

Kaunas University of Technology

Faculty of Informatics

Investigation of Social Distancing Monitoring Using Multi-
View Detectors

Master’s Final Degree Project

Rokas Janavičius

Project author

Doc. Dr. Armantas Ostreika

Supervisor

Kaunas, 2024

Kaunas University of Technology

Faculty of Informatics

Investigation of Social Distancing Monitoring Using Multi-
View Detectors

Master’s Final Degree Project

Artificial Intelligence in Computer Science (6211BX007)

Rokas Janavičius

Project author

Doc. Dr. Armantas Ostreika

Supervisor

Doc. Dr. Gintaras Palubeckis

Reviewer

Kaunas, 2024

Kaunas University of Technology

Faculty of Informatics

Rokas Janavičius

Investigation of Social Distancing Monitoring Using Multi-
View Detectors

Declaration of Academic Integrity

I confirm that the final project of mine, Rokas Janavičius, on the topic „Investigation of Social
Distancing Monitoring Using Multi-View Detectors“ is written completely by myself; all the
provided data and research results are correct and have been obtained honestly. None of the parts of
this thesis have been plagiarised from any printed, Internet-based or otherwise recorded sources. All
direct and indirect quotations from external resources are indicated in the list of references. No
monetary funds (unless required by Law) have been paid to anyone for any contribution to this
project.

I fully and completely understand that any discovery of any manifestations/case/facts of dishonesty
inevitably results in me incurring a penalty according to the procedure(s) effective at Kaunas
University of Technology.

(name and surname filled in by hand) (signature)

Kaunas University of Technology

Faculty of Informatics

Task of the Master's final degree project

Topic of the project Investigation of Social Distancing Monitoring Using Multi-View
Detectors

Requirements and
conditions (title can be
clarified, if needed)

Supervisor
 (position, name, surname, signature of the supervisor) (date)

Janavičius, Rokas. Investigation of Social Distancing Monitoring Using Multi-View Detectors.
Master's Final Degree Project. Supervisor doc. dr. Armantas Ostreika; Faculty of Informatics, Kaunas
University of Technology.

Study field and area (study field group): Computer science, Informatics (B01).

Keywords: computer vision, social distancing, multi-view detector.

Kaunas, 2024. 65 pages.

Summary

Observing social distance is essential in maintaining personal health and safety, as it is one of the
essential preventive measures against airborne viruses and diseases. Therefore, research is constantly
being carried out to create technological solutions to ensure accurate social distance detection in
public spaces. The main existing security methods are based on single-camera images analysed by
convolutional neural networks. These models identify the people in the frame and transform the
camera view into a "top-down" perspective, allowing the space of each detected person and the
distance to the surroundings to be determined.

The main goal of this study is to apply a multi-view pedestrian detection algorithm to a social distance
monitoring system. Furthermore, the impact of the spatial placement of cameras on tracking accuracy
and other important detection indicators is also investigated. In addition, existing social distance
monitoring solutions and their algorithms are reviewed.

The EarlyBird algorithm chosen for the research uses images from several cameras, extracting their
essential features, performing perspective transformation, and combining the obtained results to
determine the most likely positions of individuals. Improvements made during the study allow a
straightforward selection of available cameras for evaluating the quality of social distance monitoring.
Finally, potential improvements to the initial stage of the algorithm are explored using more advanced
convolutional neural network models for person detection.

This research demonstrates that a multi-view pedestrian detection system significantly improves
accuracy in detecting social distancing violations. Moreover, utilising a more complex backbone for
feature map extraction did not substantially enhance accuracy. However, using the less complex
TinyNet-E model resulted in faster training and inference times, with only a marginal reduction in
accuracy.

Janavičius, Rokas. Socialinio atstumo stebėjimo naudojant daugiavaizdžius detektorius tyrimas.
Magistro baigiamasis projektas. Vadovas doc. dr. Armantas Ostreika; Kauno technologijos
universitetas, informatikos fakultetas.

Studijų kryptis ir sritis (studijų krypčių grupė): Informatikos mokslai, Informatika (B01).

Reikšminiai žodžiai: kompiuterinė rega, socialinis atstumas, daugiavaizdis detektorius.

Kaunas, 2024. 65 p.

Santrauka

Socialinio atstumo stebėjimas yra svarbus uždavinys asmens sveikatos saugumo sferoje, nes
socialinio atstumo laikymasis yra viena iš esminių prevencinių priemonių prieš oru plintančius
virusus ir ligas. Todėl nuolat vykdomi tyrimai siekiant sukurti technologinius sprendimus, kurie
užtikrintų tikslų socialinio atstumo aptikimą viešose erdvėse. Pagrindiniai egzistuojantys metodai
remiasi pavienių apsaugos kamerų vaizdais, kuriuos analizuoja įvairūs konvoliuciniai neuroniniai
tinklai. Šie modeliai identifikuoja kadre esančius žmones ir transformuoja kameros vaizdą į „iš
viršaus į apačią“ perspektyvą, leidžiančią nustatyti kiekvieno aptikto asmens padėtį erdvėje bei
atstumą iki aplinkinių.

Šio tyrimo pagrindinis tikslas - ištirti daugiavaizdžio asmenų aptikimo algoritmo pritaikymą
socialinio atstumo stebėjimui. Taip pat tiriamas kamerų išdėstymo erdvėje ir jų skaičiaus poveikis
stebėjimo tikslumui bei kitiems svarbiems aptikimo rodikliams. Papildomai yra apžvelgiami esami
socialinio atstumo stebėjimo sprendimai, jų naudojami algoritmai ir pritaikymai skirtingose
viešosiose erdvėse.

Tyrimui vykdyti pasirinktas algoritmas EarlyBird naudoja kelių kamerų vaizdus, jų esminių savybių
išgavimui, atlieka perspektyvos transformaciją ir sujungia gautus rezultatus, siekiant nustatyti
labiausiai tikėtinas asmenų pozicijas. Tyrimo metu atlikti patobulinimai leidžia lengvai pasirinkti bet
kokius galimus kamerų kampus ir jų skaičių matavimams vykdyti, taip pat įvertinti socialinio atstumo
stebėjimo kokybę. Galiausiai, tiriami potencialūs patobulinimai pradinėje algoritmo stadijoje,
naudojant pažangesnį asmenų aptikimo konvoliucinių neuroninių tinklų modelį.

Tyrimo rezultatai rodo, kad daugiavaizdžio asmenų aptikimo sistema ženkliai pagerina socialinio
atstumo pažeidimų aptikimo tikslumą. Taip pat aptikta, kad sudėtingesnio konvoliucinio tinklo
naudojimas esminių savybių išgavimui nežymiai įtakoja galutinį sistemos tikslumą. Tačiau naudojant
paprastesnį TinyNet-E modelį tam pačiam tikslui, asmenų aptikimo trukmė pastebimai sutrumpėja, o
tikslumas pakinta minimaliai.

7

Table of contents

List of figures ... 9
List of tables .. 11
List of abbreviations and terms ... 12
Introduction ... 13
1. Social Distancing Detection Methods and Algorithms Analysis .. 14
1.1. Existing Solutions ... 14
1.2. Convolution .. 15
1.2.1. 1D Convolution ... 15
1.2.2. 2D Convolution ... 15
1.3. Homographic Transformation .. 17
1.4. Occupancy Grid Mapping .. 18
1.5. Hungarian Algorithm .. 19
1.6. PyTorch Library ... 19
1.7. OpenCV Library ... 20
1.8. Artificial Neural Networks (ANN) ... 20
1.8.1. Convolutional Neural Networks (CNN) .. 23
1.9. ImageNet Dataset ... 25
1.10. YOLO Algorithm ... 25
1.11. TinyNet Model Family ... 27
1.12. MVDet Multi-View Detector ... 27
1.12.1. EarlyBird Model .. 28
1.13. Methodology Summary for Multi-View Social Distancing Detection 29
2. Proposed Multi-View Social Distancing Detection Solution Specifications 30
2.1. Proposed Solution Requirements ... 30
2.2. Project Plan ... 30
2.3. Functional Requirements .. 33
2.4. Non-Functional Requirements .. 33
2.5. Quality Criteria ... 33
2.6. System Development Methods and Tools .. 35
2.7. Test Environment Specifications .. 36
2.8. Dataset Analysis ... 37
2.8.1. “WILDTRACK” dataset analysis .. 37
2.8.2. “MultiViewX” dataset ... 38
2.9. Testing Plan .. 39
3. Evaluation of Multi-View Detection Application for Social Distancing Monitoring 40
3.1. Solution and Improvements Implementation Details ... 40
3.1.1. EarlyBird Detection Module Adaption ... 40
3.1.2. Custom Backbone Encoders Integration ... 40
3.1.3. Social Distancing Detection Metric Implementation .. 41
3.1.4. Performance Evaluation Additions .. 42
3.1.5. Training and Testing Data Variants .. 43
3.2. Datasets Investigation ... 44
3.3. Various Camera Configuration Training .. 46
3.4. Investigation of Camera Placement Impact on Social Distancing Detection Accuracy 48

8

3.5. Investigation of Complex Model Feature Extractor Impact on Accuracy 51
3.6. Investigation of Using TinyNet-E as the Feature Extractor on Inference Speed 54
Conclusions ... 58
List of references ... 59
List of digital resources ... 63
Appendices .. 65
Appendix 1. IVUS 2023 Conference Publication ... 65
Appendix 2. Camera Calibration Files Verification Results ... 65

9

List of figures

Fig 1. Social distancing detection system solution. a) Detection algorithm with bounding boxes. b)
Transformed camera feed to a top-down view. c) Detected individuals with their location in space
from a bird’s eye view [R1] ... 14
Fig 2. Example of a 1D convolutional operation [R2] .. 15
Fig 3. Diagram of a 2D convolution operation [R3] ... 16
Fig 4. Example of an edge detection convolution operation and its resulting output [R4] 16
Fig 5. Example of camera perspective change using homography [R5] ... 17
Fig 6. Planar view transformation using homography [R6] .. 18
Fig 7. Occupancy grid map [R7] ... 18
Fig 8. Example of an assignment problem .. 19
Fig 9. OpenCV feature matching example [R8] .. 20
Fig 10. Popular ANN node activation functions [R9] ... 21
Fig 11. Schematic of a feedforward neural network with backpropagation algorithm [R10] 21
Fig 12. General example of model prediction error dependance on model complexity [R11] 22
Fig 13. Example schematic diagram of a convolutional neural network [R12] 23
Fig 14. Region-based convolutional network architecture [R13] ... 24
Fig 15. Schematic diagram of a Faster R-CNN model [R14] ... 24
Fig 16. Example of specific ImageNet categorised images [R15] .. 25
Fig 17. YOLO algorithm example output prediction [R16] ... 26
Fig 18. YOLO model architecture [R17] ... 26
Fig 19. TinyNet Model Family: Top-5 Accuracy Comparison on ImageNet-1000 27
Fig 20. MVDet architecture [R18] ... 28
Fig 21. EarlyBird architecture [R19] .. 29
Fig 22. Proposed multi-view social distancing detection system use case diagram 31
Fig 23. Proposed multi-view social distancing detection system activity diagram 32
Fig 24. A confusion matrix illustrating true positives (TP), false positives (FP), true negatives
(TN), and false negatives (FN) in binary classification. [R20] ... 35
Fig 25. Example of a single data point from the WILDTRACK dataset [R21] 38
Fig 26. Example of a single data point from the MultiViewX dataset [R22] 39
Fig 27. Social distancing violation detection metric calculation algorithm 41
Fig 28. Parser algorithm for converting tfevents files to a CSV file ... 42
Fig 29. MultiviewX dataset camera positions (top-down) ... 43
Fig 30. WILDTRACK dataset camera positions (top-down) ... 43
Fig 31. Example of the dataset calibration file verification .. 44
Fig 32. Heatmap of pedestrian distribution in the testing split of the WILDTRACK dataset 45
Fig 33. Heatmap of pedestrian distribution in the testing split of the MultiviewX dataset 45
Fig 34. Validation loss progress during system model training on the MultiviewX dataset (encoder –
ResNet18) ... 46
Fig 35. Model training progress images during various stages of training 47
Fig 36. Example of the social distancing violations prediction on the MultiviewX dataset 48
Fig 37. Social distancing detection F1 score results comparing different camera placements
(ResNet18 encoder, MultiviewX dataset) ... 49
Fig 38. Social distancing detection F1 score results comparing different camera placements
(ResNet18 encoder, WILDTRACK dataset) ... 50

10

Fig 39. Example of the social distancing violations prediction on the WILDTRACK dataset 51
Fig 40. Model output view for the WILDTRACK dataset, using the 4x camera configuration A 51
Fig 41. Social distancing detection F1 score results comparing ResNet18, Swin and TinyViT encoders
(MultiviewX) .. 52
Fig 42. Social distancing detection F1 score results comparing ResNet18, Swin and TinyViT encoders
(WILDTRACK) .. 53
Fig 43. Inference time results comparing ResNet18, Swin and TinyViT encoders (MultiviewX) 54
Fig 44. Training view from camera 3 of the MultiviewX dataset using a) ResNet18 and b) TinyNet
as feature extractors (epoch – 1) .. 54
Fig 45. Social distancing detection F1 score results comparing ResNet18 and TinyNet encoders
(MultiviewX) .. 55
Fig 46. Social distancing detection F1 score results comparing ResNet18 and TinyNet encoders
(WILDTRACK) .. 56
Fig 47. Inference time results for varied camera placements comparing TinyNet and ResNet18
encoders ... 57

11

List of tables

Table 1. Camera placement configurations for system evaluation ... 43
Table 2. Model training times for all evaluated encoder types ... 47
Table 3. Multi-view social distancing detection system evaluation results for different camera
placement variants (ResNet18 encoder, MultiviewX dataset) .. 49
Table 4. Multi-view social distancing detection system evaluation results for different camera
placement variants (ResNet18 encoder, WILDTRACK dataset) .. 50
Table 5. Multi-view social distancing detection system evaluation results for different encoder types
(MultiviewX dataset) .. 52
Table 6. Multi-view social distancing detection system evaluation results for different encoder types
(WILDTRACK dataset) .. 53
Table 7. Multi-view social distancing detection system evaluation results comparing ResNet18 and
TinyNet as encoders (MultiviewX dataset) ... 55
Table 8. Multi-view social distancing detection system evaluation results comparing ResNet18 and
TinyNet as encoders (WILDTRACK dataset) ... 56

12

List of abbreviations and terms

Abbreviations:

ANN – Artificial Neural Network

CNN – Convolutional Neural Network

WHO – World Health Organisation

CSV – Comma Separated Values

FPT – Feature Perspective Transform

CUDA - Compute Unified Device Architecture

MODA – Multiple Object Detection Accuracy

MODP – Multiple Object Detection Precision

TP – True Positive

TN – True Negative

FP – False Positive

FN – False Negative

Terms:

Tfevents file – a file format used by the TensorFlow library to store machine learning model training
and evaluation metrics.

