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INTRODUCTION

Caputo Fractional Differential Equations (CFDEs) have recently emerged as
an important tool for modeling complex phenomena in a variety of scientific fields
owing to their ability to model systems exhibiting memory or hereditary properties.
The extensive applicability of Caputo’s differential equations necessitates their
exploration via both analytical and numerical techniques, thus making it a highly
relevant task. Thus, the main objective of this thesis is to develop a novel semi-
analytical framework for the construction and analysis of solutions to Caputo
fractional differential equations by utilizing the concepts of Caputo algebra of
fractional power series, as presented in [1; 2].

The realization of this objective was achieved by completing the following
tasks:

1. Development of a methodology for the construction of fractional power
1

n
series solutions to a (CD(Z)> type Riccati CFDE and investigation of the

structure of such solutions.
2. Development of the methodology for the construction of fractional power

1\
series solutions to a more general class of equations — (CD(E)> type CFDEs

with polynomial nonlinearity.

3. Development of the analytical framework for the extension of solutions to
CFDEs with polynomial nonlinearity to the negative half-line and
investigation of the properties of such an extension.

4. Creation of a semi-analytical scheme for the construction of approximate
solutions to CFDEs.

5. Development of a methodology for the construction of fractional power

1
series solutions to an even wider class of nonlinear CFDEs — CDJ(C")
CFDEs.

This doctoral dissertation is based on a collection of scientific papers, each of
which fulfilled one or several tasks outlined above. The first paper The Fractal
Structure of Analytical Solutions to Fractional Riccati Equation paved the way for
this research by developing a novel methodology for the construction of fractional
power series solutions to a specific Riccati-type CFDE. The presented results were
expanded upon significantly in the paper The Extension of Analytic Solutions to FDEs
to the Negative Half-Line by demonstrating that a refined methodology can be utilized
not only for Riccati-type CFDEs, but also for a wider range of equations including
CFDEs with polynomial nonlinearity. The next step, published in paper An Operator-
Based Scheme for the Numerical Integration of FDESs, was concerned with using the
developed methodology to create a semi-analytical scheme aimed towards the
construction of approximate solutions to CFDEs. The final paper presented in this
thesis, titled The Construction of Solutions to ¢D(/™ Type FDEs via Reduction to

type

N\
(CD(H)) Type FDEs, brought all the previous research together to develop a
9



comprehensive approach for the construction of solutions to an even wider class of
nonlinear CFDEs.

This thesis contributes to the fields of Mathematics and Informatics by bridging
theoretical mathematics with practical computational applications. At the core of this
research is the application of symbolic computations to handle the extensive
mathematical expressions that arise during the analysis of CFDEs. Thus, the
methodologies developed herein are not just theoretical derivations, but they also
serve as practical executable algorithms enabling the effective use of computer
algebra systems in solving and analyzing Caputo fractional differential equations.

In all the publications that make up this thesis, the Matlab numeric computing
platform was employed for conducting numerical experiments, while Maple and
Mathematica computer algebra systems were utilized for symbolic computations.

Co-authors’ contribution to papers

A list of contributions from the co-authors of the papers included in this thesis
is presented below.

1. The Fractal Structure of Analytical Solutions to Fractional Riccati Equation
by Zenonas Navickas, Tadas Telksnys, Inga Timofejeva (now Telksnieng¢),
Romas Marcinkevicius, and Minvydas Ragulskis

a. Z. Navickas devised the idea for the construction of solutions to

1 n
specific (CD(Z)) type FDEs via their reduction to the characteristic

ODEs, and formulated the preliminary versions of the necessary
mathematical derivations.

b. T. Telksnys expanded upon the concepts formulated by Z. Navickas,
contributed to the formal analysis of the structure of solutions to the
analyzed equation, and corresponded with the editorial office of the
journal.

c. I Timofejeva (now Telksniené) formalized and generalized the ideas
about the nested structure of solutions to CFDEs, executed most of
the necessary computer algebra and numerical computations, and
wrote the manuscript text.

d. R. Marcinkevi¢ius assisted I. Telksniené with symbolic
computations, and contributed to the reviewing and editing of the
manuscript.

e. M. Ragulskis supervised the entire research process, organized
weekly seminars, provided valuable advice on the structure of the
study, and oversaw the writing of the manuscript.

2. The Extension of Analytic Solutions to FDEs to the Negative Half-Line by
Inga Timofejeva (now Telksniené), Zenonas Navickas, Tadas Telksnys,
Romas Marcinkevicius, Xiao-Jun Yang, and Minvydas Ragulskis

a. I Timofejeva (now Telksniené) formalized and generalized the ideas
related to the extension of solutions to CFDEs to the negative half-
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line, carried out most of the necessary computer algebra and
numerical computations, and prepared the manuscript text.

Z. Navickas conceived the idea to expand the existing methodology
to a more general class of equations, and drafted the preliminary
version of the analytical framework for the extension of solutions to
such CFDEs to the negative half-line.

T. Telksnys expanded upon the concepts formulated by Z. Navickas,
contributed to the development of the presented methodology, and
corresponded with the editorial office of the journal.

R. Marcinkeviéius assisted 1. Telksniené with symbolic
computations, and contributed to the reviewing and editing of the
manuscript.

X.-J. Yang contributed to the development of the presented
methodology, and participated in the review and refinement of the
manuscript.

M. Ragulskis oversaw the entire research process, organized weekly
seminars, provided valuable advice on the structure of the study, and
supervised the writing of the manuscript.

3. An Operator-Based Scheme for the Numerical Integration of FDEs by Inga
Timofejeva (now Telksniené), Zenonas Navickas, Tadas Telksnys, Romas
Marcinkevicius, and Minvydas Ragulskis

a.

I. Timofejeva (now Telksniené) formalized the preliminary version
of the operator-based scheme for the numerical integration of FDEs,
performed most of the symbolic and numerical calculations, and was
responsible for writing the manuscript text.

Z. Navickas contributed to the formal analysis of the presented
concepts.

T. Telksnys contributed to the development and refinement of the
presented techniques.

R. Marcinkeviéius performed the preliminary computations
necessary to showcase the paper’s concept, and contributed to the
reviewing and editing of the manuscript.

M. Ragulskis suggested the topic of this study, oversaw the whole
research process, organized weekly seminars, provided valuable
advice on the structure of the paper, and supervised the writing of the
manuscript.

4. The Construction of Solutions to ¢D(/™ type FDEs via Reduction to

(o

n

n
)) Type FDEs by Romas Marcinkevi¢ius, Inga Telksniené, Tadas

Telksnys, Zenonas Navickas, and Minvydas Ragulskis

a.

R. Marcinkevicius performed the preliminary symbolic computations
necessary to illustrate the paper’s ideas, and contributed to the
reviewing and editing of the manuscript.
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I. Telksniené formalized and generalized the ideas of Z. Navickas and
T. Telksnys, assisted R. MarcinkeviCius with computer algebra
computations, prepared all the necessary computational examples,
drafted and refined the manuscript text, and corresponded with the
editorial office.

T. Telksnys expanded upon the concepts formulated by Z. Navickas,
and contributed to the development of the presented methodology.
Z. Navickas conceived the idea to expand the methodologies for the
construction of fractional power series solutions presented in the
previous papers to a more general class of equations, and drafted the
preliminary mathematical derivations.

M. Ragulskis oversaw the entire research process, organized weekly
seminars, provided valuable insights about the structure of the study,
and supervised the writing and editing of the manuscript.

It should be noted that all the co-authors have been informed of and have

authorized the inclusion of these publications in this thesis. It is also of note that all
the papers listed above were published as Open Access; thus, it is unnecessary to
obtain the permission from the publishers to reprint these papers.
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1. LITERATURE REVIEW

Differential equations have long been a cornerstone in the field of mathematics,
by providing a powerful tool for modeling and analyzing various phenomena in
numerous scientific disciplines including physics, engineering, biology, economics,
etc.

In recent years, a new class of differential equations, known as Fractional
Differential Equations (FDEs), has garnered significant attention in the scientific
community. Unlike the ‘classical’ differential equations which involve integer-order
derivatives, FDEs employ fractional-order derivatives, thus extending the concept of
differentiation to non-integer orders. This extension has proven to be particularly
useful in describing complex systems with memory or hereditary properties. The
relevance of fractional differential equations in modern science is underscored by their
application in various areas ranging from the classical FDEs in viscoelasticity [3], to
more novel physical and engineering fields [4-6], and beyond to biology [7], medicine
[8], and economics [9].

A review of the main concepts and applications of fractional calculus is
presented in the subsequent sections.

1.1. Introduction to Fractional Derivatives

The concept of a fractional derivative and, in turn, fractional calculus originated
in the 17 century, with initial discussions documented in the correspondence between
Leibniz and L’Hospital in 1695 [10]. The main idea was to extend the definition of a
classical integer-order derivative to non-integer orders, by satisfying the criteria
outlined below.

Let D;") = % denote a classical differential operator of integer order n and f(x)

be an arbitrary function. Then, the fractional derivative is an operator D,,, such that:
= n - - -
1. D f(x) =DWr(x) = %,forn € Ny, i.e., fractional and classical
integer-order derivatives coincide if the order of differentiation is a

nonnegative integer.
2. ﬁfc"‘)f(x) can be computed if « is not an integer.

Naturally, constructing a fractional derivative according to such a broad definition
can yield multiple non-equivalent operators. Indeed, since the advent of fractional
derivatives, over twenty distinct types have been formulated, each characterized by
unique properties and specific fields of application.

1.2. Definitions of Fractional Derivatives

Three most commonly used definitions of fractional derivatives and their
properties are outlined in this section.

13



Let f(-) denote an arbitrary function and I'(-) denote a Gamma function.

Riemann-Liouville (=1850) fractional differentiation operator of order a € R
(a = 0) is denoted as RED(™ and is defined as follows [11]:
X

D@y = & j o4 (1.2.1)

I'n—a)dx™ | (x —7)*n+l ™"
0
where n = [a].

Caputo (1967) fractional differentiation operator of order a € R (a = 0) is
denoted as D and is defined as follows [12]:
X

(@) _ 1 f(n)(T)
DO = ror J e 0T (1.2.2)

0

where n = [a].

We note that integration and n-th order differentiation operations are reversed
in Caputo’s definition compared to Riemann-Liouville’s.

Grunwald-Letnikov (1868) fractional differentiation operator of order « € R
(@ = 0) is denoted as GLD,(C“) and is defined as follows [11]:

x/h
1 (@ .
D £ () = lim— > (=1 () F = (1.2.3)
j=0
a\  T(a+1) . . .
where (]) = TT@+D denotes binomial coefficient.

We note that Griinwald-Letnikov definition is a discretization of the Riemann-
Liouville fractional derivative. Thus, it provides a straightforward way to approximate
fractional derivatives for numerical computations.

An important property that all three fractional differentiation operators
presented above have in common is non-locality, which means that the value of the
fractional derivative at a certain point is influenced by the function’s values at all the
points in the past. This is in contrast to the classical integer-order derivatives, which
are local operators, which means that the value of the derivative at a point depends
only on the function’s values in a very small neighborhood around that point. This
non-locality property facilitates the modeling of the so-called memory effects in
various systems, where the current state is significantly influenced by a historical
series of states, rather than just by the immediate past.

The Caputo fractional derivative is currently one of the most popular choices in
terms of modelling due to several convenient properties that it possesses. Fractional

14



Differential Equations (FDEs) involving many other fractional derivatives necessitate
the specification of fractional order initial conditions, which can complicate the
modeling process. In contrast, Caputo FDEs (CFDESs) only require classical integer-
order initial conditions, thereby simplifying the application considerably [13].
Additionally, contrary to some other fractional derivatives (for example, Riemann-
Liouville’s), the Caputo derivative of a constant is zero, which aligns well with certain
practical applications, thus offering a more intuitive modeling approach. Due to the
notable usage of the Caputo fractional derivative in recent research, this study shall
mainly focus on examining the Caputo fractional derivative, and, subsequently,
Caputo fractional differential equations.

1.3. Caputo Fractional Differential Equations

As mentioned above, Caputo Fractional Differential Equations (CFDES) have
recently emerged as a powerful tool in the mathematical modeling of various complex
systems, exhibiting memory or hereditary properties. Successful real-world
applications of CFDEs can be seen in the fields of physics (e.g., plasma physics [14],
optics [15]), engineering (e.g., viscoelasticity [16]), biology (e.g., natural systems
[17], environmental engineering [18]), economics and finance (e.g., competition
systems [19]), health sciences (e.g., epidemiology [20], neuroscience [21]), etc.

When it comes to the analysis and solution of CFDEs, several mathematical
methods have been developed which could be separated into three general groups:

1. Analytical methods. These methods provide exact analytical solutions. Most
common examples include integral transform methods, such as Laplace or
Fourier transform methods [22; 23]. Notably, 1. Podlubny pioneered the
application of the Laplace transform with Mittag-Leffler functions to address
awide array of initial value problems for fractional differential equations [24].
Analytical methods are typically tailored to address specific types of
problems and conditions, while lacking a generalized approach. This means
that each new kind of CFDE might necessitate the development of a unique
analytical strategy. Also, naturally, the complexity escalates considerably
when these methods are applied to non-linear or higher-order problems, often
to the point when finding exact solutions is intractable.

2. Semi-analytical methods. Such methods are a hybrid approach which
employs both analytical and numerical strategies. They seek to find
approximate solutions but in the form of functional or series representations,
which can be further analyzed and manipulated analytically. Most commonly
used methods in this category include Variational Iteration [25] and Adomian
Decomposition [26] methods and their modifications.

3. Numerical methods. These methods involve approximating solutions using
numerical algorithms and provide solutions at discrete points in the domain.
Popular methods under this category include the Finite Difference Method

15



[27], the Finite Element Method [28], Spectral Methods [29] and their
modifications.

The aim of this thesis is to develop a semi-analytical methodology for the analysis
of CFDEs through algebraic transformations, by utilizing the concepts of Caputo
algebra of fractional power series, as presented in [1; 2]. The main definitions related
to this approach are outlined in the following section.

1.4. Caputo Algebra of Fractional Power Series

This section outlines the main concepts of Caputo fractional power series which
shall be utilized in further sections and which are necessary for the understanding of
the thesis papers.

Let the order of the Caputo fractional derivative be denoted as a = % where
k,n € N and gcd(k,n) = 1. Also, let x > 0.
For the remainder of this thesis, we shall consider functions expressed via

Caputo fractional power series, i.e., power series that are summed over fractional

powers:
+o0co

fx) = Z vw™, (1.4.1)
j=0
where v; € C are coefficients of the series and wj(n),n €EN,j=0,1,.. are the
fractional power series basis functions of order n defined as:
)

xn
wW=—" _i=01,.. (1.4.2)

J
r (i—l + 1)
The set of Caputo fractional power series with respect to parameter n is denoted

as follows:
+00

CIFn = Ev]wj(n), Uj eC;. (143)
j=0
Let f,(x) = };"‘5 ajwj(n) folx) = j-;"% b]-wj(") € °TF,,. Standard operations of
addition, product by a scalar and multiplication of functions in °FF,, are defined as:

AW+ £00 = ) (e + b)w™; (1.4.4)
j=0
A-fi) =) Aaw ™, A€C; (1.4.5)
1 JZO J Y
to [ (1
A@ L@ =D [ DT e |w™, (1.4.6)
j=0 \ k=0 \ —
n

16



)

G r(-i)

Thus, the set ¢F, with the standard addition, product by a scalar and

multiplication operations forms an algebra over C. This algebra is called the Caputo
algebra and is denoted as follows:

CF, = (‘F,; +, |C) (1.4.7)

The Caputo fractional differentiation operator of order % of the basis functions

where denotes a binomial coefficient.

Sia3 -

wj(”) is defined as:

1 0, =
Cc (n) n) _ )
D= {W-("i, i=12,.. (1.4.8)

Therefore, the Caputo fractional derivative of order a = % of a function f(x) =

+00 m - c .
j=ovjw; " € “FF, reads:
k +00

() () m
‘DM f(x) = <CDx” > f(x) = Evj+kv.zj” € °F,,. (1.4.9)
j=0
We note that this definition of the Caputo differentiation operator is congruent
with the original integral-based definition (1.2.2) [2].

This approach has already been applied for the construction of fractional power
series solutions to linear fractional differential equations [2], as well as equations of
the following type [1]:

1
X <CD(2)> y(x) = By + By (x) + B,y(x)?; By, By, B, €R. (1.4.10)

X

The main objective of this thesis is to expand the Caputo algebra-based
framework for the analysis and construction of solutions to a wider range of fractional
differential equations.
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2.  REVIEW OF PAPERS

2.1. Review of The Fractal Structure of Analytical Solutions to Fractional Riccati
Equation

2.1.1. Paper details

Title: The Fractal Structure of Analytical Solutions to Fractional Riccati
Equation

Authors: Zenonas Navickas, Tadas Telksnys, Inga Timofejeva (now Inga
Telksniené¢), Romas Marcinkevicius, and Minvydas Ragulskis

To be cited as: Navickas, Zenonas, et al. The Fractal Structure of Analytical
Solutions to Fractional Riccati Equation. Fractals, doi:
10.1142/S0218348X23401308

Input from I.Telksniené: 1. Telksniené formalized and generalized the ideas
about the nested structure of solutions to CFDEs, executed most of the necessary
computer algebra and numerical computations, and wrote the manuscript text.

2.1.2. Summary of the paper

Objective of the paper

This paper aims to:
1. Introduce a novel methodology for the construction of solutions to the
fractional Riccati equation of the following form:

1 n
<CD:(cn)> y(x) = ay(x)* + a;y(x) + ap; ag,as,a, € GG n €N,

2. Investigate the structure of the fractional power series solutions to the
fractional Riccati equation.

Methodology and results

The following initial value problem for the fractional Riccati equation is
considered:

@Y
<CDxn > Yn = QY5 + a1Yn + ao; (2.1.1)

=s™k=0,..,n—1, (2.1.2)

x=0
where ag,a,,a, €C, n€N, y, =y, (x; sén),sl(n),. s™ ) € ‘F,, and the

= 9n—1
én), 51(n)' . S(n)

parameters s N

0.
18

correspond to the initial conditions formulated at x =



N\
It is important to note that the operator <CD£”)> is not identical to d% forn >

1, since the former operator acts on Caputo fractional power series (1.4.1) consisting
of non-integer powers of x, while the operator % is applied to classical Taylor power

series, comprised of only integer powers of x.
Let:

Yo = z Zy](”)F( +1) Z Wik e (213)

Flrstly, recurrence relatlons for the coeff|C|ents y(") of the solution to the

fractional Riccati equation are derived by inserting (2.1. 3) into (2.1.1)-(2.1.2) and
performing various algebraic manipulations on the obtained expressions. The
resulting relations are as follows:

()
S
y = —E ik =01,..,n—1; (2.1.4)
T (z+1)
]
G+ n)V1+n =n| a, Z (yr(n)yj(ng) + alyj(n) +djao |;7=0,1,..., (2.1.5)

=0

where §; = 1if j = 0, and §; = 0 otherwise.
Next, the characteristic function of the sequence (yj("), j=0,1, ) is defined as:
+00

o= ) v"0. (21.6)

The following ordinary differential equation with respect to the generating
function ¢, (t) is then derived from the recurrence relation (2.1.5):
n—-1
don — pen—1 2 () j—1
= nt" (azn () + a1 () +ag) + ) jy; V. (21.7)
j=1

It is demonstrated that the function ¢,,(t) can be utilized to express solutions to
(2.1.1)-(2.1.2), since:

Z xit = gy (Vx). (2.1.8)

Thus, the initial value problem on the Riccati fractional differential equation
(2.1.1)-(2.1.2) is equivalent to the initial value problem on the following ordinary
differential equation:

d
Tz On = ¥n) = a2y + aryn + ao; (2.1.9)
yn(0) = s =y, (2.1.10)
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where ¥, (x) = X755 y](”)

Naturally, the obtained ODE can be analyzed and integrated with any classical
analytical or numerical techniques, thus providing a way to study this type of FDEs
without the need for new methods.

Investigation of the structure of (2.1.9) and (2.1.5) leads to the observation that

if the initial conditions of (2.1.1)-(2.1.2) are set to s(”) = sgn) = (”) =0,
theny,(x) = 0andy (") # 0 only if j = kn, k € N, which means that the solutlon Yn
belongs to the set C]Fl and satisfies the classical ordinary Riccati equation:

% = a,y? + a,y, + ay. (2.1.11)

Thus, for any n € N, the fractional Riccati equation (2.1.1) admits all solutions

to the ODE (2.1.11) (if the relation s{™ = s{™ = s = 0 holds), but has more
solutions unique to it (if the relation s(") =5 = (") = 0 does not hold).

Computational experiments verlfylng the analytlcal results presented above are
provided; they use the following fractional Riccati equation as an example:

B\
(CDx" ) Yo = Vi + Yy, — 6. (2.1.12)

The following difference measure is introduced in order to compare numerical
solutions to (2.1.12) for different values of n:

A (an)' s (m)’ sm )

R n 1' " m 1
N
(2.1.13)
Z(yn 155, s 5T0) = S (15 57, r(nm)1)> :
Where § (_(’“ ("))'h ical soluti he fractional Riccati i
Y\ X; S1 , Sk 1 Is the numerical solution to the fractional Riccati equatlon

(2.1.12) of order k with the initial conditions s(k), s,Ek)l, h and N are the step-size
and the number of steps of the Runge-Kutta 4" order numerical integrator,
respectively. The initial conditions s(n) and sém) are set to be equal. Fig. 2.1.1 depicts
the plot of Ay , (s ( (2 )) when sV = séz) 0.5. It can be seen that the solution to the
fractional Riccati equation (2.1.12) of order 2 coincides with the solution of the non-
fractional Riccati equation (n = 1) when s(z) = 0. Fig. 2.1.2 shows the plots of
Ay (51(3),s§3)) and A, 5 (0 52(3)) when 5(1) = s{¥ = 0.5. Analogously, it can be
observed that the solution to the fractional Riccati equation (2.1.12) of order 3
coincides with the solution of the non-fractional Riccati equation (n = 1) when 5(3)

2(3) = 0. A plot of solutions y; (n = 1) and y; (n = 3) not on the minimum point
(0,0) is displayed in Fig. 2.1.3.
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Fig. 2.1.2. Part (a) depicts the contour plot of Ay 3 (s§3),s§3)) for sV = s =
0.5. The black circle denotes the minimum point sf’) = s?) =0, where Ay 3 = 0.
The dashed line corresponds to the plot of A 5 (0, sg”) depicted in part (b). The

diamond corresponds to to the initial conditions used in Fig. 2.1.3
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1 Y3

e

T

Fig. 2.1.3. Plot of solutions y4 (solid line) and y3 (dashed line) for sf,l) = sf,z) =

553) = 553) =0.5

The aforementioned observations about the nested structure of the solutions to
the fractional Riccati equation can be extended further: any fractional Riccati equation
(2.1.1) of order n = km; k,m € N inherits solutions from the fractional Riccati
equation of ordersn = k andn = m.

Let a, b be coprime natural numbers and m € N. The following properties can
be derived from the definition of the Caputo fractional power series (see Section 1.4):

CFam N CFpp = Fpps (2.1.14)
CFam U Fpy € Fgpm- (2.1.15)

Fig. 2.1.4 illustrates the relationship between different orders of fractional
power series, thus showing that the basis elements corresponding to different orders
n of fractional differential equations may intersect, i.e., solutions from a higher-order
equation may inherit solutions from a lower-order equation under some initial
conditions.

