
Kaunas University of Technology

Faculty of Informatics

Large Language Models for OpenAPI Definition
Autocompletion

Master’s Final Degree Project

Bohdan Petryshyn

Project author

Assoc. Prof. Dr. Mantas Lukoševičius

Supervisor

Kaunas, 2024

Kaunas University of Technology

Faculty of Informatics

Large Language Models for OpenAPI Definition
Autocompletion

Master’s Final Degree Project
Artificial Intelligence in Computer Science (6211BX007)

Bohdan Petryshyn

Project author

Assoc. Prof. Dr. Mantas Lukoševičius

Supervisor

Prof. Dr. Alfonsas Misevičius

Reviewer

Kaunas, 2024

Kaunas University of Technology

Faculty of Informatics

Bohdan Petryshyn

Large Language Models for OpenAPI Definition
Autocompletion

Declaration of Academic Integrity

I confirm that the final project of mine, Mantas Lukoševičius, on the topic „Large Language
Models for OpenAPI Definition Autocompletion“ is written completely by myself; all the
provided data and research results are correct and have been obtained honestly. None of the
parts of this thesis have been plagiarised from any printed, Internet-based or otherwise recorded
sources. All direct and indirect quotations from external resources are indicated in the list of
references. No monetary funds (unless required by Law) have been paid to anyone for any
contribution to this project.

I fully and completely understand that any discovery of any manifestations/case/facts of
dishonesty inevitably results in me incurring a penalty according to the procedure(s) effective at
Kaunas University of Technology.

(name and surname filled in by hand) (signature)

Petryshyn, Bohdan. Large Language Models for OpenAPI Definition Autocompletion. Master’s
Final Degree Project / supervisor assoc. prof. dr. Mantas Lukoševičius; Informatics Faculty,
Kaunas University of Technology.

Study field and area (study field group): Computer science, Informatics (B01).

Keywords: Large language models, Code Llama, GitHub Copilot, OpenAPI, code completion,
code generation, fine-tuning, prompt engineering, benchmarking.

Kaunas, 2024. 52 p.p.

Summary

Recent advancements in Large Language Models (LLMs) and their utilization in code generation
tasks have significantly reshaped the field of software development. Despite the remarkable
efficacy of code completion solutions in mainstream programming languages, their performance
lags when applied to less ubiquitous formats such as OpenAPI definitions. This study evaluates
the OpenAPI completion performance of GitHub Copilot, a prevalent commercial code
completion tool, and proposes a set of task-specific optimizations leveraging Meta’s open-source
model, Code Llama. A semantics-aware OpenAPI completion benchmark proposed in this
research is used to perform a series of experiments through which the impact of various prompt
engineering and fine-tuning techniques on the Code Llama model’s performance is analyzed.
The fine-tuned Code Llama model reaches a peak correctness improvement of 55.2% over
GitHub Copilot despite utilizing 25 times fewer parameters than the commercial solution’s
underlying Codex model. Additionally, this research proposes an enhancement to a widely used
code infilling training technique, addressing the issue of underperformance when the model is
prompted with context sizes smaller than those used during training.

Petryshyn Bohdan. Dideli kalbos modeliai „OpenAPI“ apibrėžimų automatiniam užbaigimui.
Magistro baigiamasis projektas / vadovas doc. dr. Mantas Lukoševičius; Kauno technologijos
universitetas, Informatikos fakultetas.

Studijų kryptis ir sritis (studijų krypčių grupė): Informatikos mokslai, Informatika (B01).

Reikšminiai žodžiai: Didieji kalbos modeliai, Code Llama, GitHub Copilot, OpenAPI, kodo
užbaigimas, kodo generavimas, modelio tikslinantysis mokymas, užklausų inžinerija, lyginamoji
analizė.

Kaunas, 2024. 52 p.p.

Santrauka

Naujausi didžiųjų kalbos modelių (angl. large language model) pasiekimai ir jų panaudojimas
kodo generavimo užduotyse žymiai pakeitė programinės įrangos kūrimo sritį. Nepaisant
išskirtinio kodo užbaigimo sprendimų efektyvumo pagrindinėms programavimo kalboms, jų
veikimas atsilieka taikant mažiau paplitusiems formatams, tokiems kaip OpenAPI apibrėžimai.
Šiame tyrime vertinamas OpenAPI užbaigimo našumas naudojant GitHub Copilot, populiarų
komercinį kodo užbaigimo įrankį, ir pasiūloma aibė užduočiai specifinių optimizacijų,
pasinaudojant Meta atvirojo kodo modeliu Code Llama. Šiame tyrime pasiūlytas semantikai
jautrus OpenAPI užbaigimo lyginamasis standartas (angl. benchmark) naudojamas eksperimentų
serijai, kurių metu analizuojamas įvairių užklausų inžinerijos (angl. prompt engineering) ir
modelio tikslinamojo mokymo (angl. fine-tuning) metodų poveikis Code Llama modelio
našumui. Patikslintas Code Llama modelis pasiekia 55,2% didesnį teisingumą nei GitHub
Copilot, nepaisant to, kad naudoja 25 kartus mažiau parametrų nei šio komercinio sprendimo
vidinis Codex modelis. Be to, šiame tyrime siūloma patobulinti plačiai naudojamą kodo
užpildymo (angl. code infilling) mokymo metodiką, sprendžiant sumažėjusio rezultato tikslumo
problemą, kai modelis užklausiamas su mažesniu kontekstu, nei kad buvo naudojamas mokymo
metu.

Table of Contents

List of Tables . 7
List of Figures . 8
List of Abbreviations and Terms . 9
Introduction . 10
1. Overview of the State of the Art in Code Generation . 12
1.1. Transformer-based Code Generation Models . 12
1.2. Transformer Model Performance Optimization . 14
1.3. Integrated Code Generation Solutions . 15
1.4. Code Generation Evaluation . 17
1.5. Open-source Code Generation Models . 18
1.6. Analysis Conclusion . 18
2. Methods and Datasets for OpenAPI Completion . 20
2.1. OpenAPI Completion Evaluation Criteria and Benchmarking . 20
2.1.1. Evaluation Dataset . 21
2.2. Platforms and Tools . 22
2.2.1. Foundational Model . 23
2.2.2. Infrastructure Platform . 24
2.2.3. Client-side Programming Language . 25
2.3. Integrated Solution Architecture . 25
2.4. Prompt Engineering Techniques . 26
2.5. Code Llama Fine-tuning . 28
2.6. Design Conclusion . 29
3. OpenAPI Completion Evaluation Results . 31
3.1. GitHub Copilot Performance in OpenAPI Completion . 31
3.2. Original Code Llama Model for OpenAPI Completion . 31
3.2.1. Optimal Prefix-to-suffix Ratio . 32
3.2.2. Optimal Context Size . 32
3.2.3. Autoregressive Generation and Infilling Modes . 33
3.2.4. PSM and SPM Infilling Formats . 34
3.2.5. OpenAPI Metadata in Prompt . 35
3.2.6. Optimal Model Size . 35
3.2.7. YAML and JSON OpenAPI Fromats . 36
3.3. Fine-tuning Code Llama Model for OpenAPI Completion . 37
3.3.1. Benefits of Using a Mixture of PSM and SPM Infilling Formats 37
3.3.2. Full-context-length Infilling Bias and Document Splitting Technique 39
3.4. Experiments Conclusion . 40
Conclusion . 43
List of References . 45
Appendices . 49
1. Training and Evaluation Loss of Fine-tuned Models . 49
2. Example of a Masked OpenAPI Definition used in the Benchmark 51

6

List of Tables

Table. 1. Open-source code generation and infilling LLM performance comparison.
Collected from [60, 58] . 18

Table. 2. OpenAPI definitions included in the evaluation dataset . 22
Table. 3. Hugging Face Inference Endpoints configuration used for Code Llama models

evaluation . 32
Table. 4. OpenAPI completion performance comparison . 41

7

List of Figures

Fig. 1. Encoder-decoder transformer model architecture. Source: [6] 13
Fig. 2. LoRA parametrization. Source: [35] . 16
Fig. 3. Single evaluation iteration . 20
Fig. 4. Code Llama family training pipeline. Adapted from: [27] . 23
Fig. 5. Integrated code completion solution UML sequence diagram . 26
Fig. 6. Response embedder UML flow diagram . 27
Fig. 7. Sample length distribution with and without document splitting 29
Fig. 8. OpenAPI completion performance of the original Code Llama 7B model at a range

of prefix-to-suffix ratios with a fixed context size of 4096 tokens 33
Fig. 9. OpenAPI completion performance of the original Code Llama 7B model at a range

of context sizes with a fixed prefix-to-suffix-ratio of 50/50 . 34
Fig. 10.OpenAPI completion performance of the original Code Llama 7B model in

autoregressive generation and infilling modes . 34
Fig. 11.OpenAPI completion performance of the original Code Llama 7B model with the

PSM and SPM prompt formats . 35
Fig. 12.OpenAPI completion performance of the original Code Llama 7B model with and

without OpenAPI components in the prompt prefix . 36
Fig. 13.OpenAPI completion performance of the 7 and 13 billion parameter versions of the

original Code Llama model . 36
Fig. 14.Generation speed of the 7 and 13 billion parameter versions of the original Code

Llama model . 37
Fig. 15.YAML and JSON tokenization comparison . 38
Fig. 16.OpenAPI completion performance of the Code Llama 7B model fine-tuned solely

with the PSM format and with a mixture of PSM and SPM formats 39
Fig. 17.OpenAPI completion performance of the Code Llama 7B model fine-tuned at

different context sizes and with the document splitting technique 40
Fig. 18.Training and evaluation loss of the Code Llama 7B model, fine-tuned at 4 096

tokens context size without SPM format . 49
Fig. 19.Training and evaluation loss of the Code Llama 7B model, fine-tuned at 4 096

tokens context size with joint SPM and PSM formats . 49
Fig. 20.Training and evaluation loss of the Code Llama 7B model, fine-tuned at 2 048

tokens context size with joint SPM and PSM formats . 49
Fig. 21.Training and evaluation loss of the Code Llama 7B model, fine-tuned at 5 120

tokens context size with joint SPM and PSM formats . 50
Fig. 22.Training and evaluation loss of the Code Llama 7B model, fine-tuned at 5 120

tokens context size with joint SPM and PSM formats and document splitting technique 50

8

List of Abbreviations and Terms

Abbreviations:

AI – Artificial Intelligence;

API – Application Programming Interface;

AWS - Amazon Web Services;

GPU – Graphics Processing Unit;

IDE – Integrated Development Environment;

LLM – Large Language Model;

NLP – Natural Language Processing;

PEFT – Parameter-Efficient Fine-Tuning;

REST – Representational State Transfer;

RNN – Recurrent Neural Network;

UML – Unified Modeling Language.

Terms:

OpenAPI specification – A standard for defining APIs in a machine and human-readable
format.

OpenAPI definition – A document in YAML or JSON format that describes an instance of an
API following the OpenAPI specification.

9

Introduction

In the world of constantly growing digitalization and automation, Application Programming
Interfaces (APIs) play a central role in enabling communication between software systems. The
OpenAPI specification is a widely adopted standard for defining APIs in both machine and
human-readable format. An OpenAPI definition describes all the requests, their parameters, and
responses supported by the API. Since the format is machine-readable, a variety of applications
were developed to leverage OpenAPI definitions for generating API documentation and client
libraries, performing automated testing, or even automatically integrating with the API using the
recent advancements in Artificial Intelligence (AI) and Large Language Models (LLMs).

Project Novelty and Relevance

Although OpenAPI definitions can be fully generated based on the existing API implementation,
writing a definition manually before implementing the API is a common practice that enables
the development of higher-quality APIs. Writing OpenAPI definitions by hand is often a
time-consuming and error-prone process due to the verbosity of the format. Modern polyglot
code completion solutions like GitHub Copilot and Amazon Web Services (AWS) Code
Whisperer have shown that LLMs can be used to increase developer productivity by providing
code suggestions based on the surrounding context. These solutions are integrated into ubiquitous
Integrated Development Environments (IDEs) and are capable of suggesting high-quality code
completions in popular programming languages such as Python, JavaScript, and Java. However,
the performance of these solutions in less popular formats like OpenAPI leaves much to be
desired.

