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Abstract: The improved version of the author’s previously declared asymmetric cipher protocol based
on matrix power function (MPF) is presented. Proposed modification avoids discrete logarithm
attack (DLA) which could be applied to the previously declared protocol. This attack allows us to
transform the initial system of MPF equations to so-called matrix multivariate quadratic (MMQ)
system of equations, which is a system representing a subclass of multivariate quadratic (MQ) systems
of equations. We are making a conjecture that avoidance of DLA in protocol, presented here, should
increase its security, since an attempt to solve the initial system of MPF equations would appear to
be no less complex than solving the system of MMQ equations. No algorithms are known to solve
such a system of equations. Security parameters and their secure values are defined. Security analysis
against chosen plaintext attack (CPA) and chosen ciphertext attack (CCA) is presented. Measures
taken to prevent DLA attack increase the security of this protocol with respect to the previously
declated protocol.
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1. Introduction

In this paper we present the improvement of the matrix power function (MPF) asymmetric cipher
published in [1]. The purpose of this improvement is the prevention of discrete logarithm attack
(DLA), which allows us to transform the initial system of MPF equations to the matrix multivariate
quadratic (MMQ) system of equations. So far, it has not been proved that the MMQ problem is
also NP -complete, but nevertheless we are making a conjecture that this problem is hard, since,
in general, the corresponding system of MMQ equations is neither underdefined, nor overdefined.
It is known that a certain class of underdefined or overdefined systems of MQ equations can be solved
in polynomial time.

MPF was previously used to construct cryptographic primitives in [2,3]. Implementation of these
primitives in computationally restricted environments was analyzed in [4,5]. The results have shown
that suggested protocols can be effectively implemented in Internet of Things (IoT) systems.

Formally, MPF used in our construction can be defined as a function of matrix Q as a parameter and
matrices (X, Y) as function arguments parameters denoted by FQ(X, Y) and expressed by the formula

FQ(X, Y) = E

where E is a matrix representing the function value.
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In the previous protocol, the entries of matrix Q were chosen in the specially constructed
multiplicative group Z]

n of integers with multiplication operation performed modulo n. In this
paper we would like discuss some aspects of this structure and present an alternative algebraic
structure, which can be used to execute the proposed protocol more efficiently and prevent discrete
logarithm attack.

The cryptographic protocols and algorithms constructed on the base of MPF (see [1,2]) belong
to the branch of non-commutiative cryptography. The survey of non-commutative cryptography
can be found in [6]. Some initial investigation in this field can be found in [7–9] where the authors
investigated the so-called Sakalauskas, Tvarijonas, Raulynaitis (STR) key agreement protocol published
in [3]. Moreover, in [8] it is shown that STR protocol can be effectively realized in microprocessors.

In Section 5 we present a proof of our protocol resistance to chosen plaintext attack (CPA) and
chosen ciphertext attack (CCA).

The prevention of DLA attack is also presented in subsequent sections.

2. Our Previous Work

Let us recall some definitions from our previous paper.
We consider a commutative multiplicative semigroup S. The multiplicative order of semigroup

S is defined as the smallest integer t, such that at = e,∀a ∈ S, where e is a neutral element in S.
Hence the powers of elements of S can be defined in a commutative numeric ring Zt, where addition
and multiplication are defined modulo t.

We construct a semigroup of square m×m matrices with entries defined in semigroup S and
denote it by MS. We call this matrix semigroup a platform semigroup. Analogously we construct a ring
of square m×m matrices MR with entries of these matrices defined in numerical ring R = Zt. This ring
is called a power ring.