Let us consider two fractional Riccati equations (2.1.1)-(2.1.2) of orders p and

q. Also, let g = ged(p,q);s® = s;s(q) = % € N. Then, the solutions of these
fractional Riccati equations will coincide if the following relations on their initial
conditions hold true:

Sj(p) -0, j# s(p)l;

2.1.16
sl.(q) =0, i #s@ ( )

wherel =0,1,...,n — 1.
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Fig. 2.1.4. Nested structure of Caputo fractional power series basis. Each row n =

k; k= 1,2, .. displays the powers of x in the Caputo fractional power series of the

respective order. Parameters y,(,k) ;v =1,2, ...,k — 1 onthe right depict the

coefficients of the ODE (2.1.9) corresponding to the fractional initial conditions.
Gray-filled sections correspond to the same power of x in respective base elements

Conclusions

In this paper, the concept of the Caputo fractional power series is used for the
analysis of the fractional Riccati equation (2.1.1)-(2.1.2). It has been proven that the
fractional Riccati equation (2.1.1)-(2.1.2) can be reduced to an integer-order ODE
(2.1.9)-(2.1.10), which can be further investigated and solved via classical analytical
or numerical techniques. Furthermore, it has been demonstrated via theoretical
investigations, as well as computational experiments, that the solutions to fractional
equations of different orders exhibit a nested structure: higher-order fractional Riccati
equations inherit some solutions from lower-order equations when a subset of the
initial conditions is set to zero.

2.2. Review of The Extension of Analytic Solutions to FDEs to the Negative Half-
Line

2.2.1. Paper details

Title: The Extension of Analytic Solutions to FDEs to the Negative Half-Line

Authors: Inga Timofejeva (now Telksniené), Zenonas Navickas, Tadas
Telksnys, Romas Marcinkevicius, Xiao-Jun Yang, and Minvydas Ragulskis

To be cited as: Timofejeva, Inga, et al. The Extension of Analytic Solutions to
FDEs to the Negative Half-Line. AIMS Mathematics 6.4 (2021): 3257-3271.

Input from I.Telksniené: 1. Telksniené¢ formalized and generalized the ideas
related to the extension of solutions to CFDESs to the negative half-line, carried out
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most of the necessary computer algebra and numerical computations, and prepared
the manuscript text.

2.2.2. Summary of the paper

Objective of the paper

This paper aims to:
1. Expand the methodology for the construction of fractional power series
solutions, presented in the previous paper, to a more general class of equations
— CFDEs with polynomial nonlinearity:

(l) n m
<CDxn ) y(x)zzaky(x)k; mEN,am?tO,akE(C.
k=0

2. Develop an analytical framework for the extension of solutions to such
CFDEs to the negative half-line and investigate the properties of such an
extension.

Methodology and results

The concepts of the Riemann extension algorithm for the Caputo functions and
the generalized differential operator technique used in this paper are summarized
before the introduction of main results to facilitate better understanding.

Preliminaries: Riemann extension algorithm for Caputo functions

The well-known idea that analytic functions can be extended beyond their radius
of convergence [30] can be adapted for the Caputo fractional power series (1.4.1) as
follows.

Let
+ o0 + 00
J
flx) = Evjwj(n) = 2)/] (W) s VY5 € C (2.2.1)
j=0 j=0

have the convergence radius T, € R with respect to V/x.
Also, we choose x, such that 0 < x, < Tg'. Then (2.2.1) can be rearranged to:

+00
HOEDRACCE (22.2)
j=0
where coefficients 7; are defined as:
+00
N k n—\k—J
7= (5 ) () (2.23)
k=j

and are finite, since x, is in the convergence radius of function f. Let the convergence
radius for (2.2.2) with respect to 3/x — %/x, be T, € R,T; > 0. Moreover, if we
choose x; # xg, 0 < x; < Tt and repeat the procedure, then:
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+00 + 00
A~ n n ] ~ n n ]

IRACE DR ACER NS (2:2.4)
— =
for such x with which both sides converge.

Thus, the above technique can be used to extend the convergence area of a
function expressible as the Caputo fractional power series by rewriting it in a different
basis (Vx — /xz) k=01

We note that the Caputo differentiation operator (1.4.9) is defined only for the
basis (’{/})J in the neighborhood of x = 0; therefore, all the computations will be first

executed in this neighborhood, and then extended to the entire function domain by
using the technique presented above.

Preliminaries: Generalized differential operator technique

A brief description of the generalized differential operator technique [31; 32],
used in this paper for the construction of the series solutions to ODEs, is given
below.

Consider the foIIowing ODE:

Fri =P(t,z); z(c)=s; ¢,s ER, (2.2.5)

where P is an arbitrary analytic function. The generalized differential operator can be
defined for (2.2.5) as follows [33]:
D, = D, + P(c,s)D;, (2.2.6)
where D; is the partial differentiation operator with respect to A.
Then, solution to (2.2. 5) can be written in the series form as follows [31]:

t—c)l t—c)
z(t,c,s) = Z ( ) —p;(c,s) = Z ( ) Dl s (2.2.7)
— ! — !
j=0 j=0
Novel methodology and results
The following Caputo fractional differential equation is considered:

@Y
CDxn > Yn = Qm(yn)' (2.2.8)
where y,, = y,(x) = ;;‘"5 vjwj(n) € °F,,, and Q,, is an arbitrary m-th order
polynomial:
m
Qmlm) = Z ayyk; meN,a,, #0,a; € C. (2.2.9)

k=0
Firstly, by using the techniques similar to the ones presented in the previous
paper, it is shown that (2.2.8) can be reduced to the following ODE:

n—-1

d9 .
f nﬂ%ﬂm+z g1, (2.2.10)

25



where y, (x) = 9,(Vx).
The application of the generalized differential operator technique, described

~

above, as well as the relation y, (x) = 9,(¥Vx) yields the following theorem:

Theorem 2.2.1. Consider the following Cauchy initial value problem:

l n
(CD,(C”)) Yo = Q) (2.2.11)

Yn(x0) = ug; X9 € R, x5 =0, (2.2.12)
1 k

<CDJ(CH)> Y

CFDE (2.2.11)-(2.2.13) has the following fractional power series solution:

+00 J
Vx —/x
Y‘I‘L(x; X, Ug, Vq, - vn—l) = Z (]—'\/_O)pJ(T\l/x_’ uO) ) (2214)1
j=0

where

=v; k=1,..n—1. (2.2.13)

x=0

J

n-1
, v; .
pj(c,s) =Dls = Do+ n| " 1Qu(s) + Z i l__ /71D, | s, (2.2.15)
=r(p+1)

if x satisfies | Vx — /x| < Ty,, where T, > 0 is the convergence radius of (2.2.14).
End of theorem

We note that the obtained solution (2.2.14) can be extended by using the
Riemann extension algorithm for Caputo functions, discussed above, by following
these steps:

1. Choose a sequence x4, x5, ..., such that 0 < xg < x; < x5 < -+-.

2. Compute uq,uy, ... as:

Upp1 = Yn(Xrs15 X, Uy, V1) o Vo), r=201,..

3. Solutionto (2.2.11)-(2.2.13) can be written as follows for any r:

yn(x; X0, Up) V1 - vn—l) = yn(x; Xp) Uy, V1, - vn—l):

for |Vx — Vx| < Ty, Ty, > 0.

We also note that the aforementioned results can be extended to analytic
functions by taking Q,, (v,) = X+, axx*.

In order to enhance the understanding and application of the CFDEs, the
feasibility of the extension of the solutions to CFDE (2.2.11)-(2.2.13) to the negative
values of argument x was further explored. We note that such a possibility has not
been reported previously since such extension is not possible when considering the
original integral-based definition of the Caputo fractional derivative (1.2.2), as the
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integral is defined only for the non-negative values of x. If, however, the Caputo
fractional differentiation operator is defined via the concept of a fractional power
series (see Section 1.4), then the extension of solutions to the negative half-line is
possible. It results in complex-valued fractional power series which shall be defined
below.

Let us consider the following extension of the fractional power series basis
functions (1.4.2) (see Section 1.4):

n Jj
(w(n)) B (\/ |X|) o arg(x) + 2nk
; =———exp|{j—————],
P (L) n
n
wherex € R; k =0,1,..n—1;j = 0,1, ...; y/|x| is the real root and i is the complex
unit. We note that the basis obtained with k = 0 coincides with the basis defined in

Section 1.4 (for x = 0), while ( (n)) for k =1,2,...,n—1 are complex-valued

functions. Then, the Caputo fractional power series (1.4.1) can be extended into n

complex-valued series as follows:
+00

(n)
= \w: ; k=0,.n—1. 2.2.17
fie@) ,-Zov’ (™), n (2217)
When using (2.2.16) and (2.2.17), solution (2.2.14) to CFDE (2.2.11)-
(2.2.13) can be extended into a complex plane as follows:

(Yn(x' Xg,Ug, V1, - vn—l))k =

Zoo \/x_o) ( 240 (Ixol a, u(o)) + l,llj(k) (Ixol a, u(o))>,
Where -

A2 (Ixol @ ui”) = R <( ”‘)(a)) pi (Vixol /3(")<a),uo)); (22.19)
1 (Il a,u®) = 1 (( ©@) (TRl )(a),uo)); (2.2.20)

=)

(2.2.16)

(2.2.18)

a = arg(xy); ,Bn )(a) = exp (2.2.21)
Expression (2.2.18) allows to consider solutions to (2.2.11)-(2.2.13) forx <
0, which are complex and multi-valued (n solutions corresponding to the number of

unique roots to Vx).
In order to extend a particular solution from (2.2.18), corresponding to kth

branch of root V/x, to the whole real line, the procedure described earlier (based on
the Riemann extension algorithm for Caputo functions) is modified as follows:
1. Choose two sequences ... < x_, < - <x_; <0and 0 < x; < x, < -

2. Compute two sequences u(k) and u(k)
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(k)

k
Uy = (Yn (xr+1;xr. u,(, );771, ---Un—1)>k, r=201,..
u® =

k
r1 = (yn (x_r_l;x_r, u(_r),vl, ...vn_l))k, r=20,1,..

3. The solution to (2.2.11)-(2.2.13) corresponding to kth branch of root {/x
reads as follows:

(@), = (yn (35,0 ))k

> V1, e Unoq r=0+1,+2,..
We note that the sequences ... < x_, < <x_;<0and 0 <x; <x, < -
have to be chosen in such a way that the resulting series would be convergent in R

and C. We also note that the functions (y"(x))k are non-differentiable at x = 0, since
it is a branching point for the solution.

Computational experiments illustrating the proposed techniques are provided by
using the following fractional Riccati equation as an example:

l n
<CD£")) y =2y%? —5y—3.

(2.2.22)
Letn = 2,x, = 0 and

1
y(0) = uy; CD,(?)y

= V1, Ug, Vg € R. (2223)

x=0
The solutions to the resulting initial value problem are constructed via the
technique outlined above and depicted in Fig. 2.2.1. We note that two solutions exist,
since v/x has two branches. The solutions corresponding to two different values of v,
are presented in Fig. 2.2.2. It can be seen that, as v; approaches zero, the solutions to
(2.2.22) at n = 2 approach the solution to (2.2.22) at n = 1, i.e., the solution to the

fractional CFDE approaches the solution to the ODE (the classical Riccati equation),
which coincides with the results presented in the earlier paper.

Im(y)
4’-'
e e e

-3 -2

_________
-

(b)
Fig. 2.2.1. Solutions to (2.2.22)-(2.2.23) forn = 2, uy = E, v, = 5. Real and

imaginary parts of the solutions are depicted in parts (a) and (b), respectively. Solid
green and dashed blue lines denote solutions corresponding to different branches of

Vx
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(b)

Fig. 2.2.2. Solutions to (2.2.22)-(2.2.23) forn = 2, uy = § Parts (a) and (b)
correspond to initial conditions v; = 5 and v; = 1, respectively. Solid green and
dashed blue lines denote solutions corresponding to different branches of v/x. Black
line depicts the solution to (2.2.22) at n = 1, i.e., the solution to the classical

Riccati ODE
Letn = 3,x, = 0 and

1
y(0) = uy; CD,(f)y

2

1
= vy <CD£3)> y
x=0 x=0

The solutions to the resulting initial value problem are displayed in Fig. 2.2.3.
In this case, there are three solutions: one real-valued, and two complex-valued. The
solutions, corresponding to different values of v; and v,, are depicted in Fig. 2.2.4.

=TVy, Uy, Vq,V; e R. (2224)

Rely) Im(y)

3

Fig. 2.2.3. Solutions to (2.2.22)-(2.2.23) forn = 3, = %, vy = -1, v, = ..
The real and imaginary parts of the solutions are depicted in parts (a) and (b),

respectively. Dashed blue and solid green and red lines denote solutions
corresponding to different branches of 3/x
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(@) (b)
Fig. 2.2.4. Solutions to (2.2.22)-(2.2.23) for n = 3, ug = <. Parts (a) and (b)

correspond to initial conditions v; = —1, v, = % and v, = —;, vy = %
respectively. Dashed blue and solid green and red lines denote solutions
corresponding to different branches of 3/x. Black line depicts the solution to

(2.2.22) atn = 1, i.e., the solution to the classical Riccati ODE

Conclusions

In this paper, the concept of the Caputo fractional power series is used for the
analysis of Caputo fractional differential equations with polynomial nonlinearity
(2.2.8). It has been proven that such CFDE can be reduced to an integer-order ODE
(2.2.10). The derived ODE can then be used to obtain the solution to the original
CFDE in the form of fractional power series (2.2.14). The resulting solution can be
extended by using Riemann extension techniques adapted to fractional power series
to facilitate the analysis of the solution at a neighborhood different than the origin
x = 0.

Moreover, an extension of the concept of fractional power series to the negative
half-line has been presented. Such an extension can be applied to extend the solution
of the CFDE to the entire real line, including the negative values of x. This possibility
has not been reported previously. As demonstrated by the theoretical derivations as
well as computational experiments, such a solution to CFDE is complex and multi-
valued (n solutions, where n is is the denominator of the fractional differentiation
order) for negative values of x.
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2.3. Review of An Operator-Based Scheme for the Numerical Integration of FDEs

2.3.1. Paper details

Title: An Operator-Based Scheme for the Numerical Integration of FDES

Authors: Inga Timofejeva (now Telksniené), Zenonas Navickas, Tadas
Telksnys, Romas Marcinkevicius, and Minvydas Ragulskis

To be cited as: Timofejeva, Inga, et al. An Operator-Based Scheme for the
Numerical Integration of FDEs. Mathematics 9.12 (2021): 1372.

Input from I.Telksniené: 1. Telksniené formalized the preliminary version of the
operator-based scheme for the numerical integration of FDEs, performed most of the
symbolic and numerical calculations, and was responsible for writing the manuscript
text.

2.3.2. Summary of the paper

Objective of the paper

This paper aims to utilize the techniques established in the previous paper to
develop a semi-analytical scheme for the construction of approximate solutions to
CFDEs.

Methodology and results

The techniques, presented in the previous paper, are combined to create a
preliminary framework of the semi-analytical scheme for the construction of
approximate solutions to CFDEs of the following type:

l n
(CD£”)> Y= Qn(®), (2.3.1)
y(x) =ug; X0 € R,xg =0, (2.3.2)
k

1
<CD,(Cn)> y =v,; k=1,..n—-1, (2.3.3)
x=0
where Q,,(y) = XF%, aix® is an arbitrary analytic function.
The steps of the semi-analytical integration scheme are as follows:
1. Select values of the following parameters: the order of the approximation N,
the upper bound of the independent variable L.
2. Transform CFDE (2.3.1)-(2.3.3) into the characteristic ODE by using the
procedure outlined in the previous paper:
dy .
Fvh P(9,V1, ) Vn_1); (2.3.4)
y(co) = o, (2.3.5)

Where Co = n Xo,So = Ug-
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3. Compute the analytic expressions of coefficients p;(c,s) (j = 0,...N) inthe
approximate truncated series solution (the exact solution is obtained if the
series goes to +oo)

- (=)
Iy, s) = ;j—!pj(c, 5) (23.6)

to ODE (2.3.4)-(2.3.5) as follows:

p]'(C, S) = Déss =
j

jint v; , (2.3.7)
=D, +n|c"1Q,,(s) + 2 j—c]_1 D | s.
=T (H + 1)

4. Repeat the following steps until the upper bound L is reached (k = 0,1, ...):
e Evaluate coefficients p;(ck, sx), j =0,1,...,N.
e Find the lowest value of x at which a pre-selected error tolerance
criteria is violated.
e Compute the new initial values:
Cr+1 =X = & Skt1 = In(Cra1, Crer Sk)s (2.3.8)
where ¢ is an arbitrary small number.
5. Merge the obtained segments of the numerical solution to the ODE (2.3.4)-
(2.3.5) to form the piecewise-polynomial approximation yy (x):
Inx) =In(x, cr,Sk), o <x<cry1, k=01, .. (2.3.9)
6. Construct the semi-analytical approximation of the solution to the CFDE

(2.3.1)-(2.3.3) by applying yy (x) = 9y (V).

Naturally, in order to apply the scheme described above, it is necessary to devise
a step-size hy, = ¢, — cx_4 Selection strategy which would ensure a desired level of
computational errors between the exact and the estimated solutions. For that purpose,
the following numerical investigation is performed:
a) CFDE with a known analytic closed-form solution is selected:
2

1
X (CD(E)> y=1-2y+y?% (2.3.10)

X

1
y=1; )

X

=—1. (2.3.11)

x=0
It can be shown (by using the technique presented in the previous paper) that
(2.3.10)-(2.3.11) can be reduced to ODE:

dy 2(1-29+9% 2
dy_20-2y+57) 2 (2312)
dx x NG
YD) =19 =30 y(Vx) = y(x), (2.3.13)
which has the following analytic closed-form solution [1]:
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V1(Y1(V1)]1(V2) _]1(V1)Y1(V2)) 41
4(Y0(V1)]1(V2) —Jo (V1)Y1(V2)) ’

where y; = 4 /—% Y, =4 _\/1_5; Jp(x) and Yz (x) are Bessel functions of

the first and second kind, respectively. Despite the fact that y,, y, are complex,
the solution y(x) is real.

b) Parameters values N = 6 and 6§ = 10~° are selected for the numerical
investigation, performed below, where N is the order of the approximation,
and & is the maximal allowed level of computational errors.

c) Piecewise-polynomial approximation py(x) of (2.3.12)-(2.3.13) is
computed by using the scheme presented above. The step-size of x in the
fourth step of the procedure is selected in such a way that the absolute errors
between the approximate solution and the exact solution (2.3.14) would not
exceed §. The final piecewise-polynomial approximation yy(x) (2.3.12)-
(2.3.13) is depicted in Fig. 2.3.1.

1

y(x) = (2.3.14)

Exact solution
09} e Numerical solution | |

08
07
06

o5

(=04
03}
02

0.1

1 I‘”_’AZ‘) l.;[)g l.l(as 2‘(;08 2.3:2h 2-‘756
xr
Fig. 2.3.1. Grey and black solid lines correspond to the exact solution (2.3.14) and
the piecewise-polynomial approximation to (2.3.12)-(2.3.13), respectively (N = 6,
& = 1075). The parts of the approximate solution obtained at different steps are
separated by black dashed lines. Circled digits denote the step number

d) The relation between the step-size h; and the change in the approximate
solution yy(x) at each step is approximated via the following linear
regression equation:

Ay = kM 4 M, (2.3.15)
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For this instance (N = 6), the equation reads: Ayy = 0.26572 —
0.29293h.

The empirical results obtained in the course of this numerical investigation can
be incorporated into the semi-analytical integration scheme, presented earlier for the
adaptive selection of the step-size. For example, the step “Find the lowest value of x
at which the pre-selected error tolerance criterion is violated” could be reformulated
as:

“Find the lowest value of x at which at least one of the following conditions is
violated:

hy(x) = x — ¢, < hW); (2.3.16)
29 (x) = hy (& — 5 (% W),
Iy (x) = max Iy (%, cx,56) — max Yy (%, cp, 5) < APy 7 (2.3.17)
Cg<X<x CrsSXsx
297 (0) < k" + 1My (), (2.3.18)

where h(¥) and Ag?,\(,u) are the upper bounds for the step-size and the change in the
numerical solution, which can be derived from the previous numerical investigation
as the highest values of h and Ay, on the regression line.”

The semi-analytical scheme for the construction of approximate solutions to
CFDEs together with the technique for the adaptive selection of the step-size, as
presented earlier, are then applied to the following CFDE:

1\ 2

X (CD,(?)> y=1-2y+y%—y3 (2.3.19)

1
y)=1; )

X

=—1. (2.3.20)

x=0

We note that the exact solution to (2.3.19)-(2.3.20) cannot be expressed in a
closed form. The results of the applied techniques are displayed in Fig. 2.3.2.
It is important to note that the technique for the selection of the step-size, as

outlined above, serves as an example and would need considerable refinement for the
application in the general case since the parameters h(*), A;?,f,”), ;c(()N ), ;ci” ) are based
on only one empirical experiment with respect to a specific CFDE (2.3.10)-(2.3.11).
A development of a more efficient and robust step-size selection strategy as well as a
comparison of the proposed framework with the already established semi-analytical
and numerical techniques for the integration of CFDES remains a definite objective of
future research.
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x

(b)

(a)

Fig. 2.3.2. Application of the semi-analytical FDE integration scheme to (2.3.19)-
(2.3.20). Part (a) depicts the numerical solution to the characteristic ODE (N =
6,L = 3,8 = 1075). Parts of the approximate solution obtained at different steps
are separated by black dashed lines. Circled digits denote the step number. Part (b)
displays the piecewise-polynomial approximation to the initial FDE (2.3.19)-
(2.3.20)

Conclusions

In this paper, the concepts and techniques developed in the previous study have
been utilized in order to develop a preliminary framework of the semi-analytical
scheme for the construction of piecewise-polynomial approximate solutions to CFDES
of the type (2.3.1)-(2.3.3). A numerical investigation using a CFDE with a known
analytic closed-form solution is performed to analyze the relation between the order
of approximation, its accuracy, the change in the approximate solution, and the step-
size of the algorithm. Further theoretical and empirical findings from the investigation
of these relations could potentially be used to develop a robust and efficient technique
for the adaptive selection of the step-size, which could be incorporated into the
presented integration scheme. Other directions in future studies could also explore a
modification of the scheme so that to allow the use of any numerical integration
method during the solution of the characteristic ODE. Although this alteration would
transform the scheme into a purely numerical one and pose challenges in adjusting the
timescale (since the approximation would no longer be a polynomial function), it
could open up new possibilities in applying the already available results.
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2.4. Review of The Construction of Solutions to €D(/™ Type FDEs via Reduction
1 n
to (CD(E)) Type FDEs

2.4.1. Paper details

Title: The Construction of Solutions to ¢D(*/™ Type FDEs via Reduction to
(CD(%))nType FDEs

Authors: Romas Marcinkevicius, Inga Telksniené, Tadas Telksnys, Zenonas

Navickas, and Minvydas Ragulskis
To be cited as: Marcinkevicius, Romas, et al. The Construction of Solutions to

1\\
¢p{/™ Type FDEs via Reduction to (CD(5)> Type FDEs. AIMS Mathematics 7.9
(2022): 16536-16554, doi: 10.3934/math.2022905.
Input from L. Telksniené: 1. Telksniené formalized and generalized the ideas of
Z. Navickas and T. Telksnys, assisted R. Marcinkevi¢ius with computer algebra

computations, prepared all the necessary computational examples, drafted and refined
the manuscript text, and corresponded with the editorial office.