This research evaluates the OpenAPI completion performance of one of the most widely used
commercial code completion solutions, GitHub Copilot, and investigates the feasibility of
developing a better-performing solution based on a modern open-source LLM Code Llama. To
achieve this, a novel semantics-aware OpenAPI completion benchmark is proposed and used
to evaluate the performance of both solutions. An extensive set of experiments is performed
to analyze the impact of a variety of variables, prompt engineering, and fine-tuning techniques
on the performance of the Code Llama model. The results of the experiments reveal that the
original version of the model, when used with optimal prompt format is already capable of
outperforming GitHub Copilot in OpenAPI completion task. The fine-tuned version of the model
further widens the performance gap with the commercial solution. To the best of the authors’
knowledge, this is the first work investigating the Code Llama fine-tuning for code infilling in
detail. The OpenAPI completion benchmark, the fine-tuning pipeline, and the cross-platform
code completion JavaScript library were made publicly available on GitHub [1, 2, 3].

Aim and Objectives

The aim of this research is to investigate the approaches for developing and optimizing an
OpenAPI completion solution that would outperform the existing commercial or open-source
solutions in this task. The objectives of the research are as follows:

10

1. To analyze the state of the art in code generation and evaluation and identify the challenges
in this area in the context of OpenAPI completion.

2. To identify the baseline solution for OpenAPI completion as well as the foundational model
for the study.

3. To design and implement a semantics-aware benchmark for OpenAPI completion
evaluation.

4. To design and implement a reusable integrated OpenAPI completion solution based on the
foundational model.

5. To propose a set of prompt engineering and fine-tuning techniques for optimizing the
foundational model’s performance in OpenAPI completion.

6. To evaluate the OpenAPI completion performance of the proposed solution, compare it to
the baseline using the developed benchmark and analyze the impact of the hypothesized
techniques on the model’s performance.

Document Structure

In the introduction chapter, the relevance and the novelty of the research are discussed as well as
the aim and the intermediate objectives of the study are defined. Chapter 1 provides an overview
of the current state of the art in code generation, including the transformer-based models,
relevant approaches to code infilling, performance optimization and evaluation methods,
and integrated code generation solutions that are widely used in the industry. Chapter 2
describes the novel methods proposed in this research, including the semantics-aware OpenAPI
completion benchmark, the foundational model selection, the task-specific prompt engineering
and fine-tuning techniques, and the architecture of the reusable integrated OpenAPI completion
solution. Chapter 3 presents the results of the experiments performed in the study, including
the evaluation of the commercial baseline solution and the proposed open-source LLM-based
solution and the impact of the prompt engineering and fine-tuning techniques on the foundational
model’s performance. Finally, the conclusion chapter summarizes the research findings and
implications.

Previous Publications

At the time of writing, part of this research is being submitted for publication in a peer-reviewed
scientific journal. The preprint of the article is available on Arxiv [4].

11

1. Overview of the State of the Art in Code Generation

As technology advances, the landscape of code generation continues to evolve, with
transformer-based models and integrated solutions revolutionizing the field. This section
delves into the state-of-the-art solutions in code generation, explores integrated solutions that
streamline the development process, assesses methodologies for evaluating the quality of
generated code, and highlights the challenges in OpenAPI autocompletion as a specific case of
code generation.

1.1. Transformer-based Code Generation Models

Transformer-based models are the most widely used type of models for Natural Language
Processing (NLP) and code generation in particular [5]. The original transformer model was
introduced in the famous ”Attention Is All You Need” article in 2017 [6]. The model was based
on the trainable neural attention mechanism proposed by Bahdanau Dzmitry et al. [7] earlier in
2014. This mechanism presented a solution to several problems of Recurrent Neural Network
(RNN) based models that were one of the primary methods for NLP at the time [8].

One of the main shortcomings of RNN-based models is the inability to capture long-term
dependencies in the input due to vanishing and exploding gradient problems and limited hidden
state size [9]. The attention mechanism allows the model to capture dependencies between
any two tokens in the input sequence, drawing the likelihood of a long-term dependency being
captured the same as the likelihood of any short-term dependency.

Another major drawback of RNN-based models is the sequential nature of processing which
makes it impossible to efficiently parallelize the computation. A significant part of the attention
computation can be done independently for each token in the input sequence which dramatically
speeds up processing on modern highly parallel hardware like Graphics Processing Units (GPUs)
and Tensor Processing Units (TPUs).

Transformer model architecture can consist of an encoder, decoder, or a combination of both
(Figure 1). Each of these parts leverages the attention mechanism in different ways to achieve
its objectives. The role of an encoder is to analyze the input sequence and encode it into an
internal representation that captures dependencies between the input tokens. This is done using a
mechanism called self-attention where the attention score is calculated between each pair of the
input tokens and a new value is calculated for each token as a sum of all the values in the input
sequence weighted by the attention score. The role of a decoder is to autoregressively generate
the output sequence leveraging a mechanism called encoder-decoder attention. In this process,
each output token is generated as an attention-weighted sum of the encoded input tokens and the
previously generated output tokens.

The encoder-only models like BERT from Google [10], RoBERTa [11], AlBERT [12] and
DeBERTa [13] only consist of an encoder and do not produce sequences as the output. Instead,
these models only produce encoded representations of the input sequence that can be used for
tasks like input classification, sentiment analysis, or feature extraction. The objective used
during training is often not well-aligned with the inference objective, so these models usually

12

Fig. 1. Encoder-decoder transformer model architecture. Source: [6]

require fine-tuning on the specific target task.

The encoder-decoder models like the original transformer suggested by Ashish Vaswani et al., T5
[14] and BART fromMeta [15] incorporate both encoder and decoder in their architecture. These
models are capable of sequence-to-sequence (seq-to-seq) generation and are commonly used for
machine translation and summarization where the input and the expected output sequences can
be clearly defined.

The decoder-only models like the Generative Pre-trained Transformer (GPT) family of models
from OpenAI [16], PaLM from Google [17], Chinchilla from Deepmind [18], and Llama from
Meta [19, 20] only consist of a decoder. This preserves the ability to analyze the input sequence
and generate a sequence as the output but also eliminates the boundary between the input and
the output. The latter characteristic makes this type of models more generic and often abolishes
the need for fine-tuning after the initial training as most of the tasks can be represented as a
natural language seq-to-seq function [21]. Compared to the encoder-decoder architectures,
which are also capable of seq-to-seq generation, decoder-only architectures further streamline
the training process by removing the need to define the input and output formats for the model
to operate on. These models are often used for language modeling and text generation but
are also capable of input classification, sentiment analysis, and machine translation if invoked

13

with a corresponding prompt. The capabilities of the large decoder-only models can be further
expanded with prompting techniques like few-shot prompting [22].

Code generation is a broad term that is used to describe a wide range of activities. One such
activity is code solution generation for a natural language problem definition. This task is usually
approached as a seq-to-seq generation problemwhere the task definition is the input, and the code
solution is the output of the model. One of the successful solutions in this area is AlphaCode
published by DeepMind [23]. The model leverages the encoder-decoder architecture. It is
pre-trained on a variety of public GitHub repositories in different programming languages and
fine-tuned on a curated dataset of competitive programming tasks. As stated by the authors, the
model achieved a ranking of top 54.3% among more than 5 000 participants on the Codeforces
platform.

Code generation from a natural language task definition might be useful for no-code or low-code
engineers but code completion, where the model generates continuation for an incomplete code
input, represents everyday programmers’ work much closer. Models like Codex from OpenAI
[24], CodeGen from Salesforce [25, 26], and Code Llama from Meta [27] leverage decoder-only
architectures for autoregressive code modeling. The fill-in-the-middle (also referred to as
infilling) transformation and training objective allow decoder-only models to include the context
from both sides of the generated part, removing the limitation of strict left-to-right generation
while maintaining the ability to output long sequences of tokens [28]. This approach not only
enables context-aware code completion but also supports natural language task definition to
some degree. These models can be prompted with a natural language code comment to generate
an implementation. This can be explained by a weak natural language signal that might be
captured during training on large corpora of code with comments and code-related discussions
[25].

1.2. Transformer Model Performance Optimization

Training LLMs from scratch is a highly computationally-intensive process [18]. A more practical
approach to LLM application is optimizing a so-called foundational model, pre-trained for a
similar function, to the specific task.

Prompt engineering and model fine-tuning are two primary methods for LLM performance
optimization. A common workflow for improving the performance of a transformer-based
model in a specific domain is to use prompt engineering methods to achieve the best possible
performance with the base model and then fine-tune the model on a task-specific dataset if further
performance improvement is required. This research will utilize both prompt engineering and
fine-tuning to improve the performance of the Code Llama model on the OpenAPI definitions
generation task.

Prompt engineering is based on the idea that the model can be guided to generate more
accurate output by optimizing the prompt in a series of human-insight-driven experiments.
[29]. Common prompt engineering techniques for instruction-tuned models include few-shot
prompting, chain-of-thought prompting [30], and generated knowledge prompting [31]. For

14

autoregressive code generation, prompt engineering techniques include embedding additional
context to the prompt in the form of comments or other language-specific constructs [25] and
optimizing the prompt structure and size to maximize the model’s performance and resource
efficiency.

Fine-tuning is the second primary method for improving the performance of LLMs. The idea
behind this method is that the model that has already been trained for a similar or a more
broad task can be further fine-tuned for a specific task. The fine-tuning process is similar to
training, but it is performed on a pre-trained model and requires significantly less data and
computational resources. Two fine-tuning approaches are commonly used: full fine-tuning and
Parameter-Efficient Fine-Tuning (PEFT).

Full fine-tuning is performed by continuing the training process on an already pre-trained
model. During this process, all the model parameters are updated just like in the original
training. This means that the hardware requirements for the full fine-tuning are also similar.
This approach demonstrates the potential for achieving the best results, but it also requires the
most computational resources and data. The ability to change all the model parameters during
full fine-tuning can also lead to catastrophic forgetting, a training failure mode where the model
loses the ability to perform the original task or stops generating adequate output altogether.

PEFT, as an alternative to full fine-tuning, is performed by freezing most of the pre-trained
model parameters and only training a relatively small number of additional parameters. This
approach requires much less computational resources and tends to yield comparable results to
the full-finetuning [32]. The PEFT approach is also considered to be less prone to catastrophic
forgetting as the majority of the pre-trained model parameters are left unchanged during
the fine-tuning process. Notable PEFT techniques include adapter tuning [33] which inserts
additional adapter layers between the original model layers and only updates them during
training, BitFit [34] which only trains the bias-terms of the original model, and Low-Rank
Adaptation (LoRA) [35] which decomposes the original parameters into low-rank matrices and
only trains them. In Figure 2, A and B are the low-rank adaptation matrices for the original
weights matrix W. Only A and B matrices are trained and the total number of parameters in these
matrices is 2rd (instead of d2) where r is the rank of the decomposition and d is the size of the
input vector x. The LoRAmethod claims to reduce the number of trainable parameters by 10,000
times and memory requirements by 3 times while maintaining or surpassing the performance of
full fine-tuning when applied to models like GPT-3 and RoBERTa.

When it comes to the data used for fine-tuning, the best results are achieved when the fine-tuning
data is similar in format to the data used during the pre-training but presents new information.
The authors of the Code Llama model also demonstrated that fine-tuning already-seen data can
still lead to significant improvement in task-specific performance [27].

1.3. Integrated Code Generation Solutions

Integrated code generation and completion solutions are end-to-end systems that combine code
generation models, prompt engineering techniques, developer experience optimizations, and IDE

15

Fig. 2. LoRA parametrization. Source: [35]

integrations with the aim of solving a real-world problem of improving developer productivity.
These solutions are often proprietary, so the details of their implementation are not available to
the public. However, some solutions are open-source and can be analyzed in detail.

The most notable commercial solution is GitHub Copilot [36]. Developed by GitHub, OpenAI,
and Microsoft, this code assistant is based on the Codex model. The solution is integrated into
several IDEs like Visual Studio Code, NeoVim, and JetBrains IDEs. As discovered by a reverse
engineering effort [37], Copilot’s prompt-building approach is based on several language-specific
heuristics. For example, for programming languages like Python, a list of imported libraries
and declared functions within the file is extracted and always included in the prompt. The code
assistant underwent manual evaluation in a number of studies [38, 39, 40, 41] demonstrating
decent performance in benchmarks like HumanEval [24] and solving moderate complexity tasks
at platforms like LeetCode. No studies were found that would evaluate the solution performance
in OpenAPI completion. In this research, GitHub Copilot is evaluated as the baseline solution
for the OpenAPI definitions completion task.

