KAUNO TECHNOLOGIJOS UNIVERSITETAS MECHANIKOS INŽINERIJOS IR DIZAINO FAKULTETAS ŠILUMOS IR ATOMO ENERGETIKOS KATEDRA

Edgaras Šmigelskis

Vandens įpurškimo pritaikymas atominių stočių apsaugos sistemose ir pernašos procesų modeliavimas

Magistro baigiamasis darbas

Kaunas 2017

ŠILUMOS IR ATOMO ENERGETIKOS KATEDRA

Magistro baigiamasis darbas

VANDENS ĮPURŠKIMO PRITAIKYMAS ATOMINIŲ STOČIŲ APSAUGOS SISTEMOSE IR PERNAŠOS PROCESŲ MODELIAVIMAS

Darbo autorius	E. Šmigelskis (MDM– 5/2 gr.)
Vadovas	Prof. habil. dr. G. Miliauskas
Recenzentas	Prof. habil. dr. S. Šinkūnas

KAUNO TECHNOLOGIJOS UNIVERSITETAS MECHANIKOS INŽINERIJOS IR DIZAINO FAKULTETAS

Tvirtinu:

Šilumos ir atomo energetikos (parašas, data) katedros vedėjas

Doc. E. Puida (vardas, pavardė)

MAGISTRANTŪROS UNIVERSITETINIŲ STUDIJŲ BAIGIAMOJO DARBO UŽDUOTIS Studijų programa BRANDUOLINĖ ENERGETIKA

Magistrantūros studijų, kurias baigus įgyjamas magistro kvalifikacinis laipsnis, baigiamasis darbas yra mokslinio tiriamojo arba taikomojo pobūdžio darbas (projektas). Jam atlikti ir apginti skiriama 30 kreditų. Šiuo darbu studentas parodo, kad yra pagilinęs ir papildęs pagrindinėse studijose įgytas žinias, turi pakankamai gebėjimų formuluoti ir spręsti aktualią problemą, turėdamas ribotą ir (arba) prieštaringą informaciją, geba savarankiškai atlikti mokslinius ar taikomuosius tyrimus ir tinkamai interpretuoti duomenis. Taip pat jis parodo, kad yra kūrybingas, geba taikyti fundamentines mokslo žinias, išmano socialinės bei komercinės aplinkos, teisės aktų ir finansines galimybes, turi informacijos šaltinių paieškos ir kvalifikuotos jų analizės, skaičiuojamųjų metodų ir specializuotos programinės įrangos bei bendrosios paskirties informacinių technologijų naudojimo, taisyklingos kalbos vartosenos įgūdžių, geba tinkamai formuluoti išvadas.

1. Darbo tema Vandens ipurškimo pritaikymas atominių stočių apsaugos sistemose ir pernašos procesų modeliavimas **.**... 1×. 0 1 NT X/ 05 11 00

Patvirtinta 2016 m. gruodžio d. dekano įsakymu Nr. gruodžio 8 d. Nr. V 25-11-20
2. Darbo tikslas: Atlikti išpurkšto vandens pernašos procesų tyrimą ir nustatyti skaičiavimų
optimizavimo galimybes
3. Darbo struktūra:
3.1 Literatūros tyrimas
3.2 Lašelių ŠMM pernašos procesų modeliavimas
3.3 Rezultatai
3.4 Išvados
3.5 Literatūros sarašas
·

4. Reikalavimai ir sąlygos: rengiant baigiamąjį darbą prisilaikyti magistrinio baigiamojo darbo metodinių nurodymų. Įsisavinti skysčio lašelių šilumos ir masės mainų modeliavimo balansiniu metodu principus. Skaitiniams vandens lašelio faziniams tyrimams pritaikyti ŠAE katedroje vystomą skaitinio tyrimo programą "LAŠAS".

Užbaigto darbo pateikimo terminas: 2016 m. gruodžio mėn. 20 d.

6. Ši užduotis yra neatskiriama baigiamojo darbo dalis.

Išduota studentui		
Užduotį gavau Edgaras Šmigelskis		015.02.02
(studento vardas, pavardė)	(parašas)	(data)

Vadovas Prof. habil. dr. Gintautas Miliauskas (pareigos, vardas, pavardė)

(parašas) (data)

KAUNO TECHNOLOGIJOS UNIVERSITETAS MECHANIKOS INŽINERIJOS IR DIZAINO FAKULTETAS ŠILUMOS IR ATOMO ENERGETIKOS KATEDRA

Magistro baigiamasis darbas VANDENS ĮPURŠKIMO PANAUDOJIMAS ATOMINIŲ STOČIŲ APSAUGOS SISTEMOSE IR PERNAŠOS PROCESŲ MODELIAVIMAS

Edgaras Šmigelskis

Atominių stočių apsauginis kiautas yra paskutinis saugos barjeras, ribojantis radioaktyviųjų medžiagų nutekėjimą į aplinką potencialios avarijos atveju. Šilumnešio praradimo atveju į apsauginio kiauto atmosferą gali būti išmetama didelis vandens garo kiekis, kuris sudaro prielaidas staiga išaugti apsauginio kiauto slėgiui bei temperatūrai. Apsauginio kiauto tvarumas yra baigtinis, tad jei vidinės atmosferos parametrai perkopia projektinius, gali būti prarastas apsauginio kiauto sandarumas. Vandens išpurškimo sistemos panaudojimas kiauto parametrams reguliuoti ir kontroliuoti yra įprasta atominių stočių strategija.

Vandens išpurškimas apsauginio kiauto atmosferoje iššaukia sudėtinius, tarpusavyje glaudžiai susijusius terminius ir hidrodinaminius procesus. Šių procesų detali kompleksinė analizė labai sudėtinga ir daug laiko reikalaujanti, dėl vykstančių pereinamųjų šilumokaitos ir fazinių virsmų dvifazėje vandens lašelių ir drėgnų dujų apsauginio kiauto sistemoje. Būtina ir yra patogu šiuos sudėtinius procesus ištirti pradžioje atskirai, pažinti jų dėsningumus, o po to atsižvelgti į jų tarpusavio sąveiką nuosekliai sudėtingumo prasme plečiant kraštines šių procesų vyksmo sąlygas. Šiame darbe siekiama pažinti vykstančius šilumos ir masės pernašos procesus tarp išpurkšto skysčio lašelių ir apsauginio kiauto atmosferos dujų drėgno mišinio. Daroma prielaida, jog į dujas įpurškiamas palyginti nedidelis vandens srautas, todėl lašelių šilumokaitos ir fazinių virsmų įtaka dujų mišinio parametrams paneigta. Tai leidžia išgryninti dujų parametrų įtaką lašelių šilumokaitai ir faziniams virsmams ir išryškinti pagrindinius juos apibrėžiančius faktorius. Tyrimo rezultatais išryškinta dujų temperatūros ir drėgnumo bei lašelių šildymo būdo svarba lašelių paviršiuje vykstantiems faziniams virsmams.

Apsauginis kiautas, vandens išpurškimas, lašeliai, kondensacija, garavimas

KAUNAS UNIVERSITY OF TECHNOLOGY FACULTY OF MECHANICAL ENGINEERING AND DESIGN DEPARTMENT OF THERMAL AND NUCLEAR ENERGY

Master final work USAGE OF WATER SPRAY FOR NUCLEAR POWER PLANT SAFETY SYSTEMS AND MODELLING OF TRANSFER PROCESSES

Edgaras Smigelskis

Containment of nuclear power plants is the last safety barrier, limiting the outflow of radioactive substances into the environment in case of potential accident. During the Loss of coolant accident (LOCA) pressure and temperature of the containment atmosphere rapidly rise due to a large quantity of water vapor being dumped. If the parameters exceed design basis, the integrity of containment can be lost. The usage of the water sprays to monitor and control containment atmosphere parameters is a common strategy of the nuclear power stations.

A water atomization in the containment causes multiple, closely-related thermal and hydrodynamic processes. A detailed analysis of these complex processes is very complex and requires a lot of time, because of the ongoing transitional phase transitions between a water droplet and a containment gas mixture. It is necessary and convenient to examine these complex processes individually. After getting a clear understanding of their patterns, it is possible to take into account the complexity of their interactions in a consistent sense of expanding the boundary conditions. This work is aimed at understanding the underlying processes of heat and mass transfer between a liquid droplet and a humid gas mixture of containment atmosphere. It is assumed that the injected water flow in the containment gas mixture is neglected and assumed that they are constant. This allows to bring to the light the key factors which define the influence of humid gas mixture parameters to a droplet heat and mass transfer processes. The results of the study highlight the importance of the gas temperature, humidity and heating manner to the transitional phase transition on the droplet surface.

Containment, water spray, droplet, condensation, evaporation.

TURINYS

ĮV	'ADA	\S	12
1	LI	TERATŪROS TYRIMAS	14
	1.1	Vandens įpurškimo sistemos atominių stočių apsauginiame kiaute	14
	1.1	1.1 Vandens įpurškimo sistemos aprašymas	16
	1	1.1.1.1 Vandens įpurškimo sistema atominėje stotyje su PWR reaktoriumi	16
	1	1.1.1.2 Vandens įpurškimo sistema atominėje stotyse su VVER reaktoriumi	18
	1.2	Reiškiniai užimantys vietą apsauginiame kiaute po vandens išpurškimo	20
	1.2	2.1 Atomizacijos zona – lašelių susidūrimai	21
	1.2	2.2 Išpurkšto skysčio termodinaminis poveikis apsauginiame kiaute	23
	1.2	2.3 Išpurkšto skysčio dinaminis poveikis apsauginiame kiaute	24
	1	1.2.3.1 Dujų maišymosi suintensyvėjimas	24
	1	1.2.3.2 Skilimo produktų šalinimas iš apsauginio kiauto	25
2	LA	AŠELIŲ ŠMM PERNAŠOS PROCESŲ MODELIAVIMAS	28
	2.1	Metodinė dalis	28
	2.2	Matematinis modeliavimas	29
	2.2	2.1 Garo srauto modelis	29
	2.2	2.1 Šilumos srautų lašelio paviršiuje balansas	34
	2.2	2.2 Lašelio šildymo modelis	35
	2.2	2.3 Šilumokaitos lašelyje modelis	39
	2.3	Skaitinio tyrimo iteracinė schema	40
3	RE	EZULTATAI	43
	3.1	Tyrimo uždaviniai ir ribinės sąlygos	43
	3.2	Skaitinio tyrimo optimizavimo galimybės	43
	3.3	Lašelio slydimo greičio įtaka vandens lašelių šilumos ir masės mainams	51
	3.4	Dujų mišinio temperatūros įtaka vandens lašelių šilumos ir masės mainams	58
4	ISV	VADOS	66
5	LI	TERATUROS SĄRASAS	67
6	PR	RIEDAI	77

PAVEIKSLĖLIŲ SARAŠAS

1.1 pav. Suslėgto vandens reaktoriaus (PWR) apsauginio kiauto vandens įpurškimo sistema [34].	14
GG = garo generatorius	14
1.2 pav. Prancuzų PWR reaktoriaus purkstukų ziedai ir jų padengiamų zonų vaizdai is sono ir viršaus [53]	16
1 3 nav. Purkštukas SPRACO 1713A (Lechler 373 084 17 BN) [53]	17
1 4 nav. Eksperimentinis lašelio dvdžio nasiskirstvmas [53]	18
1.5 nav. Suslėgto vandens reaktoriaus VVFR vandens išnurškimo sistemos dispergatorius	10
1.6 pav. Principinė purkštukų atliekamų funkcijų ansauginiame kiaute schema [38]	20
1.7 pay. Pagrindinės lažalio kalio zonos [28]	20
1.7 pav. Pagrindinės laseno keno žonos [56].	21
1.0 pav. Dviejų lašelių susidemmo gebeno, delinei gueilieient dveijeme leželieme [77]	22
1.9 pav. Dviejų iasenų susidalynio schema, dainai susinėjant dvejtenis iasenains [77]	22
1.10 pav. Lasenų pasidarininio į daugiau nei du fasenus senema [77]	23
1.11 pav. Validelis fadiolizes feakcijos [64]	24
2.1 pav. Laseno snumokanos il fazinių virsinų geometrinė interpretacija.	20
2.2 pav. Bendroji dannio siegio dituziniane sidoksnyje kiumo schema, garavimo ir kondensacijo	s 20
rezinių alvejais.	30
2.5 pav. Vandens garo dannio siegio kiumo difuzimame siuoksnyje schema, garavimo ir	21
kondensacijos rezimų alvejais.	21
2.4 pav. Bendroji galo stauto laseno pavitsiuje schema	32
2.5 pav. I_R temperaturos kitimo diagrama, aprasant ją $I_R(t)$ funkcija. a – atomizacija; t_f – faseno	33 0
gyväviino laikas, [5]	33
2.0 pav. I lažali krintančios sninduliuotės srautų schema lažalvio sahoma	25
2.7 pav. į laselį kinitalielos spinduliuoles stauto skildinio laselyje selielila	26
2.0 pav. 1/2" taigyklåg interpretacijag lažalja geometrijaja gehema	20
2.10 pav. J. okalinio suminio čilumos srauto anskajčiavimo interpretacijos lašelvie schema	30
2.10 pav. Lokannio summo snumos siauto apskatelavinio interpretacijos laseryje schema	39 //1
2.12 pav. Lačalio koordinatos n interpretacijos schema	41
2.12 pav. Lašeliu skersmens posiskirstymo funkciju polyginimos 20cm puo purkštuko [53]	42
3.2 pav. Vandens lašelju paviršiaus temperatūros kitimas iki pusiausviro garavimo temperatūros	45
realaus laiko mastelyje. $2R_0*10^6$, m: (1)30, (2)50, (3)100, (4)150, (5)200; T ₀ , K: (a) 278, (b) 343.	44
3.3 pav. Lašelio paviršiaus temperatūros T_R kitimas iki pusiausviro garavimo temperatūros T_e .	
išreikštas Furie kriterijaus laiko mastelvie. $2R_0*10^6$. m: (1)30. (2)50. (3)100. (4)150. (5)200: T_0. H	K:
(a) 278, (b) 343	45
3.4 pav. Energetinių parametrų P _a (Fo) funkcijų grafikai šalto ir karšto vandens išpurškimo atvejai	is.
$2R_0 \times 10^6$, m: (1)30, (2)50, (3)100, (4)150, (5)200; T ₀ , K: (a, c, e) 278, (b, d, f) 343	46
3.5 pav. Normuoti šilumos srautai lašelių paviršiuje, išreikšti Furje kriterijaus laiko mastelyje. T ₀ ,	
K: (a, c) 278, (b, d) 343.	47
3.6 pav. Garo srauto tankio kitimas ant šalto (a) ir karšto (b) vandens lašeliu paviršiaus, išreikštas	
Furje kriterijaus laiko mastelvie. $2R_0 \times 10^6$, m: (1)30, (2)50, (3)100, (4)150, (5)200; T ₀ , K: (a) 278.	
(b) 343	48
3.7 pav. Vandens lašelių fazinių virsmų normuoti parametrai, išreikšti Furje kriterijaus laiko	
masteliu. T ₀ , K: (1) 278, (2) 343.	49
3.8 pav. Salto ir karšto vandens lašelių normuotos masės $M(Fo)$ funkcija. $2R_0*10^6$, m: (1)30, (2).	50,
(3)100, (4)150, (5)200; T ₀ , K: (a) 278, (b) 343	50
3.9 pav. Energinių srautų indėlio lašelio energiniame balanse dinamika. Re ₀ : (1) 10, (2) 20, (3) 50),
(4) 100; $T_0=278K$; $2R_0=100\mu m$; $T_d=373K$	51
3.10 pav. Lašelio slydimo greičio įtaka vandens lašelio masės ir dispersiškumo kitimui fazinių	
virsmų metu. Re ₀ : (1) 10, (2) 20, (3) 50, (4) 100; $T_0=278K$; $2R_0=100\mu m$; $T_d=373K$	52

3.11 pav. Lašelio slydimo greičio įtaka lašelio fazinių virsmų šilumos srautui ir garo srauto tankiui kondensaciniame ir garavimo fazinių virsmų režimuose. Re₀: (1) 10, (2) 20, (3) 50, (4) 100; $T_0=278K; 2R_0=100\mu m; T_d=373K.$ 53 3.12 pav. Lašelio slydimo greičio itaka išoriniai (a) ir vidinei (b) konvekcijai. Re₀: (1) 10, (2) 20, (3) 3.13 pav. Vandens lašelių slydimo greičio slopimas dujų mišinyje. Re₀: (1) 10, (2) 20, (3) 50, (4) 100; T₀=278K; 2R₀=100µm; T_d=373K......54 3.14 pav. Lašelio slydimo greičio įtaka Nuselto kriterijui. Re₀: (1) 10, (2) 20, (3) 50, (4) 100; 3.15 pav. Lašelio paviršiaus slydimo greičio intensyvumo įtaka lašelio paviršiaus temperatūrai. Re₀: 3.16 pav. Lašelio slydimo greičio įtaka efektyviojo laidumo parametrui. Re₀: (1) 10, (2) 20, (3) 50, 3.17 pav. Lašelio slydimo greičio įtaka Stefano hidrodinaminio srauto pataisos funkcijai. Re₀: (1) 3.18 pav. Dujų mišinio temperatūros įtaka fazinių virsmų šilumos srauto ir išorinės konvekcijos šilumos srauto santykiui. R₀=50µm; T₀=278K; Re₀=50; T_d, K: (1) 373, (2) 473, (3) 573, (4) 673..58 3.19 pav. Dujų mišinio temperatūros įtaka vidinei lašelio konvekcijai. $R_0=50\mu m$; $T_0=278K$; $Re_0=50$; T_d, K: (1) 373, (2) 473, (3) 573, (4) 673......59 3.20 pav. Duju mišinio temperatūros itaka faziniu virsmu (a) ir išorinės konvekcijos (b) šilumos srautams. R₀=50µm; T₀=278K; Re₀=50; T_d, K: (1) 373, (2) 473, (3) 573, (4) 673......60 3.21 pav. Dujų mišinio temperatūros įtaka lašelio terminei būsenai. R₀=50µm; T₀=278K; Re₀=50; T_d, K: (1) 373, (2) 473, (3) 573, (4) 673......60 3.22 pav. Dujų mišinio temperatūros įtaka garo srautui (a) ir jo tankiui (b) lašelio paviršiuje. 3.23 pav. Dujų mišinio temperatūros įtaka lašelio masei. R₀=50µm; T₀=278K; Re₀=50; T_d, K: (1) 3.24 pav. Dujų mišinio temperatūros įtaka išorinei konvekcijai. $R_0=50\mu m$; $T_0=278K$; $Re_0=50$; T_d , 3.25 pav. Lašelio terminės būsenos kitimas pusiausviro garavimo režime. R₀=50µm; T₀=278K; 3.26 pav. Duju mišinio temperatūros itaka efektyviojo laidžio parametrui. $R_0=50\mu m$; $T_0=278K$; 3.27 pav. Dujų mišinio temperatūros įtaka Stefano hidrodinaminio srauto pataisos funkcijai.

LENTELIŲ SARAŠAS

1.1 lentelė. Prancūzų 900MW PWR purkštukų žiedų charakteristika [53]	16
1.2 lentelė. Pagrindiniai radioaktyvieji skilimo produktai [101]	26
3.1 lentelė. Lašelio masės ir spindulio vertės, kondensacinio fazinių virsmų režimo pabaigoje prie	
skirtingo lašelio slydimo greičio intensyvumo	52
3.2 lentelė. Išorinės ir vidinės konvekcijos bei šilumos laidumo parametro pradinio momento verte	ės. 55
3.3 lentelė. Išorinės konvekcijos šilumos srauto vertės pradžios momentu prie skirtingos dujų mišinio temperatūros.	59
3.4 lentelė. Dujų mišinio temperatūros įtaka pradžios momento vidinei lašelio konvekcijai	59
šiluma ir bendras pritekėjęs garo srautas prie skirtingos dujų mišinio temperatūros	61

SANTRUMPOS IR ŽYMĖJIMAI

Santrumpos:

AE - atominė elektrinė;

- APR pažangusis suslėgtojo vandens reaktorius;
- BWR verdančiojo vandens reaktorius;
- CALIST IRNS apsauginio kiauto eksperimentinis įrenginys;

CARAIDAS – IRNS apsauginio kiauto eksperimentinis įrenginys;

- CEA Prancūzijos Atominės energijos komisariatas
- CFD skaičiuojamoji fluidų dinamika;
- CFX skaičiuojamosios fluidų dinamikos kodų paketas;
- CPR kiniečių dizaino suslėgtojo vandens reaktorius;
- CSE Indijos eksperimentinis reaktorius;
- CVTR suslėgto sunkiojo vandens eksperimentinis reaktorius;
- GG garo generatorius;
- IRNS Radiacinės apsaugos ir branduolinės saugos institutas;
- LOCA šilumnešio praradimo avarija;

MISTRA - Prancūzijos CEA eksperimentinis stendas;

NUPEC - branduolinės energetikos centras;

- P lašelio šilumos ir masės mainų parametras;
- P_f lašelių fazinių virsmų parametras;
- P_T lašelio terminės būsenos parametras;
- P_q-lašelio energinės būsenos parametras;
- PWR suslėgtojo vandens reaktorius;

 \overline{P} – pradinės lašelio būsenos parametro atžvilgiu normuotas parametras;

RWST - kuro perkrovimo vandens rezervuaras;

TOSQAN – Prancūzų apsauginio kiauto eksperimentinis įrenginys;

ŠMM – šilumos ir masės mainai;

VVER - vandens-vandens energetinis reaktorius.

Žymėjimai:

- a temperatūros laidumo koeficientas, $[m^2/s]$;
- B_T Spoldingo šilumos pernešimo parametras;
- c_p savitoji šiluma, [$J/(K \cdot kg)$];
- D difuzijos koeficientas, $[m^2/s]$;
- f_{BT} pataisos dėl Stefano hidrodinaminio srauto funkcija

- Fo-Furje kriterijus;
- g garo srautas, [kg/s];
- I_{ω} spektrinis spinduliuotės intensyvumas, $[W/(m \cdot ster)]$;
- $I_{\omega 0}$ absoliučiai juodo kūno spektrinis spinduliuotės intensyvumas, $[W/(m \cdot ster)]$;
- k_c^- efektyvusis šilumos laidžio parametras;
- L garavimo šiluma, [J/kg];
- m garo srauto tankis, $[kg/(m^2 \cdot s)]$;
- *n* nario indeksas begalinėje sumoje;
- Nu-Nuselto kriterijus;
- p slėgis, [Pa];
- q šilumos srauto tankis, [$W/(m^2 \cdot s)$];
- Pr Prandtlio kriterijus;
- R lašelio spindulys, [m];
- Re-Reinoldso kriterijus;
- R_{μ} dujų pastovioji, $[J/(kmol \cdot K)]$;
- r radialinė koordinatė, [m];
- T temperatūra, [K];
- w judėjimo, tekėjimo greitis, [m/s];
- α , β , γ spinduliavimo šilumokaitai sferoje būdingi kampai, [*rad*];
- δ lašelį supančio sluoksnio storis, [m];
- $\eta = r/R$ bematė radialinė koordinatė;
- λ šilumos laidžio koeficientas, [$W/(K \cdot m)$];
- ϑ kinematinės klampos koeficientas, $[m^2/s]$;
- μ molekulinė masė, [kg/kmol];
- ρ tankis, [kg/m^3];
- τ laikas, [s].

Indeksai viršuje:

- + išorinė lašelio paviršiaus pusė;
- – vidinė lašelio paviršiaus pusė.

Indeksai apačioje:

- c konvekcija;
- C lašelio centras;
- d dujos;
- dif-difuzinio srauto dedamoji;
- e pusiausviras garavimas;

- f faziniai virsmai;
- g garas;
- gar garavimas;
- gd garo ir dujų mišinys;
- hidr-hidrodinaminio Stefano srauto dedamoji;
- i laiko indeksas skaitinėje schemoje;
- it-iteracijos indeksas skaitinėje schemoje;
- j radialinės koordinatės indeksas skaitinėje schemoje;
- I-kontrolinio laiko indeksas skaitinėje schemoje;
- J lašelio paviršiaus radialinės koordinatės indeksas skaitinėje schemoje;
- kiet kietos būsenos;
- *KN* Knudseno sluoksnio riboje;
- kon-kondensacija;
- *l* skystis;
- m masės vidutinis;
- max maksimali vertė;
- min minimali vertė;
- R lašelio paviršiaus;
- r spinduliavimas;
- rt-rasos taško būsena;
- sot soties būsena;
- ω spektrinis;
- Σ suminis;
- 0 pradinė būsena;
- ∞ toli nuo lašelio.

ĮVADAS

Nėra paslaptis, jog vanduo yra labiausiai paplitęs cheminis junginys visatoje. Tai nėra keista, žinant jog vanduo (H₂O) susideda iš dviejų cheminių elementų – vandenilio (H) ir deguonies (O), kurie pagal paplitimą visatoje, atitinkamai yra pirmoje ir trečioje vietoje. Šis cheminis junginys dengia apie 70,9% [1] mūsų planetos paviršiaus. Apie 98% [2] Žemėje esančio vandens yra skystoje agregatinėje būsenoje, likusi dalis yra kitose dvejose agregatinėse būsenose – kietoje ir dujinėje. Dėl savo fizikinių savybių, vanduo gali keisti agregatinę būseną natūraliomis sąlygomis, todėl atlieka labai svarbią rolę Žemės hidrologiniame cikle [3].

Vanduo, taip pat labai glaudžiai yra susietas su energetika. Jei nori išgauti daugiau vandens, reikia daugiau energijos. Jei nori pagaminti daugiau energijos, tikėtina, kad reikės didesnio kiekio vandens jos gamybos procese. Vanduo yra plačiai naudojamas visose energijos gamybos fazėse. Pasauliniu mastu, energetikos sektorius yra atsakingas už 10% vandens panaudojimo, tiek stočių eksploatacijos, tiek iškastinio bei biokuro gamybos procesuose. Jau keletą dešimtmečių vandens suvartojimas auga ir yra manoma, kad artimoje ateityje toliau ženkliai augs. Ypatingas augimas numatomas vandens *sunaudojime*, kai panaudotas vanduo, nėra gražinamas į pirminį jo šaltinį. Kylanti biokuro paklausa, ženkliai kelia vandens panaudojimo kiekį, o tuo tarpu intensyvesnis atominių stočių diegimas, vienu metu kelia vandens panaudojimo ir *sunaudojimo* kiekius [4].

Atominėse stotyse masyvus šilumnešio kiekis yra reikalingas milžiniškos terminės energijos pašalinimui iš aktyviosios zonos, kuri išsiskiria sunkiųjų branduolių skilimo metu. Šiuo metu, pasauliniu mastu, dominuojantis šilumnešis yra gamtinis vanduo. Šis fluidas cirkuliuojamas atominės stoties pirminiame kontūre, kurio paskirtis aušinti reaktorių. Šiuolaikinių reaktorių pirmajame kontūre, vandens slėgis siekia 6-20 MPa [5,6], temperatūra 276-320 °C [6], priklausomai nuo reaktoriaus tipo (PWR - suslėgto vandens reaktorius ar BWR - verdančio vandens reaktorius). Tiek verdančio vandens reaktorius, tiek suslėgto vandens reaktorius yra patalpinti po apsauginiu kiautu, kuris yra paskutinis saugos barjeras atominėse stotyse [7]. Jo paskirtis yra sulaikyti radioaktyviasias medžiagas bei ekranuoti radiaciją tiek eksploatacijos metu, tiek avarijos atveju; ir apsaugoti nuo natūralių ar žmonių sukeltų išorinių įvykių [8]. Tačiau šilumnešio praradimo avarijų (LOCA) atveju, į apsauginio kiauto atmosferą yra išmetamas didelis kiekis šilumnešio (garo formoje), ko pasėkoje, apsauginio kiauto atmosferos slėgis išauga per kelias sekundes. Slėgiui išaugus iki projektinio ir išliekant tokioms sąlygoms ilgesnį laiko tarpą jo nemažinant, gali būti prarastas apsauginio kiauto sandarumas. Taigi, norint užtikrinti apsauginio kiauto funkcionaluma, būtina kontroliuoti jo vidinės atmosferos parametrus. Tai yra pasiekiama naudojant skirtingas sistemas [8], kurios priklauso nuo atominės stoties tipo ir dizaino. Bet plačiausiai yra naudojama vandens įpurškimo sistema.

Apsauginio kiauto purkštukų sistemos panaudojimas, siekiant išvengti kritinio slėgio ir sumažinti slėgį iki pradinio, ataušinti apsauginio kiauto atmosferą bei sumažinti potencialių radioaktyviųjų

medžiagų nuotėkio kiekį į aplinką, yra įprasta strategija, naudojama PWR ir BWR reaktoriuose. Purkštukai taip pat padeda pagerinti dujų maišymosi procesą, kas yra itin svarbu, kai apsauginio kiauto atmosferoje pradeda kauptis vandenilis. Jei visos projektinės saugos sistemos veikia tinkamai, slėgis pradeda kristi per kelias minutes ir atmosferinis slėgis pasiekiamas per maždaug 30 minučių nuo avarijos pradžios [9].

Norint užtikrinti purkštukų sistemos funkcionalumą, svarbu pažinti vykstančius šilumos ir masės pernašos procesus tarp išpurkšto skysčio ir apsauginio kiauto atmosferos duju mišinio, bei sugebėti juos tinkamai valdyti. Išpurškiant skystį susidaro lašelių srautai. Bendruoju atveju jį sudaro skirtingo skersmens lašeliai. Tuomet turime poli dispersinį lašelių srautą. Tai pats sudėtingiausias lašelių srauto atvejis. Kad jame apibrėžti šilumos ir masės pernašos procesus, reikia apskaičiuoti kiekvieno skersmens lašelių šilima ir garavima. Jeigu skystis disperguojamas i artimo skersmens lašelius, tuomet galima priimti, jog lašelių srautą sudaro tam tikro vidutinio skersmens lašeliai. Toks srautas vadintysi mono dispersiniu lašelių srautu. Šilumos ir masės mainus jame apibrėžti galima pagal vieno lašelio modeliavimo rezultatus. Todėl visų pirmiausiai reikia mokėti tiksliai suprasti ir įvertinti vieno lašelio šilumos ir masės pernašos procesus. Realaus mono dispersinio lašelių srauto atveju dėl lašelių šilumos ir masės mainų kinta lašelius nešančio dujų srauto parametrai. Svarbiausi yra dujų srauto temperatūros ir drėgnumo parametrai. Paprasčiausias lašelių šilumokaitos atvejis bus tuomet, kai ju šilimas ir faziniai virsmai dujų srauto parametrus nekeis. Tai įmanoma į dujų srautą įpurškus nežymų vandens kiekį. Lašelių šilumos ir masės mainų tyrimas mokslinėje literatūroje žinomas kaip "lašo" uždavinys. Jo sprendinys bendru atveju apima "lašo išorinio" bei "lašo vidinio" uždavinių sprendinius: pirmasis duoda atsakyma apie šilumos ir masės pernaša tarp lašelio ir jo apsupties, o antrasis nusako šių procesų intensyvumą lašelyje [10].

Lašelių šilumos ir masės mainų apskaičiavimas yra pakankamai sudėtingas ir visumoje imlaus darbo reikalaujantis uždavinys. Praktikoje būtų patrauklu lašelių šilumos ir masės mainų uždavinio rezultatus skirtingose kraštinėse sąlygose įvertinti juos tarpusavyje palyginant. Būtų patogu nuosekliai eiti nuo paprasčiausio iki sudėtingiausio lašelių šilumokaitos atvejo.

1 LITERATŪROS TYRIMAS

Jau daugelį metų mokslininkai tyrinėja skysčio išpurškimo technologiją, dėl jos plataus pritaikymo galimybių. Skysčio išpurškimas pritaikomas energetikos, aplinkosaugos, medicinos, biotechnologijų, vidaus degimo, chemijos ir kitose srityse [11–33]. Keletas šios technologijos pritaikymo konkrečių pavyzdžių: ji naudojama reguliuoti aukštos temperatūros dujų srauto terminę būseną, kontroliuoti paviršių erozijos procesus, ataušinti orą tarp turbokompresoriaus pakopų, slopinti gaisro frontą, formuoti klasterius ir sluoksnius ant paviršių, utilizuoti fazinių virsmų sukauptai šilumai, sudaryti apsaugančias dvifazio srauto priedangas ir t.t.

1.1 Vandens įpurškimo sistemos atominių stočių apsauginiame kiaute

Vandens įpurškimo sistema (1.1 pav.), atominių elektrinių apsauginiame kiaute, yra avarinės paskirties sistema, skirta užtikrinti apsauginio kiauto sandarumą avarijos atveju. Ši sistema naudojama išvengti kritinio slėgio; ataušinti apsauginio kiauto atmosferą bei iš jos pašalinti skilimo produktus; ir pagerinti dujų maišymosi procesą, kai apsauginio kiauto atmosferoje yra vandenilio. Įpurškimo sistemos efektyvumas priklauso nuo išpurkšto vandens lašelio dydžio ir pasiskirstymo apsauginiame kiaute; šilumos ir masės mainų su atmosfera proceso; ir lašelių susidūrimų.