2.4.2. Summary of the paper

Objective of the paper

This paper aims to expand the methodologies for the construction of fractional
power series solutions, presented in the previous papers, to a more general class of

1
equations, specifically, CD(") type CFDEs:

X

1
CD,(f)y(x) =G(x,y),

where G (x, y) is an analytic function.

Methodology and results
&)Y
In the previous studies, the focus has been on the analysis of the (CDx n ) type

CFDEs:
1 n
(CD,@) y(x) = F(x,y), (2.4.1)

where F(x,y) is an analytic function. While these investigations have yielded
substantial theoretical insights, their applicability in practical scenarios is quite
limited. This study seeks to bridge this gap by illustrating that the methodologies
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N
previously developed for the (CDx@) type CFDEs can be utilized for the

1
construction of solutions to the more general and applicable CDSC”) type CFDEs:

1
CDSC")y(x) =G(x,y), (2.4.2),
where G (x, y) is an analytic function.

It has been demonstrated in this paper that (2.4.2) can be transformed into
(2.4.1) if specific conditions hold true, which can then be solved by applying the
previously developed techniques.

Without the loss of generality and for the sake of simplicity, the order of the

Caputo derivative is set to a = % for the remainder of this paper. Nevertheless, the

findings outlined here can be readily generalized to any order a = %,n € N.

For the clarity of presentation, this paper focuses on applying the described
scheme to Riccati-type FDEs. Nonetheless, similar analytical and numerical
computations can be performed for a general CFDE of type (2.4.2).

The following theorem is outlined and proven in this paper.

Theorem 2.4.1. Consider the following two Cauchy problems:

First CFDE:

1
C (f)

D, y1 = a;y7 + a1y + ag + @ (x); (2.4.3)

y1(0) = vo,
where a,, a;, ay,vo € R, and d)(x) is an arbitrary fractional power series:

®(x) = Z pw'? €CF,, ¢ ER (2.4.4)
Second CFDE:

1\ 2
(CDx(§)> Y2 = b3y3 +byy3 + by, + ¥ (x);
(1) (2.4.5)
¥2(0) = Ao; Csz V2 = A1,
x=0
where b3, by, b1, 49,41 E R, and 'P(x) is an arbitrary fractional power series:

Y(x) = Zzpj w®eCF, YjeR (2.4.6)
Cauchy problems (2.4. 3) and (2.4.5) have the same solution y; =y, =y =
125 y;w > if the following relations hold true:

1
W(x) = CD,(E)q>(x) + a0, (X) + 2a20,P(x) + ay(ao + P(0));  (2.4.7)
b; = 2a%;
b, = 3a,a,; (2.4.8)
by, = a? + 2ayay;
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Ao =Yo; A = axy§ +agyo + a, (2.4.9)

where
+ 00
@371(x):zgjwj(2); 6o =0,
j=0
J j+3 I
o - 1 r(3") _, r(g+1) 12
J T k j—k+3 — k YrVj-k+1, J = L4, ..
ArE )\ (5

End of theorem

Theorem 2.4.1 allows to use techniques already developed in previous papers to
solve (2.4.2) type CFDEs via the scheme displayed in Fig. 2.4.1.

Py = Gz, y)

4 M

Apply Theorem 2.4.1 to transform
the initial FDE into:

(°DM) 'y = F(z,p) + ¥(a),
00
where ¥(z) = Z u’/_,u;"'.
=0

. Y
|

Approximate ¥(z) by taking
the ﬁr§t N + 1 terms:

(FD” "')yy = Flz,y) 4 ¥(z),

N
where ¥(z) = Z w,win).

J=0

\ J
l

4 N

Apply the technique outlined

in the previous papers to transform
the obtained FDE into ODE:

dy ~

- )

where ¢t = {‘//I,g} = j(t) = y(z).
Y I v

Solve the resulting ODE via
analytical or numerical methods
and obtain the approximate
solution to the intial FDE via:

y(z) = §(Vx)

1
Fig. 2.4.1. Schematic diagram of the algorithm for transforming CD£") type CFDEs
1 n
into (CDx(5)> type CFDEs
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The presented scheme (Fig. 2.4.1) is then applied to the following Cauchy
problem for Riccati CFDE:

) 1 1 1

CD(Z)y o _y2 + _y — _’

¥ 47 27 3 (2.4.10)

1
y(0) =10

By using Theorem 2.4.1, (2.4.10) can be transformed into the following Cauchy
problem:

2 1 3 1
<CDx(2)> y= §y3 + gyz AT ARG

. (2.4.11)

337
1200’

where the coefficients of ¥ (x) = X5 ¢ jwj(z) are obtained via (2.4.7).

Next, by using the techniques, presented in the previous papers, (2.4.11) can be
converted into the following ODE:

337 1
$(0) =—, (2.4.12)

1200T (3); 10

dy 1 3 1
& 2t<—373 + =92 +E37 e ‘I’(t2)> -
2

8 8

where t = v/x and § = y(t) = y(x). We note that the function ¥ (t?) is represented
by an infinite power series with no known closed form. Thus, ODE (2.4.12) cannot
be solved directly — ¥ (t?) should first be approximated, for example, by taking the
first N + 1 terms:

vy (1 3 337

1~ t2
=2t —373+—372+—37+Z¢j N 3\’
a 87 787 12 LG (1 4] 1200r () (2.4.13)

5 1
y(0) = 10’
where ¥ tends to y as N tends to infinity.
The approximate solution to (2.4.10) (semi-analytical or numerical, depending
on the method) can now be obtained by solving (2.4.13) and applying y (x) = 5(Vx).
Fig. 2.4.2 displays the solutions to (2.4.13) and (2.4.10), respectively, for different

values of N. These solutions are compared with a numerical solution to (2.4.10)
computed via the direct Garrappa’s method [34]. It can be observed that that the
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approximate solution obtained via the method presented in this paper approaches the
Garrappa’s solution as N increases.
0.1

—R.Garrappa
—N=1

N=2
—N=3
_N=4

N=5
—N=6
--N=7
N =

. .
0 0.5 1 L5 2

Fig. 2.4.2. Part (a) displays approximate solutions to ODE (2. 4. 13) for different
values of N. Part (b) depicts approximate solutions to CFDE (2. 4. 10) for different
values of N as well as a numerical solution to (2.4.10) computed via Garrappa’s
method [34] (black solid line)

Conclusions

In this paper, the concept of the Caputo fractional power series is used for the

1
analysis and solution of CDx”) Caputo fractional differential equations (2.4.2). It has
n

1
been shown that (2.4.2) type CFDEs can be transformed into (CD(E)) if specific

conditions hold true, which can then be solved by applying the techniques developed
in the previous papers. A computational example has been provided to demonstrate
the application of the proposed technique.
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3.

CONCLUSIONS

A completely novel approach for the analysis of Caputo fractional differential

equations (CFDE) has been developed in the Thesis. This approach is based on the
concept of the Caputo fractional power series and the algebraic realization of the
Caputo fractional differentiation operator. Essentially, the presented methodology is
a generalization of operator calculus from ordinary to fractional differential equations,
thereby providing a completely fresh perspective on the construction of both
numerical and analytical solutions to CFDEs. The application of the proposed
approach to various types of CFDEs has yielded the following conclusions:

1.

Solutions to CFDEs of different orders exhibit a nested structure: higher-order
Caputo fractional equations inherit some solutions from lower-order equations
when a subset of initial conditions is set to zero.
The Caputo fractional differential equation with polynomial nonlinearity (2.2.8)
can be reduced to an integer-order ODE (2.2.10) by using the developed
methodology.
Solutions to the CFDEs can be extended to the negative half-line via the
methodology presented in Section 2.2.2. Such solutions are complex and multi-
valued for negative values of x.
The developed approach, based on the concept of the Caputo fractional power
series, can be utilized for the construction of approximate solutions to the CFDEs,
which results in a novel straightforward adaptive semi-analytical scheme.

1 I\
Type CD(") CFDEs can be transformed into type (CD(Z)) CFDEs if specific

X

conditions (listed in Theorem 2.4.1) hold true, which can then be solved via the
techniques presented in the Thesis.
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4. SANTRAUKA

4.1. JTvadas

Diferencialinés lygtyS — viena pamatiniy matematikos Saky, pritaikoma
daugelyje mokslo sri¢iy (fizikoje, inZzinerijoje, biologijoje, ekonomikoje ir Kkt.)
modeliuojant bei analizuojant jvairius reiskinius.

Pastaraisiais metais vis didesnis démesys skiriamas specifinei diferencialiniy
lyg¢iy klasei — trupmeninés eilés diferencialinéms lygtims (TDL). Skirtingai nuo
klasikiniy diferencialiniy lyg¢iy, kuriose naudojamos sveikosios eilés i§vestinés, TDL
yra naudojamos trupmeninés eilés iSvestinés, praplecianCios klasikiniy
diferencijavimo bei integravimo operatoriy eilg iki realiyjy arba kompleksiniy skaiciy.

Nuo trupmeninés i§vestinés sgvokos atsiradimo XVII a. [10] iki $iy dieny buvo
suformuluota daugiau kaip dvideSimt apibrézimy, realizuojanciy trupmenines
iSvestines, kuriy kiekvienas pasiZymi unikaliomis savybémis ir specifinémis taikymo
sritimis. Didziausiu pritaikomumu modeliavimo srityje pasizymintiems trupmeninés
iSvestinés apibrézimams budinga nelokalumo savybé, t. y. prieSingai nei klasikinés
iSvestinés, trupmeninés i$vestinés reikSmé taske priklauso ne tik nuo funkcijos
reik§miy to tasko aplinkoje, bet ir nuo visy pra¢jusiy funkcijos reikimiy. Si savybeé
suteikia galimybe modeliuoti sistemas, pasizyminc¢ias atminties arba paveldimumo
efektais, kai dabartiné sistemos biisena priklauso nuo visy praeities biiseny.

Siame darbe nagringjamos trupmeninés eilés diferencialinés lygtys,
formuluojamos naudojant vieng populiariausiy trupmeninés eilés iSvestiniy — italy
mokslininko M. Caputo pasiiilyta apibrézimg [12]. Caputo trupmeninés eilés
diferencialinés lygtys (CTDL) itin palankios modeliavimui ir sékmingai taikomos
fizikos (pvz., plazmos fizikos [12], optikos [13]), inZinerijos (pvz., viskoelastingumo
[14]), biologijos (pvz., gamtos sistemy [15], aplinkos inzinerijos [16]), ekonomikos ir
finansy (pvz., konkurencijos modeliy [17]), sveikatos moksly (pvz., epidemiologijos
[18], neurobiologijos [19]) ir kt. srityse.

Dél plataus Caputo diferencialiniy lygéiy taikymo spektro Siy lygéiy tyrimas
jvairiais metodais, tiek analitiniais, tiek skaitiniais, itin aktualus uzdavinys. Taigi,
pagrindinis Sios disertacijos tikslas — sukurti naujg pusiau analiting schema, skirta
Caputo trupmeniniy diferencialiniy lygciy sprendiniams konstruoti bei analizuoti,
panaudojant Caputo trupmeniniy laipsniniy eilu¢iy algebros koncepcija, pateikta [1;
2].

Siam tikslui jgyvendinti buvo iskelti penki uzdaviniai:

N\
1. Naujos metodologijos, skirtos (CD(E)) tipo Rikati CTDL sprendiniams

konstruoti, sukiirimas bei sprendiniy, iSreiksty trupmeninémis laipsninémis
eilutémis, struktiiros tyrimas.
2. Metodologijos, skirtos CDTL sprendiniams konstruoti, i$plétimas,

1 n
taikytinas platesnei klasei lyg¢iy — (CD(ﬁ)) tipo CTDL su daugianario tipo

netiesiSkumu.
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3. Analitinés metodologijos, leidzianCios iSplésti CTDL sprendinius |
neigiamajg realigjg pusase, sukiirimas ir $io plétinio savybiy tyrimas.

4. Pusiau analitinés schemos, skirtos apytiksliams CTDL sprendiniams
konstruoti, suktirimas.

5. Metodologijos, skirtos CDTL sprendiniams konstruoti, iSplétimas,
1

taikytinas dar platesnés klasés netiesinéms lygtims — CDJ(E) tipo CDTL.

Si daktaro disertacija yra parengta moksliniy straipsniy rinkinio pagrindu, kur
kiekvienas straipsnis atitinka vieno ar keliy auksciau aprasyty uzdaviniy sprendima.
Pirmasis straipsnis ,,The fractal structure of analytical solutions to fractional Riccati
equation® atvéré duris Siam tyrimui, kadangi jame buvo sukurta nauja metodologija,
skirta specifinés Rikati tipo CTDL sprendiniams konstruoti. Pristatyti rezultatai buvo
reikSmingai i$plétoti darbe ,,The extension of analytic solutions to FDEs to the
negative half-line*, parodant, kad patobulinta metodologija gali buti panaudota ne tik
Rikati tipo CTDL, bet ir platesnei klasei lygéiy, pavyzdziui, CTDL su daugianario
tipo netiesiSkumu. Kitas zingsnis, kurio rezultatai paskelbti straipsnyje ,,An operator-
based scheme for the numerical integration of FDEs“, buvo skirtas sukurtos
metodikos pritaikymui kuriant pusiau analiting schema, skirtg apytiksliams CTDL
sprendiniams konstruoti. Paskutiniame disertacija sudaranc¢iame straipsnyje ,,The

1

n
construction of solutions to €D/ type FDEs via reduction to (CD(Z)) type FDEs*,

sujungus visus ankstesniy tyrimy rezultatus, buvo sukurtas naujas metodas, skirtas dar
platesnés klasés netiesiniy CTDL sprendiniams konstruoti.

4.2. Ivadas i Caputo trupmeniniy laipsniniy eiluc¢iy algebra

Kadangi disertacijoje yra naudojama Caputo trupmeniniy laipsniniy eiluciy
algebros koncepcija [1; 2], Siame skyriuje pateikiamos pagrindinés sgvokos,
suteikiancios konteksta disertacija sudaran¢ioms publikacijoms.

N e k.. .
Pazymékime Caputo trupmeninés iSvestinés eile a = —, Cia kneN ir

gcd(k,n) = 1. Taip pat tarkime, kad x > 0.
Toliau Siame darbe nagrinésime funkcijas, isSreikstas Caputo trupmeninémis
laipsninémis eilutémis, t. y. laipsninémis eilutémis, kuriy elementai turi trupmeninius

laipsnius:
+00

fx) = Z vw™, (4.2.1)

Jj=0

)

¢ia v; ER yra eilutés koeficientai, o w;"",n €N,j =0,1,.. yra trupmeninés

J
laipsninés eilutés n-tosios eilés bazinés funkcijos, apibréziamos tokiu budu:
J

m_ X
w; = j—’] =0,1,.. (4.2.2)
r(z+1)
Caputo trupmeniniy laipsniniy eilu¢iy aibé, atitinkanti parametra n, Zymima:
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+00
CF, = zkm#m;qec . (4.2.3)
j=0
Aibé CF, su standartinémis sudéties, daugybos i§ skaliaro ir sandaugos
operacijomis sudaro algebra vir§ C. Si algebra vadinama Caputo algebra ir Zymima:

“Fo = (Fn; +,- |C) (4.2.4)
Caputo %—osios eilés trupmeninis diferencijavimo operatorius bazinéms
funkcijoms Wj(n) yra apibréziamas tokiu buidu:

1 0, ]:

X

Tuomet funkcijos f(x) = 15 vjwj(n) € ‘F, Caputo «a =§-0sios eilés

trupmeniné iSvesting:

K AN -
Dl () = <CDa(f)> FO) =) voow™ € B (426)
j=0

Svarbu pastebéti, kad §is Caputo trupmeninio diferencijavimo operatoriaus
apibrézimas sutampa su originaliu integraliniu apibrézimu [2].

4.3. Svarbiausi darbo rezultatai

Kadangi §i disertacija yra ginama moksliniy straipsniy rinkinio pagrindu,
tolimesniuose poskyriuose pateikiamos disertacijg sudaranciy publikacijy santraukos.

4.3.1. Straipsnio ,,The fractal structure of analytical solutions to fractional
Riccati equation“ rezultaty santrauka
Straipsnio tikslas

Siame straipsnyje:
1. pristatyta nauja metodologija, skirta Zzemiau pateiktos Rikati tipo Caputo

trupmeninés diferencialinés lygties sprendiniams konstruoti:
1

n
<CDJ(CE)> y(x) = a,y(x)? + a,y(x) + ag; ay,a,,a, € C; n €N,

2. istirta Rikati tipo CTDL sprendiniy, iSreiksty trupmeninémis laipsninémis
eilutémis, struktiira.

Metodika ir rezultatai

Straipsnyje nagrinéjamas $is Rikati tipo CTDL Kosi uzdavinys:

3\
<%f>m=%%+%m+% (4.3.1)
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k

£}
<CD3(Cn)> yn
x=0
(n) (n)

¢ia ag,a.,a, €EC, n€N, y, =y, (x So ,...,s(rl) ) € ‘F,, o parametrai

én) 1(n),. (n) 1 Zymi pradines salygas, atitinkancias x = 0.

=s™;k=0,..n—1, (4.3.2)

1 n
Svarbu pastebéti, kad kai n > 1, operatorius <CD,(C")> néra tapatus %, kadangi

pirmasis operatorius veikia Caputo trupmening laipsning eilute (4.2.1), sudarytg i$
trupmeniniy x laipsniy, o operatorius P taikomas klasikinéms Teiloro laipsninéms

eilutéms, sudarytoms tik i§ sveikyjy x laipsniy.
Paiymékime

+oo
J
Y R P RTINS
j=0

Pirm1aus1a 1svedam1 nagrmejarnos lygties sprendinio koeficienty rekurentiniai
sary$iai. Tai jvykdoma jterpiant (4.3.3) j (4.3.1)-(4.3.2) ir atliekant algebrinius
pertvarkymus su gautomis iSraiSkomis. Gaunami Sie sarySiai:

(n)
s
y = —E—k=01,..,n—1; (4.3.4)
T (z+1)
j
G+ n)yj(fgl =n| a, Z (yr(n)yj(ng) + aly](n) +djao |;7=01,..., (4.3.5)

=0
¢ia §; =1 jei j = 0ir §; = 0 prieSingu atveju.

Toliau apibréziama sekos ( (), Jj = 0 1,. ) charakteringoji funkcija:

on(t) = ZV(”)t’ (4.3.6)

Rekurentinj sarysj (4.3.5) galima pertvarkytl 1 813 paprastaja diferencialing lygtj
(charakteringosios funkcijos ¢, (t) atzvilgiu):
den — -1 2 (M) j—1
— = 1" (00R (O + @pn® +a0) + ) jy Ve *3.7)
j=1
Funkcija ¢,(t) gali buti naudojama nagrin¢jamos lygties (4.3.1)—(4.3.2)
sprendiniams iSreiksti, kadangi:

n—-1

Z (n)xn = ¢, (V). (4.3.8)

Taigi, Rikati trupmeninés dlferencialinés lygties Ko$i uzdavinys (4.3.1)-
(4.3.2) yra ekvivalentus $iam paprastosios diferencialinés lygties (PDL) Kosi
uzdaviniui:
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d
a (yn - 1:bn) = aZYr% + a1yn + ag; (4‘-3-9)
yn(0) = 5§ =y, (4.3.10)

gia P (x) = X3y M

Zinoma, gauta PDL galima analizuoti ir integruoti bet kuriais klasikiniais
analitiniais ar skaitiniais metodais, taigi tai suteikia galimybe tirti §io tipo CTDL
nekuriant naujy metody.

IStyrus sary$iy (4.3.5) ir (4.3.9) struktiirg galima pastebéti, kad jei lygties

(4.3.1)—(4.3.2) pradinés salygos tenkina an) = sz(n) == 51(171)1 =0, tuomet

P (x) =0 ir y™ = 0 tik tada, jei j = kn,k € N, o tai reiskia, kad tokiu atveju
sprendinys y,, priklauso aibei ‘[, ir tenkina klasikine paprastaja Rikati lygtj:
dyn

T = Ge¥n T an + ao. (4.3.11)
Taigi, bet kokios eilés n € N trupmeninei Rikati lyg¢iai (4.3.1) tinka visi PDL
(4.3.11) sprendiniai (jei sarysis Sl(n) = Sz(n) == s,(:i)l = 0 galioja), bet ji turi ir

daugiau unikaliy sprendiniy. Straipsnyje taip pat pateikiami skaitiniai eksperimentai,
patvirtinantys auksciau pateiktus analitinius rezultatus.

Minétus pastebéjimus apie trupmeninés Rikati lygties sprendiniy paveldimuma
galima iSplésti: bet kuri n = km; k,m € N eilés trupmeniné Rikati lygtis (4.3.1)
paveldi sprendinius i$§ Rikati lyg¢iy, kuriy eilés n = k irn = m.

4.3.1 pav. pavaizduotas rySys tarp skirtingy trupmeniniy laipsniniy eiluciy eiliy,
kuriame matome, kad baziniai elementai, atitinkantys skirtingos eilés trupmeniniy
diferencialiniy lyg€iy sprendinius, gali susikirsti, t. y., esant tam tikroms pradinéms
salygoms, aukstesnés eilés lygties sprendiniai gali paveldéti zemesnés eilés lygties
sprendinius.

Panagrinékime dvi trupmenines Rikati lygtis (4.3.1)-(4.3.2), kuriy eilés p ir q.
Pazymékime g = ged(p, q);s® = 5 ;5@ = % € N. Tuomet $iy trupmeniniy Rikati
lygciy sprendiniai sutampa, jei galioja Sie pradiniy sglygy sarysiai:

sj(p) =0, Jj+ s®y;

4,312
sl.(q) =0, i #s@ ( )

¢ial=01,..,n—1.
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4.3.1 pav. Caputo trupmeniniy laipsniniy eiluciy baziy struktira. Kiekvienoje
eilutéjen = k; k = 1,2, ... surasyti atitinkamos eilés Caputo trupmeninés laipsninés
eilutés x laipsniai. Parametrai y°; v = 1,2, ..., k — 1 deinéje Zymi PDL (4.3.9)
koeficientus, atitinkancius trupmenines pradines sglygas. Pilkai nuspalvintos dalys
atitinka tuos pacius x laipsnius skirtingy eiliy baziniuose elementuose

ISvados

Siame straipsnyje Caputo trupmeniniy laipsniniy eilu¢iy koncepcija panaudota
trupmeninés Rikati lygties (4.3.1)—(4.3.2) analizei. Jrodyta, kad trupmeniné Rikati
lygtis (4.3.1)—(4.3.2) gali buti redukuota j sveikosios eilés paprastgjg diferencialing
lygti (4.3.9)—(4.3.10), kurig galima toliau tirti ir spresti klasikiniais analitiniais arba
skaitiniais metodais. Be to, teoriniy bei skaitiniy tyrimy metu pademonstruota, kad
skirtingy eiliy trupmeniniy lyg¢iy sprendiniai pasizymi paveldimumu: aukstesnés
eilés trupmeninés Rikati lygtys paveldi tam tikrus sprendinius i§ Zemesnés eilés
lygciy, kai pradiniy salygy poaibis yra lygus nuliui.