Other proprietary solutions worth mentioning are Tabnine [42] which accents the security of
the user’s data and the code base, AWS Code Whisperer [43] which demonstrates additional
expertise in AWS services and client libraries and performs additional checks for license
compliance and common security vulnerabilities in the generated code, and Sourcegraph Cody
[44] which demonstrates awareness of the whole user’s code base.

Continue [45] is an example of an open-source integrated code completion solution that aims
to be model-agnostic and supports multiple models with the most commonly used being Code
Llama Instruct running in a local or a cloud-based LLM server. Other open-source models
supported by the solution include Wizard Coder [46], Phind Code Llama [47], Mistral [48], Code
Up [49], and Zephyr [50]. Commercial models like GPT-3, GPT-4, and PaLM-2 [51] can be
integrated as well. During code assessment, it was discovered that Continue prompts the model

16

in an instructional manner by providing it with the surrounding code and asking to generate
the missing part. This explains the fact that the solution only works with models that support
instruction execution. Another open-source solution, LLM-vscode [52], is a Visual Studio Code
extension developed by Hugging Face for demonstrational purposes. The extension can be used
with many models but in contrast to Continue, it supports both instruction execution and code
infilling models. LLM-vscode is usually used with models like Code Llama, Phind Code Llama,
and WizardCoder.

Another research on applying LLMs to a real-world code completion use case was published by
Microsoft in 2020 [53]. Apart from evaluating transformer optimization techniques for code like
applying tokenization methods that can overcome the closed vocabulary problem, this research
describes multiple developer experience optimization techniques like client-side tree-based
caching, parallel beam search decoder, and compute graph optimizations.

1.4. Code Generation Evaluation

Evaluation of LLMs has always been a challenging task in the field of NLP. The evaluation
methods have been evolving in step with the abilities of the models and the complexity of the
tasks they perform.

As the first applications of language models started appearing in the field of natural language
modeling and machine translation, the evaluation methods were designed to measure the quality
of the generated text by comparing it to the expected output. The most widely used metrics for
this purpose are BLEU [54], ROUGE [55], and METEOR [56]. These metrics are based on
calculating the similarity by counting the overlapping n-grams or measuring the longest common
sequences.

Code generation can not be reliably evaluated with machine translation metrics due to the
fundamental differences between natural language and code. The code is structured and
possesses a more rigid syntax than natural language, making it more sensitive to small
character-level changes. Another source of complexity in code evaluation is the fact that a single
code problem can have multiple equally correct solutions. This makes it impossible to define an
exhaustive set of expected outputs for a given input.

One of the current state-of-the-art evaluation methods for code generation is the HumanEval
benchmark. Originally proposed by OpenAI, this benchmark was designed to evaluate Python
code generation by providing a set of problems each with a description and a set of automated test
cases. Later, the method was extended to support 18 additional programming languages by the
MultiPL-E benchmark [57]. These methods take language semantics into account but are only
applicable to a limited set of programming languages and do not support specific code semantics
like OpenAPI definitions.

The OpenAPI specification is not a programming language but a data format specification.
This means that the existing code generation evaluation methods can not be easily extended to
support OpenAPI completion evaluation. To enable the development of OpenAPI completion
solutions, a new benchmark has to be proposed that supports the specific semantics of OpenAPI

17

definitions.

1.5. Open-source Code Generation Models

Open-source LLMs are widely used by researchers and practitioners as foundational models for
further optimization and fine-tuning. At the time of writing, the most notable open-source code
generationmodels are DeepSeekCoder [58], Code Llama [27], and Star Coder [59]. Thesemodels
are based on the decoder-only transformer architecture and are trained with the infilling objective
to generate code completions. The models are available in multiple sizes starting from 3 billion
parameters and up to 33 billion parameters. As can be seen from Table 1, the performance of
the models varies across different programming languages with a tendency to perform better in
common languages like Python and JavaScript and worse in less common languages like R.

Table 1. Open-source code generation and infilling LLM performance comparison. Collected from [60,
58]

Model Python, % JavaScript, % Java, % Rust, % R, %

DeepSeek Coder 33B 52.45 51.28 43.77 43.78 26.76
DeepSeek Coder 7B 45.83 45.9 37.72 34.67 28.99
Code Llama 13B 35.07 38.26 32.23 29.72 18.32

Code Llama 13B Python 42.89 40.66 33.56 29.32 18.35
Code Llama 7B 29.98 31.8 29.2 25.82 18.04

Code Llama 7B Python 40.48 36.34 29.15 26.96 18.25
Star Coder 15B 30.35 31.7 28.53 24.46 10.18
Star Coder 7B 28.37 27.35 24.44 22.6 14.51
Star Coder 3B 21.5 21.32 19.25 16.32 10.1

Code Gen 2.5 7B Multi 28.7 26.27 26.01 21.84 11.59
Code Gen 2.5 7B Mono 33.08 23.22 19.75 7.83 4.41

1.6. Analysis Conclusion

Based on the analysis performed, the following conclusions can be made:

1. Transformer models are the most widely used machine learning architecture for NLP
and code generation. From the three main variances of the transformer architecture, the
decoder-only approach turns out to be the most suitable for text and code generation and
infilling.

2. The autoregressive nature of decoder-only transformers makes it impossible to capture
context from both sides of the generated part. The autoregressive fill-in-the-middle
approach suggested by Bavarian et al. [28] enables infilling capabilities in decoder-only
models with minimal performance penalty for the primary autoregressive generation
task. The resulting autoregressive infilling models are capable of generating much longer
sequences of tokens than the encoder or encoder-decoder models.

3. Foundational models like Code Llama or CodeGen provide a more optimal pipeline for
natural language problem solving. Fine-tuning a pre-trained LLM is much more cost
and resource-efficient than training a model from scratch. The fine-tuning process can
be further optimized with PEFT methods like LoRA.

18

4. Fine-tuning LLMs with data already seen during training still leads to significant
performance improvements as proved by the researchers behind the Code Llama model.

5. Integrated code generation solutions involve not only LLMs but also integration layers
consisting of the pre-processing and post-processing steps. Human insight-driven prompt
engineering is a major contributor to the resulting performance of end-to-end solutions.

6. Code generation performance cannot be evaluated using common natural language
generation metrics and requires semantics reasoning and evaluation. Programming
languages are often evaluated by executing a set of automated tests on the generated code
snippet.

The following areas of improvement in the field of OpenAPI code completion were
identified:

1. Existing generic code completion solutions demonstrate good performance in
common languages like Python and JavaScript. However, their performance in more
narrow-purpose languages like R or OpenAPI is usually lower than satisfactory.

2. No evaluation framework exists for OpenAPI completion. Developing such a framework
would allow the evaluation of existing code generation solutions in OpenAPI completion as
well as stimulate the development of the newOpenAPI-specific code completion solutions.

19

2. Methods and Datasets for OpenAPI Completion

As the previous section outlined, OpenAPI completion requires specialized evaluation and
optimization methods. This section describes the proposed OpenAPI completion benchmark
and the corresponding dataset, the foundational model selected for the study, and the prompt
engineering techniques used to optimize the model’s performance.

2.1. OpenAPI Completion Evaluation Criteria and Benchmarking

As discussed in the previous section, existing text or code generation evaluation methods
can not be considered optimal for OpenAPI generation evaluation. These methods are not
semantics-aware as in the case with machine language translation metrics or do not support
specific OpenAPI semantics as in the case with the widely used HumanEval and MultiPL-E
benchmarks.

The proposed benchmark closely resembles the real-world usage of the solution in terms of input
modeling and output evaluation. Figure 3 outlines the steps for a single evaluation iteration.
The masking step, where part of the input definition is replaced with a special mask token, is
responsible for modeling the input. At the completion step, the evaluated model is used to replace
the mask token with the generated OpenAPI definition. The evaluation step, where the completed
definition is compared to the original, is responsible for the completion result evaluation.

Fig. 3. Single evaluation iteration

The masking step can be seen as splitting the original OpenAPI definition into two parts (prefix
and suffix) and removing some amount of the definition from between. This way, the input
modeling is defined by the position of the prefix-suffix split and the size of the masked part
between them.

When editing an OpenAPI definition, the user does not always add new endpoints or parameters
and can expect to get a completion suggestion even when they have not finished typing the
previous word or syntactic construct. This means that the prefix and suffix split should be
randomly selected and not tied to a new line or a keyword. Conversely, the end of the masked
sequence should be on a new line, as it is reasonable to assume that users are more likely to edit a
document at the end of a line rather than in the middle of it when describing new API operations
or adding parameters to existing ones. An example of a masked OpenAPI definition is available
in Appendix 2.

The following metrics are measured at the evaluation step:

1. Correctness – how often the generated OpenAPI definition is semantically identical to the

20

original one.
2. Validity – how often the generated OpenAPI definition is syntactically valid.
3. Speed – how fast the solution generates the OpenAPI definition.

To be semantically identical, two snippets of OpenAPI definition do not have to be identical at
the character level. The YAML and JSON specifications allow for different ways of representing
the same data. For example, keys can be optionally quoted, and the order of keys is not
significant. The OpenAPI specification allows for even more flexibility with the support of
references and other advanced syntactic features. Additionally, OpenAPI definitions contain
subjective information such as descriptions, titles, summaries, and examples of data. These
fields are not required to be identical for the generated OpenAPI definition to be considered
semantically identical to the expected one.

To evaluate correctness, the benchmark uses the Oasdiff tool [61] which is capable of calculating
the semantic difference between two OpenAPI definitions. The calculated difference is not
affected by the YAML, JSON, or OpenAPI specification flexibility described above. To tolerate
subjectiveness in the definition, the following set of heuristics is applied to the calculated
difference:

1. The definitions are semantically identical if the calculated difference is empty.
2. The definitions are semantically identical if the calculated difference only contains

insignificant changes.
3. Changes in the following subjective fields are considered insignificant: description,

summary, and title.
4. Changes in the examples of data are considered insignificant if they do not change the

structure and type of the data.

2.1.1. Evaluation Dataset

The dataset for the benchmark was collected from the APIs-guru definitions directory [62] which
is a weekly updated collection of public OpenAPI definitions. The directory contains more than
4 000 definitions in YAML format.

Ideally, the definitions have to be unseen by the model during training or fine-tuning. However,
as the Code Llama model authors do not reveal the details of the training dataset, it is not possible
to guarantee that the definitions were not used during training. Only the newest definitions in the
directory were selected for the evaluation dataset to minimize the chance of being seen by the
model. The definitions were also checked for presence in The Stack [63] dataset which is one of
the biggest open code datasets collected from GitHub. The definitions that were present in The
Stack dataset were excluded from the evaluation dataset.

Another requirement for the definitions in the evaluation dataset is that they have to represent
different domains and styles. The APIs-guru collection contains definitions for APIs from a
variety of domains such as payment systems, cloud services, and electronic commerce. The
directory also contains definitions from many producers such as Amazon, Meta, and Google.
The definitions were selected from different domains and producers to ensure that the benchmark

21

is not biased toward a specific field or style of OpenAPI definitions. Automatically generated
definitions were detected and excluded from the evaluation dataset as they do not represent the
future real-world use of the solution.

Only OpenAPI definitions larger than 3 000 lines were selected for the evaluation dataset with
the preference given to definitions larger than 20 000 lines when all the other criteria are equal.
Large definitions are preferred since they are more likely to contain complex syntactic constructs
and semantic dependencies. Small definitions that fit into the context size of the model are often
too trivial to complete correctly and do not present any practical value for the benchmark.

Ten OpenAPI definitions satisfying the above criteria were selected for the evaluation dataset
(Table 2). Considering the size of the selected definitions, multiple test cases could be extracted
from each definition. The test cases were extracted by randomly selecting a position in the
definition and masking the rest of the line and ten following lines. The evaluation objective
was to generate the infilling for the masked part so that the resulting definition is semantically
identical to the original one.

Table 2. OpenAPI definitions included in the evaluation dataset

API Title Producer Domain Size, lines

Adyen Management API Adyen Payment system 20 359
Amazon VPC Lattice AWS Cloud computing 6 709
Visma e-conomic

OpenAPI
Visma Accounting system 10 162

Google Display & Video
360 API

Google Video hosting 16 008

Mux API Mux Video hosting 7 128
Rubrik REST API Rubrik Data security 43 540

Sinao API Sinao Accounting system 12 215
SpaceTraders API SpaceTraders Gaming 3 121
The Racing API The Racing API Gambling 9 650

Severa Public Rest API
Documentation

Visma Project management 36 871

The benchmark was implemented with the idea of being fully automated and reproducible.
This made it possible to easily evaluate the performance of many solutions and configurations.
However, the fact that commercial solutions like GitHub Copilot are only available as IDE
plugins and require manual interaction with the IDE imposed a limitation on the size of the
evaluation dataset. To keep the manual evaluation time reasonable while still providing a
representative evaluation, the dataset size was constrained to 100 test cases in total which is
comparable to the size of the HumanEval benchmark with 164 code problems.