Feature map – a multi-dimensional array containing the results of a convolutional operation.

Heatmap – a graph containing data values represented by colours

13

Introduction

Project novelty and relevance

Social distancing monitoring has become crucial to protecting public health, especially with the recent
COVID-19 pandemic. Maintaining space between people is a key preventative measure against
airborne viruses. By detecting social distancing violations in crowded areas, we gain valuable insights
that can inform targeted decisions regarding crowd management, object placement, and planning.

The analysis of existing methods revealed their main limitations, particularly in handling occlusions.
To address these issues, a novel multi-view-based social distancing detection system is proposed. It
leverages multiple camera feeds to more accurately predict social distancing violations by reducing
the negative effects of occlusions. Furthermore, multi-view detector improvements are proposed,
focusing on efficiency and accuracy.

Aim and objectives

The main goal of this research is to analyse existing social distancing detection systems and propose
a solution for improving the accuracy and violation detection rate of these systems. To achieve this
goal, the following objectives were set:

1. Review existing social distancing detection systems and algorithms, identifying fundamental
limitations.

2. Create a novel multi-view social distancing detection system that can be evaluated and compared
against single-view systems.

3. Evaluate the implemented system on multiple datasets and compare the social distancing
detection accuracy.

4. Investigate and implement changes to enhance the accuracy of the multi-view detection system.
5. Explore and implement improvements to the efficiency of the multi-view detection system.

Document structure

This document outlines the development and evaluation of a multi-view social distancing detection
system. The analysis section examines current methods and technologies used for social distancing
monitoring. The system specifications chapter details the specifics of the proposed system, including
its intended uses, requirements, and testing plan. Furthermore, the implementation and evaluation
section provides the steps taken to develop the proposed system and overviews the results of testing
it, focusing on its effectiveness and potential improvements. Lastly, the key findings and outcomes
of the project are summarised in the conclusions.

14

1. Social Distancing Detection Methods and Algorithms Analysis

This chapter overviews the social distancing detection techniques and algorithms for improving their
accuracy. It also analyses convolution methods, together with feedforward and convolutional neural
networks. Homography principles and probabilistic occupancy maps are also reviewed. Finally, this
chapter outlines the requirements and tools for a multi-view social distancing detection system.

1.1. Existing Solutions

A small selection of existing social distancing detection solutions exists, using a single camera feed
to capture a populated area. Afterwards, computer vision principles are applied, and a region-based
convolutional network is utilised. It detects individuals and tracks their movement through the area,
[1, 2].

Mathematical algorithms are used for person position estimation in space, which estimate the camera
distortion and position from its angle, height, and a reference object with known dimensions.
Homography principles are applied for this application, where the reference object in some solutions
is the average human height and width. After calculating the camera distortion, the feed is transformed
to a top-down view. Each of the individual centroid coordinates in space are estimated, and the
Euclidean distance between them is calculated. Finally, the event is highlighted and captured in a log
if the distance exceeds the configured threshold, [1, 2]. An example of the working solution is
displayed in Fig 1.

Fig 1. Social distancing detection system solution. a) Detection algorithm with bounding boxes. b)
Transformed camera feed to a top-down view. c) Detected individuals with their location in space from a

bird’s eye view [R1]

15

1.2. Convolution

Convolution is a mathematical operation combining two functions to produce a new function. It is
expressed by the overlapping of one function being shifted over another integral and is widely used
in statistics, digital signal processing and image processing. However, depending on the application,
a one-dimensional or a two-dimensional convolution operation can be used. They differ from one
another mainly by their signal matrix shape. Regardless of the shape, one of the functions is usually
regarded as a filter, which can be applied to another function or an image by convolving them both,
[3, 4, 5].

The properties of a convolution operations are (where f = 1st function, g = 2nd function, h = function
from convolving f and h), [4]:

– Commutativity property: 𝑓 ∗ 𝑔 = 𝑔 ∗ 𝑓
– Associative property: 𝑓 ∗ (𝑔 ∗ ℎ) = (𝑓 ∗ 𝑔) ∗ ℎ
– Distributive property: 𝑓 ∗ (𝑔 ∗ ℎ) = (𝑓 ∗ 𝑔) + (𝑓 ∗ ℎ)

As convolution is usually used with odd shape filters or kernels, padding must be added around the
perimeter of the input matrix. This padding is generally zero-padding, which adds additional zeroes
around the perimeter. However, sometimes a more sophisticated technique is used, which averages a
specific count of elements and calculates the padded element value, [4, 5].

1.2.1. 1D Convolution

A single-dimensional convolution operation means that both function sizes are a vector. Thus, these
functions are usually described by a matrix with one row and an n count of numbers in that row. By
shifting a filter function over the input one, the integral of their intersection is calculated at each time
t point. These values are the main target of the convolution operation. The equation (1.1) calculates
the single-dimensional convolution operation, where f is the 1st function, g is the 2nd function, and t
is the time step for shifting a single function window over the other. An example of a simple
convolutional operation is provided in Fig 2, [3, 4, 5].

(𝑓 ∗ 𝑔)(𝑡) ∶=	∫ 𝑓(𝑡 − 𝜏)𝑔(𝜏)𝑑𝜏!
"! (1.1)

1.2.2. 2D Convolution

A two-dimensional convolution operation is performed on matrices with a shape of N x M. It involves
taking a small size filter (e.g., 3x3, 5x5 matrix) with specific values in each element, i.e., weights and

Fig 2. Example of a 1D convolutional operation [R2]

16

sliding it over each input matrix element. Afterwards, each element is multiplied elementwise, and
each value is summed up to form a new output element. The resulting matrix is the output of the
convolution operation and is always smaller in dimensions compared to the input matrix. The
equation (1.2) provides the formula for a two-dimensional convolution operation, where x is the input
matrix, and h is the filter matrix. A diagram of a 2D convolution operation is displayed in Fig 3, [4,
6].

𝑦[𝑚, 𝑛] = 𝑥[𝑚, 𝑛] ∗ ℎ[𝑚, 𝑛] = ∑ ∑ 𝑥[𝑖, 𝑗] ⋅ ℎ[𝑚 − 𝑖, 𝑛 − 𝑗]!
#$"!

!
%$"! (1.2)

Fig 3. Diagram of a 2D convolution operation [R3]

The filters are also called kernels, and the result can vary greatly depending on their weights. As this
type of operation is often utilised in image processing, many specific kernels have been discovered
that affect and process an image in a particular way. For example, there are kernels which detect and
highlight edges or corners. They are used in edge detection algorithms and machine learning
applications. Various blur functions also exist, which blur the image depending on the kernel weights
and dimensions. 2D convolution can also be used for image sharpening and masking. An example of
a convolution operation used for edge detection and its result is provided in Fig 4, [4, 6].

Fig 4. Example of an edge detection convolution operation and its resulting output [R4]

2D convolution operation can be very computationally expensive, as it processes each matrix element
and performs many multiplication operations. For example, it can take a long time to compute the

17

convolution when using a large matrix for the input matrix, such as a high-resolution image. This is
one of the reasons why machine learning techniques, which use convolution, require better and more
expensive computing hardware, [4, 6].

1.3. Homographic Transformation

Homographic transformation is an image processing technique that involves transforming an image
to be mapped to another planar projection. This is achieved by selecting at least four known point
coordinates and warping the image so these points would appear isometric. This image transformation
technique helps shift the camera perspective to a top-down view that can later be exploited for
behavioural prediction and autonomous driving, [7, 8].

Homography can also be used for camera pose estimation, perspective removal or correction and
panorama stitching. A simple homographic camera perspective change is illustrated in Fig 5, where
one camera is the actual camera that captured the image and another is the virtual camera, whose
planar view is calculated using homography algorithms and four known points with their coordinates,
[7, 8].

Fig 5. Example of camera perspective change using homography [R5]

A homography matrix is used to achieve this pose estimation, which is a 3x3 matrix that relates the
transformation between two planes by using 8 degrees of freedom (see equation (1.3) and Fig 6).
After calculating the hnm coefficients, a Direct Linear Transform (DLT) algorithm is applied to the
image, and the view is then converted to a desired pose, [7, 9].

𝑠 *
𝑥!
𝑦!
1
. = 𝐻 0

𝑥
𝑦
1
1 = *

ℎ"" ℎ"# ℎ"$
ℎ#" ℎ## ℎ#$
ℎ$" ℎ$# ℎ$$

. 0
𝑥
𝑦
1
1 (1.3)

18

1.4. Occupancy Grid Mapping

Occupancy grid mapping is a technique for generating environment maps from sensor or camera data.
Its algorithm works by taking in the detected position of obstacles and placing its position on a grid.
After gathering and scanning the environment, a grid map of the environment is captured. This
technique is often used in autonomous vehicles, as it allows them to map the surrounding environment
and detect any obstacles, along with their proximity. An example of the calculated occupancy grid
for an autonomous vehicle is provided in Fig 7, [10].

Fig 7. Occupancy grid map [R7]

Fig 6. Planar view transformation using homography [R6]

19

1.5. Hungarian Algorithm

The Hungarian algorithm is a combinatorial optimisation technique used to figure out the most likely
solutions for assignment problems. It was initially developed by Harold Kuhn in 1955, with further
refinements added in the following years by James Munkres. The algorithm utilises graph theory
principles to optimally pair objects from different sets in a way that affects a given cost function. An
example of the assignment problem is provided in Fig 8, where the main problem is assigning workers
to specific jobs to take the least amount of time, [11].

Fig 8. Example of an assignment problem

Furthermore, the Hungarian algorithm operates on a cost matrix foundation, where the elements
reflect the cost of assigning each object in one set to another one in a different set. By identifying the
lowest or highest cost of assignment between a pair, the algorithm can efficiently pair the specified
objects from other datasets. Additionally, it operates on an iterative level, where the system modifies
the cost matrix in each iteration, thus optimising the final solution, [11].

1.6. PyTorch Library

PyTorch library is a deep learning network/framework fully implemented in the Python programming
language. It allows creating, training, and testing of various deep learning models, such as
Convolutional Neural Network models. PyTorch is also an open-source library, thus allowing it to be
used in a wide range of applications and be distributed, [12].

As it is implemented in Python, the creation or interaction with a neural network model is based on
object-oriented programming and eases the use of the framework itself. Despite the PyTorch library
having various pre-trained CNN models accessible to the user, it also allows the implementation of a
custom neural network model sequentially or layer-by-layer, describing the model structure and
architecture. It also features various optimisers and criteria that the user selects for the custom model,
[12].

The fundamental workflow for working with PyTorch is provided in the following structure, [12]:

1. Load a dataset and process the data/images by performing various transformations (e.g., turn data
into tensors).

20

2. Build or select a neural network model and pick a loss criterion and optimiser.
3. Create a training loop, which uses propagation to update the model weights. Hyper-parameters

are also selected.
4. Run the training loop, which fits the model to the data, makes a prediction, and evaluates the

result. Afterwards, adjust the weights before the next training loop.
5. Validate and test the trained model.
6. Save the trained model and its adjusted weights.

1.7. OpenCV Library

OpenCV library is a framework used for computer vision and machine learning, and it allows the
application of many known algorithms to video and images. As the algorithms are all optimised for
the library, the OpenCV library is more utilised in real-time image and video processing applications,
such as object detection, recognition, view transformations, etc. An example of OpenCV-
implemented feature matching detection is provided in Fig 9, [13].

