojant perlaikyty nuotrauky salygas.

7.1 Lentelé. Papildyty vaizdy rezultatai, taikant IQRM.

Resolution Gaussian

Methods/ Level downsampling Motion-Blur Overexposure

Medium =1
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7.4.3. Siulomas CovSMOTE argumentavimo metodas odos melanomai
diagnozuoti

Duomenims papildyti buvo pritaikytas modifikuotas dirbtinio mazumos jrasy kiirimo
metodas (SMOTE) [153]. Taikant SMOTE, gaunami duomenys i§ mazumos klasés
dirbtiniy jra8y. SMOTE didziausig démesj sutelkia  mazumos klasés kaimyny, artimy
mazumos klasei, atpazinimg. TaSkas tarp neapdoroto pavyzdzio ir kaimyninio
pavyzdzio pasirenkamas atsitiktinai. Buvo taikomas Cov-SMOTE [155] metodas. Tai
yra modifikuotas SMOTE, | kurj jtraukiama kovariacijos matrica, skirta
priklausomybés rySiams tarp savybiy nustatyti. [vertinus kovariacijos matrica, gauti
nauji arba pakaitiniai pavyzdziai, turintys padéti atrasti pusiausvyra tarp abiejy klasiy
(mazumos ir daugumos). Algoritmas veiksmingai uZztikrina, kad visi dirbtiniai
kovariacijos pavyzdziai bty reikalingi kiekvienos savybés intervale, kaip
vaizduojama 7.2 pav. ir 7.3 pav. rodomas PH2 duomeny rinkinio dauginimo erdvés
rezultatas. Panasus metodas naudotas ir gaminant naujus mazumos klasés pavyzdzius
mazesniy matmeny dauginimo erdvéje. Gavus naujus pavyzdzius, labai svarbus tampa
virsmas i§ dauginimo erdvés j vaizdy erdve. Daugianarés regresijos metodas taikytas
dél linijiSkumo dauginimo erdvéje nebuvimo, todél jis padéjo gauti geriausig virsma
dirbtiniame kaimyne. Norint gauty zyméjimg i§ dauginimo erdvés j spalvy erdve,
buvo atlikta kubiné daugianaré regresija. Gauti rezultatai (dirbtiniai vaizdai)
pateikiami 7.4 paveiksle.
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7.3 pav. PH2 duomeny rinkinio klasiy vizualizacija; (b) dirbtiniy pavyzdziy, sudaryty kaip
nauji atvejai (Zymimi zaliais taskeliais) atvaizdavimas.
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7.4 pav. Papildyty vaizdy, sukurty taikant CovSMOTE metoda, pavyzdziai

7.4.4. Siilomi garso papildymo metodai (fotometrija ir triuk§mo jvedimas)

Garso jrasai paversti vaizdais, naudojant du savybiy iStraukimo metodus,
tiksliau — Mel spektrogramas ir gama tono daznio Furjé kosinuso koeficientus
(GFCC), kaip vaizduojama 7.5 ir 7.6 paveiksluose. Véliau, siekiant sustiprinti
mokymo vaizdy mazumos klase, panaudotos dvi duomeny papildymo metody riisys
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ir sukurtas naujas dirbtinis duomeny rinkinys. Dirbtiniy duomeny sukiirimui ir
mokymo duomeny rinkiniui pagerinti naudoti fotometrinis, arba spalvy
transformacijos, ir triuk§mo jvedimo metodai.

Dirbtiniy arba papildyty duomeny, vadinamy COswara-COvid papildytais
duomeny rinkiniais, kartu vadinamais COCOA, apraSymas:

1. Fotometrinis, arba spalvy transformacijos, metodas (COCOA-1). Duomeny
transformacijos tikslu taikomi trys placiai naudojami spalvy DPM modeliai,
nagrinéti ankstesnéje literatiiroje. Taciau Sio tyrimo metu buvo analizuoti ir
tirti rgb2lab bei pilkos skalés papildymo metodai. Egzistuoja 256 pilkos
spalvos atspalviai, kuriy $viesumas skiriasi nuo 0 (juoda) iki 1 (balta). Sie
virsmo metodai dar vadinami monochromija. Kiti spalvy virsmo metodai,
naudoti mokymo duomenims papildyti, yra kontrastas, rgb2lab, §viesumas ir
rgh2gray.

2. TriukSmo jvedimo metodas (COCOA-2). Labiausiai naudojamas
intensyvumo pakeitimo metodas yra triuk§mo jvedimo metodas (NIM). Bet
koks vaizdo signalo suprastéjimas, kurj daznai sukelia iSoriniai trikdZiai,
vadinamas triuk§Smu vaizduose. Taigi, kai mokymo metu j vaizdy duomenis
jvedamas triukSmas, tai labai paveikia mokymosi modelius, nes modelis
tampa veiksmingesnis, 0 mokymasis geresnis [256]. Norint sukurti dirbtinius
duomeny rinkinius, kiekvienam duomeny rinkinio vaizdui taikyti skirtingi
triuk§mo spektrai, pavyzdziui, druskos ir pipiry triukSmas, Gauso triukSmas.

l i

(e

7.5 pav. Mel-spektrogramos vaizdy klasés: (a) teigiamas besimptomis; (b) teigiamas
lengvas; (c) teigiamas vidutinis; (d) visiSkas pasveikimas; (e) sveikas.