2.2. Platforms and Tools

For the solution implementation, it was decided to use Code Llama as the foundation LLM,
Hugging Face Inference Endpoints as the infrastructure platform, Hugginf Face Transformers
and PEFT as the fine-tuning libraries, JavaScript as the programming language for the prototype

22

implementation, and Python as a general purpose scripting language for the model fine-tuning.
In this section, the key factors that influenced the decisions are discussed.

2.2.1. Foundational Model

Training LLMs from scratch is a highly computationally expensive process [18]. For practical
reasons, it is often more efficient to incorporate a generic pre-trained model that can be fine-tuned
for a specific task or used in a zero-shot manner. For the OpenAPI completion task, the foundation
model should satisfy the following requirements:

1. The model should be available for research and commercial use under a permissive license.
2. The model should be trained on a wide range of programming languages.
3. The model should support large context (at least 4096 tokens) and long output sequences

(at least 1024 tokens).
4. The model should support code infilling and autoregressive generation.
5. The model should support fine-tuning.
6. The model should have a big community and be well-documented.

The Code Llama model [27] was selected as the most widely used model that satisfies all
the requirements. This code generation model from Meta is trained on an unbound set of
programming languages which not only ensures its ability to generate OpenAPI definitions but
also allows it to generate code samples that are commonly found in OpenAPI definitions in
a variety of programming languages. The model supports large context sizes (up to 100 000
tokens) which is important for the OpenAPI completion task as the definitions can reach tens of
thousands of lines in size.

This code generation model is based on another widely adopted natural language model from the
same company – Llama 2. The model was trained for code infilling on an additional 500 billion
tokens of code. Figure 4 outlines the training pipeline of the Code Llama model family. The
model was further trained for Python specialization and fine-tuned for instruction execution, but
for the sake of this research, the base Code Llama model is used.

Fig. 4. Code Llama family training pipeline. Adapted from: [27]

The model is available in three sizes: 7 billion parameters, 13 billion parameters, and 34 billion
parameters. In this research, the 7 billion and 13 billion parameter models are evaluated. The 34
billion parameter model was not selected for evaluation due to the high computational cost and
the lack of evidence that the model would demonstrate significantly higher performance than the
13 billion parameter model. Moreover, the largest model was not trained on code infilling tasks,
which is required for real-world code completion scenarios.

23

The Code Llama model can operate in two modes: autoregressive code generation, where the
model takes a code snippet and generates a continuation for it token by token, and code infilling,
where the model takes two snippets of code and generates the completion that would fill the gap
between them. The mode of operation is determined by the format of the prompt. For code
generation, the model should be prompted with the code snippet as is. For code infilling, the
two snippets (prefix and suffix) should be formatted in a special way that was defined during the
model training.

Following the training methods originally described in the work of Bavarian et al. [28], the Code
Llama model supports two prompt formats for code infilling: Prefix Suffix Middle (PSM) and
Suffix Prefix Middle (SPM). The study has shown that the SPM format produces slightly better
results even when the model is trained on the PSM format. The SPM format is also expected to
result in a higher key-value cache hit rate as the suffix is less likely to change in a real-world code
infilling scenario. Both formats are evaluated in this research.

The Code Llama model introduces four special tokens to the existing Llama 2 tokenizer: <PRE>,
<SUF>, <MID>, <EOT>. Using these tokens, the PSM prompt format can be defined as

<PRE> ◦ Enc(prefix) ◦ <SUF> ◦ Enc(suffix) ◦ <MID> ◦ Enc(middle), (1)

Source: [28]

where the Enc(·) is the encoding operation and ◦ is a token-level concatenation. The SPM format
can be defined as

<PRE> ◦ <SUF> ◦ Enc(suffix) ◦ <MID> ◦ Enc(prefix) ◦ Enc(middle). (2)

Source: [28]

The model autoregressively generates tokens until the <EOT> token is generated indicating a
successful connection of the middle part with the suffix. Please, note that in the SPM format,
the middle part immediately follows the prefix which makes the format even more similar to the
simple regression case.

2.2.2. Infrastructure Platform

Running inference, training, and fine-tuning LLMs imposes significant resource requirements
beyond the capabilities of a consumer-grade computer. Applying the solution to a real-world
problem in a commercial setting requires a scalable and cost-efficient infrastructure solution.
The following requirements were considered when selecting the infrastructure platform:

1. The platform should support cost-efficient per-request or per-minute pricing.
2. The platform should automate the model deployment process.
3. The platform should support simple inference APIs.
4. The platform should support a wide range of hardware options including GPUs and TPUs.
5. The platform should support automatic scaling and load balancing.
6. The platform should have a big community and be well-documented.

24

Hugging Face was selected as the most widely used platform with the lowest cost and decent
documentation. The platform supports the deployment of existing models from the Hugging
Face model hub as well as models, trained or fine-tuned with the Hugging Face Transformers
[64] and PEFT [65] libraries, among others. The platform provides convenient solutions for both
inference and training on a wide range of hardware options.

The Hugging Face Inference Endpoints platform [66] allows automatically deploying
transformer-based models as Representational State Transfer (REST) APIs. The solution
will be beneficial for the research and prototype implementation as it allows deploying models
of different sizes without the need for manual infrastructure provisioning or configuration. This
will enable quick evaluation and iteration of the solution. The platform also supports automatic
scaling and load balancing, request batching, and caching, significantly improving the solution’s
performance and cost-efficiency in real-world scenarios.

2.2.3. Client-side Programming Language

The LLM and the infrastructure platform make up the solution’s back end. An equally important
part of the solution is the client-side integration layer that gathers the user input, constructs the
prompt for the model, and processes the model output. To ease the future prototype to production
transition, the client-side programming language should be compatible with the target platforms
(IDE plugin systems and web browsers). Due to the factors described, contrary to the common
practice of using Python for machine learning tasks, JavaScript was selected as the primary
programming language for the client-side integration layer.

To format an optimal prompt, the client-side integration layer should be able to estimate the
token length of the textual data it operates on. The Hugging Face Transformers library [31, 64]
implements a tokenizer for Python programming language but not for JavaScript. A third-party
Llama 2 tokenizer implementation for JavaScript is available [67]. As the Code Llama model is
based on Llama 2, the tokenizer should be compatible with the model.

As the evaluation framework has to be able to evaluate the end-to-end solution performance, it
should be integrated with the client-side layer. For this reason, the evaluation framework should
be implemented in JavaScript as well. As the runtime environment for the evaluation framework,
NodeJS was selected as it allows running JavaScript code outside of the browser.

2.3. Integrated Solution Architecture

The sequence Unified Modeling Language (UML) diagram (Figure 5) depicts the key parts of the
solution architecture as well as their interaction. The prompt builder is responsible for generating
the prompt for the infilling model from the cursor context provided by the IDE. The formatted
prompt is then submitted to the infilling model which is responsible for infilling the missing part
between the prefix and the suffix. The infilling result is then passed to the response embedder
which is responsible for merging the result with the cursor context. The response embedder also
indicates if the completion is finished. If not, a new prompt is generated from the previous cursor
context and the infilling generated in the previous step. The generation process loops until the
context is infilled or the maximum generation length is reached.

25

Fig. 5. Integrated code completion solution UML sequence diagram

The combination of the prompt builder, infilling model, and the response embedder make the
reusable part of the solution. If packaged as a JavaScript library, such a package could be reused
in any IDE that supports JavaScript plugins or any web-based code editor.

Figure 6 outlines the key steps of the response embedder. The response embedder takes the
infilling result and the prompt suffix and returns the embedded result that is free from possible
overlap with the suffix. The response embedder also indicates if the completion is finished.

2.4. Prompt Engineering Techniques

As the expected OpenAPI definition size is significantly larger than the maximum context size
supported by Code Llama, it is not possible to fit the whole definition in the prompt. In this
research, the impact of multiple variables on the completion performance is evaluated with the
aim of finding the optimal prompt format for a real-world OpenAPI completion task.

One of the factors affecting completion performance is the prefix-to-suffix ratio. Theoretically,
prefixes and suffixes should contain the same amount of useful information for the model to
generate a semantically correct completion. However, the model can have a preference for one
of the parts inherited from the training data. The optimal ratio can be found by evaluating the
completion performance for a range of ratios.

Another factor that affects both the completion accuracy and speed is the context size. The context
size is the number of tokens available to the model at the time of completion. A larger context
size allows the model to take into consideration more information from the surrounding context
but also requires more computational time and resources to process. The optimal context size can
be found by evaluating the completion performance for a range of context sizes while keeping

26

Fig. 6. Response embedder UML flow diagram

the prefix-to-suffix ratio constant.

The code infilling mode is expected to be more suitable for the OpenAPI completion task as it
allows the model to consider the context both before and after the cursor position. The part of the
definition that goes after the cursor should allow the model to take into account components such
as schemas, requests, and responses that are commonly placed at the end of the document. The
suffix is also important for the model to generate syntactically correct definitions that are integral
to the rest of the document.

The autoregressive code generation mode of the Code Llama model can be considered a special
case of the code infilling mode with the 100/0 prefix-to-suffix ratio. This mode is not expected
to perform on par with the code infilling mode. However, it might still demonstrate better
performance than the code infilling mode with a suboptimal prefix-to-suffix ratio as the model
can be more focused on the completion task.

OpenAPI specification allows including metadata about the API in the definition. This metadata
can include information like the API’s title, description, version, contact information, or
license type. The metadata is not required for the definition to be considered valid and can be
neglected during OpenAPI validation or comparison. However, the metadata may contain useful

27

information for the model to generate a more semantically correct definition.

The components section of the OpenAPI definition is crucial for the model to generate valid
definitions since it defines the set of available schemas, requests, responses, and other components
that can be referenced in the definition. To test this hypothesis, the prompt builder is modified
to extract the components section if available, format it as a comment with the list of component
names, and include it in the prompt prefix.

2.5. Code Llama Fine-tuning

The OpenAPI completion performance of the model can be further improved by fine-tuning it on
task-specific data. This section describes the dataset used for fine-tuning the 7 billion parameter
version of the Code Llama model as well as the full details of the fine-tuning process.

The dataset for fine-tuning was collected from the APIs-guru OpenAPI definitions directory [62].
The directory contains more than 4,000 definitions in yaml format. Analysis of the repository
revealed that about 75% of the definitions in the directory are produced by a handful of major
companies like Amazon, Google, and Microsoft. To avoid the dataset bias towards a specific
producer, the maximum number of definitions from a single producer was limited to 20. Multiple
versions of the same API were also excluded from the dataset as they are likely to contain similar
definitions. Definitions from producers used in the evaluation dataset were also excluded from
the fine-tuning dataset to avoid data leakage. The resulting dataset contains 990 definitions and
can be accessed at the HuggingFace Hub [68].

The authors of the Code Llama model don’t reveal the details of the dataset used for training.
However, considering its size (500 billion tokens), it would be naive to assume that the publicly
available OpenAPI definitions were not used for training. At the same time, the Code Llama
model authors claim that fine-tuning the model on already-seen data can still lead to significant
performance improvements. This claim is supported by the results of the Python-specialized
Code Llama version which was fine-tuned from the base Code Llama model using the subset of
the original training dataset.

In order to avoid the objective mismatch between the training and fine-tuning processes, the
infilling prompt format was reconstructed to mirror the format described by the Code Llama
model authors. Nevertheless, the specifics of the OpenAPI format still had to be taken into
account. Similarly to the Code Llama training, the prefix-middle-suffix split was performed at
the character level with the split positions selected randomly. The same tokens (<PRE>, <SUF>,
<MID>, <EOT>) were used to format the prompt in the PSM and SPM formats and the leading
spaces implicitly generated by the SentencePiece tokenizer were suppressed. However, unlike
the Code Llama training, the split was performed at the context level and was not limited to
documents that fit into the context size as most of the OpenAPI definitions are much larger than
the context size used during fine-tuning. In the SPM format, the prefix and middle parts were
concatenated after the tokenization to improve the model performance with split tokens which
are expected to be encountered often in the real-world OpenAPI completion scenarios.