Fig 9. OpenCV feature matching example [R8]

The OpenCV library is implemented in the C++ programming language. However, it has bindings
and interfaces for other programming languages like Java and Python. This enables the library to be
versatile in many applications, as well as allows the utilisation of GPU hardware acceleration for
faster image and video processing times, [13].

1.8. Artificial Neural Networks (ANN)

Artificial neural networks are computational networks whose structure is inspired by biological neural
networks found in animal brains. It usually consists of an input layer, several hidden layers, and an
output layer. Each layer has multiple artificial neurons, and the layers are interconnected between
neurons with different weights. The neurons are specific mathematical functions and have many
inputs and outputs. Each input can have different weights, which are summed and passed through an
activation function. Depending on the application, these transfer functions are usually non-linear and
can have other shapes. The most often used activation functions are shown in Fig 10, [14, 15].

21

The training of an artificial neural network is performed by automatically adjusting each of the
weights to minimise the error. To achieve this, a training dataset is provided to the network, and
algorithms try to adapt the neuron learnable parameters to each element to get a more accurate result
for each dataset element. The algorithm for adjusting the weights to compensate for the error is called
backpropagation. This method utilises the error surface, which is a map of the loss function with
respect to the weights. Backpropagation computes the derivative of it and updates the weights by
following the path of gradient descent. This type of neural network is called feedforward, and its
schematic is provided in Fig 11, [14, 15].

Multiple hyper-parameters are used to improve and optimise a neural network to a specific dataset or
application, which can be adjusted depending on the desired result, [16]. Important ANN hyper-
parameters are:

Fig 10. Popular ANN node activation functions [R9]

Fig 11. Schematic of a feedforward neural network with backpropagation algorithm [R10]

22

– Number of hidden layers – controls the hidden layer count. Increasing this parameter can lead
to higher accuracy. However, the computational cost also increases, leading to slower model
training. The increase of hidden layers can also be unnecessary, as it is possible that the model
reached a plateau and will not yield better results.

– Learning rate – adjusts the backpropagation step size when learnable parameters are being
optimised. Depending on the learning rate, the backpropagation algorithm can converge on a
local minimum and not improve its accuracy anymore. On the other hand, if the learning rate
is too high, the neural network can reach a suboptimal solution quickly and not explore other
options.

– Momentum – specifies the weight of previous backpropagation steps and the directions for the
current step. A high momentum value will cause previous steps to have a more significant
influence over the direction of the current step and vice versa.

– Activation function – selects the mathematical non-linear function used in each neuron. More
complex functions cause the model to train longer, whereas simple transfer functions such as
ReLU will train quicker and produce adequate results.

– Batch size – controls the sample size of the training dataset on which the model is trained.
Smaller values will produce better results; however, the training time will also increase.
However, too high of a batch size can cause the model to be overgeneralised, which will cause
the accuracy of new data classification to drop.

– Epochs – represent the number of iterations the model will train on the dataset. With each
epoch, the accuracy can increase as the neuron weights are optimised more. However, a count
of epochs that is too high can lead to training data overfitting, which will cause the model to
be accurate on the training data but less accurate with newly received data elements. More
epochs also lead to longer training time, so the number of epochs must be optimised to suit
the desired performance.

All the hyperparameters are optimised to balance underfitting and overfitting and precisely specified,
depending on the required training time and complexity. Fig 12 provides a general example of the
prediction error's dependance on model complexity.

Fig 12. General example of model prediction error dependance on model complexity [R11]

23

1.8.1. Convolutional Neural Networks (CNN)

Apart from the feedforward neural network, other types exist, including a convolutional neural
network. They were designed to deliver better results when working with datasets consisting of
images, speech or audio signals. A convolutional neural network differs from conventional
feedforward neural networks in that it has additional convolutional and pooling layers, [17].

The convolution layer applies a specific filter to the input image by performing a convolutional
operation and passes the result to the next layer. The resulting output is a filtered and downsampled
feature map, which is a more useful set of inputs to the fully connected layer. The kernel weight
values are also dynamically updated and learned during the training process. However, it is important
to correctly specify the hyper-parameters for the convolutional layers. The first one is the number of
filters, which influence the depth of the resulting output. The next parameter is the stride, which is
the step size that the filter shifts over the input matrix while convolving. The last hyper-parameter is
the padding type, which specifies the type of padding used around the perimeter of the matrix, [17,
18, 19].

The pooling layer is responsible for computing the dimensionality reduction of the received matrix.
It aggregates the values and populates the output matrix. There are a couple types of pooling, which
differ from one another by varying the selection of element values to extract to the final output. The
last layer is the fully-connected layer, responsible for the input's classification part. A general
schematic of a convolutional neural network is provided in Fig 13, [17].

1.8.1.1. Region Based Convolutional Neural Networks (R-CNN)

The downside of a simple convolutional neural network is that it classifies the image as a whole and
does not detect individual objects. To counter this problem, a region-based convolutional neural
network was proposed that could lead to better object detection within a frame. The algorithm for an
R-CNN consists of a region proposal, a feature extractor and a classifier, [20].

Fig 13. Example schematic diagram of a convolutional neural network [R12]

24

When the region proposal module receives an image, it tries to detect various regions with varied
shapes by performing a selective search algorithm and extracting regions of interest (ROI).
Afterwards, each region of interest is trained with a CNN network, where the most important features
are extracted and transferred to a support-vector machine classifier, where the features are analysed,
and a class is attached to each region of interest, [20]. The architecture of a region-based convolutional
network is displayed in Fig 14.

However, this solution has some drawbacks, and one is that it takes a long time to train such a
network, as each image would have around 2000 regions of interest per single image. Each of these
regions would need to be individually trained, thus this algorithm is not very efficient. To counter
these drawbacks, a Fast R-CNN model was proposed, which changed the need for feature extraction
using a CNN for every single region of interest. Instead, it employs a single neural network execution
for the whole image, afterwards slicing each region of interest bounding box from the CNN output
and classifying the slices. This solution computes the classification task much quicker compared to
the original proposition, [20, 21].

To further improve the performance of the Fast R-CNN method, a Faster R-CNN algorithm was
devised, which omits the Selective Search method for finding the region of interest. To achieve this
task, the ROI extraction was integrated into the neural network. This change reduces the model
training and prediction time consumption even more, making the Faster R-CNN widely used in real-
time object detection tasks, [22]. The architecture of this model is shown in Fig 15.

Fig 14. Region-based convolutional network architecture [R13]

Fig 15. Schematic diagram of a Faster R-CNN model [R14]

25

1.9. ImageNet Dataset

ImageNet is another widely used large-scale dataset designed for image recognition research. It was
created and released by data scientist Fei-Fei Li, who, together with her colleagues, presented the
project in 2009 at the “Conference on Computer Vision and Pattern Recognition.”. The dataset
contains over 14 million images, all of which have been hand-annotated using external crowdsourcing
services. The category count exceeds 20 thousand, with most containing at least a couple of hundred
images for recognition, [23]. An example of the pictures contained in the ImageNet dataset and their
assigned categories is provided in Fig 16.

Along with the release of the dataset, a yearly competition called the “ImageNet Large Scale Visual
Recognition Challenge” was introduced. The contest has been integral to advancing the field of
computer vision and object detection/classification, as it played a crucial part in developing models
like AlexNet, LeNet, and ResNet, [24, 25, 26].

Fig 16. Example of specific ImageNet categorised images [R15]

The main disadvantages of the ImageNet dataset are its potential for bias and the possible
environmental impact. The former can be caused by subjective labelling and annotation, as the hand
annotations introduce a certain level of human error and bias. The root cause of the environmental
impact is the massive amount of data residing in the dataset, as the model training performed on such
datasets requires immense computational resources. Overall, the advantages of the extensive
ImageNet dataset outweigh the disadvantages, as it accelerates the advancement in the machine
learning field, [27, 28].

1.10. YOLO Algorithm

YOLO algorithm is a real-time object detection system created by Joseph Redmon and Ali Farhadi in
2015. The algorithm can detect objects in real-time with high accuracy. YOLO stands for You Only
Look Once. The algorithm is based on the principle of detecting objects in images by looking at them
only once, making it extremely fast and efficient. The algorithm is implemented in a neural network
trained on a large dataset of images. In training, the network learns to identify objects in pictures and
can then be used to detect and classify them in real-time. Because of its unique structure, the YOLO
algorithm is one of the most accurate object detection algorithms. It can be used for various
applications such as security, surveillance, and autonomous driving, as it can predict multiple

26

bounding boxes and classes in a single image, [29, 30]. An example of a YOLO algorithm prediction
output is provided in Fig 17.

Fig 17. YOLO algorithm example output prediction [R16]

The YOLO model uses only one convolutional neural network to predict all the bounding boxes and
classes, and a single forward propagation pass is enough to get a prediction output. This also speeds
up the training time and, because of its structure, it also learns generalisable representations of objects,
allowing the pre-trained model to be used efficiently in various applications, [29, 30].

Regarding the architecture of the YOLO model, it features 24 convolutional layers with two fully
connected layers, and it works by first dividing the image into a grid, where each grid box produces
bounding boxes together with the class confidence score. Each bounding box has five predictions:
the centre coordinates of the bounding box, the width and height of the bounding box, and the
confidence score, [30, 31]. The architecture of the YOLO model is provided in Fig 18.

Fig 18. YOLO model architecture [R17]

27

Since the inception of the YOLO model, several new iterations have been created and maintained.
Each iteration improved the accuracy of the model, as well as the efficiency. Most notable iterations
include YOLOv2, YOLOv3, YOLOv4, and YOLOv5. The models were significant improvements over
the original YOLO model and could even detect much smaller objects than the previous model, [30,
31].

1.11. TinyNet Model Family

The TinyNet model family consists of highly compact deep-learning architectures designed to be very
efficient and deployable on various devices with limited computational capabilities. These models
achieve their efficiency by using various optimisation techniques to reduce the model size and
complexity while maintaining an adequate level of performance and accuracy, [32].

TinyNet models feature fewer parameters, making them much faster to train and run than larger
models. They also feature efficiency-focused architectures and implement various innovations like
neural architecture search, quantisation, and pruning. Lastly, the TinyNet model family is known for
its ability to run on mobile devices, where processing power is often limited, [32].

The main TinyNet models consist of 5 distinct model versions (A, B, C, D, and E) arranged in a
descending order of parameter count and accuracy. Mainly, Model A denotes the most accurate
variant, with subsequent models reducing the parameter count and accuracy. Each model’s
classification accuracy on the ImageNet-1000 dataset is provided in Fig 19, [32].

Fig 19. TinyNet Model Family: Top-5 Accuracy Comparison on ImageNet-1000

1.12. MVDet Multi-View Detector

MVDet is an algorithm designed for person detection, where multiple cameras are capturing the same
area from different angles. Its multi-view approach successfully reduces the adverse effects of
occlusion and varying perspectives that often negatively impact traditional single-view person
detection systems. By utilising multiple cameras, MVDet accurately detects and localises individuals
in various environments, even when they are obscured in some views, [33, 34].

76

78

80

82

84

86

88

90

92

94

96

TinyNet-E TinyNet-D TinyNet-C TinyNet-B TinyNet-A

To
p-

5
A

cc
ur

ac
y

(%
)

TinyNet Model Family: Top-5 Accuracy Comparison
on ImageNet-1000

28

The main advantage of the MVDet model is its feature perspective transformation (FPT)
section, which aligns extracted features from different camera feeds onto a common plane. This
allows the model to adequately combine information from multiple perspectives and enhance the
detection accuracy. Moreover, MVDet utilises an anchor-free design to eliminate the need for
predefined anchor boxes. This helps the model to better adapt to varying object scales and aspect
ratios, [33].

Fig 20. MVDet architecture [R18]

As shown in Fig 20, the MVDet architecture consists of a backbone network for feature
extraction, followed by the feature perspective transformation for a final feature map
fusion. Afterwards, a convolutional neural network is used to predict the person bounding boxes from
the fused feature maps. The output of the system is provided in a pedestrian occupancy map, [33].

1.12.1. EarlyBird Model

EarlyBird is a state-of-the-art algorithm that also uses multiple camera feeds for pedestrian detection
and tracking. It uses the MVDet model as its base foundation, improving its ability to track individuals
across multiple cameras. EarlyBird differs from the MVDet in its feature map fusion order, as it
combines them at the system's initial stage. This leads to more accurate and consistent tracking across
the entire scene. The model used in the early stage as an encoder is ResNet18, from which the feature
maps are extracted. Additionally, the algorithm generates a unified birds-eye view representation that
provides a comprehensive perspective for object tracking. The architecture of the EarlyBird model is
provided in Fig 21 and it is evaluated using the same two main datasets as MVDet: MultiviewX, a
synthetic dataset featuring 6 cameras, and WILDTRACK, a real-life dataset featuring 7 cameras,
[35].