4.3.2. Straipsnio ,, The extension of analytic solutions to FDES to the negative half-
line* rezultaty santrauka

Straipsnio tikslas

Siame straipsnyje:
1. iSplésta ankstesnéje publikacijoje pateikta metodologija, skirta trupmeniniy
diferencialiniy lygéiy sprendiniams konstruoti. Patobulinta metodologija gali
buti taikoma platesnei klasei lygc¢iy — CTDL su daugianario tipo

netiesiSkumu:
O o =S
<CDxn > y(x) = z ayy(x)*; meN,a,, #0,a, € C.
k=0

2. sukurta analitin® metodologija, leidzianti iSplésti Siy CTDL sprendinius i
neigiamajg realigja pusase ir istirtos tokio plétinio savybeés.
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Metodika ir rezultatai

Straipsnyje nagrinéjama tokio tipo Caputo trupmeniné diferencialiné lygtis:

@\
<CDx” > Yn = QmOn), (4.3.13)
Siay, = y,(x) = ;f;’% vjwj(") € CF,, ir Q,, bet koks m-tosios eilés daugianaris:
m
Q) = Z ayk; meN,a, #0,a; €C. (4.3.14)
k=0

Pirmiausia, taikant pert_varkymus, analogiSkus pateiktiems ankstesniame
straipsnyje, jrodoma, kad (4.3.13) galima redukuoti j tokia paprastaja diferencialing

lygti:

n—-1

dy, 4 .

T =n| O + ) At ), (43.15)
=T (ﬁ + 1)

Cia yp(x) = ?n(w)
Tuomet, pritaikius apibendrinto diferencialinio operatoriaus metoda, apraSyta
[33], bei sarysj y,, (x) = 3%(%), jrodoma §i teorema:
Teorema 4.3.1. Nagrinékime tokj Kosi uzdavinj:
1 n
<CD;(C")> Yn = Qum), (4.3.16)
Yu(x0) = up; X9 ER, x5 =0, (4.3.17)

( CDSC%))’C Yn

CTDL (4.3.16)—(4.3.18) turi §j trupmeninés laipsninés eilutés formos sprendinj:

+00 J
Vx —/x
Yn(x; Xo, Ug, vl! ---vn—l) = z(]—lx/_())p](i/x_'uo)i (4319)
=0

=v; k=1,..n—1 (4.3.18)

x=0

e

Cia
n-1 ]
N n-1 Vj j-1
pj(c,s) =Dgs =| Do+ n| ¢ Qp(s) + 7 c D, | s, (4.3.20)
Sr(+1)

jei x tenkina |Vx — /xo| < Ty,, kur T, > 0 yra (4.3.19) konvergavimo spindulys.
Teoremos pabaiga

Pastebésime, kad gauta sprendinj (4.3.20) galima iSplésti adaptavus Rymano
iSplétimo algoritma Caputo trupmeninéms laipsninéms eilutéms. Taip pat
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pastebésime, kad ankséiau pateiktus rezultatus galima i$plésti iki analiziniy funkcijy
Qm ) = TS arx.

Toliau pateikiama analitiné metodologija, leidZianti iSplésti CTDL (4.3.16)—
(4.3.18) sprendinius neigiamoms argumento x reikSméms. Svarbu pastebéti, kad toks
i$plétimas negalimas nagrinéjant originaly integralinj Caputo trupmeninés i§vestinés
apibrézima [12], kadangi integralas apibréztas tik neneigiamoms reikSméms x. Taciau
jei Caputo trupmeninis diferencijavimo operatorius apibréziamas naudojant
trupmeniniy laipsniniy eiluciy sagvokg (zr. 4.2 skyriy), tuomet sprendiniy iSplétimas j
neigiamaja realigjg pusaS¢ yra jmanomas. Tokiu atveju gaunamos kompleksinés
trupmeninés laipsninés eilutés, apibréztos zemiau.

Panagrinékime tokj trupmeniniy laipsniniy eiluc¢iy baziniy funkcijy (4.2.2)
plétinj (zr. 4.2 skyriy):

J
( (n)) 3 (n\/ le) . arg(x) + 2k
w; =——exp|ijj———|, (4.3.21)
7k (]— + 1) n
n
tiax ER; k=0,1,..n—1;j = 0,1,...; /|x| yra realioji $aknis, o i Zymi menamaji
vieneta. Atkreipsime démesj, kad baziniai elementai, gauti esant k = 0 sutampa su
4.2 skyriuje apibréztais baziniais elementais (kai x > 0), 0 ( (n)) k=12,..,n—
1 yra kompleksinés funkcijos. Tuomet Caputo trupmening laipsning eilute (4.2.1)
galima praplésti iki n kompleksiniy eiluciy tokiu biidu:
+ o0

()
= A\ w; ; k=0,..n—1 4.3.22
fe@) ,-Zov’ (w™), n (43.22)
Panaudojus (4.3.21) ir (4.3.22), CTDL (4.3.16)—(4.3.18) sprendinj, galima
iSplésti j kompleksing plokstuma:

(Yn(x' X0, Ug, V1, - Vn—1))k

+o0
M) ( 200 (| ol a, u(o)) + lu(k) (|xo| a, u(o))>’

j=

kur
A (Ixol, @, uf”) = R (( “”(a)) p; (Vixol ﬁ(k)(a),uo)); (43.24)
(k) (Ixol a, u( )) =Im (( (k)(a)) Dj (M )(a),uo)); (4.3.25)

ey

(4.3.23)

(=}

a = arg(xy); B(k) (@) = exp (4.3.26)

Israiska (4.3.23) leidZia nagrinéti CTDL (4.3.16)—(4.3.18) sprendinius, kai
x < 0. Tokiu atveju gaunami sprendiniai yra daugiareikSmiai ir kompleksiniai (n
sprendiniy, atitinkanéiy unikalias skai¢iaus V/x $aknis).
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Pastebésime, kad gautg sprendinj (4.3.23), atitinkantj k-taja Saknies Vx $aka,
galima iSplésti | visg realigjg asj, adaptavus Rymano iSplétimo algoritmg Caputo
prapléstoms trupmeninéms laipsninéms eilutéms Su neigiamomis argumento
reikSmémis.

ISvados

Siame straipsnyje Caputo trupmeniniy laipsniniy eilu¢iy koncepcija buvo
panaudota trupmeniniy diferencialiniy lyg¢iy su polinominiu netiesiSkumu (4.3.13)
analizei. Jrodyta, kad tokig CTDL galima redukuoti j sveikosios eilés PDL (4.3.15).
Tuomet gautoji PDL gali biiti panaudota norint sukonstruoti pradinés CTDL sprendinj
trupmeninés laipsninés eilutés (4.3.23) pavidalu. Gautas sprendinys gali bati iSpléstas
naudojant Rymano iSplétimo metodus, adaptuotus trupmeninéms laipsninéms
eilutéms, kad biity jmanoma analizuoti sprendin;j kitoje negu x = 0 aplinkoje.

Taip pat pateiktas trupmeniniy laipsniniy eilu¢iy sgvokos isplétimas iki
neigiamos realiosios pusasés. Toks iSplétimas gali bti taikomas CTDL sprendiniui
iSplésti iki visos realiosios aSies, jskaitant neigiamas x reikS§mes. Teoriniai bei
skaitiniai eksperimentai rodo, kad tokiu atveju gaunami CTDL sprendiniai,
atitinkantys neigiamas x reikSmes, yra daugiareik§miai ir kompleksiniai (n
sprendiniy, kur n yra trupmeninés diferencijavimo eilés vardiklis).

4.3.3. Straipsnio ,,An operator-based scheme for the numerical integration of
FDESs* rezultaty santrauka
Straipsnio tikslas

Siame straipsnyje ankséiau pristatytos metodologijos pritaikomos kuriant
pusiau analiting schema, skirtg apytiksliy CTDL sprendiniy konstravimui.

Metodika ir rezultatai
Nagrinékime tokio tipo CTDL:

@Y
(CD;‘ ) y=Qn(®), (4.3.27)
y(x9) = ug; X9 ER, x5 20, (4.3.28)
1\ K
=v; k=1,..n—1, (4.3.29)

(o)

gia Qp (¥) = X1, ajx® yra bet kokia analiziné funkcija.

Sitilomos pusiau analitinés integravimo schemos etapai yra pateikiami Zemiau:
1. Pasirenkame Siy parametry vertes: aproksimacijos eilé N, nepriklausomojo
kintamojo virSutinis rézis L.
2. Pertvarkome CTDL (4.3.27)-(4.3.29) j charakteringgja PDL, naudodami
ankstesniame straipsnyje aprasytg procediirg:
dv
d—z = PG, V1, Unr); (4.3.30)
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y(co) = So, (4.3.31)
Cia ¢y = Y/ xg, S0 = Uy.
3. Apskai¢iuojame TDL (4.3.30)-(4.3.31) apytikslio eilutés formos sprendinio
(tikslus sprendinys gaunamas, jei eiluté tesiasi iki 40)

C @ —o)
In(x,c,s) = ;j—!pj(c, s) (4.3.32)

koeficienty p;(c,s) (j = 0, ... N) analitines iSraiSkas:

p;j(c,s) = Déss =

n—1 J

n-1 Yj j-1
=|D.+n| " Qn(s) + j—c D; | s.
(1)

4. Kartojame Siuos veiksmus, kol bus pasiektas virSutinis rézis L (k = 0,1, ...):

e [vertiname koeficientus p;(ck, sx), j = 0,1,...,N.

(4.3.33)

e Randame maziausig x vertg, kuriai esant pazeidziamas i§ anksto
pasirinktas leistinas paklaidos lygmuo.
e Apskai¢iuojame naujas pradines vertes:
Crt1 =X — & Spa1 = In(Crr1, Co Sk, (4.3.34)
kur € yra bet koks mazas skaicius.
5. Sujungiame gautus apytikslio TDL (4.3.30)—(4.3.31) sprendinio segmentus
ir suformuojame dalimis-polinomine aproksimacijg y (x):
In) = Iy (X, cr,Sk), k < x <y, kKk=01,... (4.3.35)
6. Sudarome pradinés CTDL (4.3.27)—(4.3.29) sprendinio pusiau analiting
aproksimacija taikydami y(x) = 9y (Vx).

Norint taikyti auk$¢iau aprasyta schema, butina sukurti zingsnio h, = ¢ —
cx—1 dydZio parinkimo strategija, kuri uztikrinty pageidaujama skirtumo tarp tiksliy
ir apytiksliy sprendiniy lygj. Siuo tikslu buvo atlikti keli skaitiniai tyrimai, kuriy metu
buvo analizuojama CTDL su zinomu analitiniu uzdarosios formos sprendiniu. Sio
skaitinio tyrimo metu gauti empiriniai rezultatai gali bati jtraukti j anksciau pateikta
pusiau analiting integravimo schema adaptyviam zingsnio dydzio parinkimui.

Ankséiau pateikta pusiau analitiné CTDL apytiksliy sprendiniy sudarymo
schema ir adaptyvaus zingsnio dydzio parinkimo metodas pritaikomi Zzemiau pateiktai
CTDL:

G
x(CD2> y=1-2y+y?—y3; (4.3.36)

1
yy=1; )y

X

=—1. (4.3.37)

x=0
Auks¢iau pristatytus metodus pritaikius $iai lygc¢iai, gauti rezultatai pateikti
4.3.2 pav.
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4.3.2 pav. Pusiau analitinés integravimo schemos taikymas CTDL (4.3.36)—
(4.3.37). Dalyje (a) pavaizduotas apytikslis charakteringosios PDL sprendinys
(N = 6,L=3,8 = 107>). Apytikslio sprendinio dalys, gautos skirtingy Zingsniy
metu, atskirtos juodomis punktyrinémis linijomis. Apskritimuose esantys
skaitmenys zymi Zingsnio numerj. (b) dalyje pavaizduota pradinés CTDL (4.3.36)—
(4.3.37) sprendinio dalimis-polinominé aproksimacija

ISvados

Siame straipsnyje anks&iau pristatytos metodologijos pritaikytos kuriant
preliminarig pusiau analiting schema, skirtg dalimis-polinominiy apytiksliy CTDL
(4.3.27)—-(4.3.29) sprendiniy konstravimui. Siekiant i$analizuoti rySius tarp
aproksimacijos eilés, jos tikslumo, apytikslio sprendinio poky¢io bei algoritmo
zingsnio dydzio, atliktas skaitinis tyrimas naudojant CTDL su Zinomu analitiniu
uzdarosios formos sprendiniu. Tolesni teoriniai ir empiriniai §iy rySiy tyrimo
rezultatai galéty buti panaudoti kuriant patikima ir efektyvy adaptyvaus zingsnio
dydzio parinkimo metoda, kuris galéty buti jtrauktas j pristatyta integravimo schema.

4.3.4. Straipsnio ,,The construction of solutions to ¢D(/™ type FDEs via
1 n

reduction to (CD(Z)) type FDEs* rezultaty santrauka

Straipsnio tikslas

Siame straipsnyje, sujungus visus ankstesniy tyrimy rezultatus, sukurtas naujas
CTDL sprendiniy konstravimo metodas, taikytinas dar platesnés klasés netiesinéms

CTDL.:

2y =G(x,y),
¢ia G (x, y) yra analiziné funkcija.
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Metodika ir rezultatai
1 n

Ankstesnése publikacijose tirtos (CDX (5)> tipo CTDL:

<CD,(C%)> y(x) = F(x,y), (4.3.38)

¢ia F(x,y) — analiziné funkcija. Nors $iy tyrimy metu gautos svarbios teorinés
izvalgos, jy praktinis pritaikomumas yra gana ribotas. Siuo tyrimu siekiama uzpildyti

Sig spraga, pademonstruojant, kad ankséiau sukurtos metodikos, skirtos
n

1
(CDx(5)> tipo CTDL, gali biiti panaudotos didesniu praktiniu pritaikomumu

1
,(C”) tipo CDTL lygtims spresti:
1
CD,(C”)y(x) =G(x,y), (4.3.39)

¢ia G(x, y) yra analiziné funkcija.

Siame straipsnyje jrodyta, kad, esant tam tikroms salygoms, CTDL (4.3.39) gali
biti transformuota j (4.3.38), kuri savo ruoztu gali buti sprendziama taikant ankséiau
pristatytas metodologijas.

Nemazinant bendrumo ir vardan aiskumo skaitytojui, tolimesniems i§vedimams
pasirenkama Rikati tipo CTDL, kurios eilé a = % Nepaisant to, analogiski analitiniai

pasizyminéioms ‘D

bei skaitiniai pertvarkymai gali bati pritaikyti bet kokios eilés a = %,n € N CTDL
(4.3.39).
Straipsnyje pateikiamas §ios teoremos jrodymas.
Teorema 4.3.2. Nagrinékime Siuos du Kos$i uzdavinius:
Pirmoji CTDL.:
() 2
D,"y1 = ayi + a1y; + ag + @(x); (4.3.40)
Y1 (0) =%Yo
¢ia a,, aq, ag, ¥o € Rir @(x) yra bet kokia trupmeniné laipsniné eiluté:

+00
P(x) = Z ¢>,-w,-(2) €‘F, ¢;ER (4.3.41)
j=1
Antroji CTDL.:

1\ 2
(ﬁ)(z)) Y2 = bsy3 + byyz + by, + W (x);

(l) (4.3.42)
¥2(0) = A¢; Csz Y2 = A,
x=0
ia b3, by, by, 19, A1 € Rir ¥(x) yra bet kokia trupmeniné laipsniné eiluté:
+00
Y(x) = zlp,-wj@) €‘F,, Y, ER (4.3.43)
j=0
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Kosi uzdaviniai (4.3.40) ir (4.3.42) turi ta patj sprendinj y; =y, =y =
jie ijj(z), kai galioja Sie sgrySiai:
1
Y(x) = CD£2)<1>(x) + a0y, (%) + 2a,7,2(x) + ar(ap + P(x));  (4.3.44)

b; = 2a3;
b, = 3a,a;; (4.3.45)
by = a? + 2ayay;
Ao =Yo A= axy§ +aiyy+a, (4.3.46)

¢ia

40
0y, (x) = Z HJ'WJ'(Z); 6o =0,
=0

. 2 ._ )/k)/j_k_l_l, ] = 1,2,
kzlr(5+ 1) F(H‘TJ’3) r(—k+ 1)

yoy 1 (1),

2 2
Teoremos pabaiga
Teorema 4.3.2 leidzia CTDL (4.3.39) sprendimui naudoti ankstesniuose
straipsniuose iSvystytas metodologijas. Tuomet CTDL (4.3.39) sprendiniy
konstravimas gali buti vykdomas pagal schema, pateiktg 4.3.3 pav.
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‘ DWWy = G(z,y) ’

Taikome Teorema 4.3.2 norédami
transformuoti prading CTDL j:

(CD(””’)Wy = I'(z,y) + ¥(z),

+o< )
W(w) = 3 vl
=0

Aproksimuojame ¥ (x) imdami
tik pirmus N + 1 narius:

(CD(lfn))ny = F(z,y) + ¥(z),

.
T(z) =Yyl

j=0

/ Taikome technikas, pristatytas\
praeiiuose slraipsniuose,
norédami transformuoti gautg

CTDL j PDL:
di &,
E = H(yft)y

\_ t =, 5 =5(t) = y(z). J

' SprendiZziame gauta PDL N\
analiziniais arba skailiniais
metodais ir gauname apytiksly
CDTL sprendinj:

y(z) = §(Vx).

v

)

X

4.3.3 pav. ‘D" tipo Caputo trupmeninés diferencialinés lygties sprendimo schema

ISvados

Siame straipsnyje Caputo trupmeniniy laipsniniy eilu¢iy savoka buvo panaudota

1
CD,(C”) tipo Caputo trupmeniniy diferencialiniy lyg¢iy analizei bei sprendimui. [rodyta,
kad, esant tam tikroms salygoms, CTDL (4.3.39) gali bati transformuota i

W
(CD(F)) tipo CTDL (4.3.38), kuri savo ruoztu gali biiti sprendziama taikant anks¢iau

pristatytas metodologijas. Siilomo metodo veikimui pademonstruoti pateiktas
skaitinis pavyzdys.
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4.4, I§vados

Disertacijoje sukurta visiskai nauja Caputo trupmeniniy diferencialiniy lygciy
(CTDL) analizés metodologija. Pristatytos technikos, grindziamos Caputo
trupmeniniy laipsniniy eiluciy koncepcija bei Caputo trupmeninio diferencijavimo
operatoriaus algebrine realizacija. IS esmés pateikta metodika yra operatorinio
skai¢iavimo apibendrinimas nuo paprastyjy iki trupmeniniy diferencialiniy lygciy,
suteikiantis visiSkai nauja pozitrj i CTDL skaitiniy bei analitiniy sprendiniy
konstravimg. Taikant pasitlyta metodologija jvairiy tipy CTDL, padarytos Sios
iSvados:

1.Skirtingy eiliy Caputo trupmeniniy diferencialiniy lyg¢iy (CTDL) sprendiniai
pasizymi paveldimumu: aukstesnés eilés Caputo trupmeninés lygtys paveldi tam
tikrus sprendinius i§ Zemesnés eilés lygc¢iy, kai dalis pradiniy salygy yra lygios
nuliui.

2.Caputo trupmenine diferencialing lygtj su polinominiu netiesiSkumu (4.3.13)
galima redukuoti j sveikosios eilés paprastgjg diferencialing lygtj (4.3.15),
panaudojant Caputo trupmeniniy laipsniniy eiluciy teorija.

3.CTDL sprendiniai gali buti iSplésti iki neigiamos realiosios pusasés, panaudojant
metodologijg, aprasytg 4.3.2 skyriuje. Tokiu atveju gaunami daugiareikSmiai ir
kompleksiniai CTDL sprendiniai, atitinkantys neigiamas x reikSmes.

4. Sukurta metodologija, pagrijsta Caputo trupmeniniy laipsniniy eilu¢iy koncepcija,
gali biiti panaudota apytiksliams CTDL sprendiniams sudaryti, taikant pasiiilyta
naujg adaptyvig pusiau analiting schemag.

1

5.‘:sz tipo CTDL, esant tam tikroms sglygoms (iSvardintoms 4.3.2 teoremoje),

N
gali bati transformuotos } (CD(5)> tipo CTDL, kurios savo ruoztu gali buti

sprendziamos taikant disertacijoje pristatytas metodologijas.
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Abstract

Analytical solutions to the fractional Riccati equation are considered in this paper. Solutions
to fractional differential equations are expressed in the form of fractional power series in the
Caputo algebra. It is demonstrated that solutions to higher-order Riceati fractional equations
inherit some solutions from lower-order Riceati equations under special initial conditions. Such
nested and fractallike structure of solutions is iuvestigated by means of aualytical fractional
differentiation operator techniques and computational experiments.
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1. INTRODUCTION

Though the concept of [ractional-order derivatives
dates back to the 17th century, fractional-order cal-
culus has become more prominently used for the
modeling of real-world phenomena only in recent
years. Extensive applications of such models can
be encountered in the fields of physics,® engineer-
ing,* bi dicine® and image ing. A short
review of typical examples concerning the use of
fractional calculus in mathematical leling is giv-

analytic solutions to FDEs.

2. PRELIMINARIES

Main concepts and definitions concerning Caputo
fractional power series and operators are presented
in this Section. The fractional power series present-
ed here are a generalization of.® Note that Caputo
fractional differentiation and integration are defined
differently than in the classical sense (via integral

en below.

A novel fractional differential and variational

model capable of realizing the image fusion. super-
resolution, and the edge information enhancemen-
t simul ly has been i luced in.” A new
framework of nonlocal deformation in non-rigid im-
age registration is developed using fractional Euler-
Lagrange equations in.® A spatial fractional tele-
graph equation is used to construct an algorithm
for image structure preserving denoising in.”
[he use of matrix fractional differential equation-
s in cconomic and quantum physics has been dis-
cussed in.!" Tt is shown in'! that fractional-order
models are better suited than their integer counter-
parts in modeling the properties of electrical encrgy
storage devices. A moderate epidemiological model
is nsed for the description of computer viruses with
a fractional order derivative having non-singular k-
ernel in!? It was demonstrated in'® that fractional
convectiondiffusion equations can capture the gas
Dreakthrough curves including their apparent posi-
tive skewness.

A spatial fractional-order thermal transport e-
guation with the Caputo fractional derivative is
proposed in'! to describe convective heat trans-
fer of nanofluids within disordered porous medi-
a in boundary layer flow. Viscoclastic constitutive
laws for arterial wall mechanics are investigated

using fractional order partial differential equation-
s (PDEs) in.’ A novel variable order [ractional
i ial-based texture enkh algorithm

with applications nsed in medical imaging is devel-
oped in.'® High-order fractional PDEs are applied
to the surface generation of proteins in.'7
Operator-based approach for the construction of
analytic solutions to fractional diff i i
is reported i1.)® This technique is based on Caputo
algebra of fractional power series and fractional d-
ifferentiation and integration operators defined on
the basis of this algebra. The main objective of this
paper is to investigate the fractal structure of such

transformations), but through scrics basis function-
s. However, these two approaches yield equivalent
results.