Another consequence of the large size of the OpenAPI definitions is the bias towards

28

full-context-length completions. As can be seen in Figure 7, the distribution of the training
sample lengths is skewed toward the maximum context size of 5,120 tokens when the normal
context-level split is used. This bias can cause the model to show optimal performance only
when prompted with the same context size as during fine-tuning. To mitigate the bias, the input
documents were split into smaller parts of random length between 4 096 and 6 144 tokens (0.8-1.2
of the 5 120 tokens context size) before the context-level split was performed. This technique is
further referred to as document splitting. When used before the infilling permutation, document
splitting should not be distinguishable from using full documents of uniform length distribution
as the truncated prefixes and suffixes correspond to a normal real-world code completion
scenario when the context size is limited and doesn’t cover the entire document.

Fig. 7. Sample length distribution with and without document splitting

2.6. Design Conclusion

In this chapter, the methods for the OpenAPI completion solution and benchmark implementation
were designed. The key design decisions can be summarized as follows:

1. The criteria for theOpenAPI completion evaluationwere defined to be correctness, validity,
and speed. The Oasdiff tool was chosen to calculate the semantic difference between the
original and the generated OpenAPI definitions and the heuristics were defined to tolerate
subjective changes in the definitions.

2. The proposed semantics-aware OpenAPI completion benchmark was designed to resemble
the real-world usage of the solution by masking a multiline part of the OpenAPI definition
and using semantic analysis to evaluate the completion result. To the best of the author’s
knowledge, the benchmark is the first publically available evaluation framework for
OpenAPI completion.

3. The evaluation dataset was collected from the APIs-guru OpenAPI definitions directory
and consists of ten definitions from different domains and API producers. The number of
test cases was limited to 100 as commercial solutions like GitHub Copilot require manual
evaluation which must be kept in a reasonable time frame.

4. The Code Llama model was selected as the foundational model for the research and the
solution implementation. The following criteria were consideredwhen selecting themodel:
licensing terms, multilanguage support, code infilling capabilities, context size, fine-tuning

29

support, and community activity.
5. The Hugging Face Inference Endpoints platformwas selected as the infrastructure platform

for the solution implementation. The platform supports cost-efficient per-request pricing,
automated model deployment, simple inference APIs, a wide range of hardware options,
automatic scaling and load balancing, and has a big community and good documentation.

6. The Hugging Face Transformers and PEFT libraries were selected for the fine-tuning
process. In addition to providing native support for Code Llama model LoRA fine-tuning,
the libraries are well-integrated with the Hugging Face Inference Endpoints platform.

7. JavaScript was selected as the primary programming language for the client-side
integration layer. The language is compatible with the target platforms (IDE plugin
systems and web browsers) and has a developed tooling ecosystem for integration with
the Hugging Face Inference Endpoints platform and estimating the Code Llama model
token length.

8. The prompt engineering techniques were designed to optimize the performance of
the original Code Llama model before proceeding to the fine-tuning process. The
prefix-to-suffix ratio, context size, model size, infilling format, and metadata inclusion
techniques will be evaluated to find the optimal prompt format for the OpenAPI completion
task.

9. The fine-tuning techniques were designed to further optimize the performance of the
Code Llama model. A novel document splitting technique was proposed to mitigate the
bias towards full-context-length completions that the widely used context-level infilling
transformation is prone to. The LoRA PEFT method was selected to optimize the
cost-efficiency of the fine-tuning process.

10. The fine-tuning dataset was collected from the APIs-guru OpenAPI definitions directory.
To prevent a possible bias towards the design style of major API producers and data leakage
to the evaluation benchmark, the dataset was filtered to limit the number of definitions from
a single producer to 20 and exclude the definitions that are used in the evaluation dataset.

11. To the best of the author’s knowledge, the implemented fine-tuning pipeline is the first
publically available solution for fine-tuning the Code Llama model for code infilling. The
solution is not limited to OpenAPI completion and can be used to improve the Code Llama
model performance in any programming language or domain.

30

3. OpenAPI Completion Evaluation Results

Following the prompt engineering and fine-tuning methods described in the previous section, the
Code Llama model was optimized for the OpenAPI completion task. This section presents the
results of the evaluation of the optimized model and compares it to the performance of GitHub
Copilot. For all the evaluations described in this section, the same set of masked OpenAPI
definitions was used ensuring consistent evaluation conditions.

3.1. GitHub Copilot Performance in OpenAPI Completion

GitHub Copilot was selected as the baseline solution for OpenAPI generation as at the time of
writing it is the most widely used coding assistant on the market. The solution is a commercial
product available with a monthly subscription plan.

As GitHub Copilot does not provide an API for programmatic access, the completion cannot be
automated and must be performed manually. For the evaluation results to be comparable with the
automatic completion results, the manual evaluation process resembles the automatic completion
procedure as closely as possible and uses the same set of masked OpenAPI definitions. Manual
completion was performed for each masked definition following these steps:

1. The «MASK» marker is removed, and the cursor is set in place of the marker.
2. If Copilot refuses to generate a suggestion, the last character is removed and added again

to trigger the completion.
3. Copilot’s suggestions are accepted without modifications one by one until one of the

following conditions is reached:
(a) Suggestions are no longer generated (Copilot considers the infilling complete).
(b) Maximum number of completion lines is reached (15 lines).

The speed of suggestion generation using GitHub Copilot was measured by tracking the time
between triggering completion with a key press and seeing the generated suggestion on the screen.
The number of characters generated was divided by the generation time. The experiment was
repeated ten times to take human error as well as random service latency factors into account. The
average code generation speed was measured to be 19.3 characters per second with a standard
deviation of 1.9.

Following the completion procedure described, GitHub Copilot correctly completed 29% of the
OpenAPI definitions. 68% of the completed definitions were valid.

3.2. Original Code Llama Model for OpenAPI Completion

Using the benchmark proposed in the previous chapter, an extensive set of experiments was
performed to analyze the impact of a variety of variables and prompt engineering techniques
on the performance of the Code Llama model in the OpenAPI completion task. The experiments
were designed to analyze the impact of a single variable at a time. When not stated otherwise,
the 7 billion parameter version of the Code Llama model, the PSM prompt format (1), the 50/50
prefix-to-suffix ratio, and the 4 096 tokens context size were used.

31

The Code Llama models were evaluated at the Hugging Face Inference Endpoints platform [66]
using the configuration described in Table 3.

Table 3. Hugging Face Inference Endpoints configuration used for Code Llama models evaluation

Model Configuration Option Value

Code Llama 7B

Instance Type Nvidia A10G ∙ 1x GPU ∙ 24 GB
Task Text Generation

Model Revision bc52832
Custom Cuda Kernels Enabled

Quantization None
Max Input Length 8 096

Max Number of Tokens 9 120
Max Batch Prefill Tokens 8 096
Max Batch Total Tokens 9 120

Code Llama 13B

Instance Type Nvidia A10G ∙ 4x GPU ∙ 96 GB
Task Text Generation

Model Revision a49a368
Custom Cuda Kernels Enabled

Quantization None
Max Input Length 4 096

Max Number of Tokens 4 352
Max Batch Prefill Tokens 4 096
Max Batch Total Tokens 4 352

3.2.1. Optimal Prefix-to-suffix Ratio

A range of prefix-to-suffix ratios from 30/70 up to 90/10 was evaluated to find the optimal
proportion. The evaluation was performed on the 7 billion parameter version of the Code Llama
model with a constant context size of 4 096 tokens. The optimal prefix-to-suffix ratio can depend
on the mentioned factors but for the purpose of parameter space reduction, the dependencies are
intentionally disregarded in this research.

Figure 8 depicts the dependency of correctness and validity of the OpenAPI completion on
the prefix-to-suffix ratio. As can be seen from the graph, the highest percentage of correctly
infilled definitions of 36% corresponds to 50/50 and 60/40 prefix-to-suffix ratios. The 50/50
ratio demonstrates a higher validity percentage of 63% compared to 61% for the 60/40 ratio.
Even though the dip at the 60/40 ratio can be attributed to the factor of randomness, the 50/50
ratio can still be considered optimal as it does not discriminate the importance of either prefix or
suffix without sound justification.

3.2.2. Optimal Context Size

Context size is another factor that affects not only the solution performance but also the speed
of code generation and, consequently, throughput and resource efficiency of a real-world
implementation. A range of context sizes from 1 024 to 7 168 tokens was evaluated with a
constant prefix-to-suffix ratio of 50/50 and the 7 billion parameter version of the Code Llama
model.

32

30/70 40/60 50/50 60/40 70/30 80/20 90/10
Prefix/Suffix Ratio

26

28

30

32

34

36

38

Co
rre

ct
 C

om
pl

et
io

ns
, %

Correct Completions
Valid Completions

54

56

58

60

62

64

Va
lid

 C
om

pl
et

io
ns

, %

Fig. 8. OpenAPI completion performance of the original Code Llama 7B model at a range of
prefix-to-suffix ratios with a fixed context size of 4096 tokens

As can be seen in Figure 9, OpenAPI completion correctness and validity increase with the
expanding context size. The correctness rate, which is the primary target metric in this research,
demonstrates a much smoother trend with a significant increase up to the context size of 4 096
tokens. After this point, the correctness level stabilizes at around 36% and even decreases by
1% after 6 144 tokens. The speed, as expected, follows the downward trend with a dramatic
decline after the 3 072 tokens point. This can be explained by the quadratic complexity of the
input processing in decoder-only transformers.

With a correctness rate of 36%, validity rate of 63%, and a generation speed of 79 characters per
second, the context size of 4 096 tokens can be considered optimal for real-world scenarios since
after this point, neglectable correctness and validity increases come at a cost of significant speed
and resource-efficiency deterioration.

3.2.3. Autoregressive Generation and Infilling Modes

This experiment evaluated the Code Llama model in the traditional autoregressive code
generation mode with a range of context sizes from 1 024 to 7 168 tokens. As expected, the
performance in this mode is inferior to the infilling mode with 50/50 prefix-to-suffix ratio in
terms of both the correctness and validity of the generated OpenAPI completions (Figure 10).
For example, the model correctly completed only 10% of the definitions and generated valid
completions 24% of the time, which is a 72% correctness decrease compared to the same
configuration in the infilling mode.

The results of this experiment demonstrate that the infilling mode is essential for code completion
tasks regardless of the amount of context provided to the model.

33

1024 2048 3072 4096 5120 6144 7168
Context Size, tokens

10

20

30

40

50

60

Co
m

pl
et

io
ns

, %

Correct Completions
Valid Completions
Generation Speed

70

75

80

85

90

Ge
ne

ra
tio

n
Sp

ee
d,

 c
ha

r/s

Fig. 9. OpenAPI completion performance of the original Code Llama 7B model at a range of context
sizes with a fixed prefix-to-suffix-ratio of 50/50

1024 2048 3072 4096 5120 6144 7168
Context Size, tokens

0

5

10

15

20

25

30

35

Co
rre

ct
 C

om
pl

et
io

ns
, %

Correct Completions

AR
Infilling

1024 2048 3072 4096 5120 6144 7168
Context Size, tokens

20

30

40

50

60

Va
lid

 C
om

pl
et

io
ns

, %
Valid Completions

AR
Infilling

Fig. 10. OpenAPI completion performance of the original Code Llama 7B model in autoregressive
generation and infilling modes

3.2.4. PSM and SPM Infilling Formats

SPM format (2) is an alternative prompt format supported by the Code Llama model in the
infilling mode. Contrary to the fact that the SPM format demonstrated higher performance
in the original work of Bavarian et al. [28], the authors of Code Llama designed PSM (1)
to be the primary prompting format for the model stating that the SPM implementation might
require additional token healing on the tokenization step at the inference time. In this experiment,
the default Code Llama tokenizer is used. As can be seen in Figure 11, the SPM prompting
format underperforms at all context sizes compared to PSM. For example, the model correctly
completed 24% of the definitions and generated valid completions 53% of the time at 4 096
tokens, which is a 33.3% correctness decrease compared to the same configuration with the PSM
prompt format.