29

Fig 21. EarlyBird architecture [R19]

1.13. Methodology Summary for Multi-View Social Distancing Detection

The technical analysis of existing social distancing detection systems highlights an essential
limitation in their ability to handle occlusions effectively. This reduces individual detection rate in
instances where individuals partly or fully obscure another person from the main camera feed,
resulting in reduced social distancing detection system accuracy.

A multi-view-based person detection system, employing two or more cameras capturing the same
area from different angles, presents a solution to the occlusion issue. Instead of creating a custom
algorithm using a YOLO model, An MVDet-based model (EarlyBird) is selected for this project to
integrate multiple camera views to achieve a more accurate person detection rate in a social distancing
detection system environment. Appendix 1 details additional investigation and implementation of the
YOLO model for computer vision purposes. Additionally, as processing multiple camera feeds is a
computationally intensive task, this work investigates improving the speed of detections by using a
TinyNet-E model as the main backbone replacement for the MVDet-based model for extracting the
feature maps from the provided images.

The proposed multi-view-based social distancing detection system is implemented using Python as
the primary programming language and the deep learning library PyTorch. Image processing is done
using the OpenCV library and helper packages, including Matplotlib and NumPy for data
visualisation.

30

2. Proposed Multi-View Social Distancing Detection Solution Specifications

This chapter encapsulates the project plan for the proposed social distancing detection solution and
improvements, as well as the functional/non-functional requirements, quality criteria, solution
development methods and tools. Additionally, system specifications used for development and testing
are provided for the proposed solution, together with the dataset analysis and testing plan.

2.1. Proposed Solution Requirements

After analysing existing solutions for a social distancing detection system, their main drawback is
noted. It is bad occlusion handling, which means that if one person occludes another in the camera
feed, some events may not be detected, causing the accuracy of such a system to degrade. To solve
the specified issue, this project implements a solution that uses the feed of two or more cameras,
capturing the same area from different angles. This should significantly reduce the inaccuracy caused
by occlusion and allow for a more robust system. The main requirements for the proposed solution
are that such a system should:

– Allow for multiple camera feed processing with the use of the OpenCV library.
– Use the pre-trained MVDet-based model EarlyBird for pedestrian detection, localisation, and

tracking.
– Apply multi-layer homographic transformation to extracted feature maps for a transformed

top-down view.
– Concatenate transformed feature maps and, using a set threshold, fill the occluded area of one

camera with the feeds from other cameras.
– Combine the prediction maps of each prediction to reach a final prediction.
– Calculate the distance between predicted centroids and log all social distancing violations

following the WHO1 guidelines, afterwards providing a score that allows the user to compare
the detection accuracy between various camera placement variants, [36].

– Output the social distancing violations with the coordinates of affected individuals in space.

As increasing the camera count leads to longer prediction and training durations, this project also
investigates the possibility of replacing the first-stage backbone model with one from the TinyNet
model family. This modification should allow the final multi-view social distancing detection system
to achieve faster training and inference times, as the TinyNet models are less complex than the
ResNet18 used in the EarlyBird model.

2.2. Project Plan

The primary investigation of this project features the evaluation and comparison of a single-view
social distancing detection system and the proposed novel solution for the same task. Such a system
uses computer vision to detect individuals in a given space/area from provided video footage and
localise their position in 3D space. Afterwards, the distance between the detected individuals is
calculated, and a detection score is calculated from the detected social distancing violation events and
ground truth data.

To improve upon existing solutions, the proposed solution uses an algorithm that implements multi-
view video feeds for improved precision and accuracy of the final distance calculation between

1 WHO – World Health Organisation

31

individuals. The use case for the proposed solution software includes the user being able to input
images or videos of multiple cameras capturing the same area from different angles along with a
synchronisation file that allows the system to recognise which photos belong to which frame in time.
Subsequently, the user provides intrinsic and extrinsic camera calibration files for each separate
camera. The intrinsic parameters describe the camera’s internal characteristics, such as the principal
point, focal length and distortion, while the extrinsic parameters denote the camera’s position and
orientation in space, [37].

Considering all required inputs were provided and valid, the system presents the pedestrian heatmap,
along with social distancing violation graphs after running the predictions. Additionally, a log
containing all detected social distancing violations is presented to the user, as well as the social
distancing detection accuracy score and other relevant performance metrics. The use case diagram
for the proposed solution is provided in Fig 22.

Fig 22. Proposed multi-view social distancing detection system use case diagram

Once the use case is established and the requirements for the proposed solution are set, the inner
working principles of the system are defined, which are as follows: once the user inputs the required
data together with the synchronisation file, the system opens the data and saves it in the cache. Next,
the user specifies the camera intrinsic and extrinsic calibration files for each camera feed. Once all
required user input data is collected, the modified EarlyBird model extracts the feature maps from all

32

cameras and transforms them into a top-down view for each frame. The feature maps of all cameras
get concatenated and aggregated to get a final tensor that passes through a neural network decoder,
after which final coordinate predictions are generated.

After receiving the predictions, the system algorithm calculates the distance between each centroid
using the Euclidean distance formula. Subsequently, the ground truth points are matched to predicted
points with the help of the Hungarian algorithm. After performing the necessary calculations, each
social distancing violation is detected and logged if the distance between centroids is less than the set
threshold. The same calculations are performed on the ground truth data as well since they are
required for measuring the performance and accuracy of the detection system.

After receiving the required data, the system calculates and logs the social distancing F1 score and
other relevant performance metrics of the system. As a last step, the algorithm generates a pedestrian
heatmap, and violation graphs for each frame. After performing these steps, the system execution
ends. The activity diagram for the proposed solution is provided in Fig 23.

Fig 23. Proposed multi-view social distancing detection system activity diagram

33

2.3. Functional Requirements

To ensure that the solution and its implementation provide all necessary functionality, the following
functional requirements for the solution implementation are set:

– The user is allowed to change the input images/dataset.
– The system can be trained on different datasets
– The user can set which cameras to use for the resulting output
– A heatmap indicating the pedestrian distribution of all provided scenes is provided.
– Individuals in the scene are detected and localised in space.
– A visual output of the social distancing violations is provided.
– The system can match predicted individuals to the ground truth data
– The output of multiple camera footage is combined for a final position prediction/estimation.
– The final combined top-down view window outputs a visual representation of detected

individuals’ locations in the scene.
– All notable predictions, estimations, and calculations are logged.

2.4. Non-Functional Requirements

To define the possible quality attributes of implemented functional requirements, constraints are
placed in the form of the following non-functional requirements:

– Software implementation must work smoothly and allow for ease of use and operation.
– Formats that should be supported as the input data must include: .jpg, .png
– Each separate camera view should be provided in a separate view window with a resolution

of at least 320px by 320px
– Specific camera feeds should be able to be discarded or disabled for better performance.
– Individual detection and localisation should be implemented using a pre-trained neural

network.
– The combination of multiple camera footage should work by detecting common pedestrian

features of one camera and combining them with the features of another camera feed.
– The final combined position prediction/estimation of each individual in the scene should be

predicted at the rate of 1 frame per second or more.
– The final top-down view with combined position prediction output should be provided in a

separate view window.
– The distance between each detected individual centroid should be calculated using the

Euclidean distance formula.
– The pedestrian identification tracking performance should be evaluated and provided to the

user.
– The calculations and results are logged after each final position and distance calculation.
– After each frame prediction and calculation update, logged values are saved to a CSV file.

2.5. Quality Criteria

The investigation of the multi-view social distancing detection algorithm includes comparisons
between each method. Thus, the following multiple quality criteria for such a system/solution are
selected:

34

– Social distancing violation detection performance: This calculates the ability to detect social
distancing violation events and compares the model’s precision to detect them to the ground
truth data.

– Whole-scene person detection and tracking performance: This method averages each
individual's calculated detection and tracking performance in terms of reliability and predicted
location deviation.

– Whole-scene prediction output speed: This gathers the time spent to process the prediction for
a single scene frame.

– Training duration: This verifies the time spent to train a single model variant.

The whole scene person detection performance is evaluated with the following metrics due to them
being the standard evaluation schemes for used datasets:

– Multiple object detection accuracy (MODA): focuses on the accuracy of pedestrian detection
by measuring the ratio of correctly detected individuals to the ground-truth reported
individuals, [38].

– Multiple object detection precision (MODP): focuses on the precision of the detection model
by calculating the ratio of correctly detected individuals to the total number of predictions,
[38].

Tracking performance is measured using the identification F1 score (IDF1) metric. It focuses on
assessing the consistency of tracking and identifying individuals across multiple frames and considers
the false positives, negatives and true positives of predicted tracked individuals. However, the IDF1
metric is susceptible to identification switches, which causes heavy penalties, [39].

To assess the training duration, all model variants are trained for 50 epochs, with the time taken to
complete the training used as the final score. Regarding the whole-scene prediction output speed, it
is calculated using library built-in profilers, which count the average time it takes the system to make
a prediction. This metric is called model inference, [40].

The main performance metric for this project is the social distancing violation detection performance
evaluation. A custom metric had to be implemented to measure the model’s ability to detect such
violations. The base algorithm selected for the project is the precision, recall, and F1 scoring system,
which handles the social distancing violation detection task as a classification problem, [41].

Before calculating the scores, model prediction outcomes (Fig 24) had to be defined:
– True positive (TP): Counts the presence of a social distancing violation between two predicted

individuals that also matches the presence of the violation in the ground truth data.
– False positive (FP): Counts the presence of a social distancing violation between two predicted

individuals when there is no such violation in the ground truth data.
– False negative (FN): Counts the absence of a social distancing violation between two

predicted individuals when a violation is present in the ground truth data.

True negatives are not used when calculating the social distancing detection score, as there is no
logical solution for finding true negatives in the system implementation. Furthermore, they are not
needed for any precision, recall, or F1 score calculations, so this issue is not considered in this project.

35

Fig 24. A confusion matrix illustrating true positives (TP), false positives (FP), true negatives (TN), and
false negatives (FN) in binary classification. [R20]

Having defined the model prediction outcomes, the threshold for the distance between two individuals
to count as a social distancing violation is selected as 1 metre, in accordance with the World Health
Organisation guidelines. Lastly, the precision, recall and F1 scores are calculated using the formulas
provided in the (2.1) equation. As the primary evaluation metric, the F1 score is selected as it balances
precision and recall with equal weight, [36, 41].

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = %&
%&'(&

			𝑅𝑒𝑐𝑎𝑙𝑙 = %&
%&'()

			𝐹1 = #×&+,-./.01×2,-344
&+,-./.01'2,-344

 (2.1)

2.6. System Development Methods and Tools

The development methods for a multi-view social distancing detection system utilise a convolutional
neural network's ability to detect, localise, and segment objects. The solution also uses CUDA
hardware acceleration for faster training and prediction times. Furthermore, all proposed backbone
models use pre-trained weights to achieve higher accuracy and shorter training times. The models are
acquired using the TIMM library, which features many widely known object detection algorithms and
provides a simplified interface for their custom integration into projects, [42].

The solution achieves the top-down camera view by transforming the input image with a perspective
transform operation and using the provided intrinsic and extrinsic camera calibration files supported
by OpenCV. Regarding the distance calculation between centroid distances, a distance formula is
used, provided in equation (2.2), where x0, y0, z0 are the coordinates of 1st centroid and x1, y1, z1 are
the coordinates of 2nd centroid, [43].

𝑑 = ?(𝑥" − 𝑥5)# + (𝑦" − 𝑦5)# + (𝑧" − 𝑧5)# (2.2)

For the development of the proposed solution implementation, the following software tools are used:

36

– Python: It is used as the main programming language and framework for the development
process. It was chosen because of its simplicity, wide accessibility, and large number of
available machine-learning libraries supported by the community. Other advantages include
the ease of understanding and versatility of its code, [44].

– PyCharm IDE: This Python-oriented integrated development environment is used to write the
implementation code, run experiments, and compare different implementation variants.

– OpenCV (Python library): This library is used to process input and output data, which are
images/videos of crowd interactions. It allows the use of a variety of algorithms for image
processing, transformation, etc. OpenCV is also recommended as the main video processing
library for real-time video footage, [13].

– PyTorch (Python library): This library is used to create custom neural networks or utilise pre-
trained ones. In the development of the solution, this library is mainly used for the prediction
functionality of a pre-trained object detection and localisation CNN model. As the library is
implemented natively in Python, it is the most suitable machine-learning library for the
proposed solution, [12].

– TIMM (Python library): This library contains a collection of state-of-the-art models focused
primarily on computer vision tasks. All its models are created using the PyTorch library, thus
ensuring a stable and accurate platform for model usage, [42].

– EarlyBird (Pedestrian localisation model): This model is used as the central task solver in the
proposed system implementation. The task is to combine multiple camera views, detect each
person in an area, and output the prediction in a compatible format for other libraries, which
could process its outputs and perform further calculations. Its main advantage over other
available multi-view models is its prediction output speed and accuracy, thus complying with
the set requirements, which state that the solution output should process at least a frame per
second, [35].

– NumPy (Python library): This library is widely used for performing numerical and scientific
calculations in Python, as it allows more efficient array and matrix operations. This project
utilises its capabilities when manipulating compatible data structures and performing various
analysis calculations, [45].