1.1 pav. Suslėgto vandens reaktoriaus (PWR) apsauginio kiauto vandens įpurškimo sistema [34]. GG – garo generatorius.

Per kelis paskutinius dešimtmečius buvo atlikta nemažas skaičius eksperimentinių ir teorinių įpurškimo sistemų tyrimų. Dėka spartaus kompiuterinės galios augimo pastarajame dešimtmetyje buvo atliekama vis daugiau CFD [35] (skaičiuojamoji fluidų dinamika) simuliacijų, skirtų realių apsauginio kiauto parametrų tyrimams avarijos atveju. Tačiau norint patvirtinti simuliacijų realumą, kodai turi būti patikrinti. Dėl to buvo taip pat atlikta eilė eksperimentų, jog būtų patikrintas purkštukų modelių tikslumas. Praeityje purkštukų eksperimentams atlikti buvo naudojami didelio mastelio eksperimentiniai įrenginiai, tokie kaip CVTR, NUPEC ar CSE, naudojant keletą purkštukų [36–38]. Tačiau per paskutinį dešimtmetį buvo išvystyti nauji kompaktiškesni eksperimentiniai stendai (CARAIDAS, CALIST, TOSQAN ir MISTRA), skirti apsauginio kiauto purkštukų sistemos tyrimams. Naudojant TOSQAN ir MISTRA eksperimentinius stendus buvo atlikti eksperimentiniai ir lygiagrečiai atlikti šių eksperimentų skaitiniai modeliavimai. Šių eksperimentų metu buvo tiriama apsauginio kiauto purkštukų sistemos įtaką jo atmosferai [39,40]. Slėgio kitimo apsauginio kiaute analizei buvo atlikti du TOSQAN 101 ir MISTRA MASPn testai [41]. Taip pat buvo atlikti TOSQAN ir MISTRA MASPn testai [41]. Taip pat buvo atlikti nesikondensuojančių dujų stratifikavimuisi [42,43].

Taip pat buvo atlikti du Europiniai projektai SARNET (*Severe Accident Research network*), kur Radiacinės apsaugos ir branduolinės saugos institutas (IRSN) [44] buvo lyderis apsauginio kiauto vandens įpurškimo sistemų veikloje. Be to, šis institutas taip pat bendradarbiavo su skirtingomis institucijomis (EDF [45], UJV [46], KIT [47]), atliekant kitus purkštukų tyrimus.

Tikslūs skaitiniai skaičiavimai, kurie įvertina šilumos ir masės mainus tarp lašelių ir dujų mišinio yra labai svarbūs. Vandens lašeliai gali būti įvertinti Langražo ar Eulerio metodu. Norint atlikti pilną purkštukų simuliaciją, gali tekti panaudoti visus įmanomus priartėjimo būdus. Mokslininkas Babikas, norėdamas sudaryti TOSQAN eksperimentinio stendo kompiuterinę simuliaciją, panaudojo lašelio-sekimo modelį, paremtą CFX kodu. Šis modelis "sekė" lašelius ir interpretavo juos kaip energijos, masės ir momento šaltinius arba "sugerėjus", vienfazėje dujų aplinkoje [16]. Apsauginio kiauto purkštukų išpurškiamo vandens įtakos garui ir vandeniliui analizė suslėgto vandens reaktoriuose APR1400 ir CPR1000, buvo atlikta su GASFLOW kodu [48–50]. Jame yra naudojamas homogeninis dvifazinio srauto modelį su NEPTUNE_CFD kodu, kad būtų galima apskaičiuoti testo rezultatus, atliktus su TOSQAN eksperimentine įranga [51]. Šis kodas yra paremtas klasikiniu dviejų fluidų vieno slėgio priartėjimo būdu. Maletas panaudodamas Eulerio-Langražo modelį, atliko helio koncentracijos vystymosi simuliaciją, kuomet įpurškimo sistema yra aktyvuota [52]. Joje buvo analizuojama purkštuko parametrų įtaka dujų maišymuisi.

1.1.1 Vandens įpurškimo sistemos aprašymas

1.1.1.1 Vandens įpurškimo sistema atominėje stotyje su PWR reaktoriumi

1.2 pav. Prancūzų PWR reaktoriaus purkštukų žiedai ir jų padengiamų zonų vaizdai iš šono ir viršaus [53].

Atominės stotys su suslėgto vandens reaktoriumi, sudaro du trečdalius visų Pasaulio reaktorių. Šiose stotyse vandens įpurškimo sistema naudojama apsauginio kiauto slėgio kontrolei. Prancūzų PWR reaktoriaus apsauginio kiauto tūris yra apie 60000m³-70000m³. Jame purkštukai yra patalpinti keturiose apskritose eilėse (1.2 pav.). Dviejuose 12m skersmens žieduose yra po 70 purkštukų, kurie išpurškia vandenį 54 metrų aukštyje apsauginio kiauto centre. Kiti du žiedai yra 25m skersmens, kuriuose yra po 186 purkštukus. Šie žiedai yra maždaug 51m aukštyje ir išpurškia vandenį link žiedų centro, žemyn ir link sienų. Priimta, jog yra pasiekiamas geras horizontalus apsauginio kiauto perdengimas išpurkštu vandeniu. Detali keturių žiedų informacija pateikta (1.1 lentelė).

	Aukštis, (m)	Diametras, (m)	Purkštukų	Atstumas tarp
			skaičius, (vnt.)	purkštukų, (m)
Pirmas žiedas	54.8	10.0	66	0.5
Antras žiedas	54.2	14.8	68	0.7
Trečias žiedas	52.3	22.5	186	0.4
Ketvirtas žiedas	51.0	27.0	186	0.4

1.1 lentelė. Prancūzų 900MW PWR purkštukų žiedų charakteristika [53].

Daugelyje suslėgto vandens reaktorių ir konkrečiai Prancūzų 900MWe PWR yra naudojamas taip vadinamas SPRACO 1713A purkštuko tipas (1.3 pav.).

1.3 pav. Purkštukas SPRACO 1713A (Lechler 373.084.17.BN) [53].

Šis purkštukas naudojamas su 350kPa slėgiu ir jo tūrinis tekėjimo greitis 1L/s. Išorinės angos skersmuo 9,5mm. Išpurškiamo vandens temperatūra yra 20°C arba nuo 60°C iki 100°C, priklausomai nuo avarijos fazės. Apsauginio kiauto vandens išpurškimo sistema yra aktyvuojama, kai slėgis pasiekia 2,5bar, ir naudoja kambario temperatūros vandenį. Tačiau po 30 minučių nuo aktyvavimo pradžios, sistema perjungiama į taip vadinamą recirkuliacijos rėžimą, kuomet vandens įpurškimo sistema, naudoja vandenį iš vandens surinkimo šulinio. Vanduo yra pracirkuliuojamas pro šilumokaitį, kur vandens temperatūra yra sumažinama iki 60°C.

Remiantis matavimo rezultatais [53], kurie buvo atlikti su CALIST eksperimentine įranga vyraujantis vidutinis lašelių skersmuo yra apie 240-330µm, o vidutinis Sauterio skersmuo 360-560µm (1.4 pav.).

1.4 pav. Eksperimentinis lašelio dydžio pasiskirstymas [53].

1.1.1.2 Vandens įpurškimo sistema atominėje stotyse su VVER reaktoriumi

Rusų suslėgto vandens reaktoriaus modelis VVER (vandens-vandens energetinis reaktorius) yra eksploatuojamas Europos šalyse kaip Čekija, Bulgarija, Suomija, Vengrija ir Slovėnija. Toliau pateikta informacija yra Čekijos atominių stočių su VVER-440/213 ir VVER-1000/320 reaktorių tipais. Apsauginio kiauto tūris yra apie 50000-60000 m³.

VVER-440/213 reaktoriaus apsauginis kiautas susideda iš sujungtų sekcijų/skyrių. Vandens purkštukai (1.5 pav.) yra pakabinti ant garo generatorių skyriaus lubų, +14,3, +15,05 ir 15,6 metrų aukštyje (trys nepriklausomos eilės su apie 65 purkštukais kiekvienoje ir 1,6 kg/s masės srautu per purkštuką). Garo generatorių skyrius (+6 m) yra pilnas įvairiausios įrangos, tai dauguma išpurkštų lašelių susidurtų su kuo nors prieš pasiekdami grindinį.

1.5 pav. Suslėgto vandens reaktoriaus VVER vandens išpurškimo sistemos dispergatorius.

Yra priimta, jog pagrindinis kritimo trajektorijos atstumas yra 5m (vertikalusis atstumas tarp purkštukų ir grindinio yra 9m). Purkštukai turi įvairius palinkimo kampus, kad būtų pasiektas didesnis išpurškimo tūris. Vandens įpurškimo sistema pradžioje pumpuoja vandenį iš rezervuarų, o kai jie tušti, iš apsauginio kiauto vandens surinkimo šulinio (vanduo yra prapumpuojamas pro šilumokaitį, jog būtų pašalinta likutinė šiluma).

VVER-1000/320 reaktoriaus apsauginis kiautas yra panašus į "vakarietiškų" atominių stočių. Cilindrinis pastatas su elipsiniu stogu. Vandens purkštukai yra patalpinti kupole +55 ir +65 metrų aukščiuose (trys nepriklausomos eilės turinčios po 20 purkštukų, kurių kiekvieno masės srautas yra apie 8,3 kg/s). Kupolo grindinys yra +36,90 metrų aukštyje. Kaip ir VVER-440 purkštukai pakabinti įvairiais pakrypimo kampais. Vandens išpurškimo sistema naudoja vandenį tiesiogiai iš apsauginio kiauto vandens surinkimo šulinio, kuris visuomet yra užpildytas vandeniu. Vanduo yra prapumpuojamas pro šilumokaitį, kad būtų pašalinta likutinė šiluma [53].

Buvo atliktas purkštukų tyrimas, norint charakterizuoti išpurkštus lašelius. Tyrime buvo atliekami matavimai 30cm atstumu nuo purkštuko. Kai tiekiamo vandens slėgis buvo 1,2bar (nominalus slėgis VVER purkštukams), buvo gauti dideli lašeliai (apie 700µm skersmens). Buvo gauta keletas lašelių dydžių ir greičių profilių prie skirtingų tiekiamo vandens slėgių. Vyraujantis vertikalus lašelių greitis apie 10-14m/s. Taip pat buvo nustatyta, jog lašelio dydis kintant aukščiui taip pat pakito (padidėjo 50-100µm). Detali informacija pateikta [54].

Purkštukai Skilimo produktų išplovimas Slėgio mažinimas Vandenilio maišymas

1.2 Reiškiniai užimantys vietą apsauginiame kiaute po vandens išpurškimo

1.6 pav. Principinė purkštukų atliekamų funkcijų apsauginiame kiaute schema [38].

Aktyvavus purkštukus, daug reiškinių užima vietą (1.6 pav.). Bendrai tariant, apsauginiame kiaute vykstantys procesai skirstomi į dvi dalis: termodinaminę ir dinaminę. Termodinaminės dalies vienas iš pagrindinių procesų pasireiškia per dujų būsenos kitimą, kuomet apsauginio kiauto slėgis krinta, dėl garo kondensacijos ant lašelių paviršiaus. Šiai daliai taip pat priskiriamas lašelio garavimo procesas, dėka kurio krinta apsauginio kiauto dujų mišinio temperatūra ir keičiamas atmosferos drėgnumas. Tuo tarpu dinaminei daliai yra priskiriama dujų maišymosi ir skilimo produktų nusodinimo procesai. Abu, termodinaminis ir dinaminis, procesai yra susieti ir vyksta vienu metu [38].

Procesai vykstantys apsauginiame kiaute, priklauso nuo dujų mišinio ir purkštukų parametrų. Išpurkšto lašelio trajektoriją, galima padalinti į trejas pagrindines zonas: išpurškimo; intensyvių šilumos ir masės mainų zona; ir santykinės pusiausvyros zona (1.7 pav.). Šiose zonose vykstantys procesai yra aptariami toliau.

1.7 pav. Pagrindinės lašelio kelio zonos [38].

1.2.1 Atomizacijos zona – lašelių susidūrimai

Šilumos ir masės mainų procesas tiesiogiai priklauso nuo lašelio dydžio, kurį apsprendžia ne tik purkštuko parametrai, bet ir lašelių susidūrimo procesas. Norint tinkamai charakterizuoti purkštukus ir įvertinti jų pritaikymo funkcionalumą, reikia įvertini kaip greta esančių purkštukų išpurkšto skysčio lašeliai įtakoja vienas kitą. Purkštukai turi būti parinkti tokie, kad būtų pasiektas tolygus vandens lašelių pasiskirstymas apsauginiame kiaute, ir lašelių dydis būtų tokio dydžio, jog terminė pusiausvyra būtų pasiekta greitai po lašelių išpurškimo [8].

Jau daugelį metų mokslininkai tyrinėja dviejų lašelių susidūrimo dinamiką. Pirmiausiai, lašelių susidūrimus pradėta tirti, dėl noro suprasti fizinius procesus lyjant lietui [55–60]. Lietaus lašai gali susidurti vienas su kitu ir pasidalinti į mažesnius lašelius arba susilieti į didesnius. Vėlesni tyrimai, buvo dedikuoti tirti įvairių įpurškimo sistemų lašelių susidūrimus [61–73]. Eksperimentuose buvo tiriami fluidų, tokių kaip angliavandenilio [61–64,73], mazuto [65], gyvsidabrio [66], ir vandens, lašelių susidūrimų procesai. Dauguma kiekybinės informacijos apie lašelių susidūrimus, buvo gauta eksperimentų metu [66–72], kai tuo tarpu skaitiniai tyrimai buvo naudojami įgyti, šio komplikuoto proceso detalų supratimą.

Lašelių susidūrimų įvertinimas apsauginiame kiaute, yra labai svarbus, nes dėl didelio purkštukų skaičiaus ir jų išdėstymo bei padėties, lašelių susidūrimai yra gan intensyvūs. Tačiau daugelių atvejų, lašelių susidūrimai apsauginiame kiaute yra neįvertinami, dėl supaprastintos susidūrimų fizikos bei tikslaus pramoninio analizės modelių trūkumo. Šiuo metu, nėra atviros prieigos prie literatūros apie

nuodugnų lašelių susidūrimų procesų paaiškinimą. Todėl, supaprastinto modelio sukūrimas, kuris būtų visuomet tikslus su duotais parametrais, yra beveik neįmanomas.

Dviejų lašelių susidūrimo atveju, galima išskirti penkis baigties rėžimus, kurių metu lašeliai gali [53,65,67,74–76]:

- atšokti lašeliai nepakinta;
- dalinai susilieti susidaro du lašeliai, kurių dydžiai skiriasi nuo pradinių(1.9 pav.);
- pilnai susilieti susidaro vienas lašelis (1.8 pav.);
- pasidalinti susidaro trys ar daugiau lašelių (1.10 pav.);
- išsitaškyti susidaro daug lašelių.

1.8 pav. Dviejų lašelių susiliejimo proceso principinė schema [77].

1.9 pav. Dviejų lašelių susidarymo schema, dalinai susiliejant dvejiems lašeliams [77].

1.10 pav. Lašelių pasidalinimo į daugiau nei du lašelius schema [77].

Išsamią apžvalgą apie lašelių susidūrimų procesą galima rasti Breno knygoje [78].

Lašelių dispergavimas yra pradinis procesas, kurio metu susidaro tam tikrų matmenų fizinis lašelis. Tačiau, norint užtikrinti purkštukų sistemos funkcionalumą, itin svarbu pažinti šilumos ir masės pernašos procesus, vykstančius tarp lašelio ir dujų mišinio, ir sugebėti juos tinkamai valdyti.

1.2.2 Išpurkšto skysčio termodinaminis poveikis apsauginiame kiaute

Vandens įpurškimo sistema atlieka energijos kontroliavimo funkciją. Jos paskirtis yra pašalinti terminę energiją iš apsauginio kiauto atmosferos, jog būtų limituojamos apsauginio kiauto maksimalios slėgio ir temperatūros reikšmės bei jų egzistavimo trukmė, avarijos atveju.

Apsauginiame kiaute išpurkšto skysčio termodinaminis poveikis gali pasireikšti per kondensacijos arba garavimo rėžimus. Paprastai šilumos ir masės mainai ant lašelio paviršiaus, branduolinio reaktoriaus avarijos metu, vyksta kondensaciniu rėžimu. Tai reiškia, kad visa šilumokaita ir kondensacijos šiluma, yra sunaudojamos lašelio šildymui. Po lašelio dispergavimo, jo temperatūra pakyla labai greitai, palyginus su visa atkarpa, kuria lašelis turi leistis. Jei soties sąlygos nesikeičia kintant aukščiui, lašelis pasiekia terminę pusiausvyrą su garo-dujų mišiniu [38].

Vieno iš atliktų tyrimų metu buvo nustatyta, jog lašelio dydis kinta tolygiai su jo temperatūra, ir esant intensyviai kondensacijai, lašelis gali padidėti 20-50µm [79,80]. Dėka garo kondensacijos ant išpurkšto lašelio paviršiaus, apsauginio kiauto garo-dujų mišinio tankis netoli purkštukų yra retesnis [81]. Taip pat buvo tiriama konvekcinio aušinimo ir garo kondensacijos įtaka slėgio kritimo greičiui po šaltų lašelių išpurškimo į apsauginio kiauto atmosferą [82]. Išsamią informaciją apie konvekcinį perdavimą lašelio paviršiuje galima rasti [83].

1.2.3 Išpurkšto skysčio dinaminis poveikis apsauginiame kiaute

1.2.3.1 Dujų maišymosi suintensyvėjimas

Normaliomis eksploatacijos sąlygomis branduolinio reaktoriaus aktyviojoje zonoje radiolizės metu (1.11 pav.) susidaro šalutiniai produktai tokie kaip – vandenilis ir deguonis. Šilumnešio praradimo atveju (LOCA) šie ir kiti šalutiniai produktai yra išmetami į apsauginio kiauto atmosferą ir joje gali susiformuoti vandenilio ir oro dujų mišinys. Bendrai šis mišinys gali susidaryti kaip pasekmė šių reiškinių [8]:

- Vandens radiolizės aktyviojoje zonoje;
- Vandens radiolizės vandens surinkimo šulinyje ar slopinimo baseine;
- Metalo vandens reakcijos aktyviojoje zonoje;
- Cheminių reakcijų su apsauginio kiauto medžiagomis;
- Vandenilio dujų, ištirpusių pirminiame aušale, pasišalinimas;
- Vandenilio nutekėjimas iš vandenilio rezervuarų, skirtų kontroliuoti pirminio aušalo cheminę sudėtį.

1.11 pav. Vandens radiolizės reakcijos [84].

Vandenilis nėra toksiškas žmonėms (tačiau kaip ir kitos dujos, gali pakeisti deguonį iki tokio lygio, jog būtų galima uždusti) ir neturi korozinio poveikio. Pagrindinis pavojus, kurį sukelia dideli kiekiai vandenilio atominėje stotyje, jo degimo galimybė. Vandenilio degimas gali sukelti staigius slėgio ir temperatūros šuolius. Dėl šių sprogimo apkrovų, gali būti prarastas apsauginio kiauto sandarumas ar gali būti pažeista įranga, tarp kurių gali būti ir įranga, skirta sumažinti avarijos pasekmes.

Apsauginio kiauto purkštukų sistema išpurškia vandenį į aplinką lašelių pavidale. Lašelio dydį apsprendžia purkštukų charakteristikos. Jei skystis yra paskirstomas mažesniais lašeliais, tai paviršius ant kurio gali vykti kondensacija yra didesnis, dėl ko kondensacijos procesas vyksta intensyviau. Tačiau lašelio dydis taip pat įtakoja jo judėjimo greitį. Lėtesni lašeliai paintensyvins kondensaciją, nes jie ilgiau bus apsauginio kiauto atmosferoje. Greitesni lašeliai, paintensyvins atmosferos maišymosi procesą per intensyvų judesio momento perdavimą tarp lašelių ir jo aplinkos.

Garo kondensacijos ir dujų maišymosi procesai, turi priešingą poveikį vandenilio degimo procesui. Intensyvus dujų maišymosi procesas (dėl didesnio lašelių greičio) užtikrina, jog vandenilio koncentracija apsauginio kiauto atmosferoje yra daug tolygesnė. Tuo tarpu garo kondensacijos metu, mažėja garo koncentracija apsauginio kiauto atmosferoje, o vandenilio didėja [85].

Norint geriau suprasti apsauginiame kiaute vykstančius vandenilio maišymosi ir kaupimosi procesus, buvo atliktas ne vienas eksperimentinis tyrimas. Kaip buvo minėta, labai svarbią reikšmę turi lašelio buvimo laikas apsauginio kiauto atmosferoje, kurį apsprendžia lašelio judėjimo greitis, kuris savo ruožtu priklauso nuo lašelio dydžio ir kitų procesų vykstančių apsauginio kiauto atmosferoje. Vienų iš tyrimų metu, buvo nustatyta, jog lašelių judėjimo greitis yra didesnis nei pusiausvyras greitis, priklausantis tik nuo lašelio masės. Tai yra dėl to, jog apsauginis kiautas yra uždaras ir dėl jame vykstančių pernašos procesų yra sukuriamas recirkuliacijos procesas, kurio metu, dėl dujų konvekcijos, lašelis įgauna papildomo judėjimo greičio [40,82]. Taip pat viename iš šių tyrimų metu, buvo nustatyta, jog termodinamė pusiausvyra yra pasiekiama greičiau, nei lašelio pusiausvyras judėjimas. Ir tiksliame dujų maišymosi proceso įvertinime, lašelio ir dujų kraštinės sąlygos yra labai svarbūs parametrai [40,74].

Geriausiai žinomi daugiafunkciniai [16,86–93] ir specializuoti (GASFLOW [94], GOTHIC [95– 97] HYKA3D [98], NEPTUNE-CFD [51], TONUS-3D [99]) CFD kodai, kurie buvo panaudoti apsauginio kiauto atmosferoje besikaupiančių dujų sluoksniavimuisi ir maišymuisi tirti.

1.2.3.2 Skilimo produktų šalinimas iš apsauginio kiauto

Viena iš purkštukų atliekamų funkcijų yra kontroliuoti radionuklidų koncentraciją apsauginio kiauto atmosferoje. Ši funkcija atliekama nusodinant dujų mišinyje esančias radioaktyviąsias daleles ir išlaikant jas apsauginio kiauto vandens surenkamajame šulinyje ar slopinimo baseine (BWR – verdančio vandens reaktorius). Tai leidžia sumažinti radioaktyvių medžiagų nutekėjimo sukeliamas pasekmes.

Radioaktyvieji cheminiai ir fiziniai elementai yra išmetami į apsauginio kiauto atmosferą, avarijos metu. Pirmajame avarijos etape, trūkus pirmojo kontūro vamzdynui, maži kiekiai radioaktyviųjų elementų yra išmetami į apsauginį kiautą, kurie susidaro normalios eksploatacijos metu. Antrojo etapo pradžia laikoma, kai kuro strypai praranda sandarumą. Tuomet į apsauginio

kiauto atmosferą išmetami lakūs radionuklidai: inertinės dujos (ksenonas ir kriptonas), jodas ir cezis, ir kiti radionuklidai (1.2 lentelė), kurie susidaro ir kaupiasi kuro elemento tarpelyje, eksploatacijos metu [100,101]. Šie radionuklidai yra ypatingos svarbos ir juos būtina izoliuoti apsauginiame kiaute. **1.2 lentelė. Pagrindiniai radioaktyvieji skilimo produktai** [101].

Trumpaamžiai		Vidutinio gyvavimo		Ilgaamžiai	
Skilimo produktai	Pusamžis	Skilimo produktai	Pusamžis	Skilimo produktai	Pusamžis
Kr88	2,8h	Zr95/Nb95	64d / 35d	Kr85	10.7m
Sr91/Y91m	9,5h / 0,8h	Mo99	2,8d	Sr90	28,6m
Sr92/Y92	2,7h/3,7h	Ru103	39d	Ru106	1m
Y93	10,5 h	Sb103	3,8d	Ag110m	0,7m
Zr97/Nb97	17 h/1,2 h	I131	8d	Sb125	2,8m
Ru105/Rh105	4,4 h/35,5 h	Te131m	1,2d	Cs134	2,1m
I133	20,8h	Te132/I132	3,2d/2,3h	Cs137	30,1m
I134	0,9h	Xe133	5,2d	Ce144	284d
I135	6,6h	Xe133m	2,2d	Eu144	8,6m
Xe135	9,1h	Ba140/La140	12,8d/1,7d		
Ce143	1,4h	Ce141	32d		
		Ce143	1,4d		
		Nd147	11,1d		
		Np239	2,43d		

Išpurškus vandenį į apsauginį kiautą vyksta keli procesai, kurių dėka vandens lašeliai pašalina radionuklidus iš apsauginio kiauto atmosferos:

- kai radioaktyvios dalelės negali išvengti krintančio lašelio;
- srautui aptekant apie lašelį radioaktyvios dalelės yra perimamos;
- lašelių paviršiuje vyksta difuzijos procesas;
- garo kondensacijos metu.

Bendrai, purkštukų panaudojimas pašalinti radioaktyviąsias daleles yra labai efektyvus. Tipinis asenizacijos faktorius yra apie 10h⁻¹, kai tuo tarpu natūralus asenizacijos faktorius be purkštukų yra 0,5h⁻¹. Purkštukų efektyvumas priklauso nuo radioaktyviųjų dalelių dydžio pasiskirstymo: smulkios ir didelės dalelės yra pašalinamos daug efektyviau nei vidutinio dydžio.

Dažniausiai į purkštukuose naudojamą vandenį yra įmaišomi tam tikri cheminiai priedai, kad būtų pagerinamas radioaktyvių dalelių šalinimas iš apsauginio kiauto atmosferos ir sumažinamas radionuklidų garumas. Cheminės priemaišos turi būti parenkamos tokios, kurios nesukeltų korozijos, tiek trumpalaikiu, tiek ilgalaikiu periodu, kadangi korozijos metu, gali ne tik susilpnėti vieni svarbiausių komponentų, palaikančių tvarią saugos sistemų veiklą, bet gali ir susidaryti degios dujos ar nepageidaujami junginiai. Plačiausiai yra naudojami cheminiai priedai tokie kaip: natrio(NaOH) hidroksidas, kalio(KOH) hidroksidas, natrio tiosulfatas (Na₂S₂O₃), trinatrio fosfatas (Na₃PO₄), kurių dėka yra kontroliuojamas pH lygis. Vandens surinkimo šulinio vandens pH turi būti išlaikomas šarminiame lygyje (pH – 9 ar daugiau nei 7), jog būtų išlaikomi vandenyje ištirpę radionuklidai ir būtų užtikrintas efektyvus radionuklidų pašalinimas iš apsauginio kiauto atmosferos [9].

Radioaktyvusis jodas yra ypatingos svarbos, nes jis yra pagrindinis veiksnys, sukeliantis potencialią riziką visuomeninei sveikatai (ypatingai skydliaukės klausimu) [8]. Jo nutekėjimo kiekis į aplinką stipriai priklauso nuo jo garumo, dėl to jo parametrai ir elgsena apsauginiame kiaute yra intensyviai tyrinėjami. Avarijos atveju, kai išsilydo aktyvioji zona, į apsauginio kiauto atmosferą yra išmetami dideli kiekiai aerozolių formoje esančio jodo, susidedančio iš metalo kilmės jodų ir dujinio jodo [102–104]. Dujinis jodas kondensuojasi ant apsauginio kiauto paviršiaus ir jodo sąveikoje su apsauginio kiauto dažais susidaro organinis jodas [105–107]. Dujinis jodas taip pat gali sąveikauti su oro radiolizės produktais ir suformuoti jodo oksidą ar kitas aerozolių kilmės jodo rūšis [108,109]. Minėtus procesus galima sulėtinti pašalinant dujinį jodą iš apsauginio kiauto atmosferos. Tai gali būti pasiekta panaudojant apsauginio kiauto vandens išpurškimo sistemą. Ji gali pašalinti reikšmingą dalį neorganinio dujinio jodo I₂. Efektyvumas priklauso nuo vandens pH. Ši sistema laikoma neefektyvi organinio jodo šalinime. [101,110].

2 LAŠELIŲ ŠMM PERNAŠOS PROCESŲ MODELIAVIMAS

Lašelių šilumos ir masės mainų tyrimas mokslinėje literatūroje žinomas kaip "lašo" uždavinys. Jo sprendinys bendru atveju apima "lašo išorinio" bei "lašo vidinio" uždavinių sprendinius: pirmasis duoda atsakymą apie šilumos ir masės pernašą tarp lašelio ir jo apsupties, o antrasis nusako šių procesų intensyvumą lašelyje. Svarbiausiu ŠMM parametru, įtakojančiu dujų būsenos pridrėkinimą arba išsausinimą, laikytinas garo srautas lašelio paviršiuje. Jo intensyvumą apibrėžia garo srauto tankis. Šiuos lašelių paviršiuje vykstančių fazinių virsmų parametrus apibrėžia lašelio terminiai ir energiniai parametrai. Terminiai parametrai susiję su lašelio temperatūros lauku, o energinius parametrus apibrėžia šilumos srautai lašelio paviršiuje. Visus šiuo parametrus svarbu mokėti aprašyti matematiškai ir po to susieti tam tikru fizikine logika grindžiamu modeliu.

2.1 Metodinė dalis

Šilumos srautus lašelio paviršiuje kondensaciniame ir garavimo režimuose galima interpretuoti geometriškai (2.1 pav.).

2.1 pav. Lašelio šilumokaitos ir fazinių virsmų geometrinė interpretacija.

Kadangi lašelio paviršiuje vyksta paviršinis lašelio garavimas, energijos srautą apibūdina fazinių virsmų šilumos srautas, kuris nustatomas atsižvelgiant į garuojančio lašelio paviršiuje išsiskiriantį garo srauto tankį ir fazinių virsmų garavimo šilumą:

$$q_{f=g}^{+} = m_g^{+} \cdot L, \left[\frac{W}{m^2}\right]; \qquad (2.1)$$

čia: m_g^+ - garo srauto tankis, $\left[\frac{kg}{m^2 \cdot s}\right]$; L - garavimo šiluma, $\left[\frac{J}{kg}\right]$. (2.1) paveiksle garavimo atveju, fazinių virsmų garavimo šiluma $q_f^+ = q_g^+$, o kondensacijos atveju $q_f^+ = q_k^+$.

Sudėtinės šilumokaitos atveju apsuptis lašeliui šilumą teikia spinduliavimu ir konvekcija, todėl suminį šilumos srautą lašelio paviršiaus išorinėje pusėje sudaro radiacinis ir konvekcinis srautai. Bendras šilumos intensyvumas apibūdinamas suminiu šilumos srautu:

$$q_{\Sigma}^{+} = q_{r}^{+} + q_{c}^{+}, \left[\frac{W}{m^{2}}\right]; \qquad (2.2)$$

čia: q_{Σ}^{+} - suminis šilumos srautas, $\left[\frac{W}{m^{2}}\right]$; q_{r}^{+} - radiacinis šilumos srautas, $\left[\frac{W}{m^{2}}\right]$; q_{c}^{+} - konvekcinis šilumos srautas, $\left[\frac{W}{m^{2}}\right]$.

Lašelio šilimo intensyvumą apibrėžia nuo vidinio paviršiaus į lašelį sklindančios šilumos suminis šilumos srautas:

$$q_{\Sigma}^{-} = q_{r}^{-} + q_{c}^{-}, \left[\frac{W}{m^{2}}\right];$$
(2.3)

čia: q_{Σ}^{-} - suminis šilumos srautas vidinėje lašelio paviršiaus pusėje, $\left[\frac{W}{m^2}\right]$; q_r^{-} - radiacinis šilumos srautas, $\left[\frac{W}{m^2}\right]$; q_c^{-} - konvekcinis šilumos srautas, $\left[\frac{W}{m^2}\right]$.

Šio srauto prigimtis priklauso nuo fazinių virsmų režimo lašelio paviršiuje. Fazinių virsmų režimai gali būti:

- kondensacinis;
- nestacionaraus garavimo;
- pusiausviro garavimo.

Jų įtaką lašelio šilumokaitai, aptarsime tolimesniuose skyreliuose.

2.2 Matematinis modeliavimas

2.2.1 Garo srauto modelis

Garo srautą lašelio paviršiuje iššaukia vandens garo slėgio prie lašelio $(p_{g,R})$ ir vandens garo slėgio aplinkoje (apsauginio kiauto dujų mišinyje) $(p_{g,\infty})$ disbalansas. Kondensacinis rėžimas vyksta, kuomet $p_{g,\infty} > p_{g,R}$ ir proceso varomoji jėga apibrėžiama:

$$p_{g,\infty} - p_{g,R} \equiv \Delta p_{var,k}, [Pa]. \tag{2.4}$$

Garavimo rėžimas vyksta, kuomet $p_{g,R} > p_{g,\infty}$, o proceso varomoji jėga apibrėžiama:

$$p_{g,R} - p_{g,\infty} \equiv \Delta p_{var,g}, [Pa].$$
(2.5)

Šios jėgos iššaukia difuzinį garo srautą, aprašomą pagal Fiko dėsnį:

$$m_{g,D} = -D_{gd} \cdot grad\rho_{g,d}, \left[\frac{kg}{m^2 \cdot s}\right].$$
(2.6)

čia:

 $\rho_{g,d}$ – garo koncentracija aplinkoje, $\left[\frac{kg}{m^3}\right]$; D_{gd} – garo difuzijos koeficientas dujose, $\left[\frac{m^2}{s}\right]$.