The matrix power function (MPF) for a fixed parameter matrix Q ∈ MS is a mapping
MR ×MR →MS which is denoted as follows:

XQY = E, (1)

where matrices X = {xij} and Y = {yij} are defined in a power ring MR and matrix Q = {qij} is
defined in a platform semigroup MS. The entries of matrix E = {eij} are calculated in a following way:

eij =
m

∏
k=1

m

∏
l=1

q
xikylj
kl . (2)

To demonstrate further clarity, let us assume that all matrices are the square of second order.
The elements are then computed as follows:

qx11y11
11 qx11y21

12 qx12y11
21 qx12y21

22 = e11

qx11y12
11 qx11y22

12 qx12y12
21 qx12y22

22 = e12

qx21y11
11 qx21y21

12 qx22y11
21 qx22y21

22 = e21

qx21y12
11 qx21y22

12 qx22y12
21 qx22y22

22 = e22

We will refer to matrices X and Y as matrix powers or power matrices, Q as a base matrix and E
as a matrix power value. Recall from our previous paper, that under chosen algebraic structures the
following properties hold for MPF: (

XQ
)Y

= X
(

QY
)
= XQY (3)

X
(

UQV
)Y

= (XU)Q(VY) = XUQVY (4)
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To define a platform semigroup we previously considered a multiplicative semigroup
Zn = {0, 1, . . . , n− 1}, where n = pq is a composite integer and p, q are distinct odd primes with
p > q. We defined an ideal of this semigroup Idq(Zn) = {j = i · q; i = 1, ..., p− 1} and used it to
construct a new multiplicative semigroup Z]

n in a following way:

Z]
n = Z∗n ∪ Idq(Zn), (5)

where Z∗n is a multiplicative group consisting of elements coprime with n. It is well-known, that the
multiplicative order of elements of Z∗n is determined by Carmichael function λ(n). For our goals we
suggested to use n = 3p, since in this case λ(n) = p− 1 and hence

λ(n) = |Idq(Zn)|,

where | · | denotes the cardinality of the set. The latter identity makes it possible to define power ring
over ring Zλ(n).

The protocol suggested in [1] is described below. We name this protocol as Matrix Power
Asymmetric Cipher (MPAC) protocol.

3. Previous Asymmetric Cipher Protocol

Alice and Bob agree on the following public data:

• platform semigroup MS and power ring MR;
• the base matrix Q;
• two non-commuting matrices Z1 and Z2.

Alice randomly selects non-singular secret matrix X in MR and two sets of coefficients
(not necessarily distinct) in numerical ring R to define two polynomials Pa1(·) and Pa2(·). To construct
her private and public data she performs the following actions:

• computes a secret matrix U as a product of two polynomials of Z1 and Z2 i.e., U = Pa1(Z1) ·
Pa2(Z2);

• computes matrices XZ1X−1 = A1, XZ2X−1 = A2, XQU = E.

Alice keeps her private key PrKA = (X, U) a secret and publishes her public key
PuKA = (A1, A2, E).

Bob takes Alice’s public key PuKA and performs a following encryption protocol:

1. Bob chooses randomly a non-singular matrix Y in MR;
2. He selects two sets of coefficients in numerical ring R to define two polynomials Pb1(·) and Pb2(·)

and computes a secret matrix V = Pb1(Z1) · Pb2(Z2). Then he takes matrices A1 and A2 and
computes a matrix Pb1(A1) · Pb2(A2) = XVX−1 = W;

3. He raises matrix XQU to the obtained power matrix W = XVX−1 on the left and obtains XVQU

since WX = XV;
4. He raises the result matrix to the power matrix Y on the right and obtains XVQUY = K and converts

it to a bit string. One of the possible ways to do this is to write all the elements of matrix K in a
string of the form

k11k12 . . . k1mk21k22 . . . k2m . . . kmm

and convert every kij ∈ S into its binary representation. Then bit string of matrix K is a
concatenation of all binary representations of kij. The obtained bit string is used as a key to
encrypt the message M and compute the ciphertext C;

5. Bob computes the ciphertext C = K ⊕ M, where ⊕ is bitwise sum modulo 2 of all entries of
bitstings K and M;

6. Bob computes three matrices (Y−1Z1Y = B1, Y−1Z2Y = B2, VQY = F) which we denote by
encryptor ε and sends it to Alice together with C.
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To decrypt Bob’s message Alice does the following:

1. Using given matrices B1 and B2 Alice computes Pa1(B1) · Pa2(B2) = Y−1UY, since U = Pa1(Z1) ·
Pa2(Z2);

2. Alice raises matrix VQY to the power Y−1UY on the right and then raises the result matrix to the
power X on the left and hence obtains a matrix K = XVQUY and converts it to a bitstring.