– Matplotlib (Python library): This library is applied when there is a need for static or interactive
visualisations, such as graphs and diagrams. This project uses it to create various heatmaps
and provide visual data of the predicted social distancing violations, [46].

– TensorBoard (Visualisation toolkit): This toolkit is integrated into the project to visualise and
monitor the implemented systems’ machine learning metrics, such as training loss, accuracy,
and evaluation metrics like MODA, MODP, etc, [47].

The system must be retrained for each camera configuration before testing can commence. This
causes issues with hard drive space, as the training produces a lot of checkpoint data among the logged
metrics. Due to this issue, Google Drive is used for storing the training data and all executed
evaluation logs. This is also beneficial because the experimental part is executed on Google Colab,
which has built-in integration with Google Drive and allows cloud storage to be mounted as a
dedicated disk in the virtual machine, [48].

2.7. Test Environment Specifications

As a social distancing detection system that utilises multiple camera feeds requires significant
computational resources for efficient performance, the test environment system specifications

37

selected are set to a high standard. The specifications include a computer resource with these
components:

– Intel Xeon Multi-core CPU
– 32 GB RAM
– NVIDIA T4 GPU with 16GB GPU memory

The main software and libraries used in the implementation and testing stage are:

– Python 3.11
– PyTorch library (latest)
– OpenCV library (latest)
– TIMM library (latest)
– Matplotlib library (latest)
– EarlyBird library (latest)
– TensorBoard toolkit (latest)

Additionally, helper libraries like numpy and matplotlib are used for faster calculations and graph
visualisations. Furthermore, the selected system specifications ensured the solution development and
testing/experimentation process ran smoothly. Nevertheless, due to the high system requirements,
outsourced computing resources are utilised; the solution implementation uses the Google Colab
platform as the primary testing and experimenting platform, as it offers powerful hardware resources
for a small fee, [48].

2.8. Dataset Analysis

To successfully evaluate the implemented solution and compare it against existing solutions, two
datasets will be utilised for experiments and testing. These datasets are intended for the use of
evaluating multi-view crowd detection and count algorithms. However, this final project uses these
datasets to calculate and detect social distancing violations and test various camera placement variants
to evaluate the impact of their position on the overall model detection accuracy and inference latency.

2.8.1. “WILDTRACK” dataset analysis

The first dataset used to evaluate and compare the proposed solution against existing solutions is
called WILDTRACK. It was created by the “Swiss Federal Institute of Technology” and meets the
solution testing criteria of having multiple cameras capturing the same area from multiple angles. The
dataset provides video data of an outside area with various crowds of people walking and interacting
with each other. Moreover, as the static cameras are mounted low, the resulting overlap of individuals
provides an additional challenge for single-view social distancing detection systems, thus allowing
for more apparent algorithm evaluation, [49]. An example of the datasets captured single image is
provided in Fig 25.

38

Fig 25. Example of a single data point from the WILDTRACK dataset [R21]

The dataset consists of the footage captured by 7 GoPro Hero cameras mounted in different locations
and angles, along with camera calibration data and the synchronisation between the view sequences.
The provided dataset footage features a resolution of 1920x1080 pixels and has extracted
synchronised frames with a framerate of 10 frames per second. The calibration files for each camera
also provide compatibility with the OpenCV library used in the proposed social distancing detection
system and its projection functions, [49].

Its working area is 12 x 36m2, and the ground truth annotations are provided for every two frames per
second, which feature coordinates in space for each person in view in the captured area for each
camera. Additional interpolation may be used to enlarge the annotations file, [49].

2.8.2. “MultiViewX” dataset

The second dataset that will be used for evaluation is the MultiViewX dataset, a synthetic dataset
created with the Unity game engine. It features more people in the frame (40 people) compared to the
WILDTRACK dataset and a smaller ground plane of 16 x 25m2. The dataset provides an open area
with simulated people interactions, such as walking or standing. As the number of individuals in a
frame is higher, the occlusion is, in turn, also more apparent, thus increasing the need for a multi-
view prediction output for higher accuracy, [33]. An example of a single data point of the dataset is
provided in Fig 26.

39

Fig 26. Example of a single data point from the MultiViewX dataset [R22]

As the dataset was synthetically created, its ground truth data is very accurate and provides a better
insight into the evaluation of the solutions’ performance. Furthermore, the dataset was created to have
the same annotation structure as the WILDTRACK dataset, and it has the same 1920x1080 resolution
and a synchronised annotation framerate of 2 frames per second. These similarities to the
WILDTRACK dataset provide easier compatibility and improved testing/evaluation results of the
existing and proposed solutions, as the evaluation and testing techniques can be used identically for
both datasets, [33, 49].

2.9. Testing Plan

The project testing plan consists of multiple parts, including the proposed solution implementation
development testing. It consists of continuous code testing for each iteration and revision of the code,
using unit and integration tests. These tests ensure that each code revision keeps the structure and
working principle of the software itself intact. As integration tests are used, code testing begins after
the first working iteration of the solution.

The second part of the testing plan concerns the proposed solution’s performance and its testing
against other solutions. The testing of the implemented multi-view social distancing detection system
involves using the set quality criteria for assessing and testing the performance of the implemented
solution. Furthermore, evaluation is performed with the use of 2 separate datasets, as well as by using
different camera placements for the final prediction output evaluation.

40

3. Evaluation of Multi-View Detection Application for Social Distancing Monitoring

This chapter details the implementation of a multi-view social distancing detection system and
assesses its performance using specified metrics. The results of this evaluation are presented in tables
and graph visualizations.

3.1. Solution and Improvements Implementation Details

This subchapter describes implementing and refining the proposed multi-view social distancing
detection system by incorporating modifications to the EarlyBird detection module, integrating
additional backbone models, developing a custom social distancing metric, and developing
performance evaluation tools. The implementation of these modifications allows this project to
successfully assess the viability of using a multi-view based detector in social distancing monitoring
systems.

3.1.1. EarlyBird Detection Module Adaption

The EarlyBird pedestrian detection module, designed for multi-view object detection, is selected as
the base for the proposed system. However, the original module lacks flexibility in choosing different
camera configurations. To address this issue, modifications are made to enable the selection of
specific cameras for both training and evaluation.

Initially, the base EarlyBird model used all available cameras in the dataset. However, the new
modification involves modifying various source code files to replace the fixed num_cam parameter
(e.g., num_cam=6) with a list of camera indices (num_cam=[0, 1, 2, 3, 4, 5]), as this allows for more
granular control over the camera setup used during experimentation. However, due to its design, the
EarlyBird model does not work when selecting a single camera for evaluation. To avoid this, a
workaround is implemented using duplicate camera indices (e.g., [1, 1]) to simulate single-camera
evaluation. This solution is acceptable when evaluating the system's accuracy, yet it is impossible to
assess the timing metrics accurately.

3.1.2. Custom Backbone Encoders Integration

The initial stage of the EarlyBird model depends on the feature extraction backbone. To evaluate the
impact of different feature extraction algorithms, various backbone models are integrated into the
system as encoders. EarlyBird’s default encoder is the traditional ResNet18 convolutional neural
network, so models ranging from less complex to more complex are implemented as optional
encoders with different layers used:

– TinyNet-E: 4 layers
– Swin Transformer: 3 layers
– TinyViT: 3 layers

Different upsampling and concatenation kernels are used for all the custom encoders, as each has
differently sized tensor inputs and outputs. To switch between these encoders during training and
testing, there is a dedicated variable in the configuration: encoder_name, which declares the encoder
type.

41

The classification heads of all encoders are also removed because they are unnecessary for feature
extraction and only add to the resource overhead. This change simplifies the model and directs its
computational resources towards generating detailed feature maps for the detection process.

3.1.3. Social Distancing Detection Metric Implementation

A custom social distancing metric is developed to assess the proposed solution‘s performance. This
metric operates by analysing the prediction log, containing predicted individual locations for each
frame, and comparing it to the ground truth data. The Hungarian algorithm is used to match predicted
and ground truth pedestrian coordinates. Afterwards, a confusion matrix is calculated for each frame,
which gathers the true positives (TP), false positives (FP), and false negatives (FN). Lastly, after
evaluating all frames for the predicted and ground-truth social distancing violations, precision, recall,
and the computed F1 score and reported alongside other metrics in the tfevents file format. The
algorithm for calculating the social distancing detection scores is provided in Fig 27.

Fig 27. Social distancing violation detection metric calculation algorithm

42

3.1.4. Performance Evaluation Additions

Solutions for tracking inference and training time are implemented to assess the efficiency of the
multi-view detection system. Training time is automatically recorded in the tfevents log file generated
by PyTorch, while inference time is captured using the PyTorch built-in profiler. The profiler also
monitors CUDA memory usage and calculates the average model inference time across all frames.

Furthermore, a custom parser is created to convert tfevents files into a compatible CSV format for
streamlined analysis. It considers all evaluation model runs in a directory and outputs a single CSV
file containing data for each investigated camera configuration. The parser algorithm, which utilises
the EventAccumulator class for processing tfevents files, is provided in Fig 28. Moreover, to comply
with the set functional requirements, Matplotlib is employed to generate heatmaps and visualise social
distancing violations.

Fig 28. Parser algorithm for converting tfevents files to a CSV file

43

3.1.5. Training and Testing Data Variants

Multiple training data variants are created to evaluate the proposed system's performance under
various conditions. These variants involve varying the number and placement configuration of
cameras used for predictions. Additionally, two distinct camera placement combinations are chosen
for both dataset configurations to capture the area from different perspectives. The selected
configurations are provided in Table 1, where camera numbers represent their location, as shown in
Fig 29 and Fig 30.

Table 1. Camera placement configurations for system evaluation

Camera
count

MultiviewX WILDTRACK

Configuration A Configuration B Configuration A Configuration B

1 3 2 3 1

2 1, 2 5, 6 3, 6 1, 2

3 1, 2, 3 1, 5, 6 1, 2, 3 2, 3, 6

4 1, 4, 5, 6 2, 3, 5, 6 4, 5, 6, 7 1, 2, 3, 6

5 1, 2, 3, 5, 6 1, 2, 3, 4, 6 1, 3, 4, 5, 7 1, 2, 3, 5, 6

6 1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5, 7

7 - - 1, 2, 3, 4, 5, 6, 7

Fig 29. MultiviewX dataset camera positions (top-down)

Fig 30. WILDTRACK dataset camera positions (top-down)

44

3.2. Datasets Investigation

Before the evaluations of the proposed social distancing detection system can commence, a dataset
analysis is done. It begins with the verification of the dataset camera calibration files, where a visual
inspection is accomplished. First, a random selection of images for each dataset is selected and loaded
into system memory with the help of the OpenCV library. Furthermore, the calibration files are also
provided to the library, and a separate point grid is created. Lastly, the point grid gets projected onto
the images, using homography principles, and the final result is reviewed.

After reviewing the results of each dataset’s camera calibration files, the final verdict is favourable,
as using each camera’s calibration file for the transformation matrix resulted in a correctly mapped
point grid. Fig 31 provides an example of the verification result, while more samples can be found in
Appendix 2.

Fig 31. Example of the dataset calibration file verification

Furthermore, the distribution of pedestrians in each dataset is analysed using the matplotlib library
and heatmap graphs are plotted for the 10% data split meant for testing. Fig 32 and Fig 33 demonstrate
the results, where it can be noticed that the MultiviewX dataset has a more uniform distribution of
pedestrians compared to the WILDTRACK dataset. The latter also has fewer hot spots, and they are
more concentrated in a smaller area. Meanwhile, the MultiviewX heatmap indicates that the
pedestrians are more spread out, with fewer outliers, thus providing a more consistent testing
platform.

45

Fig 32. Heatmap of pedestrian distribution in the testing split of the WILDTRACK dataset

Fig 33. Heatmap of pedestrian distribution in the testing split of the MultiviewX dataset

46

3.3. Various Camera Configuration Training

The research aims to evaluate multi-view social distancing detection systems, requiring the training
of a machine learning model variant for each combination of camera setup and encoder model. Fig
34 shows the average validation loss over training epochs for different camera counts, using ResNet18
(the default encoder for the EarlyBird model) as the baseline.

The results demonstrate that more cameras generally lead to a lower initial validation loss, suggesting
faster early learning and potentially better performance. Notably, increasing camera count from 2 to
3 resulted in a 45.8% reduction in initial loss. Subsequent camera additions yielded
improvements, ranging from 12.7% to 23.5%. Overall, the validation loss for all configurations
consistently decreases over the epochs, indicating successful training and ongoing improvement in
model performance.

Fig 34. Validation loss progress during system model training on the MultiviewX dataset (encoder –
ResNet18)

Table 2 presents the training times for various camera configurations and model variants. The
modified model with TinyNet-E encoder consistently outperforms other variants, achieving similar
results to the baseline model but with training durations reduced by 4.45% to 10.5% for 2-4 cameras
and 9.81% to 16.94% for 5-7 cameras. This indicates a better model efficiency with the modified
encoder type.