Garo srauto hidrodinaminę m_{hidr} dedamąją iššaukia lašelio fazinius virsmus visuomet lydintis hidrodinaminis Stefano srautas [111]. Jis dažnai įvertinamas tam tikra pataisa.

Yra žinoma [111], jog pro difuzinį sluoksnį sklindantį bendrą garo srautą (difuzinį ir hidrodinaminį) galima aprašyti analitiniu Stefano formulės pagrindu:

$$m_g^+ = \frac{D_{gd} \cdot \mu_g}{T_{gd,R} \cdot \delta_D \cdot R_\mu} \cdot p \cdot ln \frac{p - p_{g,\infty}}{p - p_{g,R}}, \left[\frac{kg}{m^2 \cdot s}\right];$$
(2.7)

čia: D_{gd} – garo difuzijos koeficientas dujose, $\left[\frac{m^2}{s}\right]$;

 μ_g – garo molekulinė masė, $\left[\frac{kg}{kmol}\right]$;

 T_{gd_1R} – garo dujų mišinio temperatūra prie lašelio paviršiaus, [K];

 δ_D – lašelį supančio difuzinio sluoksnio storis, [m];

 R_{μ} – universalioji dujų konstanta, 8314 $\left[\frac{J}{kmol\cdot K}\right]$; p – dujų (aplinkos) slėgis, [*Pa*]; $p_{g,\infty}$ - vandens garo slėgis dujose, [*Pa*]; $p_{g,R}$ – vandens garo slėgis prie lašelio paviršiaus, [*Pa*].

Procesą apsprendžia vandens garo slėgis dujose (aps. kiauto atmosferoje) $p_{g,\infty}$. (2.7) formulėje į Stefano hidrodinaminio srauto įtaką atsižvelgiama Stefano logaritmu.

Garo srautą į lašelį, kondensacijos metu, galima laikyti sąlyginai neigiamu, o garavimo metu, atitinkamai teigiamu.

Lašelio atveju reikia atsižvelgti į jo geometrinę formą. Daroma prielaida, jog lašelis yra sferiškai simetriškas (2.3 pav.).

2.3 pav. Vandens garo dalinio slėgio kitimo difuziniame sluoksnyje schema, garavimo ir kondensacijos režimų atvejais.

Sferinio lašelio difuzinis sluoksnis yra proporcingas lašelio spinduliui [112]:

$$\delta_D \sim R \tag{2.8}$$

Stambesniems už keletą mikrometrų lašeliams, fazinius virsmus lydinčiame Knudseno sluoksnyje δ_{KN} garo slėgio ir temperatūros šuoliai yra nereikšmingi: $\Delta p_{KN} \approx 0$ ir $\Delta T_{KN} \approx 0$.

Todėl darome prielaidą, jog garo ir dujų mišinio temperatūra prie lašelio T_{gd_1R} yra artima lašelio paviršiaus temperatūrai T_R :

$$T_{gd_1R} \cong T_R \tag{2.9}$$

Tuomet lygtis (2.7) sferiniam lašeliui bus:

$$m_g^+ = \frac{D_{gd} \cdot \mu_g}{T_R \cdot R \cdot R_\mu} \cdot p \cdot \ln \frac{p - p_{g,\infty}}{p - p_{g,R}}, \left[\frac{kg}{m^2 \cdot s}\right];$$
(2.10)

Skaitiškai modeliuoti fazinius virsmus lašelio paviršiuje pagal (2.10) formulę patogu, kadangi (2.10) formulė užtikrina garo srauto vektoriaus pokytį, keičiantis kondensacijai į garavimą. Garo srauto tankis apskaičiuotas pagal (2.10) formulę, kondensaciniame režime yra neigiamo ženklo dydis $(m_{g,k}^+)$ yra neigiamas). Garavimo režime $m_{g,g}^+$ yra teigiamo ženklo dydis.

2.4 pav. Bendroji garo srauto lašelio paviršiuje schema.

Kondensaciniame fazinių virsmų režime, lašelio paviršiuje kondensuojasi skysčio garas. Jį apibrėžia pritekantis garo srautas (2.4 pav.), kuris susideda iš hidrodinaminio ir difuzinio garo srauto tankio sandų. Tuo tarpu garavimo fazinių virsmų režimo metu, lašelio skystis garuoja ir nuo lašelio nutekantį garo srautą apibrėžia tie patys sandai, tik jų kryptis priešinga, nei kondensaciniame fazinių virsmų režime.

Garo srautas, išsiskiriantis lašelio paviršiuje, yra lygus garo srauto tankiui išsiskiriančiame visame lašelio paviršiaus plote:

$$g_g = 4 \cdot \pi \cdot R^2 \cdot m_g^+, \left[\frac{kg}{s}\right]; \tag{2.11}$$

čia: *R* - lašelio spindulys, [m]; m_g^+ - garo srauto tankis, $\left[\frac{kg}{m^2 \cdot s}\right]$.

Taigi, garo srauto modelis yra apibrėžtas, todėl apibendrinta galima laikyti ir išraišką (2.1), aprašančią fazinių virsmų šilumos srautą.

Vandens garo slėgis prie lašelio $\bar{p}_{g,\infty}$ yra nusakomas vandens garo aplinkoje slėgio santykiu su aplinkos slėgiu:

$$\bar{p}_{g,\infty} = \frac{p_{g,\infty}}{p}, [Pa]$$
(2.12)

čia:

 $p_{g,\infty}$ - vandens garo slėgis aplinkoje, [Pa]; p – aplinkos slėgis, [Pa].

Pagrindinis parametras, kuris apibrėžia lašelio paviršiuje vykstančius fazinius virsmus yra lašelio paviršiaus T_R temperatūra:

- $T_R < T_{rt}$, kuomet lašelio paviršiaus temperatūra T_R yra žemesnė nei rasos taško T_{rt} temperatūra, vyksta kondensacija;
- $T_{rt} < T_R < T_e$, kuomet lašelio paviršiaus T_R temperatūra yra aukštesnė nei rasos taško T_{rt} temperatūra, bet žemesnė nei pusiausviro garavimo T_e temperatūra, vyksta pereinamasis garavimas;
- T_R ≡ T_e, kuomet lašelio paviršiaus T_R temperatūra yra lygi pusiausviro garavimo T_e temperatūrai, vyksta pusiausvyras garavimas.

Taigi, kiekviename fazinių virsmų režime yra tam tikra lašelio paviršiaus temperatūra T_R . Jos kitimą galima aprašyti $T_R(\tau)$ funkcija ir apibrėžti diagrama (2.5 pav.).

2.5 pav. T_R temperatūros kitimo diagrama, aprašant ją $T_R(\tau)$ funkcija. a – atomizacija; τ_f – lašelio gyvavimo laikas, [s].

Lašelio paviršiaus temperatūra T_R yra nulemta lašelio paviršiuje sąveikaujančiais energijos srautais ir lemia fazinių virsmų režimą: kol ji žemesnė už rasos taško T_{rf} temperatūrą, lašelio paviršiuje kondensuojasi skysčio garas; nestacionariojo garavimo režime ji išauga iki pusiausvirą garavimą užtikrinančios T_e temperatūros. Dėl lašelio paviršiaus apsprendžiančių energijos srautų reikia atsižvelgti į lašelio šilumokaitos išorėje ir jo viduje savitumus. Tam sudaromas lašelio šilumokaitos matematinis modelis.

2.2.1 Šilumos srautų lašelio paviršiuje balansas

Pusiausviru garavimu suprantamas fazinių virsmų atvejis, kai visa lašeliui teikiama šiluma, tik garina skystį (2.6 pav.).

2.6 pav. Pusiausviro garavimo šilumos srautų schema.

Kondensacinį rėžimą jau aptarėme ir jame:

$$q_{\Sigma}^{-} = q_{\Sigma}^{+} + q_{f=kon}^{+} \left[\frac{W}{m^2} \right].$$
(2.13)

Tai reiškia, jog kondensaciniame režime į lašelį nuvedama visa šilumokaitos ir kondensacijos procesuose suteikiama šiluma.

Fazinių virsmų rėžimas po kondensacijos iki pusiausviro garavimo vadinamas pereinamuoju garavimo režimu. Jame garavimo šilumos srautas išreiškiamas lašeliui teikiamos ir į jį nuvedamos šilumos srautų skirtumu:

$$q_g = q_{\Sigma}^+ - q_{\overline{\Sigma}}^-, \left[\frac{w}{m^2}\right].$$
 (2.14)

Laisvai užsiduoti $T_R(\tau)$ funkciją negalima, kadangi lašelio paviršiaus temperatūrą apibrėžia šilumos srautai lašelio paviršiuje. Kiekvienu τ_i laiko momentu, lašelio paviršiaus temperatūra privalo užtikrinti, kad prie lašelio paviršiaus pritekantys ir nuo jo nutekantys šilumos srautai atitiktų. Taip yra todėl, kadangi ant paviršiaus šiluma nesikaupia. Šilumos srautai ir temperatūros lašelio paviršiuje kinta ir net gali pakisti jų tekėjimo kryptis. Todėl šilumos srautų balansą, galima aprašyti vektorine išraiška:

$$\vec{q}_{\Sigma}^{+} + \vec{q}_{\Sigma}^{-} + \vec{q}_{f}^{+} = 0.$$
(2.15)

(2.15) lygtis yra formali ir skaičiavimams netinka. Norint pagal ją apibrėžti paviršiaus temperatūrą, ją būtina konkretizuoti.

Fazinių virsmų srautą q_f^+ (2.15) išraiškoje, jau detalizavome (2.1) lygtyje ir belieka apibrėžti šilumos srautus, kai garo srautas m_g^+ apibrėžiamas pagal (2.10) lygtį.

2.2.2 Lašelio šildymo modelis.

Aptarsime, kaip apibrėžti \vec{q}_{Σ}^+ ir \vec{q}_{Σ}^+ srautus. Prie lašelio pritekantis suminis šilumos srautas, susideda iš konvekcinio ir radiacinio šilumos srautų dedamųjų:

$$q_{\Sigma}^{+} = q_{c}^{+} + q_{r}^{+}, \left[\frac{w}{m^{2}}\right].$$
(2.16)

Vandens lašelis yra pusiau skaidrus kūnas, todėl spinduliuotės srautas sugeriamas ne jo paviršiumi, o lašelio tūryje. Todėl spinduliavimo srautą q_r lašelio paviršiuje, galima apibrėžti tiek pagal išorinį uždavinį, tiek ir pagal vidinį uždavinį. Jų specifiką aptariame vėliau, analizuodami šilumokaitą lašelyje.

2.7 pav. Į lašelį krintančios spinduliuotės srauto sklidimo lašelyje schema.

$$q_r^+ = \int_0^\infty \int_0^{4\pi} I_B(T_g, \lambda_B) d\Omega d\lambda_B , \left[\frac{W}{m^{2} \cdot K}\right].$$
(2.18)

Šis uždavinys yra aktualus esant aukštoms temperatūroms. Žemoms temperatūros, jo galima nepaisyti.

Kai lašelis šildomas jį apiplaunančiame žemos temperatūros dujų sraute, tuomet šilumos konvekcija yra pagrindinis lašeliui teikiamos šilumokaitos šaltinis (2.8 pav.). Konvekcinio šildymo intensyvumą apibrėžia Nuselto kriterijus:

$$Nu = \frac{\alpha \cdot l}{\lambda_{gd}}.$$
(2.19)

čia: $l \equiv 2R -$ lašelio skersmuo, [m];

 α – šilumos atidavimo koeficientas, $\left[\frac{W}{m^{2} \cdot K}\right]$;

 λ_{gd} – garo ir dujų mišinio šilumos laidumo koeficientas, $\left[\frac{W}{m \cdot K}\right]$

2.8 pav. Konvekcinio šilumos srauto schema.

Konvekcinio šilumos srauto tankis q_c^+ aprašomas pagal Niutono šilumos atidavimo dėsnį:

$$q_c^+ = \frac{Nu}{2R} \cdot \lambda_{gd} (T_d - T_R), \left[\frac{W}{m^{2} \cdot \kappa}\right].$$
(2.20)

Problema ta, kad vykstant faziniams virsmams, šilumokaitą lydi Stefano hidrodinaminis srautas, kuris silpnina konvekcinio šildymo intensyvumą, kai lašelis garuoja. Todėl (2.20) išraiškoje neatitinka kietos dalelės atveju apskaičiuotam Nu_{kiet} ir turi būti pakoreguotas:

$$Nu = Nu_{kiet} \cdot f_{BT}.$$
 (2.21)

čia: f_{BT} – pataisos dėl Stefano hidrodinaminio srauto funkcija.

 Nu_{kiet} išraiškos yra gerai žinomos ir sferiškai dalelei yra [13]:
$$Nu_{kiet} = 2 + 0.57 \cdot Re^{1/2} \cdot Pr^{1/3}; \qquad (2.22)$$

čia Reinoldso kriterijus yra:

$$Re = \frac{W_{slyd} \cdot 2R}{v_{mod}} = 2 \frac{\rho_d \cdot |W_l - W_d|}{\mu_{gd}} R;$$
(2.23)

$$\begin{split} \dot{c}ia: v_{mod} &= \frac{\mu_{gd}(T_{gd})}{\rho_{d,\infty}(T_d)} - \text{modifikuotas kinematinės klampos koeficientas, } \left[\frac{m^2}{s}\right]; \\ W_{slyd} &= |W_l - W_d| - \text{lašelio slydimo dujų sraute greitis, } \left[\frac{m}{s}\right]; \\ W_l - \text{lašelio judėjimo greitis, } \left[\frac{m}{s}\right]; \\ W_d - \text{dujų srauto tekėjimo greitis, } \left[\frac{m}{s}\right]; \\ \mu_{gd} - \text{garo ir dujų mišinio dinaminės klampos koeficientas, } \left[\frac{N \cdot s}{m^2}\right]; \\ \rho_{d,\infty} - \text{dujų tankis, } \left[\frac{kg}{m^3}\right]. \\ Pr &= \frac{v_{gd}}{a_{nd}}. \end{split}$$
(2.24)

čia: v_{gd} – garo ir dujų mišinio kinematinės klampos koeficientas, $\left[\frac{m^2}{s}\right]$; a_{gd} – garo ir dujų mišinio temperatūrinis laidumo koeficientas, $\left[\frac{m^2}{s}\right]$.

$$a_{gd} = \frac{\lambda_{gd}}{\rho_{gd} \cdot c_{p,gd}}, \left[\frac{m^2}{s}\right]. \tag{2.25}$$

čia: λ_{gd} – garo ir dujų mišinio laidumo koeficientas, $\left[\frac{W}{m \cdot K}\right]$;

 ρ_{gd} – garo ir dujų mišinio tankis, $\left[\frac{kg}{m^3}\right]$;

 $c_{p,gd}$ – garo ir dujų mišinio savitoji šiluminė talpa, $\left[\frac{J}{kg\cdot K}\right]$.

Dujų mišinio fizikinės savybės v_{gd} , λ_{gd} , c_{gd} , $c_{p,gd}$ parenkamos pagal "1/3" taisyklę.

2.9 pav. "1/3" taisyklės interpretacijos lašelio geometrijoje schema.

$$T_{"1/3"} = T_R + \frac{T_d - T_R}{3}, [K].$$
(2.26)

$$c_{p,gd} = c_{p,gd} (T_{"1/3"}), \left[\frac{J}{kg \cdot K} \right].$$
 (2.27)

Vandens garo dalinis slėgis dujų mišinyje apibrėžiamas:

$$p_{g,"1/3"} = p_{g,R} + \frac{p_{g,R} - p_{g,\infty}}{3}, [Pa].$$
(2.28)

$$p_{d,"1/3"} = p_{g,"1/3"} + p_{nesik}, [Pa].$$
(2.29)

Ir šiam mišiniui parenkamas fazinių virsmų srauto slėgis pagal $T_{1/3"}$ temperatūrą.

Pataisos f_{BT} funkcija išraiškoje (2.21), apibrėžiama pagal klasikinį [83] ir empirinį koreliacijos modelius [113], aprašytus (2.30) ir (2.31) išraiškose atitinkamai:

$$f_{B_T} = \frac{ln(1+B_T)}{B_T};$$
 (2.30)

čia: B_T – Spoldingo šilumos pernašos parametras;

$$f_{B_T} = \frac{1}{(1+B_T)^{0,7}}.$$
(2.31)

(2.30) modelis tinkamas lašelio mažo slydimo dujose atveju, o (2.31) tinkamas, kai lašelio slydimas intensyvus. Todėl praktikoje pritaikomas jų apibendrinimas [13]. Tuomet (2.21) išraiška atrodys taip:

$$Nu_f = 2 \cdot \frac{\ln(1+B_T)}{B_T} + 0.57 \cdot Re^{1/2} \cdot \Pr^{1/3} \cdot \frac{1}{1+B_T}.$$
 (2.32)

38

Spoldingo šilumos pernašos parametras B_T apibrėžiamas išraiška [13]:

$$B_T = \frac{c_{p,gd} \cdot (T_g - T_R)}{L + q_l / m_g};$$
(2.33)

čia: $c_{p,gd}$ – garo ir dujų mišinio savitoji šiluminė talpa, $\left[\frac{J}{k q \cdot K}\right]$;

L – garavimo šiluma, $\left[\frac{J}{kg}\right]$;

 q_l – vandens šildymui lašelyje teikiama šiluma, $\left[\frac{W}{m^2}\right]$;

 m_g – garo srautas, $\left[\frac{kg}{m^2 \cdot s}\right]$.

2.2.3 Šilumokaitos lašelyje modelis

Sudėtinės šilumokaitos atveju, lašelyje šiluma plinta laidumu ir spinduliavimu:

2.10 pav. Lokalinio suminio šilumos srauto apskaičiavimo interpretacijos lašelyje schema.

(2.10 pav.) $q_{\Sigma,j}^-$ lokalinis suminis šilumos srautas lašelyje. Norint jį apibrėžti, reikia žinoti temperatūros lauką lašelyje. Jį aprašo $T(r, \tau)$ funkcija. Kadangi temperatūra kinta pagal koordinatę r ir dar gali kisti laike, kai lašelis šyla arba aušta.

Šilumos srauto q_{Σ}^{-} balanso (2.15) išraišką apibrėžiame pagal (2.34), kai $r \equiv R$:

$$q_{\Sigma}^{-}(r) \equiv q_{\Sigma}^{-}(r=R,\tau), \left[\frac{w}{m^{2}}\right].$$
(2.35)

Šilumos srauto $q_{\Sigma}(r, \tau)$ radiacinė dedamoji, apskaičiuojama pagal (2.18) išraišką, pritaikius ją lašeliui, jo sferiškumo prielaidos rėmuose [114].

Šilumos laidumo srauto dedamoji apibrėžiama pagal Furje šilumos laidumo dėsnį:

$$q_l^-(r,\tau) = -\lambda_l \cdot gradT_{r=R} = -\lambda_l \cdot \frac{\partial T(r,\tau)}{\partial r}\Big|_{r=R}, \left[\frac{W}{m^2}\right].$$
(2.36)

čia: λ_l – skysčio lašelyje laidumo koeficientas, $\left[\frac{W}{m \cdot K}\right]$,

 $gradT_{r=R} = \frac{\partial T(r,\tau)}{\partial r}\Big|_{r=R}$ – temperatūrinis gradientas, $\left[\frac{K}{m}\right]$.

Kadangi (2.36) lygtyje šilumos srauto ir temperatūros gradiento vektoriai yra skirtingų krypčių, lygties ženklas yra neigiamas.

Temperatūros $T(r, \tau)$ laukas lašelyje ir jo $gradT_r(\tau) = gradT(r, \tau)$ aprašomos pagal [13] modelį. Reikia atkreipti dėmesį į tai, jog slystančio lašelio paviršiuje kyla trinties jėgos ir jos gali privesti cirkuliuoti skystį lašelyje. Tuomet šilumos nuvedimas į lašelį bus intensyvesnis negu laidumo atveju. Tai įvertinama efektyviuoju šilumos laidžio k_e^- parametru:

$$q_l^-(r,\tau) = q_l^-(r,\tau) \cdot k_e^- = -\lambda_l \cdot k_e^- \cdot \frac{\partial T(r,\tau)}{\partial r}\Big|_{r=R}, \left[\frac{W}{m^2}\right].$$
(2.37)

Šilumos laidžio efektyvusis k_e^- parametras yra $k_e^- = 1 \div 2,73$ [13].

2.3 Skaitinio tyrimo iteracinė schema

Skaitinė schema "lašo" uždaviniui išspręsti sudaroma pagal (2.34) šilumokaitos modelį, sukonkretizavus šilumos srauto balanso (2.15) lygtį nurodžius, jog $q_r \cong 0$, tuomet (2.15) lygtis bus:

$$\vec{q}_{c}^{+} + \vec{q}_{c}^{-} + \vec{q}_{f}^{+} = 0.$$
(2.38)

Taikant (2.38) lygtį lašelių fazinių virsmų ciklui, reikia atsižvelgti į vykstantį fazinių virsmų rėžimą.(2.38)

Kondensacijos rėžimas:

$$q_c^- = q_c^+ + q_{f=kon}^+. (2.39)$$

Garavimo rėžimas:

$$q_c^- = q_c^+ - q_{f=gar}^+. (2.40)$$

Bendru atveju, abejoms (2.39) ir (2.40) lygtims išraiška:

$$-\lambda \frac{\partial T(r,\tau)}{\partial r}\Big|_{r=R} \cdot k_e^- = \frac{Nu}{2R} \cdot \lambda_{gd} \cdot (T_d - T_R) \cdot f_{BT}^+ + L \cdot \frac{D_{gd} \cdot \mu_g}{T_R \cdot R \cdot \mu} \cdot p \cdot \ln \frac{p - p_{g,\infty}}{p - p_{g,R}}.$$
 (2.41)

Gradientas (2.41) lygtyje, aprašomas pagal darbo [114] metodiką.

Išraiška (2.41) aprašo lašelio paviršiaus temperatūros $T_R(\tau)$ funkciją, t.y. apibrėžia, kaip lašelio paviršiaus temperatūra kinta laike.

Išraiška (2.41) išsprendžiama skaitiškai tik pagal iteracinę schemą, pagal kurią vykdomas iteracinis ciklas:

$$it = 1 \div IT. \tag{2.42}$$

Šiame cikle, pirmajai it = 1 iteracijai parenkama $T_{R,i,it} = T_{R,i-1} + \Delta T_{R,i}$ lašelio temperatūra. Čia $\Delta T_{R,i}$ – konkretus pokytis, pvz. K (tyrėjas jį parenka laisvai, kad $T_{R,min} < T_{R,i,it} < T_{R,max}$, $T_{R,min} \equiv 273,15K$, $T_{R,max} \equiv T_{sot}(P)$. Po to kitoms it > 1 iteracijoms $T_{R,i,it}$ temperatūra parenkama greičiausio nusileidimo metodu, grindžiamu specialia paprograme.

Laiko skalė suskaidoma į I skaičių tarpinių laikų (2.11 pav.).

2.11 pav. Interpretuojamos bematės laiko skalės schema.

Skaidome tolygiai:

$$\Delta \tau_i = \frac{\tau_f - (\tau_1 = 0)}{l - 1} = \frac{\tau_f}{l - 1}.$$
(2.43)

Keliama sąlyga:

$$\sum_{i=2}^{I} (\tau_i - \tau_{i-1}) = \tau_f. \tag{2.44}$$

Iteracinis ciklas vykdomas kiekvienai $\tau_i < \tau_f$. Laiko momentu $\tau_1 = 0$ laikome, jog visus lašelio šilumos ir masės mainų parametrus P₀ žinome. τ_i momentu tariame, jog $T_{R,i} = T_{R,i,it=IT}$.

IT iteracijai keliami tikslumo reikalavimai:

- kondensaciniam režimui $\left|1 \frac{q_c^- q_{f=ko}^+}{q_c^+}\right| \cdot 100\% < 0,05\%;$
- garavimo rėžimui $\left|1 \frac{q_c^- + q_{f=gar}^+}{q_c^+}\right| \cdot 100\% < 0.05\%.$

Kai $T_{R,i}$ yra apibrėžta, tai lengvai apskaičiuojami visi lašelio šilumos ir masės mainų parametrai τ_i laiko momentu, pagal ankščiau aptartą "lašo" modelį P_i.

 τ_i kitimą: $\tau_i = \tau_{i-1} + \Delta \tau_i$ baigiame, kai pasiekiame τ_f (užsiduotą) laiką arba kai lašelis išgaruoja $R_i \approx 0.$

Šilumokaitai lašelyje apibrėžti įvedama bematė lašelio koordinatė $\eta = r/R_i$ (2.12 pav.).

2.12 pav. Lašelio koordinatės η interpretacijos schema.

Koordinatė η lašelio centre visuomet $\eta = 0$, o paviršiuje $\eta = 1$, nors *R* kinta.

$$\Delta \eta = \frac{1}{J-1},\tag{2.45}$$

 $\check{c}ia J = 41.$

Keliama sąlyga:

$$\sum_{j=2}^{J} (\eta_j - \eta_{j-1}) = 1.$$
(2.46)

Tuomet lašelio temperatūros laukas $T(\eta, \tau)$ pakeičiamas diskretine funkcija $T_{j,i}$, t.y. kiekviename τ_i laike taikomas individualus temperatūros kitimas lašelyje T_j . Kai j = 1, temperatūra T_j yra lygi lašelio centro temperatūrai $T_{j=1} \equiv T_C$, o kai j = J, T_j temperatūra yra lygi lašelio paviršiaus temperatūrai $T_{j=J} \equiv T_R$.

Kai apibrėžtas $T_{j,i} \equiv T_{R,i}$, tuomet apibrėžti visi lašo šilumos ir masės mainų parametrai.

3 REZULTATAI

3.1 Tyrimo uždaviniai ir ribinės sąlygos

<u>Uždaviniai:</u>

- skaitiškai apibrėžti lašelio šilumos ir masės mainų parametrų P kitimą lašelio fazinių virsmų ciklo režimuose;
- 2. iliustruoti parametrų kitimą grafiškai ir išryškinti kitimo dėsningumus.

Numatomos kraštinės sąlygos:

- aplinkos dujų temperatūra $T_d \equiv 373 \div 673K$;
- drėgnumas $p = p_{q,\infty}/p = 0,1$, kai p = 0,1MPa;
- išpurškiamas šaltas 278K arba karštas 343K vanduo;
- lašelių slydimo sąlygos: *Re*: 10, 20, 50, 100;
- lašelių dispersiškumas: 2*R*: 30, 50, 100, 150, 200μ*m*.

Matosi, jog uždaviniams pasiekti reikalingas labai platus skaitinis tyrimas, Būtų patogu (naudinga) jį optimizuoti.

3.2 Skaitinio tyrimo optimizavimo galimybės

Daugiausiai tyrimą išplečia poreikis atsižvelgti į lašelių individualų dispersiškumą, kadangi jis priklauso nuo individualių purkštukų (dispergatorių) parametrų ir teoriškai svyruoja plačiose R_{min} ir R_{max} ribose, kur minimalaus spindulio vertė artėja į nulį $R_{min} \rightarrow 0$, o maksimalaus į begalybę $R_{max} \rightarrow \infty$. Konkretūs, tyrimų metu nustatyti lašelių skersmens parametrai pateikti (3.1 pav.) grafike. Akivaizdu, jog norint įvertinti visas kiekvieno skersmens (55 ÷ 944) lašelių visų parametrų kombinacijas, skaitinis tyrimas būtų labai platus.

3.1 pav. Lašelių skersmens pasiskirstymo funkcijų palyginimas 20cm nuo purkštuko [53].

Vykdome lašelių šilumos ir masės mainų tyrimą, kai $2R \equiv 30, 50, 100, 150, 200\mu m$ skersmens lašeliai šyla (aušta) T_d temperatūros dujų mišinyje, jose skysčio garo $\bar{p} = 0,1$, o lašelių slydimo greitis apibrėžiamas $Re_0 = 50$. Tyrimas atliekamas prie skirtingų išpurškiamo vandens temperatūrų $T_0, K: 278, 343$. Lašeliai garuoja prie pusiausviros T_e temperatūros. Bendru atveju yra laikoma, kad kai $T_0/Te > 1$, tai vanduo karštas, o $T_0/Te < 1$ – šaltas.

3.2 pav. Vandens lašelių paviršiaus temperatūros kitimas iki pusiausviro garavimo temperatūros realaus laiko mastelyje. $2R_0*10^6$, m: (1)30, (2)50, (3)100, (4)150, (5)200; T₀, K: (a) 278, (b) 343.

3.2 pav. akivaizdžiai matosi, jog tiek lašelio šilimas (3.2 pav. a), tiek aušimas (3.2 pav. b) labai priklauso nuo lašelio dydžio. Šalto vandens lašelių paviršiaus temperatūra žemesnė už rasos taško temperatūrą $T_R/T_{rt} < 1$, todėl lašelių paviršiuje vyksta kondensacinis fazinių virsmų rėžimas, kol lašelio paviršiaus temperatūra pasiekia rasos taško temperatūrą. Kai lašelio paviršiaus temperatūra perkopia rasos taško temperatūrą, bet yra žemesnė nei pusiausviro garavimo temperatūra $T_e > T_R >$ T_{rt} , vyksta nestacionarus garavimas, kol T_R pasiekia pusiausviro garavimo temperatūrą T_e (laikas, per kurį pasiekta T_e : 0,0047, 0,0131, 0,0523, 0,1176, 0,2091s). Šie procesai akivaizdžiai atsispindi garo srauto ir jo tankio (3.6 pav. a) bei lašelio masės kitimo (3.8 pav. a) grafikuose. Karšto vandens lašelių temperatūra yra aukštesnė už pusiausviro garavimo temperatūrą $T_R/T_0 > 1$, todėl lašeliai aušta iki pusiausviro garavimo temperatūros T_e (laikas, per kurį pasiekta T_e : 0.0071, 0,0196, 0,0784, 0,1764 ,0.3136s). Aiškiai matosi, jog lašelių pašilimas ir ataušimas iki pusiausviro garavimo temperatūros T_e keičiantis skersmeniui 2R, yra labai individualus.

Tačiau, jeigu lašelių šilimą (aušimą) nagrinėsime $Fo = (a_0/R_0^2) \cdot \tau$ Furjė kriterijumi, išreikštu universalaus mastelio laiko skalėje, tai visų lašelių pašilimas (3.3 pav. a) arba ataušimas (3.3 pav. b) iki pusiausviro garavimo temperatūros T_e yra aprašomas funkcijos $T_R(Fo)$ grafiku.

3.3 pav. Lašelio paviršiaus temperatūros T_R kitimas iki pusiausviro garavimo temperatūros T_e , išreikštas Furje kriterijaus laiko mastelyje. $2R_0*10^6$, m: (1)30, (2)50, (3)100, (4)150, (5)200; T_0 , K: (a) 278, (b) 343.

3.3 pav. akivaizdžiai matosi, jog visų tiriamų skersmenų lašeliai šyla (aušta) vienodai, jei laiko mastelis yra išreikštas Furje kriterijumi. Tai yra dėl to, jog pateikiant pernašos procesus Furje masteliu, laidumu šildomų lašelių fazinių virsmų būdingos trukmės nepriklauso nuo skysčio išpurškimo dispersiškumo ir yra vienodos visiems laidumu šildomiems to paties skysčio lašeliams [114,115]. Tai leidžia labai susiaurinti skaitinį tyrimą. Pakanka sumodeliuoti vieno laisvai pasirinkto dispersiškumo lašelio terminę būseną ir fazinių virsmų ciklą apibrėžtų parametrų dujų mišinyje, o kitų pageidaujamų diametrų lašelių pernašos procesų sąveiką įvertinama palyginamuoju būdu.

Svarbu atkreipti dėmesį į tai, jog naudojant Furje mastelyje išreikštų parametrų funkcijas P(Fo) parametrų paieškai, jos galioja tik išpurkšto skysčio lašelio terminės būsenos kitimą fazinių virsmų procese nusakančių terminių P_T parametrų paieškai. Norit palyginamuoju būdu rasti kitus išpurkšto skysčio lašelių šilumokaitą ir masės mainus nusakančius parametrus - energetinius P_q ir fazinių virsmų P_f, būtina sudaryti normuotų parametrų funkcijas $\overline{P} = P(Fo)/P_0$, nes šie parametrai yra jautrūs lašelio dispersiškumui. Tai puikiai atsispindi (3.4 pav.), kur yra pateikti energetinių parametrų P_q(Fo) funkcijų grafikai. Kadangi tiriame laidumu šildomus lašelius, tai energetiniams parametrai bus: pritekantis suminis šilumos srautas $q_{\Sigma}^+ \equiv q_c^+$, šilumos srautas lašelio viduje $q_{\Sigma}^- \equiv q_c^-$, fazinių virsmų šilumos srautas q_f^+ .