3. Alice can now decrypt a ciphertext C using encryption key K and relation

M = K⊕C = K⊕ K⊕M.

Since discrete logarithm can be applied to both sides of Equation (1), it can be transformed to the
following matrix equation

X(ldgQ)Y = ldgE.

Security of this protocol relies on the following problem:

Definition 1. The problem of finding matrices X and Y, satisfying the following system of equations
XTY = S

X−1AX = C
Y−1BY = D

, (6)

for some known values of T, S, A, B, C, D is called the matrix multivariate quadratic (MMQ) problem.

Note, that in the case of our protocol T = ldgQ ,S = ldgE, A = Z1, B = A1, C = Z2, D = A2.
An example of MPAC protocol is presented in [1]. A minor modification we use in this paper

is converting the obtained encryption key K to a bitstring. An example of this transformation is
presented below.

Example 1. Let us assume, that Bob has obtained the following encryption key K

K =

 1 2 2
1 14 14
14 1 14


To convert it to a bitstring we consider the string

1, 2, 2, 1, 14, 14, 14, 1, 14.

We convert each element to binary form to obtain a bitsring

000100100010000111101110111000011110,

where the first four bits represent an element 1, next four bits represent an element 2 and so on.

4. Improvements of the Asymmetric Cipher Protocol

Let the parameter n of multiplicative group Z∗n be a composite integer (factors of this number are
irrelevant) and let λ(n) be of the form λ(n) = pq where p is prime and gcd(p, q) = 1. According to the
Sylow theorem [10] the Sylow subgroup of the prime order p exists in Z∗n. We denote this subgroup as Γp,n.
Since, according to the Lagrange theorem, the order of the element γ has to divide p, the only orders
possible in group Γp,n are 1 and p. Therefore, every non-identity element γ is the generator of Γp,n.
We can use this group to ensure the maximum entropy of the entries of the result matrix E. However,
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it can be shown (see Section 5) that using a cyclic group as the platform makes MPF vulnerable to
algebraic cryptanalysis. Consequently we have to construct a structure similar to Z]

n.
Let j be an idempotent of semigroup Zn. Since the order of the element is a multiplicative function,

we can multiply each element of group Γp,n by j to obtain a new cyclic group Jp,n = jΓp,n. The identity

of this group is j and the order of every non-identity element is p. We construct a semigroup Γ
]
p,n as a

union of Γp,n and Jp,n i.e.,

Γ
]
p,n = Γp,n ∪ Jp,n (7)

We can use this semigroup to avoid direct application of a discrete logarithm function to MPF,
since Jp,n is the ideal of Γ

]
p,n. Note that no additional constraints for parameter n and the entries of Q

are needed as compared to Z]
n.

The main advantage of Γ
]
p,n is the prime order of non-idempotent elements. Since the order of

Γ
]
p,n determines the modulo of entries of matrices of power ring MR , we obtain a power ring defined

over the field Zp . Therefore, conjugation constrains

XZ1X−1 = A1, XZ2X−1 = A2 (8)

are defined over the field Zp. Furthermore, this semigroup also provides security against chosen
cipertext and chosen plaintext attacks (see Section 5) since entries of matrix exponent are uniformly
distributed either in Γp,n or in Jp,n depending on the entries of power matrices.