Alternatively, models with TinyViT and Swin Transformer encoders exhibit increased training times,
peaking at 36.14% and 86.31% longer than the ResNet18 variant, respectively. This confirms the
theory that more complex encoder types require greater computational resources. Overall, training
time increases by an average of 13.84% per additional camera for models with the ResNet18 encoder,
with similar increases noticeable in all model variants.

0
20
40
60
80

100
120
140
160
180
200

0 10 20 30 40 50

V
al

id
at

io
n

lo
ss

Epoch

Validation Loss During Model Training

2 Cameras
3 Cameras
4 Cameras
5 Cameras
6 Cameras

47

Table 2. Model training times for all evaluated encoder types

Camera
count

Encoder type

ResNet18 TinyViT Swin
Transformer

TinyNet-E

2 4.27h 5.17h 5.46h 4.08h

3 4.93h - - 4.73h

4 5.81h 7.91h 9.52h 5.20h

5 6.42h - - 5.79h

6 7.38h 9.9h 13.75h 6.13h

7 8.15h - - 6.96h

The training progresses by iterating on the model weights and attempting to minimise the loss. Fig
35 illustrates the model outputs at various stages of training. Initial observations indicate the output
is very noisy, with multiple high-intensity regions in the first epoch. Epoch 3 is slightly less noisy,
with the model starting to learn and focus on specific areas. Epochs 20 and 50 indicate a much clearer
output with well-defined and distinct high-intensity regions, confirming the model‘s ability to identify
and focus on the relevant features in the input data.

Fig 35. Model training progress images during various stages of training

48

3.4. Investigation of Camera Placement Impact on Social Distancing Detection Accuracy

This chapter examines how camera placement affects the accuracy of a multi-view social distancing
detection system. Fig 36 provides an example of the system’s prediction output graph. It indicates the
red dots for each detected pedestrian, while the blue lines show the detected social distancing
violation. These graphs are generated for each frame in the tested dataset portion and allow the user
to observe the violations visually.

Fig 36. Example of the social distancing violations prediction on the MultiviewX dataset

Evaluation results on the MultiviewX dataset, provided in Table 3 and Fig 37, show that camera
position matters, especially with fewer cameras. The most significant difference in accuracy
(19.13%) between the same camera count configurations appears when only one camera is used. This
difference reduces as more cameras are added, reaching just 1.61% with five cameras, suggesting that
more cameras lead to better coverage, reducing the impact of their placements.

Looking at the best results for each setup, adding cameras clearly benefits accuracy. When moving
from one to two cameras, accuracy increases by 16.53% and by another 12.82% when adding a
third. However, further increases in camera count result in smaller gains, averaging 2.79% per
additional camera. This indicates diminishing returns beyond three cameras. Lastly, adding more
cameras slows the model down, with each additional camera increasing prediction time by an average
of 12.24%. Overall, the results suggest that considering budget-bound applications, a correctly placed
three-camera setup is sufficiently accurate in most applications. However, to achieve the best possible
social distancing monitoring performance, adding more cameras will marginally improve the overall
detection accuracy.

49

Table 3. Multi-view social distancing detection system evaluation results for different camera placement
variants (ResNet18 encoder, MultiviewX dataset)

Camera
count

Configuration MODA (%) MODP (%) Social Dist.
F1

Tracking
IDF1

Inference
speed (ms)

1 A 54.42 82.98 0.528 0.482 -

B 60.98 81.56 0.629 0.488 -

2 A 67.00 84.72 0.680 0.587 308

B 73.03 85.93 0.733 0.603 314

3 A 85.54 87.34 0.806 0.722 364

B 85.61 88.20 0.827 0.722 362

4 A 89.63 89.21 0.838 0.784 405

B 88.89 90.26 0.861 0.799 408

5 A 92.64 90.55 0.872 0.809 454

B 93.84 89.90 0.886 0.788 454

6 A 94.91 91.61 0.898 0.838 498

Fig 37. Social distancing detection F1 score results comparing different camera placements (ResNet18
encoder, MultiviewX dataset)

Evaluation on the WILDTRACK dataset reveals similar trends but with a few differences. Notably,
the most significant difference in social distancing detection accuracy between same-count camera
setups occurs with four cameras (10.13%), along with a substantial 26.08% MODA difference.
Focusing on each setup‘s best configuration, increasing camera count initially yields better gains:
7.2% from one to two cameras and 4.87% from two to three. However, subsequent additions provide
less than 1% improvement. Inference time trends remain closely matched to the evaluation on the
MultiviewX dataset.

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6

So
ci

al
 d

is
ta

nc
in

g
F1

 sc
or

e

Camera count

Social Distancing Detection Accuracy Comparison Between
Camera Setups (MultiviewX)

Configuration A Configuration B

50

Table 4. Multi-view social distancing detection system evaluation results for different camera placement
variants (ResNet18 encoder, WILDTRACK dataset)

Camera
count

Configuration MODA (%) MODP (%) Social Dist.
F1

Tracking
IDF1

Inference
speed (ms)

1 A 65.76 76.42 0.761 0.599 -

B 72.79 76.34 0.805 0.676 -

2 A 80.36 78.99 0.853 0.763 329

B 84.24 80.17 0.863 0.816 330

3 A 90.44 80.24 0.899 0.887 383

B 90.23 79.95 0.905 0.841 384

4 A 72.90 81.36 0.829 0.79 423

B 91.91 80.69 0.913 0.839 426

5 A 85.92 80.46 0.895 0.882 470

B 92.65 81.49 0.919 0.924 471

6 A 91.91 81.33 0.915 0.919 519

B 91.91 81.78 0.920 0.914 513

7 A 91.07 81.90 0.912 0.934 565

Fig 38. Social distancing detection F1 score results comparing different camera placements (ResNet18
encoder, WILDTRACK dataset)

The WILDTRACK dataset provides real-world insight into the results. As provided in Fig 39, more
people are walking together in groups. This is indicated by more clustered social distancing violations
(highlighted with blue lines).

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7

So
ci

al
 d

is
ta

nc
in

g
F1

 sc
or

e

Camera count

Social Distancing Detection Accuracy Comparison Between
Camera Setups (WILDTRACK)

Configuration A Configuration B

51

Fig 39. Example of the social distancing violations prediction on the WILDTRACK dataset

Supplementary analysis is performed as the main outlier from the WILDTRACK evaluation is the
four-camera setup configuration A. Firstly, the model was retrained multiple times to reduce the
possibility of any significant issues in the training process. However, the evaluation results remained
the same, so the model output view was analysed next. In the provided view (Fig 40) it is evident that
the selected camera configuration had multiple blind spots – areas where the cameras did not cover
the scene. Additionally, the chosen configuration contains several cameras mounted lower than
others, making them more susceptible to occlusion. Given these observations, it is evident that correct
camera placement becomes more essential due to the WILDTRACK dataset’s wider area and peculiar
camera positions.

Fig 40. Model output view for the WILDTRACK dataset, using the 4x camera configuration A

3.5. Investigation of Complex Model Feature Extractor Impact on Accuracy

The performance comparison between ResNet18, Swin Transformer and TinyViT system encoders
reveals additional insight for multi-view social distancing detection systems (Fig 41 and Table 5).

52

While MODP differences were negligible across all tested encoders, MODA and social distancing
detection F1 scores displayed several trends.

The model with a Swin Transformer encoder consistently underperformed compared to base
ResNet18, with decreases in MODA (2.04%-7.79%) and social distancing detection F1 score (3.67%-
5.49%) across all tested camera counts. Additionally, this encoder exhibited a consistent decrease in
tracking IDF1 score (8.62%-10.98%). Overall, the results suggest the Swin Transformer’s
incompatibility to be used in the system.

Conversely, using TinyViT as the encoder demonstrated promising results, with observable MODA
increases ranging from 1.34% to 11.91% and social distancing detection F1 score improvements from
1.89% to 9.14% compared to the base ResNet18 encoder. Although TinyViT shows slight decreases
in tracking IDF1 scores at higher camera counts, its overall performance in other metrics suggests it
is a viable alternative to the ResNet18 encoder for enhancing system accuracy.

Table 5. Multi-view social distancing detection system evaluation results for different encoder types
(MultiviewX dataset)

Camera
Count

Encoder
Type

MODA
(%)

MODP
(%)

Social Dist.
F1

Tracking
IDF1

Inference
speed (ms)

2 ResNet18 73.03 85.93 0.733 0.603 314

Swin 67.34 84.66 0.698 0.551 409

TinyViT 81.73 87.19 0.800 0.682 386

4 ResNet18 89.63 89.21 0.838 0.784 405

Swin 85.61 86.89 0.792 0.705 603

TinyViT 91.43 89.82 0.863 0.765 555

6 ResNet18 94.91 91.61 0.898 0.838 498

Swin 92.97 89.44 0.865 0.746 790

TinyViT 96.18 91.70 0.915 0.789 710

Fig 41. Social distancing detection F1 score results comparing ResNet18, Swin and TinyViT encoders
(MultiviewX)

0.4

0.5

0.6

0.7

0.8

0.9

1

2 4 6

So
ci

al
 d

is
ta

nc
in

g
F1

 sc
or

e

Camera count

Accuracy Comparison of Complex Encoders (MultiviewX)

ResNet18 Swin Transformer TinyViT

53

After evaluating the encoders on the WILDTRACK dataset (Fig 42 and Table 6), some differences are
notable compared to the previous MultiviewX results. The model with the Swin Transformer encoder
still underperforms compared to ResNet18 in MODA (0.15%-4.84%) but shows a mixed impact on
the social distancing detection F1 score. It slightly improves with a two-camera setup (0.59%) and
marginally decreases with the four and six-camera configurations (2.63% and 0.87%, respectively).
Regarding the tracking IDF1 score, it still shows a slight decrease across all camera counts.

TinyViT provides less positive results compared to its evaluation on the MultiviewX dataset. It
improves MODA (1.83%) and social distancing detection scores (1.52%) with a two-camera
configuration but fails to reach ResNet18 performance levels on both metrics with four and six
cameras. However, the TinyViT encoder increases the tracking IDF1 score by 8.52% with a two-
camera setup, 11.92% with a four-camera setup, and 1.31% when using the six-camera configuration
on the WILDTRACK dataset.

Table 6. Multi-view social distancing detection system evaluation results for different encoder types
(WILDTRACK dataset)

Camera
Count

Encoder
Type

MODA
(%)

MODP
(%)

Social Dist.
F1

Tracking
IDF1

Inference
speed (ms)

2 ResNet18 80.36 78.99 0.853 0.763 329

Swin 76.47 79.06 0.858 0.751 428

TinyViT 81.83 79.80 0.866 0.828 407

4 ResNet18 91.91 80.69 0.913 0.839 426

Swin 91.77 79.59 0.889 0.905 611

TinyViT 90.44 81.63 0.903 0.939 566

6 ResNet18 91.91 81.33 0.915 0.919 519

Swin 91.49 79.85 0.907 0.900 804

TinyViT 90.86 82.03 0.914 0.931 727

Fig 42. Social distancing detection F1 score results comparing ResNet18, Swin and TinyViT encoders
(WILDTRACK)

0.5

0.6

0.7

0.8

0.9

1

2 4 6

So
ci

al
 d

is
ta

nc
in

g
F1

 sc
or

e

Camera count

Accuracy Comparison of Complex Encoders
(WILDTRACK)

ResNet18 Swin Transformer TinyViT

54

The visualisation of inference time differences for all three model variants across the evaluated
configurations is provided in Fig 43. Compared to ResNet18, Swin Transformer shows the most
significant increases in inference time, with a 30.25% increase for two cameras, a 48.89% increase
for four cameras, and a 58.63% increase for six cameras. Moreover, the multi-view social distancing
detection system with a TinyViT encoder demonstrates a lesser increase in inference time compared
to ResNet18, with a 22.93% increase for two cameras, 37.04% increase for four cameras, and 42.57%
increase for six cameras. These findings suggest that more complex encoders may offer advantages
in terms of accuracy, but they come at the cost of increased inference and training durations.

Fig 43. Inference time results comparing ResNet18, Swin and TinyViT encoders (MultiviewX)

3.6. Investigation of Using TinyNet-E as the Feature Extractor on Inference Speed

This work implements and evaluates a TinyNet-E encoder to enhance system efficiency as a
replacement for the base ResNet18 encoder. Fig 44 compares the model output views for both encoder
variants. Notably, the feature maps produced by TinyNet-E differ from ResNet18, showing more high-
intensity regions early in training. Despite this difference, the TinyNet-E model effectively highlights
pedestrian features, enabling further evaluation of this implementation.

Fig 44. Training view from camera 3 of the MultiviewX dataset using a) ResNet18 and b) TinyNet as feature
extractors (epoch – 1)

250 350 450 550 650 750 850

Swin Transformer

TinyVit

ResNet18

Inference time (ms)

Inference Time Comparison of Complex Encoders
(MultiviewX)

2 Cameras 4 Cameras 6 Cameras

55

Evaluating the use of a TinyNet-E encoder against the base ResNet18 on the MultiviewX dataset
reveals mixed performance results. Regarding MODA and MODP, the TinyNet-E encoder
demonstrates small decreases averaging 0.28% and 1.32%, respectively. A similar result is notable
when evaluating the social distancing detection score, with an average reduction of 1.99%. However,
the tracking suffers a noticeable loss in performance, averaging a 2.82% decrease in IDF1 score, with
the highest drop (11.58%) evident when the six-camera configuration is used.