(a) (b) () (d)

7.6 pav. GFCC vaizdy klasés: (a) teigiamas besimptomis; (b) teigiamas lengvas; (c)
teigiamas vidutinis; (d) visisSkas pasveikimas; (e) sveikas.
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7.4.5. Veikimo metrika

Buvo jvertinti sillomo DPM poveikio mokymosi modeliui rezultatai. Norint
apskaiciuoti sitilomy modeliy veiksminguma, sukurta standartiné metrika, t. y. TP —
teisingi teigiami, FP — klaidingi teigiami, TN — teisingi neigiami, FN — Kklaidingi
neigiami. Naudojama ir $i optimizavimo metrika: ACC — tikslumas, SEN — jautrumas
arba atkiirimas, SPEC — specifiSkumas, PRE — preciziSkumas, F1 balas, imtuvo
darbiniy charakteristiky kreivé / zona po kreive (ROC-AUC).

7.5. VYKDYMO IR ANALIZES ATLIKIMO REZULTATAI
7.5.1. Eksperimentiniai veido paralyZiaus diagnozavimo rezultatai

Eksperimentui naudotas hibridinis SqueezeNet/ECOC-SVM Kklasifikatorius.
Taikytas tiek 1 kadro, tiek 2 kadry mokymasis su sillomu VDRRE metodu. Geriausi
rezultatai gauti integravus 2 kadry mokymasi | VDRRE. Preciziskumas, atkiirimas,
F1 balas ir tikslumas buvo lygis 99,35 %, 99,74 %, 99,54 % ir 99,35 % (zr. 7.2
lentelg). Palyginti su eksperimentiniais 1 kadro mokymosi duomenimis, veikimas
buvo prastesnis, o preciziSkumas, atkiirimas, F1 balas ir tikslumas buvo lygis
98,85 %, 99,28 %, 99,72 % ir 99,07 %. Vis délto, netaikant papildymo, gauti tokie
preciziskumo, atktirimo, F1 balo ir tikslumo rezultatai: 85,59 %, 81,06 %, 91,85 % ir
78,62 %. Kita vertus, tiek 1 kadro, tiek 2 kadry mokymasis su VDRRE papildymu
lémé rysky rezultaty pageréjima (Zr. 7.7pav.). Nelinijinis matmeny mazinimo
metodas, zinomas kaip t-SNE, leidzia vizualiai pristatyti dvimacius duomenis kaip
dvimatj Zemélapj, pateikiamg 7.8 pav., a. Zonos po kreive (AUC) rezultatai pateikiami
7.8 pav., b.

7.2 Lentelé. Eksperimentiniai hibridinio klasifikatoriaus, skirto paralyziui
diagnozuoti, rezultatai

Vidutiniai klasifikavimo rezultatai (95% CI)
Metodai . Atkiirimas Preciziskumas
0, (o)
Tikslumas (%0) (%) (%) F1 balas (%)
Be papildymo 78'226{%8'3: 91,85(SD: 5,41) | 81,06(SD: 4,50) | 85,59(SD: 3,78)
Atsitiktinio
itrynimo 92,91(SD: 1,12) | 96,14(SD: 0,83) | 93,96(SD: 1,87) | 95,04(SD: 1,42)
papildymas
2 kadry mokymasis . i . i
+VDRRE 99,35(SD: 0,24) | 99,74(SD: 0,17) | 99,35(SD: 0,24) | 99,54(SD: 0,16)
1 kadro mokymasis ) ) . .
+ VDRRE 99,07(SD: 0,60) | 99,72(SD:0,28) | 98,85(SD: 1,15) | 99,28(SD:0,55)
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7.9 pav. Papildyti mokymo duomeny rinkinio veikimo rezultatai, kai k = 10: (a) skiriamosios
gebos sumazinimas; (b) Gauso suliejimas; (c) judesio suliejimas; (d) perlaikymas

Quality(overexposure)

7.5.2. Eksperimentiniai manioky ligy aptikimo rezultatai

Siuo atveju buvo naudotas pradinio mokymo duomeny rinkinys su dirbtinai
sukurtais vaizdais, naudojant histrogramy transformacijg, apraSyta 7.4.2 skyriuje.
Naudotas nervinio tinklo modelis. Sujungus paryskinty vaizdy duomeny rinkinj su
visais neapdorotais vaizdais, gauta 94350 vaizdy, naudoty baziniam tinkui
performuoti. 80% vaizdy naudoti mokymui, o 20% — patvirtinimui. Performuoto
tinklo modelis testuotas su neapdorotais duomenimis, aukstos ir zemos kokybés
manioky vaizdais. Dirbant su auk$tesnés kokybés vaizdais, pasiektas 0,997 tikslumas.
Jis pageréjo 2%, taciau pageréjimas geriau matési prastesnés kokybés vaizduose.
Sumazinus skiriamaja geba, tikslumas padidéjo nuo 2,8% (192 %192 px sumazinimas)
iki 20,6% (64 x64 px sumazinimas). Gauso suliejimo tikslumas iSaugo nuo 2,8%
(miglotumas prie 1°) iki 14,6% (miglotumas prie 3c). Judéjimo suliejimo tikslumas
iSaugo nuo 4% (judéjimo suliejimas prie 5 px) iki 14,33% (judéjimo suliejimas prie
25 px). Perlaikymo tikslumas iSaugo nuo 4% (2,5 kartus perlaikyta) iki 9,8% (25
kartus perlaikyta). 7.9 pav., a-d, pateikiami tinklo klasifikavimo rezultatai, kai vaizdai
vertinti pagal Gauso suliejima, judesio suliejimg ir perlaikyma.