3.4 pav. Energetinių parametrų $P_q(Fo)$ funkcijų grafikai šalto ir karšto vandens išpurškimo atvejais. $2R_0*10^6$, m: (1)30, (2)50, (3)100, (4)150, (5)200; T₀, K: (a, c, e) 278, (b, d, f) 343.

(3.4 pav.) matome, jog energetinių parametrų kreivės labai savotiškos tiek lašelio šilimo, tiek aušimo atvejais ir nėra jokio universalumo, kurį galėtume panaudoti skaičiavimo supaprastinimui. Tačiau šiuos parametrus išreiškus normuotų energetinių parametrų funkcijomis $\overline{P}_q(Fo)$, lašelių dispersiškumas nebeturi įtakos. Normuojančiu vardikliu yra naudojamos energijos srautų pradinės vertės, užtikrinančios $\overline{P}_q(Fo) \equiv P_q(Fo)/P_{q,0}$ funkcijų būdingo grafiko kreivių vieningą pradžios tašką $\overline{P}_q(Fo \equiv 0) = 1$ (3.5 pav. a, b) [10]. Normuojančiu vardikliu patogu naudoti pradinį pritekantį šilumos srauto tankį $q_{\Sigma,0}^+ \equiv q_{c,0}^+$. Šio normuojančio vardiklio pagrindu sudarytų funkcijų grafikuose akivaizdžiai atsispindi atskirų energijos srautų indėlio lašelio energiniame balanse dinamika (3.5 pav. c, b).

3.5 pav. Normuoti šilumos srautai lašelių paviršiuje, išreikšti Furje kriterijaus laiko mastelyje. T₀, K: (a, c) 278, (b, d) 343.

Garo srautas ir jo tankis bei jų dinamikos nulemtas lašelio matmens kitimas yra esminiai fazinių virsmų P_f parametrai. Garo srauto tankio $m_g(\tau)$ funkcijos pažinimas ir tinkamas valdymas įgalina reguliuoti daugelio terminių technologijų efektyvumui svarbią garo srauto $g(\tau)$ funkciją, lemiančią skysčio lašelių gyvavimo ciklą. Pastaroji turi aiškų grįžtamąjį poveikį išpurkšto skysčio lašelių terminiams ir energiniams parametrams [10]. Kaip ir energinių parametrų taip ir fazinių virsmų parametrų palyginamajame vertinime, būtina naudoti normuotų parametrų funkcijas, nes tiek garo srauto ir jo tankio grafikai (3.6 pav.), tiek masės kitimo grafikas stipriai priklauso nuo lašelio dispersiškumo.

3.6 pav. Garo srauto tankio kitimas ant šalto (a) ir karšto (b) vandens lašelių paviršiaus, išreikštas Furje kriterijaus laiko mastelyje. 2R₀*10⁶, m: (1)30, (2)50, (3)100, (4)150, (5)200; T₀, K: (a) 278, (b) 343.

Išpurškus šaltą vandenį, lašelio paviršiuje vyskta intensyvus kondensacinis fazinių virsmų rėžimas, kuris gerai matomas garo srauto tankio $m_g(Fo)$ funkcijos grafike (3.6 pav. a), kur garo srauto tankio m_g ženklas yra neigiamas, kurį nulemia Stefano logarimtas garo srauto tankio lygtyje (2.10). Garo kondensacija puikiai matoma ir lašelio normuotos masės $\overline{M}(Fo) = M(Fo)/M_0$ funkcijos grafike (3.7 pav., 3.8 pav. a), kur yra matomas akivaizdus lašelio masės augimas. Kondensaciniame fazinių virsmų režime, visa lašeliui teikiama šiluma ir fazinių virsmų šiluma yra nuvedama į lašelį $q_c^- = q_c^+ + q_f^+$ (3.5 pav. c). Garo kondensacinis rėžimas vyksta tol, kol lašelio paviršiaus temperatūra pasiekia rasos taško temperatūrą $T_R \equiv T_{rt} \equiv T_{sot}(\bar{p}_{g,\infty})$. Garo srauto tankio nulinė vertė (3.6 pav. a; 3.7 pav.) aiškiai apibrėžia fazinių virsmų režimo lašelio paviršiuje kaitos iš garo kondensacinio režimo į skysčio nestacionariojo garavimo režimą momentą. Kadangi $m_g^+ = 0$, todėl ir fazinių virsmų šilumos srautas $q_f^+ = 0$ (3.4 pav. e; 3.5 pav. a, c). Lašelio šildymo intensyvumas atitiks apsupties šiluminio poveikio intensyvumą $q_c^- = q_c^+$. Šiuo metu vandens lašelio masė yra maksimali (3.7 pav.; 3.8 pav. a, pažymėta k). Nestacionariojo garavimo režimo metu, lašeliui teikiama šiluma vandenį lašelyje šildo ir kartu garina $q_f^+ = q_c^+ - q_c^-$. Lašeliui pasiekus termodinaminę pusiausvirą, vyksta pusiausviras garavimas ir visa lašeliui tiekiama šiluma tik garina lašelio vandenį $q_f^+ = q_c^+$.

3.7 pav. Vandens lašelių fazinių virsmų normuoti parametrai, išreikšti Furje kriterijaus laiko masteliu. T₀, K: (1)
278, (2) 343.

Išpurškiant karštą vandenį, lašelio paviršiuje vyksta intensyvus garavimo fazinių virsmų rėžimas (3.5 pav. d). Normuotų fazinių virsmų funkcijos grafike (3.7 pav.) ir (3.8 pav. b) ir puikiai yra matomas lašelio masės kritimas. Masės kritimą galima paaiškinti jo paviršiuje matomu aukšto garo srauto tankiu m_g (3.6 pav. b), kuris byloja apie intensyvų garo srauto nutekėjimą nuo lašelio. (3.5 pav. d) matome, jog visa lašeliui teikiama šiluma ir lašelio vidinė šiluma yra sunaudojamos lašelio vandenio garinimui $q_f^+ = q_c^+ + q_c^-$. Tai taip pat atsispindi ir lašelio paviršiaus temperatūros $T_R(Fo)$ funkcijos grafike (3.3 pav. b), kur puikiai matomas temperatūros kritimas. Krentant temperatūrai, taip pat matomas akivaizdus q_c^- sando indėlio kritimas (3.5 pav. d) energetinio balanso dinamikai ir galiausiai pasiekia nulinę vertę. Kuomet $q_c^- = 0$, lašelio paviršiaus temperatūra susilygina su pusiausvyros temperatūra $T_R = T_e$ ir lašelio paviršiuje vyksta pusiausviras garavimas, kurio metu visa lašeliui teikiama šiluma jo garinimui $q_f^+ = q_c^+$ (3.5 pav. b, d).

3.8 pav. Šalto ir karšto vandens lašelių normuotos masės M
(Fo) funkcija. 2R₀*10⁶, m: (1)30, (2)50, (3)100, (4)150, (5)200; T₀, K: (a) 278, (b) 343.

Iš atlikto tyrimo matome, jog išpurkšto skysčio lašelių šilumokaitą ir masės mainus nusakančius parametrus P galime rasti, taikant palyginamąjį vertinimą. Terminių P_T parametrų paieškai, užtenka realaus laiko (τ , s) mastelį pakeisti į Furje kriterijumi išreikštą laiko mastelį (Fo) ir šie parametrai puikiai atsispindi šių parametrų P(Fo) funkcijų grafikuose. Tačiau energinių P_q ir fazinių virsmų P_f parametrų vertinimui, būtina sudaryti normuotų $\overline{P}(Fo)$ parametrų funkcijas.

Svarbu paminėti, tai jog atlikto tyrimo metu, buvo tiriama lašelio dispersiškumo įtaka, išpurškus šaltą ar karštą skystį į vienodos T_d temperatūros dujas, kuriose buvo priimtas vienodas lašelių slydimo greitis *Re*. Taigi, kai tiriami lašeliai yra tokių pačių parametrų dujų mišinyje, skaitinis tyrimas akivaizdžiai gali būti optimizuotas. Pakanka sumodeliuoti vieno pasirinkto dispersiškumo lašelio šilumos ir masės mainus, o kitų pageidaujamų diametrų lašelių pernašos procesų sąveiką

3.3 Lašelio slydimo greičio įtaka vandens lašelių šilumos ir masės mainams

Vykdome lašelių šilumos ir masės mainų tyrimą, kai $2R \equiv 100 \mu m$ skersmens lašeliai šyla $T_d = 373K$ temperatūros dujų mišinyje, jose skysčio garo $\bar{p} = 0,1$, o lašelių slydimo greitis apibrėžiamas $Re_0 = 10,20,50,100$. Tyrimas atliekamas išpurškiant šaltą $T_0 = 278K$ temperatūros vandenį.

Išpurkšto vandens lašelių paviršiaus temperatūra yra žemesnė už rasos taško temperatūra, todėl lašelio paviršiuje vyksta intensyvus kondensacinis fazinių virsmų rėžimas. Šio režimo metu, lašelis yra šildomas tiek fazinių virsmų metu išsiskyrusia q_f^+ šiluma, tiek apsupties teikiama q_c^+ šiluma, tai $q_c^- = q_c^+ + q_f^+$. Tai puikiai atsispindi energetinių srautų indėlio lašelio energetiniame balanse (3.9 pav.) grafikas. Matomas svarus fazinių virsmų šilumos indėlis kondensacinio rėžimo metu, kuris staigiai krenta ir fazinių virsmų kaitos metu $q_f^+ = 0$. Tačiau didėjant lašelio slydimo greičiui, fazinių virsmų šilumos srauto indėlis lašelio energetiniame balanse kondensacijos pradžioje krenta. Vyraujant lašelio slydimo greičiams Re > 20, fazinių virsmų pradinio momento sando dydis nekinta, yra vienodas visiems lašelio slydimo greičiams. Galima teigti, jog lašelio kondensacinio fazinių virsmų rėžimo pradžios momente, slydimo greitis fazinių virsmų teikiamai šilumai įtakos neturi (3.9 pav.; 3.11 pav. b). Tačiau tolimesniam kondensacijos rėžimui turi matomą įtaką. Fazinių virsmų kondensacinis rėžimas vyksta intensyviau (3.11 pav.) prie aukštesnių lašelio slydimo greičių ir jo trukmė pailgėja (3.11 pav. a). Kondensacinio fazinių virsmų rėžimo trukmė: 0,029991s; 0,031857s; 0,032147s; 0,033848s, kai Re: 10, 20, 50, 100 atitinkamai.

3.9 pav. Energinių srautų indėlio lašelio energiniame balanse dinamika. Re₀: (1) 10, (2) 20, (3) 50, (4) 100; T₀=278K; 2R₀=100μm; T₀=373K.

Fazinių virsmų kaitos iš kondensacinio fazinių virsmų rėžimo į nestacionaraus garavimo fazinį rėžimą momentu, lašelio masės (3.10 pav. a) ir spindulio vertės (3.10 pav. b) yra maksimalios. Lašelio masė ir geometrinis matmuo auga dėl garo srauto kondensacijos ant jo paviršiaus. Grafikuose atsispindi, jog lašelio slydimo greitis akivaizdžiai turi įtakos lašelio masės ir geometrinio matmens kitimui. Didėjant lašelio slydimo *Re* greičiui, kondensacinio fazinių virsmų rėžimo metu, lašelio masės ir spindulio vertė pastebimai išauga (3.1 lentelė).

3.1 lentelė. Lašelio masės ir spindulio vertės, kondensacinio fazinių virsmų režimo pabaigoje prie skirtingo lašelio slydimo greičio intensyvumo.

Re ₀	10	20	50	100
$M, kg \cdot 10^{-10}$	5.425647	5,435706	5,453354	5,449999
$R, m \cdot 10^{-6}$	50,77527	50,80742	50,86288	50,8793

3.10 pav. Lašelio slydimo greičio įtaka vandens lašelio masės ir dispersiškumo kitimui fazinių virsmų metu. Re₀: (1) 10, (2) 20, (3) 50, (4) 100; T₀=278K; 2R₀=100µm; T_d=373K.

Kaip jau minėta, keičiantis lašelio slydimo greičiui, kondensacinio fazinių virsmų rėžimo trukmė kinta, tai reiškia jog jam pailgėjus, ilgesnį laiko periodą prie lašelio priteka garo srautas, kas įtakoja prieš tai aptartus fazinių virsmų parametrus. Tačiau yra matoma, jog lašelio slydimo greičio kitimas, taip pat turi įtakos pritekančiam prie lašelio garo srauto tankiui m_g (3.11 pav. b). Akivaizdžiai matoma, jog kondensacijos fazinių virsmų pradžios momente garo srauto tankis yra vienodas visų lašelio paviršiaus slydimo greičiams. Tai pagrindžiama garo srauto tankio (2.10) lygtimi ir paaiškina, kodėl pradžios momentu fazinių virsmų šilumos srautas yra vienodas visiems lašelio slydimo Re greičiams.

3.11 pav. Lašelio slydimo greičio įtaka lašelio fazinių virsmų šilumos srautui ir garo srauto tankiui kondensaciniame ir garavimo fazinių virsmų režimuose. Re₀: (1) 10, (2) 20, (3) 50, (4) 100; T₀=278K; 2R₀=100μm; T_d=373K.

Kondensacinio fazinių virsmų rėžimo metu, turėtų būti atkreiptas ypatingas dėmesys į lašelio slydimo greičio įtaką išorinei konvekcijai. Intensyvėjant lašelio slydimo greičiui, akivaizdžiai išauga išorinės konvekcijos šilumos srauto pradžios momento vertės (3.12 pav. a; 3.2 lentelė). Tai lemia, jog išorinės konvekcijos q_c^+ indėlis energetinių srautų indėlio energetiniame balanse (3.9 pav.) pradžios momentu tampa esminiu. Jos pradžios momento indėlis perauga fazinių virsmų indėlį $q_f^+ < q_c^+$, kai Re > 20.

3.12 pav. Lašelio slydimo greičio įtaka išoriniai (a) ir vidinei (b) konvekcijai. Re₀: (1) 10, (2) 20, (3) 50, (4) 100; $T_0=278K$; $2R_0=100\mu m$; $T_d=373K$.

Po pradžios momento, matyti itin staigus išorinės konvekcijos kritimas (3.9 pav.; 3.12 pav. a). Šį reiškinį lemia tai, jog kondensaciniame fazinių virsmų režime, lašelių slydimo greitis slopsta labai intensyviai ir pradinis Re_0 sumažėja keletą kartų (3.13 pav.).

3.13 pav. Vandens lašelių slydimo greičio slopimas dujų mišinyje. Re₀: (1) 10, (2) 20, (3) 50, (4) 100; T₀=278K; 2R₀=100µm; T_d=373K.

Lašelių slydimo greičio slopimas, savo ruožtu labai stipriai įtakoja konvekcinius procesus. Konvekcinio šildymo intensyvumas tolygiai krinta su mažėjančiu lašelių slydimo greičiu. Konvekcinio šildymo intensyvumą apibrėžia Nuselto kriterijus ir jo priklausomybė nuo lašelių slydimo greičio, grafiškai pateikta (3.14 pav.).

3.14 pav. Lašelio slydimo greičio įtaka Nuselto kriterijui. Re₀: (1) 10, (2) 20, (3) 50, (4) 100; T₀=278K; 2R₀=100μm; T_d=373K.

Išorinės konvekcijos šilumos srauto intensyvumui įtakos turi ir lašelio paviršiaus temperatūra T_R . Ji daro tiesioginę įtaką šilumokaitos varomajai jėgai, kuri apibrėžiama aplinkos dujų mišinio temperatūros ir lašelio paviršiaus temperatūros $T_d - T_R$ skirtumu. Taigi, lašeliui palaipsniui šylant (3.15 pav.), palaipsniui krenta ir šilumokaitos varomoji jėga, kuri įtakoja konvekcijos šilumos srautą. Reikėtų pastebėti, kad lašelio slydimo greičio intensyvėjimas, teigiamai veikia šilumokaitos varomąją jėga, dėl lėčiau kylančios lašelio paviršiaus temperatūros.

3.15 pav. Lašelio paviršiaus slydimo greičio intensyvumo įtaka lašelio paviršiaus temperatūrai. Re₀: (1) 10, (2) 20, (3) 50, (4) 100; T₀=278K; 2R₀=100μm; T_d=373K.

Lašelio slydimo greitis daro įtaką ne tik išorinei konvekcijai (3.12 pav. a), bet ir vidinei (3.12 pav. b) lašelio konvekcijai. Dėl trinties jėgų kylančių tarp lašelio paviršiaus ir jį aptekančio dujų mišinio, jo paviršiuje sukeliamas vandens judėjimas, kurio judesio momentas persiduoda į lašelio vidinius sluoksnius, sukeldamas tūrinį lašelio maišymąsi ir taip šilumos nuvedimas į lašelį tampa intensyvesnis negu laidumo atveju. Tai įvertinama efektyviuoju šilumos laidžio k_c^- parametru. Lašelio slydimo greičio įtaka šilumos laidžio parametrui grafiškai pateikta (3.16 pav.), o pradžios momento vertės pateiktos (3.2 lentelė).

3.2 lentelė. Išorinės ir vidinės konvekcijos	bei šilumos laidumo	parametro pradinio	momento vertės.
--	---------------------	--------------------	-----------------

Re ₀	10	20	50	100
q_c^-	188,8099	205,3434	238,1024	274,9837
q_c^+	93,34425	109,8778	142,6367	179,5181
k_c^-	1,120453	1,384926	2,083251	2,491293

3.16 pav. Lašelio slydimo greičio įtaka efektyviojo laidumo parametrui. Re₀: (1) 10, (2) 20, (3) 50, (4) 100; T₀=278K; 2R₀=100µm; T_d=373K.

Fazinių virsmų režimo lašelio paviršiuje kaitos iš garo kondensacinio režimo į skysčio nestacionariojo garavimo režimo momentu, lašelis yra šildomas tik išorine konvekcija $q_c^+ = q_c^-$. Tai gerai matoma (3.9 pav.) grafike. Išorinės konvekcijos šilumos srauto (raudona) ir į lašelio nuvedamo šilumos srauto (juoda) susikirtimo taške, jų vertės yra vienodos, o fazinių virsmų šilumos srautas yra nulinis. Kadangi $q_f^+ = 0$, reiškia jog nevyksta masės mainai $m_g^+ = 0$ (3.11 pav. b).

Prasidėjus fazinių virsmų garavimo rėžimui, fazinių virsmų šilumos srautas pradeda didėti (3.11 pav. a) dėl intensyvėjančio garavimo (3.11 pav. b). Dėl nutekančio garo srauto, mažėja tiek lašelio masė (3.10 pav. a), tiek geometrija (3.10 pav. b). Lašelio garinimo metu, išorine konvekcija tiekiama šiluma yra labai svarbi, nes ji sunaudojama tiek lašelio šildymui, tiek jo garinimui (3.9 pav.). Šiluma lašelio šildymui yra nuvedama iki kol lašelis pasiekia pusiausviros temperatūrą. Palaipsniui šylant lašeliui į jį nuvedamos šilumos kiekis mažėja (3.12 pav. b), o šiluma lašelio garinimui išauga, dėl ko lašelio garinimas intensyvėja. Pusiausviro garavimo režime, garo srauto intensyvumas auga dėl mažėjančio lašelio diametro. Prieš pat lašelio išgaravimo momentą, jis tampa artimas begalybei.

Vykstant garavimo faziniams virsmams, matoma, kad palaipsniui krenta išorinės konvekcijos šilumos srautas. Vienas iš įtakojančių faktorių jau minėta šilumokaitos varomoji jėga. Kitas įtakojantis faktorius, fazinių virsmų šilumokaitą lydis Stefano hidrodinaminis srautas, kuris silpnina konvekcinio šildymo intensyvumą, kai lašelis garuoja ir intensyvina kondensacijos metu. Jo įtaka įvertinama f_{BT} pataisos funkcija (3.17 pav.). Ši funkcija yra daugiklis (2.21) lygtyje, todėl jos reikšmėms $f_{BT} > 1$ yra įvertinamas Stefano hidrodinaminio srauto poveikis kondensaciniame fazinių virsmų rėžime, o kai reikšmės $f_{BT} < 1$ yra įvertinamas Stefano hidrodinaminio srauto poveikis garavimo fazinių virsmų režime.

3.17 pav. matoma, jog garavimo fazinių virsmų rėžime vyraujant intensyvesniam lašelio paviršiaus slydimo greičiui Stefano hidrodinaminio srauto išorinės konvekcijos slopinimo poveikis silpnėja.

3.17 pav. Lašelio slydimo greičio įtaka Stefano hidrodinaminio srauto pataisos funkcijai. Re₀: (1) 10, (2) 20, (3) 50, (4) 100; T₀=278K; 2R₀=100μm; T_d=373K.

Atlikto tyrimo metu buvo tiriamas lašelio paviršiaus slydimo greičio intensyvumo įtaka, išpurškus šaltą vandenį į 373K temperatūros dujas. Buvo nustatyta, jog lašelio paviršiaus slydimo greičio intensyvumas labiausiai paveikia išorinę bei vidinę lašelio konvekcijas. Išorinės konvekcijos vertės kondensacinio fazinio virsmų rėžimo pražios momentu akivaizdžiai išauga prie didesnio lašelio paviršiaus slydimo greičio. Lašelio vidinė konvekcija taip pat labai suintensyvėja, dėl intensyvesnės vidinės lašelio cirkuliacijos, kurią sukelia kylančios trinties jėgos tarp lašelio paviršiaus ir jį aptekančių dujų mišinio. Ilgėjanti kondensacinio fazinių virsmų rėžimo trukmė ir intensyvesnis garo srautas lašelio paviršiuje iššaukia didesnį lašelio masės bei matmens pokytį.

3.4 Dujų mišinio temperatūros įtaka vandens lašelių šilumos ir masės mainams

Vykdome lašelių šilumos ir masės mainų tyrimą, kai $2R \equiv 100 \mu m$ skersmens lašeliai šyla $T_d, K: 373, 473, 573, 673$ temperatūros dujų mišinyje, jose skysčio garo $\bar{p} = 0,1$, o lašelių slydimo greitis apibrėžiamas $Re_0 = 50$. Tyrimas atliekamas išpurškiant šaltą $T_0 = 278K$ temperatūros vandenį.

Išpurkšto šalto vandens lašelis šyla kondensacinio fazinių virsmų rėžimo metu. Kondensaciniame fazinių virsmų režime lašelį šildo apsupties suteikta šiluma ir besikondensuojančio garo išskirta fazinių virsmų šiluma: $q_c^- = q_c^+ + q_f^+$. Fazinių virsmų šilumos ir išorinės konvekcijos šilumos srautų sandų santykis pateiktas grafiškai (3.18 pav.).

3.18 pav. Dujų mišinio temperatūros įtaka fazinių virsmų šilumos srauto ir išorinės konvekcijos šilumos srauto santykiui. R₀=50µm; T₀=278K; Re₀=50; T_d, K: (1) 373, (2) 473, (3) 573, (4) 673.

Akivaizdžiai matosi, jog išorinės konvekcijos šilumos srauto dedamoji pradžios momentu yra didžiausia. Jos įtaka išauga dar labiau, jei šaltas vanduo išpurškiamas aukštesnės temperatūros dujų mišinyje. Tai atsispindi (3.18 pav.), kur matomas srautų santykio vertės mažėjimas pradžios momente. Šio santykio vertei artėjant į nulį, išorinės konvekcijos šilumos srauto sando indėlis lašelio šildymo energetinių srautų balanse didėja, lyginant su fazinių virsmų šilumos srauto sando indėliu. Išorinės konvekcijos ir fazinių virsmų šilumos srautų pradžios momento vertės pateiktos (3.3 lentelė).

Būtina turėti omenyje, jog (3.18 pav.) fazinių virsmų ir išorinės konvekcijos šilumos srautų santykis atvaizduotas tiek kondensacinio, tiek garavimo fazinių virsmų rėžimų metu. Kondensacinis fazinių virsmų rėžimas vyksta nuo pradžios momento iki fazinių virsmų rėžimo kaitos momento, kur fazinių virsmų ir išorinės konvekcijos šilumos srautų santykis tampa nuliniu $q_f^+/q_c^+ = 0$, nes $q_f^+ = 0$ (3.20 pav. a). Fazinių virsmų rėžimui perėjus į garavimo fazinių virsmų rėžimą, (3.18 pav.) grafiškai pateiktas fazinių virsmų ir išorinės konvekcijos šilumos srautų santykis antykis apibūdina išorinės

konvekcijos šilumos srauto dalį $q_f^+ = q_c^+ - q_c^-$, nuvedamą lašelio garinimui. Kylanti šio santykio vertė indikuoja augančią išorinės konvekcijos šilumos srauto dalį tenkančią garavimo faziniams virsmams ir intensyvėjantį garavimą (3.22 pav.).

3.3 lentelė. Išorinės konvekcijos šilumos srauto vertės pradžios momentu prie skirtingos dujų mišinio temperatūros.

<i>T_d</i> , <i>K</i>	373	473	573	673
$q_{c,0}^+, \frac{W}{m^2 \cdot s}$	142,6367	308,1139	514,2095	732,1222
$q_{f,0}^+, \frac{W}{m^2 \cdot s}$	95,46565	114,6102	136,4417	153,3075
$\frac{q_{f,0}^+}{q_{c,0}^+}$	0,669292	0,371973	0,265343	0,209402

Garavimo fazinių virsmų rėžimas intensyvėja, dėl sparčiai krintančios vidinės lašelio konvekcijos (3.19 pav.). Grafike akivaizdžiai atsispindi, jog vidinės lašelio konvekcijos pradžios momento vertės labai skiriasi, kintant dujų mišinio temperatūrai. Kylant dujų mišinio temperatūrai, vidinės lašelio konvekcijos pradžios momento vertės didėja (3.4 lentelė).

3.4 lentelė. Dujų mišinio temperatūros įtaka pradžios momento vidinei lašelio konvekcijai.

<i>T_d</i> , <i>K</i>	373	473	573	673
$q_{c,0}^{-}, \frac{W}{m^2 \cdot s}$	238,1024	422,7241	650,6512	904,0754

3.19 pav. Dujų mišinio temperatūros įtaka vidinei lašelio konvekcijai. R₀=50μm; T₀=278K; Re₀=50; Td, K: (1) 373, (2) 473, (3) 573, (4) 673.

Matomas staigus vidinės konvekcijos (3.19 pav.) kritimas, kuriam tiesioginės įtakos turi išorinės konvekcijos (3.20 pav. b) ryškus intensyvumo silpnėjimas. Ši išorinės konvekcijos silpimo tendencija, gali būti paaiškinta šilumokaitos varančiosios jėgos $T_d - T_R$ mažėjimu, kuri tiesiogiai priklauso nuo dujų mišinio ir lašelio paviršiaus temperatūros. Lašelio paviršiaus temperatūros kitimas šylant skirtingų temperatūrų dujų mišinyje pateiktas grafiškai (3.21 pav.).

3.20 pav. Dujų mišinio temperatūros įtaka fazinių virsmų (a) ir išorinės konvekcijos (b) šilumos srautams. R₀=50µm; T₀=278K; Re₀=50; T_d, K: (1) 373, (2) 473, (3) 573, (4) 673.

3.21 pav. Dujų mišinio temperatūros įtaka lašelio terminei būsenai. R₀=50μm; T₀=278K; Re₀=50; T_d, K: (1) 373, (2) 473, (3) 573, (4) 673.

3.21 pav. išryškėja dujų mišinio temperatūros įtaka lašelio terminei būsenai. Grafike matoma tendencija, jog aukštesnės temperatūros dujų mišinyje lašelis šyla kur kas intensyviau. Kaip jau minėta, kondensaciniame fazinių virsmų režime lašelį šildo išorine konvekcija suteikta šiluma ir besikondensuojančio garo išskirta fazinių virsmų šiluma. Pirmosios, suteikiamos šilumos intensyvumas (3.20 pav. b) priklauso nuo šilumokaitos varomosios jėgos, kuri akivaizdžiai išauga aukštesnės temperatūros dujų mišinyje. Antrąja suteikiamos šilumos intensyvumas priklauso nuo susikondensuojančio garo srauto išskirtos fazinių virsmų šilumos $m_{a,kon} \cdot L$ (3.22 pav.) intensyvumo.

3.22 pav. Dujų mišinio temperatūros įtaka garo srautui (a) ir jo tankiui (b) lašelio paviršiuje. R₀=50μm; T₀=278K; Re₀=50; T_d, K: (1) 373, (2) 473, (3) 573, (4) 673.

Matomas apčiuopiamas garo srauto tankio pradžios momento verčių pokytis, keičiantis garo dujų mišinio temperatūrai. Akivaizdžiai prie aukštesnių garo dujų mišinio temperatūrų, garo srauto tankis išauga (3.22 pav. b; 3.5 lentelė), kas lemia didėjantį pradžios momento fazinių virsmų šilumos srautą (3.20 pav. a; 3.3 lentelė).

3.5 lentelė. Kondensacinio fazinių virsmų režimo trukmė, bendra fazinių virsmų metu išsiskyrusi šiluma ir bendras pritekėjęs garo srautas prie skirtingos dujų mišinio temperatūros.

<i>T_d</i> , <i>K</i>	373	473	573	673
$m_{g,0}, rac{kg}{m^s \cdot s}$	0,03835	0,04648	0,05534	0,06175
$ au_{kon}$, S	0,029866	0,017422	0,013067	0,009458
$\sum q_f^+(\tau_{kon})$	947,553	1087,496	1678,774	1715,071
$\sum g_g(\tau_{kon})$	0,1234	0,1413	0,2181	0,2218

Aukštesnės temperatūros dujų mišinyje lašeliui suteikiamos išorinės konvekcijos ir fazinių virsmų šilumos daug intensyviau. Tai lemia, jog lašelis šyla kur kas greičiau ir jo paviršiuje kondensacinis fazinių virsmų režimas vyksta kur kas trumpiau (3.5 lentelė). Nepaisant trumpėjančios kondensacinio fazinių virsmų režimo trukmės, bendras fazinių virsmų šilumos srautas suteikiamas lašeliui ženkliai išauga. Nors prieš tai aptartiems parametrams slopinamosios įtakos aukštesnė dujų mišinio temperatūra neturi, to negalima pasakyti apie lašelio matmens kitimą (3.23 pav.).

3.23 pav. Dujų mišinio temperatūros įtaka lašelio masei. R₀=50μm; T₀=278K; Re₀=50; T_d, K: (1) 373, (2) 473, (3) 573, (4) 673.

3.23 pav. ryškiai atsispindi, jog aukštesnės temperatūros dujų mišinyje, lašelio masės prieaugis kondensacinio fazinių virsmų režimo metu mažėja. Lašelio masės prieaugis sumažėja nuo 4,2% iki 2,3% lašelio masės prieaugio, kai dujų mišinio temperatūra 373K, 673K atitinkamai.

Aukštesnė dujų mišinio temperatūra intensyvina garo srautą ne tik kondensaciniame fazinių virsmų rėžime, bet ir garavimo fazinių virsmų režime. Tačiau, garo srauto (3.22 pav. a) intensyvėjimas garavimo fazinių virsmų rėžime lemia spartesnį lašelio matmens kritimą (3.23 pav.), kuris savo ruožtu tiesiogiai įtakoja tą patį garo srautą (2.11). Taigi, garavimo fazinių virsmų režime, pagrindiniu garo srautą apibrėžiančiu parametru, galima laikyti garo srauto tankį m_g. Matome (3.22 pav. b), jog garo srauto tankis pastebimai intensyvėja garavimo fazinių virsmų metu. Paveiksle taip pat išryškėja, jog garo srauto tankio intensyvumas išauga prie aukštesnių dujų mišinio temperatūrų.

Garo srauto tankį, garavimo fazinių virsmų režime, apibūdina fazinių virsmų šilumos srautas $q_f^+ = q_c^+ - q_c^-$. Nors ir matomas aiškus išorinės konvekcijos šilumos srauto (3.20 pav. b) mažėjimas, fazinių virsmų šilumos srautas auga (3.20 pav. a), dėl mažėjančio lašelio matmens.

3.24 pav. Dujų mišinio temperatūros įtaka išorinei konvekcijai. R₀=50μm; T₀=278K; Re₀=50; T_d, K: (1) 373, (2) 473, (3) 573, (4) 673.