2.1. Caputo fractional power series

and operators
Let ,—l., n € N denote the order of the considered frac-
tional derivative. Consider the following sequence of
functions:

.
m}"l o S
I (ﬁ + 1)

If the derivative order reads & m < n, where m,n
are coprime natural numbers, then the basis is still
defined as in (1).

The following fractional power series are consid-
ered in this paper:

j=01,.... (1)

0
=Y eul cec. @
J=0

Series defined by (2) are called Caputo fractional
power series. The set of all such series is denoted as
©Fp. Addition and multiplication of series in this set
is performed using conventional operations. Note

kit
that ™ wl™ = (7 )uf. Given two fractional
power series f = 5% cju” and g = 3%
the product is defined in the Cauchy sense:

+%0 J X,
Form 2| 2 (2)"""1 )

3=0 \r=0 \n

P T(A+1) ) n
(;A)_I‘(;Av+1)l"(/\—;:+1)‘ @
denotes the generalized binomial coefficient for
AMpeRA 2 .

As proven in,"¥ the set “F,, with addition, multi-
plication and product by a scalar operations forms
an algebra ©F, over the field C.

where

Fractals'18-2
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For any function f ¢ “Fyn, Caputo integration
and differentiation operators are defined by the fol-
lowing equalities:

cpitm),, (n) b w] l‘_ L (5)
. 0, i=0
cplts .)“‘ ) o ) v (6)
wiy, J= L2...

Fractional derivatives and integrals of order % are

3.1. Derivation of recurrence
relations for the coefficients of
the solution to the fractional
Riccati equation

Since yn € € Fn, it has the power series form:

V),
n = Y cjuiy

j=o

¢eC. (9)

T}w dcﬁnmon of aperators “D'V ™ and convention-

represented by powers of the respective
.

(r:[n_m))"‘ 4 (CD“"”’)

3. SOLUTION OF THE
FRACTIONAL RICCATI
EQUATION

As mentioned in the Introduction, the main objec-
tive of this paper is to explore the fractal structure
of analytic solutions expressible in the form of Ca-
puto fractional power series. Without loss of gen-
crality, the following fractional Riccati equation is
considered:

n
(”D““")) o = agpl + argn + o, (7)

where ag € C and yy, = yn (ac s{,') ) 35‘"’1) €
€F,. The parameters s, ‘"’, correspond to
initial conditions [unnulated at @ =0

(CD(l;ll!)ky"

As noted in the previous section, if non-integers
powers of the series y, are considered, the operator

DO/ s not identical to
mer operator is applied to the Caputo power series
comprised of basis elements w{" , w}" ..., while the
latter acts on power series containing only integer
powers of .

Tn the remainder of this section, the solution to
(7) is derived by computing first the series coeffi-
cients of the solution y,. Once the recursive relation
that defines the series coefficients is known, a gen-
erating function for these coefficients can be defined
via an ordinary differential equation. The solution
to this equation is a transformation of the solution
to (7).

m. n
=" b

n—1. (8)

20

because the for-

with power series yield the
fnllnwmu ulpntmet

(5

Z"H""'(" : (10)

)
=5 (£ -

j=0 \r=0
:+Z Z 1"(1+1) w;")‘

;
a\Erear(Ea)
a

Inserting (9)-(11) into (7) and collecting like
terms results in:

=0 r=0

5
&jr
3 gl L Lr(z = ﬁ

J 5 (n)
" +1) +age; +46; S
(" ) ayej +djaq |wj

(12)
where d; = 1if j = 0 and zero otherwise.
Equation (12) yields a recursive relation for the
coefficients of the solution yy,:

i ;
o | S EH 1'(1 1)
Cjsn = a2 +1)+
o S Dr () )\
+aye; + djap,

(13)

for j = 0,1 To simplify (13), the following
transformation is used:

Fractals'18-3
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Rearranging (13) results in:

P X
Gyt =nlad (ﬁ/ﬁ"’ff,(',']r) faryd
r=0

+oja0); 7 =0,1,...

Note that the first n coefficients 7.8").... )
i Thus the series y, is made
to conform to initial conditions (8). Since the defini-
tion of operator “D/") yiclds that e = si;
0.1,...,n — 1, the following relation holds:

B
sﬁ”:l‘(;ﬂ)qﬁ"‘, k=0,1,...,n—1. (16)

Thus, for a given set of initial conditions, the first n
coefficients of recurrence sequence "
ed using sy, s, and further iterated via the

formula (15).

is comput-

3.2. Characteristic function of the
sequence (—y;'”;j =0,1,...) and
its generating equation

The characteristic function of sequence (q\j )

0,1,...) rcads:

-
enlt) = 3,470, (17
=0

Multiplying both sides of (15) by # and summing
from j = 0 results in the equality:

i

+o 1
Y G+mat =nfa > (D (ﬁinl,’l(’:)r) o)+
=0

=0 =1

s
+ay Z »,J("’f’ +aq
=y
(18)

Applying (17) to (18) yields:

1
D0 = n (aggh(t) + argnt) + ao) - (19)
e

Note that the left hand side of (19) can be rewritten
as:

(20)

Inserting (20) into (19) and simplifving yields an

ordinary differential equation with respect to the
generating function gp:

dt

n=1 >
+ 20 i _p=
=1

Note that for the non-fractional Riccati equation
(n = 1), the cquation (21) and the Riccati cquation
itself coincide.

=t (u,,:?,((_wu‘,a,.(t) +a,,) 7%
(21)

3.3. Solution of the fractional
Riccati equation via generating
function ¢,
The function pu(#) can be utilized to ex-
press solutions to (7). First, note that o =

.j = 0,1,.... Then y, can be writ-

(n) il’(i+1)7"" win
n 4 1—(

=):u ;&+l)_

= 2§05 = o (¥5).
i=0

(22)

Also, note that:

dyn 1 1a e

eEy 4 @3
which leads to:

dign _ .zt dyn .

5| =T (21)

(= YT

Evaluating both sides of (21) at ¢ = {/& vields:

2=t dyy
ne » —

(25)

Fractals'18-4
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that can be further simplified into:

n-1
na'st (% —agyf — ayn — n«) = 3 it
i=
(26)

Equation (26) yields the following result:

Remark

Let () := 204 2. Then, the initial val-
ue problem on the Riccati fractional differential e-
quation (7), (8) is equivalent to the initial value
problem on the following ordinary differential equa-
tion:

d g g
@ Wn—¥n) = e +aya e (27)
v (0) = 5 = 1", 28)
Corollary

Since the expressions for y, and ¥, are known,
(27), (28) can be rewritten as:

25w
W), ==
Z,{U 2% =
j=n

Note that (29) is equivalent to (15).

It can be observed [rom (26) that some solution-
s to the fractional Riccati equation remain viable
for any value of n. If the initial Titi are set

(n)
]

Rl
W+ ary

(29)

+ag.

25 ~ls

Fig. 1 Kiuk solutions to the non-fractional Riccati equa-
tion (31) for 1 = 1. The solid, dashed and dash-dotted lines
correspond 1o initial conditions s§ = 3,0 and —} respec-
tively.

A comparison of numerical integration results for
the fractional Riceati differential equation (31) of
different orders (n = 1,2,3) is presented below.

The non-fractional Riccati equation (31) with
n = 1 admits only well-known kink solutions,'*2°
depicted in Fig. 1. Note that the number of ini-
tial conditions on (31) increases as n grows, thus
vielding a larger set of solutions. A comparison of

lutions to the fractional and fractional Ric-

to s = & = ... = s, = 0, then the right
hand side of (26) vanishes and, futhermore 7"’ 4 0
only if j = kn for some k ¢ N. In that case, the
solution yn € ©F1 and satisfies the ordinary Riceati
equation:

% = agy} + avyy + ao. (30)
This observation leads to the conclusion that for any
n € N, the fractional Riccati equation (7) inherit-
s the non-fractional solutions of (30) for some ini-
tial ditions. Furtl e, to sk the frac-
tal nature of fractional differential equations, this
argument can be extended: any equation (7) with
order n = km, k,m € N inherits solution from the
fractional equation with orders n = k and n = m.

4. COMPUTATIONAL
EXPERIMENTS

In this section, the fractal nature of the analyzed

fractional differential equations will be demonstrat-

following fractional Riccati cquation:

4
("D“ "’) Yn = Y2+ Yo — 6. (31)

cati equations (for n =1 and n = 2 respectively) is
shown in Fig. 2.

Fig. 2 Solutions to equation (31) for n = 1 (solid linc) and
s

= 2 (dashed line). Tuitial conditions are set to 5§ = 57
2) _1
D=1

To compare numerical solutions to (31) with dif-
ferent values of n, the following difference measure

Fractals'18-5
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is introduced:
B ({50l o) =

N

- 3 (5 (e ) - -
e .2

where g (m; s‘lk).. s ,x{_‘i)l) is the numerical so-
Tution to (31) of order k with initial conditions
s .8 B is the constant integrator step-size
(the classical Runge-Kutta 4th order method was
used in the computations); N is the number of time-
forward steps. Initial conditions s§") and 5§ are set
to be equal.

The plot of Ava (s7) when o = o =  is
shown in Fig. 3. It can be scen that g coincides
with the kink solution of the non-fractional Riccati
equation when sgz’ = 0, which verifies the analytical
results presented in the previous Section.

Fig.3 Plotof Az (5f”) for sj’’ = o7 = 4. Note that the

fractional and non-fractional solutions coincide when <2 =

An analogous experiment was performed to com-
pare solutions of the non-fractional Riccati equation
and [ractional equation of order n The initial
conditions were set to s = s = . The contour
plot for A3 (s‘,“\x;") is given in Fig. 4. Tt can be
observed that the kink solution of the non-fractional
equation satisfies the fractional equation of order
n = 3, but only if initial conditions asm = sés) are

equal to zero. This result is further clarified in Iig.
5, where the section of the contour plot along the
line st = 0is given, However, it must be noted that
solutions to the non-fractional and fractional equa-
tions only coincide for a single pair of initial condi-
tions s‘,‘” s‘;) = 0. A plot of solutions y1,ya for
initial conditions not on the minimum point (0,0)
is given in Fig. 6.

Fig. 4 Contour plot of Ary (s{7,687) for o = oY =
olid Tines indicate contonr fines of Al 3; the black circle

denates the minimum point 2(* = <5 = 0 where A5 = 0

the dashed line corresponds to a plot of Ap g (u. s.",‘") shown

in 5; the diamond corresponds ta the initial conditions used

ta plot comparison of solutions yi and y3 given in 6.

“ a8 <6 o4 <2 0 02 o4 06 08 1

Fig. 5 Plotof A1z (u.sf‘), Note that the solutions coin-

cide on s§¥ = 0.

From the presented results it follows that solu-
tions of the fractional Riccati equations of orders
n = 2 and n = 3 coincide for initial conditions

Fractals'18-6
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Fig. 6 Plot of soutions y1 (solid line) and yy (tLuhcd line)

for initial conditions 4l = af = 1 (¥ = o
(2] = 5(13) = !gs) = 0. These results also hold true

ior higher order of fractional differential equation-
s, which means that the non-fractional kink solu-
tion satisfies any [ractional equation. Furthermore,
a similar argument can be used to show that a frac-
tional Riceati differential equation 7 of order n ad-
mits all solutions (when some initial conditions are
set to zero) of the same equation with order s if 1
divides n.

5. FRACTAL STRUCTURE OF
ANALYTICAL SOLUTIONS TO
FRACTIONAL RICCATI
EQUATION

Computational experiments presented in the previ-
ous Scction indicate that the solutions to the frac-
tional Riccati equation exhibit a nested, fractal-like
structure in which solutions of lower-order equa-
tions satisfy higher-order equations if some initial
conditions are set to zero.

Let p.g be relatively prime natural num-
bers. Consider Caputo power es algebras
€ Fom, © Fym. where m & N. The definition of frac-
tional power series yields the following properties:

B% 1\ CF i 7 O F (33)
and
iy “Fum € Fogin (34)

The relationship between different orders of frac-
tional power series is illustrated with more detail in

Fig, 7. It is clear that the basis elements correspond-
ing to different orders n of fractional differential e-
quations may intersect. Thus, as demonstrated via
numerical experiments in the previous Section, so-
lutions from a higher-order equation ¢ may inherit
solutions from a lower-order equation p < ¢ under
some initial conditions.

Consider two fractional Riceati equations (7),
(8) of orders p and ¢. Let g := ged(p,q) and de-
fine &) := B 4, Note that 5%, 5@ e N
and the basis u[ order p,q intersect at powers of
@i k=01

. if the following conditions on cocf-

ficients 7(" % @ fiold true:
W=0, jra (35)
A0 =0, irs (36)

where [ = 0,1,....

6. CONCLUSIONS

The fractal structure of solutions to fractional dif-
ferential equations has been investigated in this pa-
per. It is shown that the fractional Riccati equation
can be solved by considering the recurrence rela-
tions between the coefficients of fractional power se-
ries. It is proven that the generating function of the
series cocfficients satisfics an associated ordinary d-
ifferential equation and can be used to construct the
solution to the [ractional Riccati equation.

Furthermore, it appears that solutions to frac-
tional equations exhibit a nested, fractal-like struc-
ture, which is investigated via computational exper-
iments and theoretical investigation of the fraction-
al power series basis. This [ractality property re-
sults in the fact that higher-order fractional Riccati
equations inherit some solutions from lower-order
equations when a subset of initial conditions is set
to zero.

Further investigation of the fractal properties and
construction of analytical solutions of fractional d-
ifferential equations remains a definite objective of
future research.
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Abstract: An analytical framework for the extension of solutions to fractional differential equations
(FDEs) to the negative half-line is presented in this paper. The proposed technique is based on
the construction of a special characteristic equation corresponding to the original FDE (when the
characteristic equation does exist). This characteristic equation enables the construction analytic
solutions to FDEs are expressed in the form of infinite fractional power series. Necessary and sufficient
conditions for the existence of such an extension are discussed in detail. Tt is demonstrated that the
extension of solutions to FDEs to the negative half-line is not a single-valued operation. Computational
experiments are used to illustrate the efficacy of the proposed scheme.

Keywords: fractional differential equation; operator calculus; negative half-line; solitary wave;
inverse balancing
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1. Introduction

Even though the roots of fractional calculus are in the late 17th century [1], the subject has received
significant attention from researchers only in recent decades. The importance of fractional calculus
and fractional differential equations (FDEs) is evidenced by the emergence of fractional-order models
for real-world phenomena, which has lead to a plethora of applications of FDEs [2]. A short review of
the areas in which FDEs are applied is given below.
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The advantage of fractional-order models is that they can be used to model systems with the memory
effect, under which the current state of the system at time # = ¢, is affected by an interval of states at
time ¢ < #,. Thus, such models lend themselves naturally to the description of viscoelastic materials
[3, 4]. It can be noted that most biological tissues possess viscoelastic properties [5] which has lead to
the use of FDE:s to describe the evolution of various biomedical systems [6, 7, 8]. In physics, fractional-
order models are widely used to study dielectric materials [9, 10, 11] and Bose-Einstein condensates
[12]. FDEs have also been used to describe the memory effect in economic models [13, 14].

Due to the applicability of fractional-order models, a wide variety of methods have been developed
to construct solutions to FDEs. The Q-homotopy analysis transform is applied in order to obtain
analytical solutions to the fractional coupled Ramani equation in [15]. The solutions of integer-
order differential equations are used to construct the solutions to the models of cooling and spread of
epidemic diseases [16]. An Adams-type predictor-corrector method for the construction of numerical
solutions to FDEs is discussed in [17]. A new family of predictor-corrector methods for FDEs is
discussed in [18]. A Legendre operational matrix approach is used to numerically solve FDEs in
[19, 20].

The homotopy analysis method is adapted to FDEs for the computation of approximate solutions
to various equations, including fractional Korteweg-de-Vries, Burgers and Boussinesq models in [21].
A class of rational Krylov methods for the construction of numerical solutions to partial fractional
differential equations is considered in [22]. The traditional reproducing kernel method is adapted to be
applicable to FDEs in [23]. A restricted transform technique is used to solve irrational order FDEs in
[24]. Artificial neural networks are used to construct approximate solutions to FDEs in [25].

The main objective of this paper is to present a novel framework for the extension of the solutions
to fractional differential equation (FDEs) to negative argument values. The main idea of this procedure
is to construct the ordinary differential equation (ODE) that has a solution which can be transformed
to the solution of the considered FDE. Since the solution of the ODE also exists for negative argument
values, it can be used to extend the solution of the FDE for such argument values as well. This results in
complex-valued solutions to FDEs for negative argument values. Such extension is a novel viewpoint
into the solutions to FDEs, as they can be analyzed not only in the set x € R, but in the entire real line
x € R. This goes beyond the current state-of-the-art, as with current algorithms the solutions to FDEs
cannot be considered in the negative x-axis.

2. Preliminaries

2.1. Fractional power series and functions
In this paper we consider functions defined via power series:

+00

Jx) = Z v, @.1

i=0

where v; € R are coeflicients of the series and the base functions w”;n € N, j = 0,1,... are defined
as:

wi(x) = meN,j=0,1,.... (2.2)

o
r(+1)

AIMS Mathematics Volume 6, Issue 4, 3257-3271.
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The usual notation I'(x) is used to denote the gamma function [26].

The number n which denotes the order of the basis of fractional power series is selected with respect
to the fractional derivative order which is analyzed. If the fractional derivative is of order @ = ﬁ and
ged(k, m) = 1, it is taken that n = m [27].

Consider x > 0 and let {/x € R. Using the substitution 7 := +/x, (2.1) can be rewritten as:

IR < B _,-=*“°  Y
f(x)—f(r)—;y,(\/}) ;m’. Vi 1"—(§+1)' (2.3)

For subsequent computations it is required that f(t) be analytic (except for some finite number of
singularity points) and non-singular at 7 = 0. Thus, there exists a convergence radius |1| < To; Ty > 0.
The function f'will be referred to as the characteristic function of f.

For any given n € N, the set of all functions defined by (2.1) and meeting the requirements stated
above is denoted as “F,. Conventional addition and multiplicdtion operations on functions belonging

to CF, are defined. For example, given two series f = 375 v;w” and g = 3% b;w'"”, the product is

defined as: )
+oo [
fag= Z [Z (i)mb; k] w®. (2.4)

J=0 \ k=0
Note that the sum above obeys the finite summation principle: all coefficients of the above series are
given by finite sums, not series [28].
The set °F, with addition and multiplication operations forms an algebra over C. The properties of
algebra ©F, are discussed in detail in [27] and [29].

2.2. Caputo fractional differentiation operator

Let f=X 5y w"" CF,. Caputo differentiation operator of order ! is then defined as [30]:

+00
Cpiim £ = Z Vi+lW(,-")- 2.5)
=0 '
Note the Caputo derivatives of basis functions [27]:
('Du/mw(jn) - O’m J:= 0 2.6)
Wi, J= 1,200
Derivatives of rational order £; k € N are defined by higher powers of operator “D/ [29]:
- 0 V(= E8 |
cpytim)F k) n Ty
( D ) f=) vpwW=5) — "~ (\/}) . Q2.7
2 = R
In the special case of k = m - n;m € N, (2.7) reads:
,,,,, Feo l" +m+1 i
((D('/"’ f= Z " ‘}’j+mn (\"/)—C)
(2.8)
(s j
=5 [n(- +k)]y,-+,,.,.(vz) |
: n
720 \k=1
AIMS Mathematics Volume 6, Issue 4, 3257-3271.
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2.3. Riemann extension algorithm for Caputo functions

It is well-known that analytic functions can be extended beyond thcir convergence radius [31]. The
same idea is adapted for series of the type (2.1). Let f = X5y, (&/’) and choose /Xy such that x,
is nonzero and in the characteristic function’s convergence radlus 0 < xo < T}. Then (2.1) can be
rearranged:

= Sl ) ) = 53 (5 (45 o

=0 k=0

(2.9)
_Z[Z() ")H ({/}-f/x_n)k:Z'yj(q;_m)j_
=0
Coeflicients ¥; are defined as:
) (I;)”’(‘"/"—“)k_j- 2.10)

k=j
Note that coefficients (2.10) are finite, because the non-extended series f converges in its convergence
radius 0 < x < T. The convergence radius for (2.9) is [{/x — {/Xo| < Ty, Ty > 0. Furthermore, if the
same procedure is repeated for x; # xo that also satisfies 0 < x; < T}, then:

Zy, (45 &) = 37 (45 4= . @11)

J=0

as long as x is such that series on both sides of the equation converge.

This procedure can be applied to extend a function from the set “F, between two singularity points
(or singularity and infinity, if no other singularities are present) by rewriting the function in different
basis (\/_ - (/x—k)J .k =0,1,.... Note that these extended series coincide for x that lies in all of their
convergence radii, thus the extensions are unique.

Note that computational operations, such as the Caputo differentiation operator are only defined
for basis (\/})' (in the neighbourhood of x = 0). For this reason, all computations are first
performed in this neighbourhood and then extended throughout the entire function domain. Thus,
the zero neighbourhood of x is called the algebraic operation neighbourhood. The concept of this
neighbourhood is introduced in [28].

2.4. Generalized differential operator technique

In the subsequent sections of this paper, constructing series solutions to ordinary differential
equations (ODEs) is necessary. The generalized differential operator technique is used for this task. A
short description of this method is given in this section. A detailed overview can be found in [32, 33].

Let us consider an ordinary differential equation in the explicit form:

d—“ =P(t,z2); zc)=s; c,sER, (2.12)

AIMS Mathematics Volume 6, Issue 4, 3257-3271.
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where P is an arbitrary bivariate analytic function. The following generalized differential operator is
associated with the ODE (2.12) [34]:

D =D, + P(c, 5)Dy, (2.13)

where D, denotes the partial differentiation operator with respect to variable A.
The series solution to (2.12) can then be written in the form [32]:

+00
wtc,5) = Z
=0

-
« ,C) pic. ). (2.14)

j!
where pj(c, 5) = D/s.
3. Solutions to fractional differential equations with polynomial nonlinearity

The following fractional differential equation is considered in this section:
n
(Y = B0y b0, 3.1)

where y, € °F, and Q,, is an arbitrary mth order polynomial:

m

0n(y) = Z ay’; meN, a, #0. (3.2)
k=0

In the remainder of this section, solutions in the operation neighbourhood of x = 0 will be constructed
directly and later extended into different neighbourhoods using the procedure described in previous
sections.

3.1. Construction of solutions to (3.1) in the neighbourhood of x = 0

+00

Consider a series y, = X5 viw'” = £15%y; (\/})! € CF,. Inserting the function into (3.1) yields:

i(}é“)”w("")i:i i Z”[ 2 IL[%](W)’ +ao. 33)

J=0 k=1 770 \ky+thy=j =1

Let {x =tandy, = 35 y,#/. Then, (3.3) yields:
+oo
DG+ it =n0u(5). (34)
=0
Rearranging the sums in (3.4) yields:
+00
Dyt =m0 (5). 35)

J=n

AIMS Mathematics Volume 6, Issue 4, 3257-3271.
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n—1

It can be noted that adding ¥, Jjy;t"~" to both sides of (3.5) transforms the right side to an ordinary
derivative of y,,:

n-1

dfy\n -, n—1 . j-1
T n"" Qy + ,Z:; Jyit. (3.6)

v

F(ﬁil)

Noting that y; = yields a different form of (3.6):

n-1
£ fromSr)

Hr(i+1

Adding the initial condition y,(c) = s, Equation (3.7) can be solved using the method described in 2.4.
The generalized differential operator for (3.7) reads:

o r(,-{+ 1)

The solution to (3.7) (taking values of  for which the series converges) has the form:

n=1
D =D, +n [v"'Qm(s) ) ‘—’c"']Ds. (3.8)

+00

S
Yu =Yult,C,5) = Z ) pi(c, s), (3.9)

J!