Kai tinklas naudotas su iSpléstiniu vaizdy duomeny bazés rinkiniu, sumazinty
dirbtiniy vaizdy rezultatai buvo geresni nei bazinio klasifikatoriaus, naudoto
originaliems duomeny rinkinio vaizdams. Todél sitilomo modelio o generalizacijos
savybés buvo geresnés.
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7.5.3. Eksperimentiniai odos melanomos diagnozavimo rezultatai

Pradinis duomeny rinkinys skirstomas j dvi dalis: dvinaré klasifikacija
(melanoma ir ne melanoma) bei daugiaklasé klasifikacija (melanoma, netipi§ky ir
jprasty apgamy klas¢). Kaip apibendrinta Tbl. 5.11 (Zr. pagrindingje disertacijos
dalyje), dirbta su 120 pavyzdziy, kuriuos sudaré 24 melanomos ir 96 ne melanomos
vaizdai (48 jprasti apgamai ir 48 netipiski apgamai). Testuota 80 vaizdy pavyzdziy,
iskaitant 16 melanomos ir 64 ne melanomos vaizdus (sudaro 32 jprasti apgamai ir 32
netipiSki apgamai). Musy siilomam modeliui sukurti pasinaudota iSankstiniy
mokymy tinklu. Siilomas modelis pratestuotas su testuojamu duomeny rinkiniu,
vidutiniu pradinio (bazinio) rinkinio veikimo rezultatu, AugDB-1 (taikytas
CovSMOTE papildyty duomeny rinkinys) ir AugDB-2 (taikytas tradiciskai papildyty
duomeny rinkinys), o rezultatai apibendrinami 7.3 lenteléje. 7.10 pav. lyginami
veikimo rezultatai, naudojant didZiausius pasiektus rezultatus.

Comparison of overall test results
T

95 u
90 |- W— 4
85 [ B
8o | d
75 |- -1
70

65 |- 4
60 |- u
ss |- -1
50 o)

Accuracy Pracision Sansitivity

Percentage

N No Avgmentation
I AugDB
) AUgDB

Percentage

65

Specificity F1-Score
Metrics

7.10 pav. Dvinarés klasifikacijos scenarijaus palyginimas
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7.3 Lentelé. Odos melanomos klasifikavimo rezultatai (dvinaré klasifikacija)

Dvinareés klasés Kklasifikavimo rezultatai
Duomeny Aprasymas Acc Pre Sen Spec E;Ias
rinkinys prasy (0) | 0) | (%) | (%) | )
Pradinis PH? 89,64 | 76,12 | 72,58 | 94,06 | 73,65
AugDB-1 | COVSMOTE 1 o531 | 81,13 | 80,77 | 951 | 80,84
papildymas
AugDB-2 | Tradicinis 89,26 | 82,87 | 58,75 | 96,88 | 67,83
papildymas

Norint gauti patikimus rezultatus, kiti eksperimentai atlikti pradinéms trims PH2
duomeny rinkinio klaséms taikant daugiaklasj aptikima. 7.11 pav. pateikiama
eksperimentiniy trijy klasiy (melanomos, netipisky apgamy ir jprasty apgamy)

rezultaty santrauka.
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7.11 pav. Trijy duomeny rinkiniy palyginimo rezultatai, taikant daugiaklas¢ klasifikacijg ir
rodant tiksluma, jautruma, preciziSkuma, ir F1 balg

7.5.4. Eksperimentiniai Covid-19 diagnozavimo rezultatai (garso duomeny

rinkinys)

Buvo atsizvelgta | detaliag kiekvieno duomeny rinkinio analiz¢, naudojant
siloma DeepShufNet, ir reikalavimus techninei jrangai. Tiek mokymui, tiek
testavimui grupés dydis buvo sistemingai padidintas nuo 50 iki 200, laikant 200
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priimtinu grupés dydziu. D¢l didelio duomeny retumo ,,Coswara“ duomeny rinkinyje
eksperimentas pakartotas penkis kartus. Sitllomam DeepShufNet modeliui sukurti ir
pratestuoti panaudoti jungtiniai savybiy iStraukimo vaizdai i§ visy ,,Coswara“
duomeny rinkiniy.

e Eksperimentinis rezultatas (sergantys COVID, palyginti su sveikais)

Pagal 7.4 lentele, Mel-spektrogramos vaizdai COCOA-2 duomeny rinkiniuose
pasizyméjo geriausiais rezultatais su DeepShufNet testuojamu rinkiniu. Teigiamas
Covid klasifikavimo pavyzdys apskaiCiuotas su vidutiniu tikslu ir standartiniu
nukrypimu (SD): 85,1 (SD=4.23), 70,85 (SD = 7,7) atkiirimo/jautrumo atveju, 59,64
(SD = 13,12) preciziskumo atveju, 88,25 (SD = 6,14) specifiskumo atveju ir 63,61
(SD = 6,7) Fl-balo atveju. Pritaikius musy siilomg modelj COCOA-3, tikslumas
smarkiai padidéjo: vidutiniskai 87,82 (SD= 1,3), 69,49 (SD= 4,9) atktirimo/jautrumo
atveju, 64,82 (SD=4,7) preciziskumo atveju, 91,75 (SD= 1,9) specifiSkumo atveju ir
FI balas kaip 66,9 (SD= 2,8). Todél, lyginant rezultatus su kitais duomeny rinkiniais,
galima teigti, kad bazinio rinkinio rezultatai yra maziausiai veiksmingi.