Table 7. Multi-view social distancing detection system evaluation results comparing ResNet18 and TinyNet
as encoders (MultiviewX dataset)

Encoder
Type

Camera
Count

MODA
(%)

MODP
(%)

Social Dist.
F1

Tracking
IDF1

Inference
speed (ms)

ResNet18 1 60.98 81.56 0.629 0.488 -

2 73.03 85.93 0.733 0.603 314

3 85.61 88.20 0.827 0.722 362

4 88.89 90.26 0.861 0.799 408

5 93.84 89.90 0.886 0.788 454

6 94.91 91.61 0.898 0.838 498

TinyNet-E 1 60.64 81.13 0.624 0.505 -

2 78.71 84.76 0.735 0.629 295

3 83 87.4 0.813 0.682 331

4 89.63 88.53 0.842 0.757 364

5 92.57 89.21 0.849 0.770 401

6 93.04 89.41 0.868 0.741 436

Fig 45. Social distancing detection F1 score results comparing ResNet18 and TinyNet encoders (MultiviewX)

Executing the same evaluation process on the WILDTRACK dataset yields similar results (Fig 46 and
Table 8), with the TinyNet-E encoder averaging decreases of 0.17% and 0.38% for MODA and

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6

So
ci

al
 d

is
ta

nc
in

g
F1

 sc
or

e

Camera count

Accuracy Comparison of TinyNet-E and ResNet18
Encoders (MultiviewX)

TinyNet-E ResNet18

56

MODP, respectively. Social distancing detection F1 score also reports the TinyNet-E encoder use to
cause an average drop of 0.34% with the highest difference of 1.74% appearing when using five
cameras. Regarding the tracking IDF1 score, contrary to MultiviewX results, implementing a TinyNet-
E encoder in the system improves the tracking performance by an average increase of 2.53%.

Table 8. Multi-view social distancing detection system evaluation results comparing ResNet18 and TinyNet
as encoders (WILDTRACK dataset)

Encoder
Type

Camera
Count

MODA
(%)

MODP
(%)

Social Dist.
F1

Tracking
IDF1

Inference
speed (ms)

ResNet18 1 72.79 76.34 0.805 0.676 -

2 84.24 80.17 0.863 0.816 330

3 90.23 79.95 0.905 0.841 383

4 91.91 80.69 0.913 0.839 426

5 92.65 81.49 0.919 0.924 471

6 91.91 81.78 0.920 0.914 513

7 91.07 81.90 0.912 0.934 565

TinyNet-E 1 73.63 76.87 0.808 0.724 -

2 87.08 80.38 0.875 0.867 308

3 89.39 81.33 0.898 0.817 322

4 89.71 80.65 0.899 0.893 360

5 91.7 80.13 0.903 0.939 423

6 90.97 80.82 0.914 0.913 455

7 90.76 79.89 0.917 0.927 490

Fig 46. Social distancing detection F1 score results comparing ResNet18 and TinyNet encoders
(WILDTRACK)

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7

So
ci

al
 d

is
ta

nc
in

g
F1

 sc
or

e

Camera count

Accuracy Comparison of TinyNet-E and ResNet18
Encoders (WILDTRACK)

TinyNet-E ResNet18

57

The primary purpose of modifying the existing system to utilise a TinyNet-E encoder is to achieve
better efficiency and inference speeds. Analysing the result data (Fig 47, Table 7 and Table 8), it is
evident that this modification greatly reduces the overall prediction times. Considering data from the
WILDTRACK evaluation (due to more samples), improvements across all camera configurations are
made compared to the base model with a ResNet18 encoder. Notably, inference time was reduced by
6.67% for a single-camera setup. Two and three-camera configurations decreased 15.93% and
15.49%, respectively. Meanwhile, systems with 5 to 7 cameras achieved an average reduction of
11.59%.

Fig 47. Inference time results for varied camera placements comparing TinyNet and ResNet18 encoders

250 300 350 400 450 500 550 600

7

6

5

4

3

2

Inference time (ms)

C
am

er
a

co
un

t

Inference Time Comparison of TinyNet-E and ResNet18
Encoders (WILDTRACK)

TinyNet-E ResNet18

58

Conclusions

After performing the investigation of social distancing detection systems, the following conclusions
are made:

1. Reviewing existing social distancing detection systems identified their main fundamental
limitation: occlusion, as they use only the video feed of a single camera. Additionally, the
accuracy of such systems highly depends on the placement of the camera, as they usually have to
capture a large area.

2. After identifying the main limitations of existing social distancing detection systems, a new
solution was proposed that uses multiple cameras capturing the same area from different angles
and positions. The implementation was done using Python as the primary programming language,
with the PyTorch library as the main machine learning interface. A state-of-the-art model,
EarlyBird, was used as the system’s base machine learning stage and modified for better
evaluation capabilities to achieve the desired results.

3. The initial evaluation results revealed promising results, as using even two cameras instead of a
single camera yields an increase in social distancing detection score of 16.53% on the MultiviewX
dataset and a rise of 7.2% on the WILDTRACK dataset. Adding more cameras helps to get even
better results with noticeable improvements in accuracy. Comparing the traditional single-view
social distancing detection systems performance to a six-camera setup on the MultiviewX and a
seven-camera setup on the WILDTRACK datasets, we see improved scores by 70.08% and
13.29%, respectively. The difference between these results proves that the performance of any
social distancing monitoring system is partly dependent on external factors as well. This was also
noticed in the evaluation progress, as the difference between same-count camera setups once
reached 10.13%, thus confirming that camera placement is a crucial step in setting up a social
distancing detection system.

4. Accuracy improvements have been achieved by implementing a more complex encoder in the
early stage to extract more detailed feature maps. Using a Swin Transformer as the encoder
reduced social distancing violation detection accuracy by up to 5.49%. However, using the
TinyViT model instead of the base ResNet18 encoder produced accuracy score increases of up to
9.14% and MODA result improvements of 11.91%. These results were achieved on the
MultiviewX dataset, and evaluating the changes on the WILDTRACK dataset, the scores were
almost identical, with the Swin Transformer again, slightly underperforming. Regarding
efficiency, the modified systems with Swin Transformer and TinyViT encoders took significantly
longer to provide a final prediction output, with six-camera setup inference time increases of
58.63% and 42.57%, respectively.

5. The use of a TinyNet-E model as the encoder improved the efficiency of the final social distancing
detection system. Implementing the less complex model reduced the social distancing detection
score by an average of 1.99%. However, the inference times of the modified system decreased by
an average of 15.49%. This demonstrates that such a system is a viable alternative in budget-
bound applications, as the reduction in required computational resources outweighs the lessened
social distancing detection accuracy.

59

List of references

1. DAS, Sreetama. Anirban NAG. Dhruba ADHIKARY. et al. Computer Vision-based Social
Distancing Surveillance Solution with Optional Automated Camera Calibration for Large Scale
Deployment [interactive]. arXiv, 2021, [accessed 2024-05-24]. Available at:
http://arxiv.org/abs/2104.10891.
2. SHAH, Juhi. Mahavir CHANDALIYA. Harsh BHUTA. et al. Social Distancing Detection Using
Computer Vision. In 2021 5th International Conference on Computing Methodologies and
Communication (ICCMC) [interactive]. 2021, p. 1359–1365. [accessed 2024-05-26]. Available at:
https://ieeexplore.ieee.org/document/9418312.
3. WEISSTEIN, Eric W. Convolution. In [interactive]. [accessed 2024-05-26]. Available at:
https://mathworld.wolfram.com/.
4. HEALY, Timothy J. Convolution revisited. In IEEE Spectrum. 1969, Vol. 6, no. 4, p. 87–93.
5. SUMNE, D. B. The Convolution Transform. By Hirschmann & Widder . Pp. x + 268. 45s. 1955.
(Princeton University Press. London : Cumberlege). In The Mathematical Gazette. 1957, Vol. 41, no.
335, p. 71–72.
6. BOEHME, T. K. and Ron BRACEWELL. The Fourier Transform and its Applications. In The
American Mathematical Monthly [interactive]. 1966, p. 685. [accessed 2024-05-26]. Available at:
https://www.jstor.org/stable/2314845?origin=crossref.
7. MARCO, Simone DE. Minh-Duc HUA. Robert MAHONY. et al. Homography Estimation of a
Moving Planar Scene From Direct Point Correspondence. In IEEE Transactions on Control Systems
Technology. 2021, Vol. 29, no. 3, p. 1284–1295.
8. ZHAN, Xinrui. Yueran LIU. Jianke ZHU. et al. Homography Decomposition Networks for
Planar Object Tracking [interactive]. arXiv, 2022, [accessed 2024-05-26]. Available at:
http://arxiv.org/abs/2112.07909.
9. NISHIDA, Kenji. Jun FUJIKI. Chikao TSUCHIYA. et al. Road Plane Detection using
Differential Homography Estimated by Pair Feature Matching of Local Regions. In Signal
Processing, Pattern Recognition, and Applications / 722: Computer Graphics and Imaging
[interactive]. ACTAPRESS, 2011, [accessed 2024-05-26]. Available at:
http://www.actapress.com/PaperInfo.aspx?paperId=451597.
10. MILSTEIN, Adam. Occupancy Grid Maps for Localization and Mapping. In JING, X.-J.Ed.
[interactive]. InTech, 2008, [accessed 2024-05-26]. Available at:
http://www.intechopen.com/books/motion_planning/occupancy_grid_maps_for_localization_and_
mapping.
11. KUHN, Harold W. A tale of three eras: The discovery and rediscovery of the Hungarian Method.
In European Journal of Operational Research. 2012, Vol. 219, no. 3, p. 641–651.
12. PASZKE, Adam. Sam GROSS. Francisco MASSA. et al. PyTorch: An Imperative Style, High-
Performance Deep Learning Library [interactive]. arXiv, 2019, [accessed 2024-05-26]. Available at:
http://arxiv.org/abs/1912.01703.
13. CULJAK, Ivan. David ABRAM. Tomislav PRIBANIC. et al. A brief introduction to OpenCV.
In 2012 Proceedings of the 35th International Convention MIPRO [interactive]. 2012, p. 1725–1730.
[accessed 2024-05-26]. Available at: https://ieeexplore.ieee.org/document/6240859.
14. DALTON, J. and A. DESHMANE. Artificial neural networks. In IEEE Potentials. 1991, Vol.
10, no. 2, p. 33–36.
15. JAIN, A.K. JIANCHANG MAO and K.M. MOHIUDDIN. Artificial neural networks: a tutorial.
In Computer. 1996, Vol. 29, no. 3, p. 31–44.
16. YU, Tong. and Hong ZHU. Hyper-Parameter Optimization: A Review of Algorithms and
Applications [interactive]. arXiv, 2020, [accessed 2024-05-26]. Available at:
http://arxiv.org/abs/2003.05689.