Išorine konvekcija teikiama šiluma, garavimo fazinių virsmų režime, tampa esmine. Jos sandas, spartinantis fazinių virsmų režimą, energiniame šilumos srautų balanse tolygiai auga ir tai atsispindi (3.18 pav.). Kai fazinių virsmų ir išorinės konvekcijos šilumos srautų santykis yra lygus vienetui, pasiekiamas pusiausviro garavimo fazinių virsmų režimas, kur visa išorine konvekcija suteikiama šiluma yra nuvedama lašelio fazinių virsmų režimui $q_f^+ = q_c^+ - (q_c^- \equiv 0)$. Tačiau ši sąlyga galioja ne visuomet. Minėto santykio didis gali viršyti vienetą, kas reikštų, jog $q_f^+ > q_c^+$. Pusiausviro garavimo režime lašelis gali pradėti aušti ir jo mažėjančios entalpijos sandas suintensyvina garavimo fazinių virsmų režimą. Jos dydį apibrėžia fazinių virsmų ir išorinės konvekcijos šilumos srautų skirtumas $q_f^+ - q_c^+$ (3.19 pav.). Entalpija pradeda kristi dėl lašelio terminio disbalanso. Lašelio paviršiaus T_R temperatūra pradeda staigiai kristi, kai tuo tarpu lašelio centro T_c ir masės vidutinė T_m temperatūros vis dar kyla (3.25 pav.). Kai lašelio paviršiaus temperatūra nukrenta žemiau masės vidutinės temperatūros $T_R < T_m$ pasikeičia temperatūros lauko kryptis, kuri nesutampa su temperatūros sklidimo kryptimi, kas savo ruožtu pakeičia temperatūrinio gradiento ženklą į neigiamą ir gauname $q_f^+ = q_c^+ - (-q_c^-) = q_c^+ + q_c^-$.

3.25 pav. Lašelio terminės būsenos kitimas pusiausviro garavimo režime. R₀=50µm; T₀=278K; Re₀=50; T_d= 673K.

Jau kaip minėta, šilumokaitos varomoji jėga, daro tiesioginę įtaką išorinei konvekcijai. Matoma (3.24 pav.), jog žemesnės temperatūros dujų mišinyje, išorinė konvekcija silpnėja kur kas lėčiau. Lėtesnis išorinės konvekcijos silpimas lemia, jog šilumos nuvedimas į lašelį vyksta intensyviau. Ši tendencija atsispindi efektyviojo šilumos laidžio k_c^- parametro grafiniame paveiksle (3.26 pav.).

3.26 pav. Dujų mišinio temperatūros įtaka efektyviojo laidžio parametrui. R₀=50μm; T₀=278K; Re₀=50; Td, K: (1) 373, (2) 473, (3) 573, (4) 673.

Svarbu atkreipti dėmesį į dar vieną faktorių, kuris turi įtakos fazinių virsmų režimui. Šis, fazinių virsmų šilumokaitą lydintis srautas, silpnina konvekcinio šildymo intensyvumą garavimo fazinių virsmų rėžime ir intensyvina kondensaciniame fazinio virsmų režime ir yra žinomas kaip Stefano hidrodinaminio srauto įtaka yra įvertinama f_{BT} pataisos funkcija,

kuri apskaičiuojama pagal (2.30) modelį, kai lašelio slydimo greitis yra mažas, o prie intensyvaus lašelio slydimo, pagal (2.31). Kai reikšmės $f_{BT} > 1$, Stefano hidrodinaminio srauto poveikis yra teigiamas, o kai reikšmės $f_{BT} < 1$, neigiamas (slopinamasis).

3.27 pav. Dujų mišinio temperatūros įtaka Stefano hidrodinaminio srauto pataisos funkcijai. $R_0=50\mu m$; $T_0=278K$; $Re_0=50$; T_d , K: (1) 373, (2) 473, (3) 573, (4) 673.

3.27 pav. pateiktose pataisos funkcijos kreivėse matoma ryški Stefano hidrodinaminio srauto poveikio didėjimo tendencija prie aukštesnių dujų mišinio temperatūrų. Kaip atsispindi grafike, pakylant dujų mišinio temperatūrai 100K, Stefano hidrodinaminio srauto poveikis nutekančiam garo srautui išauga apie ~2%. Tam įtakos turi nutekantis intensyvus garo srautas (3.22 pav. b) garavimo fazinių virsmų metu.

4 IŠVADOS

- 1. Išpurkšto skysčio lašelių šilumokaitą ir masės mainus nusakančius parametrus P galime rasti, taikant palyginamąjį vertinimą. Terminių P_T parametrų paieškai, užtenka realaus laiko (τ , s) mastelį pakeisti į Furje kriterijumi išreikštą laiko mastelį (Fo) ir šie parametrai puikiai atsispindi šių parametrų P(Fo) funkcijų grafikuose. Tačiau energinių P_q ir fazinių virsmų P_f parametrų vertinimui, būtina sudaryti normuotų $\overline{P}(Fo) = P(Fo)/P_0$ parametrų funkcijas.
- 2. Lašelio paviršiaus slydimo greičio intensyvumas labiausiai paveikia išorinį bei vidinį lašelio šilumos konvekcinį pernešimą. Išorinės konvekcijos šilumos srauto vertės kondensacinio fazinio virsmų rėžimo pradžios momentu akivaizdžiai išauga prie didesnio lašelio paviršiaus slydimo greičio. Lašelio vidinė konvekcija taip pat labai suintensyvėja, dėl intensyvesnės vidinės vandens lašelyje cirkuliacijos, kurią sukelia kylančios trinties jėgos tarp lašelio paviršiaus ir jį aptekančių dujų mišinio. Ilgėjanti kondensacinio fazinių virsmų rėžimo trukmė ir intensyvesnis garo srautas lašelio paviršiuje iššaukia didesnį lašelio masės bei matmens pokytį.
- 3. Dujų mišinio temperatūra daro ryškia įtaką lašelio kondensacinio fazinių virsmų režimo trukmei. Didėjant dujų mišinio temperatūrai, kondensacinio fazinių virsmų režimo trukmė trumpėja. To pasėkoje, lašelio paviršiuje mažėja susikondensuojančio garo kiekis, taip nulemdamas, jog lašelio masės prieaugis kondensacinio fazinių virsmų režimo metu prie aukštesnių temperatūrų mažėja. Mažesnis masės prieaugis ir intensyvesnis lašelio garinimas lemia tai, jog lašelio gyvavimo trukmė sutrumpėja. Dujų mišinio temperatūros įtaka, labai stipriai atsispindi ir išorinės konvekcijos šilumos sraute. Kylant dujų mišinio temperatūrai, šilumokaitos varomoji jėga taip pat auga, taip akivaizdžiai suintensyvindama išorinę konvekciją.
- 4. Įgauta vienišų lašelių šilumokaitos ir fazinių virsmų skaitinio modeliavimo patirtis atveria kelia skaitiškai ištirti šilumos ir masės mainus lašelių ir drėgnų dujų atominių elektrinių apsauginiuose kiautuose, kai kraštinės sąlygos yra sudėtingesnės ir lašelių pernašos procesai įtakoja dujų parametrus.

5 LITERATŪROS SĄRAŠAS

1. The World Factbook — Central Intelligence Agency: India. In [interaktyvus]. 2015. [žiūrėta 2016-10-12]. Prieiga per internetą: ">https://www.cia.gov/library/publications/the-world-factbook/geos/xx.html#Geo>">https://www.cia.gov/library/publications/the-world-factbook/geos/xx.html#Geo>">https://www.cia.gov/library/publications/the-world-factbook/geos/xx.html#Geo>">https://www.cia.gov/library/publications/the-world-factbook/geos/xx.html#Geo>">https://www.cia.gov/library/publications/the-world-factbook/geos/xx.html#Geo>">https://www.cia.gov/library/publications/the-world-factbook/geos/xx.html#Geo>">https://www.cia.gov/library/publications/the-world-factbook/geos/xx.html#Geo>">https://www.cia.gov/library/publications/the-world-factbook/geos/xx.html#Geo>">https://www.cia.gov/library/publications/the-world-factbook/geos/xx.html#Geo>">https://www.cia.gov/library/publications/the-world-factbook/geos/xx.html#Geo>">https://www.cia.gov/library/publications/the-world-factbook/geos/xx.html#Geo>">https://www.cia.gov/library/publications/the-world-factbook/geos/xx.html#Geo>">https://www.cia.gov/library/publications/the-world-factbook/geos/xx.html#Geo>">https://www.cia.gov/library/publications/the-world-factbook/geos/xx.html#Geo>">https://www.cia.gov/library/publications/the-world-factbook/geos/xx.html#Geo>">https://www.cia.gov/library/publications/the-world-factbook/geos/xx.html#Geo>">https://www.cia.gov/library/publications/the-world-factbook/geos/xx.html#Geo>">https://www.cia.gov/library/publications/the-world-factbook/geos/xx.html#Geo>">https://www.cia.gov/library/publications/the-world-factbook/geos/xx.html#Geo>"">https://www.cia.gov/library/publications/the-world-factbook/geos/xx.html#Geo>"">https://www.cia.gov/library/publications/the-world-factbook/geos/xx.html#Geo>"">https://www.cia.gov/library/publications/the-world-factbook/geos/xx.html#Geo>""">https://www.cia.gov/library/publicationgeos/%

How much water is there on Earth, from the USGS Water Science School. In [interaktyvus].
 [žiūrėta 2016-10-12]. Prieiga per internetą: http://water.usgs.gov/edu/earthhowmuch.html.

3. HARTMANN, D.L. - HARTMANN, D.L. Chapter 5 – The Hydrologic Cycle. In *Global Physical Climatology* . 2016. p. 131–157. ISBN 9780123285317.

4. IEA, I.E.A. World Energy Outlook 2016. In [interaktyvus]. 2016. p. 684. Prieiga per internetą: http://www.iea.org/publications/freepublications/publication/WEB_WorldEnergyOutlook2015Exe cutiveSummaryEnglishFinal.pdf>.

5. GYLYS, J. - AŠMANAS, L. *Atominių elektrinių branduoliniai energetiniai įrenginiai*. . Sud. P. Dastikas. Kaunas, Lietuva: Technologija, 2011. 289 p. ISBN 978-9955-25-977-0.

 REISCH, F. High Pressure Boiling Water Reactor Neutron flux measurement Control rod Steam Moisture separator Water Recirculation flow Fuel. In [interaktyvus]. 2009. no. Figure 1, p. 1–10. [žiūrėta 2016-12-14]. . Prieiga per internetą: http://www-

pub.iaea.org/MTCD/publications/PDF/P1500_CD_Web/htm/pdf/topic5/5S02_F. Reisch.pdf>.

PETRANGELI, G. Defence in depth. In *Nuclear Safety* [interaktyvus]. [s.l.]: Elsevier, 2006. p.
 89–91. ISBN 9780080460789Prieiga per internetą:

http://linkinghub.elsevier.com/retrieve/pii/B9780750667234500103>.

8. INTERNATIONAL ATOMIC ENERGY AGENCY Design of reactor containment systems for nuclear power plants. In *IAEA Safety Standards Series* . 2004. Vol. No. NS-G-1, p. 117. .

9. KNIEF, R.A. *Nuclear engineering: Theory and Technology of Commercial Nuclear Power*. . Washington: Taylor&Francis, 1992. 544 p. ISBN 978-1560320890.

10. MILIAUSKAS, G. - NORVAIŠIENĖ, K. Garuojančių lašelių sudėtinės pernašos nestacionariųjų procesų sąveikos sisteminis įvertinimas. In *Energetika*. 2013. no. 1, p. 26–41.

 LABECKAS, G. - SLAVINSKAS, S. The Effect of Ethanol, Petrol and Rapeseed Oil Blends on Direct Injection Diesel Engine Performance and Exhaust Emissions. In *Transport* [interaktyvus].
 2010. Vol. 25, no. January, p. 116–128. Prieiga per interneta:

<//www.tandfonline.com/doi/pdf/10.3846/transport.2010.15>.

12. ELPERIN, T. - KRASOVITOV, B. Radiation, thermal diffusion and kinetic effects in evaporation and combustion of large and moderate size fuel droplets. In *International Journal of Heat and Mass Transfer*. 1995. Vol. 38, no. 3, p. 409–418.

13. ABRAMZON, B. - SIRIGNANO, W.A. Droplet vaporization model for spray combustion calculations. In *International Journal of Heat and Mass Transfer*. 1989. Vol. 32, no. 9, p. 1605–

1618. .

14. GODOY, W.F. - DESJARDIN, P.E. Radiation driven evaporation for polydisperse water sprays. In *International Journal of Heat and Mass Transfer* [interaktyvus]. 2009. Vol. 52, no. 11–12, p. 2893–2901. Prieiga per internetą:

<http://dx.doi.org/10.1016/j.ijheatmasstransfer.2008.12.005>.

15. TAYLAN, O. - BERBEROGLU, H. Thermal radiation transport in a fluidized dry water system. In *Journal of Quantitative Spectroscopy and Radiative Transfer* [interaktyvus]. 2013.

Vol. 120, p. 104–113. Prieiga per internetą: http://dx.doi.org/10.1016/j.jqsrt.2013.01.005>.

16. BABIĆ, M. et al. Simulations of TOSQAN containment spray tests with combined Eulerian CFD and droplet-tracking modelling. In *Nuclear Engineering and Design* . 2009. Vol. 239, no. 4, p. 708–721.

17. TSENG, C.C. - VISKANTA, R. Enhancement of water droplet evaporation by radiation absorption. In *Fire Safety Journal* . 2006. Vol. 41, no. 3, p. 236–247.

18. YU, H.Z. A Revisit of Froude-Modeling-Based Physical Scaling of Fire Suppression by Water Sprays. In . 2009. no. Supdet, p. 24–26.

19. CHANG, J.C. et al. Experimental study on the extinction of liquid pool fire by water droplet streams and sprays. In *Fire Safety Journal* . 2007. Vol. 42, no. 4, p. 295–309.

20. CHE, D. et al. Heat and mass transfer characteristics of simulated high moisture flue gases. In *Heat and Mass Transfer/Waerme- und Stoffuebertragung*. 2005. Vol. 41, no. 3, p. 250–256.

21. ZHAO, H. et al. Experimental study on vertical RPU fire suppression performance using water spray. In *Experimental Thermal and Fluid Science* [interaktyvus]. 2015. Vol. 64, p. 108–113.

Prieiga per internetą: http://linkinghub.elsevier.com/retrieve/pii/S0894177715000382>.

22. JENFT, A. et al. Experimental and numerical study of pool fire suppression using water mist. In *Fire Safety Journal* [interaktyvus]. 2014. Vol. 67, p. 1–12. Prieiga per interneta:

<http://dx.doi.org/10.1016/j.firesaf.2014.05.003>.

ZHANG, H. et al. Freezing of sessile water droplet for various contact angles. In *International Journal of Thermal Sciences* [interaktyvus]. 2016. Vol. 101, p. 59–67. Prieiga per internetą: http://dx.doi.org/10.1016/j.ijthermalsci.2015.10.027>.

24. DOMBROVSKY, L.A. et al. The use of infrared irradiation to stabilize levitating clusters of water droplets. In *Infrared Physics and Technology* [interaktyvus]. 2016. Vol. 75, p. 124–132. Prieiga per interneta: http://dx.doi.org/10.1016/j.infrared.2015.12.020>.

25. QUILAQUEO, M. - AGUILERA, J.M. Crystallization of NaCl by fast evaporation of water in droplets of NaCl solutions. In *Food Research International* [interaktyvus]. 2016. Vol. 84, p. 143–149. Prieiga per interneta: http://dx.doi.org/10.1016/j.foodres.2016.03.030>.

26. MAHDIPOOR, M.S. et al. HVOF sprayed coatings of nano-agglomerated tungsten-

carbide/cobalt powders for water droplet erosion application. In Wear [interaktyvus]. 2015.

Vol. 330–331, p. 338–347. Prieiga per internetą: http://dx.doi.org/10.1016/j.wear.2015.02.034>.

27. HE, M. - QIU, H. Internal flow patterns of an evaporating multicomponent droplet on a flat surface. In *International Journal of Thermal Sciences* . 2016. Vol. 100, p. 10–19.

28. BRERETON, G.J. A discrete multicomponent temperature-dependent model for the evaporation of spherical droplets. In *International Journal of Heat and Mass Transfer* [interaktyvus]. 2013. Vol. 60, no. 1, p. 512–522. Prieiga per internetą:

<http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.01.037>.

29. DAL'TO??, A.T.O. et al. Cross diffusion effects in the interfacial mass and heat transfer of multicomponent droplets. In *International Journal of Heat and Mass Transfer* . 2015. Vol. 85, p. 830–840.

30. GAVHANE, S. et al. Evaporation of multicomponent liquid fuel droplets: Influences of component composition in droplet and vapor concentration in free stream ambience. In *International Journal of Thermal Sciences* [interaktyvus]. 2016. Vol. 105, p. 83–95. Prieiga per internetą: http://dx.doi.org/10.1016/j.ijthermalsci.2016.03.003>.

31. LIU, L. et al. Evaporation of a bicomponent droplet during depressurization. In *International Journal of Heat and Mass Transfer* [interaktyvus]. 2016. Vol. 100, p. 615–626. Prieiga per internetą: http://linkinghub.elsevier.com/retrieve/pii/S0017931015314897.

32. GOPIREDDY, S.R. - GUTHEIL, E. Numerical simulation of evaporation and drying of a bicomponent droplet. In *International Journal of Heat and Mass Transfer* [interaktyvus]. 2013. Vol. 66, p. 404–411. Prieiga per interneta:

<http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.07.010>.

33. MAQUA, C. et al. Bicomponent droplets evaporation: Temperature measurements and modelling. In *Fuel* . 2008. Vol. 87, no. 13–14, p. 2932–2942.

34. PARBOWO, W. [interaktyvus]. .Prieiga per internetą: http://www.nrc.gov/reading-rm/basic-ref/students/for-educators/04.pdf>.

35. WENDT, J.F.Sud. *Computational Fluid Dynamics* [interaktyvus]. . Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. ISBN 978-3-540-85055-7.

36. 1999. .

37. MALET, J. Presentation of the tests matrix for the TOSQAN facility Spray Programme. In *IRSN technical report*. 2003. .

38. MALET, J. et al. Achievements of spray activities in nuclear reactor containments during the last decade. In *Annals of Nuclear Energy* [interaktyvus]. 2014. Vol. 74, no. C, p. 134–142. Prieiga per internetą: http://dx.doi.org/10.1016/j.anucene.2014.05.033>.

39. MALET, J. et al. Sprays in containment: Final results of the SARNET spray benchmark. In

Nuclear Engineering and Design [interaktyvus]. 2011. Vol. 241, no. 6, p. 2162–2171. Prieiga per internetą: http://dx.doi.org/10.1016/j.nucengdes.2011.03.016>.

40. MALET, J. et al. Gas entrainment by one single French PWR spray, SARNET-2 spray benchmark. In *Nuclear Engineering and Design* [interaktyvus]. 2015. Vol. 282, p. 44–53. Prieiga per interneta: http://dx.doi.org/10.1016/j.nucengdes.2014.12.008>.

41. MALET, J. et al. Modelling of Sprays in Containment Applications : Results of the TOSQAN Spray Benchmark (Test 101). In *The first European Review Meeting on Severe Accident Research (ERSMAR-2005)*. Aix-en-Provence, France, 2005. p. 1–12. .

42. D.ABDO, R.TOMASSIAN, J.BRINSTER, D.ROUMIER, I.TKATSCHENKO, J.L.W. M5-MASP MISTRA Experimental Results, Report DM2S. In *Commissariat à l'Energie Atomique -CEA*. Saclay, France, 2006.

43. D.ABDO, R.TOMASSIAN, J.BRINSTER, D.ROUMIER, I.TKATSCHENKO, J.L.W. MISTRA Tests MARC2 – MARC2B: Air-Helium-Nitrogen Stratification, Effect of Spray on Buoyant Gas Stratification, Report DM2S. In *Commissariat à l'Energie Atomique - CEA*. Saclay, France, 2006.

44. IRSN - French public expert in nuclear and radiological risks. In [interaktyvus]. [žiūrėta 2016-12-15]. Prieiga per internetą: http://www.irsn.fr/EN/Pages/home.aspx.

45. EDF at a glance. In [interaktyvus]. [žiūrėta 2016-12-15]. Prieiga per internetą:

<https://www.edf.fr/en/the-edf-group/world-s-largest-power-company/edf-at-a-glance>.

46. Company description. In [interaktyvus]. [žiūrėta 2016-12-15]. Prieiga per internetą: http://www.ujv.cz/en/about-company>.

47. ELBL, D. (PKM) KIT - Profile. In . 2016. .

48. KIM, J. et al. Spray effect on the behavior of hydrogen during severe accidents by a loss-ofcoolant in the APR1400 containment. In *International Communications in Heat and Mass Transfer* . 2006. Vol. 33, no. 10, p. 1207–1216.

49. HUANG, X.G. et al. Effect of spray on performance of the hydrogen mitigation system during LB-LOCA for CPR1000 NPP. In *Annals of Nuclear Energy* [interaktyvus]. 2011. Vol. 38, no. 8, p. 1743–1750. Prieiga per interneta: http://dx.doi.org/10.1016/j.anucene.2011.04.003>.

50. XIONG, J. et al. CFD Application to Hydrogen Risk Analysis and PAR Qualification. In *Science and Technology of Nuclear Installations* [interaktyvus]. 2009. Vol. 2009, p. 1–10. Prieiga per internetą: http://www.hindawi.com/journals/stni/2009/213981/.

51. MIMOUNI, S. et al. Modelling of sprays in containment applications with A CMFD code. In *Nuclear Engineering and Design* [interaktyvus]. 2010. Vol. 240, no. 9, p. 2260–2270. Prieiga per internetą: http://dx.doi.org/10.1016/j.nucengdes.2009.11.018>.

52. MALET, J. - HUANG, X. Influence of spray characteristics on local light gas mixing in nuclear

containment reactor applications. In *Computers and Fluids* [interaktyvus]. 2015. Vol. 107, p. 11–24. Prieiga per interneta: http://dx.doi.org/10.1016/j.compfluid.2014.10.002.

53. A. FOISSAC, J. MALET, S. MIMOUNI, P. RUYER, F. FEUILLEBOIS, O.S. EULERIAN SIMULATION OF INTERACTING PWR SPRAYS INCLUDING DROPLET COLLISIONS. In *Nuclear Technology* [interaktyvus]. 2013. Vol. 181, no. 1, p. 133–143. Prieiga per internetą: http://www.ans.org/pubs/journals/nt/a_15762>.

MALET, J. - PARDUBA, Z. EXPERIMENTAL CHARACTERIZATION OF VVER-440
 REACTOR CONTAINMENT TYPE SPRAY NOZZLE. In *Atomization and Sprays* [interaktyvus].
 2016. Vol. 26, no. 3, p. 235–255. Prieiga per internetą:

<http://www.dl.begellhouse.com/journals/6a7c7e10642258cc,54cdd3533559658c,5287e8ca02f244 7e.html>.

55. JAYARATNE, O.W. - MASON, B.J. The Coalescence and Bouncing of Water Drops at an Air/Water Interface. In *Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences* [interaktyvus]. 1964. Vol. 280, no. 1383, p. 545 LP-565. Prieiga per internetą: http://rspa.royalsocietypublishing.org/content/280/1383/545.abstract.

56. GUNN, R. Collision Characteristics of Freely Falling Water Drops. In *Science* [interaktyvus].1965. Vol. 150, no. 3697, p. 695 LP-701. Prieiga per internetą:

<http://science.sciencemag.org/content/150/3697/695.abstract>.

57. RYLEY, D.J. - BENNETT-COWELL, B.N. The collision behaviour of steam-borne water drops. In *International Journal of Mechanical Sciences* . 1967. Vol. 9, no. 12, p. 817–IN1.

58. ADAM, J.R. et al. The Collision, Coalescence, and Disruption of Water Droplets. In *Journal of Applied Physics* . 1968. Vol. 39, no. 11. .

59. WHELPDALE, D.M. - LIST, R. The Coalescence process in raindrop growth. In *Journal of Geophysical Research* [interaktyvus]. 1971. Vol. 76, no. 12, p. 2836–2856. [žiūrėta 2016-12-03]. . Prieiga per internetą: http://doi.wiley.com/10.1029/JC076i012p02836>.

60. LOW, T.B. - LIST, R. 1982. .

61. JIANG, Y.J. et al. An experimental investigation on the collision behaviour of hydrocarbon droplets. In *Journal of Fluid Mechanics* [interaktyvus]. 1992. Vol. 234, no. 1, p. 171. [žiūrėta 2016-12-03]. . Prieiga per internetą:

<http://www.journals.cambridge.org/abstract_S0022112092000740>.

62. ASHGRIZ, N. - GIVI, P. Binary collision dynamics of fuel droplets. In *International Journal* of Heat and Fluid Flow . 1987. Vol. 8, no. 3, p. 205–210.

63. ASHGRIZ, N. - GIVI, P. Coalescence efficiencies of fuel droplets in binary collisions. In *International Communications in Heat and Mass Transfer*. 1989. Vol. 16, no. 1, p. 11–20.

64. ESTRADE, J.P. et al. Experimental investigation of dynamic binary collision of ethanol

droplets - a model for droplet coalescence and bouncing. In *International Journal of Heat and Fluid Flow*. 1999. Vol. 20, no. 5, p. 486–491.

65. ORME, M. Experiments on droplet collisions, bounce, coalescence and disruption. In *Progress in Energy and Combustion Science* [interaktyvus]. 1997. Vol. 23, no. 1, p. 65–79. Prieiga per internetą: http://www.sciencedirect.com/science/article/pii/S0360128597000051.

66. MENCHACA-ROCHA, a. et al. Coalescence and fragmentation of colliding mercury drops. In *Journal of Fluid Mechanics* [interaktyvus]. 1997. Vol. 346, no. 1997, p. 291–318. [žiūrėta 2016-12-03]. . Prieiga per interneta: http://www.journals.cambridge.org/abstract S002211209700640X>.

67. ASHGRIZ, N. - POO, J.Y. Coalescence and separation in binary collisions of liquid drops. In *Journal of Fluid Mechanics* [interaktyvus]. 1990. Vol. 221, no. 1, p. 183. [žiūrėta 2016-11-27]. . Prieiga per interneta: http://www.journals.cambridge.org/abstract S0022112090003536>.

68. BRENN, G. et al. Investigation of the stochastic collisions of drops produced by Rayleigh breakup of two laminar liquid jets. In *Physics of Fluids* [interaktyvus]. 1997. Vol. 9, no. 2, p. 349. [žiūrėta 2016-12-03]. . Prieiga per internetą:

http://scitation.aip.org/content/aip/journal/pof2/9/2/10.1063/1.869236>.

69. BRENN, G. et al. The formation of satellite droplets by unstable binary drop collisions. In *Physics of Fluids* [interaktyvus]. 2001. Vol. 13, no. 9, p. 2463–2477. [žiūrėta 2016-12-03]. . Prieiga per internetą: http://scitation.aip.org/content/aip/journal/pof2/13/9/10.1063/1.1384892>.

 ROISMAN, I. V. Dynamics of inertia dominated binary drop collisions. In *Physics of Fluids* [interaktyvus]. 2004. Vol. 16, no. 9, p. 3438–3449. [žiūrėta 2016-12-03]. Prieiga per internetą: http://scitation.aip.org/content/aip/journal/pof2/16/9/10.1063/1.1777584>.

71. GAO, T.C. et al. Collision between an ethanol drop and a water drop. In *Experiments in Fluids* [interaktyvus]. 2005. Vol. 38, no. 6, p. 731–738. [žiūrėta 2016-12-03]. Prieiga per internetą: http://link.springer.com/10.1007/s00348-005-0952-1>.

72. GUIDO, S. - SIMEONE, □□□ M Binary collision of drops in simple shear flow by computerassisted video optical microscopy. In *J. Fluid Mech* [interaktyvus]. 1998. Vol. 357, p. 1–20. [žiūrėta 2016-12-03]. . Prieiga per internetą:

<http://www.journals.cambridge.org/abstract_S0022112097007921>.

73. BRENN, G. - FROHN, A. Collision and merging of two equal droplets of propanol. In *Experiments in Fluids* [interaktyvus]. 1989. Vol. 7, no. 7, p. 441–446. [žiūrėta 2016-12-03].
Prieiga per internetą: http://link.springer.com/10.1007/BF00187061>.

74. FOISSAC, A. et al. DROPLET SIZE AND VELOCITY MEASUREMENTS AT THE

OUTLET OF A HOLLOW CONE SPRAY NOZZLE. In *Atomization and Sprays* [interaktyvus]. 2011. Vol. 21, no. 11, p. 893–905. Prieiga per interneta:

http://www.dl.begellhouse.com/journals/6a7c7e10642258cc,57dcb9453f610420,421b682b6d9a26
ee.html>.

75. MASHAYEK, F. et al. Coalescence collision of liquid drops. In *International Journal of Heat and Mass Transfer*. 2003. Vol. 46, no. 1, p. 77–89.

76. ROTH, N. et al. Droplet Collision Outcomes at High Weber Number. In *ILASS - Europe Meeting* . 2007. .

 SAROKA, M.D. - ASHGRIZ, N. Separation Criteria for Off-Axis Binary Drop Collisions. In Journal of Fluids [interaktyvus]. 2015. Vol. 2015, p. 15. Prieiga per internetą: https://www.hindawi.com/journals/fluids/2015/405696/>.

78. BRENN, G. Droplet Collision. In ASHGRIZ, N.Sud. Handbook of Atomization and Sprays [interaktyvus]. Boston, MA: Springer US, 2011. p. 157–181. Prieiga per internetą: http://link.springer.com/10.1007/978-1-4419-7264-4_7.

79. LEMAITRE, P. et al. Study of heat and mass transfers in a spray for containment application: analysis of the influence of spray temperature at the injection. In *The 13th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-13)*. 2009. Vol. 175, no. 3, p. 553–571.

LEMAITRE, P. et al. Development of a global rainbow refractometry technique to measure the temperature of spray droplets in a large containment vessel. In *Measurement Science and Technology* [interaktyvus]. 2006. Vol. 17, no. 6, p. 1299. Prieiga per internetą: http://stacks.iop.org/0957-0233/17/i=6/a=002>.

81. PORCHERON, E. et al. Experimental investigation in the TOSQAN facility of heat and mass transfers in a spray for containment application. In *Nuclear Engineering and Design*. 2007.
Vol. 237, no. 15–17 SPEC. ISS., p. 1862–1871.

82. LEMAITRE, P. - PORCHERON, E. Analysis of heat and mass transfers in two-phase flow by coupling optical diagnostic techniques. In *Experiments in Fluids* . 2008. Vol. 45, no. 2, p. 187–201.

83. SIRIGNANO, W.A. *Fluid Dynamics and Transport of Droplets and Sprays*. 2. Ed. Cambridge: Cambridge University Press, 2010. 480 p. ISBN 9780521884891.

84. COMMITTEE, N.E.A. - INSTALLATIONS, N. 2007. .

85. OUTLINE, C. Early containment failure. In *Nuclear Safety in Light Water Reactors* . 2012. p. 185–306. ISBN 9780123884466.

86. HEITSCH, M. et al. Simulation of containment jet flows including condensation. In *Nuclear Engineering and Design* [interaktyvus]. 2010. Vol. 240, no. 9, p. 2176–2184. Prieiga per internetą: http://dx.doi.org/10.1016/j.nucengdes.2009.11.024>.

87. BABI??, M. et al. Prediction of light gas distribution in experimental containment facilities using the CFX4 code. In *Nuclear Engineering and Design* . 2008. Vol. 238, no. 3, p. 538–550.

88. KLJENAK, I. et al. Modeling of containment atmosphere mixing and stratification experiment using a CFD approach. In *Nuclear Engineering and Design* . 2006. Vol. 236, no. 14–16, p. 1682–1692.

89. WILKENING, H. et al. CFD simulations of light gas release and mixing in the Battelle Model-Containment with CFX. In *Nuclear Engineering and Design*. 2008. Vol. 238, no. 3, p. 618–626.

90. HEITSCH, M. et al. CFD evaluation of hydrogen risk mitigation measures in a VVER-440/213 containment. In *Nuclear Engineering and Design* . 2010. Vol. 240, no. 2, p. 385–396.

91. ANDREANI, M. et al. A benchmark exercise on the use of CFD codes for containment issues using best practice guidelines: A computational challenge. In *Nuclear Engineering and Design*.
2008. Vol. 238, no. 3, p. 502–513.

92. HOUKEMA, M. et al. Validation of the CFX4 CFD code for containment thermal-hydraulics. In *Nuclear Engineering and Design*. 2008. Vol. 238, no. 3, p. 590–599.

93. MARTÍN-VALDEPEÑAS, J.M. et al. Improvements in a CFD code for analysis of hydrogen behaviour within containments. In *Nuclear Engineering and Design* . 2007. Vol. 237, no. 6, p. 627–647.

94. J.R. TRAVIS, P. ROYL, R. REDLINGER, G. NECKER, J.W. SPORE, K.L. LAM, T.L.W. -B.D. NICHOLS, C.M. 1998. .

95. ANDREANI, M. et al. Simulation of basic gas mixing tests with condensation in the PANDA facility using the GOTHIC code. In *Nuclear Engineering and Design* [interaktyvus]. 2010.

Vol. 240, no. 6, p. 1528-1547. Prieiga per internetą:

<http://dx.doi.org/10.1016/j.nucengdes.2010.02.021>.

96. ANDREANI, M. - PALADINO, D. Simulation of gas mixing and transport in a multicompartment geometry using the GOTHIC containment code and relatively coarse meshes. In *Nuclear Engineering and Design* [interaktyvus]. 2010. Vol. 240, no. 6, p. 1506–1527. Prieiga per internetą: http://dx.doi.org/10.1016/j.nucengdes.2010.02.020>.