=0

where pj(c, s) = D{:\.s. Noting that y,(x) =7V, ( \/}) yields Theorem 3.1.

Theorem 3.1. The fractional differential equation (3.1) admits the following general solution for any
parameter values ug; Vi, Va, . .., Vy-1i Xo 2 0:

+00 "/_ﬁ Vx_j
yulx) = ]Z;(j—,o)pj(vx_u o) (3.10)
where
(V%) = uo, G.11)
and
(CD""'))k)'., =v; k=1,...,n-1, (3.12)
x=0

if x satisfies |(/3 - ('/x—gl < Ty, Here T, > 0 denotes the convergence radius of (3.10).

Note that the results of this section can be extended to analytic functions. Taking Q(x) = 3;% ax*
instead of Q,,(x) and following the steps outlined above would yield a theorem that is analogous to
Theorem 3.1. However, the analysis of such equations is not the focus of this paper, thus we will
consider only polynomial Q,,(x) in the remainder of the text.

AIMS Mathematics Volume 6, Issue 4, 3257-3271.
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3.2. Cauchy initial value problems on (3.1) formulated at the origin point

Based on Theorem 3.1, the Cauchy initial value problem for (3.1) can be formulated at point x = 0:
(DY 3 = @) T =5(508)s (.13)

k
(CD‘”"’) Yol =ves k=1,....,n-1; (3.14)

x=0

=g, (3.15)
x=0

Note that since {/x in general possesses n branches, in these computations we select the branch with
a minimum value of arg x.

By the results obtained in the previous section, in the neighbourhood of x = 0, the problem (3.13)—
(3.15) has the solution:

A (\,,/})r
e (0. 4@
Yn = Z R (0.4”). (3.16)
=0
This solution can be extended by applying the algorithm discussed in section 2.3. First, choose a
sequence xo = 0 < x; < X, <...and freely choose u” € R. Then, compute parameters u,’, uﬁf), w5
W =g (e ny), E=0,1,... 3.17)
The general solution to (3.13)—(3.15) can then be written for any k:
In = n (2.82) =5 (37, Fnu?). (3.18)

for|<7—— VT;J <Ty, Ty >0,x20.

3.3. Cauchy initial value problems on (3.1) not formulated at the origin point
The rearrangements described in the previous section can be applied to construct a more general
Cauchy initial value problem, where the first initial condition can be formulated at nonzero x:
n 0
(D) g, = s T =Tkl (3.19)

(C-D(l/n))f\"y" =vy k=1,....,n—-1; (3.20)

x=0

=ul’; x #0. (3.21)

x=x0

Analogously to problem (3.13)—(3.15), the solution reads:
Yn =Yn ()Q Xo, H:JO)) = jv\n (‘7}. mg NZJO)) . (322)

Note that initial conditions that correspond to fractional derivative values still must be formulated at
x = 0 for solution (3.22) to hold true.

AIMS Mathematics Volume 6, Issue 4, 3257-3271.
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4. Solutions to fractional differential equations with polynomial nonlinearity for negative values
of x

As stated carlier, the main objective of this paper is to extend the solutions to FDEs so that they
would exist for negative values of argument x. This extension results in complex-valued fractional
power series, which are defined in the following subsection. Note that this extension is not possible
when considering fractional derivatives in the traditional Caputo sense, as they are defined via integrals
only for non-negative values of x.

4.1. Complex fractional power series

Let us consider an extension to the power series basis presented in section 2.1:

i j
(W('"))/. = (Vm)l) exp (ijargx L3 2nk) , 4.1)

kT (T n
where x e R, k=0,...,n—1;j=0,1,...and Vx| € R denotes the root with the lowest value of arg x.
The basis with £ = 0 corresponds to wj."’ presented in section 2.1, while k = 1,2,...,n — [ result in

complex-valued functions (W(i"))k

Using (4.1), the standard fractional power series (2.1) can be extended into n complex-valued series:

+00

fix) = Z v; (wﬂ"))k; k=0,....,n-1 4.2)

=0

4.2. Extension of solutions to FDEs with polynomial nonlinearity

By Theorem 3.1, the solution to
((‘D(U”))n Yu = On ()'n): Yn = Yn(X), 4.3)

reads:

j
& (V- ym)
yulx) = Z} - — (4%, ). 4.4
= y
where coefficients p; are generated via the generalized differential operator technique as described in
previous sections. Using the basis defined in the previous section, the solution (4.4) can extended into

the complex plane:

= \"/m—\/"l-’“ﬂj arg xo + 27k arg xo + 2k
(X)) = Z( 7 ) cxp(ij i )1’1(\'" |xol exp (l'%)v“o) 4.5)

= n

Denoting a := arg x, and ,Bf,k)(a) 1= exp (i"‘z""), series (4.5) can be rewritten as:

n

& (Y - wal)
() = Z (X]—"ﬂ)

=0

(/ly() (Ixo0l, @, o) + ipy") (Ix0, , un)) , (4.6)
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where
,1‘/.“) (Ixol, @, uo) := Re ((ﬂf,") (cr))i p; (Mﬂff’(a), uo)); 4.7
u® (0], 10) 1= Im (( @) by (il 0@, u)) : “8)

Expression (4.6) allows the consideration of solutions for x < 0, however, these solutions are multi-
valued (a total of n branches corresponding to the number of distinct roots {/x) and take complex
values.

4.3. Riemann extension scheme for solutions of FDEs with negative argument values

A refinement of the procedure described in section 3.2 is needed to construct particular solutions to
FDEs (4.3). Two sequences of numbers are chosen: --- < x_, <+ <x; <0;0<x; <x <...and
Xo = 0. Forany k = 0,...,n - 1, the initial condition s:f) € R can be taken freely.

Sequences s% and 5% are computed using relations:

o8, =3 (), ($, )i =01 )
=), ($), ) P01 filo}

Here y denotes the solution of the ODE that the FDE (4.3) is transformed to, as given by Theorem 3.1.
Then the particular solution to (4.3) corresponding to the kth branch of the root {/x reads:

O =3((¥9), 3 (4%), ). @.11)

where r =0, +1,+2,....

Note that the sequence --+ < x_; < xo < x; < ... must be chosen in such a way that the series
generated by y are convergent in both R and C. Also, the point x = 0 is a branching point for the
solution to the FDE, thus the functions (y,(x)), are non-differentiable at this point.

5. Computational experiments

Let us consider the non-fractional Riccati equation:

B opesy=5 (GRY)
dx

Y(xo) = uo. (5.2
It is well-known that (5.1) admits the kink solitary solution:

s (g — ay) exp 2y (x — X)) — @y (g — az) exp (2az (x — X))
(o — ay) exp (2 (x = Xp)) = (uy — 1) exp (22 (x = xo))

y(x, xo0,up) = . (5.3)

where @) =3,a> = —% are the roots of polynomial 2y* — 5y — 3. Solution (5.3) is depicted in Figure 1.
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Figure 1. Kink solitary solution to (5.1) for initial conditions xo = 0, ug = 2/5.

Suppose that n = 2, xo = 0 and let us consider the fractional Riccati equation:
(°DUP)’y = 2y? -5y -3,

As stated earlier, the initial conditions read:

DIy =vi; (0=,
x=0

(5.5)

The solution to (5.4), (5.5) is constructed using the algorithm described in section 4.3. Note that since
VX possesses two branches, two solutions exist. The real and imaginary parts of these solutions are
shown in Figure 2. Note that solution is purely real for x > 0 — the imaginary parts appears only for

negative values of x.

Re(y) Im(y)
2
1

x
-3 -2 -1 1 r— =2 T~ 1 2

4
o P -1
-2 -2

(a) (b)

Figure 2. Real (a) and imaginary (b) parts of the solution to the fractional Riccati equation
(5.4) for initial conditions x, = 0, ug” = 2/5,v; = 5. The green solid line and blue dashed

line denote solutions corresponding to different branches of v/x.

It can be seen in Figure 3 that as v, approaches zero, the solutions to (5.4) approach the kink solitary

solution (5.3).
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(a)

Figure 3. Solutions to the fractional Riccati equation (5.4). Initial conditions are set to
X =0, u{,m = 2/5 for both (a) and (b). The initial condition corresponding to the coefficients
of the fractional series powers is set to v; = 5,v; = 1 in (a) and (b) respectively. The green
solid line and blue dashed line denote solutions corresponding to different branches of v/x.
The black line corresponds to the non-fractional solitary solution (5.3).

Taking n = 3 results in the fractional Riccati equation:
((‘D(l/3))3)' =2y = 5y—3, (5.6)

The number of initial conditions for (5.6) increases to three:

>
DAY =y (CD”“)) ¥ o= yO0) =4 (5.7
=0 =0

Riccati equation (5.6) has three solutions: two of them are complex-valued and one is a real-valued
solution. The real and imaginary parts of these solutions are depicted in Figure 4. A spatial plot for
two different sets of initial conditions is shown in Figure 5.

Note that the as x — =+oo, the fractional solitary solutions approach the non-fractional kink solitary
solution, This is due to the properties of the characteristic equation (3.6). Thus, the limits of the
fractional and non-fractional coincide as x — +co.
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Re(y) Imiy)

Figure 4. Real (a) and imaginary (b) parts of the solution to the fractional Riccati equation
(5.6) for initial conditions xy = 0, ug)’ =2/5,vi=-1L,n, = % The green and red solid lines
and blue dashed line denote solutions corresponding to different branches of +v/x. Note that

the solution corresponding to the red solid line is real-valued.

(@) (b)

Figure 5. Solutions to the fractional Riccati equation (5.6). Initial conditions are set to
x =0, ug)’ = 2/5 for both (a) and (b). The initial condition corresponding to the coeflicients
of the fractional series powers is set to v; = —1,v, = 5 in (a) and vy = =1, v, = 1 in (b).
The green and red solid lines and blue dashed line denote solutions corresponding to different
branches of v/x. The black line corresponds to the non-fractional solitary solution (5.3). Note
that the solution corresponding to the red solid line is real-valued, but does not coincide with
the the non-fractional solitary solution.
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6. Conclusions

An analytical framework for the extension of solutions to FDEs into the negative half-line is
presented in this paper. The main idea of this extension is the construction of a characteristic differential
equation for a given FDE. The solution to the characteristic equation is used to construct a fractional
power series solution to the FDE. This solution is then extended using classical Riemann extension
techniques to enable the consideration of the solution at a neighbourhood different than the origin
x = 0. Furthermore, this extension is valid for both positive and negative values of x, which extends
the solution to the entire real line.

As demonstrated by computational experiments, the solution to the FDE is complex-valued for
negative values of x. Furthermore, there exist n branches of solutions, where n is the denominator of the
fractional differentiation order. If the initial conditions (3.20) that correspond to fractional derivatives
tend to zero, the solution to the FDE tends to the non-fractional solution of the same equation.

The presented technique provides a solid foundation for the construction of solutions to FDEs on the
negative half-line. In particular, this allows to travel backwards in time from the initial conditions of
a FDE - such a possibility has not been reported previously. It is well-known that fractional order
derivatives help to model memory effects in dynamical systems. Therefore it would be tempting
to extend the available coronavirus pandemic models [35, 36] by introducing fractional derivatives.
However, the results of this paper show that such an extension would eliminate the possibility of
the unique backwards extrapolation. These questions as well as the physical interpretation of the
extensions to the negative half-line remain a definite objective of future research.
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Abstract: An operator-based scheme for the numerical integration of fractional differential equations
is presented in this paper. The generalized differential operator is used to construct the analytic
solution to the corresponding characteristic ordinary differential equation in the form of an infinite
power series. The approximate numerical solution is constructed by truncating the power series,
and by changing the point of the expansion. The developed adaptive integration step selection
strategy is based on the controlled error of approximation induced by the truncation. Computational
experiments are used to demonstrate the efficacy of the proposed scheme.

Keywords: fractional differential equation; numerical integration; generalized differential operator

1. Introduction

Fractional differential equations (FDEs) play an important role in many research
fields. From classical applications of FDEs in modeling viscoelasticity [1,2], to engineering
problems [3,4], to more novel fields for the subject such as medical research [5,6] and
economics [7,8], FDEs are becoming increasingly widespread. It is natural that a wider
usage of fractional-order models has led to a growing interest in numerical integration of
FDEs. Some examples of recent research are given below.

A numerical integration technique based on converting the FDE into a set consisting
of integral and algebraic equations is presented in [9]. A recursive algorithm based on
the Laplace decomposition is used to construct semi-analytical solutions to a Ray-tracing
equation in [10]. A new scheme for the construction of numerical solutions that can be
applied to several types of fractional derivatives is discussed in [11]. The Ritz approxima-
tion is applied to construct numerical solutions to the fractional Fokker-Planck equation in
[12]. An approach based on Chebyshev polynomials with time-dependent coefficients is
employed to construct numerical solutions to Caputo-type time-space fractional partial
differential equations with variable coefficients in [13].

Miintz polynomials are used in conjunction with the collocation to develop a scheme
for the numerical integration of FDEs in [14]. Chebyshev polynomials are used in a similar
scheme in [15]. The infinite state representation of the Caputo derivative is used in [16]
to develop an algorithm for the numerical integration of FDEs. A number of approaches
applying wavelets to obtain numerical solutions to FDEs have been considered in [17,18].
A survey of current methods and a collection of software for the integration of FDEs,
including explicit, implicit and predictor—corrector methods can be found in [19].

The main objective of this paper is to present a novel FDE integration scheme based
on the generalized differential operator technique. The presented technique consists of
constructing piecewise-polynomial approximations to the solutions of FDEs via power
series. Using these approximations, integration with an adaptive step-size is performed to
construct the numerical solution.
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https:/ /www.mdpi.com /journal /mathematics



Mathematics 2021, 9, 1372

20f17

Riccati-type equations have recently been discussed in a number of publications
concerned with presenting novel FDE integration schemes. He’s variational method is
applied to the fractional Riccati equation in [20]. A novel homotopy perturbation technique
is applied to fractional Riccati models in [21]. A modification of the homotopy perturbation
method is used in [22] to construct numerical solutions to the Riccati-type FDEs.

As an example, the following form of the fractional Riccati equation is considered in
developing the numerical FDE integration strategy:

cp1/2)? 2
x( DY ) y=ap+my+ay; apa,ackR, (1)

where “D'/2 denotes the Caputo fractional differentiation operator.

The paper is outlined as follows. Preliminary results and motivation are discussed in
Section 2. The numerical integration scheme is described and validated by comparing the
numerical solution with a known solution in Section 3. The integration scheme is applied
to an FDE with no known analytical solution in Section 4. Concluding remarks are given in
Section 5.

2. Preliminaries and Motivation
2.1. The Generalized Differential Operator Scheme for ODEs

The main point of the proposed numerical scheme for FDEs is based on the trans-
formation of the considered FDE into a corresponding ODE [23]. The solutions to the
obtained ODEs can be constructed via the generalized differential operator technique. A
short outline of this technique is given in this section. An in-depth review for n-th-order
differential equations is presented in [24], and for systems of differential equations in [25].

2.1.1. The Construction of Analytic Solutions to ODEs in the Series Form
Consider the following explicit n-th-order ODE initial value problem with respect to
function z = z(x):

drz dz a1z

W”("'avw—dx,,-])' @
dkz

z(e) = so; NX::S"; k=1,...,n-1 3)

The generalized differential operator respective to (2), (3) reads:

n—2
D =D+ 2 k41 D5 + P(C, S0/ 'fsu—l)Ds..—w )
k=0

where D, denotes the partial differentiation operator with respect to variable a.

Let A
pj = pj(c,50,---,50—1) = Dlso. 5)
The series solution to (2), (3) reads:
(x—cy

i pj (€50, -+ Su—1)- (©)
4t

zZ=

0%

2.1.2. The Construction of Closed-Form Solutions to ODEs

Necessary and sufficient conditions when the analytic series solution can be trans-
formed into a closed-form solution are given in [24] and are briefly described in this
sub-section.
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Let us define q; = ’,L,’,] = 0,1,... and consider the following sequence of Hankel
determinants:
d, :det( _) i el
n Qj+k—2 1<j kgt , @)

The sequence of series coefficients g;,j = 0,1,... is an m-th-order linear recurring se-
quence if and only if the following conditions hold true for the sequence of Hankel
determinants [26]:

dn #0; dpyx=0, k=12,...; meN 8)

If the above conditions do hold true, the coefficients g; can be expressed as:
m

a5 = Al ©
k=1

where A, are constants and ;. are roots of the characteristic polynomial [26]:

o0 noo--- qm

n Q2 - qm+1

: oo =0 (10)
u—=1 Gm - J2m—1

1 p ... p"

Combining the series solutions (6) and (10) and using the geometric progression sum
formula 3% ¢/ = ﬁ, || < 1, the solution to (2), (3) can be expressed in the closed form:

4w m +oo m

- s i - Ak
z Z(X c)qj ,;Aki;)pk(x <) k;l—pk(x—c)' (11)

j=0 1

As shown in [24], (11) can be transformed into a solitary solution with a particular sub-
stitution. However, this transformation can be performed if and only if the sequence of
coefficients Ay, k = 0,1,... isa linear recurring sequence.

2.1.3. Truncated Series and Shifted Centers of the Expansion

The solution to a given ODE can be approximated by a truncated series when it
is not possible to transform the series solution into the closed form. Note that this is a
straightforward operation since the analytic expressions of the coefficients p;(c, o, ..., s,-1)
can be produced by the generalized differential operator.

Consider a first-order ODE:

2 = P(x,z); z(c)=s. (12)

The derivations described in previous sections yield the series solution to (12):

+0 i
z(x,c,8) = Z (x ; &y pj(c,s). (13)
= I

Let us set ¢y = ¢,s9 = s and consider zy/(x, cg, o) a truncated power series (13) by limiting
the highest-order terms to xV; N e N:

N x— )i
zn(x, co,50) = Z (xl,—'m)pi(cu,so). (14)
j=0 i

Naturally, (14) is an approximation to (13) and generally decreases in accuracy as x moves
further away from the expansion center cy. However, a new approximation zy(x, ¢y, s7)
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at center x = ¢; = co+ My can be derived from (13). The parameter s; is chosen as
51 = zn(cy, ¢p, So) in order to ensure that zy (cy, co, So) = zn(c1, €1, 51). The described steps
can be repeated for a new center, yielding a piecewise-polynomial approximation zZ(x) of
the solution to (12):

Z(x) =2Zn(% Cibr); LX<y, K=10,1 0005 15)

where g = c < ¢ <+ < ¢ <...and 59 = 5,5, = zN/(ck, Ck—1,S¢—1)- The difference
Iy = ¢ — cx—1 > 0 is denoted as the step-size of the k-th step. The selection of this step-size
to maintain a chosen level of error between the real solution z(x) and the approximation
Z(x) is a non-trivial problem, which is considered in the remainder of the paper.

2.2. The Ordinary Riccati Equation and Its Solution

As this paper deals with the fractional Riccati Equation (1), it is important to state the
main results concerning its ordinary counterpart.

Consider the Riccati differential equation [27]:

% = Ap+ Az + A% z(c) =s. (16)

It is well-known that this equation admits kink solitary solutions [25,27]. However, they
cannot be directly obtained using the generalized differential operator technique. The
generalized differential operator with respect to (16) reads:

D=D,+ (AU +Ais+ Azsz)Dp a7)

The solution to (16) is then given by (6).

Let pj = Dis and define the sequence of coefficients %,] = 0,1,.... Because this
sequence does not satisfy the condition (8) for any m, the sequence is not a linear recurring
sequence and the solution to the Riccati equation cannot be constructed using the algorithm
described above. However, the following independent variable substitution

T=exp(yx); Z(x) =z (3’ lnf) = z(x), (18)
where 5 € R, 7 # 0, yields the transformed Riccati equation:
~dz 5 2. o(a
"% 35 =Ao+MZ+ A2 Z(@E) =s, (19)

where & = exp(ic).
The generalized differential operator for (19) reads:

D 1 " 2
D_D‘.+ﬁ(An+Alb+Azs )D_,.. (20)

Defining p; = D's;j = 0,1,... now yields the sequence 3 = %, which becomes a linear
recurring sequence of order 2 at 7 = Ay(z; — z,), where 2y, z, are roots of the polynomial
ArZ2 + Arz + Ag = 0[28].

This result yields the closed-form kink solitary solution to the Riccati equation [28]:

z(s —z) exp(n(x — ) —y1 (s —y2)

= e —0) = (5-12)

@1
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2.3. The Fractional Power Series and Caputo Differentiation

Analytic solutions to fractional differential equations can be represented in the form
of the fractional power series [23]:

+00
F@) = N v ), 2)
j=0

where n € N denotes the order of the basis of fractional power series, v; € R are the
coefficients of the series, and w;") are the base functions defined as follows [23]:

&
r({i,+1)'

where I'(x) denotes the Gamma function [29].
The Caputo differentiation operator D'/ is defined for the base functions [30]:

wj(")(x) = nelN;, j=0,1,..., (23)

DY x) = 0;  CDYw (x) m o) j = 1,2, (24)

Subsequently, the order k/n Caputo derivative of (22) reads:
JRTA. & m 5
(DY) ) = 3} v (@), 25)
j=0

Note that this definition of the Caputo differentiation operator is congruent with the
classical integral-based definition [31].

2.4. Motivation: The Fractional Riccati Equation

Note that the closed-form solution to the Riccati ODE (16) cannot be constructed
directly using the generalized differential operator technique. The substitution (18) is
needed to map the Riccati ODE to (19), which in turn can be solved via the method
described in the previous section.

Due to these reasons, we consider the Riccati fractional differential equation in the
form (1) as a generalization of (19) rather than directly considering the fractional analogue
of the Riccati Equation (16). As shown in [32], closed-form solutions to equations of
the form (1) can be constructed, which is of vital importance to assess the efficacy of the
numerical scheme presented in this paper.

2.5. Transformation of the FDE into the Characteristic ODE
Consider the following fractional differential equation:

(D")'y = Qu; 26)

cpi/m\¥
y(xo0) = ug; ( DY )y =gy k=12swn—=1; (27)

x=0

As demonstrated in detail in [23], setting § = y(t") and rearranging transforms (26) into
the following ODE:

n—1 A )
G=n| Q@) + Y ——t7 | §(¥/m) = uo. 28)
=1 l‘(ﬁ +1)
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The analytic solution to (28) yields the solution to (26) [23]:
y(x) = (V). @9)

Thus, (26) and (28) are equivalent: if an analytical or numerical solution to (28) can be
constructed, it immediately yields the FDE solution via (29).

3. The Development of the Numerical FDE Integration Scheme
3.1. Adaptive Step-Size Selection Strategy for the FDE Integration Scheme

As discussed in Section 2.1.3, the development of the step-size selection strategy for the
numerical FDE integration scheme is necessary to ensure a chosen level of computational
errors between the real and the approximated solutions. A fractional differential equation
with the known analytic closed-form solution is investigated in this section.