Note, that the set of solutions of the latter equations depends on the canonical Jordan form of
matrices Z1 and Z2 . More precisely we have to consider Jordan blocks of Jordan matrix J1 and J2,
which are similar to matrices Z1 and Z2 respectively. It was shown in [1], that if a Jordan matrix J is
defined over the field Zp and has the form

µ 1 0 ... 0 0
0 µ 1 ... 0 0
0 0 µ ... 0 0
... ... ... ... ... ...
0 0 0 ... µ 1
0 0 0 ... 0 µ


,

i.e., it consists of a single Jordan block of size m with eigenvalue µ, then each equation in (8) has exactly
pm−1(p− 1) solutions.

To construct Γ
]
p,n we have to consider finding a suitable value of parameter n; and finding an

idempotent j in the semigroup Zn.
To find a suitable value of n we can consider all odd square-free integers of the form n = p1p2,

where p1 and p2 are primes. It is known from the definition of the Carmichael function λ(·), that

λ(p1p2) = lcm(p1 − 1, p2 − 1).

According to Sylow theorem, the multiplicative group Z∗n has a Sylow group of the fixed size p,
if p divides λ(p1p2) and p2 does not divide λ(p1p2). To satisfy this condition it is enough to find the
value of p1 such, that

p1 = kp + 1,

where k is the least possible even number for p1 to be prime. To minimize the value of n we can set
p2 = 3. The idempotent j can be obtained by solving the following system of congruences:{

j ≡ 1 mod p1

j ≡ 0 mod 3
.
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The main parameters of the semigroup Γ
]
p,n are the following:

• Size of the Sylow group Γp,n p;
• Parameter n, which defines the multiplicative semigroup Zn;
• The prime factor p1 of the parameter n;
• Generator of the Sylow group Γp,n γ;
• Idempotent j ∈ Zn;

Values of the main parameters of Γ
]
p,n for a fixed value of p are presented in Table 1.

Table 1. Values of main parameters of Γ
]
p,n.

p n p1 γ j

5 33 11 4 12
7 87 29 7 30

13 159 53 10 54
17 309 103 13 207
19 573 191 25 192
23 141 47 4 48
29 177 59 4 60
31 933 311 7 312

The newly defined multiplicative semigroup Γ
]
p,n can be used to define a platform semigroup MS.

MPAC protocol is executed as presented in Section 3.

5. Security Analysis

As it was pointed out above, by preventing DLA application to MPAC protocol [1] we are forcing
an adversary to deal with the initial MPF system of Equation (2) to break our protocol. Hence the
security of the improved version of the MPAC protocol relies on the complexity of the MPF problem,
which is defined in the following way:

Definition 2. The problem of finding matrix powers X and Y, satisfying Equation (1), when Q and E are given,
is called an MPF problem.

In our research we are considering MPF problem with two conjugation constrains, i.e.,
the following system of matrix equations:

XQY = E
X−1 AX = C
Y−1BY = D

, (9)

where matrices Q and E are in a platform semigroup and matrices A, B, C, D are in a power ring.
These matrices are publicly known. The only unknown matrices are X and Y.

The NP-hardness of MPF problem in (9) can be proved using the polynomial-time reduction of of
known NP-hard problem to MPF problem. In previuos paper [11] author proved that the so-called
multivariate quadratic power problem is NP-complete. The reduction is provided using randomly
generated MQ problem, which is NP-complete. Referencing to this result and the fact that MMQ
problem is conceptually related to MPF problem the NP-completeness of MPF problem can be proved
by proving that MMQ problem is NP-complete. Then reduction from MMQ to MPF problem can be
constructed automatically referencing to [11].

Unfortunately, the NP-completeness of MMQ problem remains an open question yet. We are
making a conjecture, that the MPF problem is at least no less complex than the MMQ problem.
Hence avoidance of transformation of MPF equations in protocol, presented here, should increase its
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security, since at this time well-known Grobner bases and other algorithms can be applied to try to
solve MMQ system of equation and so far we have no knowledge of how to deal with the system
of MPF equations. In this case unknowns are also multivariate quadratic monomials, but they are
presented in the powers of entries of certain known matrix.