97. HOLZBAUER, H., & WOLF, L. GOTHIC verification on behalf of the Heiss Dampf Reaktor hydrogen-mixing experiments. In *Nuclear technology* . 1999. Vol. 125, no. 2, p. 166–181.

98. CHOI, Y.S. et al. Improvement of HYCA3D code and experimental verification in rectangular geometry. In *Nuclear Engineering and Design* . 2003. Vol. 226, no. 3, p. 337–349.

99. KUDRIAKOV, S. et al. The TONUS CFD code for hydrogen risk analysis: Physical models, numerical schemes and validation matrix. In *Nuclear Engineering and Design* . 2008. Vol. 238, no. 3, p. 551–565.

100. NRC 1995. .

101. OUTLINE, C. Fission Product Release and Transport. In *Nuclear Safety in Light Water Reactors* [interaktyvus]. 2012. p. 425–517. ISBN 9780123884466Prieiga per internetą: http://www.sciencedirect.com/science/article/pii/B9780123884466000058>.

102. COLOMBANI, J. - J., PASCAL, C., MONCHALIN, N., MARTINET, L., & GOMEZ, C.

Experimental study of organic iodide volatilization from painted surfaces present in the containment during a severe accident. In *Proceedings of the 6th European Review Meeting on Severe Accident Research*. France, 2013.

103. GIRAULT, N. - PAYOT, F. Insights into iodine behaviour and speciation in the Ph??bus primary circuit. In *Annals of Nuclear Energy* [interaktyvus]. 2013. Vol. 61, p. 143–156. Prieiga per internetą: http://dx.doi.org/10.1016/j.anucene.2013.03.038>.

104. JACQUEMAIN, D., N. HANNIET, C. POLETIKO, S. DICKINSON, C. WREN, D. POWERS, E. KRAUSSMANN, F. FUNKE, R. CRIPPS, and B.H. AN OVERVIEW OF THE IODINE BEHAVIOUR IN THE TWO FIRST PHEBUS TESTS FPT-0 AND FPT-1. In *OECD Workshop on Iodine Aspects of Severe Accident Mangement*. Vantaa, 1999. p. 41. .

105. SIMONDI-TEISSEIRE, B. et al. Iodine behaviour in the containment in Phébus FP tests. In *Annals of Nuclear Energy*. 2013. Vol. 61, p. 157–169.

106. BOSLAND, L. et al. Iodine-paint interactions during nuclear reactor severe accidents. In *Annals of Nuclear Energy* [interaktyvus]. 2014. Vol. 74, no. C, p. 184–199. Prieiga per internetą: http://dx.doi.org/10.1016/j.anucene.2014.07.016>.

107. SÉVERINE, G. et al. Formation of organic iodide in the containment in case of a severe accident. In *Engineering* . p. 291–292. .

108. BOSLAND, L. et al. PARIS project: Radiolytic oxidation of molecular iodine in containment during a nuclear reactor severe accident: Part 2. Formation and destruction of iodine oxides compounds under irradiation - Experimental results modelling. In *Nuclear Engineering and Design* [interaktyvus]. 2011. Vol. 241, no. 9, p. 4026–4044. Prieiga per interneta:

http://dx.doi.org/10.1016/j.nucengdes.2011.06.015>.

109. BOSLAND, L. et al. PARIS project: Radiolytic oxidation of molecular iodine in containment during a nuclear reactor severe accident: Part 2. Formation and destruction of iodine oxides compounds under irradiation - Experimental results modelling. In *Nuclear Engineering and Design*. 2011. Vol. 241, no. 9, p. 4026–4044.

110. KIM, H.C. - CHO, Y.H. RAIM - A model for iodine behavior in containment under severe accident condition. In *Nuclear Engineering and Technology* . 2015. Vol. 47, no. 7, p. 827–837.

111. SHORIN, S.N. Teploperedacha. . Moskva: Vishaja Shkola, 1964. .

112. KUZIKOVSKIJ, A.V. Dynamic of spherical particle in powerful optical field. In *Izvestiya VUZ* . 1970. no. 5, p. 89–94.

113. MILIAUSKAS, G. et al. Modelling of heat and mass transfer processes in phase transformation cycle of sprayed water into gas: 4. Thermal state analysis of a droplet slipping in

humid air flow. In Mechanika . 2016. Vol. 22, no. 2, p. 96-104. .

114. MILIAUSKAS, G. Regularities of unsteady radiative-conductive heat transfer in evaporating semitransparent liquid droplets. In *International Journal of Heat and Mass Transfer* . 2001. Vol. 44, no. 4, p. 785–798.

115. MILIAUSKAS, G. - SABANAS, V. Interaction of transfer processes during unsteady evaporation of water droplets. In *International Journal of Heat and Mass Transfer*. 2006. Vol. 49, no. 11–12, p. 1790–1803.

6 PRIEDAI

1 priedas

Skaičiavimo rezultatai (pagal lašelio spindulį)

Eiles Nr.	t	Fo	a0/R0^2	mg	ggx10^7	TR	TC	Tm	R	qc+	qf+	qc-	GradTR	Mlx10^10	M/M0	Re	Nu	FBT	Kc-	Td	Pa	F	og/p
	s			kg/(m2s)	kg/s	к	к	к	mkm	W/m^2	W/m^2	W/m^2	K/m							к	proc		01
	ι Ο	0	595.2445	-0.12784	-0.00362	278	278	278	15	475.4558	318.2189	793.6747	677127.2	0.141344	1	50	5.564722	1.01763	2.083251		373	0	0.1
	0.000168	0.1	595.2445	-0.12431	-0.00353	281.8845	280.0525	281.0203	15.02149	419.4096	306.8508	726.2604	652733.9	0.141944	1.004243	37.31038	5.087872	1.018484	1.945308		373 0.0	34812	0.1
	0.000336	0.2	595.2445	-0.12061	-0.00343	285.1219	282.4179	284.0099	15.04303	368.8755	298.314	667.1895	660509.4	0.142528	1.008397	26.70928	4.622237	1.019434	1.742379		373 -0.	02659	0.1
	0.000504	0.3	595.2445	-0.11622	-0.00332	288.3088	285.1207	287.0268	15.06531	328.9213	286.5917	615.513	668727.8	0.143094	1.012425	19.74097	4.261911	1.020008	1.566996		373 -0.	03187	0.1
	0.000672	0.4	595.2445	-0.11103	-0.00318	291.4614	287.9904	290.0752	15.08681	298.1287	272.9287	571.0574	662633.6	0.143639	1.0163	15.34793	3.999224	1.020095	1.448531		373 -0.	03008	0.1
	5 0.00084	0.5	595.2445	-0.10497	-0.00301	294.5485	290.9232	293.1053	15.10738	273.4558	257.1775	530.6334	646165.9	0.144159	1.019999	12.42271	3.80114	1.019746	1.364902		373 0.0	06165	0.1
	7 0.001008	0.6	595.2445	-0.09803	-0.00282	297.5433	293.8518	296.0761	15.12827	252.7257	239.4866	492.2123	623288.6	0.144649	1.023479	10.3258	3.642817	1.019026	1.300248		373 0.0	04464	0.1
	3 0.001176	0.7	595.2445	-0.09027	-0.0026	300.4059	296.7395	298.9516	15.14789	234.8321	219.9598	454.7919	593008.3	0.145104	1.026726	8.73493	3.510279	1.01799	1.251535		373 -	0.012	0.1
1	0.001344	0.8	595.2445	-0.081/9	-0.00236	303.1088	299.5341	301.6934	15.16596	219.1625	198.7332	417.8957	55/41/.5	0.145522	1.029695	7.483221	3.396034	1.01668	1.21326		3/3 0.0	J/892	0.1
1	0.001512	0.9	595.2445	-0.0/208	-0.00211	303.0432	302.1973	304.2798	15.16290	205.300	152 0040	361.4000	490310.3	0.145697	1.032374	0.4/4300	3.295081	1.013126	1.1/0004		373 0.0	00010	0.1
1	0.00108	11	595.2445	-0.06313	-0.00165	210 1242	207 0712	200.0957	15.19662	193.0345	132.0940	210 0463	480310.8	0.146228	1.034733	3.040467	3.200366	1.013365	1.150519		373 -0.1	0.001	0.1
1	0.001040	1.1	505 2445	-0.03355	-0.00133	312 0762	309 2/76	310 9619	15 22/63	172 5861	104 9206	277 5067	396401 7	0.146749	1.038/53	4 377045	3 053571	1.000533	1 107203		373 -01	10305	0.1
1	0.002184	1.3	595.2445	-0.03394	-0.00099	313,8175	311,2349	312,8015	15.23455	164.1256	81.60257	245.7282	355037.3	0.146939	1.039808	3.883407	2.987507	1.007532	1.090064		373 -0.0	0226	0.1
1	0.002352	1.4	595.2445	-0.02467	-0.00072	315.3647	313.032	314.448	15.24294	156.6742	59,23023	215,9045	315247.3	0.147082	1.040841	3,459973	2.92714	1.005547	1.074985		373 -0.0	00241	0.1
1	0.00252	1.5	595.2445	-0.01592	-0.00047	316.7258	314.6427	315.9084	15.24953	150.1316	38.16937	188.301	277352.9	0.147182	1.041561	3.093916	2.871787	1.003623	1.062465		373 -0.	00346	0.1
1	0.002688	1.600001	595.2445	-0.0078	-0.00023	317.913	316.0722	317.1915	15.25431	144.3993	18.68002	163.0793	241949.6	0.14724	1.041988	2.775335	2.820891	1.001795	1.052061		373 -0.	00416	0.1
	0.002867	1.70664	595.2445	0	0	318.9683	317.3581	318.3406	15.25674	139.2865	C	139.3385	207746	0.147241	1.04199	2.495906	2.772619	0.999983	1.043641		373 -0.	02554	0.1
1	0.003024	1.800001	595.2445	0.006827	0.0002	319.8923	318.4838	319.3466	15.25886	134.8103	16.25648	118.5538	177801.4	0.147241	1.041991	2.251271	2.730358	0.998397	1.036269		373 -0.	04425	0.1
2	0.00336	2.000001	595.2445	0.017314	0.000507	321.2024	320.1972	320.806	15.25784	127.4193	41.32195	86.09734	130301.3	0.147122	1.041152	1.793244	2.644712	0.995852	1.023994		373 -0.	00379	0.1
2	0.003696	2.200001	595.2445	0.025246	0.000738	322.1396	321.4167	321.8545	15.25282	121.1832	60.20127	60.98188	92938.77	0.146913	1.039673	1.384418	2.560231	0.993825	1.014794		373 -0.	00142	0.1
2	2 0.004032	2.400001	595.2445	0.03101	0.000906	322.7937	322.2858	322.5936	15.24482	116.2584	73.89433	42.3641	64841.13	0.146637	1.037719	1.067684	2.486588	0.992274	1.009036		373 -0.	00636	0.1
2	3 0.004368	2.600001	595.2445	0.035071	0.001023	323.2407	322.892	323.1034	15.23466	112.4305	83.54089	28.88962	44328.36	0.146313	1.035427	0.830649	2.424547	0.991124	1.005584		3/3 0.0	J0153	0.1
2	0.004/04	2.800001	595.2445	0.03785	0.001102	323.5397	323.3055	323.4476	15.22313	109.4379	90.12882	19.30909	296/4.28	0.145956	1.032902	0.652963	2.3/24	0.990292	1.003505		3/3 -0.0	J0553	0.1
2	0.00504	2 200001	595.2445	0.039697	0.001134	323.7344	323.3606	323.0/41	15.21053	105 1547	94.51363	7 957021	12110 52	0.145577	1.030221	0.517965	2.328108	0.989701	1		373 -0.1	0025	0.1
2	0.005370	3.200001	595 2445	0.040874	0.001180	323.8338	323.7393	323.010	15 18339	103.1347	98 9785	4 612382	7108 502	0.143184	1.02/44	0.413545	2.250255	0.989291	1		373 0.	100348	0.1
2	0.006048	3 600001	595 2445	0.041964	0.001213	323 9629	323 9328	323 9513	15 16931	102 292	99.8865	2 40553	3707 122	0 144376	1 021725	0 268705	2 228634	0.98883	1		373 -01	0111	0.1
2	0.006384	3.800001	595.2445	0.042129	0.001216	323.9761	323.9641	323.9716	15.15506	101.1996	100.2767	0.922825	1422.119	0.143968	1.018838	0.217798	2.203353	0.988713	1		373 -0.0	0254	0.1
3	0.00672	4.000001	595.2445	0.04215	0.001214	323.9741	323.974	323.9742	15.14074	100.2709	100.2172	0.05368	-82.724	0.143559	1.01595	0.177065	2.180981	0.988644	1		373 -0.	00418	0.1
3	0.007056	4.200001	595.2445	0.042078	0.00121	323.9623	323.9698	323.9654	15.12639	99.47458	98.79416	0.680418	-1048.58	0.143152	1.01307	0.144303	2.161093	0.988607	1		373 -0.	00292	0.1
3	0.007392	4.400002	595.2445	0.041948	0.001204	323.9446	323.9568	323.9495	15.11206	98.78685	97.72337	1.063479	-1638.96	0.142747	1.010202	0.117839	2.143348	0.988593	1		373 -0.	00216	0.1
3	3 0.007728	4.600001	595.2445	0.041787	0.001197	323.9236	323.9383	323.9296	15.09777	98.18955	96.91059	1.278959	-1971.11	0.142343	1.007349	0.096386	2.127464	0.988593	1		373 -0.	00291	0.1
3	0.008064	4.800001	595.2445	0.041611	0.00119	323.9009	323.9169	323.9073	15.08353	97.66866	96.28551	1.383157	-2131.79	0.141942	1.004513	0.078944	2.113211	0.988603	1		373 -0.	00203	0.1
3	0.0084	5.000001	595.2445	0.041431	0.001182	323.8779	323.8943	323.8845	15.06936	97.21303	95.80146	1.41156/	-21/5.66	0.141544	1.001694	0.064/3	2.100394	0.988619	1		3/3 -0.0	0219	0.1
3		5.200001	595.2445	0.041254	0.0011/5	323.8552	323.8/15	323.861/	15.05524	96.81374	95.42251	1.39123/	2044.4	0.141148	0.998893	0.053121	2.088847	0.988639	1		3/3 -0.0	0233	0.1
3	0.000072	5.6	595 2445	0.040925	0.001160	323.8334	323 8275	323.8350	15.02718	96 15656	94 88587	1 270681	-1958 72	0.140754	0.993341	0.035847	2.070425	0.988682	1		373 -0.	10329	0.1
3	0.009744	5.8	595.2445	0.040778	0.001155	323,7932	323.8072	323.7988	15.01324	95.88774	94.69417	1.193572	-1839.92	0.139974	0.990588	0.029467	2.06051	0.988704	1		373 -0.0	00069	0.1
4	0.01008	6	595.2445	0.040644	0.001149	323.7752	323.7881	323.7804	14.99935	95.65275	94.54367	1.109079	-1709.73	0.139587	0.98785	0.02423	2.052808	0.988725	1		373 -0.	00227	0.1
4	0.010416	6.2	595.2445	0.040522	0.001144	323.7585	323.7704	323.7632	14.9855	95.44806	94.42203	1.026031	-1581.75	0.139202	0.985126	0.019927	2.045832	0.988746	1		373 -0.	00184	0.1
4	0.010752	6.4	595.2445	0.040413	0.001138	323.743	323.7541	323.7474	14.9717	95.27052	94.32558	0.944942	-1456.78	0.138818	0.982415	0.01639	2.039511	0.988765	1		373 -0.	00132	0.1
4	8 0.011088	6.599999	595.2445	0.040315	0.001133	323.7289	323.739	323.7329	14.95794	95.11742	94.24981	0.867604	-1337.58	0.138437	0.979715	0.013482	2.033779	0.988783	1		373 -0.	00038	0.1
4	0.011424	6.799999	595.2445	0.040228	0.001129	323.7159	323.7252	323.7196	14.94421	94.98633	94.19222	0.794113	-1224.31	0.138056	0.977026	0.011088	2.02858	0.988799	1		373 -3.	8E-05	0.1
4	5 0.01176	6.999999	595.2445	0.040152	0.001125	323.7041	323.7126	323.7074	14.93051	94.87506	94.15059	0.724468	-1116.96	0.137678	0.974348	0.009119	2.023863	0.988814	1		373 -0.0	00129	0.1
4	0.012096	7.1999999	595.2445	0.040086	0.001121	323.6933	323.7009	323.6963	14.91684	94.78183	94.12143	0.660404	-1018.2	0.13/301	0.97168	0.007498	2.019583	0.988828	1		3/3 -0.0	0192	0.1
4	0.012432	7.3999999	595.2445	0.040029	0.001117	323.6834	323.6904	323.6862	14.90319	94.70495	94.10294	0.602006	928.181	0.136925	0.96902	0.006164	2.015697	0.988841	1		3/3 -0.0	0161	0.1
4	0.012708	7 700008	505 2445	0.039979	0.001114	323.0744	323.0000	323.0709	14.80557	04 50438	94.09300	0.345208	-768 013	0.13033	0.900309	0.003000	2.01217	0.988864	1		373 -0.0	0200	0.1
5	0.01344	7.999998	595.2445	0.039903	0.001108	323.6588	323.664	323.6608	14.86236	94,55809	94,10453	0.453558	-699.331	0.135803	0.96109	0.003419	2.00606	0.988874	1		373 -0.0	00049	0.1
5	0.013776	8.199998	595.2445	0.039875	0.001105	323.652	323.6567	323.6538	14.84878	94,53299	94.1207	0.412288	-635.705	0.135432	0.95846	0.002807	2.003421	0.988883	1		373 -0.0	00022	0.1
5	0.014112	8.399998	595.2445	0.039853	0.001102	323.6458	323.6502	323.6475	14.83521	94.51809	94.1433	0.37479	-577.893	0.135061	0.955838	0.002304	2.001026	0.988891	1		373 0.0	00447	0.1
5	0.014448	8.599998	595.2445	0.039836	0.0011	323.6403	323.6442	323.6418	14.82164	94.51237	94.17306	0.339311	-523.193	0.134691	0.953221	0.00189	1.99885	0.988899	1		373 -0.	00094	0.1
5	0.014784	8.799997	595.2445	0.039823	0.001097	323.6352	323.6387	323.6366	14.80809	94.51521	94.20599	0.309219	-476.797	0.134322	0.950611	0.00155	1.996877	0.988906	1		373 0.	00081	0.1
5	0.01512	8.999997	595.2445	0.039815	0.001095	323.6306	323.6338	323.6319	14.79453	94.52569	94.24621	0.279478	-430.942	0.133954	0.948005	0.001271	1.995085	0.988912	1		373 -0.	00062	0.1
5	6 0.015456	9.199997	595.2445	0.039812	0.001093	323.6264	323.6293	323.6275	14.78098	94.54319	94.2899	0.253286	-390.557	0.133586	0.945405	0.001041	1.993459	0.988918	1		373 -0.	00119	0.1
5	0.015792	9.399997	595.2445	0.039817	0.001091	323.6231	323.6254	323.624	14.76744	94.56597	94.36635	0.199624	-307.814	0.133219	0.94281	0.000853	1.991981	0.988921	1		373 -0.0	04714	0.1
5	0.016128	9.599997	595.2445	0.039824	0.001089	323.62	323.6221	323.6208	14.7539	94.59504	94.4072	0.18/836	-289.64	0.132853	0.94022	0.000698	1.990641	0.988925	1		3/3 -0.0	J4589	0.1
	0.016404	9.799997	595.2445	0.039832	0.001086	323.01/1	222.0191	222.01/0	14.74035	94.02978	94.45523	0.1/0548	252 262	0.132467	0.937634	0.0005/1	1.989420	0.988929	1		373 -0.1	J4202	0.1
6	0.017136	10.2	595,2445	0.039855	0.001084	323.6118	323.6136	323.6125	14,71325	94.71401	94.56329	0.150716	-232.405	0.131757	0.932474	0.000381	1.987327	0.988936	1		373 -0	.0396	0.1
6	0.017472	10.4	595.2445	0.03987	0.001083	323.6096	323.6111	323.6101	14.69969	94.76256	94.62477	0.137787	-212.468	0.131393	0.9299	0.000311	1.986422	0.988939	1		373 -0.0	03914	0.1
6	0.017808	10.6	595.2445	0.039886	0.001081	323.6075	323.6089	323.608	14.68613	94.81492	94.68831	0.126605	-195.226	0.13103	0.92733	0.000254	1.985602	0.988942	1		373 -0.0	03735	0.1
6	0.018144	10.8	595.2445	0.039905	0.00108	323.6055	323.6068	323.6061	14.67256	94.87083	94.7553	0.115535	-178.157	0.130667	0.924763	0.000207	1.984861	0.988944	1		373 -0.	03625	0.1
6	0.01848	11	595.2445	0.039925	0.001078	323.6038	323.605	323.6043	14.65899	94.92988	94.82539	0.104493	-161.131	0.130304	0.922199	0.000169	1.984189	0.988947	1		373 -0.	03638	0.1
6	6 0.018816	11.2	595.2445	0.039947	0.001077	323.6022	323.6033	323.6026	14.64541	94.99181	94.89661	0.095194	-146.792	0.129942	0.919639	0.000138	1.98358	0.988949	1		373 -0.	03544	0.1
6	0.019152	11.4	595.2445	0.03997	0.001075	323.6007	323.6017	323.6012	14.63182	95.05637	94.96864	0.087723	-135.272	0.129581	0.917082	0.000112	1.983028	0.988951	1		373 -0.	03294	0.1
6	3 0.019488	11.6	595.2445	0.039993	0.001074	323.5994	323.6002	323.5997	14.61822	95.14767	95.06559	0.082082	-126.574	0.12922	0.914528	0.000112	1.983033	0.988954	1		373 -0.0	00278	0.1
6	0.019824	11.8	595.2445	0.040021	0.001073	323.5984	323.5991	323.5987	14.60461	95.21616	95.15851	0.057651	-88.901	0.128859	0.911978	0.000093	1.982576	0.988955	1		373 -0.0	J2683	0.1
	0.02016	12	595.2445	0.040052	0.001072	323.59//	323.5982	323.598	14.591	95.30643	95.26383	0.042598	-05.088	0.128499	0.90943	0.000093	1.982578	0.988957	1		373 -0.0	12/107	0.1
·	5.020450	12.2	333.L HJ	5.0.00000	0.00107	525.5572	525.5574	525.5574				5.025735	-3.352	5.120155		5.0000000	2.302370	5.500555	1				5.1

25-R 50-R	e 373-Td 2	278-TI																				
1	0	0	214.288	-0.07671	-0.00603	278	278	278	25	285.2735	190.9313	476.2048	406276.3	0.65437	1	50	5.564722	1.01763	2.083251	373	0	0.1
2	0.000467	0.1	214.288	-0.07458	-0.00588	281.8845	280.0525	281.0203	25.03581	251.6458	184.1105	435.7563	391640.4	0.657146	1.004243	37.31038	5.087872	1.018484	1.945308	373	0.034812	0.1
3	0.000933	0.2	214.288	-0.07237	-0.00572	285.1219	282.4179	284.0099	25.07172	221.3254	178,9882	400.3136	396305.6	0.65985	1.008397	26,70928	4.622237	1.019434	1.742379	373	-0.02652	0.1
4	0.0014	0.3	214 288	-0.06973	-0.00553	288 3088	285 1207	287 0268	25 10885	197 3528	171 955	369 3078	401236.7	0 662473	1 012425	19 74097	4 261911	1 020008	1 566996	373	-0.03187	0.1
5	0.001867	0.5	214 288	-0.06662	-0.00529	291 4614	287 9904	290.0752	25 14467	178 8772	163 757	342 6343	397580	0.664998	1 0163	15 34793	3 999224	1 020095	1 448531	373	-0.02997	0.1
6	0.002333	0.5	214 288	-0.06298	-0.00502	294 5485	290 9232	293 1053	25.17896	164 0735	154 3064	318 3799	387699 3	0.667403	1 019999	12 42271	3 801141	1 019746	1 364902	373	0.006285	0.1
7	0.002333	0.5	214.200	0.00200	0.00302	207 5400	200.0202	206.0761	25.17050	104.0755	142 602	205 2274	272072.2	0.007403	1.010000	10 22570	2 642017	1.010026	1 200249	272	0.000205	0.1
· · ·	0.0028	0.0	214.200	0.05416	0.0047	200 4050	293.0310	200.0701	25.21576	140 2002	121 0761	253.3274	373573.3 2EEQNE 2	0.005071	1.025478	0 72/02	2 510270	1.015020	1.300240	3/3	0.004441	0.1
0	0.003207	0.7	214.200	-0.03410	-0.00434	202.4000	250.7555	256.5510	25.24045	140.0352	131.5701	272.0733	224450.2	0.071775	1.020720	7.40222	3.310279	1.01/35	1.231334	373	-0.01213	0.1
9	0.003733	0.8	214.288	-0.04907	-0.00394	303.1088	299.5341	301.6934	25.27659	131.4975	119.2398	250.7373	334450.3	0.6/3/11	1.029695	7.48322	3.396034	1.01668	1.21326	3/3	0.008003	0.1
10	0.0042	0.9	214.288	-0.04361	-0.00351	305.6432	302.1973	304.2798	25.30493	123.1835	105.7118	228.8953	312225	0.675449	1.032374	6.474303	3.295681	1.015128	1.1/8654	3/3	-0.00079	0.1
11	0.004667	1	214.288	-0.03788	-0.00305	307.9886	304.7163	306.6957	25.33137	115.8206	91.61734	207.438	288187.2	0.676981	1.034733	5.646485	3.206387	1.013385	1.150319	373	-0.00085	0.1
12	0.005133	1.1	214.288	-0.03201	-0.00259	310.1342	307.0713	308.9259	25.35454	109.3067	77.26133	186.568	263151.3	0.678297	1.036762	4.957389	3.126168	1.011502	1.126835	373	-0.00149	0.1
13	0.0056	1.2	214.288	-0.02613	-0.00211	312.0762	309.2476	310.9619	25.37439	103.5517	62.95058	166.5023	237838.4	0.679394	1.038453	4.377046	3.053571	1.009533	1.107203	373	-0.00132	0.1
14	0.006067	1.3	214.288	-0.02036	-0.00165	313.8175	311.235	312.8015	25.39092	98.4754	48.96134	147.4367	213022.1	0.680272	1.039808	3.883408	2.987508	1.007532	1.090064	373	-0.00205	0.1
15	0.006533	1.4	214.288	-0.0148	-0.0012	315.3647	313.032	314.448	25.40491	94.00456	35.53808	129.5426	189148.3	0.680937	1.040841	3.459974	2.927141	1.005547	1.074985	373	-0.00234	0.1
16	0.007	1.5	214.288	-0.00955	-0.00078	316.7258	314.6427	315.9084	25.41588	90.07899	22.90161	112.9806	166411.8	0.681398	1.041561	3.093918	2.871787	1.003623	1.062465	373	-0.00346	0.1
17	0.007467	1.6	214.288	-0.00468	-0.00038	317.913	316.0722	317.1915	25.42385	86.63959	11.20805	97.84764	145169.8	0.681668	1.041988	2.775337	2.820891	1.001795	1.052061	373	-0.00422	0.1
	0.007964	1.70664	214.288	0	0	318.9683	317.3581	318.3406	25.42789	83.57188	0	83.60312	124647.7	0.68167	1.04199	2.495908	2.77262	0.999983	1.043641	373	-0.02558	0.1
19	0.0084	1.8	214.288	0.004096	0.000333	319.8923	318.4838	319.3466	25.43144	80.88617	9.75386	71.13231	106680.9	0.681671	1.041991	2.251274	2.730359	0.998397	1.036269	373	-0.04428	0.1
20	0.009333	2	214.288	0.010389	0.000844	321.2024	320.1972	320.806	25.42974	76.45159	24.79316	51.65843	78180.79	0.681121	1.041152	1.793246	2.644713	0.995852	1.023994	373	-0.0038	0.1
21	0.010267	2.2	214.288	0.015148	0.00123	322.1396	321.4167	321.8545	25.42137	72.7099	36.12075	36.58915	55763.29	0.680153	1.039673	1.38442	2.560231	0.993825	1.014794	373	-0.00144	0.1
22	0.0112	2.4	214.288	0.018606	0.001509	322.7937	322.2858	322.5936	25,40803	69.75507	44.33661	25.41846	38904.68	0.678875	1.037719	1.067685	2.486588	0.992274	1.009036	373	-0.00635	0.1
23	0.012133	2.6	214,288	0.021042	0.001705	323,2407	322,892	323,1034	25.3911	67.45832	50.12455	17.33378	26597.03	0.677375	1.035427	0.830651	2.424548	0.991124	1.005584	373	0.000162	0.1
24	0.013067	2.799999	214,288	0.02271	0.001837	323,5397	323,3055	323.4476	25.37189	65.66276	54.0773	11.58546	17804.58	0.675722	1.032902	0.652964	2.372401	0.990292	1.003505	373	-0.00552	0.1
25	0.014	3	214 288	0.023818	0.001924	323 7344	323 5808	323 6741	25 35088	64 23931	56 70831	7 530999	11610.4	0.673967	1 030221	0 517985	2 328168	0 989701	1	373	-0.00023	0.1
26	0.01/033	3 100000	21/ 288	0.020010	0.001927	323 8558	323 7505	323 818	25.33866	63 00286	58 37864	4 714215	7266 317	0.672146	1 02744	0.413040	2 200234	0.000701	1	373	-0.00547	0.1
20	0.014555	3 300000	214.200	0.024524	0.001577	323.0350	323.8696	323 00//	25.32000	62 15/15/	50.37004	2 767/31	/265 10/	0.670287	1.02/44	0.3327/11	2.250254	0.000201	1	373	0.000347	0.1
2/	0.013800	3.3333333	214.200	0.024548	0.002008	323.5200	323.0050	323.5044	25.30300	61 27522	50.00101	1 44222	4203.104	0.070287	1.024356	0.352741	2.237302	0.969013	1	3/3	0.00028	0.1
20	0.0100	3.5999999	214.200	0.025178	0.002022	323.9029	323.9328	323.9513	25.26216	01.3/323	59.93191	1.44552	2224.270	0.008400	1.021/25	0.208/00	2.226035	0.96665	1	3/3	-0.00111	0.1
29	0.01//35	3.7999999	214.200	0.025277	0.002027	323.9701	323.9041	323.9710	25.25645	00.71975	00.10005	0.553095	655.272	0.000517	1.010030	0.217798	2.203354	0.966/15	1	3/3	-0.00254	0.1
30	0.018666	3.9999999	214.288	0.02529	0.002024	323.9741	323.974	323.9742	25.23456	60.16256	60.13035	0.032208	-49.635	0.664627	1.01595	0.177066	2.180982	0.988644	1	3/3	-0.00416	0.1
31	0.0196	4.1999999	214.288	0.025247	0.002016	323.9623	323.9698	323.9654	25.21065	59.68476	59.27651	0.408251	-629.149	0.662/41	1.01307	0.144304	2.161094	0.988607	1	3/3	-0.00291	0.1
32	0.020533	4.399999	214.288	0.025169	0.002006	323.9446	323.9568	323.9495	25.18677	59.27213	58.63404	0.638088	-983.377	0.660864	1.010201	0.117839	2.143348	0.988593	1	373	-0.00213	0.1
33	0.021466	4.5999999	214.288	0.025072	0.001995	323.9236	323.9383	323.9296	25.16295	58.91375	58.14637	0.767376	-1182.67	0.658997	1.007349	0.096386	2.127464	0.988593	1	373	-0.00288	0.1
34	0.0224	4.799999	214.288	0.024967	0.001983	323.9009	323.9169	323.9073	25.13922	58.60121	57.77132	0.829894	-1279.07	0.65714	1.004513	0.078945	2.113211	0.988603	1	373	-0.00201	0.1
35	0.023333	4.999999	214.288	0.024858	0.00197	323.8779	323.8943	323.8845	25.11559	58.32783	57.48089	0.84694	-1305.39	0.655296	1.001694	0.06473	2.100394	0.988619	1	373	-0.00218	0.1
36	0.024266	5.199999	214.288	0.024752	0.001958	323.8552	323.8715	323.8617	25.09206	58.08826	57.25352	0.834741	-1286.64	0.653462	0.998893	0.053122	2.088847	0.988639	1	373	-0.00231	0.1
37	0.0252	5.399999	214.288	0.024651	0.001947	323.8334	323.849	323.8396	25.06863	57.87816	57.07429	0.80387	-1239.1	0.65164	0.996109	0.043625	2.078429	0.98866	1	373	-0.00315	0.1
38	0.026133	5.599999	214.288	0.024555	0.001936	323.8127	323.8275	323.8187	25.0453	57.69394	56.93153	0.762408	-1175.23	0.649828	0.993341	0.035847	2.069019	0.988682	1	373	-0.00329	0.1
39	0.027066	5.799999	214.288	0.024467	0.001925	323.7932	323.8072	323.7988	25.02206	57.53264	56.8165	0.716143	-1103.95	0.648027	0.990588	0.029467	2.060509	0.988704	1	373	-0.0007	0.1
40	0.028	5.999999	214.288	0.024386	0.001915	323.7752	323.7881	323.7804	24.99891	57.39164	56.7262	0.665447	-1025.84	0.646235	0.98785	0.02423	2.052808	0.988725	1	373	-0.00228	0.1
41	0.028933	6.199998	214.288	0.024313	0.001906	323.7585	323.7704	323.7632	24.97584	57.26884	56.65322	0.615619	-949.049	0.644451	0.985126	0.019927	2.045832	0.988746	1	373	-0.00185	0.1
42	0.029866	6.399999	214.288	0.024248	0.001897	323.743	323.7541	323.7474	24.95284	57.16231	56.59535	0.566965	-874.066	0.642677	0.982415	0.01639	2.039511	0.988765	1	373	-0.00131	0.1
43	0.0308	6.599998	214.288	0.024189	0.001889	323.7289	323.739	323.7329	24.9299	57.07043	56.54987	0.520562	-802.548	0.64091	0.979715	0.013481	2.033779	0.988783	1	373	-0.0004	0.1
44	0.031733	6.799999	214.288	0.024137	0.001882	323.7159	323.7252	323.7196	24.90702	56.99179	56.51532	0.476466	-734.582	0.63915	0.977027	0.011088	2.02858	0.988799	1	373	-4.6E-05	0.1
45	0.032666	6.999999	214.288	0.024091	0.001875	323.7041	323.7126	323,7074	24.88419	56.92504	56.49036	0.43468	-670.172	0.637397	0.974348	0.009119	2.023863	0.988814	1	373	-0.00128	0.1
46	0.0336	7,199999	214,288	0.024052	0.001868	323,6933	323,7009	323,6963	24.8614	56,86909	56.47285	0.396242	-610.921	0.635651	0.97168	0.007498	2.019582	0.988828	1	373	-0.00194	0.1
47	0.034533	7 399999	214 288	0.024017	0.001862	323 6834	323 6904	323 6862	24 83866	56 82297	56 46177	0 361203	-556 908	0.63391	0.96902	0.006164	2 015697	0 988841	1	373	-0.0016	0.1
48	0.035466	7.599998	214,288	0.023988	0.001856	323.6744	323.6808	323.6769	24.81594	56.78577	56.45621	0.32956	-508.128	0.632175	0.966369	0.005066	2.01217	0.988853	1	373	0.000278	0.1
10	0.0364	7 799998	214 289	0.023963	0.001851	323 6662	323 672	323 6685	24 79326	56 75663	56 45742	0 299215	-461 3/9	0.630445	0.963725	0.004163	2 008968	0.988864	1	373	-0.00083	0.1
45	0.0304	7 990000	214.200	0.023503	0.001031	323.0002	323.672	323 6600	24.7 5520	56 73/84	56 46272	0 272135	-410 500	0.629710	0.961080	0.002/10	2 006061	0.988874	1	373	-0.00083	0.1
50	0.038266	8 100009	21/ 200	0.023075	0.001841	373 657	373 6567	323 6520	24 74706	56 7100	56 47242	0 247372	-381 /122	0.626000	0.05846	0.002807	2.003/21	0.088800	1	373	-0.00070	0.1
51	0.030200	8 300000	214.200	0.023525	0.001897	323.032	323.0307	323.0338	24.74/30	56 71092	56 48505	0.224/3/2	-3/6 726	0.625390	0.00040	0.002007	2.003421	0.000000	1	3/3	0.00023	0.1
52	0.0392	0.000000	214.208	0.023912	0.001037	323.0438	323.0302	323.04/5	24.72535	50.71062	30.46595	0.224074	-340.730	0.025262	0.050000	0.002304	1.000025	0.000000	1	3/3	0.000404	0.1
53	0.040133	0.599998	214.288	0.023901	0.001833	323.6403	323.0442	323.6418	24.70274	30.70741	30.50383	0.203586	-313.912	0.023569	0.953221	0.00155	1.99885	0.968899	1	3/3	-0.00095	0.1
54	0.041066	0.799998	214.288	0.023894	0.001829	323.0352	323.038/	323.0300	24.08014	50.7091	30.5235/	0.165531	-200.0/8	0.021801	0.95061	0.00155	1.9968/6	0.968906	1	3/3	0.000/5	0.1
55	0.042	6.999998	214.288	0.023889	0.001825	323.6306	323.6338	323.6319	24.05/56	56./1542	50.54//3	0.16/687	-258.565	0.620155	0.948005	0.0012/1	1.995085	0.988912	1	3/3	-0.00062	0.1
56	0.042933	9.199998	214.288	0.023887	0.001822	323.6264	323.6293	323.62/5	24.63497	ob. /2595	50.5/397	0.1519/1	-234.334	0.618454	0.945405	0.001041	1.99346	0.988918	1	3/3	-0.00114	0.1
57	0.043866	9.399998	214.288	0.02389	0.001819	323.6231	323.6254	323.624	24.6124	56.73964	56.61987	0.119774	-184.688	0.616755	0.94281	0.000853	1.991983	0.988921	1	373	-0.04705	0.1
58	0.0448	9.599998	214.288	0.023894	0.001816	323.62	323.6221	323.6208	24.58983	56.75707	56.64436	0.112702	-173.784	0.615059	0.94022	0.000698	1.990643	0.988925	1	373	-0.04581	0.1
59	0.045733	9.799998	214.288	0.023899	0.001813	323.6171	323.6191	323.6178	24.56725	56.77792	56.672	0.105929	-163.341	0.613366	0.937634	0.000571	1.989428	0.988929	1	373	-0.04252	0.1
60	0.046666	9.999998	214.288	0.023906	0.00181	323.6143	323.6162	323.6151	24.54467	56.80184	56.70365	0.098197	-151.42	0.611675	0.935052	0.000467	1.988328	0.988932	1	373	-0.0408	0.1
61	0.047599	10.2	214.288	0.023913	0.001807	323.6119	323.6136	323.6125	24.52208	56.82844	56.73904	0.089394	-137.845	0.609987	0.932474	0.000382	1.987329	0.988936	1	373	-0.0421	0.1
62	0.048533	10.4	214.288	0.023922	0.001804	323.6096	323.6111	323.6102	24.49948	56.85763	56.77501	0.082617	-127.396	0.608302	0.9299	0.000312	1.986426	0.988939	1	373	-0.03984	0.1
63	0.049466	10.6	214.288	0.023932	0.001802	323.6075	323.6089	323.608	24.47688	56.88907	56.81311	0.075958	-117.128	0.606619	0.927329	0.000254	1.985607	0.988942	1	373	-0.03794	0.1
64	0.050399	10.8	214.288	0.023943	0.001799	323.6056	323.6069	323.6061	24.45426	56.92267	56.85334	0.069321	-106.894	0.604939	0.924762	0.000208	1.984867	0.988944	1	373	-0.03671	0.1
65	0.051333	11	214.288	0.023955	0.001797	323.6038	323.605	323.6043	24.43164	56.95794	56.89421	0.06373	-98.273	0.603261	0.922199	0.000169	1.984189	0.988947	1	373	-0.03457	0.1
66	0.052266	11.2	214.288	0.023968	0.001794	323.6022	323.6033	323.6026	24.409	56.99521	56.93701	0.058203	-89.751	0.601585	0.919638	0.000138	1.983583	0.988949	1	373	-0.03262	0.1
67	0.053199	11.4	214.288	0.023982	0.001792	323.6007	323.6017	323.6012	24.38636	57.03391	56.98225	0.05166	-79.661	0.599911	0.917082	0.000112	1.983031	0.988951	1	373	-0.03452	0.1
68	0.054133	11.6	214.288	0.023996	0.00179	323.5994	323.6002	323.5997	24.36369	57.0887	57.0395	0.049201	-75.87	0.598239	0.914527	0.000112	1.983036	0.988954	1	373	-0.00273	0.1
69	0.055066	11.8	214.288	0.024013	0.001788	323.5984	323.5991	323.5987	24.34102	57.12972	57.09514	0.034587	-53.334	0.59657	0.911977	0.000093	1.982576	0.988955	1	373	-0.02683	0.1
70	0.055999	12	214,288	0.024031	0.001786	323,5977	323,5982	323,598	24.31832	57.18388	57.15832	0.025559	-39,413	0.594902	0.909429	0.000093	1.982578	0.988957	1	373	-0.02477	0.1
71	0.056933	12.2	214.288	0.024051	0.001784	323,5972	323,5974	323,5974	24,29562	57,2379	57,22006	0.017841	-27.511	0.593236	0.906884	0.000093	1.982578	0.988959	1	373	-0.02498	0.1
′ ¹		12.2			0.001/04		,,7			22373									1	5,5	2.32-30	0.1