GFCC vaizdy atveju papildyti duomeny rinkiniai pasiZyméjo geresniais
rezultatais nei baziniai, kalbant apie tikslumag: 83,1% (SD= 1,4) COCOA-3 atveju,
83,05% (SD= 0,9) COCOA-2 atveju, 76,4% (SD= 2,5) COCOA-1 atveju ir 74,9%
(SD= 3,8) pradiniy duomeny atveju 7.4 lentelé. Augantis vidutinis atkiirimas su
DeepShufNet labiau intriguoja: 71,3% (SD= 2,2) COCOA-1, 48,7% (SD= 14,1)
pradiniy duomeny atveju, 46,7% (SD= 11,5) COCOA-2 atveju ir 38,8% (SD= 9.3)
COCOA-3 atveju.

Performance Metrics for Melspectrogram
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7.12 pav. Rezultatai, naudojant Mel spektrogramg (sveiki, palyginti su serganciais COVID-
19)
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7.13 pav. Rezultatai, naudojant GFCC (sveiki, palyginti su sergan¢iais COVID-19)

7.4 Lentelé. Papildyty duomeny rinkiniy klasifikavimo rezultatai (sergantys COVID
palyginti su sveikais)

1 pvz.: visi teigiami COVID rezultatai palyginti su sveikais
Savybiy Duomeny F1 balas
iStraukimas rinkinys Acc (%) Rec (%) Prec (%) Spec (%) (%)
Pradiniai
Mel- duomenys 71,247,3 | 60,2+126 | 51,8+15,1 85,22+11,3 | 53,4746,1
spektrogram | COCOA-1 78,746,1 | 57,9+135 | 45,4149,6 83,1949,4 | 49,2458
a COCOA-2 85,1+4,2 | 70,85+7,7 | 59,64+13,1 | 88,25+6,14 | 63,61+6,7
COCOA-3 87,8+1,3 | 69,49+4,9 | 64,82+4,7 91,75+1,9 | 66,9+2,8
Pradiniai
duomenys 74,9+3,8 | 48,7+14,1 | 40,1+10,16 | 86,99+1,55 | 42,446,3
GECC COCOA-1 76,4425 | 71,33+2,2 | 41,23+34 7751433 | 52,17+2,6
COCOA-2 83,1+0,9 | 46,7+115 | 53,3+2,32 91,06+2,01 | 49,2746,5
COCOA-3 83,1+14 | 38,33+9,3 | 50,21+1,6 92,21+1,7 | 43,1465

DeepShufNet su Mel-spektrogramos vaizdais analizé atskleidé, kad COCOA-2
eksperimentiniai rezultatai buvo didziausi (pateikti 7.12 pav.): 90,1% tikslumas,
62,71% atktirimas, 95,99% specifiskumas, 77,1%, ir 69,2% preciziskumas. Taikant
duomeny papildymo strategija, galima pagerinti veiklos rezultatus. Pavyzdziui, dviejy
COCOA-1 ir COCOA-2 rezultatai pasizyméjo geriausiu atkdrimu. Taip pat
eksperimentiniai GFCC vaizdy rezultatai, pateikti 7.13 pav, rodo, kad taikant
triukSmo papildymg COCOA-2 ir jungtinius duomeny rinkinius (COCOA-3), gautas
didZiausias tikslumas — atitinkamai 84,1% ir 84,7%. Taigi, du geriausi atkiirimo
rezultatai pasiekti su COCOA-1 ir COCOA-2, tai reiskia, kad duomeny papildymo
metodas padeda pagerinti klasifikavimo rezultatus.

139



7.5.5. Visy sitilomy didinimo metody analizé

I$ anksto iSmokytame tinkle buvo i$analizuoti ir iStirti keturi $ioje disertacijoje
silomi duomeny papildymo metodai — VDRRE, CovSMOTE, fotometrinis (IQRM)
ir triukSmo jpurskimo (NIM) metodai. Siekiant pateikti iSsamy, lyginamajj vertinima,
buvo lyginami trys veiksmingi i§ anksto parengti tinklai: SqueezeNet, EfficientNet ir
ResNet18 bei jy veikimas. Lyginant buvo siekiama nustatyti unikalias savybes, ir
véliau jas panaudoti norint tiksliai atpazinti ir klasifikuoti veido paralyziaus ir odos
melanomos ligas pagal siiloma padidinimo metoda. Palyginimas buvo atliekamas
dviejuose duomeny rinkiniuose, kad bty galima visiSkai suprasti kiekvieno
papildymo metodo unikaluma, bei jy pranasumus ir trukumus. Atlikus §j iSsamy
tyrimg, buvo atskleisti siilomy DAM metody ypatumai ir jy jtaka bendram
efektyvumui kuriant geresnius giluminio mokymosi modelius.

Hiperparametry nustatymai, naudojami i§ anksto iSmokytoms SqueezeNet,
EfficientNet ir ResNetl8 architektiiroms optimizuoti, buvo sukurti taip, kad tikty
abiem duomeny rinkiniams (PH2 ir YFP). Visi nustatymai eksperimentams atlikti
buvo kruopsciai sureguliuoti, siekiant uztikrinti, kad modelis bty iSmokytas teisingai
identifikuoti ir suskirstyti j kategorijas odos melanomos ir veido paralyziaus duomeny
ligas. Hiperparametry nustatymai ir jy reikSmés aprasyti 7.5 lentelgje.