60

17. ALBAWI, Saad. Tareq Abed MOHAMMED. and Saad AL-ZAWI. Understanding of a
convolutional neural network. In 2017 International Conference on Engineering and Technology
(ICET) [interactive]. 2017, p. 1–6. [accessed 2024-05-26]. Available at:
https://ieeexplore.ieee.org/document/8308186.
18. YAMASHITA, Rikiya. Mizuho NISHIO. Richard Kinh Gian DO. et al. Convolutional neural
networks: an overview and application in radiology. In Insights into Imaging. 2018, Vol. 9, no. 4, p.
611–629.
19. GU, Jiuxiang. Zhenhua WANG. Jason KUEN. et al. Recent Advances in Convolutional Neural
Networks [interactive]. arXiv, 2017, [accessed 2024-05-26]. Available at:
http://arxiv.org/abs/1512.07108.
20. GIRSHICK, Ross. Jeff DONAHUE. Trevor DARRELL. et al. Rich feature hierarchies for
accurate object detection and semantic segmentation [interactive]. arXiv, 2014, [accessed 2024-05-
26]. Available at: http://arxiv.org/abs/1311.2524.
21. GIRSHICK, Ross. Fast R-CNN. In 2015 IEEE International Conference on Computer Vision
(ICCV) [interactive]. 2015, p. 1440–1448. [accessed 2024-05-26]. Available at:
https://ieeexplore.ieee.org/document/7410526.
22. REN, Shaoqing. Kaiming HE. Ross GIRSHICK. et al. Faster R-CNN: Towards Real-Time Object
Detection with Region Proposal Networks [interactive]. arXiv, 2016, [accessed 2024-05-26].
Available at: http://arxiv.org/abs/1506.01497.
23. DENG, Jia. Wei DONG. Richard SOCHER. et al. ImageNet: A large-scale hierarchical image
database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition [interactive]. 2009,
p. 248–255. [accessed 2024-05-26]. Available at: https://ieeexplore.ieee.org/document/5206848.
24. KRIZHEVSKY, Alex. Ilya SUTSKEVER. and Geoffrey E HINTON. ImageNet Classification
with Deep Convolutional Neural Networks. In Advances in Neural Information Processing Systems
[interactive]. Curran Associates, Inc., 2012, [accessed 2024-05-26]. Available at:
https://proceedings.neurips.cc/paper_files/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-
Abstract.html.
25. SZEGEDY, Christian. Wei LIU. Yangqing JIA. et al. Going deeper with convolutions. In 2015
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) [interactive]. 2015, p. 1–9.
[accessed 2024-05-26]. Available at: https://ieeexplore.ieee.org/document/7298594.
26. HE, Kaiming. Xiangyu ZHANG. Shaoqing REN. et al. Deep Residual Learning for Image
Recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
[interactive]. 2016, p. 770–778. [accessed 2024-05-26]. Available at:
https://ieeexplore.ieee.org/document/7780459.
27. CRAWFORD, Kate. and Trevor PAGLEN. Excavating AI: The Politics of Training Sets for
Machine Learning. In - [interactive]. 2019, [accessed 2024-05-26]. Available at: https://excavating.ai.
28. DASHA.AI. The Environmental Impact of Training Models Like ChatGPT. In [interactive].
2023, [accessed 2024-05-26]. Available at: https://dasha.ai/en-us/blog/the-environmental-impact-of-
training-models-like-chatgpt.
29. HANDALAGE, Upulie. and Lakshini KUGANANDAMURTHY. Real-Time Object Detection
Using YOLO: A Review. 2021, .
30. MELEK, Ceren Gulra. Elena Battini SONMEZ. and Songul ALBAYRAK. Object Detection in
Shelf Images with YOLO. In IEEE EUROCON 2019 -18th International Conference on Smart
Technologies [interactive]. 2019, p. 1–5. [accessed 2024-05-26]. Available at:
https://ieeexplore.ieee.org/document/8861817.
31. BOCHKOVSKIY, Alexey. Chien-Yao WANG. and Hong-Yuan Mark LIAO. YOLOv4: Optimal
Speed and Accuracy of Object Detection [interactive]. arXiv, 2020, [accessed 2024-05-26]. Available
at: http://arxiv.org/abs/2004.10934.

61

32. HAN, Kai. Yunhe WANG. Qiulin ZHANG. et al. Model Rubik’s Cube: Twisting Resolution,
Depth and Width for TinyNets [interactive]. arXiv, 2020, [accessed 2024-05-26]. Available at:
http://arxiv.org/abs/2010.14819.
33. HOU, Yunzhong. Liang ZHENG. and Stephen GOULD. Multiview Detection with Feature
Perspective Transformation [interactive]. arXiv, 2021, [accessed 2024-05-26]. Available at:
http://arxiv.org/abs/2007.07247.
34. GUERRERO-GÓMEZ-OLMEDO, Ricardo. Beatriz TORRE-JIMÉNEZ. Roberto LÓPEZ-
SASTRE. et al. Extremely Overlapping Vehicle Counting. In PAREDES, R. - CARDOSO, J.S. -
PARDO, X.M.Eds. Pattern Recognition and Image Analysis. Springer International Publishing,
2015, p. 423–431.
35. TEEPE, Torben. Philipp WOLTERS. Johannes GILG. et al. EarlyBird: Early-Fusion for Multi-
View Tracking in the Bird’s Eye View [interactive]. arXiv, 2023, [accessed 2024-05-26]. Available
at: http://arxiv.org/abs/2310.13350.
36. WORLD HEALTH ORGANIZATION. Advice for the public on COVID-19 – World Health
Organization. In [interactive]. 2023, [accessed 2024-05-26]. Available at:
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public.
37. HARTLEY, Richard. and Andrew ZISSERMAN. Multiple View Geometry in Computer Vision.
Cambridge University Press, 2003, 676 p. ISBN 978-0-521-54051-3.
38. NALAIE, Keivan. and Rong ZHENG. Learning Online Policies for Person Tracking in Multi-
View Environments [interactive]. arXiv, 2023, [accessed 2024-05-26]. Available at:
http://arxiv.org/abs/2312.15858.
39. LUITEN, Jonathon. Aljosa OSEP. Patrick DENDORFER. et al. HOTA: A Higher Order Metric
for Evaluating Multi-Object Tracking. In International Journal of Computer Vision. 2021, Vol. 129,
no. 2, p. 548–578.
40. DECI. The Correct Way to Measure Inference Time of Deep Neural Networks. In Deci
[interactive]. 2023, [accessed 2024-05-26]. Available at: https://deci.ai/blog/measure-inference-time-
deep-neural-networks/.
41. GOUTTE, Cyril. and Eric GAUSSIER. A Probabilistic Interpretation of Precision, Recall and F-
Score, with Implication for Evaluation. In LOSADA, D.E. - FERNÁNDEZ-LUNA, J.M.Eds.
Advances in Information Retrieval. Springer, 2005, p. 345–359.
42. WIGHTMAN, Ross. Nathan RAW. Alexander SOARE. et al. rwightman/pytorch-image-
models: v0.8.10dev0 Release. In [interactive]. Zenodo, 2023 [accessed 2024-05-26]. Available at:
https://zenodo.org/records/7618837.
43. LIBERTI, Leo. Carlile LAVOR. Nelson MACULAN. et al. Euclidean distance geometry and
applications [interactive]. arXiv, 2012, [accessed 2024-05-26]. Available at:
http://arxiv.org/abs/1205.0349.
44. DHRUV, Akshit J. Reema PATEL. and Nishant DOSHI. Python: The Most Advanced
Programming Language for Computer Science Applications: In Proceedings of the International
Conference on Culture Heritage, Education, Sustainable Tourism, and Innovation Technologies.
2020, p. 292–299.
45. HARRIS, Charles R. K. Jarrod MILLMAN. Stéfan J. VAN DER WALT. et al. Array
programming with NumPy. In Nature. 2020, Vol. 585, no. 7825, p. 357–362.
46. HUNTER, John D. Matplotlib: A 2D Graphics Environment. In Computing in Science &
Engineering. 2007, Vol. 9, no. 3, p. 90–95.
47. ABADI, Martín. Paul BARHAM. Jianmin CHEN. et al. TensorFlow: A system for large-scale
machine learning [interactive]. arXiv, 2016, [accessed 2024-05-26]. Available at:
http://arxiv.org/abs/1605.08695.
48. GOOGLE. Google Colaboratory. In [interactive]. [accessed 2024-05-26]. Available at:
https://colab.research.google.com/.

62

49. CHAVDAROVA, Tatjana. Pierre BAQUÉ. Stéphane BOUQUET. et al. The WILDTRACK Multi-
Camera Person Dataset [interactive]. arXiv, 2017, [accessed 2024-05-26]. Available at:
http://arxiv.org/abs/1707.09299.

63

List of digital resources

R1. DAS, Sreetama. Anirban NAG. Dhruba ADHIKARY. et al. Computer Vision-based Social
Distancing Surveillance with Automated Camera Calibration for Large-scale Deployment. In
2021 IEEE 18th India Council International Conference (INDICON) [interactive]. 2021, p. 1–6.
[accessed 2024-05-26]. Available at: https://ieeexplore.ieee.org/document/9691485.

R2. SMITH, Steven W. The Scientist and Engineer’s Guide to Digital Signal Processing. California
Technical Pub., 1997, 626 p. ISBN 978-0-9660176-3-2.

R3. GUPTA, Prannaya. 2D Image Convolution with Numpy with a Handmade Sliding Window
View. In Medium [interactive]. 2021, [accessed 2024-05-26]. Available at:
https://medium.com/@thepyprogrammer/2d-image-convolution-with-numpy-with-a-
handmade-sliding-window-view-946c4acb98b4.

R4. FISHER, Robert B. and Konstantinos KORYLLOS. Interactive Textbooks; Embedding Image
Processing Operator Demonstrations in Text. In International Journal of Pattern Recognition
and Artificial Intelligence. 1998, Vol. 12, no. 08, p. 1095–1123.

R5. SHANKAR, Yalda. Estimating a Homography Matrix. In Medium [interactive]. 2022, [accessed
2024-05-26]. Available at: https://towardsdatascience.com/estimating-a-homography-matrix-
522c70ec4b2c.

R6. KANG, Lai. Yingmei WEI. Yuxiang XIE. et al. Combining Convolutional Neural Network and
Photometric Refinement for Accurate Homography Estimation. In IEEE Access. 2019, Vol. PP,
p. 1–1.

R7. BITTEL, Sebastian. Timo REHFELD. Michael WEBER. et al. Estimating high definition map
parameters with convolutional neural networks. In 2017 IEEE International Conference on
Systems, Man, and Cybernetics (SMC) [interactive]. 2017, p. 52–56. [accessed 2024-05-26].
Available at: https://ieeexplore.ieee.org/document/8122577.

R8. OpenCV: Feature Matching. In OpenCV [interactive]. [accessed 2024-05-26]. Available at:
https://docs.opencv.org/4.x/dc/dc3/tutorial_py_matcher.html.

R9. ABDOLRASOL, Maher G. M. S. M. Suhail HUSSAIN. Taha Selim USTUN. et al. Artificial
Neural Networks Based Optimization Techniques: A Review. In Electronics. 2021, Vol. 10, no.
21, p. 2689.

R10. KIM, Sung Eun. and Il Won SEO. Artificial Neural Network ensemble modeling with
conjunctive data clustering for water quality prediction in rivers. In Journal of Hydro-
environment Research. 2015, Vol. 9, no. 3, p. 325–339.

R11. SMITH, Leslie N. A disciplined approach to neural network hyper-parameters: Part 1 --
learning rate, batch size, momentum, and weight decay [interactive]. arXiv, 2018, [accessed
2024-05-26]. Available at: http://arxiv.org/abs/1803.09820.

R12. SAHA, Sumit. A Comprehensive Guide to Convolutional Neural Networks — the ELI5 way.
In Medium [interactive]. 2022, [accessed 2024-05-26]. Available at:
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-
eli5-way-3bd2b1164a53.

R13. FAROOQ, Umer. From R-CNN to Mask R-CNN. In Medium [interactive]. 2018, [accessed
2024-05-26]. Available at: https://medium.com/@umerfarooq_26378/from-r-cnn-to-mask-r-
cnn-d6367b196cfd.

R14. REN, Shaoqing. Kaiming HE. Ross GIRSHICK. et al. Faster R-CNN: Towards Real-Time
Object Detection with Region Proposal Networks [interactive]. arXiv, 2016, [accessed 2024-05-
26]. Available at: http://arxiv.org/abs/1506.01497.

https://ieeexplore.ieee.org/document/9691485

64

R15. An Introduction to ImageNet. In Roboflow Blog [interactive]. 2021, [accessed 2024-05-26].
Available at: https://blog.roboflow.com/introduction-to-imagenet/.

R16. CHAUHAN, Nitin. Yolo Object Detection Made Easy. In Medium [interactive]. 2020,
[accessed 2024-05-26]. Available at: https://medium.com/analytics-vidhya/yolo-object-
detection-made-easy-7b17cc3e782f.

R17. HANDALAGE, Upulie. and Lakshini KUGANANDAMURTHY. Real-Time Object Detection
Using YOLO: A Review [interactive]. 2021, Available at:
https://www.academia.edu/download/67257544/Real_Time_Object_Detection_using_YOLO_
A_review.pdf.

R18. HOU, Yunzhong. Liang ZHENG. and Stephen GOULD. Multiview Detection with Feature
Perspective Transformation [interactive]. arXiv, 2021, [accessed 2024-05-26]. Available at:
http://arxiv.org/abs/2007.07247.

R19. TEEPE, Torben. Philipp WOLTERS. Johannes GILG. et al. EarlyBird: Early-Fusion for Multi-
View Tracking in the Bird’s Eye View [interactive]. arXiv, 2023, [accessed 2024-05-26].
Available at: http://arxiv.org/abs/2310.13350.

R20. WANG, Ping. Lele HU. Guiyou LIU. et al. Prediction of Antimicrobial Peptides Based on
Sequence Alignment and Feature Selection Methods. In PLoS ONE. 2011, Vol. 6, no. 4, p.
e18476.

R21. CHAVDAROVA, Tatjana. Pierre BAQUÉ. Stéphane BOUQUET. et al. The WILDTRACK
Multi-Camera Person Dataset [interactive]. arXiv, 2017, [accessed 2024-05-26]. Available at:
http://arxiv.org/abs/1707.09299.

R22. HOU, Yunzhong. Liang ZHENG. and Stephen GOULD. Multiview Detection with Feature
Perspective Transformation [interactive]. arXiv, 2021, [accessed 2024-05-26]. Available at:
http://arxiv.org/abs/2007.07247.

65

Appendices

Appendix 1. IVUS 2023 Conference Publication

A paper presented at the 28th IT conference IVUS 2023

Gliaubičiūtė D., Janavičius R., Gadeikytė A., Paulauskas L. (2023). Influence of Aerial Image
Resolution on Vehicle Detection Accuracy.

Appendix 2. Camera Calibration Files Verification Results