We provide the security considerations by proving that the proposed algorithm is secure against
chosen ciphertext attack (CCA) and chosen plaintext attack (CPA). This analysis is performed by
considering entropy of entries of matrix exponent E. For this purpose we use generators of some
cyclic group G. In this case we can estimate the statistical security of MPF using the following
known propositions:

Proposition 1. For any generator g of group G and α ∈ Z|G| chosen at random, the power term gα has the
same distribution in G as α in Z|G| [10].

Proposition 2. Let a ∈ Z|G| be an arbitrary element. Choosing at random b ∈ Z|G| and setting c = ab gives
the same distribution for c as choosing random c [10].

We can now formulate the following corollary.

Corollary 1. For any two generators of group G g1 and g2 and two uniformly chosen elements α, β ∈ Z|G| the
element z, computed by the expression

z = gα
1 gβ

2

is uniformly distributed in G.

The latter corallary implies that element z as a function of α, β is strongly universal2 as defined
by authors in [12] (notation of strongly universal function is taken from the same paper), i.e., gα

1 and

gβ
1 are two independent elements uniformly distributed in G. This result can also be generalized for

any entry of the matrix exponent E in (1), i.e., each entry of this matrix is a strongly universal function.
In [13] this property is defined as a perfect m2-wise decorrelation (as denoted by the author).

The statistical security of MPF in case of S = Z∗n and R = Zλ(n) is also considered in [14].
The parameter n is selected as a composite number of the form n = 3p, where p = 2s + 1 and both p
and s are prime numbers. The main outcome of that paper is the following proposition:

Proposition 3. If a base matrix Q ∈ MG implying power matrices X, Y ∈ MR where R = Z|G|, and if the
entries of power matrices are chosen at random with uniform distribution, then the system (9) yields the matrix
E which entries are also uniformly distributed.

Note also, that the last step of our protocol is similar to the Vernam cipher. According to [13] this
cipher has perfect 1-wise decorrelation. Due to Proposition 3 if matrices X and Y are chosen randomly
with uniform distribution of their entries then the key matrix K has perfect m2-wise decorrelation. It was
shown in [13], that in this case our cipher is secure against CCA and CPA respectively (Theorem 7).

Corollary 2. MPAC protocol is CPA and CCA secure.

However, using a cyclic group G to define a platform semigroup does not provide any security
against a specific algebraic attack. This so-called discrete logarithm attack (DLA) is based on a ordinary
discrete logarithm function, which can be generalized to matrix semigroups. This generalization is
performed as follows:

ldgQ = P, if ∀i, j = 1, 2, . . . , m pij = ldgqij, (10)
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where ldg(·) is the discrete logarithm function, g is a generator of a semigroup S and Q, P are square
m×m matrices in MS. Note, that we do not consider both ordinary and matrix discrete logarithm
problems (DLP) as hard, since we will not use a large semigroup S to define the platform semigroup
and hence ldgQ can be obtained easily if S = G.

The generalized discrete logarithm function can be applied to MPF Equation (1) to obtain

ldg

(
XQY

)
= X ·

(
ldgQ

)
·Y = XTY = ldgE, (11)

where T = ldgQ.
The way to break the presented asymmetric cipher specification is to solve either system of matrix

Equation (9) or an MMQ problem corresponding to an MPF problem with the same conjugation
constrains, i.e., the system (6), where all equations are defined in a power ring.

Despite the fact that a MMQ problem is a subclass of well-known multivariate quadratic (MQ)
problems, which is NP-complete, the NP-completeness of MMQ problem has thus far not been proved.
However, it was shown in [11] that MQ power problem is NP-complete over any semigroup Zn.