7.5 Lentelé. Hiperparametry nustatymai ir jy reikSmes.

Parametrai _V_ertés
SqueezeNet EfficientNet ResNet18
Pradinis mokymosi tempas 0.00001 0.0001 0.003
Aktyvinimo funkcija RelLU RelLU RelLU
Epochos 50 3 10
Partijos dydis 16 100 100
Optimizatorius SGDM ADAM ADAM
L2 Reguliavimas 0.01 0.1 0.01
Impulsas 0.9 0.9 0.9
Svorio mokymosi koeficientas 20 10 10
MOkE’rm'"?g;aa?;etra' 1.2 5.3 11.6
Sluoksniy skai¢ius 63 290 71

Nustatant odos melanomos ligag, covSMOTE papildymo metodas pasieke
tiksliausius rezultatus i$ visy trijy analizuoty klasifikatoriy metody. 7.6 lentelé parodo,
kad covSMOTE padidinimas, pagrjstas ResNet18, pasické geriausius klasifikavimo
rezultatus, palyginti su kitais Sios kategorijos padidinimo metody rezultatais 0,938
tikslumu, o VDRRE, PM ir NIM tikslumas atitinkamai buvo 0,925, 0,90 ir 0,912
bandymus atlickant tomis paiomis sglygomis. IS anksto iSmokytas tinklas
SqueezeNet taip pat pasizymi gerais rezultatais, o geriausias rezultatas gautas
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naudojant covSMOTE, kurio tikslumas yra 0,9218, NIM pasieké 0,8522, PM —
0,8436, 0 VDRRE — 0,775 tikslumg atliekant eksperimentus. Sitlomas covSMOTE
padidinimo metodas pasirodé labai efektyvus tiksliai klasifikuojant odos melanomos
liga, o tai rodo, kad néra SaliSkumo jokiam méginiui, kurio bendras atkiirimas,
tikslumas, specifiSkumas ir F1 balas yra atitinkamai 0,813, 0,867, 0,968 ir 0,839.
Apskritai, sitlomas covSMOTE padidinimo modelis galéjo teisingai klasifikuoti
daugiau paralyziaus teigiamy klasés atvejy, kaip rodo tikslumo, atkiirimo ir
preciziskumo pusiausvyra. Todél galima teigti, kad trijy modeliy (ypa¢ ResNet18 ir
SgeezeNet) isSmokymas su covSMOTE pasizyméjo geru sitilomo modelio atsparumu
ir generalizacijos gebéjimu tiksliai nustatyti ir klasifikuoti odos melanoma

Be to, veido paralyziaus aptikimo atveju VDRRE pagristas padidinimas,
palyginti su kitais sitilomais padidinimo metodais, rodo didelj skirtumg trijuose i$
anksto ismokytuose tinkluose. 7.7 lentel¢je apibendrinti eksperimentiniai rezultatai
aiSkiai parodo siilomy DAM metody testavimo efektyvuma nustatant veido
paralyziy. I§ lenteléje esanciy rezultaty galima daryti i§vada, kad VDRRE metody
bandymo tikslumas iSlicka suderinamas su sklandziu padidéjimu trijose i§ anksto
paruostose CNN architekttirose, o didziausias tikslumas siekia 0,9935 naudojant
SqueezeNet, o EfficientNet ir ResNet architektiiros bandymo rezultatai, naudojant
VDRRE, yra atitinkamai 0,965 ir 0,929. Tacdiau bandymo atlikimas naudojant
covSMOTE rodo maziausius rezultatus, palyginti su kitais sitilomais DAM metodais.
Taciau po penkiy eksperimentiniy bandymy ir patikslinimo, sumazinus mokymosi
greitj iki 0,0003, pageréjo bendra gilaus mokymosi modelio klasifikacija, todél
tikslumo rezultatas padidéjo +8,3%. Be to, fotometrinio ir NIM metodo taikymas rodo
Siek tiek konservatyvy rezultata ir sugebéjo suSvelninti perteklinj pritaikyma
naudojant parametry reguliavimg modelio mokymo metu. Apibendrinant galima
teigti, kad eksperimentiniai rezultatai parodé labai gerus gebéjimus spresti smulkias
duomeny problemas, panaudojant konkreCios srities Zinias, siekiant sékmingai
paveikti modelio mokymosi procesg ir taip jveikti mazy duomeny tritkumus realiose
programose. Taciau galima teigti, kad dél duomeny ypatybiy ir tikslinés srities
unikalumo jokia viena papildymo technika negali bati laikoma geriausiu ar
tobuliausiu metodu visais mazy duomeny atvejais.