34

1024 2048 3072 4096 5120 6144 7168
Context Size, tokens

15

20

25

30

35

Co
rre

ct
 C

om
pl

et
io

ns
, %

Correct Completions
SPM
PSM

1024 2048 3072 4096 5120 6144 7168
Context Size, tokens

40

45

50

55

60

65

Va
lid

 C
om

pl
et

io
ns

, %

Valid Completions

SPM
PSM

Fig. 11. OpenAPI completion performance of the original Code Llama 7B model with the PSM and SPM
prompt formats

3.2.5. OpenAPI Metadata in Prompt

The experiment was performed on the 7 billion parameter Code Llama model with a 60/40
prefix-to-suffix ratio and a range of context sizes from 4 096 to 7 168 tokens. The extended
prefix size was expected to compensate for the space taken by the components section in the
prompt.

As can be seen in Figure 12, adding the components list to the prompt prefix results in moderate
validness and correctness improvements at the larger context sizes (11.4% correctness and
1.6% validness improvement at 6 144 tokens). The results at a smaller context size of 4 096
tokens, on the other hand, demonstrate a significant drop in both correctness (25%) and validity
(6.3%).

The obtained results might mean that the components are not usually required for correct
OpenAPI completion. The model can deduct the correct component names from just the
surrounding context. When used with a relatively small context size, the suggested method can
even be harmful to the solution performance as it consumes space that could otherwise be taken
by more valuable information in the prefix.

3.2.6. Optimal Model Size

The Code Llama model is available in three sizes: 7 billion parameters, 13 billion parameters,
and 34 billion parameters. The impact of the model size on the solution performance is evaluated
by comparing the performance of the 7 billion parameter model with the performance of the 13
billion parameter model. Due to resource constraints and the inability of the 34 billion parameter
model to work in the infilling mode, this model size is not evaluated in the experiment.

A machine with four Nvidia A10G GPUs and a total of 96 GB of GPU memory was used for
the evaluation. This machine made it possible to evaluate the model with up to 4 096 tokens of
context. The evaluation was performed on a range of context sizes from 1 024 to 4 096 tokens
with a constant prefix-to-suffix ratio of 50/50.

35

4096 5120 6144 7168
Context Size, tokens

28

30

32

34

36

38
Co

rre
ct

 C
om

pl
et

io
ns

, %

Correct Completions

With Components
Without Components

4096 5120 6144 7168
Context Size, tokens

59

60

61

62

63

64

65

66

Va
lid

 C
om

pl
et

io
ns

, %

Valid Completions
With Components
Without Components

Fig. 12. OpenAPI completion performance of the original Code Llama 7B model with and without
OpenAPI components in the prompt prefix

As can be seen in Figure 13, the bigger 13 billion parameter model outperforms the smaller model
at all context sizes with the only exception being correctness after 3 072 tokens. At the context
size of 4 096 tokens, Code Llama 13B surpasses the results obtained with Code Llama 7B by only
1% in validity while falling behind in correctness by 5%.

1024 2048 3072 4096
Context Size, tokens

15

20

25

30

35

Co
rre

ct
 C

om
pl

et
io

ns
, %

Correct Completions

Code Llama 13B
Code Llama 7B

1024 2048 3072 4096
Context Size, tokens

52.5

55.0

57.5

60.0

62.5

65.0

67.5

Va
lid

 C
om

pl
et

io
ns

, %

Valid Completions

Code Llama 13B
Code Llama 7B

Fig. 13. OpenAPI completion performance of the 7 and 13 billion parameter versions of the original
Code Llama model

Figure 14 compares the generation speed trends of the models. Due to the GPU computing power
redundancy caused by the high memory requirements of the model, the 13 billion Code Llama
outperforms the smaller model at 1 024 and 2 048 tokens. However, the quadratic complexity
of the attention mechanism quickly makes up for the computing power redundancy, and the
generation speed drops below the speed of the smaller model at 3 072 and 4 096 tokens. The
speed reduction trend suggests that the difference in the generation speed will only increase with
the context size.

3.2.7. YAML and JSON OpenAPI Fromats

The OpenAPI specification allows using both YAML and JSON formats for the definitions. The
Code Llama model operates on the character level and does not distinguish between the two

36

1024 2048 3072 4096
Context Size, tokens

70

80

90

100

110

120

130

Ge
ne

ra
tio

n
Sp

ee
d,

 c
ha

r/s

Generation Speed
Code Llama 13B
Code Llama 7B

Fig. 14. Generation speed of the 7 and 13 billion parameter versions of the original Code Llama model

formats. However, the performance in these formats is expected to be different due to different
levels of syntactic complexity. As can be seen in Figure 15, two semantically identical OpenAPI
snippets in YAML and JSON can require a significantly different number of characters and tokens
to be represented. In this case, JSON takes 43% more characters and 51% more tokens than
YAML when the Llama 2 tokenizer is used. As discussed in the previous chapter, this tokenizer
can be considered identical to the Code Llama tokenizer for this experiment.

Infilling the same set of OpenAPI definitions converted to JSON using Code Llama 7B model
with a 50/50 prefix-to-suffix ratio and 4 096 tokens of context resulted in 27% of correctly infilled
definitions which is 25% less than the performance of the same model on the original YAML
definitions. The validity of the generated definitions was 56% which is 11.1% less than the
validity of the YAML definitions. The generation speed was 72 characters per second which is
8% less than the speed of the same model on the original YAML definitions. The results suggest
that the JSON format is more difficult for the model to generate.

3.3. Fine-tuning Code Llama Model for OpenAPI Completion

As demonstrated in the previous section, the original Code Llama model is already capable
of OpenAPI completion and even outperforms GitHub Copilot. This section evaluates the
fine-tuning approaches that can further improve the model performance.

3.3.1. Benefits of Using a Mixture of PSM and SPM Infilling Formats

The study of Bavarian et al. suggests that using a mix of SPM and PSM formats during training
leads to an increase in the infilling performance [28]. At the same time, the original Code Llama
model has a known problem with infilling in the SPM format 3.2.4. It is worth evaluating
the efficiency of including this format in the fine-tuning process. This section compares the
performance of the 7 billion parameter Code Llama model fine-tuned solely with the PSM
format and with a mixture of PSM and SPM formats (joint fine-tuning). When used, the SPM
format was applied to half of the training samples. Context size of 4 096 tokens was used during

37

Fig. 15. YAML and JSON tokenization comparison

fine-tuning.

As can be seen in Figure 16, both fine-tuning approaches demonstrate similar performance in the
PSM format with the joint fine-tuning showing a slight improvement in correctness and validity.
The joint fine-tuning also results in significantly higher performance when the SPM format is
used for inference. These results suggest that it always makes sense to include the SPM format
when fine-tuning the Code Llama model for code infilling tasks.

Compared to the original Code Llama model, the model fine-tuned with the joint format
demonstrates a peak improvement of 28.6% in both correctness and validity at the context
size of 6 144 tokens when prompted with the PSM format. Performance in the SPM format
is still inferior to PSM but the gap is reduced from 28.6% to 11.1% in correctness and from
12.7% to 4.9% in validity at the same context size. This shows that the selected fine-tuning
approach can also lead to solving the original model’s problem of split-token handling in the
SPM format.

38

1024 2048 3072 4096 5120 6144 7168
Context Size, tokens

10

15

20

25

30

35

40

45

Co
rre

ct
 C

om
pl

et
io

ns
, %

Correct Completions, PSM

Fine-tuned without SPM
Fine-tuned with 50% SPM
Original Code Llama 7B

1024 2048 3072 4096 5120 6144 7168
Context Size, tokens

30

40

50

60

70

80

Va
lid

 C
om

pl
et

io
ns

, %

Valid Completions, PSM

Fine-tuned without SPM
Fine-tuned with 50% SPM
Original Code Llama 7B

1024 2048 3072 4096 5120 6144 7168
Context Size, tokens

10

15

20

25

30

35

40

Co
rre

ct
 C

om
pl

et
io

ns
, %

Correct Completions, SPM
Fine-tuned without SPM
Fine-tuned with 50% SPM
Original Code Llama 7B

1024 2048 3072 4096 5120 6144 7168
Context Size, tokens

30

40

50

60

70

Va
lid

 C
om

pl
et

io
ns

, %

Valid Completions, SPM

Fine-tuned without SPM
Fine-tuned with 50% SPM
Original Code Llama 7B

Fig. 16. OpenAPI completion performance of the Code Llama 7B model fine-tuned solely with the PSM
format and with a mixture of PSM and SPM formats

3.3.2. Full-context-length Infilling Bias and Document Splitting Technique

As revealed in the previous section, the fine-tuned model underperforms when prompted with
context sizes smaller than used during fine-tuning. This can be caused by the bias towards
full-context-length completions discussed in Section 2.5. This section further evaluates the
impact of the fine-tuning context size as well as the suggested document splitting technique on
the performance of the fine-tuned model.

As can be seen in Figure 17, both 4 096 tokens and 5 120 tokens fine-tuned models underperform
compared to the original Code Llama model at context sizes smaller than the corresponding
fine-tuning context sizes. After this point, the performance of the fine-tuned models stabilizes.
Detailed inspection of the infilling results shows that the fine-tuned models tend to generate
completions that are too long and contain irrelevant information when prompted with smaller
context sizes.

A tempting idea to mitigate the problem is to use a much smaller context size for fine-tuning. As
demonstrated in Figure 17, using the context size of 2 048 tokens for fine-tuning indeed decreases
the performance decline at smaller context sizes. However, using smaller context also reduces the
performance gains at larger context sizes to the point where the fine-tuned model underperforms

39

compared to the original Code Llama model. Nevertheless, the model still demonstrates the best
validity rates at all context sizes.

The model fine-tuned with the document splitting technique demonstrates more equalized
performance across the context sizes. The correctness and validity of the completions generated
by this model surpass the original Code Llama model at almost all context sizes with a peak
increase of 20% at 6 144 and 7 168 tokens and a marginal decrease of 5.8% at 3 072 tokens. The
model slightly underperforms compared to the model fine-tuned with the normal context-level
split technique at the context size of 4 096 tokens when prompted with context sizes larger
than 4 096 tokens, but it outperforms the same model at smaller context sizes by a significant
margin.

The loss measured during the training process also appears to be more stable when the document
splitting technique is applied (Appendix 1). This can be explained by a more granular shuffling
of the smaller training samples which can lead to a more stable training process.

1024 2048 3072 4096 5120 6144 7168
Context Size, tokens

10

15

20

25

30

35

40

45

Co
rre

ct
 C

om
pl

et
io

ns
, %

Correct Completions

4096 tokens
5120 tokens
2048 tokens
5120 tokens, document splitting
Original Code Llama 7B

1024 2048 3072 4096 5120 6144 7168
Context Size, tokens

40

50

60

70

80
Va

lid
 C

om
pl

et
io

ns
, %

Valid Completions

4096 tokens
5120 tokens
2048 tokens
5120 tokens, document splitting
Original Code Llama 7B

Fig. 17. OpenAPI completion performance of the Code Llama 7B model fine-tuned at different context
sizes and with the document splitting technique

3.4. Experiments Conclusion

Through the course of this research, the impact of multiple variables, prompt engineering, and
fine-tuning techniques on the OpenAPI completion performance of the Code Llama model was
evaluated. The most notable experimental results are summarized and compared with one of the
most widely adopted commercial solutions – GitHub Copilot in Table 4.

1. Original Code Llama model is capable of outperforming GitHub Copilot. The Code Llama
7B model, when used with the optimal prefix-to-suffix ratio of 50/50, the PSM prompt
format, and the context size of 4 096 tokens, outperforms GitHub Copilot by 24.1% in
correctness, generating correct OpenAPI completions 36% of the time. At the same time,
the model produces valid completions 63% of the time which is a 7.3% decrease compared
to Copilot. It’s worth pointing out that the GPT-3 model, which is the foundational model
used by GitHub Copilot, uses 175 billion parameters which is 25 times more than in the
case of the Code Llama model.