Note, that choosing S = Z∗n, where n = pq does not provide security against DLA as well,
since Chinese Remainder Theorem (CRT) can be used to define the following mapping:

ϕ :
(

ga
p; gb

q

)
→ (a; b) , (12)

where gp and gq are generators of multiplicative cyclic groups Z∗p and Z∗q respectively.

The semigroup Γ
]
p,n however does not have this flaw, i.e it cannot be split into two multiplicative

cyclic groups and therefore the isomorphism ϕ cannot be used to define the discrete logarithm.
To demonstrate this we present the following example:

Example 2. Let us consider the multiplicative group Z∗33 = {a|gcd(a, 33) = 1}. The isomorphism implied by
Chinese reminder theorem is as follows:

ϕ : Z∗33 → Z∗3 × Z∗11.

Let Γ
]
5,33 = {1, 3, 4, 9, 12, 15, 16, 25, 27, 31}. Evidently this semigroup has no non-trivial isomorphism,

which can be used to split this semigroup into a direct product of two or more separate (semi)groups. Therefore,
the discrete logarithm function is not defined in Γ

]
5,33.

However semigroup Γ
]
p,n has a non-trivial isomorphism

ψ : Γp,n → Jp,n.

The latter isomorphism can be used to perform reduction of the initial MPF problem to an MMQ
problem. This can be done by defining a mapping

ψ′ =

{
a if a ∈ Γp,n

ψ−1(a) if Jp,n

and using it on each entry of MPF value matrix E in (1), thus transforming it into an MMQ problem

Xψ′(Q)Y = ψ′(E). (13)

However, we found that under the certain conditions, the obtained MMQ problem is not
equivalent to the initial MPF problem, i.e., solutions X′ and Y′ of Equation (13) do not satisfy the initial
Equation (1). This happens if an entry of base matrix Q, which is chosen from an ideal is raised to
zeroth power. In this case not all entries of MPF value matrix E are in the ideal Jp,n. To demonstrate
this we present an example:
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Example 3. Let us consider the multiplicative semigroup S = Γ
]
5,33. Entries of power matrices X and Y have to

be selected from Z5. Define matrices Q, X and Y in a following way:

Q =

 4 31 25
16 4 9
31 16 25

 , X =

 2 3 4
1 0 1
1 2 3

 , Y =

 3 1 2
4 1 1
3 2 2


Then MPF value represented by matrix E is the following:

E =

 27 9 9
4 1 25
27 3 9


We can see, that entries of the second row are not contained in the ideal J5,33 = {3, 9, 12, 15, 27}

and therefore mapping ψ′ is not one-to-one. Therefore the mapping ψ′ cannot be used to reduce MPF
problem to MMQ problem in general case and hence multiplicative semigroup Γ

]
p,n provides efficient

security against DLA attack.

6. Discussion

We presented enhanced Matrix Power Asymmetric Cipher (MPAC) protocol regarding previously
published prototype suggested in [1].

We have proved that enhanced MPAC is resistant to Chosen Plaintext Attack and Chosen
Ciphertext Attack.

The improved security measures were proposed for preventing DLA based on application of
logarithm function directly to MPAC equations and consequently avoiding initial MPF equations
transformation to MMQ system of equations. Despite the lack of proof that the complexity of randomly
generated MMQ system is NP-complete as it is proved for randomly generated MQ system of equations
over any field [15], we are making a conjecture that the complexity of MMQ problem is high.

So far we do not know the methods of the solution of systems defined by initial MPF equations,
since they are not custom systems of algebraic equations. It is rather a system of power equations,
where unknown variables are the powers of certain elements in the semigroup.

By preventing initial MPF transformation to MMQ problem and referencing to these
considerations we are making a conjecture that the proposed MPAC is secure against DLA since
discrete logarithm functions cannot be defined for algebraic structures introduced in this paper.

It is determined in [16] that MPAC has significant computation efficiency advantage over other
algorithms considered in the paper. Since we improved our protocol in this paper, MPAC can be
efficiently applied in the IoT.
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