7.5.6. Metody apribojimas

Yra tam tikry apribojimy, atsirandanciy dél labai mazy ir nesubalansuoty
duomeny rinkiniy, nes paprastai gilaus mokymosi modeliy veiksmingumas ir geresni
klasifikavimo rezultatai priklauso nuo dideliy duomeny kiekio. CovSMOTE metodas
pasizyméjo gerais rezultatais odos melanomos nustatymo atveju jvairiuose i§ anksto
paruostuose modeliuose, ta¢iau gana zemais rezultatais veido paralyziaus atveju. Tai
gali biiti siejama su duomeny klasiy persidengimu, nes papildytuose vaizduose yra
daugiau ,.triuksmo®, todél vaizdas atrodo nerealus. Be to, odos melanomos aptikimo
scenarijuje iSkilo modelio pertekliaus problema, nes bandymo rezultatai parodé tam
tikrg SaliSkuma mazumos klasés atzvilgiu, ypac¢ atliekant dvejetaine klasifikavimo
uzduotj. Be to, keliy klasiy scenarijuje, nors modelis rodo optimalius rezultatus ir gana
tiksliai klasifikuoja melanomg i§ vienos klasés, jis gauna klasifikavimo klaidg
diferencijuojant netipines (angl. atypical nevu) ir bendrines nevu (angl. atypical nevu)

141



klases, dél kuriy sumazéja atkarimo (angl. recall) greitis ir specifiSkumo rodiklis.
Atliekant garso klasifikavimo uzduotj, pagrindinis i§8tikis yra aptikimo klaidos, kurios
gali biiti siejamos su prastu kai kuriy sukurty triuk§Smingy vaizdy apibendrinimu. Be
to, buvo suvokta, kad kiekvienai garso klasei pritaikius bruozy i§gavimo metodus,
rodomy vaizdy galios atvaizdavimas yra labai panasus, todél tai turi jtakos mokymosi

klasifikatoriy gebéjimui efektyviai apibendrinti duomenis.
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7.6 Lentelé. Sitlomy odos melanomos klasifikacijos padidinimo metody

palyginimas.

Odos melanomos Klasifikacija

Duomeny
papildymo metodai

Klasifikavim
0 modelis

Accur
acy

Recall

Precision

Specificity

F1-
Score

\oronojaus
dekompozicijos
atsitiktinio regiono
trynima (VDRRE)

Kovariantas
SMOTE
(covSMOTE)

Fotometriné (spalvy
transformacija)

Triuk§mo
ipur§kimo metodas
(NIM)

SqueezeNet

0,775

0,6875

0,4479

0,7969

0,5249

0,921

0,8077

0,8257

0,951

0,8084

0,8436

0,8021

0,6134

0,8542

0,6625

0,8522

0,6667

0,6588

0,8984

0,6352

\oronojaus
dekompozicijos
atsitiktinio regiono
trynima (VDRRE)

Kovariantas
SMOTE
(covSMOTE)

Fotometriné (spalvy
transformacija)

Triuk$mo
ipurskimo metodas
(NIM)

EfficientNet

0,862

0,50

0,7273

0,9531

0,5926

0,875

0,375

0,75

0,9688

0,500

0,838

1,000

0,5517

0,7969

0,7111

0,85

0,625

0,625

0,9063

0,625

\Voronojaus
dekompozicijos
atsitiktinio regiono
trynima (VDRRE)

Kovariantas
SMOTE
(covSMOTE)

Fotometriné (spalvy
transformacija)

Triuk§mo
jpurSkimo metodas
(NIM)

ResNet18

0,925

0,875

0,968

0,667

0,919

0,938

0,813

0,867

0,968

0,839

0,90

0,625

0,8333

0,9686

0,7142

0,912

0,737

0,875

0,9672

0,80
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7.7 Lentelé. Sitlomy veido paralyziaus ligy klasifikavimo padidinimo metody

palyginimas.

Veido paralyZiaus aptikimas

Duomeny
papildymo metodai
(DAM)

Klasifikavim
0 modelis

Accur
acy

Recall

Precision

Specificity

Score

\oronojaus
dekompozicijos
atsitiktinio regiono
trynima (VDRRE)

Kovariantas
SMOTE
(covSMOTE)

Fotometriné (spalvy
transformacija)

Triuk§mo
ipur§kimo metodas
(NIM)

SqueezeNet

0,9935

0,9974

0,9935

NA

0,9954

0,662

0,525

1,00

1,00

0,688

0,801

0,991

0,785

0,333

0,876

0,791

0,8959

0,825

0,5333

0,8590

\oronojaus
dekompozicijos
atsitiktinio regiono
trynima (VDRRE)

Kovariantas
SMOTE
(covSMOTE)

Fotometriné (spalvy
transformacija)

Triuk$mo
ipurskimo metodas
(NIM)

EfficientNet

0,965

0,9638

0,9861

0,9667

0,9748

0,675

0,7692

0,7727

0,4444

0,7710

0,720

0,9321

0,7410

0,20

0,8826

0,875

0,8778

0,9417

0,8605

0,9087

Voronojaus
dekompozicijos
atsitiktinio regiono
trynima (VDRRE)

Kovariantas
SMOTE
(covSMOTE)

Fotometriné (spalvy
transformacija)

Triuk§mo
jpurSkimo metodas
(NIM)

ResNet18

0,929

0,914

0,9854

0,9667

0,9483

0,579

0,407

1,000

1,000

0,5788

0,624

0,4932

0,9561

0,9444

0,6507

0,768

0,7919

0,8706

0,7111

0,8294
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7.5.7. Eksperimenty santrauka

Siame skyriuje pateikiami skirtingy duomeny papildymo modeliy ir mokymosi
klasifikatoriy taikymo jvairiose klasifikavimo uzduotyse i§vados ir eksperimentiniai
rezultatai. Naudojant spalvy histogramos padidinimo metoda, mokymosi modelis
(MobileNetV2) sugebgjo gauti 99,7 % patobulinta aukStos kokybés vaizdy tiksluma.
Treniruotés su Gauso triuk§mo padidinimu pasizyméjo geriausiu bendru klasifikacijos
rezultatu. Tolesnis naSumo palyginimas su esamais metodais rodo, kad sitilomas
modelis yra veiksmingas norint aptikti manioko liga. Rezultatas demonstruoja
statistiSkai reikSminga manioko lapy ligos aptikimo gebéjimo pageré¢jima, kurj rodo
patobulintas MobileNetV2 neuroninis tinklas. Pagrindinis praktiniy duomeny rinkimo
aspektas yra modelio naudojimo paprastumas nustatant ir diagnozuojant manioko lapy
ligas prastesnés kokybés vaizduose.