40

Table 4. OpenAPI completion performance comparison

Model / Solution
Correctness, max.,

%
Validness, max.,

%
Correctness, avg.,

%
Validity, avg.,

%

GitHub Copilot 29.0 68.0 29.0 68.0
Code Llama 7B 36.0 (4 096 tokens) 64.0 (7 168 tokens) 31.1 60.7
Code Llama 13B
(evaluated at
1 024-4 096 tokens)

34.0 (4 096 tokens) 68.0 (3 072 tokens) 30.2 64.0

Code Llama 7B,
autoregressive
mode

15.0 (7 168 tokens) 29.0 (7 168 tokens) 10.1 21.9

Code Llama 7B,
fine-tuned at 4 096
tokens

45.0 (6 144 tokens) 84.0 (4 096 tokens) 32.0 63.1

Code Llama 7B,
fine-tuned at 5 120
tokens

42.0 (7 168 tokens) 79.0 (5 120 tokens) 26.8 57.1

Code Llama 7B,
fine-tuned with
document splitting

42.0 (6 144 tokens) 76.0 (7 168 tokens) 34.0 69.1

2. Larger model does not always show significant performance improvement. The larger
Code Llama 13B model demonstrated only a marginal correctness improvement compared
to the smaller 7 billion parameter version. This might mean that the OpenAPI format is not
complex enough to leverage the additional model capacity. Considering the quadrupled
computational cost, this draws the larger versions of the model (including 13, 34, and 70
billion parameter versions) not practical for use in OpenAPI completion.

3. Infilling capabilities are essential for the code completion task. The Code Llama 7B
model, prompted in autoregressive mode severely underperforms compared to the same
experiment performed in the infilling mode. The correctness decrease of 72.2% and the
validity decrease of 61.9% at 4 096 tokens context size served as another argument for
not evaluating the bigger 34 billion version of the model which was not trained for code
infilling (see Section 2.2.1).

4. The YAML format is not only easier to work with for humans but also for the Code
Llama model. The model demonstrated a 25% correctness decrease and an 11.1% validity
decrease when prompted with the same set of OpenAPI definitions converted to JSON.
The tokenization results of the YAML and JSON formats suggest that the JSON format is
more complex for the model for the same reason it is more complicated for humans – the
ratio of the syntactic characters to the semantic information is higher in JSON.

5. Task-specific fine-tuning can significantly improve the model performance. The 7 billion
parameter version of the Code Llama model fine-tuned for OpenAPI completion at the
context size of 4 096 tokens following the methods described in Section 2.5 demonstrates a
maximum correctness improvement of 28.6% compared to the original model and further
outperforms GitHub Copilot by 55.2%.

41

6. Normal context-level infilling transformation as used in the original Code Llama model
training described in Section 2.2.1 can lead to suboptimal performance at smaller context
sizes. The case of OpenAPI completion revealed that, when used with documents that are
significantly larger than the fine-tuning context size, this technique leads to a bias towards
full-context-length completions. This bias can cause the model to generate too long and
irrelevant completions when prompted with a context size smaller than the fine-tuning
context size. The models trained with this technique (Code Llama 7B, fine-tuned at 4
096 tokens and Code Llama 7B, fine-tuned at 5 120 tokens) still demonstrate the best
performance at the context size used during fine-tuning which can be leveraged when the
inference context size is known in advance.

7. The document splitting technique proposed in Section 2.5 can be used to mitigate the
problem of the full-context-length infilling bias and lead to more unified performance
across the context sizes. Even considering the fact that the models fine-tuned without
document splitting outperform the model fine-tuned with this technique at the context size
used during fine-tuning, the latter demonstrates the best average performance across the
context sizes which is crucial for training foundational or open-source models which are
expected to be used with a variety of context sizes.

42

Conclusion

The primary aim of investigating the approaches for developing an OpenAPI completion
solution that would outperform the current state-of-the-art solutions in this task can be
considered accomplished. The solution proposed in this research is based on an open-source
LLM from Meta – Code Llama. As a result of a series of experiments, the optimized model
demonstrates a peak correctness improvement of 55.2% compared to one of the most widely
used commercial code completion solutions – GitHub Copilot. Based on the objectives of the
research, the following conclusions can be made:

1. The analysis of the current state of the art in code generation and evaluation revealed
the following challenges and opportunities for the research: (1) modern code completion
solutions are based on LLMs which require large amounts of data and computational
resources to train; (2) code generation LLMs are usually trained on an unbound or a large
set of programming languages and tasks which means that OpenAPI-specific optimization
can lead to a competitive advantage in this area; (3) the existing code generation evaluation
methods are limited to a subset of popular programming languages and an OpenAPI
completion benchmark has not been developed yet.

2. GitHub Copilot, one of the most widely adopted commercial code generation and
completion solutions was selected as the baseline solution for the study. Code Llama, an
open-source LLM from Meta was selected as the foundational model for the proposed
solution implementation due to its permissive license, best-in-class performance, large
context size support, and infilling capabilities.

3. Three metrics were proposed to evaluate the performance of the OpenAPI completion
solutions: correctness, validity, and generation speed. The correctness metric aims to
closely represent the experience of a real-world user by tolerating the possible variations
from the ground truth completion. The validity metric evaluates the rate of syntactically
correct completions. The generation speed metric is only used to evaluate the trends in the
performance of the solutions as the generation speed depends on the hardware which was
not always under control during the experiments. To the best of the author’s knowledge, the
proposed semantics-aware OpenAPI completion benchmark is the first publically available
evaluation framework for OpenAPI completion. The benchmark’s source code is made
available on GitHub [1].

4. The OpenAPI completion solution proposed in this research is based on a modular
architecture that enables easy alteration of the prompt building, infilling, and result
embedding strategies. The solution was implemented and published as a JavaScript
package that can be used to add intelligent OpenAPI completion capabilities to any text
editor or IDE that supports plugins in JavaScript as well as to any web-based code editor.
The solution requires an LLM to be deployed on the Hugging Face Inference Endpoints
platform and is not limited to the Code Llama model. The source code is made available
on GitHub [3] and the JavaScript package is made available on NPM [69].

5. The following prompt engineering and fine-tuning techniques were proposed based
on the analysis of the foundational model – Code Llama: (1) optimal prefix-to-suffix

43

ratio search, (2) optimal context size search, (3) optimal model size search, (4) optimal
generation mode and prompt format search, (5) inclusion of OpenAPI metadata in the
prompt, (6) fine-tuning with a mixture of PSM and SPM infilling formats, (7) fine-tuning
with the novel document splitting technique. The document splitting technique proposed
in this research was demonstrated to be effective in mitigating the full-context-length
infilling bias, a common problem in the widely used fill-in-the-middle training objective
for code generation LLMs even outside the OpenAPI completion task. To the best of the
author’s knowledge, this is the first study describing Code Llama fine-tuning in detail.
The fine-tuning pipeline source code is made available on GitHub [2].

6. The following key findings were obtained from the experiments conducted in this research:
(1) the original Code Llama model is already capable of outperforming GitHub Copilot in
OpenAPI completion; (2) the larger model does not always show significant performance
improvement; (4) infilling capabilities are essential for the code completion task; (5) the
YAML format is not only easier to work with for humans but also for the Code Llama
model; (6) task-specific fine-tuning can significantly improve the model performance; (7)
normal context-level infilling transformation as used in the original Code Llama model
can lead to suboptimal performance at smaller context sizes; (8) the document splitting
technique proposed in this study leads to a more unified performance across context sizes.
A more detailed analysis of the experimental results and their implications is provided in
Section 3.4.

At the time of writing, part of this research is being submitted for publication in a peer-reviewed
scientific journal. The preprint of the article is available on Arxiv [4].

44

List of references

1. GitHub - BohdanPetryshyn/openapi-completion-benchmark: OpenAPI completion
benchmark for the paper ”Optimizing Large Language Models for OpenAPI Completion:
A Comparative Analysis of Code Llama and GitHub Copilot” — github.com [https :
/ / github . com / BohdanPetryshyn / openapi - completion - benchmark]. [S. a.].
[Accessed 27-05-2024].

2. GitHub - BohdanPetryshyn/code-llama-fim-fine-tuning — github.com [https://github.
com / BohdanPetryshyn / code - llama - fim - fine - tuning]. [S. a.]. [Accessed
27-05-2024].

3. GitHub - BohdanPetryshyn/hf-code-llama-infiller: Code infilling with Hugging Face Code
Llama — github.com [https://github.com/BohdanPetryshyn/hf- code- llama-
infiller]. [S. a.]. [Accessed 27-05-2024].

4. PETRYSHYN, Bohdan; Mantas LUKOŠEVIČIUS. Optimizing Large Language Models
for OpenAPI Code Completion. 2024. Pasiekiamas per arXiv: 2405.15729 [cs.SE].

5. DEHAERNE, Enrique ir kt. Code generation using machine learning: A systematic review.
Ieee Access. 2022, t. 10, p. 82434–82455.

6. VASWANI, Ashish ir kt. Attention is all you need. Advances in neural information
processing systems. 2017, t. 30.

7. BAHDANAU, Dzmitry; Kyunghyun CHO; Yoshua BENGIO. Neural machine translation
by jointly learning to align and translate. arXiv preprint arXiv:1409.0473. 2014.

8. SALEHINEJAD, Hojjat ir kt. Recent advances in recurrent neural networks. arXiv preprint
arXiv:1801.01078. 2017.

9. GLOROT, Xavier; Yoshua BENGIO. Understanding the difficulty of training deep
feedforward neural networks. Proceedings of the thirteenth international conference on
artificial intelligence and statistics. JMLR Workshop ir Conference Proceedings, 2010,
p. 249–256.

10. DEVLIN, Jacob; Ming-Wei CHANG; Kenton LEE; Kristina TOUTANOVA. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805. 2018.

11. LIU, Yinhan ir kt. Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692. 2019.

12. LAN, Zhenzhong ir kt. Albert: A lite bert for self-supervised learning of language
representations. arXiv preprint arXiv:1909.11942. 2019.

13. HE, Pengcheng; Xiaodong LIU; JianfengGAO;WeizhuCHEN.Deberta: Decoding-enhanced
bert with disentangled attention. arXiv preprint arXiv:2006.03654. 2020.

14. RAFFEL, Colin ir kt. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research. 2020, t. 21, Nr. 140, p. 1–67.

15. LEWIS, Mike ir kt. Bart: Denoising sequence-to-sequence pre-training for natural language
generation, translation, and comprehension. arXiv preprint arXiv:1910.13461. 2019.

16. RADFORD, Alec; Karthik NARASIMHAN; Tim SALIMANS; Ilya SUTSKEVER ir kt.
Improving language understanding by generative pre-training. 2018.

45

https://github.com/BohdanPetryshyn/openapi-completion-benchmark
https://github.com/BohdanPetryshyn/openapi-completion-benchmark
https://github.com/BohdanPetryshyn/code-llama-fim-fine-tuning
https://github.com/BohdanPetryshyn/code-llama-fim-fine-tuning
https://github.com/BohdanPetryshyn/hf-code-llama-infiller
https://github.com/BohdanPetryshyn/hf-code-llama-infiller
https://arxiv.org/abs/2405.15729

17. CHOWDHERY, Aakanksha ir kt. Palm: Scaling language modeling with pathways. Journal
of Machine Learning Research. 2023, t. 24, Nr. 240, p. 1–113.

18. HOFFMANN, Jordan ir kt. Training compute-optimal large language models. arXiv
preprint arXiv:2203.15556. 2022.

19. TOUVRON, Hugo ir kt. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971. 2023.

20. TOUVRON, Hugo ir kt. Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288. 2023.

21. WANG, Thomas ir kt. What language model architecture and pretraining objective works
best for zero-shot generalization? : International Conference on Machine Learning. PMLR,
2022, p. 22964–22984.

22. REYNOLDS, Laria; Kyle MCDONELL. Prompt programming for large language models:
Beyond the few-shot paradigm. Extended Abstracts of the 2021 CHI Conference on Human
Factors in Computing Systems. 2021, p. 1–7.

23. LI, Yujia ir kt. Competition-level code generation with alphacode. Science. 2022, t. 378, Nr.
6624, p. 1092–1097.

24. CHEN, Mark ir kt. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374. 2021.

25. NIJKAMP, Erik ir kt. Codegen: An open large language model for code with multi-turn
program synthesis. arXiv preprint arXiv:2203.13474. 2022.

26. NIJKAMP, Erik ir kt. Codegen2: Lessons for training llms on programming and natural
languages. arXiv preprint arXiv:2305.02309. 2023.

27. ROZIERE, Baptiste ir kt. Code llama: Open foundation models for code. arXiv preprint
arXiv:2308.12950. 2023.

28. BAVARIAN, Mohammad ir kt. Efficient training of language models to fill in the middle.
arXiv preprint arXiv:2207.14255. 2022.

29. GAO, Andrew. Prompt engineering for large language models. Available at SSRN 4504303.
2023.

30. WEI, Jason ir kt. Chain-of-thought prompting elicits reasoning in large language models.
Advances in neural information processing systems. 2022, t. 35, p. 24824–24837.