Consider the following fractional Riccati equation:

x(CDUZ)Zy = 1Syl 30)

y1)=1 ‘DY

-, (1)
x=0

Transforming (30)—(31) into the characteristic ODE (see Section 2.5) yields:

a4 _ 2(1-27+7)

= - — 32
¥ =1 F=7x); §(x)=y(x). (33)

The initial-value problem (32)~(33) has the following analytic closed-form solution [32]:

) = 1 (M) h(r2) — h(r)Ya(r))

1, 34
1% (r)h(12)—o(rYi(m) o

where 71 = 4\/—%, T2= 4V'—ﬁ; Jp(x) and Yj(x) are Bessel functions of the first and

second kind respectively.

Alternatively, the numerical solution to (32)—(33) can be obtained via the technique

presented in Section 2.1.3. Let iy (x, ¢, s) denote the truncated power series approximation
to (32)~(33):

N (x—¢)i

In(xes) =Y, (x . o

= T

pj(cs), NeN. (35)

The analytical expressions of coefficients pi(c,s),j =0,...,7are given in Appendix A.
Let us execute the following steps:

¢ Step 1. Let ¢p = sp = 1. The absolute differences Ay (x, co,s0) = [y(x) — ¥n(x, co, 50)|
are computed for N =0,...,10and x € [1, L], where L is the upper bound of x. The
contour plot depicting various levels of Ay (x, co, o) is presented in Figure 1a. It can be

observed that for a fixed value of N the value of Ay(x, ¢y, sp) increases as x increases.

New initial values ¢y, s; for the next approximation are computed as follows:

¢ = argmaxAy(x,co,50) <& 51 =yn(c1, 0, 5), (36)
x

where 4 is the maximal allowed error of the numerical solution. Naturally, higher

values of N resultin larger values of ¢; at a cost of greater computation time. Let N = 6.

Then, the resulting values of ¢; for different levels of § are displayed in Figure 1b
(denoted as black dashed lines, while the thick gray line denotes the analytical solution
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and the black solid line denotes the numerical solution). Figure 1 part (a) contains a
contour plot with various levels of Ay(x, co, so) (absolute differences between the exact
and numerical solutions to (32)-(33)). Parameter & is set to 10~ for the remainder of
this computational experiment, as shown by the point in Figure 1a.

e Stepk =2,3,...,K. Analogous computations are performed for steps k = 2,3, ... K.
Firstly, differences Ay(x,cr—1,5c1) = [§(x) — ¥n(x,ck—1,5c—1)| are evaluated for
N =0,...,10 and x € [¢;_y, L] and then new initial values ¢, s; are computed:

cx = argmax An(x,cx_1,5¢-1) <& 51 = Yn(Cks Ch—1,5k-1)- (37)
x

Results of the steps k = 2,3 are displayed in Figures 2 and 3.

7 200316 146 185 1840
N Wt ' t
x

(b)
Figure 1. The determination of the second set of initial values for the numerical solution (35). The

first set of initial values is ¢ = 1, sy = 1. Part (a) depicts a contour plot of the error for different
values of N. Part (b) depicts the next initial points for different errors for N = 6.

129 1ap L em Lss 1m
of w0t w0t 10l 't
z

(b)

Figure 2. The determination of the third set of initial values for the numerical solution (35). The
second set of initial values is ¢; = 1.229, s; = 0.750. Part (a) depicts a contour plot of the error for
different values of N. Part (b) depicts the next initial points for different errors for N = 6.
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( x
(a) (b)
Figure 3. The determination of the fourth set of initial values for the numerical solution (35). The
third set of initial values is c; = 1.409, s, = 0.578. Part (a) depicts a contour plot of the error for
different values of N. Part (b) depicts the next initial points for different errors for N = 6.

The number of steps K is set to K = 6 in this study. The final piecewise-polynomial
approximation iy (x) to (32)—(33) is depicted in Figure 4. Let the change in the numerical
solution ¥ (x) at each step be denoted as

YN 12
A —

= max_ yn(x,c_1,8-1)— min ¥In(x 1851 k=1,...,K 38,
N CHSI&_‘yN(/kIIkﬂ ckilSXSCkJN(/klfkl)f o (38)

The relationship between A_u?k‘f) and the step-size /1, can be approximated via the following
linear regression line:

Ay = &+, (39)

where K((,N), K‘(N) € IR are regression coefficients. The constructions of linear regressions
for N = 6 and N = 7 are illustrated in Figure 5 (parts (a) and (b), respectively). Black
circles depict the values obtained from the final piecewise-polynomial approximation
shown in Figure 4. The digits above the black circles denote the step number. The gray
line corresponds to the linear regression (39). Regression equations for N = 6 (part (a))
and N = 7 (part (b)) read Ay = 0.26572 —0.29293h and Ayy = 0.27996 — 0.11987h,
respectively.

All computation steps performed for N = 6 were also repeated for N = 7 to obtain
the regression depicted in Figure 5b. Note that while the coefficient of & decreases for a
higher-order approximation, the overall trend remains unchanged.

The identification of the relationship between the change in the numerical solution
and the step-size can be incorporated into the numerical FDE integration scheme that is
described in the next section.
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09+

0.2+

0.1

2.756

Figure 4. Gray and black solid lines correspond to the exact solution and the piecewise-polynomial
approximation to (32)-(33), respectively (N = 6,6 = 10~%). Black dashed lines separate the parts of
the numerical solution obtained at different steps. Circled digits denote the step number.

N=6 N=7
0.26 0.3 T
1 mputational expenmcml . o computational experiment|
> fitted curve |—fitted curve
0.24
i
0.22
0.25
0.2
S 53
4 <4
0.18
§
.
0.2
0.16
4
.
0.14
i
0.12 - 7 0154 - -
015 02 025 03 035 04 0.2 0.4 0.6 0.8
h h
(a) (b)

Figure 5. The relationship between Ayy (the change in the numerical solution yn(x)) and the
step-size h. Parts (a,b) correspond to N = 6 and N = 7, respectively.
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3.2. The Implementation of the Numerical FDE Integration Scheme
Let us consider the following fractional differential equation:
o\ 2
(°D2)'y = Qw); 40
y(xo) =uo; (CDV)y| = op. 1)
x=0

The numerical solution to (40)—(41) can be obtained via the integration scheme pre-
sented below:

1. Transform the FDE (40)~(41) into the characteristic ODE using the procedure described
in Section 2.5:

dj _ pes s,
I = PWvo) (42)
¥l(co) = so- (43)

2. Obtain analytic expressions of coefficients p;(c,s) in the series solution (35) to the
ODE (42)-(43) (see Section 2.1.1).

3. Fix the values of the following parameters: the order of the approximation N, the
upper bound of the independent variable L, the upper bound for the step-size h(\!),

the upper bound for the change in the numerical solution Aﬁf\'l‘l). Note that the

recommended values for the parameters h()) and Aﬁ(Nu) are derived from the study
presented in the previous section (Figure 5). The value #(!) corresponds to the highest
value of i on the regression line, while the value Agﬁ” corresponds to the highest
value of Ayy on the regression line.
4. Repeat the following steps until the upper bound L is reached (k = 0,1,2...):

e  Evaluate coefficients pj(ck,sk),j =i, N

¢ Find the lowest value of x at which at least one of the following conditions

is violated:

he(x) = x — ¢ < hW; (44)
Ak i o . u

AN (x) = max n(%,ce5) ~ max In(Eces) <A (49)

A7) <k 4+ My (x), (46)

where x((,N), KE‘\) € R are regression coefficients determined in Section 3.1.
The maximum and minimum values in (45) are necessary to ensure that the
change in the numerical solution is computed correctly for non-monotonous and
periodic functions.

*  Assign new initial values:

Chp1 =X —&  Seq1 = YN(Ck1, Chs58), (47)

where ¢ is an arbitrary small number.

5. Combine the obtained parts of the numerical solution to the ODE (42)-(43) into the
piecewise-polynomial approximation yy (x):

IN(X) = ON(x o st), ek S x <cepr, k=0,1,... (48)

6. Construct the numerical solution to the FDE (40)~(41) by applying yn/(x) = #n(v/X).

In order to validate the proposed numerical FDE integration scheme, it is applied to
the FDE (30)—(31) presented in the previous section. The resulting piecewise-polynomial

95



96

Mathematics 2021, 9, 1372

110f17

approximations iy (x) and yn(x) are depicted in Figure 6. Part (a) depicts the exact (gray
solid line) and the numerical (black solid line) solutions to the characteristic ODE (32)—~(33)
(N =6,L =3, =1077). Black dashed lines separate the parts of the numerical solution
obtained at different steps. Circled digits denote the step number. Part (b) displays the
exact solution (solid gray line) and piecewise-polynomial approximation (black solid line)
to the initial FDE (30)-(31).

(TR TIT

wam wm s
(a) (b)
Figure 6. The application of the numerical FDE integration scheme to (30)—~(31). Part (a) depicts
the exact and approximate solutions to the characteristic ODE, while part (b) depicts the exact and
approximate solutions to the FDE.
4. The Application of the Proposed Numerical FDE Integration Scheme
Consider the following fractional Riccati-type equation:

1\ 2
x(CD”'Z) y=1-2y+2 % 49

= (50)

Transforming (49)—(50) into the characteristic ODE (see Appendix B for a detailed deriva-
tion) yields:

Cﬁ _ 2(1 27 + 2 QS) i; -
dx x NG
M =1 F=9(); §x) =y). (52)

Note that the FDE (49)-(50) does have a solution (the existence of the solution follows
from (26)—(28)). However, the solution to (51)—(52) cannot be expressed in a closed form,
because the coefficients p;, as defined in (5), do not form a linear recurring sequence.
Furthermore, (51) cannot be transformed via such an independent variable substitution
if the coefficients would form a linear recurring sequence. The analytical expressions of
coefficients P (¢,s),j=0,...,6can be found in Appendix C.

The numerical FDE integration scheme presented in the previous section is used in
order to obtain the piecewise-polynomial approximations 7y (x) and y(x) to (51)-(52) and
(49)—(50), respectively. The linear regression equation approximating the relationship be-
tween the step-size /1 and the change in the numerical solution Af;if) derived in Section 3.1
for N = 6 (Figure 5 part (a)) is used in order to adaptively select the optimal step-size.
The resulting numerical solutions 7y(x) and yy(x) are displayed in the Figure 7. Part (a)
depicts the numerical solution to the characteristic ODE (51)—(52) (N = 6, L = 3,6 = 107°).
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Black dashed lines separate the parts of the numerical solution obtained at different steps.
Circled digits denote the step number. Part (b) displays the piecewise-polynomial approxi-
mation to the initial FDE (49)—(50). The values of i and A'y‘(,f, ) ateach step are presented in
Table 1.

s fasss

' 2 ] v W

5 - 5
o (

@) ®

Figure 7. The application of the numerical FDE integration scheme to (49)-(50). Part (a) depicts
the exact and approximate solutions to the characteristic ODE, while part (b) depicts the exact and
approximate solutions to the FDE.

Table 1. The values of the step-size i and the variation Aﬁf\’:) in the numerical solution to (51)-(52)
ateachstepk=1,...,8.

Step k Iy Aﬁ((,k)
1 0.080 0.1992
2 0.128 0.1990
3 0.217 0.2000
4 0.311 0.1743
5 0.393 0.1500
6 0.399 0.1185
7 0.399 0.1006
8 0.073 0.0170

5. Concluding Remarks

A novel semi-analytical scheme for the numerical integration of fractional differential
equations was presented in this paper. The proposed integration scheme is adaptive: the
approximation error can be selected arbitrarily, and the algorithm is adapted by using
a higher-order piecewise-polynomial approximation. Furthermore, the scheme can eas-
ily be extended into higher-order fractional differential equations, since the generalized
differential operator technique is applicable to differential systems of any order.

All computational experiments in this paper were performed on fractional Riccati-
type nonlinear differential equations. Riccati equations play the central role in non-
linear dynamics because solutions to ordinary Riccati equations do represent soliton-
type solutions [28,33]. Without doubt, the proposed scheme can be used for numerical
integration of any other class of fractional differential equations.

While the FDEs analyzed in this paper have all had a base derivative order of & = ;
for simplicity, the scheme remains valid for any fractional derivative base order a = %

This change is implemented by replacing the operator D'/2 with “D'/*, while the algo-
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rithm to obtain the characteristic ODE remains unchanged except for a higher number of
initial conditions.

The presented integration scheme cannot advance past a singularity point. The size
of the integration step becomes arbitrarily small as the solution nears the singularity
point. This fact can be considered the limitation of the scheme. However, this feature
allows the description of the solution in the surrounding of the singularity point with a
predefined accuracy.

The extension of the proposed integration scheme to singularity points remains a
definite objective for future research. Since the presented scheme is semi-analytical, there
are possibilities to adapt it in such a way that singularity points could be detected automat-
ically. Other avenues of future works include adapting the scheme so that any numerical
integration technique could be used while solving the characteristic ODE. While this would
make the scheme purely numerical and pose challenges in changing the timescale (since
the approximation would no longer be a polynomial function), it could potentially open
up new possibilities in applying already existing results.
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Appendix A. Analytical Expressions of the Coefficients p;(c, s) for the ODE (30)—(31)
Coefficients pj(c, s) in the series solution (35) to the ODE (30)~(31) read:

polc,s) =s;
pies) = 2 =T,
((Asz +9/45— 5/4)ﬁ + c) (s—1)
pa(c,s) = -8 T ;
—64 (s — 5/4)c(s — 1)y/7 + (485“ — 21653 + 36452 — 2725 + 76) n+16¢
p3(c,s) = ;

(.'37‘[

g L (3 155 2275 193 2.3/
p4(c,s)7236m 3/2(5 b (s —1)2%24

19 99s 31
— /T —5/ 2 . 5
+c<c(s 16)‘” 5/27[(5 20 +20)(> 'l)) K
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1 ; 2 19s 29 3 N P
pale;s) = e (—768(] (s —4/3) (s -5+ ﬁ)c(s— 1)7/% — 512 /rrc? + 3840 ?s®—

—26880 7%5° + 78480 st — 122320 725 + (4352 7 +107328 n'z)sz + (-10432 7T — 50256 7r2)5+
+6272 71 2 + 9808 rrz);

B 1 45(s—1)*02 (5 255t 3778 12712 36407s 9347
pelc,s) = 174087[3_‘,266( ——— ey =T —ope —aEen

7 7 tm 7 7 T 1% T 1% sm
2, 0627 . 1712 8l4lnm Al
17 )° 136 54 /

; 4 3 2
prtes) = sz (—]720320 (S,_99> L8 18378 300067 msgy)c(s_])ﬂz_

(777@/71(3727952 5409 137) W57s° 4%57st  119037s° 5683575

16 640 960 26880 26880

1235s 3097

3./ 8 _ 2.7 2.6 _ 2.5
19 + 1984)c V7T + 645120 71755 — 6128640 71257 + 25509120 7125 — 60762240 772s° +

e (1548238 ¢ 4 90596352 nz)s4 -y (—7519232 ¢ — 86583840 n2)53 p (137352% 7% + 51798528 n2)52+

—507904 (52

= (71 1187072 7t ¢* — 17734944 nz)s 434816 ¢* + 3428480 77 2 + 2660544 7r2>.

Appendix B. Transformation of FDE (49) into the Characteristic ODE (51)

Consider the FDE initial value problem (49), (50). The solution can be written in series

form as:
+00

+® :
y= Y, = 3 (v&). (A1)
=0

=0

where 7; = I(Q‘_,H) Note that the coefficients vy, v; are given by the initial conditions (50),

thusvy =1,11 = —1.

Denote Q(y) = 1 —2y + y? — y> for brevity. Inserting the series solution into (49)
yields:

+00 4 - i
*3 (4+1)ma(vz) - oW a2)
Substituting +/x = t and rearranging results in:
+ : 2
2 i+ 242t = Q). (A3)
=0

Multiplying both sides by t and re-indexing the left-hand side sum yields:

. 2
2 mt ™t =5QW)- )
j=2
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Adding 7, to both sides results in:
400 2
2imt T =5QW) +m. (A35)
j=1

Let y(t) = !t; i/, Then, the left-hand side of (A5) is the derivative j—f, while the

coefficient y; reads y; = 1—!8‘15 =— »27 Combining these derivations yields:
2
dy 2 2
at — - (46)
The initial condition CD'2y = —1 has already been incorporated into the above

x=0
equation. The other initial conciition, y(1) = 1, is transformed into an equivalent condition
7(1) =1, since (/%) = y(x).

Appendix C. Analytical Expressions of the Coefficients p;(c,s) for the ODE (51)-(52)
Coefficients p;(c, s) in the series solution (35) to the ODE (51)~(52) read:

pole,s) =s;

(s3~sz+25~1)\/ﬁ+c
ples)=-2-———"——;

o/

(s3 —s2 425 1) (52 —2/3s+ 5/‘6>~/n+ c(sz —2/3s+ 2/3)

pa(c,s) =12 ;
N

1 4782 10s 10 5

p3(c,s)=ﬁ<—1685(s4—4/353+ b1 —7+ﬁ>ﬁ—120n57+280nsb—6767rs”+

+884 rs* — 956 7157

i
324

+c(15c<s3 =i

palc,s) =96

109s 37

178 s +407r
3 3 A

+6887s% + (~48c2 ~3207r)s +16¢ + 76n),-

21 105 T 140 210 ' 60

(3553~3552+7°5—35)7f”2(36_255+89s4_47253 54752 407s 31)
2

63 st s 1579 st 14157152
_¥ 63y LTS g, MIDS® L g5
%0 90>\/E+ 3 s+ — 141 s” + 15 e
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1 9103s° 19829s° 15503s* 27555  3812s?
== —66,528¢( % —8/357 - — 2
Ps(e:8) = 3 | —66,52 C(’ Pt 386 T 2079 T 1386 297 T 693
1468s 788\ 35, 32 56\ 355!l 3855107
3 T 2—079>7r /¢ —8640¢° | s* —2/3s5 + 35 V7 44928 5 156 +
1067557 10661 139693 7s” 65437s® ([, 180037\ s (o0 726657
1404 702 5616 208 5616 ¢ 2808
1513 56177\ 5 [ 259¢2 135897, (961c2 997w\ 251 84im )|
52 351 )7 108 1872 )° 702 468 702 2808 ||
773 — 7752 + 1545 — 77 ) /2 8 7
pelc,s) = 34560 — % ( ) PO T e
75726 4 66 1485

4 1351356 21309s° . 404011s* 670875  72073s> 51517s + 16169
540 770 16632 4158 9240 20790 41580

219 1971 T 47304 5256 | 2628 23652

219 7%/2¢ (57 7/:%(,Jrllossf’ 12280s* 2832235  20117s*  4037s 7079)
e ~TEES TR0

1435107 143597r+117758n 6347 57 2666387 1rs° 490493"55+

3(_1/ i _
B 2 3 105 T 30240 5040
(2 BTN (a0 1987 5 (1529¢2 20817, [ 3907¢2 45097
10080 E 35 840 840 /7 3780 560
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Abstract: A scheme for the integration of ©D“/"-type fractional differential equations (FDEs) is
presented in this paper. The approach is based on the expansion of solutions to FDEs via fractional
power series. Tt is proven that € D/"-type FDEs can be transformed into equivalent ((D‘””’)"-type
FDEs via operator calculus techniques. The efficacy of the scheme is demonstrated by integrating the
fractional Riccati differential equation.

Keywords: fractional differential equation; operator calculus; fractional power series expansion
Mathematics Subject Classification: 34A08, 30B10, 65199

1. Introduction

In the past few decades, fractional differential equations (FDEs) have gone from being a niche area
of mathematical analysis to the forefront of mathematical modeling. Finding applications in a myriad
of areas ranging from the classical FDEs in viscoelasticity [12], to more novel physical fields [9] and
beyond to biology and medicine [13]. A review on more recent applications of fractional differential
equations in a variety of research fields is given below.

One of the foremost fields of research to feature fractional derivatives in recent years is
biomedicine. A type of fractional logistic differential equation used to model the COVID-19
pandemic is discussed in [4, 17]. Continuous glucose monitoring is analyzed via a fractional
differential equation model constructed from a noisy time series in [5]. Fractional differential
equations have been used in a scheme to detect tea moisture content that was introduced in [27]. The
memory property of fractional derivatives is exploited to study a combined drug treatment for the
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Human Immunodeficiency Virus (HIV) in [24]. The Gompertz law, used in many areas of biophysics,
is generalized using fractional derivatives in [7]. An FDE model for the interaction of nutrient
phytoplankton and its predator zooplankton is considered in [3].

Models of financial and economic processes have also recently featured fractional derivatives. A
review of fractional differential equations used in economic growth models is given in [11]. Systems
of FDEs are used in [30] to construct an indicator for the evaluation of economic development of a
given region. The evolution of fractional-order chaotic financial systems is studied using the Adams-
Bashforth-Moulton method in [28]. A financial crisis model represented by a system of fractional
differential equations is analyzed in [18].

In physics and engineering, optics is a field where fractional differential equations find many uses.
Semi-analytical solutions to the fractional Eikonal equation, a problem in optics, are constructed
in [1]. The Caudrey-Dodd-Gibbon equation, used in laser optics, is analyzed in its fractional form
in [23]. Optical soliton solutions to the conformable fractional Benjamin-Bona-Mahony equations are
constructed in [31]. A fractional order model studying light distribution from the main fiber into other
branch fibers in optical meta-materials is analyzed in [2].

Techniques for integrating FDEs can be classified into two large categories: numerical and
analytical methods. Recently, there has been a surge of interest in numerical methods due to the
increased reliance on FDE in fields of applied research. A review of classical methods is given in [6],
while more recent algorithms are discussed in [14].

Analytical or semi-analytical techniques for the construction of solutions to FDEs have also
experienced recent developments. The natural transform method was applied to contruct analytical
solutions to a fractional oscillator in a resisting medium model in [10]. The Laplace-Adomian
decomposition method is used to obtain the analytical solutions to a class of fractional-order
dispersive partial differential equations in [20]. The same approach yields the solutions of fractional
Zakharov-Kuznetsov equations in [21]. The g-homotopy analysis transform method is applied to
solve a class of fractional diffusion equations in [22].

A particular class of techniques based on fractional power series has been presented in [15,16,26].
This approach considers the (“D(” ”’)n—type fractional equation:

(CD(I/M)"_‘/y =F(x,y); y=yXx), (L.1)

where “D/™ denotes the Caputo derivative of order 1 with respect to independent variable x; F is
. . . . . no. .
an analytic function. Note that in the operator sense, the expression (‘ D“"’”) is not equivalent to the

integer-order derivative i — while the set of solutions to (1.1) does include solutions of the ordinary
differential equation y’ = %(x, ¥), it is a much wider set [16].

It was demonstrated in [15] that (1.1) can be mapped to an equivalent ordinary differential equation
(ODE) via the use of fractional power series. The solution to the obtained ODE can then be transformed
into a solution to the original FDE (1.1). The main objective of this paper is to extend this approach to
¢DU/™_type FDEs:

DYy = Gx,y), 1.2)

where G(x,y) is an analytic function. It is demonstrated that FDE (1.2) can be transformed into (1.1)
if specific conditions hold true, which can then be solved via the integration scheme presented in [25].