Veido paralyziui aptikti jdiegus sitilomg covSMOTE modelj buvo sukurti nauji
sintetiniai duomeny rinkiniai ir pageréjo bendras bandymo duomeny rinkinio
veikimas. Jdiegtas shuffleNet ir SVM aptikimo algoritmas pasirodé nasesnis, pagerino
tiksluma, jautruma / atkiirimo greitj, specifiSkuma ir mazesnj laiko sudétinguma.
Galiausiai, musy sitilomas modelis suteiké geresniy jzvalgy apie sumazintg klaidy
daznj ir apibendrinimo galimybes veido paralyziaus aptikimo tikslumu 99,35 %,
prisiminimo rodikliu 99,74 %, tikslumo koeficientu 99,35 %b ir Fi-balu 99,54 %.

Odos melanomos aptikimo tikslumas (92,18 %), jautrumas (80,77 %),
specifiSkumas (95,1 %) ir F1 balas (80,84 %), dvejetainio Klasifikavimo scenarijaus
eksperimentiniai rezultatai rodo, kad melanomos diagnozé gerokai pageréjo. Keliy
klasiy klasifikavimo eksperimentiniai rezultatai parodé reikSminga 89,2 %
(jautrumas), 96,2 % (specifiskumas) netipinio nevu aptikimo, 65,4 % (jautrumo), 72,2
% (specifiskumas) ir 66 % (jautrumo) bendrojo nevu aptikimo efektyvumg. Kalbant
apie odos melanomos aptikima, sitiloma klasifikavimo sistema pranoksta kai kuriuos
ankstesnius metodus.

COVID-19 aptikti naudojant garso duomeny rinkinius buvo pritaikyti
geometriniai ir fotometriniai DeepShufNet modelio padidinimo metodai. Naudojant
Mel COCOA-2 patobulintus mokymo duomeny rinkinius, siilomas modelis aptiko
teigiamg COVID-19, kurio tikslumas, tikslumas, prisiminimas, specifiskumas ir f
balas buvo atitinkamai 90,1 %, 77,1 %, 62,7 %, 95,98 % ir 69,1 %. Palyginus sitloma
metoda su kai kuriais naujausiais metodais, jis pasirodé nasesnis.

Galiausiai biuitina nustatyti, kad klasifikavimo uzduotyse daugiau duomeny
poreikio negalima per daug pabrézti, taiau pateikti misy sitlomy giluminio
mokymosi modeliy papildymo metody rezultatai rodo daug zadancius rezultatus.
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7.6. ISVADOS IR REKOMENDACIJOS ATEITIES DARBAMS
7.6.1. Bendrosios iSvados
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Sioje disertacijoje buvo atliktas i§samus duomeny papildymo metody taikymo
tyrimas. DAM taikymas padéjo tobulinti mokymosi modelius, padidindamas vaizdy
klasifikavimo uzduociy apibendrinimg mazy duomeny analizei.

1.

Dirbtinio intelekto metody panaudojamumas, ypa¢ nustatant medicinines
ligas, ir toliau pritraukia vis daugiau démesio. Taciau vis dar yra veiksniy,
turin¢iy jtakos bendriems mazy duomeny analizés srities tyrimams ir
naudojimui, ypac atliekant kompiuterio vizualizavimo uzduotis. Vieni i§
pagrindiniy i88tukiy yra didelé priklausomybé nuo dideliy duomeny kiekiy
rinkiniy; funkcijy atvaizdavimo problemos, kylancios dél skirtingy vaizdo
savybiy skirtumy; duomeny retumo problema; atrankos paklaida; disbalanso
klasés, tikimybé, kad modeliai bus pritaikyti per daug. Visa tai lemia
mazesnius Sansus, kad egzistuojantys sprendimai bus pritaikyti realiame
gyvenime. Duomeny papildymo metody taikymas labai padéjo pasiekti
pageidaujamga mokymo duomeny dispersija, o tai leido sukurti efektyvy
mokymosi modelj ir taip pagerinti klasifikatoriy veikimo rezultatus. Kai kurie
esami duomeny papildymo metody i$siikiai apima nerealiy papildyty vaizdy
problema, kuri neturi reik§mingos jtakos klasifikavimo modeliy veikimui.
Buvo sukurtas veiksmingas duomeny papildymo metodas, grindziamas
naudojamy duomeny iSskirtinumu. Véliau iSnagrinétas penkiy klasifikavimo
uzdaviniy gilaus mokymosi modeliy veiksmingumas. Cia pateikiami
apibendrinti rezultatai:

Pasiiilytas naujas DPM metodas, pagrjstas statiakampiy Ceby3evo
funkcijy susiejimu su tikimybiy pasiskirstymo funkcijomis (PDF),
aptinkant manioky ligas. Kaip dirbtiniy mokymo duomeny rinkiniy
sudarymo strategija, mazinant vaizdy kokybe, panaudoti keturi
papildymo biidai: judesio suliejimas, Gauso suliejimas, skiriamosios
gebos mazinimas ir perlaikymas. Veiksmingai klasifikacijai taikytas
ekonomiskas ir maziau skaic¢iavimy reikalaujantis gilaus nervinio tinklo
modelis (MobileNetV2).