31. LIU, Jiacheng ir kt. Generated knowledge prompting for commonsense reasoning. arXiv
preprint arXiv:2110.08387. 2021.

32. DING, Ning ir kt. Parameter-efficient fine-tuning of large-scale pre-trained language
models. Nature Machine Intelligence. 2023, t. 5, Nr. 3, p. 220–235.

33. HOULSBY, Neil ir kt. Parameter-efficient transfer learning for NLP. International
conference on machine learning. PMLR, 2019, p. 2790–2799.

34. ZAKEN, EladBen; Shauli RAVFOGEL;YoavGOLDBERG.Bitfit: Simple parameter-efficient
fine-tuning for transformer-basedmasked language-models. arXiv preprint arXiv:2106.10199.
2021.

35. HU, Edward J ir kt. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685. 2021.

36. GitHub Copilot ∙ Your AI pair programmer — github.com [https : / / github . com /
features/copilot]. [S. a.]. [Accessed 24-03-2024].

46

https://github.com/features/copilot
https://github.com/features/copilot

37. copilot-explorer — thakkarparth007.github.io [https://thakkarparth007.github.
io / copilot - explorer / posts / copilot - internals . html]. [S. a.]. [Accessed
24-03-2024].

38. NGUYEN, Nhan; Sarah NADI. An empirical evaluation of GitHub copilot’s code
suggestions. Proceedings of the 19th International Conference on Mining Software
Repositories. 2022, p. 1–5.

39. SOBANIA, Dominik; Martin BRIESCH; Franz ROTHLAUF. Choose your programming
copilot: a comparison of the program synthesis performance of github copilot and genetic
programming. Proceedings of the genetic and evolutionary computation conference. 2022,
p. 1019–1027.

40. DAKHEL, Arghavan Moradi ir kt. Github copilot ai pair programmer: Asset or liability?
Journal of Systems and Software. 2023, t. 203, p. 111734.

41. WERMELINGER, Michel. Using GitHub Copilot to Solve Simple Programming
Problems.(2023). 2023.

42. Tabnine is an AI assistant that speeds up delivery and keeps your code safe | Tabnine —
tabnine.com [https://www.tabnine.com/]. [S. a.]. [Accessed 24-03-2024].

43. AI Code Generator - Amazon CodeWhisperer - AWS — aws.amazon.com [https://aws.
amazon.com/codewhisperer/]. [S. a.]. [Accessed 24-03-2024].

44. Cody | AI coding assistant — sourcegraph.com [https://sourcegraph.com/cody].
[S. a.]. [Accessed 24-03-2024].

45. GitHub - continuedev/continue: The easiest way to code with any LLM—Continue is an
open-source autopilot for VS Code and JetBrains — github.com [https://github.com/
continuedev/continue]. [S. a.]. [Accessed 24-03-2024].

46. LUO, Ziyang ir kt. Wizardcoder: Empowering code large language models with
evol-instruct. arXiv preprint arXiv:2306.08568. 2023.

47. Phind Model [www . phind . com / blog / phind - model - beats - gpt4 - fast]. [S. a.].
[Accessed 24-03-2024].

48. JIANG, Albert Q ir kt. Mistral 7B. arXiv preprint arXiv:2310.06825. 2023.
49. GitHub - juyongjiang/CodeUp: CodeUp: A Multilingual Code Generation Llama2 Model

with Parameter-Efficient Instruction-Tuning on a Single RTX 3090 — github.com [https:
//github.com/juyongjiang/CodeUp]. [S. a.]. [Accessed 24-03-2024].

50. TUNSTALL, Lewis ir kt. Zephyr: Direct distillation of lm alignment. arXiv preprint
arXiv:2310.16944. 2023.

51. ANIL, Rohan ir kt. Palm 2 technical report. arXiv preprint arXiv:2305.10403. 2023.
52. GitHub - huggingface/llm-vscode: LLM powered development for VSCode — github.com

[https://github.com/huggingface/llm-vscode]. [S. a.]. [Accessed 24-03-2024].
53. SVYATKOVSKIY, Alexey; Shao Kun DENG; Shengyu FU; Neel SUNDARESAN.

Intellicode compose: Code generation using transformer. Proceedings of the 28th ACM
joint meeting on European software engineering conference and symposium on the
foundations of software engineering. 2020, p. 1433–1443.

54. PAPINENI, Kishore; Salim ROUKOS; Todd WARD; Wei-Jing ZHU. Bleu: a method for
automatic evaluation of machine translation. Proceedings of the 40th annual meeting of the
Association for Computational Linguistics. 2002, p. 311–318.

47

https://thakkarparth007.github.io/copilot-explorer/posts/copilot-internals.html
https://thakkarparth007.github.io/copilot-explorer/posts/copilot-internals.html
https://www.tabnine.com/
https://aws.amazon.com/codewhisperer/
https://aws.amazon.com/codewhisperer/
https://sourcegraph.com/cody
https://github.com/continuedev/continue
https://github.com/continuedev/continue
www.phind.com/blog/phind-model-beats-gpt4-fast
https://github.com/juyongjiang/CodeUp
https://github.com/juyongjiang/CodeUp
https://github.com/huggingface/llm-vscode

55. LIN, Chin-Yew. Rouge: A package for automatic evaluation of summaries. Text
summarization branches out. 2004, p. 74–81.

56. BANERJEE, Satanjeev; Alon LAVIE. METEOR: An automatic metric for MT evaluation
with improved correlation with human judgments. Proceedings of the acl workshop on
intrinsic and extrinsic evaluation measures for machine translation and/or summarization.
2005, p. 65–72.

57. CASSANO, Federico ir kt. MultiPL-E: a scalable and polyglot approach to benchmarking
neural code generation. IEEE Transactions on Software Engineering. 2023.

58. GUO,Daya ir kt. DeepSeek-Coder:When the Large LanguageModelMeets Programming–The
Rise of Code Intelligence. arXiv preprint arXiv:2401.14196. 2024.

59. LI, Raymond ir kt. Starcoder: may the source bewith you! arXiv preprint arXiv:2305.06161.
2023.

60. Big Code Models Leaderboard - a Hugging Face Space by bigcode — huggingface.co
[https://huggingface.co/spaces/bigcode/bigcode- models- leaderboard].
[S. a.]. [Accessed 27-05-2024].

61. OpenAPI Diff — oasdiff.com [https : / / www . oasdiff . com/]. [S. a.]. [Accessed
24-03-2024].

62. GitHub - APIs-guru/asyncapi-directory: Directory of asynchronous API specifications in
AsyncAPI format — github.com [https : / / github . com / APIs - guru / asyncapi -
directory]. [S. a.]. [Accessed 26-03-2024].

63. bigcode/the-stack ∙ Datasets at Hugging Face— huggingface.co [https://huggingface.
co/datasets/bigcode/the-stack]. [S. a.]. [Accessed 26-03-2024].

64. GitHub - huggingface/transformers: Transformers: State-of-the-art Machine Learning for
Pytorch, TensorFlow, and JAX. — github.com [https://github.com/huggingface/
transformers]. [S. a.]. [Accessed 19-05-2024].

65. GitHub - huggingface/peft: PEFT: State-of-the-art Parameter-Efficient Fine-Tuning. —
github.com [https://github.com/huggingface/peft]. [S. a.]. [Accessed 28-05-2024].

66. Inference Endpoints - Hugging Face — huggingface.co [https://huggingface.co/
inference-endpoints/dedicated]. [S. a.]. [Accessed 26-03-2024].

67. GitHub - belladoreai/llama-tokenizer-js: JS tokenizer for LLaMA 1 and 2 — github.com
[https : / / github . com / belladoreai / llama - tokenizer - js]. [S. a.]. [Accessed
19-05-2024].

68. BohdanPetryshyn/openapi-completion-refined ∙ Datasets at Hugging Face—huggingface.co
[https://huggingface.co/datasets/BohdanPetryshyn/openapi-completion-
refined]. [S. a.]. [Accessed 28-05-2024].

69. hf-code-llama-infiller — npmjs.com [https://www.npmjs.com/package/hf-code-
llama-infiller]. [S. a.]. [Accessed 27-05-2024].

48

https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard
https://www.oasdiff.com/
https://github.com/APIs-guru/asyncapi-directory
https://github.com/APIs-guru/asyncapi-directory
https://huggingface.co/datasets/bigcode/the-stack
https://huggingface.co/datasets/bigcode/the-stack
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/peft
https://huggingface.co/inference-endpoints/dedicated
https://huggingface.co/inference-endpoints/dedicated
https://github.com/belladoreai/llama-tokenizer-js
https://huggingface.co/datasets/BohdanPetryshyn/openapi-completion-refined
https://huggingface.co/datasets/BohdanPetryshyn/openapi-completion-refined
https://www.npmjs.com/package/hf-code-llama-infiller
https://www.npmjs.com/package/hf-code-llama-infiller

Appendices

1. Training and Evaluation Loss of Fine-tuned Models

Fig. 18. Training and evaluation loss of the Code Llama 7B model, fine-tuned at 4 096 tokens context
size without SPM format

Fig. 19. Training and evaluation loss of the Code Llama 7B model, fine-tuned at 4 096 tokens context
size with joint SPM and PSM formats

Fig. 20. Training and evaluation loss of the Code Llama 7B model, fine-tuned at 2 048 tokens context
size with joint SPM and PSM formats

49

Fig. 21. Training and evaluation loss of the Code Llama 7B model, fine-tuned at 5 120 tokens context
size with joint SPM and PSM formats

Fig. 22. Training and evaluation loss of the Code Llama 7B model, fine-tuned at 5 120 tokens context
size with joint SPM and PSM formats and document splitting technique

50

2. Example of a Masked OpenAPI Definition used in the Benchmark

operationId: app.payments.space.download
parameters:

- $ref: "#/components/parameters/appId"
- in: query

name: ids
required: true
schema:

items:
type: integer

type: array
- description: Optional array with amounts

in: query
name: amounts
schema:

items:
type: integer

type : array
- in: query

name: debtorName
schema:

type: string
- in: query

name: debtorIban
schema:

type: string
- in: query

name: debtorBic
schema:

type: string
responses:

"200":
content:

application/xml:
schema:

format: binary
type: string

description: Success
"400":

description: Bad request
"404":

description: Not found
security:

- {}

51

summary: Preview sepa credit transfer file
tags:

- Payments

Listing 1: Example OpenAPI before masking. Highlighted code is selected for masking

operationId: app.payments.space.download
parameters:

- $ref: "#/components/parameters/appId"
- in: query

name: ids
required: true
schema:

items:
type: integer

type: array
- description: Optional array with amounts

in: query
name: amounts
schema:

items:
type: integer

type <<MASK>>
name: debtorBic
schema:

type: string
responses:

"200":
content:

application/xml:
schema:

format: binary
type: string

description: Success
"400":

description: Bad request
"404":

description: Not found
security:

- {}
summary: Preview sepa credit transfer file
tags:

- Payments

Listing 2: Example masked OpenAPI definition

52

	 List of Tables
	 List of Figures
	List of Abbreviations and Terms
	Introduction
	Overview of the State of the Art in Code Generation
	Transformer-based Code Generation Models
	Transformer Model Performance Optimization
	Integrated Code Generation Solutions
	Code Generation Evaluation
	Open-source Code Generation Models
	Analysis Conclusion

	Methods and Datasets for OpenAPI Completion
	OpenAPI Completion Evaluation Criteria and Benchmarking
	Evaluation Dataset

	Platforms and Tools
	Foundational Model
	Infrastructure Platform
	Client-side Programming Language

	Integrated Solution Architecture
	Prompt Engineering Techniques
	Code Llama Fine-tuning
	Design Conclusion

	OpenAPI Completion Evaluation Results
	GitHub Copilot Performance in OpenAPI Completion
	Original Code Llama Model for OpenAPI Completion
	Optimal Prefix-to-suffix Ratio
	Optimal Context Size
	Autoregressive Generation and Infilling Modes
	PSM and SPM Infilling Formats
	OpenAPI Metadata in Prompt
	Optimal Model Size
	YAML and JSON OpenAPI Fromats

	Fine-tuning Code Llama Model for OpenAPI Completion
	Benefits of Using a Mixture of PSM and SPM Infilling Formats
	Full-context-length Infilling Bias and Document Splitting Technique

	Experiments Conclusion

	Conclusion
	List of References
	Appendices
	Training and Evaluation Loss of Fine-tuned Models
	Example of a Masked OpenAPI Definition used in the Benchmark