AIMS Mathematics Volume 7, Issue 9, 16536-16554.
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Note that while (CD‘”"')"-type equations (1.1) do not necessarily have a physical interpretation,
they are a vital part of the scheme presented in this paper for solving D“/"-type FDEs (1.2), which
have a wide range of physical applications [9].

The paper is organized as follows: Section 2 contains preliminary results; Section 3 contains main
definitions and derivations that demonstrate the transformation of ¢D""-type FDEs into
(CD(””))"-type FDEs via the Riccati equation; Section 4 contains numerical experiments
demonstrating the efficacy of the presented scheme.

2. Preliminaries

2.1. Fractional power series

In this paper, all functions f(x) are represented via power series consisting of fractional-order
powers of the independent variable. If a fractional derivative of order @ = f—;;gcd(k,n) =1 (ged(k,n)
denotes the greatest common divisor of integers k and n) is considered, then the series parameter is set
to n:

+o0
Flx) = chx":; ¢;j€R, neN. 2.1
J=0
Series (2.1) is required to converge in the neighbourhood 0 < x < R, R > 0. The series can
be rewritten for a more convenient approach with regards to the Caputo fractional derivative in the
following form:

+o0

f@=) vl neN, @2

J=0

where wi."), j=0,1,...are the basis elements of series f(x):

o
W-(,v") = Lj (23)
r(i+1)
The following equality relates coefficients ¢; and v;:
v,:c,.r(1+l), P e 24)
n

As mentioned previously, the series (2.2) and all subsequent fractional power series are required to
converge in the neighbourhood 0 < x < R, R > 0.

Note that the substitution 7 = x7 can be used to convert (2.1) (and (2.2)) into an integer-order power
series f(r):

Fo =)= et 2.5)
=0

The set of series given by (2.1) is denoted as “F. Multiplication between two elements f, g € “F is
defined in the Cauchy sense:

400 +00 +00 J j /n
e[S omt | [Somp)| - 5[5 (ot e
=0 =0 ‘=0 Uiemo \K/1
AIMS Mathematics Volume 7, Issue 9, 16536-16554.
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o . () _ ((i+k) Y, () §
since w"w;" = ( n )WM for any j, k € Z,.

Note that the following property of the binomial coefficient is used in further sections:
e+f)_(e+p)  T'l@+f+1) @5
a |\ B ) Fa@a+Hr@+1)y :

where @, 8 > 0.
More details on the properties of fractional power series are given in [15, 16].

2.2. Caputo fractional derivative operator

The Caputo fractional derivative will be considered in this paper. Let (CD“"”)" denote the Caputo
derivative of order % The Caputo derivative acts on the basis elements (2.3):

0, j=0
€ pliim, o _ . J (2.8)
i W(j_’P B

The Caputo derivative of order @ = f—, gcd(k,n) = 1is realized via taking the kth power the operator
CD(I/N)‘

. n
2.3. The construction of analytical solutions to (c D/ "’) type FDEs

A summary of the scheme for the construction of analytical solutions to ("D‘”"’)" type FDEs is
presented in this section. This scheme relies on the construction of an equivalent ODE via a
characteristic function. The proof that a solution obtained using this scheme does satisfy the original
FDE is given in [26].

Consider the following type ( CD“/"’)" FDE:

(CDU/M)" y = F(x,y), 2.9)

where F(x,y) is bivariate analytic function. The solution to (2.9) is constructed in the form of a
fractional power series (as defined in Section 2.1):

+00 +00 )
y= Z 1’jw;") = chxﬁ € °FR. (2.10)
=0 J=0

Series (2.10) is convergentfor0 < x <R, R > 0.
Inserting (2.10) into (2.9) yields the following relation:

+00

> (1 + %)C',‘ﬂ,xﬁ = F(x,y). @.11)

=0

Setting 1 = x+ and rearranging (2.11) results in:

400
et = nF(13), @.12)
j=n
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where is the integer power series that corresponds to the fractional power series (2.10):
+00.
F=RO =), citl (2.13)
j=0
Note that (2.12) is equivalent to the following ODE:

d’\'\ n—1 i S 3 j-1
3 =ME()+ ;.,cjﬂ . (2.14)
As shown in [26], inserting ¢ = x# into the solution of the above equation yields a solution to the

following Cauchy problem on (2.9):

(CD(l/"))” y= F (x! .‘) ;

. 3 (2.15)
yO=x (0"s =w=r(t+Ha k=ton-t.
n
x=0
The initial condition of fractional derivatives at x = 0 is due to (2.10) and the relation:
(€D i =r(| +5)wg"’=r(| +5). (2.16)
n n

The algorithm for solving FDE (2.9) is depicted in Figure 1. Note that [25] outlines the algorithm for
numerical integration of FDE (2.9) based on the extension of fractional power series via the use of
generalized differential operators.

Apply the algorithm
described in
[Timofejeva et al., 2021a]
to obtain the numerical
solution to the initial
FDE from the
solution to the ODE.

Apply the scheme outlined in
[Timofejeva et al., 2021b)]
to transform the FDE into ODE:
dg
Z=H@.Y,
T (@)
where t = J/z,9 = §(t) = y(z).

Figure 1. A schematic diagram of the algorithm in [25] to construct numerical solutions
to (2.9).

Example: The Riccati equation
Consider the following Cauchy problem on the Riccati fractional differential equation with constant
cocfficients:
. 2
((D“m) y=yPay-2;

; .17
YO =a; DY =8,
x=0

AIMS Mathematics Volume 7, Issue 9, 16536-16554.
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where «, 8 € R. The solution to (2.17) is a fractional power series (2.1) with n = 2:

+00

y:ch(\/;)’_ (2.18)
j=0
The initial condition D2yl = Byields ¢, = T-f-‘_) Furthermore, noting that:
x=0 i
3 +00 r(l e 2) 8 +oo J i
cpamy\y, — 2 ; { AR 4
(D) y= 3 ——cpa(Va) = (1+—)c,-+z(\/2), 2.19)
2 (Ew) 21+
and inserting the series (2.18) into (2.17) yields:
+00 5 X +00 i .
7 A J _ 82 7
Z<1+5)¢,+2(\/§) —an+Z[a| +ZCkC1A](\/}) : (2.20)
=0 j=0 =0
Using the substitution 1 = /x and denoting y(¢) = y (tz) transforms the above equation into:
Z(l +%)c,+2tf' =P{). @21)
=0
where P (§) =3 +7 - 2. Multiplying both sides of (2.21) by 2 yields:
Z (+2) ¢t =2P(5). (2.22)
j=0

Rearranging the sum on the left-hand side of (2.22) and multiplying by 7 results in:

i jeit™ = 2tP(5). (2.23)

=3

Finally, adding ¢; = % to both sides results in the following ODE:

g = 2;(72 +5- 2) + Ifé); ¥(0) = a. (2.24)

Note that the 8, which is an initial condition to FDE (2.17) is a parameter in ODE (2.24).
The kink solitary solution to (2.24) is obtained for g = 0 in [29]. However, this case leads to
coefficients ¢3j,; = 0, j = 0, 1,... which in its turn results in a solution to the ODE:

dy >
=y 4y-2 225
T Y (2.25)

AIMS Mathematics Volume 7, Issue 9, 16536-16554.
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While the kink solitary solution does indeed satisfy (2.17), the entire set of solutions to the FDE is
much wider. Every solution to (2.24) for some 8 € R also satisfies (2.17) after the transformation

t= +x

For 8 # 0, ODE (2.24) can only be solved in series form, via expression of solutions by confluent
hypergeometric series [19]. Solutions to both (2.24) and (2.17) are depicted in parts (a) and (b) of
Figure 2 respectively. Note that the scale of the x-axis changes for the FDE and ODE respectively due
to the substitution ¢ = +/x. This also shifts the singularity point from its position in Figure 2 (a) to that
in Figure 2 (b).

y 4
5 3
3 2

(a) (b)
Figure 2. Solutions to (2.24) (part (a)) and (2.17) (part (b)). The initial conditions xo, yo are
set to 0 and 1 respectively, while g = —F(%), B= —Sf(g), B= l(%) for the black solid,
dashed and dotted lines respectively. Note that the solutions are singular for 8 > 0: The grey
dash-dotted line corresponds to the singularity point.

3. Main results

The main goal of the following derivations is to provide analytical techniques for the conversion of
the type “D/" problem into a problem of the type ((‘D”/ "’)". Without the loss of generality and for
the clarity of the presentation, the denominator of the fractional derivative order will be set to n = 2.
The presented steps can be readily generalized for different values of n.

For clarity of presentation, subsequent sections discuss the application of the described scheme on
the paradigmatic example of Riccati-type FDEs. However, the analytical and numerical computations
can be performed for a general FDE of type (1.2).

AIMS Mathematics Volume 7, Issue 9, 16536-16554.
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3.1. Auxiliary lemmas

In this section, three lemmas on the series solutions of the Riccati-type FDEs are given. The results
presented here define auxiliary functions @., @ and ¥, which are essential for the transformation of the
type € D!/" problem into a type (< D“””) problem and, in its turn, for the construction of analytical

solutions to (1.2).

Lemma 3.1. Letz = 35 v; w € “FY2 be any fractional power series. The Caputo derivative of 7

reads:

D2 = 2:°D 1Pz + (), G.D

where 0.(x) = 355 Fobj w“’ 6o =0 and

I~

[
m|\ I\)I“

1))] ViVj-k+1s j = l, S (32)

k=1

9]

R L

Proof. Inserting the fractional power series z = Y5 v w&z) into the left hand side of (3.1) yields:

2
cpiia2 — cpam [i vjw.(];» — Cpum N [ZJ: (k-/z)v"v _;\]w ]
J=0 j=0 \ k=0
= Cpun 200 2 F(EI L) I)A Vv w‘f’
S\GrE+yr(s+ B
_S(&_ ri+ ') o

Mz

J=0

g (2o
g ]“_—quvkvj—kﬂ Wj s
2

Analogously, inserting z = 31;% Ovjw ) and @.(x) = X0 w ) into the right hand side of (3.1) results

AIMS Mathematics Volume 7, Issue 9, 16536-16554.
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2:°D"2 4+ 0,(x) = ZZV W ’Zv w2, +6(x)
j=0 Jj=1

+00

J
= Z‘, w()Zp/ ,w +9(x) ZZ[Z(k/z)v‘vf“’+l]“’(,'2)+@5(x)
k=

= =0

1‘kV, k+l]

I
I' 3 ) s 2
X ]) VkVj-k+1 | W; (3.4)

Ty

—. ViV jkel = 22
3

) (2)
—_— A 5 5
i Tk i ViV j—k+1 Wj

= I 3 e

Vivjaer | WP
j—k+1 [ W

)
Ly l)
o
Note that the function @.(x) = ¢ D1/272-27 ¢ D127 quantifies the effect of fractional differentiation
of z2. If DU/ is replaced by an integer order derivative —, the function ©,(x) becomes equal to zero.

The two following lemmas yield results on coefficients of the fractional power series solutions of
the Riccati-type problems. Note that while the solution coefficients can be directly computed using
these results, the evaluation of the solution does not readily follow (different numerical algorithms,
such as described in [25] could be used for the evaluation).

Lemma 3.2. Consider the following Cauchy problem with respect to the Riccati fractional differential
equation:

DUy, = 4y} + ayyy + ag + D(x);

(3.5)
1(0) = o,
where az, ay, ap, yo € R, and D(x) is a given fractional power series with coefficients ¢; € R:
+o0
D(x) = Z oW € R, (3.6)
=1
The solution to (3.5) reads:
+00
@ .
yi = Zij/. , Vi€R, (3.7)
=0
AIMS Mathematics Volume 7, Issue 9, 16536-16554.
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where,
¥ = az}’rzm + ayyo + do,
T+ 1)y, (3.8)
Yirl = a2 Z Vh(-—)‘i +aryj+é. j=12,....
ko, T (7 + ])I (? +: I)
ki+ko=j
Proof. Coeflicients (3.8) are obtained by inserting the fractional power series (3.7) into (3.5). o

Lemma 3.3. Consider the following Cauchy problem:

(CDY)y; = byl + by} + buys + P();

cp1/2 G9
¥2(0) = Ao; "D /'))"2 = Ay,
x=0
where bs, by, by, Ao, A, € R and V() is a given fractional power series with coefficients ; € R:
+o0
Y(x) = )y e RO, (3.10)
J=0
The solution to (3.9) reads:
+00
ya= ) AW, 2€R, (3.11)
=0
where,
I'(é + 1)/11\.]/11(2/11\3
A2 = b3 - »
kk'k:fﬁﬂ""" F(g—' + 1)1"(% + I)F(% + l)
ke (3.12)
r(4+1) A A,
+ b, ﬁ +bhdj+y;, j=0,1,....
i, P )P (8 # 1)
ki+ka=j
Proof. Coefficients (3.12) are obtained by inserting the fractional power series (3.11) into (3.9). u]

3.2. The construction of solutions to the fractional Riccati equation
The results obtained in section 3.1 are now applied to derive the relationship between problems (3.5)
and (3.9) as well as their respective solutions.
Consider the fractional Riccati equation (3.5). Differentiating (3.5) via the operator €D/? yields:
19y \ 2
(CD(IIZ)) y=a CD(IIZ)y% +a, CD([/Z),"I 4 CD(]/z)(D()C)A (3]3)
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Applying Lemma 3.1 to the first term of the right hand side of (3.13) yields:

(CD“/Z’)2 y1 = 2a:y1 DYy + 420y, (x) + @, DYy, + CDVDP(x)

; ; (3.14)
= Q2ayy, +a) DYy, + DYV P(x) + a,0,,(x).
Inserting “ D"y, = a,y? + ayy; + ag + P(x) transforms (3.14) into:
2
(cl)um) y1 =23y} + 3aaxy” + (af + 2aoa2) 1 3.15)
+ DY P(x) + 420, (x) + 242y P(X) + a; (ap + P(X)) .
Let us consider the following notation:
P(x) = ‘DY D(x) + a20,,(x) + 2421 D(x) + a1 (ap + P(x)) . (3.16)

The function ¥(x) is utilized in constructing solutions to FDE (3.5), while functions @(x) and 6,,(x)
are given in (3.5) and obtained from (3.1) respectively. Note that ¥(x) simplifies to a linear function
of Oy, (x) if P(x) = 0.

Comparing (3.15) and (3.9) yields the following relationship between coefficients ao, a;,a> and
bo, ..., bs:

bs = 2a§;
bz = 30102; (317)
by = a% + 2apa;.

Applying (3.16) and (3.17) transforms (3.15) into:
(€DYDY 3, = byy} + by} + by + (). (3.18)

Note, that (3.18) has the same form as (3.9).
Moreover, (3.16) induces the following relations between the coefficients ¢, ¢;,6; and y;, j =
[ 1 I

Yo = ¢1 + aodn;
i
jr2 .
Uj=j + a0 +ar¢; +2a22(k/2)yk¢j_k; J=YsZes

k=0

(3.19)

The above derivations result in the following theorem.

Theorem 3.1. Cauchy problems (3.5) and (3.9) have the same solution y) = y, =y = Z;f,, 7,-w§2’ if
relations (3.16), (3.17) and the following equalities:

Ad=v: A= agyf, + a1y + ao (3.20)
do hold true.

AIMS Mathematics Volume 7, Issue 9, 16536-16554.
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Having derived the relationship between these problems, existing algorithms can be applied to
solve (3.9), as detailed in Figure 3.

"

Apply Theorem 3.1. to transform
the initial FDE into:

(CD(I,I'"))"y = G(z,y) + ¥(z),

400
where ¥(z) = Z ijgn).
=0

/Approximate ¥(z) by taking\
the first N + 1 terms:

(oDu/n))"y = G(z,y) + ¥ (),

N
where ¥(z) = ijw;“)-
=0

|

/ Apply the technique outlined
in the Section 2.3 to transform

Apply the technique outlined
in the Section 2.3 to transform
the obtained FDE into ODE:

the obtained FDE into ODE:
2 a7

dgy -
— = H (7 — = H (3.t
o (@:1), = (#,t),

kwhere t=yz,5=79(t)= y(a:)/ \wheret =Yz, §=7g(t) =~ y(m)/

Apply the algorithm
described in
[Timofejeva et al., 2021a]

to obtain the numerical
solution to the initial
FDE from the
solution to the ODE.

Figure 3. The schematic diagram of the algorithm for transforming € D""/?-type FDEs into
("D“/"’) -type FDEs. The red line depicts an algorithm step that cannot be practically
implemented, as ¥(x) is an infinite series, prompting the requirement to truncate ¥(x).

4. Computational experiments

Consider the following Cauchy problem with respect to the Riccati fractional differential equation:

cpuny = lyz + ly -
4 7273 @1

1
(0) = —.
¥(0) o
Note that in this case, the function @(x) = 0, thus, ¢; = 0; j=0,1,....

AIMS Mathematics Volume 7, Issue 9, 16536-16554.
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Using the Theorem 3.1, the values of the parameters by, b», b3 and the initial conditions A, 4; can
be computed as follows:

11 3

7=3._._=_;

b 2'4°38
1 iy i

[ o[ L. 42

bi (2)+2(3)4 2’ s
1

ﬁo—ﬁ,

JOUNS (1 O I I B 1

'Ta\10) 27100 37 12000

Thus, (4.1) can be transformed into the following Cauchy problem:

cpamY. _La 3, 1 .
(CDUPYy= oy 4 25t + 5y + (5

337 (8]

12000

L. i
) = : DDy
Y0 =15 Y

x=0

where the coefficients of the function ¥ (x) = X35 w_,-ws.z’ are obtained using relations (3.19).

Following the technique outlined in Section 2.3, (4.3) can be converted into the following ODE:
337 1

0) = —, (4.4)

il 1
12007°3) 10

1

= i B ) -
dr g? TV Tt (’2))
where t+ = yx andy = () = y(x). Note that the function ¥(x) is changed into ¥ (12) due to the
independent variable substitution. The function ¥(#) can only be represented by an infinite power
series (a known closed form of ¥ ()‘2) does not exist). Thus, the above ODE cannot be solved directly.
To integrate (4.4), P(1) is approximated taking the first N + 1 terms:

dy

— =2
dr :

L
8

N 2j
5. 3z 4 337 o 1
PP+ —F+ —_— - —— . F0)= —, 4.5
P gt bl ;¢’r(1+§) 2000 YO =15 4.5)

where y tends to y as N tends to infinity.
It is clear that the approximation of the series ¥ via the polynomial Z}V:o U;

2
1+
into the solution.  Exact expressions and approximate numerical values of the coefficients
¥;(j=0,1,...,8) are given in the Appendix A.

The solution to FDE (4.1) can now be obtained from the solution to the ODE (4.5) via the algorithm
described in [25]. Figure 4 (a,b) depicts the solutions to (4.5) and (4.1) respectively for different
values of N. These solutions are compared with a direct numerical solution computed via Garrappa’s
method [8] to (4.1) in Figure 4 (b). It can be seen from Figure 4 that increasing N does cause the
solution to converge, although that convergence is not monotonous.

introduces errors
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In general, any numerical method can be used to construct solutions to (4.5). However, using the
semi-analytical scheme presented in [25] makes it easier to perform the transformation of the time-axis,
since the solution to (4.5) is given as a piecewise-polynomial function. If a purely numerical method is
used (such as the classical Euler method, or any Runge-Kutta class technique), the nonlinear time axis
transformation needs to be taken into consideration when selecting the numerical integration step-size.

0.1 0.1

—R.Garrappa

0 0 ==l
—N =2
—N=3
iy | -0.1
—N =4
N=5
0.2 0.2 N
--N=T7
G -03 ’gro.z— oo No=§
= ~—
(> =
-0.4 -0.4
-0.5 -0.5
0.6 -0.6
-0.7 -0.7
0 0.5 1 L5 2

T

(a) (b)
Figure 4. Convergence of the numerical solution to (4.1). Part (a) depicts the approximate
solutions to the ODE (4.4) for various values of N = 1,2,...,8, while part (b) depicts the

approximate solutions to the FDE (4.1) for N = 1,2,...,8. The obtained solutions are
compared to a direct numerical integrator result [8] (black solid line).

Consider the following Cauchy problem with initial condition being equal to yq:

I, 4 i
C /2, _ 2 .
DYy = 24—y —:

y=grto¥s (4.6)

¥(0) = yo.

The root mean square error (RMSE) between solutions computed via the presented algorithm
(denoted y(x)) and Garrappa’s method (denoted yg(x)) is defined as:

1 < 2
RMSE (7. yq) = J T 2. 00 = yaUR), @n
=0

where /1 denotes the integration step size; M is the number of integration steps.
It can be seen in Figure 5 that for the initial condition y, € [0.1,0.3], RMSE between Garrappa’s
solution and solutions obtained by truncating ¥(x) at N = 1,. .., 8 significantly decreases up to N = 4.
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Using a higher-order approximation for ¥(x) than N = 4 does not yield a significant improvement
RMSE-wise.

8 x1073

1

0.1 0.12 0.4 0.16 018 0.2 0.22 024 026 028 0.3
70

Figure 5. The root mean square error between Garrappa’s solution to (4.1) and solution
obtained by truncating ¥(x) atN =1,...,8.

O 1

5. Conclusions

This paper proposes a new approach for solving “D/"-type FDEs. The construction of analytical
solutions to a general form FDE without a direct evaluation of Caputo type integrals is a demanding
mathematical problem. It has been demonstrated that some ("D“/”’)"-typc FDEs can be solved by
transforming them into ODEs and applying a numerical algorithm [26].

The main contribution of this paper is the extension of the class of FDEs where similar fractional
power series can be applied: The scheme is no longer limited to (“D‘””’)"-type FDEs, but can be
applied to “D"/"-type FDEs. It opens new possibilities for the generation of solutions to such FDEs
which previously could be analyzed using only approximate numerical techniques. Difficulties related
to the application of the proposed technique are discussed in the paper and the presented numerical
examples demonstrate the efficacy of the proposed technique.
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Appendix A

Exact expressions of the coefficients ¢/; (j = 0, 1,...,8) in (4.5) are as follows:

o, ] .
Yo =- &
113569 7 — 227138
T 28800007
12492597 — 9994072
Y2 = 15000007
742059846 72 — 1893308799 1 + 1224728096
B 20736000000 72 ’
33336476415 12 — 358272490092 7 + 431104289792
s 6635520000000 72 ’
4410927401265 7° — 35936061966618 72 + 72641225920964 7

497664000000000 7

1=

5=
34669602941568

% 497664000000000 73
" 1302276783665715 1° — 2329090441231004 7> — 41702172928558208
Y6 =—

424673280000000000 7

32543200627818496

~ 424673280000000000 7
 44739727108593380325 * + 81636161754007129500 ° — 762603888431624570496 1

* 4013162496000000000000 7*
N 1151771271228481928448  — 446658387089593204736

4013162496000000000000 7+ ’
154447877359721415687525 n* — 1378551111214833609544260 7*
41094783959040000000000000 =
+429448090859 153644654464 n° — 8580504348725618463424512

41094783959040000000000000 7*
5031160072177177858146304

* 41094783959040000000000000 7

g =
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Table A. Values of coefficients ¢ ; approximated to a precision of 10-® obtained via (3.19).
- 5

-0.166667
-0.014329
-0.016770
-0.012707
-0.005580
0.001579
0.006157
0.006483
0.002501

R W N - O~

® N

i ©2022 the Author(s), licensee AIMS Press. This

=5 is an open access article distributed under the

% AIMS Press terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)
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