Pristatytas VDRRE vaizdy papildymo metodas grindziamas
netaisyklingomis sritimis, sudarytomis taikant Vorronojaus mozaikg ir
atsitiktinio iStrynimo papildyma, kuriant dirbtinius vaizdus veido
paralyziaus diagnozavimo tikslu. Be to, pasiiilytas mokymasis keliais
kadrais vieno arba dviejy kadry pagrindu, leidZiantis protingai
klasifikuoti veido paralyZziaus ligas.

Sprendziant duomeny trikumo ir klasiy disbalanso problemg odos
melanomos diagnozavimo atveju, panaudotas kovariantinis dirbtinio
mazumos jrasy kiirimo metodas (covSMOTE). Sitilomas metodas gristas
per didele duomeny atranka nelinijinése mazesniy matmeny jterptinése
kopijose papildyty vaizdy sukiirimo tikslu. DPM naudojamas naujiems
papildytiems vaizdams, skirtiems SqueezeNet gilaus mokymosi
modeliui sukurti.



v.  Covid-19 per gilaus kvépavimo garsams diagnozuoti pasiiilytas triukSmo
jvedimo ir spalvy transformacija grindziamas papildymo metodas. Sios
papildymo strategijos panaudotos kuriant dirbtinius mokymo duomeny
rinkinius. Buvo taikomi du savybiy iStraukimo metodai: Mel
spektrograma ir GFCC.

3. Buvo pagerintas mokymosi modeliy tikslumas, atkiirimas, preciziSkumas ir
specifiSkumas mazy duomeny analizés srityje.

i.  Manioky ligy aptikimo atveju: pagrindinio tinklo, naudoto su prastos
kokybés vaizdais, tikslumas pasieké 97,7 %. Taciau siilomo modelio
rezultatas padidéjo +2,0 %, panaudojus pradinius (aukstos kokybés) ir
papildytus duomeny rinkiniy (Zemos kokybés) vaizdus su 99,7 %
tikslumu. Taigi, rezultatai buvo geresni nei esamy moderniausiy metody.

ii.  Diagnozuojant veido paralyZziy, didZiausias tikslumas pasiektas
naudojant dviejy kadry mokymasi su sitlomu VDRRE metodu ir
hibridiniu SqueezeNet/ECOC-SVM Kklasifikatoriumi. Miisy sitilomas
modelis pasieké 99,34 % tikslumg. Mokymosi vienu kadru atveju
tikslumas $iek tiek sumazéjo — nuo 99,34 % iki 99,07 %. Palyginti su
moderniausiais metodais, musy sitilomas modelis smarkiai padidino
tiksluma, preciziskumg ir atkiirima.

iii.  Eksperimentiniai odos melanomos diagnozavimo uzduoties rezultatai
buvo jspudingi dvinarés klasifikacijos klasés atveju. 92,18 % tikslumas,
aptinkant melanomas, pastebétas vykdant dvinario aptikimo uzduotj,
taCiau geriausias 89,2 % tikslumas pasiektas taikant daugiaklasés
klasifikacijos scenarijy.

iv.  Diagnozuojant Covid-19, taikytas triuk§mo jvedimo metodas. Naudojant
Mel spektrogramg ir GFCC, iSaugo klasifikacijos tikslumas. Tikslumu
grindziamas veiklos vertinimas rodo, kad miisy sitilomas papildymas su
DeepShufNet leido pasiekti geriausius eksperimentinius rezultatus,
palyginti su moderniausiais metodais. Pasiektas 90,1 % tikslumas.

4. Tolesnis papildymo metody veiksmingumo tyrimas parodé reikSmingus
eksperimentinius rezultatus panaudojant konkrecios srities ziniy aktualuma,
siekiant pagerinti modelio mokymosi proceso apibendrinimg realiame
gyvenime.

7.6.2. Rekomendacijos ateities darbams

Remiantis $ios disertacijos i§vadomis apie duomeny papildymo budus ir jy taikyma
jvairiose klasifikavimo uzduotyse, sitlomos S§ios rekomendacijos bilisimiems
tyrimams:

1. Istirti papildomus duomeny papildymo bidus, pavyzdziui, pazangias
geometrines transformacijas ir generatyvius priesingus tinklus (GAN), skirtus
sintetiniams duomenims generuoti. Istirti Al integravima su kitomis naujomis
technologijomis, pavyzdziui, papildyta realybe duomenims papildyti.

2. I8plésti siilomus metodus | kitas sritis, kuriose duomeny trikumas yra
problema, pavyzdziui, aplinkos stebéjimo, finansinio modeliavimo, emocijy
atpazinimo ar socialiniy moksly.
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Atlikti patikima siilomy duomeny papildymo metody patvirtinimg jvairiuose
duomeny rinkiniuose ir realaus pasaulio scenarijuose, atsizvelgiant i
skirtingas duomeny charakteristikas bei aplinkos kintamuosius.
Atsizvelgiant | ,.triukSmingy duomeny® poveikj klasifikatoriaus veikimui,
reikty paieskoti / sukurti pazangesnius triukSmo mazinimo ir duomeny
papildymo tvarkymo metodus, ypac atliekant garso ir vaizdo klasifikavimo
uzduotis.
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