50 D 50 Da 373 TH 379 TH																				
50-R_50-Re_373-10_278-11																				
1 0 0	53.572	-0.03835	-0.01205	278	278	278	50	142.6367	95.46565	238.1024	203138.2	5.234956	1	50	5.564722	1.01763	2.083251	373	0	0.1
2 0.001867 0.1	53.572	-0.03729	-0.01175	281.8845	280.0525	281.0203	50.07163	125.8229	92.05524	217.8781	195820.2	5.257168	1.004243	37.31038	5.087872	1.018484	1.945308	373	0.034812	0.1
3 0 003733 0 2	53 572	-0.03618	-0.01143	285 1219	282 4179	284 0099	50 14343	110 6627	89 49412	200 1568	198152.8	5 278804	1 008397	26 70928	4 622237	1 019434	1 742379	373	-0.02652	0.1
3 0.003755 0.2	53.572	0.00010	0.01115	200.2000	205.4207	207.0055	50.21515	00.0027	05.454122	404 (530	200202.0	5.200707	4.042425	40.74007	4.0000000	4.020000	1.742075	272	0.02002	0.1
4 0.0056 0.3	53.572	-0.03487	-0.01105	288.3088	285.1207	287.0268	50.21769	98.67639	85.97752	184.6539	200618.3	5.299787	1.012425	19.74097	4.261911	1.020008	1.566996	3/3	-0.03188	0.1
5 0.007467 0.4	53.572	-0.03331	-0.01059	291.4614	287.9904	290.0752	50.28935	89.43861	81.87854	171.3172	198790	5.31998	1.0163	15.34793	3.999224	1.020095	1.448531	373	-0.02999	0.1
6 0.009333 0.5	53.572	-0.03149	-0.01004	294.5485	290.9232	293.1053	50.35793	82.03677	77.15318	159.1899	193849.7	5.339227	1.019999	12.42271	3.801141	1.019746	1.364902	373	0.006285	0.1
7 0.0112 0.6	53 572	-0.02941	-0.0094	297 5433	293 8518	296 0761	50 42756	75 81773	71 84603	147 6638	186986.6	5 357365	1 023478	10 3258	3 642817	1 019026	1 300248	373	0.00441	0.1
8 0.012067 0.7	53.572	0.02312	0.00000	200,4050	205.0010	200.07.01	50.40207	70.44062	CE 00005	136 4377	177002.0	5.337305	1.025170	0.724021	3.510370	1.01700	1.000210	373	0.01315	0.1
8 0.01306/ 0.7	53.572	-0.02708	-0.00608	300.4059	290.7395	298.9510	50.49297	70.44902	05.98805	130.4377	1//902.0	5.374235	1.020720	8.734931	3.510279	1.01/99	1.251535	3/3	-0.01215	0.1
9 0.014933 0.8	53.572	-0.02454	-0.00788	303.1088	299.5341	301.6934	50.55319	65.74876	59.61989	125.3686	167225.2	5.389688	1.029695	7.483221	3.396034	1.01668	1.21326	373	0.008003	0.1
10 0.0168 0.9	53.572	-0.0218	-0.00702	305.6432	302.1973	304.2798	50.60986	61.59177	52.85592	114.4477	156112.5	5.403593	1.032374	6.474305	3.295681	1.015128	1.178654	373	-0.00081	0.1
11 0.018666 1	53 572	-0.01894	-0.00611	307 9886	304 7163	306 6957	50 66274	57 91031	45 80867	103 719	144093.6	5 415845	1 034733	5 646487	3 206388	1 013385	1 150319	373	-0.00086	0.1
12 0.020500 11	53.572	0.01001	0.00011	210 1242	207.0712	208.0250	50.00274	54.052001	38,03000	02.284	101575.0	5.125015	1.030703	4.057201	3.130100	1.011000	1.130315	373	0.00148	0.1
12 0.020555 1.1	53.572	-0.01001	-0.00517	510.1542	507.0715	308.9259	50.70909	54.05334	38.03000	95.264	1315/5.0	5.420375	1.030702	4.957391	3.120108	1.011502	1.120835	3/3	-0.00148	0.1
13 0.0224 1.2	53.572	-0.01307	-0.00423	312.0762	309.2476	310.9619	50.74878	51.77584	31.47529	83.25113	118919.2	5.43515	1.038453	4.377047	3.053571	1.009533	1.107203	373	-0.00132	0.1
14 0.024266 1.3	53.572	-0.01018	-0.0033	313.8175	311.235	312.8015	50.78183	49.2377	24.48067	73.71837	106511.1	5.442176	1.039808	3.883409	2.987508	1.007532	1.090064	373	-0.00205	0.1
15 0.026133 1.4	53.572	-0.0074	-0.0024	315.3647	313.032	314.448	50.80981	47.00228	17,76904	64,77132	94574.14	5.447497	1.040841	3.459975	2.927141	1.005547	1.074985	373	-0.00234	0.1
16 0.029 1.5	E2 E72	0.00479	0.00165	216 7259	214 6427	215 0094	E0 92176	45.02040	11 45091	EE 4002	00000 00	E 4E1196	1 041561	2 002019	2 071707	1 002622	1.062465	272	0.00246	0.1
10 0.028 1.5	33.372	-0.00478	-0.00133	510.7258	314.0427	313.5004	30.83170	43.03545	11.45081	30.4903	03203.00	3.431100	1.041301	3.053518	2.0/1/0/	1.003023	1.002403	3/3	-0.00340	0.1
17 0.029866 1.6	53.572	-0.00234	-0.00076	317.913	316.0722	317.1915	50.84769	43.31979	5.604034	48.92383	/2584.91	5.453343	1.041988	2.//533/	2.820891	1.001/95	1.052061	3/3	-0.00423	0.1
0.031857 1.706655	53.572	0	0	318.9683	317.3581	318.3406	50.85579	41.78594	0	41.80156	62323.84	5.453354	1.04199	2.495908	2.772619	0.999983	1.043641	373	-0.02559	0.1
19 0.0336 1.8	53.572	0.002048	0.000666	319.8923	318.4838	319.3466	50.86288	40.44308	4.876927	35.56615	53340.46	5.453364	1.041991	2.251273	2.730358	0.998397	1.036269	373	-0.04429	0.1
20 0.037333 2	53 572	0.005194	0.001688	321 2024	320 1072	320 806	50 85947	38 2258	12 30658	25 82021	30000 /	5 ///807	1 0/1152	1 7032/16	2 644713	0 005852	1 02300/	373	-0.0038	0.1
20 0.037333 2	55.572	0.0000104	0.001000	321.2024	320.1372	520.000	50.05547	30.2250	12.35050	23.02521	33030.4	5.44057	1.041132	1.755240	2.044713	0.555052	1.023334	375	0.0050	0.1
21 0.041066 2.2	53.572	0.00/5/4	0.00246	322.1396	321.4167	321.8545	50.84274	36.35495	18.06038	18.29458	2/881.65	5.441225	1.039673	1.38442	2.560231	0.993825	1.014/94	3/3	-0.00143	0.1
22 0.0448 2.4	53.572	0.009303	0.003019	322.7937	322.2858	322.5936	50.81607	34.87754	22.16831	12.70923	19452.34	5.430997	1.037719	1.067685	2.486588	0.992274	1.009036	373	-0.00634	0.1
23 0.048533 2.6	53.572	0.010521	0.00341	323.2407	322.892	323.1034	50.7822	33.72916	25.06227	8.666888	13298.52	5.418997	1.035427	0.830651	2.424548	0.991124	1.005584	373	0.000162	0.1
24 0.052266 2.799999	53 572	0.011355	0.003674	323 5397	323 3055	323 4476	50 74377	32 83138	27 03865	5 79273	8902 288	5 405774	1 032902	0 652964	2 372401	0 990292	1 003505	373	-0.00552	0.1
24 0.052200 2.755555	53.572	0.011000	0.0030/4	323.3337	323.5000	323.4470	50.74577	32.00150	27.05005	2.75275	5005 407	5.204724	1.032302	0.032304	2.372401	0.000704	1.005505	373	0.000002	0.1
25 0.055999 3	53.572	0.011909	0.003847	323.7344	323.5808	323.6741	50.70176	32.11966	28.35416	3.7655	5805.197	5.391734	1.030221	0.517986	2.328168	0.989701	1	3/3	-0.00022	0.1
26 0.059733 3.199999	53.572	0.012262	0.003954	323.8558	323.7595	323.818	50.65733	31.54643	29.18932	2.357108	3633.159	5.377172	1.02744	0.41395	2.290234	0.989291	1	373	-0.00547	0.1
27 0.063466 3.399999	53.572	0.012474	0.004015	323.9266	323.8696	323.9044	50.61131	31.07727	29.69355	1.383716	2132.552	5.362295	1.024598	0.33274	2.257361	0.989013	1	373	0.000268	0.1
28 0.067100 3.500000	53 572	0.012580	0.004045	323 0620	323 0328	373 0513	50 56436	30 68761	20 06505	0 72166	1112 138	5 3/1725	1 021725	0 268706	2 228635	0 08883	1	373	-0.00111	0.1
20 0.007100 0.00000	53.572	0.012505	0.004043	323.5025	323.5520	323.3313	50.50450	20.25007	20.00000	0.72100	426.626	5.34723	1.021725	0.200700	2.220055	0.00000	-	373	0.000111	0.1
29 0.070933 3.799999	53.572	0.012639	0.004053	323.9761	323.9641	323.9716	50.51687	30.35987	30.08303	0.276848	426.636	5.332134	1.018838	0.217798	2.203354	0.988/13	1	3/3	-0.00254	0.1
30 0.074666 3.999999	53.572	0.012645	0.004047	323.9741	323.974	323.9742	50.46912	30.08127	30.06517	0.016104	-24.817	5.317013	1.01595	0.177065	2.180981	0.988644	1	373	-0.00418	0.1
31 0.078399 4.199999	53.572	0.012623	0.004033	323.9623	323.9698	323.9654	50.4213	29.84238	29.63825	0.204125	-314.575	5.30193	1.01307	0.144304	2.161094	0.988607	1	373	-0.00291	0.1
32 0.082132 4.399999	53 572	0.012585	0.004013	323 9446	323 9568	323 9495	50 37354	29 63608	29 31703	0 319044	-491 688	5 286912	1 010201	0 11784	2 143349	0 988593	1	373	-0.00209	0.1
22 0.005265 4.500000	53.572	0.012505	0.00000	222.0226	222.0202	222.0200	50.37551	20.45.000	20.07210	0.323699	F01 225	5.200922	1.007240	0.000207	2.137405	0.000500	1	373	0.00205	0.1
33 0.085800 4.599999	53.572	0.012530	0.00399	323.9230	323.9363	323.9290	50.32591	29.45066	29.07319	0.363066	-291.332	5.2/19/4	1.007549	0.090387	2.12/405	0.966595	1	3/3	-0.00280	0.1
34 0.089599 4.799999	53.572	0.012483	0.003966	323.9009	323.9169	323.9073	50.27844	29.30061	28.88566	0.414947	-639.535	5.257124	1.004513	0.078945	2.113212	0.988603	1	373	-0.00199	0.1
35 0.093332 4.999999	53.572	0.012429	0.003941	323.8779	323.8943	323.8845	50.23118	29.16392	28.74045	0.42347	-652.696	5.242365	1.001694	0.064731	2.100394	0.988619	1	373	-0.00215	0.1
36 0.097066 5.199999	53.572	0.012376	0.003917	323.8552	323.8715	323.8617	50.18412	29.04414	28.62677	0.417371	-643.32	5.227698	0.998893	0.053122	2.088848	0.988639	1	373	-0.00228	0.1
37 0 100799 5 399999	53 572	0.012325	0.003803	323 8334	373 8/10	323 8306	50 13726	28 0301	28 53716	0.401035	-619 551	5 213110	0.006100	0.043627	2 078/31	0.08866	1	373	-0.0031	0.1
37 0.100733 3.333333	33.372	0.012323	0.003893	323.0334	323.049	323.8390	30.13720	20.9391	28.33710	0.401933	-019.331	3.213119	0.990109	0.043027	2.078431	0.56600	1	3/3	-0.0031	0.1
38 0.104532 5.599999	53.572	0.012278	0.003871	323.8127	323.8275	323.8187	50.0906	28.84698	28.46578	0.381204	-587.617	5.198626	0.993341	0.035847	2.06902	0.988682	1	373	-0.00325	0.1
39 0.108265 5.799999	53.572	0.012233	0.00385	323.7932	323.8072	323.7988	50.04413	28.76633	28.40826	0.358071	-551.976	5.184213	0.990588	0.029467	2.06051	0.988704	1	373	-0.00068	0.1
40 0 111999 5 999999	53 572	0.012193	0.00383	323 7752	323 7881	323 7804	49 99782	28 69582	28 3631	0 332723	-512 918	5 169876	0 98785	0.02423	2 052808	0 988725	1	373	-0.00228	0.1
41 0 115722 6 100009	E2 E72	0.012157	0.002912	222 7595	222 7704	222 7622	40.05169	20.00000	20.0000	0 207900	474 524	E 155613	0.095136	0.010027	2 045922	0.000746	1	272	0.00197	0.1
41 0.115732 0.199998	53.572	0.012157	0.005612	323.7565	323.7704	323.7032	49.95106	28.03441	28.3200	0.307809	-4/4.524	5.155012	0.985120	0.019927	2.045652	0.966740	1	3/3	-0.00187	0.1
42 0.119465 6.399999	53.572	0.012124	0.003794	323.743	323.7541	323.7474	49.90567	28.58115	28.29766	0.283483	-437.033	5.141413	0.982415	0.01639	2.03951	0.988765	1	373	-0.00135	0.1
43 0.123199 6.599998	53.572	0.012094	0.003778	323.7289	323.739	323.7329	49.8598	28.53522	28.27493	0.260281	-401.274	5.127277	0.979715	0.013481	2.033779	0.988783	1	373	-0.0004	0.1
44 0.126932 6.799999	53.572	0.012069	0.003763	323.7159	323.7252	323,7196	49.81403	28,49589	28.25766	0.238233	-367.291	5.1132	0.977027	0.011088	2.02858	0.988799	1	373	-4.6E-05	0.1
45 0 130665 6 000000	53 572	0.012046	0.003749	323 70/11	323 7126	323 7074	10 76837	28 46252	28 24518	0 21734	-335 086	5 000176	0 97/3/8	0.000110	2 023863	0.08881/	1	373	-0.00128	0.1
45 0.130005 0.555555	53.572	0.012040	0.003745	323.7041	323.7120	323.7074	40.70007	20.40252	20.24510	0.217.34	205.464	5.005304	0.574540	0.005115	2.025005	0.000014	1	373	0.00120	0.1
46 0.134399 7.199999	53.572	0.012026	0.003736	323.6933	323.7009	323.6963	49.7228	28.43454	28.23642	0.198121	-305.461	5.085204	0.97168	0.007498	2.019582	0.988828	1	3/3	-0.00194	0.1
47 0.138132 7.399999	53.572	0.012009	0.003724	323.6834	323.6904	323.6862	49.67731	28.41149	28.23088	0.180602	-278.454	5.071279	0.96902	0.006164	2.015697	0.988841	1	373	-0.0016	0.1
48 0.141865 7.599998	53.572	0.011994	0.003713	323.6744	323.6808	323.6769	49.63188	28.39289	28.22811	0.16478	-254.064	5.057397	0.966369	0.005066	2.01217	0.988853	1	373	0.000278	0.1
49 0.145598 7 700008	53 572	0.011981	0.003702	323,6662	323 672	323,6685	49.58652	28.37833	28,22872	0.149608	-230 674	5.043556	0.963725	0.004163	2.008969	0.988864	1	372	-0.00078	0.1
50 0 140333 7 000000	E2 E72	0.011074	0.0000000	222 00002	222.072	222 00000	40 5 41 2	20.0700	20.22072	0.120007	200.700	E 0207F 4	0.061000	0.002410	2.0000000	0.000074	-	373	0.00043	0.1
30 0.149332 7.999999	33.572	0.0119/1	0.003092	323.0308	323.004	323.0008	45.5412	20.30/45	20.23138	0.13000/	-203.799	5.029754	0.501069	0.003419	2.000002	0.5000/4	1	3/3	0.00042	0.1
51 0.153065 8.199998	53.572	0.011963	0.003683	323.652	323.6567	323.6538	49.49593	28.35992	28.23624	U.123686	-190.711	5.015987	0.95846	0.002808	2.003423	0.988883	1	373	-0.00016	0.1
52 0.156798 8.399999	53.572	0.011956	0.003674	323.6458	323.6502	323.6475	49.45069	28.35543	28.24299	0.112437	-173.368	5.002255	0.955838	0.002304	2.001026	0.988891	1	373	0.000466	0.1
53 0.160532 8.599998	53,572	0.011951	0.003666	323,6403	323.6447	323,6418	49.40548	28.35371	28,25191	0.101793	-156,958	4.988555	0.953221	0.00189	1.99885	0.988899	1	373	-0.00095	0.1
54 0 164265 9 700009	53 573	0.011047	0.003650	323 6352	373 6307	323 6366	10 36020	28 35/157	28 26191	0.002765	-1/13 (120	4 974995	0.95061	0.00155	1 006879	0 088000	1	272	0.00084	0.1
54 0.104205 0.739998	53.572	0.01154/	0.003038	323.0332	323.030/	323.0300	10.0029	20.3343/	20.20101	0.002700	130.009	4.00000	0.0001	0.00100	1.00000	0.000000	1	5/5	0.00004	0.1
55 0.167998 8.999998	53.572	0.011945	0.00365	323.6306	323.6338	323.6319	49.31511	28.35774	28.27389	0.083843	-129.283	4.961243	U.948005	U.UU1271	1.995087	0.988912	1	373	-0.00052	0.1
56 0.171731 9.199998	53.572	0.011944	0.003643	323.6264	323.6293	323.6275	49.26994	28.363	28.28702	0.075986	-117.167	4.947628	0.945405	0.001042	1.993462	0.988918	1	373	-0.00104	0.1
57 0.175465 9.399998	53.572	0.011945	0.003637	323.6231	323.6254	323.624	49.2248	28.3698	28.31043	0.059368	-91.543	4.934038	0.94281	0.000853	1.991983	0.988921	1	373	-0.04969	0.1
58 0 170108 0 500009	52 577	0.0110/7	0.003631	373 67	373 6771	323 6200	49 17065	28 37955	28 32222	0.056322	-86 9/0	4 02047	0 94022	0.000609	1 990645	0 988035	1	272	-0.04661	0.1
50 0.175150 3.355550	53.372	0.011.047	0.003031	222.02	222.0221	222.0205		20.37033	20.32223	0.050023	00.045	4.000000	0.077022	0.000038	4.000400	0.000020	-	3/3	0.04001	0.1
59 0.182931 9.799998	53.572	0.01195	0.003625	323.6171	323.6191	323.6179	49.1345	28.38894	28.33598	0.052962	-81.667	4.906925	0.937634	0.000571	1.989428	0.988929	1	373	-0.04333	0.1
60 0.186665 9.999998	53.572	0.011953	0.00362	323.6144	323.6163	323.6152	49.08933	28.40086	28.35176	0.049098	-75.71	4.893401	0.935052	0.000467	1.988325	0.988932	1	373	-0.04173	0.1
61 0.190398 10.2	53.572	0.011957	0.003614	323.6119	323.6136	323.6126	49.04416	28.41417	28.36895	0.045215	-69.721	4.879899	0.932474	0.000381	1.987326	0.988936	1	373	-0.04045	0.1
62 0.194131 10.4	53 572	0.011961	0.003609	323,6096	323,6111	323,6102	48,99897	28.42876	28.38743	0.041336	-63 741	4.866416	0,9200	0.000311	1.986423	0.988930	1	373	-0.03993	0.1
62 0 107965 10.4	E2 E72	0.011000	0.002604	222 6075	222 6000	222 600	10.05007	20 44455	20.00,40	0.020400	E0 200	4 952052	0.027220	0.000025.4	1 005607	0.000042	1	273	0.02520	0.1
03 0.197605 10.6	53.5/2	0.011300	0.003004	323.00/5	323.0089	323.008	+0.900/5	20.44455	20.40005	0.056499	-29.300	4.002955	0.927329	0.000254	1.90200/	0.900942	1	3/3	-0.03529	0.1
64 0.201598 10.8	53.572	0.011971	0.003599	323.6055	323.6068	323.6061	48.90853	28.46128	28.42659	0.034688	-53.489	4.83951	0.924762	0.000207	1.984862	0.988944	1	373	-0.03607	0.1
65 0.205331 11	53.572	0.011977	0.003594	323.6038	323.605	323.6043	48.86328	28.47906	28.44719	0.031867	-49.14	4.826085	0.922199	0.000169	1.984194	0.988947	1	373	-0.03348	0.1
66 0,209064 11 2	53.572	0.011984	0.003589	323,6022	323,6032	323,6026	48.81807	28,4976	28,46907	0.028585	-44.08	4.812677	0.919639	0.000138	1.983583	0.988949	1	373	-0.03443	0.1
67 0 212700 11 4	53 572	0.011001	0.003504	323 6007	323 6017	373 6011	18 77373	28 51700	28 /0074	0.026210	-40 505	4 700307	0.017000	0.000112	1 082020	0.080001	4	275	-0.03166	0.1
0/ 0.212/30 11.4	55.572	0.011591	0.005564	323.0007	525.0017	323.0011		20.31/00	20.45074	0.020519	-40.365		0.51/082	0.000112	1.505030	0.300331	1	3/3	0.05100	0.1
68 0.216531 11.6	53.572	0.011998	0.00358	323.5993	323.6002	323.5997	48./2739	28.54445	28.51982	0.024625	-37.972	4./85914	0.914528	0.000112	1.983042	0.988955	1	373	-0.00152	0.1
69 0.220264 11.8	53.572	0.012006	0.003576	323.5984	323.5991	323.5987	48.68204	28.56497	28.54768	0.017295	-26.67	4.772557	0.911978	0.000093	1.982583	0.988955	1	373	-0.02565	0.1
70 0.223998 12	53.572	0.012016	0.003572	323.5977	323.5981	323.598	48.63667	28.59203	28.57977	0.012265	-18.917	4.759216	0.90943	0.000093	1.982585	0.988957	1	373	-0.02565	0,1
71 0 207701 10.0	53.572	0.012025	0.002560	373 5077	373 5074	373 5074	48 50120	28 61004	28 61015	0.000004	-12 715	A 7/1000	0.000000	0.000000	1 087505	0.0800E0		277	-0.02472	0.1
11 0.22//31 12.2	J3.372	0.012020	0.0000000	323.3312	525.3514	525.3514	10.33120	20.01504	20.01013	0.000054	-13./12	7.7-3000	0.00000	0.000093	4.302303	3.300339	1	5/3	0.02472	0.1

75-R_50-R	e_373-Td_	278-TI		0	0						0	0										
1	0	0	23.80978	-0.02557	-0.01807	278	278	278	75	95.09116	63.64377	158.7349	135425.4	17.66798	1	50	5.564722	1.01763	2.083251	373	0	0.1
2	0.0042	0.1	23.80978	-0.02486	-0.01762	281.8845	280.0525	281.0203	75.10744	83.88192	61.37011	145.252	130546.7	17.74295	1.004243	37.31038	5.087872	1.018484	1.945308	373	0.034818	0.1
3	0.0084	0.2	23.80978	-0.02412	-0.01715	285.1219	282.4179	284.0099	75.21516	73.77512	59.66275	133.4379	132101.8	17.81597	1.008397	26.70927	4.622237	1.019434	1.742379	373	-0.02653	0.1
4	0.0126	0.3	23.80978	-0.02324	-0.01657	288.3088	285.1207	287.0268	75.32653	65.78426	57.31833	123.1026	133745.5	17.88679	1.012425	19.74097	4.261911	1.020008	1.566996	373	-0.03183	0.1
5	0.0168	0.4	23.80978	-0.02221	-0.01588	291.4614	287.9904	290.0752	75.43403	59.62574	54.5857	114.2114	132526.7	17.95494	1.0163	15.34793	3.999224	1.020095	1.448531	373	-0.02999	0.1
6	0.021	0.5	23.80978	-0.02099	-0.01505	294.5485	290.9232	293.1053	75.53689	54.69118	51.43548	106.1267	129233.2	18.01989	1.019998	12.42271	3.801141	1.019746	1.364902	373	0.006214	0.1
/	0.0252	0.6	23.80978	-0.01961	-0.0141	297.5433	293.8518	296.0761	75.64134	50.54515	47.89731	98.44246	124657.7	18.08111	1.023478	10.325/9	3.642817	1.019026	1.300248	3/3	0.004475	0.1
8	0.0294	0.7	23.80978	-0.01805	-0.01301	300.4059	296.7395	298.9516	75.73946	40.96642	43.99196	90.95837	118601.7	18.13805	1.026726	8.734928	3.510279	1.01/99	1.251534	3/3	-0.01199	0.1
10	0.0330	0.8	23.80978	-0.01030	-0.01162	205 6422	299.5341	204 2709	75.82978	43.63231	39.7400	76 20776	104074 1	10.1902	1.029095	6 474204	2 205691	1.01000	1.21320	3/3	0.007994	0.1
10	0.0378	0.5	23.00570	0.01262	0.01033	207 0996	204 7162	206 6057	75.00/1	20 50500	20 5290	60 14570	104074.1	10.23/13	1.032374	E CACAGE	2 206207	1.013120	1.1/0034	373	0.001083	0.1
12	0.042	11	23.80978	-0.01203	-0.00310	310 1342	307 0713	308.9259	76.06362	36 43557	25 75369	62 18927	87717.02	18 31402	1.034733	4 957387	3 126168	1.013585	1.130315	373	-0.00014	0.1
13	0.050399	1.1	23 80978	-0.00871	-0.00634	312 0762	309 2476	310 9619	76 12316	34 51722	20 98415	55 50137	79280 37	18 34363	1 038452	4 377043	3 05357	1 009533	1 107203	373	-0.00311	0.1
14	0.054599	1.3	23.80978	-0.00679	-0.00495	313.8175	311.235	312.8015	76.17275	32.82513	16.32053	49.14566	71007.5	18.36735	1.039808	3.883406	2.987508	1.007532	1.090064	373	-0.0023	0.1
15	0.058799	1.4	23.80978	-0.00493	-0.0036	315.3647	313.032	314.448	76.21471	31.33485	11.84604	43.18089	63049.45	18.38531	1.040841	3.45997	2.92714	1.005547	1.074985	373	-0.00241	0.1
16	0.062999	1.5	23.80978	-0.00318	-0.00233	316.7258	314.6427	315.9084	76.24764	30.02632	7.633847	37.66017	55470.55	18.39776	1.041561	3.093915	2.871787	1.003623	1.062465	373	-0.00337	0.1
17	0.067199	1.6	23.80978	-0.00156	-0.00114	317.913	316.0722	317.1915	76.27154	28.87986	3.736017	32.61588	48389.95	18.40504	1.041988	2.775334	2.820891	1.001795	1.052061	373	-0.00422	0.1
	0.071679	1.706654	23.80978	0	0	318.9685	317.3582	318.3407	76.28368	27.85715	0	27.86703	41548.26	18.40507	1.04199	2.495865	2.772612	0.999983	1.04364	373	-0.02562	0.1
19	0.075599	1.8	23.80978	0.001365	0.000999	319.8923	318.4838	319.3466	76.29431	26.96205	3.25127	23.71078	35560.32	18.40511	1.041991	2.25127	2.730358	0.998397	1.036269	373	-0.04434	0.1
20	0.083999	2	23.80978	0.003463	0.002533	321.2024	320.1972	320.806	76.2892	25.48386	8.264385	17.21948	26060.27	18.39027	1.041152	1.793243	2.644712	0.995852	1.023994	373	-0.00381	0.1
21	0.092399	2.2	23.80978	0.005049	0.00369	322.1396	321.4167	321.8545	76.26411	24.23663	12.04025	12.19638	18587.76	18.36414	1.039672	1.384417	2.560231	0.993825	1.014794	373	-0.00145	0.1
22	0.100799	2.4	23.80978	0.006202	0.004528	322.7937	322.2858	322.5936	76.2241	23.25169	14.77887	8.472813	12968.22	18.32962	1.037719	1.067683	2.486588	0.992274	1.009036	373	-0.00634	0.1
23	0.109199	2.6	23.80978	0.007014	0.005114	323.2407	322.892	323.1034	76.17329	22.48611	16.70818	5.777925	8865.675	18.28912	1.035426	0.83065	2.424548	0.991124	1.005584	373	0.000172	0.1
24	0.11/599	2.8	23.80978	0.00757	0.005511	323.5397	323.3055	323.4476	76.11564	21.88759	18.02577	3.861817	5934.854	18.24449	1.032902	0.652962	2.3724	0.990292	1.003505	3/3	-0.00554	0.1
25	0.125999		23.00978	0.007939	0.005771	323.7344	323.3606	323.0741	70.05202	21.4151	10.90277	2.510551	3670.129	10.1971	1.03022	0.517965	2.328108	0.989701	1	3/3	-0.00024	0.1
20	0.134399	3.4	23.80978	0.008175	0.005931	323.0350	323.7595	323.010	75.96396	21.03095	19.45955	0.022477	2422.103	18.14790	1.02/439	0.413946	2.290233	0.989291	1	3/3	-0.00349	0.1
27	0.151198	3.4	23.80978	0.008393	0.0060623	323.9629	323.0000	323.9513	75.84653	20.71017	19 9773	0.322477	741 425	18 04697	1 021724	0.268705	2 228634	0.98883	1	373	-0.00113	0.1
29	0.159598	3.8	23.80978	0.008426	0.00608	323.9761	323.9641	323.9716	75.77528	20.23991	20.05535	0.184565	284.424	17.99595	1.018837	0.217797	2.203353	0.988713	1	373	-0.00256	0.1
30	0.167998	4	23.80978	0.00843	0.006071	323.9741	323.974	323.9742	75.70366	20.05418	20.04345	0.010736	-16.545	17.94492	1.015949	0.177065	2.180981	0.988644	1	373	-0.00418	0.1
31	0.176398	4.199999	23.80978	0.008416	0.006049	323.9623	323.9698	323.9654	75.63194	19.89492	19.75884	0.136084	-209.716	17.89401	1.013069	0.144303	2.161093	0.988607	1	373	-0.00293	0.1
32	0.184798	4.399999	23.80978	0.00839	0.006019	323.9446	323.9568	323.9495	75.56029	19.75738	19.54468	0.212696	-327.792	17.84333	1.010201	0.117839	2.143348	0.988593	1	373	-0.00214	0.1
33	0.193198	4.599999	23.80978	0.008357	0.005985	323.9236	323.9383	323.9296	75.48884	19.63792	19.38213	0.255792	-394.223	17.79291	1.007348	0.096387	2.127465	0.988593	1	373	-0.00286	0.1
34	0.201598	4.799999	23.80978	0.008322	0.005948	323.9009	323.9169	323.9073	75.41765	19.53375	19.25711	0.276632	-426.357	17.74279	1.004512	0.078945	2.113212	0.988603	1	373	-0.002	0.1
35	0.209998	4.9999999	23.80978	0.008286	0.005911	323.8779	323.8943	323.8845	75.34676	19.44262	19.16031	0.282313	-435.131	17.69298	1.001693	0.064731	2.100395	0.988619	1	373	-0.00216	0.1
36	0.218398	5.199998	23.80978	0.008251	0.005875	323.8552	323.8/15	323.8617	75.27616	19.362//	19.08452	0.2/824/	-428.88	17.64348	0.998892	0.053123	2.088848	0.988639	1	3/3	-0.00226	0.1
37	0.220758	5 500008	23.00578	0.008185	0.005807	323.0334	323.045	323.8350	75 13588	10 23133	19.02478	0.207937	-301 7/15	17.535420	0.990108	0.045027	2.078431	0.58600	1	373	-0.00303	0.1
39	0.243597	5.799998	23.80978	0.008155	0.005775	323.7932	323.8072	323.7988	75.06616	19.17757	18,93885	0.238714	-367.984	17.49672	0.990587	0.029468	2.0605021	0.988704	1	373	-0.00066	0.1
40	0.251997	5.999998	23.80978	0.008129	0.005745	323.7752	323,7881	323,7804	74.9967	19.13056	18,90874	0.221816	-341.945	17.44833	0.987849	0.02423	2.052808	0.988725	1	373	-0.00226	0.1
41	0.260397	6.199997	23.80978	0.008104	0.005718	323.7585	323.7704	323.7632	74.92748	19.08962	18.88441	0.205206	-316.349	17.40019	0.985125	0.019927	2.045832	0.988746	1	373	-0.00185	0.1
42	0.268797	6.399997	23.80978	0.008083	0.005692	323.743	323.7541	323.7474	74.85848	19.05411	18.86512	0.188988	-291.355	17.35227	0.982413	0.01639	2.03951	0.988765	1	373	-0.00135	0.1
43	0.277197	6.599997	23.80978	0.008063	0.005667	323.7289	323.739	323.7329	74.78966	19.02349	18.84997	0.173521	-267.516	17.30456	0.979713	0.013481	2.033779	0.988783	1	373	-0.0004	0.1
44	0.285597	6.799997	23.80978	0.008046	0.005645	323.7159	323.7252	323.7196	74.72102	18.99728	18.83845	0.158822	-244.861	17.25705	0.977025	0.011089	2.028581	0.988799	1	373	-2E-05	0.1
45	0.293997	6.999997	23.80978	0.00803	0.005624	323.7041	323.7126	323.7074	74.65253	18.97503	18.83013	0.144893	-223.391	17.20972	0.974347	0.009119	2.023864	0.988814	1	373	-0.00124	0.1
46	0.302397	7.199997	23.80978	0.008017	0.005604	323.6933	323.7009	323.6963	74.58417	18.95639	18.82431	0.132081	-203.64	17.16257	0.9/16/8	0.007499	2.019584	0.988828	1	3/3	-0.00186	0.1
4/	0.310/9/	7.399997	23.80978	0.008006	0.005586	323.6834	323.6904	323.6862	74.51593	18.94101	18.82061	0.120401	-185.636	17.11557	0.969019	0.006165	2.015698	0.988841	1	3/3	-0.00157	0.1
40	0.319190	7.599997	23.80978	0.007990	0.005569	323.0744	222.0000	323.0/09	74.44776	10.92001	10.010/0	0.109855	152 702	17.00872	0.900307	0.005067	2.012171	0.966655	1	3/3	0.00033	0.1
49	0.327390	7 999996	23.80978	0.007981	0.005538	323.0002	323.072	323.0083	74.37573	18 91 164	18.82093	0.099738	-139 866	16 97542	0.961088	0.004103	2.00857	0.988874	1	373	-0.00072	0.1
51	0.344396	8.199996	23.80978	0.007975	0.005524	323.652	323.6567	323.6538	74.24386	18,90661	18.82415	0.082458	-127.141	16.92896	0.958459	0.002807	2.003421	0.988883	1	373	-0.00022	0.1
52	0.352796	8.399996	23.80978	0.007971	0.005511	323.6458	323.6502	323.6475	74.176	18.90362	18.82866	0.074958	-115.579	16.88261	0.955836	0.002304	2.001025	0.988891	1	373	0.000397	0.1
53	0.361196	8.599996	23.80978	0.007967	0.005498	323.6403	323.6442	323.6418	74.10819	18.90247	18.83461	0.067862	-104.638	16.83637	0.95322	0.00189	1.998849	0.988899	1	373	-0.00102	0.1
54	0.369596	8.799995	23.80978	0.007965	0.005487	323.6352	323.6387	323.6366	74.04039	18.90304	18.8412	0.061844	-95.359	16.79024	0.950609	0.00155	1.996876	0.988906	1	373	0.000764	0.1
55	0.377996	8.999995	23.80978	0.007963	0.005476	323.6306	323.6338	323.6319	73.97263	18.90515	18.84925	0.055896	-86.188	16.7442	0.948003	0.001271	1.995085	0.988912	1	373	-0.00062	0.1
56	0.386396	9.199995	23.80978	0.007962	0.005465	323.6264	323.6293	323.6275	73.90488	18.90864	18.85798	0.050657	-78.111	16.69824	0.945403	0.001041	1.993458	0.988918	1	373	-0.00123	0.1
57	0.394796	9.399995	23.80978	0.007963	0.005456	323.6231	323.6254	323.624	73.83717	18.91318	18.87325	0.039925	-61.563	16.65238	0.942809	0.000852	1.991979	0.988921	1	373	-0.04727	0.1
58	0.403196	9.599995	23.80978	0.007965	0.005447	323.62	323.6221	323.6208	73.76944	18.91903	18.88146	0.037567	-57.928	16.60659	0.940218	0.000698	1.990643	0.988925	1	373	-0.04582	0.1
59	0.411595	9.799994	23.80978	0.007966	0.005438	323.61/1	323.6191	323.61/9	/3./01/1	18.926	18.89104	0.034964	-53.914	16.56087	0.937632	0.0005/1	1.989431	0.988929	1	3/3	-0.045	0.1
60	0.419995	9.9999994	23.80978	0.007969	0.005429	222 6110	323.0103	323.0132	73.03397	10.93397	18.90120	0.032714	-50.445	16.51525	0.93505	0.000467	1.900331	0.966932	1	3/3	-0.04151	0.1
62	0.436795	10.30000	23.80978	0.007971	0.005412	323.6096	323.6111	323,6102	73.49841	18,95256	18,97466	0.027902	-40.478	16.47416	0.929898	0.000362	1.986427	0.988030	1	3/3	-0.03709	0.1
63	0.445195	10.59999	23.80978	0.007977	0.005405	323.6075	323,6089	323.608	73,4306	18,96304	18.9377	0.025339	-39.073	16.37872	0.927328	0.000254	1.985607	0.988942	1	373	-0.03701	0.1
64	0.453595	10.79999	23.80978	0.007981	0.005398	323.6055	323.6068	323.6061	73.36276	18.97429	18.95118	0.023109	-35.634	16.33335	0.924761	0.000208	1.984872	0.988944	1	373	-0.03569	0.1
65	0.461995	10.99999	23.80978	0.007985	0.00539	323.6038	323.605	323.6043	73.29489	18.98615	18.96491	0.021243	-32.758	16.28804	0.922197	0.00017	1.984204	0.988947	1	373	-0.03296	0.1
66	0.470395	11.19999	23.80978	0.007989	0.005383	323.6022	323.6032	323.6026	73.22699	18.99852	18.97946	0.019057	-29.386	16.24279	0.919638	0.000138	1.983594	0.988949	1	373	-0.03387	0.1
67	0.478795	11.39999	23.80978	0.007994	0.005377	323.6007	323.6017	323.6011	73.15905	19.01144	18.9939	0.017546	-27.057	16.19759	0.917081	0.000113	1.983044	0.988951	1	373	-0.03135	0.1
68	0.487195	11.59999	23.80978	0.007999	0.00537	323.5993	323.6002	323.5997	73.09105	19.0297	19.01329	0.016417	-25.315	16.15246	0.914527	0.000113	1.983049	0.988955	1	373	-0.0012	0.1
69	0.495594	11.79999	23.80978	0.008004	0.005364	323.5984	323.5991	323.5987	73.02303	19.04346	19.03193	0.01153	-17.78	16.10738	0.911976	0.000094	1.982597	0.988956	1	373	-0.02497	0.1
70	0.503994	11.99999	23.80978	0.00801	0.005358	323.5977	323.5981	323.598	72.95496	19.0615	19.05332	0.008176	-12.608	16.06235	0.909428	0.000094	1.982599	0.988957	1	373	-0.02496	0.1
/1	0.512394	12.19999	23.809/8	0.008017	0.005352	323.59/3	323.59/3	323.59/3	/2.88683	19.07949	19.07391	0.005586	-8.614	10.01/3/	0.906884	0.000093	1.982599	0.988959	1	3/3	-0.02661	0.1

100-R 50-Re 373-Td 27	78-TI																				
1 0	0	13.393	-0.01918	-0.0241	278	278	278	100	71.31838	47.73283	119.0512	101569.1	41.87965	1	50	5.564722	1.01763	2.083251	373	0	0.1
2 0.007467	0.1	13.393	-0.01865	-0.0235	281.8845	280.0525	281.0203	100.1433	62.91144	46.02765	108.9391	97910.09	42.05734	1.004243	37.31038	5.087872	1.018484	1.945308	373	0.034808	0.1
3 0.014933	0.2	13.393	-0.01809	-0.02287	285.1219	282.4179	284.0099	100.2869	55.33134	44.74707	100.0784	99076.39	42.23043	1.008397	26.70928	4.622237	1.019434	1.742379	373	-0.02654	0.1
4 0.0224	0.3	13.393	-0.01743	-0.0221	288.3088	285.1207	287.0268	100.4354	49.3382	42.98875	92.32695	100309.2	42.3983	1.012425	19.74097	4.261911	1.020008	1.566996	373	-0.03187	0.1
5 0.029866	0.4	13.393	-0.01665	-0.02117	291.4614	287.9904	290.0752	100.5787	44.71931	40.93926	85.65857	99394.99	42.55984	1.0163	15.34793	3.999224	1.020095	1.448531	373	-0.02997	0.1
6 0.037333	0.5	13.393	-0.01575	-0.02007	294.5485	290.9232	293.1053	100.7159	41.01838	38.57659	79.59497	96924.84	42.71381	1.019999	12.42271	3.801141	1.019746	1.364902	373	0.006285	0.1
7 0.0448	0.6	13.393	-0.0147	-0.0188	297.5433	293.8518	296.0761	100.8551	37.90886	35.92302	73.83188	93493.32	42.85892	1.023478	10.32579	3.642817	1.019026	1.300248	373	0.00441	0.1
8 0.052266	0.7	13.393	-0.01354	-0.01735	300.4059	296.7395	298.9516	100.9859	35.22481	32.99402	68.21883	88951.32	42.99388	1.026726	8.73493	3.510279	1.01799	1.251535	373	-0.01215	0.1
9 0.059733	0.8	13.393	-0.01227	-0.01576	303.1088	299.5341	301.6934	101.1064	32.87438	29.80994	62.68432	83612.59	43.1175	1.029695	7.483222	3.396034	1.01668	1.21326	373	0.008015	0.1
10 0.067199	0.9	13.393	-0.0109	-0.01404	305.6432	302.1973	304.2798	101.2197	30.79589	26.42796	57.22385	78056.26	43.22875	1.032374	6.474307	3.295681	1.015128	1.178655	373	-0.00082	0.1
11 0.074666	1	13.393	-0.00947	-0.01222	307.9886	304.7163	306.6957	101.3255	28.95516	22.90434	51.85949	72046.79	43.32676	1.034733	5.646488	3.206388	1.013385	1.150319	373	-0.00085	0.1
12 0.082132	1.1	13.393	-0.008	-0.01034	310.1342	307.0713	308.9259	101.4182	27.32667	19.31533	46.642	65/8/.82	43.411	1.036/62	4.957392	3.126168	1.011502	1.126835	3/3	-0.00149	0.1
13 0.089599	1.2	13.393	-0.00653	-0.00846	312.0762	309.2476	310.9619	101.4976	25.88/92	15./3/64	41.62557	59459.61	43.4812	1.038453	4.377048	3.0535/1	1.009533	1.10/203	3/3	-0.00131	0.1
14 0.097066	1.3	13.393	-0.00509	-0.0066	313.81/5	311.235	312.8015	101.5637	24.61885	12.24034	36.85918	53255.53	43.53741	1.039808	3.883408	2.98/508	1.007532	1.090064	3/3	-0.00205	0.1
15 0.104552	1.4	12 202	-0.0037	-0.0048	315.3047	214 6427	215 0094	101.0190	23.50114	6.664525 E 72E401	32.36300	4/28/.0/	43.57998	1.040641	2 00202	2.92/141	1.003547	1.0/4965	3/3	-0.00230	0.1
17 0 110465	1.5	12 202	0.00235	0.00152	217 012	216 0722	217 1015	101.0055	22.315/3	2 902015	20.24313	26202.54	43.00545	1.041301	3.05352	2.0/1/00	1.003025	1.002400	3/3	0.00343	0.1
0 127429 1	706654	13.393	0.00117	-0.00132	318 9685	317 3582	318 3407	101.0534	21.0335	2.802013	20.90027	31161 19	43.02074	1 041988	2.773538	2.820892	0.999983	1.032001	373	-0.00423	0.1
19 0 134399	1.8	13 393	0 001024	0.001332	319 8923	318 4838	319 3466	101.7110	20.05200	2 438465	17 78308	26670 23	43 62692	1 041991	2 251276	2 730359	0.998397	1.04504	373	-0.02333	0.1
20 0.149332	2.0	13.393	0.002597	0.003377	321,2024	320.1972	320,806	101.7189	19,1129	6.198293	12,91461	19545.2	43.59176	1.041152	1.793248	2.644713	0.995852	1.023994	373	-0.00379	0.1
21 0.164265	2.2	13,393	0.003787	0.004921	322,1396	321.4167	321.8545	101.6855	18,17748	9.030191	9.147288	13940.82	43.5298	1.039673	1.384421	2.560232	0.993825	1.014794	373	-0.00142	0.1
22 0.179198	2.4	13.393	0.004652	0.006038	322.7937	322.2858	322.5936	101.6321	17.43877	11.08415	6.354616	9726.171	43.44798	1.037719	1.067685	2.486588	0.992274	1.009036	373	-0.00634	0.1
23 0.194131	2.6	13.393	0.005261	0.006819	323.2407	322.892	323.1034	101.5644	16.86458	12.53114	4.333444	6649.257	43.35198	1.035427	0.830651	2.424548	0.991124	1.005584	373	0.000162	0.1
24 0.209064 2.	.7999999	13.393	0.005678	0.007348	323.5397	323.3055	323.4476	101.4875	16.41569	13.51933	2.896365	4451.144	43.24619	1.032902	0.652965	2.372401	0.990292	1.003505	373	-0.00551	0.1
25 0.223998	3	13.393	0.005955	0.007694	323.7344	323.5808	323.6741	101.4035	16.05983	14.17708	1.88275	2902.599	43.13387	1.030221	0.517986	2.328168	0.989701	1	373	-0.00022	0.1
26 0.238931 3.	.199999	13.393	0.006131	0.007908	323.8558	323.7595	323.818	101.3147	15.77321	14.59466	1.178554	1816.579	43.01737	1.02744	0.413949	2.290233	0.989291	1	373	-0.00549	0.1
27 0.253864 3.	.399999	13.393	0.006237	0.008031	323.9266	323.8696	323.9044	101.2226	15.53864	14.84678	0.691858	1066.276	42.89836	1.024598	0.332742	2.257362	0.989013	1	373	0.000312	0.1
28 0.268797 3.	.599999	13.393	0.006295	0.00809	323.9629	323.9328	323.9513	101.1287	15.34381	14.98298	0.36083	556.069	42.778	1.021725	0.268707	2.228635	0.98883	1	373	-0.00109	0.1
29 0.28373 3.	.799999	13.393	0.006319	0.008106	323.9761	323.9641	323.9716	101.0337	15.17995	15.04152	0.138424	213.318	42.65707	1.018838	0.217801	2.203355	0.988713	1	373	-0.00248	0.1
30 0.298663 3.	.9999999	13.393	0.006322	0.008095	323.9741	323.974	323.9742	100.9382	15.04065	15.03259	0.008052	-12.409	42.53611	1.01595	0.177068	2.180983	0.988644	1	373	-0.00411	0.1
31 0.313597 4.	.1999999	13.393	0.006312	0.008066	323.9623	323.9698	323.9654	100.8426	14.92119	14.81913	0.102063	-157.287	42.41544	1.01307	0.144304	2.161094	0.988607	1	373	-0.00291	0.1
32 0.32853 4.	.399999	13.393	0.006292	0.008026	323.9446	323.9568	323.9495	100.7471	14.81804	14.65852	0.159522	-245.844	42.2953	1.010201	0.11784	2.143349	0.988593	1	373	-0.00209	0.1
33 0.343463 4.	.5999999	13.393	0.006268	0.00798	323.9236	323.9383	323.9296	100.6518	14.72844	14.5366	0.191844	-295.667	42.17579	1.007349	0.096387	2.127465	0.988593	1	373	-0.00286	0.1
34 0.358396 4.	.7999999	13.393	0.006242	0.007931	323.9009	323.9169	323.9073	100.5569	14.65031	14.44283	0.207474	-319.768	42.05699	1.004513	0.078945	2.113212	0.988603	1	373	-0.00199	0.1
35 0.373329 4.	.9999999	13.393	0.006215	0.007882	323.8779	323.8943	323.8845	100.4624	14.58196	14.3/023	0.211/35	-326.348	41.93892	1.001694	0.064/31	2.100395	0.988619	1	3/3	-0.00213	0.1
36 0.388262 5.	.1999999	13.393	0.006188	0.007797	323.8552	323.8/15	323.8617	100.3682	14.52207	14.31338	0.208685	-321.66	41.82158	0.998893	0.053122	2.088847	0.988639	1	3/3	-0.00231	0.1
37 0.403190 5.	500000	12 202	0.006130	0.007742	323.8334	323.649	323.8390	100.2745	14.40954	14.20858	0.200967	-309.770	41.70495	0.002241	0.045020	2.07845	0.96600	1	3/3	-0.00312	0.1
30 0.418129 5.	700000	13 303	0.006139	0.007742	323.0127	323.8273	323.0107	100.1812	14.42349	14.23266	0.190002	-295.608	41.56901	0.995541	0.035647	2.069019	0.988704	1	3/3	-0.00329	0.1
40 0.447995 5	000000	13 303	0.000117	0.007661	323 7752	323 7881	323.7500	00.000564	14.30310	14.20412	0.166362	-256 459	/1 35001	0.950505	0.02,0407	2.000303	0.988725	1	373	-0.00278	0.1
41 0.462928 6	199998	13.393	0.006078	0.007623	323,7585	323,7704	323,7632	99.90335	14.31721	14.1633	0.153905	-237.262	41.24489	0.985126	0.019927	2.045832	0.988746	1	373	-0.00187	0.1
42 0.477861 6	.3999999	13.393	0.006062	0.007589	323,743	323,7541	323,7474	99.81134	14.29058	14.14884	0.141741	-218.517	41.13131	0.982415	0.016391	2.039511	0.988765	1	373	-0.00128	0.1
43 0.492795 6.	.599998	13.393	0.006047	0.007557	323.7289	323.739	323.7329	99.71959	14.26761	14.13747	0.13014	-200.637	41.01822	0.979715	0.013481	2.033779	0.988783	1	373	-0.0004	0.1
44 0.507728 6.	.799999	13.393	0.006034	0.007527	323.7159	323.7252	323.7196	99.62807	14.24794	14.12882	0.119117	-183.645	40.9056	0.977027	0.011088	2.028579	0.988799	1	373	-0.00012	0.1
45 0.522661 6.	.9999999	13.393	0.006023	0.007499	323.7041	323.7126	323.7074	99.53674	14.23125	14.12258	0.10867	-167.543	40.79341	0.974348	0.009119	2.023862	0.988814	1	373	-0.00135	0.1
46 0.537594 7.	.199999	13.393	0.006013	0.007473	323.6933	323.7009	323.6963	99.4456	14.21726	14.1182	0.099061	-152.73	40.68163	0.97168	0.007498	2.019581	0.988828	1	373	-0.00202	0.1
47 0.552527 7.	.399999	13.393	0.006004	0.007448	323.6834	323.6904	323.6862	99.35462	14.20573	14.11543	0.090301	-139.227	40.57023	0.96902	0.006164	2.015695	0.988841	1	373	-0.0017	0.1
48 0.56746 7.	.599998	13.393	0.005997	0.007425	323.6744	323.6808	323.6769	99.26376	14.19643	14.11404	0.08239	-127.032	40.45918	0.966369	0.005066	2.012168	0.988853	1	373	0.000189	0.1
49 0.582394 7.	.799998	13.393	0.005991	0.007404	323.6662	323.672	323.6685	99.17304	14.18913	14.11433	0.074804	-115.337	40.34845	0.963725	0.004162	2.008964	0.988864	1	373	-0.00099	0.1
50 0.597327 7.	.9999999	13.393	0.005985	0.007384	323.6588	323.664	323.6608	99.08241	14.18371	14.11567	0.068034	-104.9	40.23803	0.961089	0.003419	2.006059	0.988874	1	373	-0.00053	0.1
51 0.61226 8.	.199998	13.393	0.005981	0.007365	323.652	323.6567	323.6538	98.99185	14.17996	14.11812	0.061843	-95.356	40.1279	0.95846	0.002808	2.003423	0.988883	1	373	-0.00016	0.1
52 0.627193 8.	.3999999	13.393	0.005978	0.007348	323.6458	323.6502	323.6475	98.90138	14.17772	14.1215	0.056218	-86.684	40.01804	0.955838	0.002304	2.001026	0.988891	1	373	0.000466	0.1
53 0.642126 8.	.599998	13.393	0.005975	0.007331	323.6403	323.6442	323.6418	98.81095	14.17588	14.12598	0.050897	- /8.479	39.90844	0.953221	0.001891	1.998853	0.988899	1	373	-0.00079	0.1
54 U.65/U59 8.	000000	12 202	0.005973	0.007305	323.0352	323.038/	323.0300	30.72057	14.1//29	14.1309	0.041022	-/1.519	39.79908	0.95061	0.001371	1.9968/8	0.968906	1	3/3	0.00084	0.1
55 0.6/1993 8.	100009	13.393	0.005972	0.007301	323.6306	323.0338	323.6319	98.63022	14.1/884	14.13692	0.041922	-04.041	39.68995	0.948005	0.001271	1.995083	0.988912	1	3/3	-0.00072	0.1
57 0 701850 0	200000	12 202	0.005972	0.007287	222.0204	222.0255	222.0273	00 4406	14.10147	14.14340	0.037993	-JO. JO4	20 4722	0.04291	0.001041	1.001092	0.900910	1	3/3	0.00124	0.1
58 0 716792 9	500008	13 303	0.005973	0.007274	323.0231	323.0234	323.024	98 35931	14.10451	14.13457	0.029944	-40.172	39.4723	0.94201	0.000833	1.991963	0.988921	1	373	-0.04703	0.1
59 0.731725 9	799998	13 393	0.005975	0.007251	323 6171	323 6191	323 6179	98 269	14 19451	14 16829	0.026223	-40 435	39 2554	0.937634	0.000572	1 989434	0.988929	1	373	-0.04485	0.1
60 0.746659 9	.999998	13.393	0.005976	0.007239	323.6144	323.6163	323.6152	98,17867	14.20047	14.17594	0.024535	-37.834	39,14721	0.935052	0.000467	1.988331	0.988932	1	373	-0.04152	0.1
61 0.761592	10.2	13.393	0.005978	0.007228	323.6119	323.6136	323.6126	98.08831	14.20714	14.18453	0.022606	-34.859	39.03919	0.932474	0.000382	1.987333	0.988936	1	373	-0.04011	0.1
62 0.776525	10.4	13.393	0.00598	0.007217	323.6096	323.6111	323.6102	97.99793	14.21444	14.19352	0.020927	-32.269	38.93133	0.9299	0.000312	1.986431	0.988939	1	373	-0.03691	0.1
63 0.791458	10.6	13.393	0.005983	0.007207	323.6075	323.6089	323.608	97.90751	14.22227	14.20352	0.018746	-28.906	38.82363	0.927329	0.000254	1.985607	0.988942	1	373	-0.03965	0.1
64 0.806391	10.8	13.393	0.005986	0.007197	323.6056	323.6069	323.6061	97.81706	14.2307	14.21338	0.017318	-26.704	38.71608	0.924762	0.000208	1.984872	0.988944	1	373	-0.03658	0.1
65 0.821324	11	13.393	0.005989	0.007187	323.6038	323.605	323.6043	97.72656	14.23951	14.22384	0.015673	-24.168	38.60868	0.922199	0.000169	1.984193	0.988946	1	373	-0.03694	0.1
66 0.836258	11.2	13.393	0.005992	0.007178	323.6022	323.6033	323.6027	97.63602	14.24887	14.23434	0.014537	-22.417	38.50142	0.919638	0.000138	1.983594	0.988949	1	373	-0.03294	0.1
67 0.851191	11.4	13.393	0.005995	0.007169	323.6007	323.6017	323.6012	97.54543	14.25862	14.24544	0.013172	-20.311	38.3943	0.917082	0.000113	1.98305	0.988951	1	373	-0.03176	0.1
68 0.866124	11.6	13.393	0.005999	0.00716	323.5994	323.6002	323.5997	97.45476	14.27231	14.25999	0.012314	-18.988	38.28731	0.914527	0.000113	1.983055	0.988954	1	373	-0.0017	0.1
69 0.881057	11.8	13.393	0.006003	0.007151	323.5984	323.5991	323.5987	97.36406	14.28268	14.27403	0.008648	-13.335	38.18045	0.911977	0.000094	1.982611	0.988956	1	373	-0.02508	0.1
70 0.89599	12	13.393	0.006008	0.007144	323.5977	323.5982	323.598	97.27329	14.29621	14.29008	0.006132	-9.456	38.07372	0.909429	0.000094	1.982612	0.988957	1	373	-0.02509	0.1
71 0.910923	12.2	13.393	0.006013	0.007136	323.5973	323.5974	323.5974	97.18247	14.30971	14.30527	0.004447	-6.858	37.96709	0.906884	0.000094	1.982612	0.988959	1	373	-0.02412	0.1